Design and Analysis of Grid-Connected Hybrid Power Systems Based on Renewable Energy: Bangladesh Perspective

By

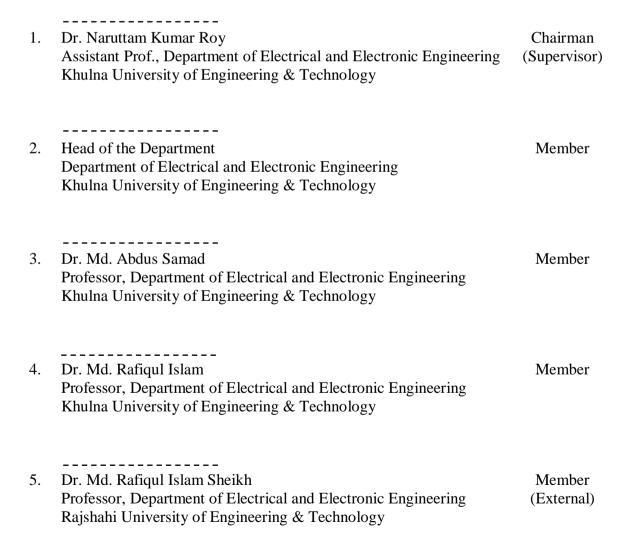
(Md. Nurunnabi)

A thesis submitted in partial fulfillment of the requirement for the degree of Master of Science in Electrical and Electronic Engineering

Khulna University of Engineering & Technology
Khulna 9203, Bangladesh
July 2016

Declaration

This certifies that the thesis work entitled "Design and Analysis of Grid-Connected Hybrid Power Systems Based on Renewable Energy: Bangladesh Perspective" has been carried out by Md. Nurunnabi in the Department of Electrical and Electronic Engineering, Khulna University of Engineering & Technology, Khulna, Bangladesh. The above thesis work or any part of this work has not been submitted anywhere for the award of any degree or diploma.


Signature of Supervisor

Signature of Candidate

Approval

This is to certify that the thesis works submitted by Md. Nurunnabi entitled "Design and Analysis of Grid-Connected Hybrid Power Systems Based on Renewable Energy: Bangladesh Perspective" has been approved by the board of examiners for the partial fulfillment of the requirements for the degree of Master of Science in Electrical and Electronic Engineering from the Department of Electrical and Electronic Engineering, Khulna University of Engineering & Technology, Khulna, Bangladesh in July 2016.

BOARD OF EXAMINERS

iv

ACKNOWLEDGEMENT

First and foremost, I take this opportunity to give glory to the almighty God without which

the completion of this work would have been impossible.

Next, I would like to express my sincere gratitude to my advisors Dr. Naruttam Kumar Roy for

his expert guidance, constructive comments, suggestions, and encouragement without which

this work could not have been completed. He has been a constant source of inspiration

throughout the life span of my study.

I owe my greatest gratitude to my parents especially to my beloved mother, who has been the

inspiration of my life; your passion for education has contributed immensely to the

completion of this study, this is for you.

Lastly but certainly not the least important, I would like to thank all the people stood by my

side.

July, 2016

Md. Nurunnabi

KUET, Khulna.

Dedicated to My Parents

ABSTRACT

Current power generation scenarios all over the world are not climate friendly as the generation systems are mainly dependent on fossil fuels that produce greenhouse gas (GHG) which contributes to global warming. This thesis presents an economical expediency of gridconnected hybrid (PV/Wind turbine) power system model by investigating the potentials of the wind and solar energy. It also conducts a feasibility analysis to explore the potentialities of green energy at different locations namely Kuakata, Sitakunda, Magnamaghat, Dinajpur, Rangpur and Khulna in Bangladesh. Initially, a flowchart of the proposed hybrid power system model is developed and then a hybrid model is designed with varying the contributions of renewable resources for the considered coastal region and the northern part of Bangladesh using a software tool named Hybrid Optimization of Multiple Energy Resources (HOMER). The simulation results are calculated for finding the cost of energy (COE), net present cost (NPC), total annualize cost, annual real interest rate, capital recovery factor (CRF), fraction of renewable energy (RE) contribution and greenhouse gas emission in terms of tons/year from which an optimum combination of RE sources and fraction of different RE sources in the designed hybrid power plant are determined. Sensitivity variables, such as range of wind speed, solar radiation, PV panel price, wind turbine hub height, are defined as inputs during simulation. The optimization process is carried out repeatedly for the sensitivity variables and the results are refined accordingly. Also, a comparison is made between off-grid and grid connected models on the basis of COE and GHG emission. The simulation results show that the proposed grid-PV-wind hybrid power system model is most suitable, economical and eco-friendly for the considered regions in Bangladesh.

Contents

		PAGE
Title Page		i
Declaration		ii
Approval		iii
Acknowledgemen	nt	iv
Dedication		v
Abstract		vi
Contents		vii
List of Tables		xii
List of Figures		xv
Nomenclature		xviii
CHAPTER I	Introduction	1
	1.1 Background	1
	1.2 Problem Description and Motivation	2
	1.3 Objectives	3
	1.4 Literature Review	3
	1.5 Outline of the Thesis	5
CHAPTER II	Technology of Renewable Energy System	
	(Wind and Solar)	6
	2.1 Introduction	6
	2.2 Technology of Wind Power	6
	2.2.1 Classification of Wind Turbines	8
	2.2.2 Horizontal Axis Wind Turbines (HAWTs)	9
	2.2.3 Vertical Axis Wind Turbines (VAWTs)	9
	2.2.4 Efficiency and Power Output of Wind	
	Turbine	10
	2.2.5 Wind Speed Measurement	11
	2.2.6 Various Factor for Wind Speed	
	Measurement	13

	2.3 Technology of Solar Energy	13
	2.3.1 History of Photovoltaic Array	14
	2.3.2 Basic Structure of Photovoltaic	15
	2.3.3 Characteristics of PV Cells	16
	2.3.4 Solar Power	16
	2.4 Conclusion	17
CHAPTER III	Methodology	18
	3.1 Introduction	18
	3.2 Proposed Model	18
	3.2.1 Flow Chart of the Proposed Methodology	19
	3.2.2 Wind Energy Available in Bangladesh	20
	3.3 Wind Resources	21
	3.3.1 Wind Energy Resources in Kuakata	23
	3.3.2 Wind Energy Resources in Sitakunda	24
	3.3.3 Wind Energy Resources in Magnamaghat,	
	Cox's Bazar	24
	3.3.4 Comparison of Monthly Variation of the	
	Mean Wind Speed	25
	3.3.5 Wind Power Density for Sitakunda,	
	Magnama and Kuakata	26
	3.4 Solar Energy Resources of Bangladesh	28
	3.4.1 Solar Energy at Kuakata and Other Four	
	Locations	29
	3.5 Load Estimation for Proposed Region	32
	3.5.1 Electricity Demand at Dinajpur	33
	3.5.2 Effect of Random Variability on Load	35
	3.5.3 Electricity Demand at Chilmari	37
	3.5.4 Electricity Demand at Kuakata	40
	3.5.4.1 Residential Load Calculation for Kuakata	40
	3.5.4.2 Commercial Load Estimation for Kuakata	41
	3.5.4.3 Load Estimation for Charging the Battery	
	Run Auto Rickshaw	42

	3.5.5 Electricity Demand at Magnama, Pekua in	
	Cox's Bazar	44
	3.5.6 Electricity Demand at Sitakunda	46
	3.6 Economic Factors and Other Cost	49
	3.6.1 Discount Rate and Inflation Rate	49
	3.6.2 System Fixed Capital Cost	49
	3.6.3 System Fixed Operation and Maintenance	
	Cost	50
	3.6.4 The Project Lifetime	50
	3.7 Selection of Component	50
	3.7.1 Selection of Solar PV	51
	3.7.2 Selection of Wind Turbine	52
	3.7.3 Selection of Converter	55
	3.7.4 Grid Parameter	57
	3.7.5 Land Requirement for Plant Installation	58
	3.8 Basic Theory for Cost Calculation	58
	3.8.1 Net Present Cost (NPC)	58
	3.8.2 Total Annualized Cost	58
	3.8.3 Capital Recovery Factor (CRF)	58
	3.8.4 Annual Real Interest Rate	59
	3.8.5 Cost of Energy (COE)	59
	3.8 Conclusion	59
CHAPTER IV	Simulation Results	60
	4.1 Introduction	60
	4.2 Optimum Results for Kuakata	60
	4.2.1 Hub Height Selection for Kuakata Region	64
	4.2.2 Cost Summary for Kuakata (1 MW)	66
	4.2.3 Renewable Fraction (1 MW)	67
	4.2.4 Output Analysis (1 MW)	68
	4.2.5 Environmental Impact	72
	4.2.6 Results for other Four Locations	73
	4.3 Comparative Result for Proposed Five Models	75

	4.3.1 Comparison Based on System Architecture	75
	4.3.2 Comparison Based on Cost Analysis	76
	4.3.3 Comparison Based on CO ₂ Emission for 1	
	MW Power Plant	77
	4.4 Conclusion	77
CHAPTER V	A Case Study for KUET	78
	5.1 Introduction	78
	5.2 KUET Background	78
	5.2.1 Power System Scenario of KUET	79
	5.3 Load Calculation	81
	5.3.1 Connected Load Calculation	81
	5.3.2 Actual Load for KUET Area	86
	5.4 Various Factors of Power Systems	87
	5.4.1 Connected Load	88
	5.4.2 Maximum Demand	88
	5.4.3 Demand Factor	88
	5.4.4 Load Factor	89
	5.4.5 Power Factor	89
	5.4.6 Diversity Factor	90
	5.4.7 Plant Capacity Factor and Renewable	
	Energy	90
	5.5 System Architecture/Methodology	91
	5.5.1 Area Selection and Land Requirement	93
	5.5.2 Renewable Energy Resources in Khulna	93
	5.5.3 Wind Energy Resources	93
	5.5.4 Solar Energy Resources	95
	5.5.5 Converter Size Selection for Specific Solar	
	Panel	96
	5.5.6 Hybrid System Modeling	97
	5.6 Simulation Results for Various System Model	98
	5.6.1 Comparison of Various System Models	103

	5.6.2 CO ₂ Reduction	104
	5.7 Conclusion	105
CHAPTER VI	Conclusion	106
	6.1 Conclusion	106
	6.2 Future Directions	107
References		108
Appendix A		116
Appendix B		125
Appendix C		127
List of Publication	ns	132

LIST OF TABLES

Table no.	Description	Page
		No.
Table 2.1	Surface roughness lengths	12
Table 2.2	Friction coefficient α of various terrains	13
Table 3.1	Monthly variation of wind speed and power density for selected	27
	sites	
Table 3.2	Average daily solar radiation at 14 locations in Bangladesh	29
Table 3.3	Monthly and annually average daily radiation (kWh/m2/day),	
	clearness index for selected sites	30
Table 3.4	Name of home appliances with their ratings	32
Table 3.5	Load consumption for high class, medium class, and low-class	
	household	33
Table 3.6	Load consumption for public (School, health center, street	
	light), commercial load (shops) and deferrable load (irrigation	
	systems)	34
Table 3.7	Hourly load consumption for Dhopa Para, Dinajpur.	35
Table 3.8	load consumption for household of Chilmari, Rangpur.	37-38
Table 3.9	load consumption for school, health center, and shops	38
Table 3.10	Load consumption for street light and irrigation system	39
Table 3.11	Load consumption for a solvent family in Kuakata	40
Table 3.12	Load consumption for a poor family in Kuakata	41
Table 3.13	Load for tourist hotel in a day	41
Table 3.14	Load for Shops and restaurants	41
Table 3.15	Load consumption for household of Magnama, Pekua	45
Table 3.16	load consumption for the Public and commercial load at	
	Magnama, Pekua	45
Table 3.17	Estimation of load consumption for house hold at Sitakunda	47
Table 3.18	Public and commercial load estimation at Sitakunda	48

Table 3.19	Cost quotation for 100 kWp on-grid solar system	51
Table 3.20	Technical specification for 100 kWp on-grid solar	52
Table 3.21	H21.0-100kW technical specifications	53
Table 3.22	Cost quotation sheet for 100 KW on-grid wind turbine systems	54
Table 3.23	Technical specification of solar inverter	56
Table 3.24	REB , PBS and OZPDCL unit price	57
Table 4.1	Simulation results for finding optimal design for 1 MW	61
Table 4.2	Simulation results for finding optimal design for 2 MW	62
Table 4.3	Simulation results for finding optimal design for 3 MW	63-64
Table 4.4	NPC (Net present cost) for 1 MW power plant at Kuakata	66
Table 4.5	The CO ₂ emission for Kuakata	72
Table 4.6	System architecture comparison for five locations	75
Table 4.7	Comparison of CO ₂ emission for 1 MW power plant	77
Table: 5.1	Connected load for residential area (faculties and staffs)	82
Table 5.2	Connected load for others building	83
Table 5.3	Load for academic area of KUET	84
Table 5.4	Connected load for Residence of Student (Hall)	85
Table 5.5	Monthly average load for January-June	86
Table 5.6	Monthly average load for July- December	87
Table 5.7	Monthly average daily solar radiation and clearness index for KUET area	95
Table 5.8	converter size selection for the specific solar panel	97
Table 5.9	Simulation results for 1 MW power plant	99
Table 5.10	Simulation results for 1.5 MW power plants	100
Table 5.11	Simulation results for 2 MW power plants	101
Table 5.12	Simulation results for 3 MW power plants at KUET	102
Table 5.13	Comparative results for various system architectures.	104
Table 5.14	CO2 emission for various system architectures.	105
Table A-1	Winter season load consumption scenario for Dinajpur.	116
Table A-2	Summer season load consumption scenario for Dinajpur.	117
Table A-3	Hourly load consumption scenario for Chillmari, Rangpur.	118
Table A-4	Winter season load consumption scenario for Chilmari, Rangpur.	119

Table A-5	Summer season load consumption scenario for Chilmari, Rangpur.	120
Table A-6	Hourly load consumption scenario for Kuakata.	121
Table A-7	Hourly load consumption scenario for Battery run auto rickshaw	122
Table A-8	load consumption scenario for Magnama, Pekua.	123
Table A-9	Seasonal load consumption for Magnama, Pekua.	124
Table A-10	Hourly load consumption for Sitakunda.	125
Table B-1	NPC (Net present cost) for 2 MW at Kuakata	125
Table B-2	NPC (Net present cost) for 3 MW at Kuakata	126
Table B-3	Contribution of individual component for Kuakata region	126
Table C-1	Simulation results for Sitakunda	127
Table C-2	Simulation results for Dinajpur	128
Table C-3	Simulation results for Rangpur	129
Table C-4	Simulation results for Magnama	130

LIST OF FIGURES

Figure No.	Description	Page
		No.
Fig. 2.1	A typical wind power technology diagram	7
Fig. 2.2	HAWTs (horizontal axis wind turbines)	9
Fig. 2.3	Vertical axis wind turbines (VAWTs)	10
Fig. 2.4	Wind turbine power curve (Northern Power NPS100C-21,100	
	kW)	11
Fig. 2.5	Wind speed variation with height	12
Fig. 2.6	17 MW Mithapur solar power plant, Gujarat in January 2012	
	(India)	14
Fig. 2.7	Basic structure of a generic silicon PV cell	15
Fig. 3.1	Grid connected hybrid power system model	18
Fig. 3.2	Flowchart of the proposed methodology	19
Fig. 3.3	Wind Speed Scenario of Bangladesh at 50 m height	20
Fig. 3.4	Wind direction of Bangladesh at 50 m height	21
Fig. 3.5	Location of 3 wind sites: 1. Kuakata 2. Sitakunda and 3.	
	Magnamaghat	22
Fig. 3.6	Monthly average daily wind speed (m/s) at Kuakata	23
Fig. 3.7	Wind Speed Histogram for Kuakata Region	23
Fig. 3.8	Monthly average daily wind speed (m/s) at Sitakunda	24
Fig. 3.9	Monthly average daily wind speed (m/s) at Magnamaghat	25
Fig. 3.10	Monthly variation of mean wind speed at 50 m height	26
Fig. 3.11	Annual average wind speed (m/s) at 50 m height for three	
	different location	26
Fig. 3.12	Monthly variation of the wind power density at 50 m height	27
Fig. 3.13	Solar radiation (kWh/m²/day) and area of Bangladesh with the	
	highest potential for solar energy utilization	28
Fig. 3.14	Comparison of (a) solar radiation and (b) clearness index at five	
	locations.	30-31
Fig. 3.15	Annual average solar radiation with clearness index	31

Fig. 3.16	Load consumption without random variability for January.	36
Fig. 3.17	Load consumption using 10% random variability for January	36
Fig. 3.18	Hourly variation of load consumption in a year for Chilmari,	
	Rangpur.	39
Fig. 3.19	Hourly load profile for household load at Kuakata (load 1)	42
Fig. 3.20	Hourly load profile for battery run auto rickshaw at Kuakata (load	
	2)	43
Fig. 3.21	Daily load profile for household (load 1)	43
Fig. 3.22	Daily load profile for charging the auto-rickshaw (load 2)	43
Fig. 3.23	Magnama, Pekua at Cox's Bazar	44
Fig. 3.24	AC primary load duration curve for Magnama, Cox's Bazar (kW)	46
Fig. 3.25	Hourly Load profile for a year	49
Fig. 3.26	H21.0-100kW wind turbine (30 m)	52
Fig. 3.27	Capital cost for a typical onshore wind power system and turbine	55
Fig: 3.28	Solar inverter for grid connection	55
Fig: 3.29	Efficiency curve for converter	56
Fig. 4.1	The NPC vs. PV-Wind ratio.	62
Fig. 4.2	The NPC vs. PV-Wind ratio	63
Fig. 4.3	The NPC vs. PV-Wind ratio.	64
Fig. 4.4	Wind turbine capital cost, cost of energy with respect to hub	
	height (m)	65
Fig. 4.5	Wind turbine capital cost, NPC with respect to hub height (m)	65
Fig. 4.6	Cost summary (\$)	66
Fig. 4.7	Cash Flow Summary	67
Fig. 4.8	Monthly average electricity production for final model	
	(Renewable fraction 88%).	67
Fig. 4.9	Primary load vs. renewable contribution for December	68
Fig. 4.10	Primary load vs. renewable contribution for April	68
Fig. 4.11	Total renewable output (daily profile)	69
Fig. 4.12	Primary load vs renewable contribution for 14 th April	70
Fig. 4.13	Primary load vs. total renewable contribution for 17 th December	
		70

Fig. 4.14	Primary load vs. total Renewable contribution as a function of	
	percentage for April	71
Fig. 4.15	Energy sold to the grid vs. purchases from the grid for December.	71
Fig. 4.16	Energy sold to the grid and purchased from the grid for April.	72
Fig. 4.17	NPC(\$) vs. PV-Wind ratio for Dinajpur region (a) Result for 1	
	MW power plant (b) Result for 2 MW plant	73
Fig. 4.18	NPC(\$) vs. PV-Wind ratio for Magnama region (a) Result for 1	
	MW power plant (b) Result for 2 MW plant	73
Fig. 4.19	NPC(\$) vs. PV-Wind ratio for Chillmari region (a) Result for 1	
	MW power plant (b) Result for 2 MW plant	74
Fig. 4.20	NPC(\$) vs. PV-Wind ratio for Sitakunda region on (a) Result for	
	1 MW power plant (b) Result for 2 MW plant	74
Fig. 4.21	Net present cost (NPC) for five locations	76
Fig. 4.22	COE in terms of \$/kWh for five considered area.	76
Fig. 5.1	Single line diagram of distribution network of KUET	80
Fig. 5.2	Block diagram of hybrid power plant model	92
Fig. 5.3	Flow chart of the proposed methodology	92
Fig.5.4	Frequency distribution of wind speeds in Khulna (Above 20 m	
	height)	94
Fig. 5.5	Wind direction over a year in Khulna region	94
Fig. 5.6	Monthly average daily solar radiation (kWh/m2/day) and	
	clearness index at KUET	96
Fig. 5.7	The scheme of the hybrid power system	98
Fig. 5.8	NPC (\$) vs. PV-wind ratio for 1 MW power plant	99
Fig. 5.9	NPC (\$) vs. PV-wind ratio for 1.5 MW power plant	100
Fig. 5.10	NPC (\$) vs. PV-wind ratio for 2 MW power plant	101
Fig. 5.11	NPC (\$) vs. PV-wind ratio for 3 MW power plant	103
Fig. 5.12	NPC (\$), COE (\$/kWh) vs. PV-wind ratio for various system architectures	104

Nomenclature

A	Cross sectional area	(m^2)
ac	Alternating current	
CDF	Cumulative Density Function	
COE	Cost of energy	(\$/kW)
C_p	The power coefficient	
C	The Weibull scale factor	(m/s)
c	The chord (width) of the blade	(m)
C fuel eff.	The effective price of fuel	(\$/L)
Com gen.	The O& M cost	(\$/hr)
C rep gen.	The replacement cost	(\$)
D	the rotor diameter	(m)
dc	Direct current	
DC	Duration Curve	
f_{PV}	The PV derating factor	(%)
G_{sc}	The solar constant $=1367$	(W/m^2)
G_{TSTC}	The incident radiation at standard test conditions =1000	(W/m^2)
HOMER	Hybrid Optimization of Multiple Energy Resources	
h_1	The reference height	(m)
KE	The kinetic energy of a stream of air	(J)
k	The Weibull shape factor	
m	Mass of air parcel	(kg)
NPC	Net present cost	(\$)
COE	Cost of energy	(\$)
N	the rotational speed of the rotor	(RPM)
P	Power	(W)
PDF	Probability Density Function	
P_{gen}	Output of the generator in this hour	(kW)
P_{PV}	The power output of the PV array	(kW)
p	Air pressure	(Pa)
RF	Renewable fraction	
RE	Renewable energy	

RPM	Revolution per minute	
R_{gen}	The generator lifetime	(hr)
T	Temperature	(°K)
T _c	The PV cell temperature in the current time step	(°C)
V	Wind speed (velocity)	(m/s)
V_1	Reference speed	(m/s)
V	The volume of air parcel	(m^3)
Y_{gen}	Rated capacity of generator	(kW)
Y_{PV}	The rated capacity of PV array	(kW)
Z	Height above ground level for the desired speed	(m)
Z_{o}	Roughness length in the current wind direction	(m)
Z_1	Reference height	(m)
Z	The number of the blades	
Z'	Elevation	(m)
a_p	The temperature coefficient of power	(%/°C)
S	The solidity of the turbine	
r	The density of air	(kg/m^3)

CHAPTER I

Introduction

1.1 Background

Every sector of modern civilization is dependent on energy which comes from various energy sources such as nuclear energy and fossil fuel (coal, oil and natural gas). The combustion of fossil fuels emits a huge amount of greenhouse gasses (GHG) such as carbon dioxide, sulfur dioxide, nitrogen dioxide that harm the atmosphere and health of the population [1]. Therefore, there is a critical need for a robust and sustainable power generation system which is reliable and environment-friendly that overcomes various problems associated with the existing power system. Recently, hybrid power systems using renewable energy (RE) are becoming popular due to their potential benefits on the environment [2]. RE can play an important role in reducing global warming as well as the high cost of energy [3]. Bangladesh is responsible for a large amount of GHG emission. Moreover, the present reserve of fuel used for power generation would be depleted by a decade [4]. Therefore, an alternative way of energy generation in Bangladesh is very urgent. RE sources are considered as the best way to meet the energy demand as they are clean and environmental friendly [5].

In October 2015, the power demand of Bangladesh was about 12,000 MW [6] and it is increasing day by day. In Bangladesh, natural gas is used for about 62% energy generation and coal or other fossil fuel is used for about 31% energy generation. Currently, RE sources fulfill 15% to 20% of the world's energy demand. However, 16% of production is coming from the hydroelectric system and rest of the production comes from other renewable systems [2]. RE contributes around 3% of Bangladesh electricity generation, with 1.94% sourced from hydro-electricity, while rest of the renewables contributes about 1% [6]. Therefore, it is highly necessary to investigate the environmental policy of

Bangladesh to bring the higher percentage of RE sources into the energy mix to build a climate-friendly environment for the future.

Already 122.2 MW capacities of PV systems are installed throughout the country that's supply electricity over 2.9 million households. These solar PV systems are implemented and assisted by various NGOs and private organizations, IDCOL, REB, LGED and BPDB [7]. The availability of wind energy is mainly in coastal areas, especially in Bangladesh. Though coastal region of Bangladesh has high wind energy potential but only 2 MW capacity of the wind turbine are installed. One is a grid tied system that is situated at Feni and another is off grid system situated at Kutubdia. In Bangladesh, there is a limited source of hydro energy system except for Chittagong area. A 230 MW capacity hydropower plant is installed in Kaptai in 1960 [7].

1.2 Problem Description and Motivation

It is known that Bangladesh has a vast potential for RE sources such as the wind and solar. Although RE sources have several advantages, a solar or wind generator in a stand-alone system cannot supply the load continuously due to their intermittent nature. As load demands are always changing with time, the changes in solar or wind energy generation do not always match with the time distribution of load [8]. Therefore, there is a need of additional battery storage or other components for providing continuous power supply to the consumer. It has been investigated that a hybrid PV/Wind/battery system is a reliable source of electricity [9]. Since, due to the high cost of battery energy storage, a stand-alone system is very expensive [10, 11]. However, the issue related to the cost-benefit analysis of the grid connected and off grid mode hybrid power system has attracted much less attention in the literature. Moreover, what will be the best mixture of renewable energy sources to reduce cost and GHG emission is still an open question? Therefore, it is important to find a suitable combination of different RE sources to maximize the benefit which is the prime interest of this research.

Research questions - With the above factors in mind this thesis will address the following questions:

- How can weather conditions change the behavior of a hybrid system and to what extent?
- How important is the correct choice of renewable energy source (RES)-equipment according to the primary desirable electricity requirements that should be covered by the established system?
- Can a RES based grid connected hybrid system be feasible and under which circumstances or not?

This thesis focuses on answering the above questions regarding the involvement of RESs in everyday life. Moreover, this study could help by providing solutions to such problems as supplying electricity to remote and urban areas, which usually requires large investments and leads to power losses associated with transmission and distribution networks.

1.3 Objectives

Bangladesh is a developing country. With the increase of population, the energy demand also increased. Nowadays energy crisis is the vital problem in our country as there is only 59.60% (2015) of people having access to electricity [6]. On the other hand, the climate is an important issue for ecological balance situation. To find out a suitable solution for sustainable and climate-friendly power generation system, the objectives of this research are given below.

- i) To investigate the potentialities of green energy at various locations in Bangladesh.
- ii) To design a hybrid power system determining the best mixer of green energy to meet the load demand of a specific area and the exact hub height of wind turbine.
- iii) To analyze the economic and environmental feasibility of the designed model in different modes of operation, e.g. grid connected and off grid mode.
- iv) To quantify a number of GHG emissions from different system models.

1.4 Literature Review

Every sector of the current world are highly dependent on energy and about 80 % of the total energy comes from fossil fuels and nuclear energy which is responsible for global warming [1]. As hybrid renewable energy system has robust characteristics instead of conventional system, massive researches and studies have been carried out on it. The optimal design of the hybrid renewable system has been selected based on economic analysis namely cost of energy (COE), net present cost (NPC), and excess of energy and environmental impact that means greenhouse gas emission rate [12]. For remote residence, three different types of configuration have analyzed and a comparative result based on COE and CO₂ was shown that a hybrid PV-diesel-battery system was more cost effective than the other two models [13]. Other studies shown that the rural village of Iran is economically best suited for PV-diesel power generation system if they have no storage system [11]. A sensibility analysis has been done on the basis of fuel cost for hybrid PVdiesel system [14]. For identifying the optimum model of PV-diesel-battery system in the various climatic region, some model has been developed by using C-programming and HOMER software and results were shown on the basis of minimum NPC and CO2 emission rates [15, 16]. Also, some author studied about the economic feasibility of PVdiesel-battery power generation systems. Research showed that the implement of PVdiesel-battery system instead of diesel system was more feasible and this study also revealed that COE is much lower than the other models. Also, a brief comparison has been carried out with various models namely PV hybrid system, stand-alone PV and some others by considering various component cost. A sensibility analysis also has been performed on the basis of PV panel price and diesel price and the result showed that minimum COE was found in PV hybrid system [17]. By using HOMER and LINGO software authors studied and analyzed off-grid configuration for electrifying seven villages in the Almora district of India. Four different types of model have been considered with integrating four RESs namely biomass, hydro, solar and wind energy sources and finally, the optimum result has been worked out [18]. A techno-economic analysis was conducted on the basis of various system configuration models and the experimental result showed that the hybrid PV-wind energy system gives the better system performance than the only PV and the only wind energy system. The author has also observed that the capacity of battery bank played an important role on system performance [19]. The author described wind energy-based power system model by analyzing the characteristics of wind turbine

that means blade length, cut in speed, rated speed, and shutdown speed to investigate wind energy potential in Islamabad, Pakistan. It has been observed that due to insufficient of wind speed the designed models cannot work properly and it has been investigated that the designed model performed efficiently in Margalla hills because it has high wind speed range [20]. Therefore, it is important to analyze the potentiality of the RESs in different locations of Bangladesh. It requires details technical, economic and environmental analyses to find out the most appropriate model of the hybrid power system in Bangladesh.

1.5 Outline of the Thesis

This thesis is divided into six chapters.

The first chapter introduces the background of the hybrid power generation system, problem description, motivation, objectives of the study and literature review.

In chapter two, the basic theory related to the wind and solar energy technology and available renewable energy recourses in Bangladesh are presented. Besides, some basic theory of cost calculation has been described.

Chapter three covers the proposed methodology in brief for determination and evaluation of the output of this thesis. In this chapter, load data at different locations, solar radiation from the sunshine, duration curve, and wind energy potential are analyzed with a software tool. The way of finding an optimum model for the hybrid system is also described in this chapter.

Chapter four presents results of the thesis with their significance.

Chapter five describes a case study for feasibility analysis for KUET area by demonstrating various factors.

In chapter six conclusions are drawn and scope of the future studies are made.

CHAPTER II

Technology of Renewable Energy System (Wind and Solar)

2.1 Introduction

This chapter begins with the demonstration of the wind and solar power technology and described various factors that are associated with the renewable energy power conversion system. At present most of the RE of the world comes from wind energy and solar energy. The wind turbine is used for producing wind power from wind energy by capturing the kinetic energy of wind air mass. The wind turbine is placed on a tall tower to capture wind energy over the year [21]. The biggest energy source of the world is obviously the sun and all energies of the world come from the sun even energy in fossil fuels also.

2.2 Technology of Wind Power

The maiden wind energy-based power system was installed in the United Nation in 1890 [22]. After that the wind power technology becomes the most popular technology for power generation in the world. In 1973 wind power technology and other RE technology was increased in different countries of the world [22]. The huge number of research and illustration on the wind turbine technology was simulated. Some advantages of using modern wind turbines to generate power are

- Environmentally friendly
- Produce no pollution
- No traditional fuel required
- Requires relatively little maintenance
- Long lifetime (up to 30 years)

Some disadvantages of using wind turbines to generate power are

- Interference with radio/TV signals if located inappropriately
- The wind does not blow all the time at required speed
- High initial cost

Since the wind power technology has robust characteristics for utility scale power generation, a large wind firm implementation is becoming most familiar at present [23]. A typical wind power technology diagram is shown in Figure 2.1 below.

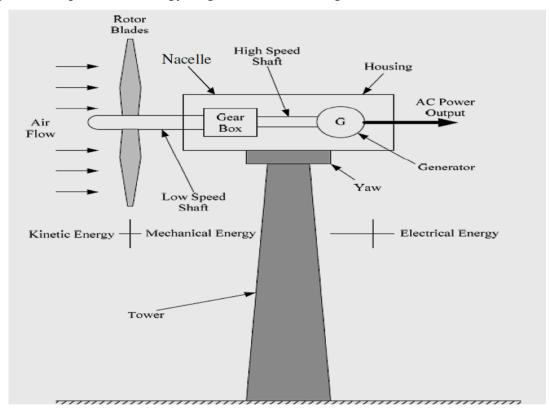


Fig. 2.1: A typical wind power technology diagram [24].

The key components of a present wind turbine are the tower, the yaw, the nacelle, the rotor, the generator and the gearbox. The main and important part of the wind turbine is the tower holds that keeps the turbine blade. For turning the wind turbine rotor blades in the direction of wind speed a yaw system is used. The gearbox is another part of wind turbine that is used for increasing the rotational speeds on the electrical generator side. Now a day's the gearless wind turbine has been implemented in various situations which is very easy and maintenance is so easy [24, 25]. By inserting modern control strategy and techniques, the efficiency of wind power generation system can be increased. Wind technologies for electricity production are the second most well-established form of

"green" equipment. The capacity of wind turbine that means how much kinetic energy that can be captured by wind turbines and converted to electrical power depends on two factors one is the wind speed and another is the height of the wind turbine [26]. The energy stored in the wind potential can be expressed by Equation (2.1).

$$E_{kinetic} = \frac{1}{2}mv^2 \tag{2.1}$$

where m represents the mass of the air in kg and v denotes the wind speed (m/sec).

Equation (2.1) is the energy stored from wind potential. By using the mass flow rate instead of the mass, wind power can be obtained through Equation (2.2). The critical parameter for the produced electric power through the blowing wind is the size of the blowing area, which is represented by the rotor swept area of the wind turbine.

$$p_{power} = \frac{1}{2} A \rho v^3 C_P \tag{2.2}$$

where A denotes surface area of wind turbine in m^2 and v is the wind speed (m/s), ρ represents air density in kg/m³ and C_p is the power coefficient (practically 0.5).

Equation (2.2) calculates the mechanical power of a typical wind turbine. Moreover, it must be noted that in the case of horizontal axis turbines, approximately only 30-40% of the wind power in Equation (2.2) can be transformed into electrical energy because mechanical losses are occurred [26].

2.2.1 Classification of Wind Turbines

The wind turbine has been classified into several types. If the devices are designed for converting kinetic energy of the wind to mechanical energy it is called wind turbine. This mechanical energy can be used in different mode. Windmill machines use this type of energy directly but wind generator converts mechanical energy to electrical energy. Wind turbines are classified into two groups one is horizontal axis wind turbine (HAWT) and other is vertical axis wind turbine (VAWT) and this classification is made by considering the position of the rotor axis [27].

2.2.2 Horizontal Axis Wind Turbines (HAWTs)

If the axis of rotation of wind turbine is rotated directly in the horizontal direction to the ground and almost parallel to the wind flow direction it's called horizontal axis wind turbine that is shown in Figure 2.2. They can be operating in two different modes that are in front of the wind and behind the wind. At present approximately 90% of wind turbine that is installed around the world is horizontal axis and they have one, two, three or a large number of blades. Since three blades horizontal axis wind turbine have aerodynamic stability, three blades HAWTs are used for commercial purposes.

Fig. 2.2: HAWTs (horizontal axis wind turbines) [28].

2.2.3 Vertical Axis Wind Turbines (VAWTs)

In vertical axis, the wind turbine axis of rotation is kept vertical position to the ground level and almost vertical position to the wind direction. For better understanding, this types of the turbine are shown in Figure 2.3. VAWTs have some good characteristics that are it can operate in any direction and yaw mechanism are not used because yaw devices have a complex structure. It has very good aerodynamic characteristics and the manufacturing cost is also low. Most of the vital components that are generator and gearbox of the wind turbine of such system can be placed at ground level. Maintenance cost and procedure of

VAWTs is simple since it can be done at ground level [29]. Moreover, some extra guy wires are needed to support the tower structure which increases the complexity of the systems.

Fig. 2.3: Vertical axis wind turbines (VAWTs) [29].

2.2.4 Efficiency and Power Output of Wind Turbine

According to the German aerodynamicist Albert Betz [30], only 59% or less of the kinetic energy in the wind can be transformed to mechanical energy using a wind turbine. But practically, the efficiency of a wind turbine is found much lower than the Betz limit because it depends on various factors namely turbine rotor, generator, and transmission mechanism. The efficiency of turbine rotor is varied from 40% to 50% and 80% to 90% is varied for generator and gearbox [30]. It also depends on wind speed so it is not a constant term. The power curve is the alternative measurement system for wind turbine output characteristics instead of efficiency. This curve represents the turbine power output at various wind speeds and it is provided by the manufacturer company Northern Power and that is shown in Figure 2.4. From this power curve, it is found that output power is zero at point 0 to 2. After this values wind turbine will run in operation. The cut-off speed of these types of a wind turbine is 25 m/s that means when the wind flows at a speed of 25 m/s of over then turbine will automatically turn-off its operation.

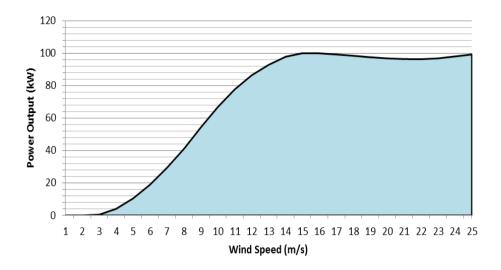


Fig: 2.4. Wind turbine power curve (Northern Power NPS100C-21,100 kW) [25].

2.2.5 Wind Speed Measurement

An anemometer is a wind speed measurement instrument. Several types of the anemometer are found and the cup type is most common which has a vane for detecting the wind direction and tree or more cups for wind speed measuring. The most important phenomenon is that the placement of speed measuring equipment and it should be set-up at enough height to avoid disturbance which is created by trees or other obstructions. If the anemometer height is kept at the same level of wind turbine then reading would be most useful [31]. If the height of the anemometer is lower than the wind turbine hub height it is essential to modify the collected data to hub height. This adjustment can be done by using two types of equation namely logarithmic law and power law. Equation (2.3) and (2.4) represents these two types law. The wind speed at desired height can be obtained by using the logarithmic law that is given as follows

$$V_2 = V_1 \times \frac{\ln\left(\frac{h_2}{Z_0}\right)}{\ln\left(\frac{h_1}{Z_0}\right)}$$
(2.3)

where V_2 represents the wind speed at height h_2 (m/s), V_1 is the known wind speed at height h_1 (m/s), h_2 is the desired level where wind speed is needed (m), Z_o is roughness

length in the current wind direction (m) that is shown in Table 2.1, and h_1 is the anemometer height (m).

Table 2.1: Surface roughness lengths [32]

Terrain Description	$Z_{o}(m)$
Very smooth, ice or mud	0.00001
Calm open sea	0.0002
Blown sea	0.0005
Snow surface	0.003
Lawn grass	0.008
Rough pasture	0.01
Crops	0.05
Few trees	0.10
Many trees, few buildings	0.25
Forest and woodlands	0.5

Figure 2.5 depicts the variation of wind speed with respect to height by using logarithmic function. This graph also shows that wind speed will be increased with increase the hub height.

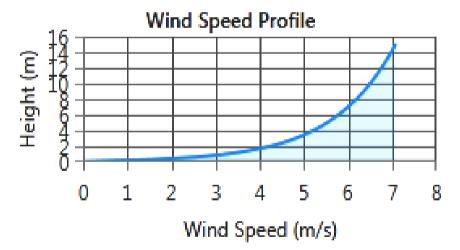


Figure 2.5: Wind speed variation with height [32].

The wind speed at the desired height can be measured by using power law and it can be given as follows [28, 30]:

here: V_1 is the known wind speed in m/s, V_2 is the wind speed at desired height (m/s), and α is friction coefficient. The friction coefficient α of various terrains is given in Table 2.2.

Table 2.2: Friction coefficient α of various topographies [33, 30]

Terrain type	Friction Coefficient α	
Lake, Ocean, and smooth hard ground	0.10	
Foot-high grass on level ground	0.15	
Tall crops	0.20	
Many trees area	0.25	
Small town with some trees	0.30	
City area with tall buildings	0.40	

2.2.6 Various Factors for Wind Speed Measurement

Autocorrelation factor: Wind speed time series data show autocorrelation, which is defined as the degree of dependence at the previous values. This factor is dependent on topography features. The range of autocorrelation factor is varied 0.9 to 0.97 for uniform topography and 0.7 to 0.8 for which area have complex surface and it also dependent on weibull value [34].

Diurnal Pattern Strength: It is a measure of how strong the wind speed depends on the time of day. The wind speed is affected by the availability of solar radiation; most sites indicate some diurnal pattern in wind speed.

Hour of Peak Wind Speed: Hour of peak wind speed is defined as it is the duration of the day in which the highest wind speed is recorded that means the average windiest time of the day. In this paper, the value of peak hour of 15 is obtained from HOMER.

2.3 Technology of Solar Energy

The sun is largest energy sources which release 174 trillion kWh of energy in every hour to the universe [35]. The high temperature is the main source of this energy. Some reports show the surface temperature of the sun is about 5527°C and the internal temperature is about 2500 times higher than its surface temperature. This high temperature is produced by a reaction namely nuclear fusion reaction which transforms hydrogen to helium molecule and thus sun emits huge amounts of energy continuously [35]. By electromagnetic

radiation, the solar energy is radiated to the earth and almost 33% of this energy is reflected back. About 66% of this is retransmitted to the universe and earth creates a constant energy. By using a photovoltaic array or using solar thermal systems electricity can be generated from solar energy [36]. Figure 2.6 shows the 17 MW power plants using a photovoltaic array at Gujrat, India that is completed in 2012 [37]. The history of photovoltaic technology is discussed in the next section.

Fig: 2.6: 17 MW Mithapur solar power plant, Gujarat in January 2012 (India) [37].

2.3.1 History of Photovoltaic Array

The photovoltaic array discovered by French physicist in 1839 and the main component of this array was to metal electrodes. After a long year of the invention period, the maiden report was published in 1877 and builds a selenium PV cell with efficiency less than 1% [38]. After that solar cell efficiency is increased day by day. In 1954, solar panel element was built with p-n junction and efficiency was improved to about 6% [38]. By integrating the p-n junction PV cell, a revolution had been done for solar power systems. Although the cost of production was as high as initially the solar panel was made by crystal silicon but the technology of solar power system has been improved quickly during last part of the twentieth century. The modern PV was used in United Nation for electrifying the earth-orbiting satellites [39]. As the price of PV system was very high, the use of PV array has been limited. It was used only in remote areas but after decreasing the cost of PV cell, the

use of the solar system is increasing rapidly [20]. For aerospace technology, a special PV cell is used that is made of crystalline silicon, the efficiency of which is 24% and the efficiency varies 14% to 18% for industrial and domestic purposes. After all, at present, a multi-junction solar panel has been integrated which efficiency reached about 41% [38].

2.3.2 Basic Structure of Photovoltaic

Figure 2.6 shows the basic PV cell's structure. For demonstrating the PV cell's structure, first focus is on the surface area of PV cell. Both sides of the junction are covered by the metallic contacts for collecting electrical current that is produced by stimulated photons. Mesh of thin silver fibers are inserted in the top surface of the cell. Between silver conducting fibers some spacing is made for maximizing the electrical conductance and minimizing the blockage of the light [40]. The main elements of the solar panel are the cover glass that gives the mechanical protection, anti-reflection coating in front face that is used for absorbing maximum light energy by minimum reflection. The conducting-foil (solder) contact is displayed over the foot surface and also on one side of the top surface.



Fig: 2.7 Basic structure of a generic silicon PV cell [36].

2.3.3 Characteristics of PV Cells

The silicon is a common semiconductor material which is used for making the PV cells. The basic operating principle of PV cell is that when solar energy strikes on the PV panel, a proton is absorbed by silicon and creates free electron inside the semiconductor materials. Electric fields of PV cell act to force on free electron and that's why electron will flow in a definite direction. This phenomenon is called current and by placing some metal contact on top and bottom side of PV cell current is transferred for external uses. PV cells have several advantages and also have some drawback that is described below.

Advantages

- Environmentally friendly and pollution free (emission free)
- No use of fuels and water
- Requires minimum maintenance and low running cost
- Long lifetime, up to 30 years
- Modular or "custom made" energy, can be designed for any applications from watch to a multi-megawatt power plant
- No restriction on harvesting as far as there is light

Drawbacks

- High initial cost
- PV can't operate without light
- PV generates DC current: energy storage, like batteries, and inverters are needed
- Large area needed for large scale applications
- Cannot always generate stable output with ever-changing weather conditions

2.3.4 Solar Power

The sun radiates a large amount of energy to the earth surface which is equal to or more than 10000 times of current world energy consumption [22]. Two types of sunlight are radiated to the earth: direct radiation and other is diffuse radiation. Solar panel uses both of the radiation for producing power. For determining the solar power capacity in a specific area, data of yearly solar radiation is needed. By using annual solar radiation data the

availability of solar energy can be estimated. PV cell absorbs this radiation and produce DC electrical power and can be illustrated by the following equation [40, 41].

$$P_{solar} = P_{STC} f_{PV} \left(\frac{G_T}{G_{STC}} \right) \left[1 + a_P \left(T_C - T_{C,STC} \right) \right]. \tag{2.5}$$

Where, P_{STC} denotes the output power PV cell at test conditions, f_{PV} is the derating factor, G_T (W/m²) indicates the solar radiation incident, and G_{STC} (W/m²) is the radiation in standard test conditions (1000 W/m²), a_p represents the temperature coefficient (%/°C) which indicates effect of temperature on the performance of the solar panel which is influenced by the temperature The last bracket which contains the temperature coefficient represents the, T_C (°C) indicates the real time temperature.

2.4 Conclusion

The knowledge on the basic theory of the wind and solar technology is very important for power system analysis. RE sources have both advantages and disadvantages which are summarized in this chapter. Moreover, there are different types of cost involve in the calculation of the overall cost of a power plant which is described in this chapter.

CHAPTER III

Methodology

3.1 Introduction

This chapter begins with the presentation of the proposed method for evaluating the optimum design of hybrid power system. A methodology has been developed for determining the optimum design of RE based hybrid power plant. Various necessary data have been collected from the meteorological department and other reliable sources. By collecting and investigating the input parameters, a suitable algorithm has been developed. This chapter then concentrates on the feasibility of RES-based systems to supply electricity to five different locations in Bangladesh.

3.2 Proposed Model

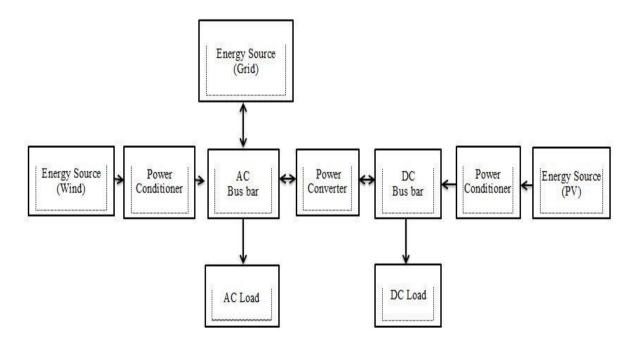
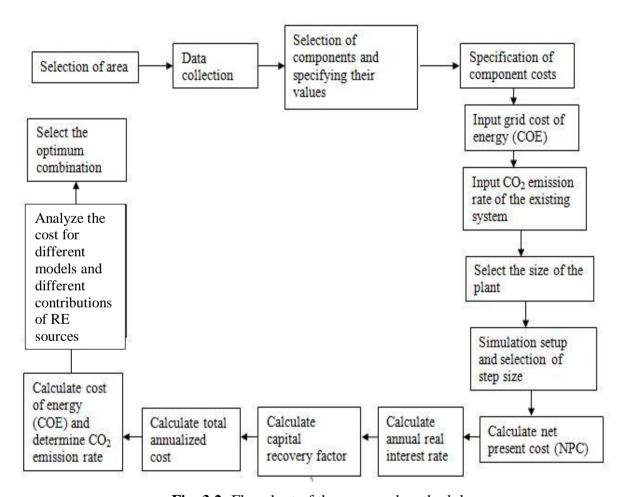
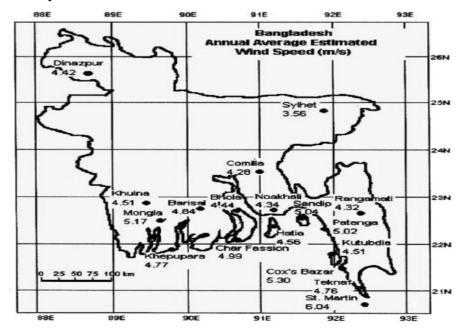



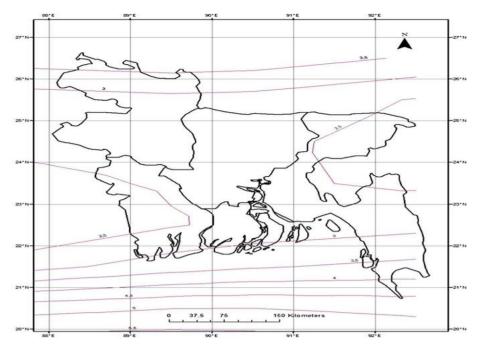
Fig. 3.1: Grid connected hybrid power system model

For this research, it is essential to collect some necessary data such as average daily load demand, types of green energy that are available for different locations, monthly average solar radiation and clearness index from NASA surface meteorology and solar energy database and average wind flow from the meteorological department of Bangladesh [12]. The typical arrangement of the hybrid power system of this research is shown in Fig. 3.1 which includes energy sources and loads. Simulations are carried out using software tools [13, 14]. The considered six different locations in Bangladesh are namely Kuakata, Magnamaghat, Sitakunda, Dinajpur and Rangpur and KUET.

3.2.1 Flow Chart of the Proposed Methodology


Fig. 3.2: Flowchart of the proposed methodology

The flowchart of the proposed methodology is shown in Fig. 3.2. According to the methodology, the simulation results are calculated for finding the cost of energy (COE), net present cost (NPC), total annualizes cost, annual real interest rate, and capital recovery factor (CRF) and greenhouse gas emission in terms of tons/year. From the calculations, an


optimum combination of RE sources is determined to get the minimum cost. In the first step, it is essential to select the area where the analysis will be carried out. The next step involves the selection of energy sources for example in this case wind and solar. The wind flow pattern and solar radiation data are needed in this step. This step also includes calculation of load demands. After that equipment have been selected and their costs are specified. Then the cost of energy from utility and CO₂ emission rate of the grid are given as input to the simulator. At this step, the size of the plant is selected and model is designed. Then cost calculations are carried out as described in Chapter 2. Finally, on the basis of the lowest NPC, the optimum combination of RE sources for different models is determined by varying their contributions. Next section describes the resource and load estimation for the considered areas in Bangladesh.

3.2.2 Wind Energy Available in Bangladesh:

The coastal area of Bangladesh is suitable for the production of electricity as there is strong wind flow coming from the Indian Ocean. This wind blows over Bangladesh from March to September [42]. Fig 3.3 shows wind map of Bangladesh at about 20 locations that are collected from NASA SSE data set. From this figure, it can be seen that the coastal area of Bangladesh is dominated by the wind potential. Most of the average wind speed is almost 5 m/s. In the presence of high wind flow, there is huge scope for harvesting wind energy that is very needed at this time.

Fig.3.3: Wind speed scenario of Bangladesh at 50 m height [43].

Fig. 3.4: Wind direction of Bangladesh at 50 m height [43].

Figure 3.4 shows the wind direction that flows over the Bangladesh. It is clearly seen that a large amount of wind flows in the direction of west to south [44, 45]. It is very important to find out a reliable source of data for carried out the research and the NASA SSE database is the most useful and reliable source which could be used for RE resource estimation at the primary stage [46, 47]. At the initial stage, a set of data has been collected from NASA SSE for analyzing the availability of RE potential. From this data, it is found that only coastal region of Bangladesh is dominated by wind energy potential and this research has been carried out based on this location.

3.3 Wind Resources

The LGED assessed 20 locations all over Bangladesh under the WERM project at different heights [41]. In the present study, wind speed data from this project for Kuakata, Sitakundu and Magnamaghat from January 2006 to December 2006 have been evaluated. The analyses and the evaluations were performed in the department of Mechanical Engineering at Bangladesh University of Engineering and Technology (BUET) by a group of graduate and undergraduate students and some of the values were collected from their Project & Thesis works. Among the 20 wind monitoring stations of the WERM project,

wind characteristics and potential were analyzed for Kuakata, Sitakunda, and Magnamaghat. This is because of the fact that in Bangladesh the possible WECS utility and wind energy availability are among the best matches in these areas. The details of the following 3 locations are presented in Figure 3.5.

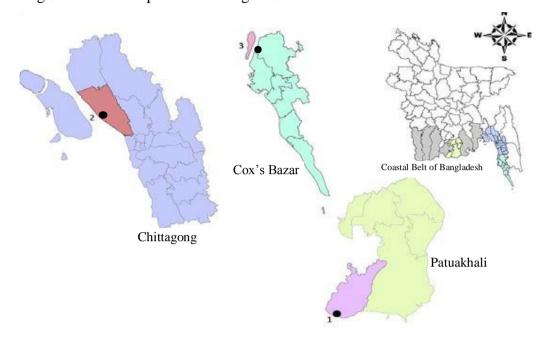
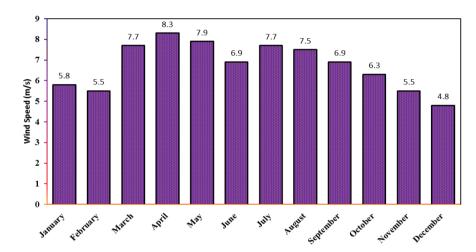


Fig.3.5: Location of 3 wind sites: 1. Kuakata 2. Sitakunda and 3. Magnamaghat [48].


Kuakata that is shown in Figure 3.5 (point 1) having geographical coordinates: 21.82°N, 90.12°E and it is the center of the southwest coastline of Bangladesh in Patuakhali district. It is situated 320 km from Dhaka and 70 km from Patuakhali. It is one of the most extraordinary tourist places in the world from where both sunrise and sunset can be observed.

Sitakunda having geographical coordinates: 122.65°N, 91.66° E is situated at the intersection of two coastlines making an obtuse angle with Chittagong district that is shown in Figure 3.5 (point 2). It is 212 km southeast from Dhaka and 44 km from Chittagong. The main activities are related to agriculture 24%, fishing 4%, industrial labor 5% and services 33%.

Magnama with coordinates: 21.81°N, 91.90°E is around the center of the southeast coastline in Cox's Bazar district that is shown in Figure 3.5 (point 3). The main activities are related to agriculture 55%, fishing 5% and industries 2%.

3.3.1 Wind Energy Resources in Kuakata

For the production of green energy, the coastal area of Bangladesh is most suitable because the situation of the coastal area is suited for green energy harvesting. The strong wind flow which comes from the Indian Ocean most of the month in a year thus wind flow is available here. This wind blows over Bangladesh from March to September. According to the meteorological department of Bangladesh, monthly average wind speed is observed 3 m/s to 8.3 m/s [49]. The wind speed is high from March to September and other months of a year (October to February) wind speed remains quite low. The peak wind speed occurs during the month of April and May [50]. Figure 3.6 shows the monthly average wind speed around the year at Kuakata. Figure 3.7 is representing the histogram of wind speed at Kuakata region. Wind speed histogram curve shows most of the density of wind speed is found at 4 m/s to 6 m/s.

Fig.3.6: Monthly average daily wind speed (m/s) at Kuakata [50]

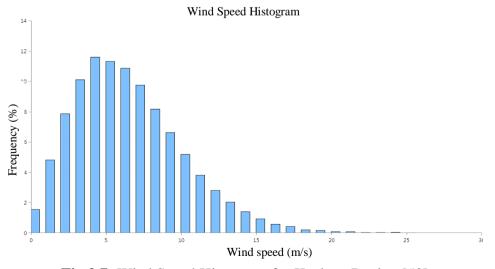
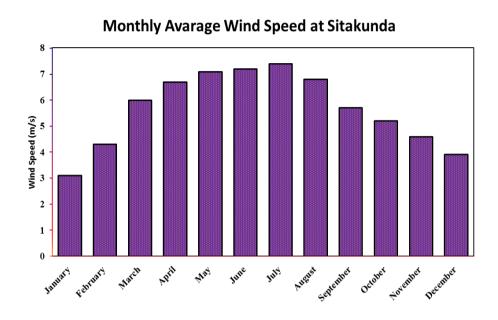



Fig.3.7: Wind Speed Histogram for Kuakata Region [50].

3.3.2 Wind Energy Resources in Sitakunda

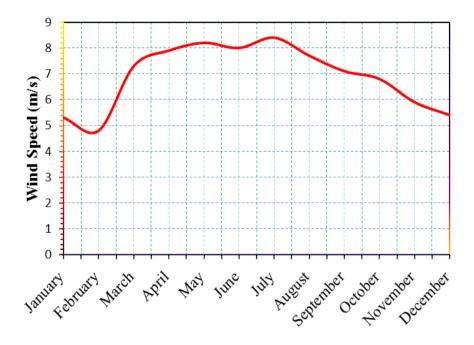
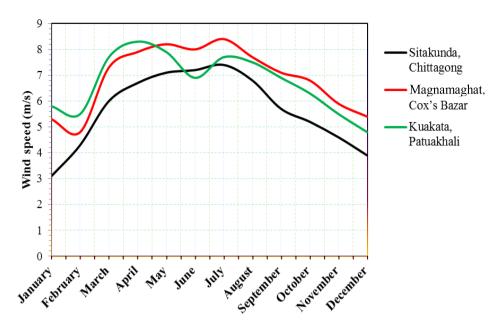
According to the meteorological department of Bangladesh, monthly average wind speed is observed 3 m/s to 7 m/s. The wind speed is high during May to August and other months of a year (September to April) wind speed remains quite low. The peak wind speed occurs during the month of June and July [51, 52]. Fig. 3.8 shows the monthly average wind speed around the year at Sitakunda.

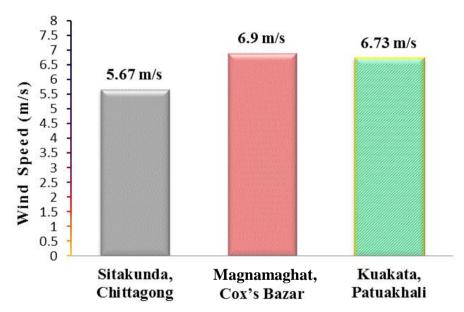
Fig.3.8: Monthly average daily wind speed (m/s) at Sitakunda [51, 52].

3.3.3 Wind Energy Resources in Magnamaghat, Cox's Bazar

Due to the unavailability of wind resource data especially wind speed data at a specific height, it is very difficult to estimate the wind data that is most similar to actual data. Bangladesh Meteorological Department implements the 20 monitoring station for measuring wind resource data. The previous study shows that poor range of wind speed data is available around the Bangladesh except for coastal region [53]. According to the meteorological department of Bangladesh, monthly average wind speed at Magnamaghat is observed 4 m/s to 8.5 m/s. The wind speed is high from March to September and other months of a year wind speed is found quite low. The peak wind speed is observed during

the month of April and May [51]. Figure 3.9 shows the monthly average wind speed around the year at Magnamaghat, Cox's bazar.


Fig.3.9: Monthly average daily wind speed (m/s) at Magnamaghat [51, 54].

3.3.4 Comparison of Monthly Variations of the Mean Wind Speed

In Kuakata, higher wind speed occurs during April to September but during October to March wind speed is much lower as indicated by the lower mean speed. For Sitakunda, wind speed follows the same pattern as Magnamaghat with the highest mean in July. For Kuakata the highest mean speed occurs in August but the pattern is like Sitakunda. Though Magnamaghat has more wind speed in the latter part of the year it has lower wind speeds in the earlier part of the year. A common trend is observed in all the locations that there are sharp changes in wind speeds during the months of March-April and July-August. This is due to the location of the country which is characterized by the tropical monsoon with reversal wind circulation. Figures 3.10 and 3.11 show the comparison of monthly average wind speed and annual average wind speed in three coastal areas, respectively.

Fig.3.10: Monthly variation of mean wind speed at 50 m height [54]

Fig.3.11: Annual average wind speed (m/s) at 50 m height for three different locations [54].

3.3.5 Wind Power Density for Sitakunda, Magnama, and Kuakata

Table 3.1 depicts the summary of wind speed sensor of different locations with power density. Figure 3.12 shows the monthly variation of the wind power density in the three locations calculated from Equation (2.2). An example of calculation of wind power density is given in Appendix. The seasonal effect is prominent in the monthly wind power density. For Kuakata, remarkable monthly changes in the wind power density have found from March to October with a maximum of 352 W/m² in April being about 5 times of the

minimum 68 W/m^2 in December. For Sitakunda, similar monthly changes in the wind power density have found from March to September with a maximum of 249 W/m^2 in July being about 13 times of the minimum 18.3 W/m^2 in October. For Magnamaghat, peak wind power density have found from March to September with a maximum of 365 W/m^2 in July which is about 4 times of the minimum 91.6 W/m^2 in January. A detailed examination of Figure 3.12 has revealed the monthly variation of wind speed and power density for selected sites.

Table-3.1: Monthly variation of wind speed and power density for selected sites [54].

							M	onth						Annual
L	Location		Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	average
ata	Wind speed	5.8	5.5	7.7	8.3	7.9	6.9	7.7	7.5	6.9	6.3	5.5	4.8	6.733
Kuakata	Power density (W/m ²)	120	102	281	352	303	202	281	259	202	154	102.3	68.01	187.7
aghat	Wind speed	5.3	4.8	7.3	7.9	8.2	8	8.4	7.7	7.1	6.8	5.9	5.4	6.9
Magnamaghat	Power density (W/m ²)	91.6	68	239	303	339	315	365	281	281	220	193.4	126.3	96.84
nda	Wind speed	3.1	4.3	6	6.7	7.1	7.2	7.4	6.8	5.7	5.2	4.6	3.9	5.667
Sitakunda	Power density (W/m ²)	18.3	49	133	185	220	230	249	193	114	86.5	59.86	36.48	111.9

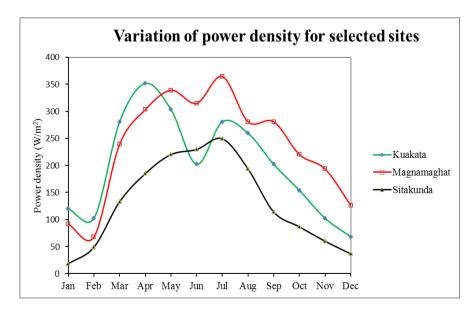
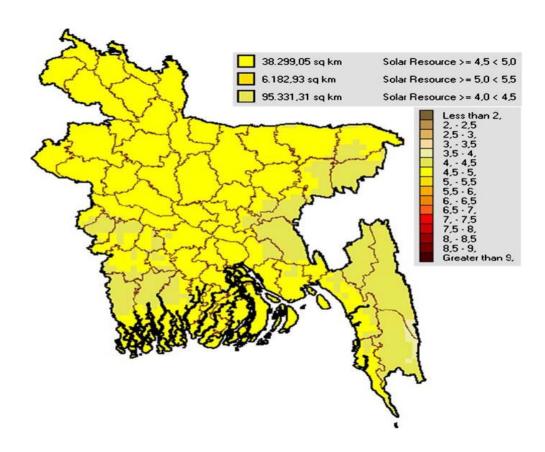



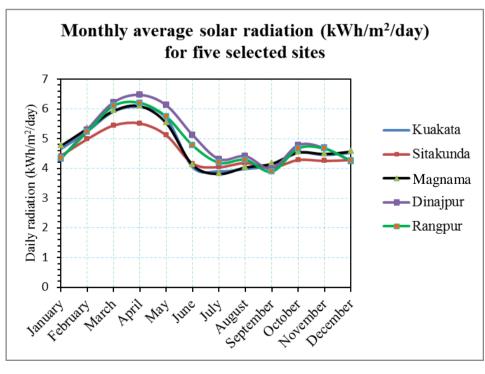
Fig.3.12: Monthly variation of the wind power density at 50 m height

3.4 Solar Energy Resources of Bangladesh

Bangladesh having geographical location between 20.30° and 26.38° North latitude and 88.04° and 92.44° East longitude is an ideal location for solar energy harvesting. From the radiation data, it is found that the daily solar radiation varies between 4 to 6.5 kWh/m² [41] over Bangladesh. This strong solar potential indicates that by implementing solar power system it is possible to electrify the maximum region of Bangladesh particularly in the northern part of Bangladesh. In this research, investigating and analyzing the solar potential has been done over the Bangladesh not only for power generation but also it is very urgent need to reduce the greenhouse gas [55]. Figure 3.13 shows the solar energy radiation in Bangladesh and Table 3.2 shows the average daily solar radiation that is measured by RERC of Dhaka University and NASA. It is found that data of two references have a little bit variation. The highest solar radiation is observed Dinajpur and Rajshahi.

Fig.3.13: Solar radiation (kWh/m²/day) and area of Bangladesh with the highest potential for solar energy utilization [41].

Table -3.2: Average daily solar radiation at 14 locations in Bangladesh [44, 45]


Station name	Elevation	Latitude	Longitude	Radiation	Radiation
	(m)	(degrees)	(degrees)	(RERC)	(NASA)
				(kWh/m²/day)	(kWh/m ² /day)
Dhaka	50	23.7	90.4	4.73	4.65
Rajshahi	56	24.4	88.6	5.00	4.87
Sylhet	225	24.9	91.9	4.54	4.57
Khulna	11	22.8	89.6	-	4.55
Rangpur	230	25.7	92	-	4.86
Cox's Bazar	76	21.4	92	-	4.77
Dinajpur	194	25.6	88.6	-	4.99
Kaptai	345	22.5	92.2	-	4.71
Chitagong	118	22.3	91.8	-	4.55
Bogra	59	24.8	89.4	4.85	4.74
Barishal	31	22.7	90.4	4.71	4.51
Jessore	23	23.2	89.2	4.85	4.67
Mymenshingh	114	24.8	90.4	-	4.64
Sherpur	308	25	90	-	4.67

3.4.1 Solar Energy at Kuakata and Other Four Locations

In this section, the data of monthly average daily solar radiation (kWh/m²/day) clearness index for solar radiation acquired through National renewable energy lab and NASA surface meteorology and solar energy database is used as input to HOMER and are presented in Table 3.3. Homer software uses multiple databases regarding all these data, as well as NREL data for simulating and extracting the resulting data for the location to be studied. Some actual measured data from stations located is collected from RERC that shown in Table 3.2 which is really close to the NASA meteorological data [56]. The annual average solar radiation is estimated to be 4.76 kWh/m²/day for Kuakata, 4.56 kWh/m²/day for Sitakunda, 4.77 kWh/m²/day for Magnama, 5.00 kWh/m²/day for Dinajpur and 4.86 kWh/m²/day for Rangpur. Table 3.3 shows the Monthly and annually average daily radiation (kWh/m2/day), clearness index for selected sites. The comparison of monthly and annual solar radiation and clearness index at five different locations is given in Fig. 3.14 and Fig. 3.15, respectively. From Figure 3.14 (a) and 3.14 (b) it is found that the highest solar potential occurs at Dinajpur from February to July and the peak value is observed 6.06 kWh/m²/day in April. One the other hand, the lowest solar potential is found 4.02 kWh/m²/day in September at Sitakunda as it is a coastal area. In winter season (July to January) all these five locations have the almost similar solar potential.

Table-3.3: Monthly and annually average daily radiation (kWh/m²/day), clearness index for selected sites [11, 34, 56].

	Kual	kata	Baroi Road,Si		Magr Cox's		Daptori Dinaj		Ran	ıgpur
Month	Clearness Index	Daily Radiation kWh/m²/day	Clearness Index	Daily Radiation kWh/m²/day	Clearness Index	Daily Radiation kWh/m²/day	Clearness Index	Daily Radiation kWh/m²/day	Clearness Index	Daily Radiation kWh/m²/day
Jan	0.645	4.65	0.623	4.42	0.659	4.75	0.652	4.32	0.659	4.35
Feb	0.634	5.24	0.609	4.98	0.644	5.33	0.681	5.3	0.672	5.22
Mar	0.619	5.91	0.574	5.44	0.622	5.93	0.674	6.22	0.662	6.1
Apr	0.576	6.06	0.525	5.51	0.579	6.09	0.621	6.47	0.595	6.2
May	0.518	5.69	0.465	5.11	0.503	5.52	0.553	6.12	0.518	5.74
Jun	0.365	4.04	0.374	4.16	0.371	4.11	0.455	5.12	0.423	4.77
Jul	0.355	3.9	0.367	4.04	0.347	3.81	0.388	4.31	0.377	4.19
Aug	0.376	3.98	0.395	4.18	0.38	4.03	0.417	4.41	0.406	4.29
Sep	0.42	4.1	0.414	4.02	0.425	4.15	0.419	3.99	0.409	3.89
Oct	0.529	4.52	0.506	4.28	0.53	4.53	0.59	4.78	0.577	4.67
Nov	0.602	4.45	0.584	4.25	0.606	4.48	0.686	4.68	0.685	4.66
Dec	0.659	4.52	0.635	4.28	0.665	4.56	0.679	4.24	0.684	4.26
Annual average	0.524	4.75	0.505	4.555	0.527	4.774	0.567	5.00	0.555	4.8616

(a)

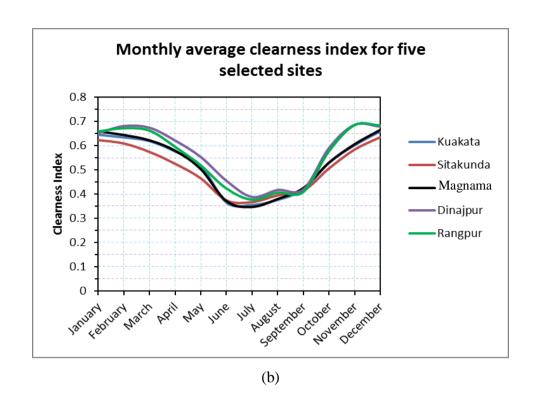


Fig.3.14: Comparison of (a) solar radiation and (b) clearness index at five locations.

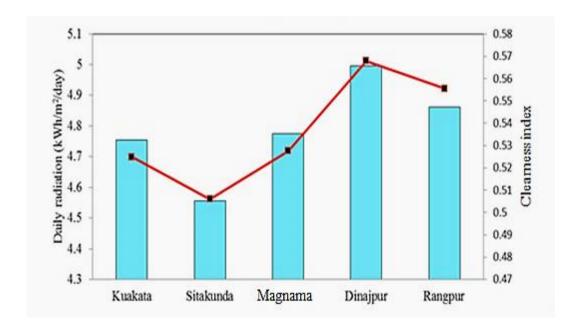


Fig.3.15: Annual average daily solar radiation with clearness index

3.5 Load Estimation for Proposed Region:

The estimation of the power demand was done a research on previously made case studies of rural electrification in developing countries [34], [57], [58], [59], [60]. In this thesis, the electric load demand is divided into the following three major categories like; household/domestic sector which includes of (lighting, TV, Radio, and baking appliances); Commercial loads (shops); community load which consists of (school lighting, health clinic which includes (vaccine refrigerator, communication radio, television, microscope, computer and printer) and deferrable load (water supply and irrigation systems, battery run auto rickshaw). The total electric load estimated for the listed appliances above were summed up to get the required load to be supplied by the system. The electricity consumption does not vary significantly almost the whole year although the load consumption season has been divided into two seasons namely summer season and winter season [61]. It is very important to know the actual rating of home appliances. Table 3.4 shows the basic home appliance rating that is used mostly in proposed area. The load estimation procedure for different location of Bangladesh is described in the next section.

Table-3.4: Name of home appliances with their ratings [62].

Sl No.	Name and Rating of home Appliance	es s
01	Name of Appliances	Rating (Watts)
02	CFL Lamp	11, 15, 20
03	Tube Light	20, 40
04	Electric Iron	750, 1000
05	Microwave Oven	1000, 1500
06	Rice cooker	1000
07	Refrigerator (165 liters)	180
08	Refrigerator (210 liters)	250
09	Refrigerator (300 Lts)	350
10	Air-Conditioner (1 Ton)	1500
11	Air-Conditioner (1.5 Ton)	2250
12	Air-Conditioner (2 Ton)	3000
13	Table Fan/ Ceiling Fan/ Wall Fan	60, 100
14	Washing Machine with Heater	1500
20	Water pump	373,746
15	Television Small	110
16	Television BIG	200
17	Mixer cum Grinder	200
18	Computer (Laptop, Desktop, Desktop with printer)	45, 110, 250
19	Elevator [63]	20 HP

3.5.1 Electricity Demand at Dinajpur

For load estimation, it is very important to the brief background of proposed area for knowing the environmental and economic situation of that area. For Dinajpur, it is a city of Rangpur division situated in the northern part of Bangladesh. It is one of the ancient towns formed in Bangladesh. It is situated in 25°37' N. latitude and 88°39' E longitude on the eastern bank of the river Punarvhaba. It is bounded on the north by Suihari, Katapara, Bangi Bechapara, Pulhat, Koshba on the south, on the east of Sheikhupura and by the river Punarbhava on the west. The case study of this thesis involves served the load of an area of 300 households (average 5 people per household) located at Dhopa Para.

Table-3.5: Load consumption for high class, medium class, and low-class household

		Reside	ntial Load			
Туре	No of household	Appliance type	Rating (W)	No of appliance	Runtime (h/day)	kWh
		Light	20	6	7	0.84
		Fan	60	3	14	2.52
		TV	110	1	8	0.88
High class house hold	50	Computer	110	1	3	0.33
	30	Iron	750	1	1	0.75
		Rice cooker	1000	1	2	2
		Refrigerator	250	1	24 [64]	6
		Water pump	746	1	1	0.746
				n-class househ		14.07
	200	Light	20	4	7	0.56
		Fan	60	2	10	1.2
		TV	110	1	8	0.88
Medium class		Computer	110	0	0	0
house hold		Iron	750	0	0	0
		Rice cooker	1000	1	1	1
		Refrigerator	250	0	0	0
		Water pump	746	0	0	0
		Total k'	Wh/day/medi	um class house	ehold	3.64
		Light	20	4	7	0.56
		Fan	60	2	10	1.2
Low class	50	TV	110	1	8	0.88
house hold	30	Computer	110	0	0	0
		Refrigerator	250	0	0	0
		Water pump	746	0	0	0
		Total	kWh/day/low	-class househ	old	2.64

The energy access of households was categorized into three different categories based on economic condition. The first one is high-class household and the load consumption is estimated for this category is about 14.07 kWh / day. The second one is medium class household and the third one is low-class household. The load consumption of these three categories of household load and other loads are also presented in Table 3.5 and table 3.6.

Table 3.6: Load consumption for public (School, health center, street light), commercial load (shops) and deferrable load (Irrigation systems)

		Public and con	nmercial lo	ad				
Туре	Quantity	Appliance type	Rating (W)	No of appliance	Run time h/day	kWh		
		Light	20	15	3	0.9		
		Fan	60	15	5	4.5		
	2	TV	110	0	0	0		
School		Computer	110	1	3	0.33		
School	2	Iron	750	0	0	0		
		Rice cooker	1000	0	0	0		
		Refrigerator	250	0	0	0		
		Water pumps	746	1	0.5	0.375		
		Tot	al kWh/day	//school		6.105		
		Light	20	8	8	1.28		
	1	Fan	60	8	10	4.8		
		TV	110	1	8	0.88		
Health		Computer	110	0	3	0		
center		Lab equipment	1000	1	12	12		
		Others	250	1	6	1.5		
		Refrigerator	250	1	8	2		
		Water pump	746	1	1	0.75		
		Total k	Wh/day/he	ealth center		23.21		
		Light	20	2	6	0.24		
Commercial		Fan	60	1	10	0.6		
load (shops)	50	Rice cooker	1000	0	0	0		
load (shops)		Refrigerator	250	1	24	6		
		Water pump	746	0	1	0		
		То	tal kWh/da	• •		6.84		
Street light		Light	100	300	10	300		
			Total kW	/h		300		
Irrigation pump		Pump	1100	90	8	792		
	Total kWh for irrigation system							
		Total kWh/day for I	Dinajpur			3032.92		

Table 3.7: Hourly load consumption for Dhopa Para, Dinajpur.

Total kWh/day f	or Dinajpur (summer season)	Tota	l k'	Wh/day for Di	najpur (Winter
Time (hour)	Consumption for March to October (Wh)	Ti	me	(hour)	Consumption for November to February (Wh)
0:00 - 1:00	94000	0:00	_	1:00	154000
1:00 - 2:00	94000	1:00	-	2:00	154000
2:00 - 3:00	94000	2:00	-	3:00	154000
3:00 - 4:00	94000	3:00	_	4:00	154000
4:00 - 5:00	64000	4:00	-	5:00	124000
5:00 - 6:00	64000	5:00	-	6:00	124000
6:00 - 7:00	64250	6:00	-	7:00	124250
7:00 - 8:00	114000	7:00	-	8:00	175000
8:00 - 9:00	165520	8:00	-	9:00	64020
9:00 - 10:00	111120	9:00	-	10:00	29340
10:00 - 11:00	73870	10:00	-	11:00	29590
11:00 - 12:00	73620	11:00	-	12:00	29340
12:00 - 13:00	70940	12:00	-	13:00	26660
13:00 - 14:00	68730	13:00	-	14:00	26250
14:00 - 15:00	68730	14:00	-	15:00	26250
15:00 - 16:00	68480	15:00	-	16:00	26000
16:00 - 17:00	101730	16:00	-	17:00	59250
17:00 - 18:00	167090	17:00	-	18:00	124610
18:00 - 19:00	160000	18:00	-	19:00	117520
19:00 - 20:00	212250	19:00	-	20:00	272770
20:00 - 21:00	260020	20:00	-	21:00	121020
21:00 - 22:00	158500	21:00	-	22:00	119500
22:00 - 23:00	153000	22:00	-	23:00	114000
23:00 - 0:00	153000	23:00	-	0:00	213000
Total (W				Total (Wh)	2562370
Total	2748.85			Total	2562.37
(kWh/da	y)			(kWh/day)	

From this data, the hourly load consumption is prepared and it is presented in Table 3.7. The details daily consumption of that area is shown in Appendix A (Table A-1 and A-2). The hourly load data of two seasons are entered into Homer as input data.

3.5.2 Effect of Random Variability on Load:

Hour to hour and day to day random variability has been used because the daily and hourly noise inputs help to add randomness to the load data to make it more realistic. Figure 3.16 and 3.17 show how these noises will affect the average load profile. Firstly, take a look at load without any added noise. As shown on the plot in Figure 3.16 below of the first month

of the year. Therefore, without any noise, the load profile repeats precisely day after day that is shown in Figure 3.16.

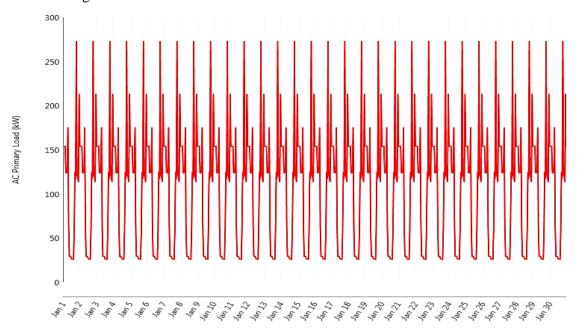


Fig. 3.16: Load consumption without random variability for January.

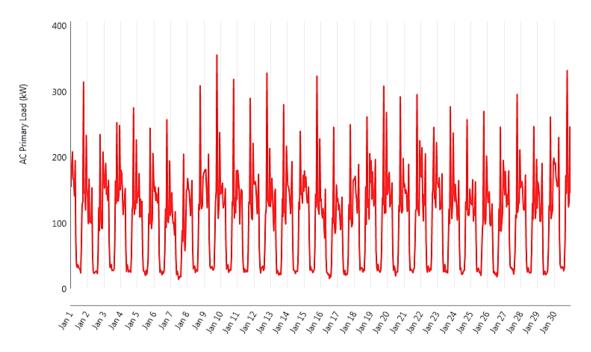


Fig. 3.17: Load consumption using 10% random variability for January.

In reality, the magnitude and the form of the load will change from day to day. This standard deviation comes up with more realistic load demand. With 10% daily noise and 10% hourly noise, a result of the plot is shown in the below Figure 3.17 for January. Daily noise will affect the size but the shape doesn't change where the hourly deviation affects the shape but without

affecting its size. The mechanism for adding daily and hourly noise is simple. First HOMER brings together the 8760 hourly values of load data from the specified daily profiles. Then it multiplies each hourly value by a factor α [65].

$$\alpha = 1 + \delta_d + \delta_h \dots (3.1)$$

where; δ_d = daily perturbation factor and δ_h = hourly perturbation factor

Adding 10 % randomness to the load profile results increase in annual peak demand to 394.98 kW, annual average load 111.98 kWh and the load factor of 0.28. HOMER calculates the parameters, annual average of the daily demand, peak load and load factor based on the load profile and the random variability inputs given by estimation.

3.5.3 Electricity Demand at Chilmari

Chilmari is an Upazila of Kurigram District in the Division of Rangpur, Bangladesh having geographical location 25.5667°N 89.6917°E. About 20129 households are living there that is situated in the northern part of Bangladesh [66]. Statically shows that most of the people in Chilmari are living below the poverty level and most of the area does not have an access to electricity. Although some NGOs including BRAC, Grameen Shakti, RDRS, Pratyasha, and many others have installed about 6,500 solar power units in the char villages of greater Rangpur at a cost ranging from Tk 12,000 to Tk 45,000 for each unit depending on power generation capacities on down payment basis, but the per unit cost is high [67]. Only 400 households of Chilmari char area has been considered for load estimation. People of that area are divided into two sections; one is solvent and another is poor as a hypothetical basis. The daily consumption is found 5.38 kWh for every solvent family, 2.38 kWh is found for a poor family that is shown in Table 3.8.

Table 3.8: Load consumption for a household of Chilmari, Rangpur.

	R	esidential Lo	ad			
type	no of household	appliance type	Rating (W)	No of appliance	Run time h/day	kWh
Solvent	200	Light	20	4	7	0.56
family	(50 family use refrigerator)	Fan	60	2	12	1.44
		TV	110	1	8	0.88
		Computer	110	0	0	0
		Iron	750	0	0	0
		Rice cooker	1000	1	1	1
		Refrigerator	250	1	6	1.5
		Water	746	1	0	0
		pumps				

Table 3.8: Load consumption for a household of Chilmari, Rangpur. (Continued...)

		Total kW	Total kWh/day/medium class household							
Poor	200	Light	20	2	7	0.28				
family		Fan	60	2	12	1.44				
		TV	110	1	6	0.66				
		Computer	110	0	0	0				
		Iron	750	0	0	0				
		Rice cooker	1000	0	0	0				
		Refrigerator	250	0	0	0				
		Water	746	0	0	0				
		pumps								
		total k	total kWh/day/low-class household							

Table 3.9: Load consumption for school, health center, and shops

	Р	ublic and com	mercial load			
type	No of	Appliance	Rating (W)	No of	Runtime	kWh
	school/others	type		appliance	(h/day)	
School	1	Light	20	15	3	0.9
		Fan	60	15	4	3.6
		TV	110	0	0	0
		Computer	110	1	3	0.33
		Iron	750	0	0	0
			1000	0	0	0
		Refrigerator	250	0	0	0
		Water pumps	746	1	0.5	0.375
		Total k	:Wh/day/high-	-class househo	old	5.205
Health center	1	Light	20	8	8	1.28
		Fan	60	8	10	4.8
		TV	110	1	8	0.88
		Computer	110	0	3	0
		lab equipment	1000	1	5	5
		others	250	1	6	1.5
		Refrigerator	250	1	24	6
		Water pumps	746	1	1	0.75
			Wh/day/high-	-class househo	old	20.21
Commercial	20	Light	20	2	6	0.24
load (shops)		Fan	60	1	10	0.6
		TV	110	0	0	0
		Computer	110	0	0	0
		Iron	750	0	0	0
		Rice cooker	1000	0	0	0
		Refrigerator	250	1	24	6
		Water pumps	746	0	1	0
			Total kWh/d	lay/shop		6.84

Table 3.10: Load consumption for street light and irrigation system

	Deferrable load									
Туре	Appliance type	Rating (W)	No of appliance	Runtime (h/day)	kWh					
Street light	Light	100	50	10	50					
		total kWh for street light								
Irrigation pump for winter season	pump	1100	40	10	440					
	7	Total kWh for irrigation system								

The three different loads are analytically presented in Tables 3.8, 3.9 and 3.10. Their selection were made based on the energy consumed on an hourly basis during a typical year. Figure 3.18 shows the hourly variation of load consumption in a year for Chilmari, Rangpur. After adding the random variability of 10% that is described in Sub-Section 3.5.2, it is observed that the annual peak load is 357.64 kW, the total annual scaled average primary load 2137 kWh/day and a load factor 0.25 is calculated. Hourly load consumption summary of the summer season (March to October) and winter season (November to February) in a year are depicted in Appendix A (Table A-3, A-4 and A-5).

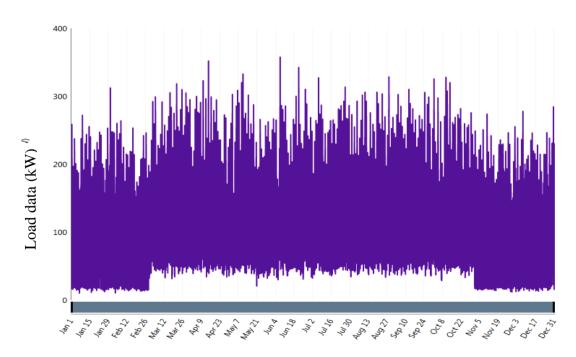


Fig 3.18: Hourly variation of load consumption in a year for Chilmari, Rangpur.

3.5.4 Electricity Demand at Kuakata

Kuakata (geographical coordinates: 21.82°N, 90.12°E) is around the center of the southwest coastline of Bangladesh in Patuakhali district. It is situated 320 km from Dhaka and 70 km from Patuakhali. It is one of the most extraordinary tourist places in the world from where both sunrise and sunset can be observed. In this section, the load consumption scenario of Kuakata region has been described. After collecting some data for load estimation, 200 families (medium class household), 50 shops, 15 tourist hotels, 200 battery run auto rickshaw and 100 street light with (100 W/light) has been considered. The load is grouped into two parts, one is load 1 which consists of houses, shops, and hotels loads, and another is load 2 which consists of battery run auto rickshaws.

3.5.4.1 Residential Load Calculation for Kuakata

In this thesis, 50 solvent families and 150 poor families have been considered. The load consumption of a typical household with the average family size of 5 members is shown in Table 3.11 and Table 3.12 for a solvent and poor family, respectively.

Table 3.11: Load consumption for a solvent family in Kuakata

	A solvent famil	ly with avera	age 5 family	members			
Туре	Appliance type	Rating (W)	No of appliance	Runtime (h/day)	kWh		
	Light (CFL)	20	6	7	0.84		
	Fan	60	3	12	2.16		
	TV	110	1	8	0.88		
Solvent	Computer	110	1	3	0.33		
Solvent	Iron	750	1	0.5	0.375		
	Rice cooker	1000	1	2	2		
	Refrigerator	250	1	12	3		
	Water pumps	746	1	0.5	0.373		
	Total kWh/day/Solvent family						

Table 3.12: Load consumption for a poor family in Kuakata

	A poor family with average 5 members					
Туре	Appliance type	Rating (W)	No of appliance	Runtime (h/day)	kWh	
	Light	20	2	7	0.28	
Poor	Fan	60	2	12	1.44	
	TV	110	1	6	0.66	
	Total kWh/day/poor household 2.38					

3.5.4.2 Commercial Load Estimation for Kuakata:

Kuakata is one of the most extraordinary tourist places in the world from where both sunrise and sunset can be observed. A large number of a tourist hotel, motel shops are available in that area. 15 tourist hotel (3 storied building with 8 rooms/floor) and 50 shops have been considered for load estimation purposes. The hourly electricity consumption of every hotel and shops are shown in Table 3.13 and Table 3.14. It is observed that every hotel consumed 29.77 kWh/day and every shop consumed 6.84 kWh/day.

Table 3.13: Load for tourist hotel in a day

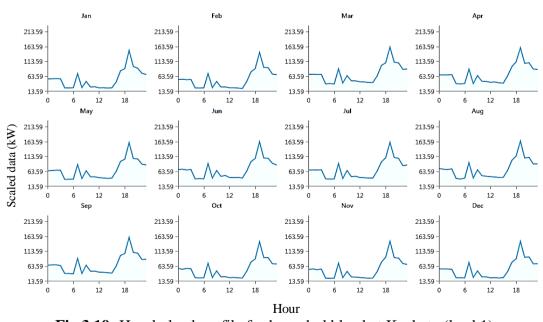

Hotel (3 storied building with 8 rooms/floor)						
Type no of household	Appliance type	Rating (W)	No of appliance	Runtime (h/day)	kWh	
	Light	20	25	8	4	
Hotel	Fan	60	25	12	18	
поцеі	TV	110	5	8	4.4	
	Refrigerator	250	1	12	3	
Water pumps 746 1 1					0.373	
Total kWh/day/hotel						

Table 3.14: Load for Shops and restaurants

	Shops and restaurants					
Туре	Appliance type	Rating (W)	No of appliance	Runtime (h/day)	kWh	
Shops and	Light	20	2	6	0.24	
restaurants	Fan	60	1	10	0.6	
	Refrigerator	250	1	24	6	
Total kWh/day/shop						

3.5.4.3 Load Estimation for Charging the Battery Run Auto Rickshaw:

A battery operated auto-rickshaw popularly known as 'Easy-bike' is newly added to the transportation sector of Bangladesh. Easy-bikes are operated by rechargeable lead-acid batteries as their sources of power. These batteries are charged with electricity taken from the domestic or commercial lines which indirectly burdens the national grid. Therefore, there is a very urgent need to find a new way for charging the auto-rickshaw. That's why in this research 250 battery run auto rickshaw is added as DC load equipment. Every battery operated auto-rickshaw consumed on an average 8 - 11 kWh of electricity per day during charging their batteries and charging time approximately 8 hours per day. In this thesis, an average value 9.62 kWh is estimated for auto rickshaw load [68]. Figures 3.19 and 3.20 indicate the yearly load profile for two different loads respectively. The daily average load profile for two types of the load is shown in Figures 3.21 and 3.22, respectively in which 17:00 to 23:00 h time period has been observed as peak demand for domestic load and 23.00 to 06.00 h for charging of the battery of auto rickshaw. The peak value of demand requirement determines the size of the system. From these two figures, the combined load demand for Kuakata region can be calculated and it is given below. Average units consumed per day (kWh/d) 3512.7, average load demand (kW) 146.36, peak load (kW) 387.27 and load factor 0.38. Hourly load consumption summary of the summer season (March to October) and winter season (November to February) in a year are depicted in Appendix A (Table A-6 and A-7).

Fig 3.19: Hourly load profile for household load at Kuakata (load 1)

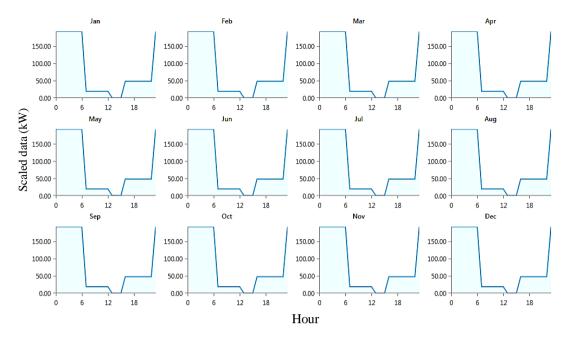


Fig 3.20: Hourly load profile for battery run auto rickshaw at Kuakata (load 2)

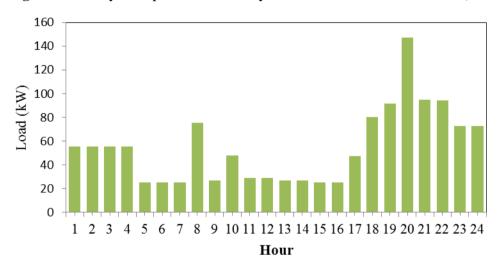


Fig. 3.21: Daily load profile for household (load 1)

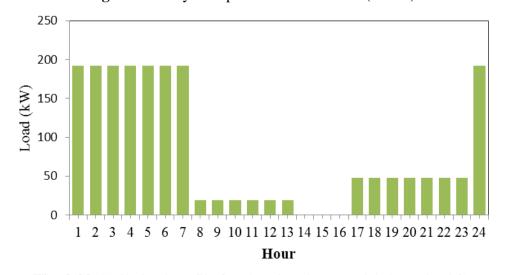


Fig. 3.22: Daily load profile for charging the auto-rickshaw (load 2)

3.5.5 Electricity Demand at Magnama, Pekua in Cox's Bazar.

The rural economic situation of the country is below the poverty line and thus in this energy system design, the selection of appliances was reflected for the low wattage for the affordability of the provided electric energy. Magnama (coordinates: 21.87°N, 91.87°E) is around the center of the southeast coastline in Cox's Bazar district. The main activities are related to agriculture 55% fishing 5% and industries 2%. More than 1200 families are living in Magnama but only a very few of them are getting electricity [69]. Detail map of Pekua Upazila is shown in Figure 3.23.

Fig 3.23: Magnama, Pekua at Cox's Bazar [69].

Based on economic aspects three types of family that are rich, solvent and poor family lives in Magnama [61]. In this research, 100 families have been considered as a rich family having four light bulbs, three ceiling fans, one small TV, one refrigerator and one water pump for each family. 700 families have been estimated as a solvent family having four lights, two fans and one TV set for each family. In the poor category, 400 families have been considered having two lights and one fan of each family [65, 70]. According to the

load estimation, 50 shops, one community health center, one school and 100 street lights are also considered for that region [71]. For generating more accurate hourly load profile 10% hour to hour noise and 10% day to day noise has been considered [65]. Tables 3.15 and 3.16 show the load consumption scenario of for Magnama, Pekua.

Table 3.15: Load consumption for household of Magnama, Pekua

		Residential	Load at	Magnama, P	ekua		
Туре	No of household	Appliance type	Rating (W)	No of appliance	total power (W)	Runtime (h/day)	kWh
Rich	100	Light	20	4	8000	7	56
		Fan	60	3	18000	12	216
		TV	110	1	11000	8	88
		Rice cooker	1000	1	100000	2	200
		Refrigerator	250	1	25000	12	300
		Water	746	1	74600	0.5	37.3
		pumps					
		Total kWh	consumed	by very solver	nt family		897.3
Solvent	700	Light	20	4	56000	7	392
		Fan	60	2	84000	12	1008
		TV	110	1	77000	8	616
		Total kWh consumed by solvent family 20				2016	
Poor	400	Light	20	2	16000	7	112
		Fan	60	1	24000	12	288
Total	1200	Total k	Wh consur	ned by poor fa	mily		400

Table 3.16: Load consumption for Public and commercial load at Magnama, Pekua

	Put	olic and commerci	al load at N	lagnama,	Peku	ıa		
Туре	No of center	Appliance type	Rating (W)	No applia	-	total power (W)	Runtim e (h/day)	kWh
School	1	Light	20	15	i	300	3	0.9
		Fan	60	15	5	900	4	3.6
		Computer	110	1		110	3	0.33
		Tota	al kWh/day f	or school				4.83
Health	1	Light	20	8		160	8	1.28
center		Fan	60	4		240	10	2.4
		TV	110	1		110	8	0.88
		Refrigerator	250	1		250	24	6
		Water pump	746	1		746	1	0.746
		Total k	Wh/day for l	nealth cent	er			11.30
Commerci	50 (50% of	Light	20	2		2000	6	12
al load	the total	Fan	60	1		3000	10	30
(shops)	shops have Refrigerator)	Refrigerator	250	1		12500	24	300
			Total kWh/day					342
		defe	rable load					
Street light		1	Light	100	300	30000	10	300
				Total kW	h			4182.6

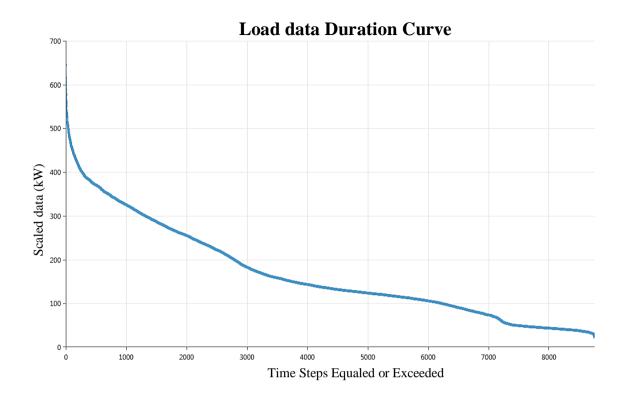


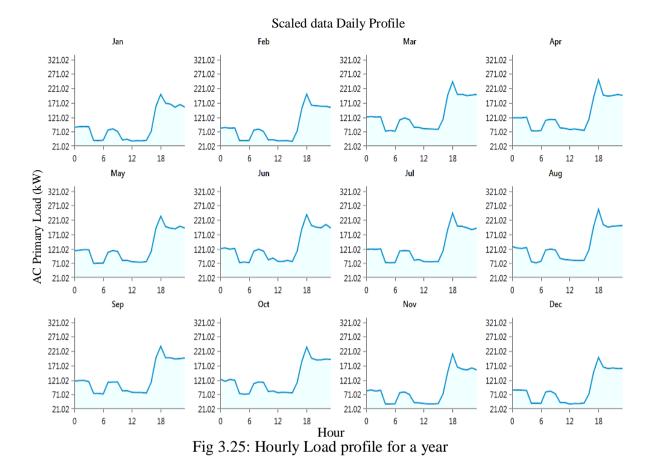
Fig 3.24: AC primary load duration curve for Magnama, Cox's Bazar (kW)

Figure 3.24 shows the load duration curve in a year for Magnama. This curve indicates that how much load are lies in a specific time interval during a year. With adding the 10% random variability the peak load is observed 644.48 kW, average load 167.88 kW, and average load 4029 kWh/day. The hourly load consumption and seasonal load consumption table are shown in Appendix A (Table A-8 and A-9), respectively.

3.5.6 Electricity Demand at Sitakunda

For the size optimization to be done, the load curve during the day and the year should be determined. Sitakunda having coordinates: 122.65°N, 91.66° E is situated at the intersection of two coastlines making an obtuse angle with Chittagong district. It is 212 km southeast from Dhaka and 44 km from Chittagong. The main activities are related to agriculture 24%, fishing 4%, industrial labor 5% and services 33% [72]. Like other places of Bangladesh Sitakunda, widely known to be a gateway of country's largest commercial hub Chittagong, has a strong historical background which highlights the blessings of nature with scenic beauty, favoring huge potentialities of this region for trade and commerce. In fact, Sitakunda is one of the oldest sites of human habitation in Bangladesh.

It is also the home of the country's first eco-park, as well as alternative energy projects, especially wind energy and geothermal power [73]. The energy sources of Sitakunda have been described in the previous section. For load estimation of Sitakunda, 400 families with various categories, one hospital, two tourist hotels, one school, and during winter season 60 irrigation pumps have been considered. The load consumption scenario of Sitakunda has been shown in Table 3.17 and Table 3.18.


Table 3.17: Estimation of load consumption for household at Sitakunda

Residential Load							
Туре	No of household	Appliance type	Rating (W)	No of appliance	total power (W)	Runtime (h/day)	kWh
		Light	20	5	5000	7	35
		Fan	60	3	9000	12	108
High		TV	110	1	5500	8	44
class		Computer	110	0	0	3	0
house	50	Iron	750	0	0	0.5	0
hold		Rice cooker	1000	1	50000	2	100
noid		Refrigerator	250	1	12500	12	150
		Water pumps	746	1	37300	0.5	18.65
			Total kWh/day				
		Light	20	4	16000	7	112
		Fan	60	2	24000	12	288
Medium		TV	110	1	22000	8	176
class		Computer	110	0	0	0	0
house	200	Iron	750	0	0	0	0
hold		Rice cooker	1000	0	0	1	0
noid		Refrigerator	250	0	0	24	0
		Water pumps	746	0	0	0	0
			Total kV	/h/day			576
		Light	20	2	4000	7	28
		Fan	60	1	6000	12	72
		TV	110	0	0	6	0
Low class		Computer	110	0	0	0	0
house	100	Iron	750	0	0	0	0
hold		Rice cooker	1000	0	0	0	0
		Refrigerator	250	0	0	0	0
		Water pumps	746	0	0	0	0
			Total kV	h/day			100

Table 3.18: Public and commercial load estimation at Sitakunda

		Public and	commerci	al load			
Туре	No of center	Appliance type	Rating (W)	No of appliance	Total power (W)	Runtim e (h/day)	kWh
		Light	20	15	300	3	0.9
		Fan	60	15	900	4	3.6
		TV	110	0	0	0	0
School	1	Computer	110	1	110	3	0.33
School	1	Iron	750	0	0	0	0
		Rice cooker	1000	0	0	0	0
		Refrigerator	250	0	0	0	0
		Water pumps	746	0	0	0.5	0
		Tota	l kWh/day f	for school			4.83
		Light	20	25	1000	8	8
		Fan	60	25	3000	12	36
	2	TV	110	5	1100	6	6.6
Tourist		Computer	110	0	0	3	0
hotel		lab equipment	1000	0	0	5	0
Hotel		others	250	0	0	6	0
		Refrigerator	250	1	500	24	12
		Water pumps	746	1	1492	1	1.49
		Total kV	Wh/day for	health center	r		64.0 92
		Light	20	2	2000	6	12
		Fan	60	1	3000	10	30
Commondia		TV	110	0	0	0	0
Commercia	50	Computer	110	0	0	0	0
l load (shops)	30	Iron	750	0	0	0	0
(snohs)		Rice cooker	1000	0	0	0	0
		Refrigerator	250	1	12500	24	300
		Water pumps	746	0	0	1	0
		Tota	l kWh/day	for shops			342
		Defe	errable load				
Street light	1	Light	100	300	30000	10	300

Figure 3.25 shows the hourly load profile for Sitakunda in a year, there is a peak load is 216.76 kW and from the load estimation, the average daily load is found 1778.8 kWh. The detail estimated hourly load consumption is shown in Appendix A (Table A-9).

3.6 Economic Factors and Other Costs

The key parameters for economic modeling in HOMER are the discount rate or interest on capital, fixed capital costs, fixed operation and maintenance costs, and project lifecycle in years.

3.6.1 Discount Rate and Inflation Rate:

The interest rate is also known as the discount rate. Now discount rate is used to find out the present value of an expected cash flow which is going to happen in the future [74]. The average value of last few years of interest rate in Bangladesh is considered in this thesis [75]. For sensitivity analysis, the interest rate is taken as 11.78, 10 and 5 [61,65]. Inflation rate and real interest have been taken as 5.71 and 5.74 for economic analysis [75].

3.6.2 System Fixed Capital Cost

The fixed capital cost of the system is normally allocated for building a house for keeping the battery bank, charge controllers, generator, inverter and other relevant electrical instruments and constructing the distribution lines throughout the village. It also includes the site preparation cost, labor cost, engineering design cost and other various costs. An estimate of the fixed capital cost including 3 km long three-phase distribution lines has been estimated as \$ 19320 [60, 65, and 76].

3.6.3 System Fixed Operation and Maintenance Cost

System fixed O & M cost firstly includes labor cost and insurance costs. If a full-time engineer or a technician is working in the hybrid system place, then he has to be paid a monthly salary. Assuming a technician is a full time employing in the powerhouse annual fixed O & M cost has been taken as \$ 3220/yr [76].

3.6.4 The Project Lifetime

It is the number of years the project is operated. HOMER uses this number to compute the annualized replacement cost and annualized capital cost of each component, as well as the total NPC of the system. In this project, the project lifetime has been taken as 25 years [65].

3.7 Selection of Component

The components are chosen from HOMER to perform the simulation. Figure 3.44 shows the grid connected hybrid power system design using HOMER which consists of PV array, wind generator, converter, load, and grid connection. In order to estimate the system performance under different situations, HOMER simulates the result of the grid connected and off grid arrangements at the same area and same load based on different criteria such as the estimated installation cost, replacement cost, operation and maintenance cost, interest, and cost of energy. The major components of the different models designed here are a wind turbine, PV, battery bank, and a power converter. For economic analysis, the following values are used. For component selection processes, the various component parameters have been analyzed and a brief comparison has been performed. Finally, the components are selected as they have robust characteristics that are described in next section.

3.7.1 Selection of Solar PV

Representative solar panel costs were difficult to determine, because they change rapidly with time, country and area. In order, though, to use reliable economic inputs, after contacting several company [76], [77], [78], [79], [80] with analyzing their quotation and specification, FIMEXT Corporation offers a suitable quotation and specification and then the final cost values were decided \$1554/kWp [77]. Tables 3.19 and 3.20 show the cost quotation and technical specification, respectively for 100 kWp on-grid solar system that is collected from FIMEXT Corporation. This cost also includes various equipment cost, installation cost, shifting cost, maintenance cost, grid tied converter cost. The replacement cost of solar panel is estimated 67% of the total capital cost [59] and replacement cost is estimated \$26/100 kWp solar panel [76].

Table 3.19: Technical specification for 100 kWp on-grid solar system [79]

Name of the equipment	Specifications	Capacity	Warranty	
Solar panel	 Made by solar land Technology multi crystalline Cell efficiency 16-16.5%, lower nominal operating cell temperature (NOCT) High-quality EVA, TPT and other raw material Toughened glass with the thickness of 3.2mm Stable output power Positive power tolerance Waterproof, compressive resistance and long life. 	100 kWp on-grid panel	20 years	
protecting device	FuseCircuit breakerLightning protection		2 years	
Inverter	On-grid pure sine waveEfficiency more than 98%Topology; Transformerless	25/20 kW on-grid inverter 4/5 pcs Brand: HUAWEI	5 years	
Cables and Structure	Highly protected cableStandard structure	SS screw (BRB cable)	2 years for cable and structure	

Table 3.20: Cost quotation for 100 kWp on-grid solar system [79]

100 kWp on-grid solar system [1 dollar = 78 BDT]						
System	size (kWp)	Total payable	System price			
With Sun tracker	100	BDT 3, 45, 00, 000.00	345 BDT/watt or 4.42 \$/watt			
Without Sun tracker	100	BDT 1,38,00,000.00	138 BDT/watt or 1.77 \$/watt			

3.7.2 Selection of Wind Turbine

In this section, firstly characteristics of wind turbines have been analyzed. After analyzing various data, a H21.0-100kW has been selected for their robust characteristics. What is more, regarding the wind turbine, a locally manufactured one following the AR22.0-100 kW model was initially selected [78], but then considered as a not so good choice, because of the relatively weak wind potential of the site, where this low cost but also low efficiency could not offer much to the micro-grid. Figure 3.26 shows the H21.0-100kW wind turbine manufactured by HUMMER at 30 m height. Also, Tables 3.21 and 3.22 indicate the technical and economical specification for an H21.0-100kW wind turbine.

Fig 3.26: H21.0-100kW wind turbine (30 m) [81].

Table 3.21: H21.0-100kW technical specifications [81]

Configuration	3 Blades, Horizontal axis, Upwind
Rotor Diameter	Ф21.0 m
Blade Length	10.0 m
Swept Area	346.36 m ²
Direction of Rotation	Clockwise (facing blades)
Blade Material	Fiberglass reinforced composite, Resin Transfer
	Molding (RTM)
Rated Power	100 KW, 10.5 m/s
Direct Voltage	660V, DC
Direct Current	151.52 A, DC
Start-up Wind Speed	2.5 m/s
Rated rotating rate	60 r/min
Working Wind Speed	1.5-20 m/s
Survival Wind Speed	50 m/s
Alternator	Permanent magnet alternator, SCF technology
Alternator Weight	2236 kgs
Generator Efficiency	>0.93
Wind Energy Utilizing Ratio	0.45 Cp
Energy monitoring & User control	Siemens touch screen, Siemens PLC controller,
	internet telecom & remote monitoring
Gearbox	None, Direct drive generator design
Pitch Control System	Siemens servo motor drive 3pcs blades
Yawing System	Siemens servo motor drive to yaw
Hydraulic Braking System	Siemens servo motor drive braking cylinder, rotor
	blade brake & yaw brake
Dogvane/Anemometer	Ultrasonic, have electrical heating function
Over Speed Protection	Pitch control
Shutting Down Method	Blades feathering 90o degree, Hydraulic braking
	rotor blade

The installed cost of a wind power project is dominated by the capital cost for the wind turbines (including towers and installation) and this can be as much as 84% of the total installed cost. Figure 3.27 shows the capital cost for a typical onshore wind power system and turbine. Wind turbine costs include the turbine production, transportation, and installation of the turbine. The grid connection costs include cabling, substations, and buildings and the construction costs include transportation and installation of wind turbine and tower, construction wind turbine foundation (tower), and building roads and other related infrastructure required for installation of wind turbines. Other capital costs here include development and engineering costs, licensing procedures, consultancy and permits and monitoring systems [82]. In this thesis, the capital cost of a wind turbine is estimated \$251758.93/100kW wind power system replacement cost is 75% of the total capital cost [59]. Operation and maintenance cost are 2 % of the total capital cost [34].

Table 3.22: Cost quotation sheet for 100 KW on-grid wind turbine systems [81]

	100 KW on-grid wind turbine syst	em, rotor diameter 21.0m				
Spec.	Parts	Comments	Unit Price			
•			USD/set, FOB Shanghai			
	Generator system (1 set) including:		Simil			
	1. Generator body					
	2. Nacelle					
	3. Ultrasonic dogvane/anemometer (1 pc)	Electric heating function	US\$96,308.00			
	4. Hydraulic brake	Standard configuration				
	5. Blades (3 pcs), rotor Dia: Φ21.0m, L: 10.0m	GRP, Resin Transfer Moulding				
	6. Electric pitch control, including	Siemens servo motor				
	Control system (1set) including:					
100KW wind turbine, 3-phase on-grid	1. PLC controller (1 pc), including, (Siemens remote controlling & network Communication system, Siemens remote touch-screen display)					
inverter,	2. Rectifier & dumping controller (1 pc)					
including	3. Unloading resistor (1 pc)		US\$12,000.00			
tower	4. VPN Router (1 pc)					
	5. Emergency power supply (1 pc)					
	Inverter	Grid-tied	US\$21,429.00			
	Freestanding Tower	Q345, Height 30.0m	US\$29,692.00			
	Anchor cage		US\$1,714.00			
	Total Amount		US\$161,143.00			

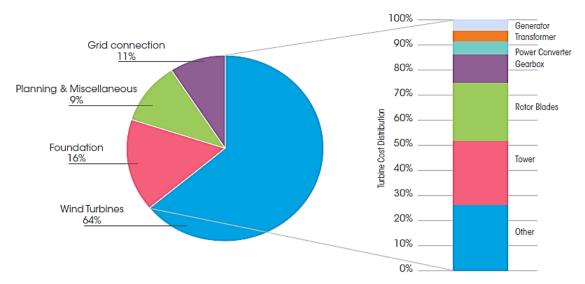


Fig. 3.27: Capital cost for a typical onshore wind power system and turbine [82].

3.7.3 Selection of Converter

An inverter is a vital element in any solar system where the AC is required. It converts the DC form of a solar system or wind system into AC form for AC appliances. A hybrid system needs an inverter to convert DC voltage from the batteries to AC voltage required by the load. Some aspect is needed to be taken into consideration when selecting an inverter for a certain application. Usually, the inverters used in renewable applications can be divided into two; an inverter for solar and another is for wind electric system [65]. In this thesis, the capital cost of the converter is taken \$214/100 kW [81]. The replacement cost are 93 % of total capital have been used and operation and maintenance cost is estimated 1.2% of the capital cost [34]. Figures 3.28 and 3.29 show the SUN2000 Series solar inverter and their efficiency curve that is manufactured by HUAWEI [80]. Table 3.23 shows the technical specification for SUN2000 series solar inverter.

Fig: 3.28: Solar inverter for grid connection [80]

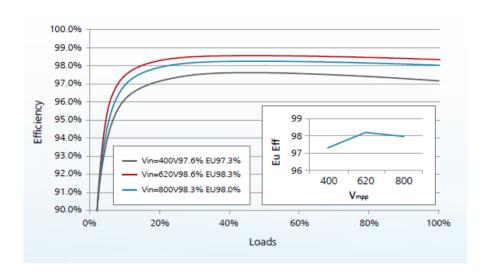


Fig: 3.29: Efficiency curve for converter [80]

Table 3.23: Technical specification of solar inverter

Model name	Technical specification	Value
	Efficiency	98.6
	Maximum DC input	23600 W
	Maximum input voltage	1000 V
	Maximum input current	18 A
	Minimum operating voltage	200 V
	Rated input voltage	620 V
CRL	AC output power	23000 W
SUN 2000-23KRL	Rated output voltage	3*230 V/ 400 V+ N+ PE
2000	Maximum output current	33.5 A
Š	Output frequency	50 Hz/60 Hz
\mathbf{S}	Adjustable power factor	0.8 leading
	Display	Graphic LCD
	Operating temperature range	-25° C to +60° C
	Self-consumption at night	< 1 W
	Wowanter	5 years
	Warranty	10/15/20/25 years optional

3.7.4 Grid Parameter

In grid-connected design, a grid is used as a backup power component or excess power absorber. The grid supplies power when there is not enough RE power to meet the load demand and grid consumes power when an excessive power is available. The utility charge of the grid power has two modes. One is Unit purchase price and other is Unit sell price to the grid. Table 3.24 shows the grid per unit price scenario for different categories.

Table 3.24: REB ,PBS and OZPDCL unit price [83]

Class of consumer	Categ	gory	
	Slab	Taka/kWh	\$/kWh
Commercial	Flat	9.80	0.125641
(11 KV)	Off Peak	8.45	0.108333
	Peak	11.98	0.15359
	Categ	gory	
	Slab	Taka/kWh	\$/kWh
Irrigation system	Flat	3.82	0.048974
	Categ	gory	
	Slab	Taka/kWh	\$/kWh
Class A and Class A-1:	Life line: 1-50 unit	3.36-3.87	0.043-
Medium voltage residential user			0.049
(11 KV)	First step: 1-75 unit	3.80	0.048718
	Second step: 76-200 unit	5.14	0.065897
	Third step: 201-300 unit	5.36	0.068718
	fourth step: 301-400 unit	5.63	0.072179
	Fifth step: 401-600 unit	8.70	0.111538
	sixth step: 600- unit	9.98	0.127949
	Categ	gory	
Class F:	Slab	Taka/kWh	\$/kWh
Medium voltage general purpose	Flat	7.57	0.097
(11 KV)	Off Peak	6.88	0.088
	Peak	9.57	0.122
	Demand Charge = 260	00 Taka or U	ISD 333.33

This is a very argumental issue because no fixed sell back price is declared by power development board of Bangladesh. A sensibility analysis has performed by assuming various sell back price and observed equity payback year. Finally, the most suitable sell back price should be an offer to PDB for implementing these projects [77].

3.7.5 Land Requirement for Plant Installation:

For solar system, 100 ft² per 100 kW is needed for plant installation. So, rooftops are the best suited for implementing 1 MW, 2 MW even 3 MW plant. On the other hand, for a wind turbine, a 500 ft² land area is needed for a 100 kW wind turbine [77][78][79][81].

3.8 Basic Theory for Cost Calculation

The performance analysis of a system to cover the desirable load alone is nowadays insufficient for its selection. Economic issues are crucial when making the final choice of the combination of components during the design of a unit.

3.8.1 Net Present Cost (NPC)

The NPC means the present value of all component (operating and maintenance cost) that is installed in the plant, minus the present value of all the revenues that it earns over the plant lifespan [2,11, 32].

3.8.2 Total Annualized Cost

The total net present cost in a year is called the total annualized cost. It expressed as [2,11, 32]:

$$C_{\text{vr, total}} = \text{CRF} (i, R_{\text{plant-life}}) \times C_{\text{NPC, total}}$$
 (3.2)

where $C_{NPC, total}$, i, CRF, and R _{plant-life} represents the total net present cost in dollar, the annual real interest rate, capital recovery factor and the plant lifetime in year, respectively.

3.8.3 Capital Recovery Factor (CRF)

It is a ratio which is needed to calculate the present value of a series of equal yearly cash flows. It can be expressed as [2,11, 32]:

$$CRF(i,n) = \frac{i \times (1+i)^n}{(1+i)^{n-1}}$$
 (3.3)

where n = number of years and i = the real interest rate in a year.

3.8.4 Annual Real Interest Rate

It is the discount rate which is used to convert between one-time costs and yearly costs. It is calculated as follows [2,11, 32].

$$i = \frac{i' - F}{1 + F} \tag{3.4}$$

Where, i, i' and F is the real interest rate, nominal interest rate, and annual inflation rate, respectively.

3.8.5 Cost of Energy (COE)

It is defined as the mean value of cost per kWh of useful electrical energy produced by the plant. It is expressed as the ratio of electricity production cost in a year to the total electrical load served by the system. The electricity production cost includes plant installation cost and operation and maintenance cost. Total electrical loads are divided into AC primary load and DC primary load. It is calculated by the following equation [2,11, 32].

$$COE = \frac{C_{yr,total}}{AC_{load} + DC_{load}}$$
 (3.5)

where, $C_{yr,total}$ AC_{load} and DC_{load} is the total annualized cost, AC primary load and DC primary load, respectively.

3.9 Conclusion

This chapter provides a flowchart of the proposed methodology. The steps involve getting the cost-effective solution is described. The comparative analysis of RE source in five different locations is carried out and load demand is calculated. It is seen that Kuakata, Sitakunda, and Magnamaghat are dominated by wind resource whereas Dinajpur and Rangpur are dominated by solar energy. The equipment needed to implement the proposed model is described along with their cost. Finally, the proposed model have been designed using software tool namely HOMER.

CHAPTER IV

Simulation Results

4.1 Introduction

In this chapter, results of the proposed PV-wind hybrid power generation system for Kuakata area are presented. The detail simulation results for other four regions are shown in Appendix B and Appendix C. Outputs of the analysis have been tabulated and graphically shown. From the tabulated data finally, a brief comparison has been made on the basis of COE, NPC, the percentage of a renewable fraction, total contribution RE on a grid system, total annualized cost, and greenhouse gas emission for the proposed model. The results of the investigations are presented as follows.

4.2 Optimum Results for Kuakata

For selecting the best mixer of solar and wind components analyses have been performed with varying the number of the wind turbine and PV module for both off-grid and on-grid mode. Tables 4.1, 4.2 and 4.3 show the optimization results for 1 MW, 2MW, and 3 MW capacity hybrid power system model, respectively with a different share of renewable energies. For 1 MW grid connected system, the minimum NPC is obtained \$2043668 whereas for the off-grid system it is \$6839339. Figure 4.1 shows the NPC vs. PV-Wind ratio. It has been seen that the NPC values of the system are decreased with the increase in the capacity of PV unit and after some simulation, it is increasing rapidly. Also, with the increase of the PV unit and decrease of the wind turbine, the capital cost of the system is decreased as a wind turbine has a higher price compared to a PV unit. The COE is increases for all system models. Figures 4.2 and 4.3 show the graphs of NPC values with respect to PV-Wind contribution ratio for 2 MW and 3 MW system model, respectively. For 1 MW model, it is seen that the COE and NPC are varied from \$0.04362/kWh to \$0.407181/kWh and 2.049761million dollar to 6.839339 million dollars, respectively. For

2 MW and 3 MW model, the COE and NPC are varied from \$0.026971/kWh to \$0.450324/kWh, \$0.021024/kWh to \$0.650553/kWh, and 2.378619 million dollars to 7.565056 million dollars, 2750290 million dollars to 10.928550 million dollars, respectively. Finally, on the basis of lowest NPC, 1:9 PV-wind capacity ratio for 1 MW, 4:16 PV-wind capacity ration for 2 MW and 5:25 PV-wind ratio for 3 MW model are noticed as the optimum result.

Table 4.1. Simulation results for finding optimal design for 1 MW

Grid connected	0	10	0	999999	400	0.04362	2049761	2603450	89	- 1032057
Grid connected	100	9	0	999999	400	0.045405	2043668	2485665	87	-937352
Grid connected	200	8	0	999999	400	0.047574	2047025	2367880	86	-838754
Grid connected	300	7	0	999999	400	0.049956	2053557	2250095	84	-739601
Grid connected	400	6	0	999999	400	0.052533	2063060	2132310	82	-640274
Grid connected	500	5	0	999999	400	0.055395	2078781	2014525	79	-539504
Grid connected	600	4	0	999999	400	0.059548	2121031	1896740	76	-425785
Grid connected	700	3	0	999999	500	0.063325	2176623	1800355	72	-331332
Grid connected	800	2	0	999999	600	0.067138	2247318	1703970	67	-234947
Grid connected	900	1	0	999999	600	0.071663	2326035	1586185	60	-117239
Grid connected	1000	0	0	999999	700	0.074722	2411865	1489800	53	-23507.4
Only Grid system	0	0	0	999999	400	0.122097	2051167	85600	0	761617.8
Off Grid	100	9	8542 (Battery)	0	500	0.407181	6839339	4215465	100	0

1 MW power plant

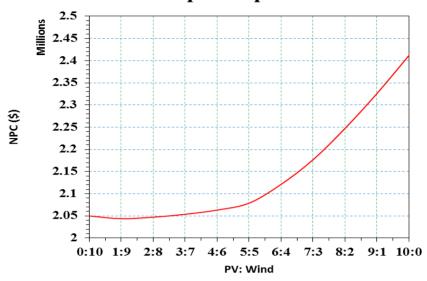


Fig. 4.1. The NPC vs. PV-Wind ratio

Table 4.2: Simulation results for finding optimal design for 2 MW

PV (kW)	H21.0-100kW	Grid (kW)	Converter (kW)	COE (\$)	NPC (\$)	Initial capital (\$)	Ren Frac (%)			Grid/Energy Sold (kWh)
0	20	999999	400	0.026971	2378619	5121300	96.79281	-2825745	215871.4	5448733
100	19	999999	400	0.027514	2365877	5003515	96.60049	-2731040	223099.2	5280581
200	18	999999	400	0.028196	2360568	4885730	96.36249	-2632442	232415.9	5107309
300	17	999999	400	0.028934	2356797	4767945	96.0872	-2533289	243244.2	4934520
400	16	999999	400	0.029719	2353829	4650160	95.77546	-2433962	255365.5	4762703
500	15	999999	400	0.030595	2353910	4532375	95.41869	-2333192	269007.9	4589735
600	14	999999	400	0.031953	2376723	4414590	94.98789	-2219473	284526.2	4394661
700	13	999999	500	0.033295	2407909	4318205	94.52452	-2125020	302222.4	4237445
800	12	999999	600	0.034783	2443275	4221820	93.98998	-2028635	322199.4	4078931
900	11	999999	600	0.036577	2475561	4104035	93.32912	-1910927	344580.6	3883334
1000	10	999999	700	0.038159	2508446	4007650	92.63081	-1817195	369712.7	3734889
1100	9	999999	800	0.0399	2545371	3911265	91.82352	-1721837	398096	3586684
1200	8	999999	800	0.042157	2584882	3793480	90.8005	-1602196	430504.1	3397534
1300	7	999999	900	0.044034	2621792	3697095	89.707	-1508891	467722	3261965
1400	6	999999	1000	0.046074	2663608	3600710	88.41235	-1414164	511271	3130093
1500	5	999999	1100	0.048249	2710623	3504325	86.84841	-1318475	563890.6	3005511
1600	4	999999	1100	0.050969	2759862	3386540	84.81352	-1200348	627592.1	2850458
1700	3	999999	1200	0.053224	2814362	3290155	82.52339	-1106057	705297.3	2753552
1800	2	999999	1300	0.055455	2881834	3193770	79.52476	-1010858	812079.4	2684040
1900	1	999999	1300	0.058244	2960787	3075985	75.60423	-891600	946484.5	2597595
2000	0	999999	1400	0.06024	3043064	2979600	71.56703	-797622	1096203	2573280
400 (off grid)	16	3023 (battery)	400	0.450324	7565056	5254760	100	0	16.52367	233154.2

2 MW power plant

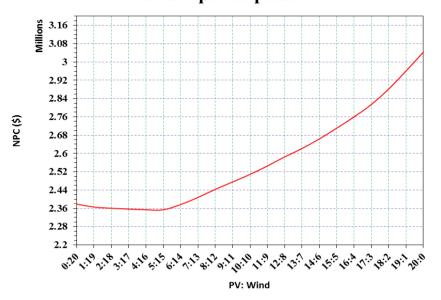


Fig. 4.2. The NPC vs. PV-Wind ratio

Table 4.3: Simulation results for finding optimal design for 3 MW

PV (kW)	H21.0- 100kW	Grid (kW)	Converter (kW)	COE (\$)	NPC (\$)	Initial capital (\$)	Ren Frac (%)	$CO_2(kg/yr)$	Grid/Energ y Purchased (kWh)	Grid/Energ y Sold (kWh)
0	30	999999	400	0.021024	2750290	7639150	98	-4619420	147592.3	8702074
100	29	999999	400	0.021281	2735784	7521365	98	-4524715	150331.9	8529434
200	28	999999	400	0.021616	2728307	7403580	98	-4426117	154132.3	8350646
300	27	999999	400	0.021975	2721998	7285795	98	-4326964	158505.3	8171402
400	26	999999	400	0.022352	2716173	7168010	98	-4227637	163357.2	7992315
500	25	999999	400	0.022771	2713041	7050225	98	-4126867	168826.3	7811173
600	24	999999	400	0.023458	2732093	6932440	98	-4013148	174777.4	7606533
700	23	999999	500	0.024146	2758876	6836055	97	-3918695	181269.9	7438113
800	22	999999	600	0.024901	2789187	6739670	97	-3822310	188388.7	7266740
900	21	999999	600	0.025771	2815694	6621885	97	-3704602	196069.4	7056444
1000	20	999999	700	0.026538	2841970	6525500	97	-3610870	204387.7	6891185
1100	19	999999	800	0.027373	2871333	6429115	97	-3515512	213532.3	6723741
1200	18	999999	800	0.028416	2902076	6311330	97	-3395871	223635.6	6512286
1300	17	999999	900	0.029285	2928783	6214945	96	-3302566	234895	6350759
1400	16	999999	1000	0.030226	2958381	6118560	96	-3207839	247362.2	6187805
1500	15	999999	1100	0.031233	2990146	6022175	96	-3112150	261185.6	6024426
1600	14	999999	1100	0.032453	3020474	5904390	96	-2994023	276775.8	5821262
1700	13	999999	1200	0.033525	3051419	5808005	95	-2899732	294559.8	5664435
1800	12	999999	1300	0.034672	3084802	5711620	95	-2804533	314618.5	5508199
1900	11	999999	1300	0.03612	3119742	5593835	94	-2685275	337051.4	5309783
2000	10	999999	1400	0.037349	3153041	5497450	94	-2591297	362172.2	5160870
2100	9	999999	1500	0.038661	3189078	5401065	93	-2496432	390426.1	5013448
2200	8	999999	1600	0.04005	3227784	5304680	93	-2400932	422724.6	4868895
2300	7	999999	1600	0.041772	3266874	5186895	92	-2282599	459717.1	4686752

Table 4.3. Simulation result for finding the optimal design for 3 MW (continued..)

2400	6	999999	1700	0.043258	3308342	5090510	91	-2187999	502930.4	4554780
2500	5	999999	1800	0.044812	3354341	4994125	90	-2092825	555190.9	4430792
2600	4	999999	1800	0.046778	3405087	4876340	88	-1973709	618453.8	4273470
2700	3	999999	1900	0.048376	3459347	4779955	87	-1879349	695249.9	4175525
2800	2	999999	2000	0.049952	3525746	4683570	85	-1784387	800325.6	4104746
2900	1	999999	2000	0.051935	3604498	4565785	82	-1664655	932174.8	4014870
3000	0	999999	2000	0.054081	3694043	4448000	79	-1541456	1076496	3931044
500		2750								
(Off	25	2750 (battery)	900	0.650553	10928550	7707225	100	0	0	0
grid)		(battery)								

3 MW power plant at Kuakata

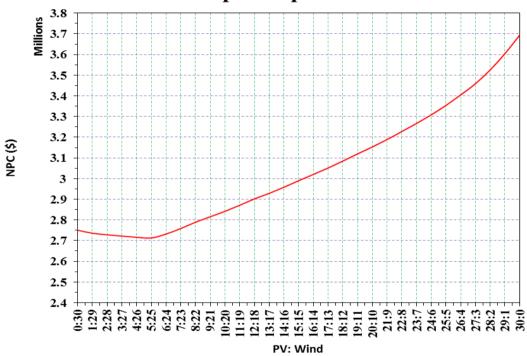


Fig. 4.3. The NPC vs. PV-Wind ratio.

4.2.1 Hub Height Selection for Kuakata Region

For proper modeling of wind energy system, the selection of hub height is very important because an extra height may cause physical damage of plant or low hub height cannot produce the desired output. Figures 4.4 and 4.5 show that NPC and total capital cost for wind turbine and COE at 30 m, 40 m, and 50 m hub height. From these two figures, one

intersection point can be found that determines optimum point for the desired hub height that is about 47 m.

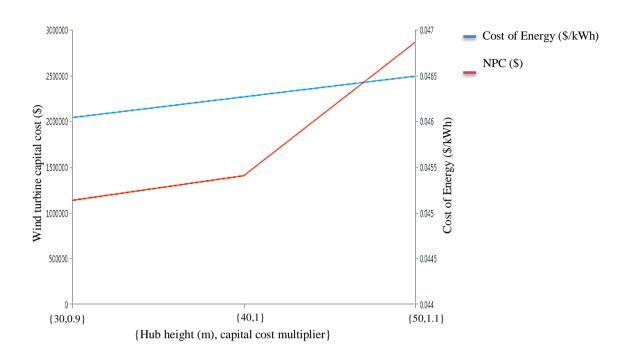


Fig.4.4: Wind turbine capital cost, cost of energy with respect to hub height (m)

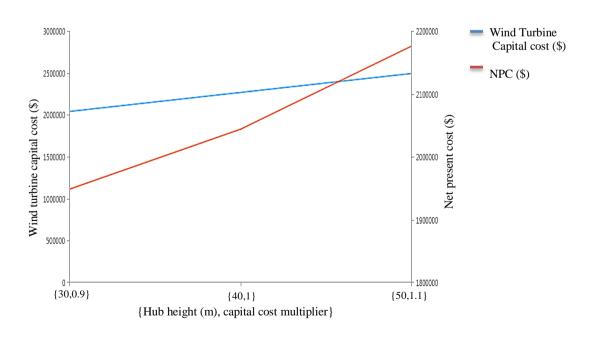


Fig.4.5: Wind turbine capital cost, NPC with respect to hub height (m)

4.2.2 Cost Summary for Kuakata (1 MW)

Table 4.4 shows the total NPC for Kuakata region, respectively. From the calculation total NPC is obtained as \$2,043,668 for 1 MW grid connected power plant. It is also introducing cost effectiveness of the proposed hybrid model. Figures 4.6 and 4.7 show the cost summary and cash flow summary for 1 MW plant system at Kuakata. The individual component costs are given in cost summary plot. The cash flow describes the capital, operating and replacement cost including salvage.

Table 4.4: NPC (Net present cost) for 1 MW power plant at Kuakata

	Net Present Costs (1 MW grid connected)											
Component	Capital	Replacement	O&M	Fuel	Salvage	Total						
Solar Land PV	134,000	0	34,067	0	0	168,067						
H21.0-100kW	2,266,065	556,383	593,748	0	-315,642	3,100,554						
Grid	0	0	-1,428,113	0	0	-1,428,113						
HOMER Cycle Charging	0	0	0	0	0	0						
HUAWEI system	85 <i>,</i> 600	71,963	13,312	0	-9,905	160,970						
converter												
Other	0	0	42,191	0	0	42,191						
System total	2,485,665	628,345	-744,795	0	-325,547	2,043,668						

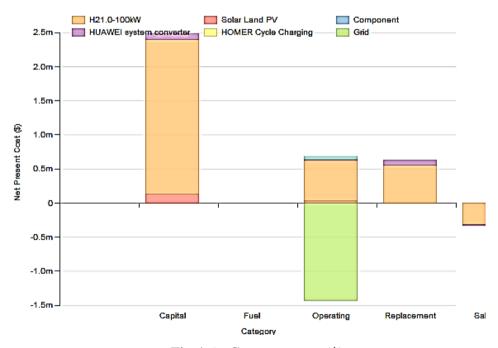


Fig 4.6: Cost summary (\$)

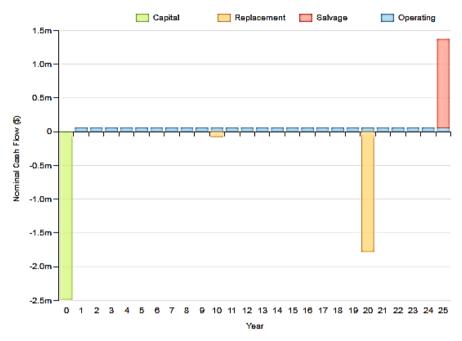


Fig 4.7: Cash Flow Summary

4.2.3 Renewable Fraction (1 MW)

Figure 4.8 shows the monthly average electric production of various components for 88% renewable fraction rate where the major contribution is coming from a wind turbine. An 84% renewable energy comes from the wind energy and a 4% renewable energy is coming from PV cell.

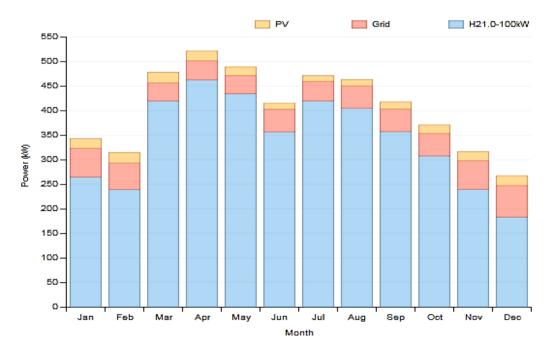


Fig. 4.8: Monthly average electricity production for final model (Renewable fraction 88%).

4.2.4 Output Analysis (1 MW)

Figures 4.9 and 4.10 demonstrate the primary load vs. renewable contribution on the systems for two different months. The black line indicates primary load and the red line shows RE contribution for a specific month. From these two figures, it is clear that in winter season renewable contribution is matched with the load that is load factor is quite high. In Figure 4.10 renewable energy production (red line) is much higher than the load due to the availability of RE resources during summer.

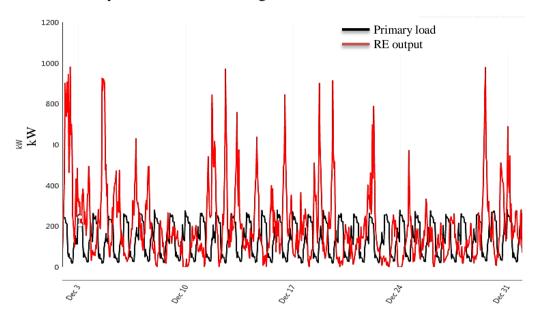


Fig 4.9: Primary load vs. renewable contribution for December

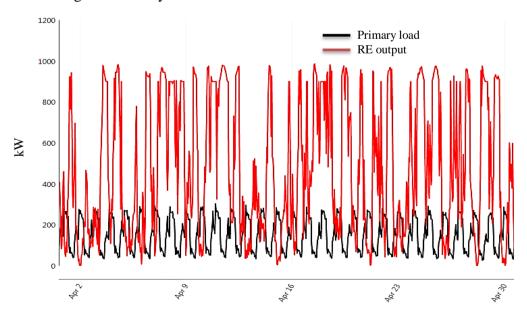


Fig 4.10: Primary load vs. renewable contribution for April

Fig. 4.11 shows the daily profile of the total renewable output in a year. It also shows the highest renewable penetration season is summer season because the proposed region has greater wind energy potential than the other renewable energies. This figure also indicates which time is better for renewable energy harvesting that is 10 am to 5 pm.

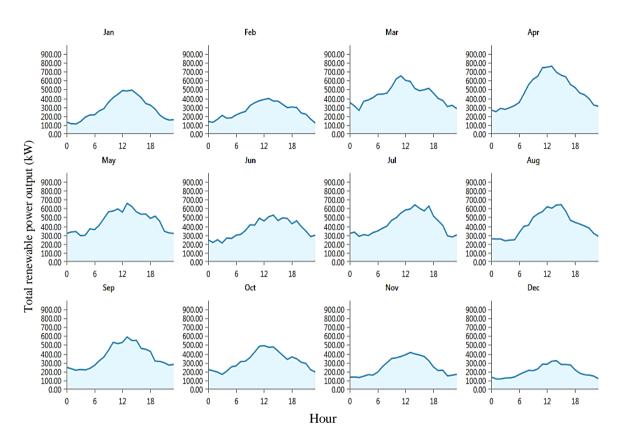


Fig 4.11: Total Renewable Output (Daily profile)

Figures 4.12 and 4.13 show Load vs. RE contribution for April 14 and December 14, respectively. The red line indicates the renewable contribution and black line introduces the primary load. From these figures, it is very clear to understand that when the highest RE is available, it serves the load and the system sells the remaining power to the grid. On the other hand, in winter season renewable resources cannot serve power to the load individually. Figure 4.14 shows the primary load vs total renewable contribution as a function of percentage for April. The black line indicates primary load and the blue line indicates renewable penetration (%). From this figure, it is clear that from 6 am to 6 pm 100% renewable contribution occurs. Figures 4.15 and 4.16 indicate energy sold to the grid vs. purchases from the grid for December and July, respectively. The green line

represents the sold energy and black line indicates the purchase energy. The amount of sold energy to the grid is quite high in July than the December.

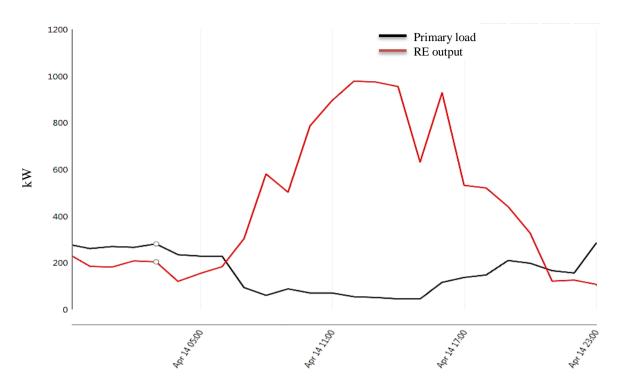


Fig 4.12: primary load and renewable contribution for 14th April

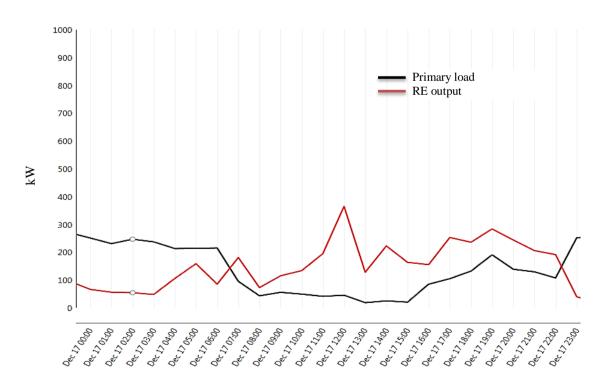


Fig 4.13: primary load and total renewable contribution for 17th December

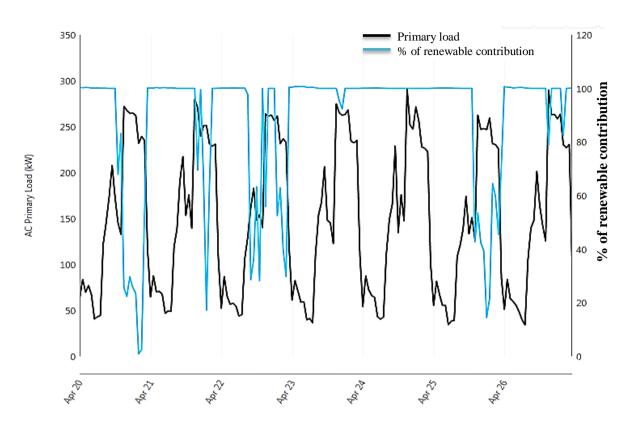


Fig 4.14: Primary load vs. total renewable contribution as a function of percentage for April

Fig. 4.15: Energy sold to the grid vs. purchases from the grid for December.

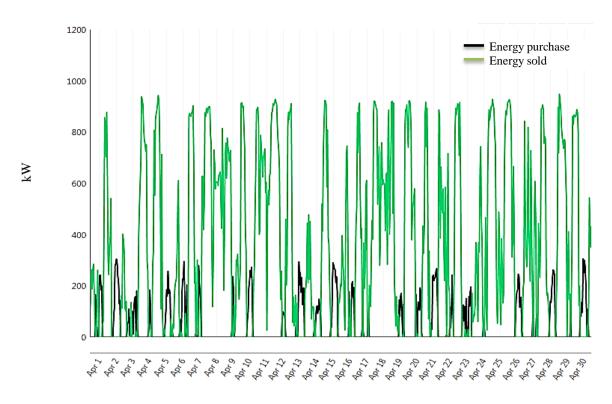


Fig. 4.16: Energy sold to the grid and purchased from the grid for April.

4.2.5 Environmental Impact

The factor of CO₂ emission rate for Bangladesh is found 540 g/kWh [84]. The CO₂ emission with the various contribution of renewable energy is shown in Table. 4.5. From which it can be investigated that the emission decreases as the size of the plant increases. The result shows that 1 MW power plant emits -937352 kg CO₂ per year while -2433962 kg/yr and -4126867 kg/ CO₂ emits per year by 2 MW and 3 MW power plants, respectively. Here, the negative CO₂ emission is observed for all cases because this system sells more power than it purchases from the grid as it has an excess of electricity.

Table 4.5: The CO₂ emission for Kuakata

System	CO ₂ emission (kg/yr)
1 MW	-937352
2 MW	-2433962
3 MW	-4126867

4.2.6 Results for other Four Locations

In this section, output results for other four locations have been showed. For better understanding, the details result for these four locations are described in the Appendix B & C.

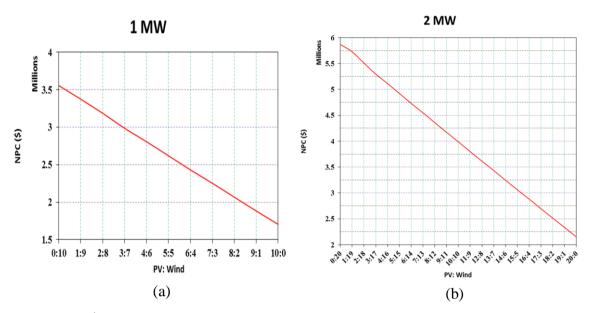


Fig. 4.17: NPC(\$) vs. PV-Wind ratio for Dinajpur region (a) Result for 1 MW power plant (b) Result for 2 MW plant

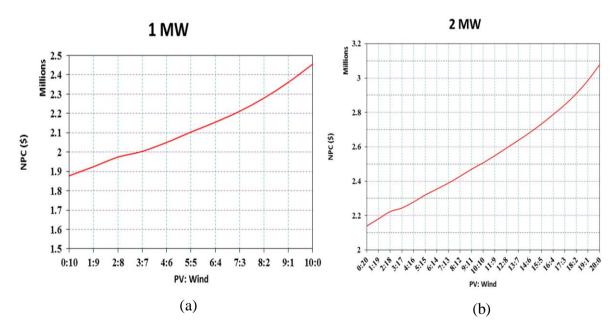


Fig. 4.18: NPC(\$) vs. PV-Wind ratio for Magnama region (a) Result for 1 MW power plant (b) Result for 2 MW plant

Figure 4.17 shows the output results for Dinajpur region. From this figure, it is clear that Dinajpur has high solar potential. With the increase of solar PV contribution, the NPC are decreased rapidly both 1 MW and 2 MW power plants. That means wind turbine is not

suited in that area. Magnama region is situated in the coastal region of Bangladesh which has high wind potential and this area is not suited for PV power generation that is shown in Figure 4.18. The different types of result are observed for Rangpur and Sitakunada. For Rangpur region, the suitable ratio of PV panel and wind turbine is found as 9:1 for 1 MW and 19:1 for 2 MW power systems that are shown in Figure 4.19. On the other hand for Sitakunda it is 2:3 for 0.5 MW, 4:6 for 1 MW and 12:8 for 2 MW respectively that is shown in Figure 4.20.

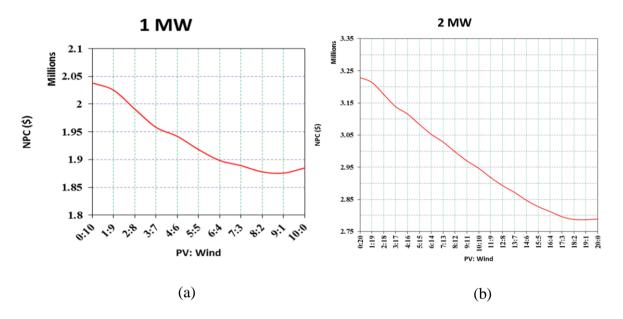


Fig. 4.19: NPC(\$) vs. PV-Wind ratio for Chillmari region (a) Result for 1 MW power plant (b) Result for 2 MW plant

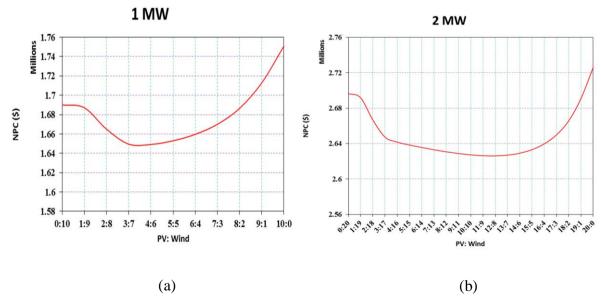


Fig. 4.20: NPC(\$) vs. PV-Wind ratio for Sitakunda region (a) Result for 1 MW power plant (b) Result for 2 MW plant

4.3 Comparative Result for Proposed Five Models

Comparative results for optimum results are performed for 0.5 MW, 1 MW, 2 MW and 3 MW that is described in this section. Also, other results are shown in the Appendix section. Outputs of the considered five locations have been analyzed based on the system architecture, the cost of the proposed plant, the percentage of renewable energy contribution to load, GHG emission and after that all data have been tabulated.

4.3.1 Comparison Based on System Architecture

Table 4.4 shows the system architecture comparison for five locations with rated capacity and the average capacity of various components. Every grid connected hybrid power system uses the PV array, wind turbine, converter with different capacity because some areas have high solar energy potentials like Dinajpur and Rangpur. So, in these two locations contributions of solar systems are quite high rather than wind energy. On the other hand, where wind energy potential is high that means coastal area namely Kuakata, Sitakunda and Magnama, the contribution of wind energy is greater than the solar energy.

Table 4.6: System architecture comparison for five locations

Area	Size	PV Capacity (kW)	Wind Turbine capacity (kW)	Optimum PV:Wind ratio	Grid (kW)	
	1 MW	800	200	4:1		
Kuakata	1.5 MW	1000	500	2:1		
Nuakata	2 MW	1500	500	3:1		
	3 MW	2400	600	4:1		
Magnamaghat	1 MW	0	1000	0:10		
iviagnamagnat	2 MW	0	2000	0:20		
	0.5 MW	200	300	2:3	000000	
Sitakunda	1 MW	400	600	2:3	999999	
	2 MW	1200	800	3:2		
	0.5 MW	500	0	5:0		
Dinajpur	1 MW	1000	0	10:0		
	2 MW	2000	0	20:0		
Dananus	1 MW		100	9:1		
Rangpur	2 MW	1900	100	19:1		

4.3.2 Comparison Based on Cost Analysis

In this section, only two system sizes have been used for comparative analysis that is 1 MW and 2 MW. System cost for others model is shown in the Appendix section. For 1 MW system model, the lowest net present cost is found at Sitakunda that is \$1649163 and highest NPC is found in Kuakata that is \$2043668. For 2 MW system model, the lowest net present cost is found at Magmana that is \$2139587 and highest NPC is found in Rangpur that is \$2786766. On the other hand, the minimum cost of energy is found in Magnama for both cases that are \$0.037/kWh and \$0.023/kWh for 1 MW and 2 MW, respectively. Also, the COE for every region is much lower than the grid levelized cost of energy of average grid unit price [76]. Figures 4.21 and 4.22 show the total NPC and COE for five locations.

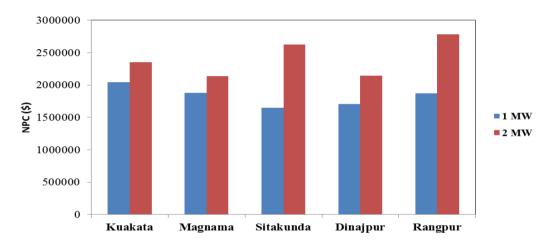


Figure 4.21: Net present cost (NPC) for five locations

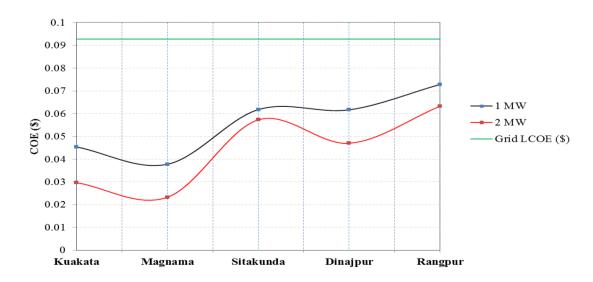


Figure 4.22: COE in terms of \$/kWh for five considered area.

4.3.3 Comparison Based on CO₂ Emission for 1 MW Power Plant

This section describes the environmental impact for these five hybrid renewable energy based power plant. Table 4.7 shows the total GHG emission on earth for different systems like grid connected hybrid system and only grid system. CO₂ emissions of all models give negative value because every hybrid model sells more energy to the grid than the purchases from the grid annually. The highest value is found at Magnama that is -1039876 kg/yr for 1 MW and -2873867 kg/yr for 2 MW, respectively. By installing the proposed power plant it is possible to reduce a large amount of CO₂ gas from the environment.

Table 4.7: Comparison of CO₂ emission for 1 MW power plant

Area	CO ₂ emiss	ion (kg/yr)
11100	1 MW	2 MW
Kuakata	-937352	-2433962
Magnamaghat	-1039876	-2873867
Sitakunda	-686638	-1492764
Dinajpur	-289246	-1169745
Rangpur	-402079	-1161993

4.4 Conclusion

This chapter provides output data for various models and gives the comparative result. Various comparisons are made by analyzing outputs. It is found that the proposed model can reduce the cost and CO₂ emission effectively.

CHAPTER V

A Case Study for KUET

5.1 Introduction:

In this chapter, the techno-economic optimization process is described focusing on the optimum configuration of the hybrid power system in terms of different generation capacities which is assessed through the HOMER. The aim of this simulation is to provide a basic but representative idea of the configuration of the microgrid. Initially, the power demand in Khulna University of Engineering and Technology (KUET) area is collected and the process of designing the model is described with the initial choice of the various parameters, as well as the considered constraints and parameters. Finally, the results of the analysis are shown. During the whole process, the main difficulty was to find reliable data about the costs of the equipment regarding the purchase, transportation, and maintenance because of not only for their high volatility and variability between different places in even the same country but also because the prices change from one year to the other. The HOMER software is a tool to design, model and optimize stand-alone and grid-connected power systems [32]. It is widely used for techno-economic analysis of microgrids, as it can simulate a range of different conventional as well as renewable energy technologies and assess the technical and economic feasibility of them. The inputs to the HOMER model are climate data, electrical load, technical and economic parameters of the equipment used for generation and storage, sensitivity variables, dispatch strategy, and some more constraints. Based on the inputs, the model performs a simulation of the operation of the system making the energy balance calculations for each one of the 8760 hours of the year, resulting in the optimal system size and control strategy based on the lowest net present cost (NPC).

5.2 Background of KUET

Since the topic of this chapter has been chosen a case study about KUET area, including some information about the situation in this area it is very important to describe a

background of KUET for better understanding the real situation of power system scenario to the readers. KUET is one of the leading public universities of Bangladesh giving special emphasis in the engineering and technological education and research. KUET is well known for offering very high quality educational, research and developmental programs in the major disciplines of engineering as well as basic sciences [85]. It has a sober objective to achieve excellence in quality education, research and progression to address the present needs of the country as well as the south-western region to make it as the "Center of Excellence". It is situated at Fulbarigate, the north-west part of the Khulna city, which is the third largest south-western divisional city in Bangladesh. The campus of this university stands at North-West corner of Khulna City Corporation and geographical location is 22⁰54.3'N, 89⁰29.8'E and about 12 Km from the city center, in the midst of an impressive natural beauty having vast greenery spreading over an area of 101 acres land [85]. KUET offers engineering education in both undergraduate and post-graduate levels, and also offers degree and conducts research in basic sciences at post-graduate level. At present, around 5000 students are studying in KUET's in 18 academic departments under 3 faculties with about 282 faculty members, 103 officers, and 284 office staff. The physical infrastructure is total 41 buildings including Halls of residence, Academic Buildings, and Institutes, Workshops, Playgrounds, Cafeteria, Auditorium, Teachers quarters, etc. are structured in a much-planed way and are being improved day by day.

5.2.1 Power System Scenario of KUET

The campus is mainly provided power by Mirerdanga sub-station of West Zone Power Distribution Company Limited. It has an expressed electricity line feeder for continuous electric supply with about 1 km of 11 kV transmission lines, six transformers having total capacity 1860 kVA that are situated in the substation and other locations to steps down the 11 kV into 0.4 kV/0.22 kV. The KUET authority pays 169252.8 USD in every year for power consumption [86]. The main goal of this research is to minimize the total electric bill by producing green energy in KUET campus. Figure 5.1 shows the single line diagram of the distribution network of KUET and it provides a better understanding of the power system arrangement in that location.

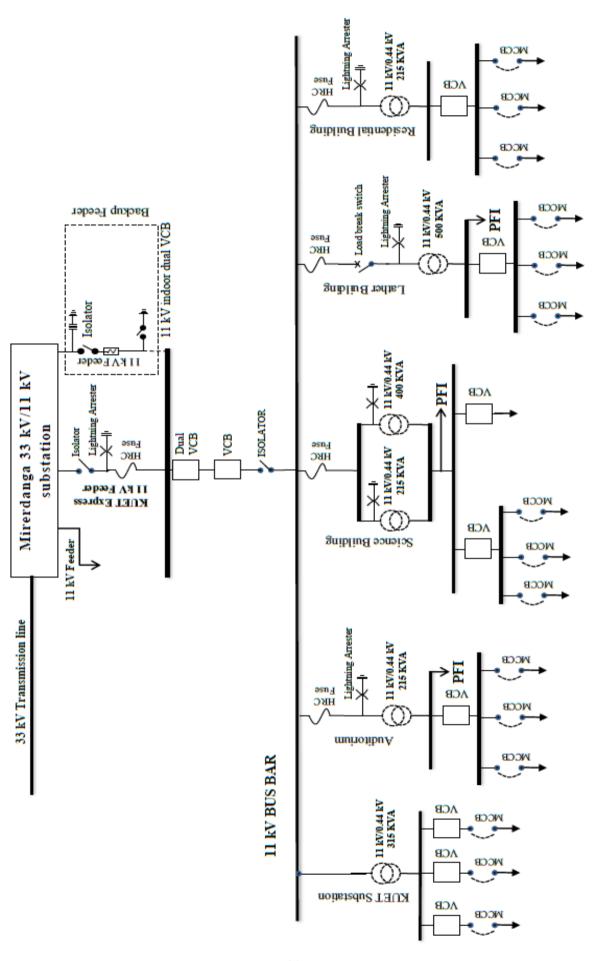


Fig 5.1: Single line diagram of distribution network of KUET

5.3 Load Calculation

For the load calculation to be done, the connected load and the actual load should be determined. For determining the connected load the campus area is divided into four functional zones: (i) Residential zone for the faculties and staff (ii) Residential zone for the students (iii) Academic zone for the academic buildings & workshops, and (iv) Cultural-cum-social and recreational zones. The actual load of that area is collected from Mirerdanga sub-station which is needed for calculating the various load characteristics.

5.3.1 Connected Load Calculation

Generally, this has been a difficult task to estimate the accurate load that is used in that area. The estimation of the total equipment was done after dividing KUET area into four important zones. For connected load calculation, it is very important to know the rating of home appliances that is used in the proposed area. Tables 5.1, 5.2, 5.3 and 5.4 show the connected load for four important zones. Finally, the total connected load has been calculated and it is about 1683.39 kW.

Table 5.1: Connected load for residential area (faculties and staff)

		Connec	cted Load f	or R	eside	entia	l Area						
				Nun	nber	of co	onnecte	d equ	ıipm	ent			7)
Building No.	Name	Description	Light	Fan	TV	Computer	Air conditioner	Rice cooker	Washing machine	Microwave Oven	Electric Iron	Refrigerator	Total connected Load (kW)
1	Residenc e of VC	2 storied building, 7 rooms, 1 dining, 1 drawing, 1 kitchen, 4 bathrooms.	7 tubes, 7 CFL	9	2	1	4 tons	2	1	1	1	2	13.73
2,3	Quarter (2 storied building)	6 rooms, 1 drawing, 1 kitchen, 4 bathrooms.	6 tubes, 6 CFL	6	2	2	×	2	2	2	2	3	20.58
4	Dormitor y (4 storied building)	72 rooms, 2 dining, 2 common rooms, 1 kitchen, 8 bathroom spaces	98 tubes, 40 CFL	9 0	2	72 desktop, 50 laptop	×	×	×	×	1 0	2	39.27
5 - 19	Quarter (3 storied building, 6 unit each	12 Rooms, 6 drawing, 6 dining, 12 bathrooms, 6 kitchen	24 tubes, 18 CFL	2 4	6	6	×	12	2	6	6	8	534.3
		Total Connecte	d Load for	resi	denti	al ar	ea =	•			1		607.88

Table 5.2: Connected load for others building

	Number of connected equipment							
Name	Description	Light	Fan	Computer/ TV	Air conditioner	Other Equipment	Refrigerator	Total connected Load(kW)
Engineering Building	3 storied building, 40 rooms, 3 bathroom space.	36 tubes, 20 CFL	36	36 desktop	6 tons	×	1	17.21
Central mosque	×	15 tubes, 10 CFL	64	×	×	Sound System (1)	×	5.09
Water Treatment Plant	2 Rooms	4 tubes, 4 CFL	4	×	×	Water Pump (1)	×	7.94
Guest House	2 storied building, 20 rooms, 1 dining, 1 kitchen, 1 drawing	28 tubes, 20 CFL	26	20 TV	12 tons	×	1	23.53
Stuff Club	2 storied building, 10 rooms, 1 dining	15 tubes, 10 CFL	10	1 TV	6 tons	×	×	10.51
KUET School	2 building, 10 class rooms, 2 labs, 10 teachers rooms, 1 office rooms, 2 bathroom space.	38 tubes, 10 CFL	70	10 desktop	2 tons	×	4 lift	10.02
Hit Engine Lab	2 storied building, 4 labs, 1 office room.	10 tubes, 4 CFL	17	×	2	Lab equipment's	×	5.6
ME workshop	1 storied building, 2 labs, 1 office room.	5 tubes, 2 CFL	8	×	×	Lab equipment's	×	2.22
Cafeteria	2 Rooms, 1 kitchen	7 tubes, 2 CFL	12	×	×	Blender (1)	1	1.24
Bank and Post office	5 Rooms	8 tubes, 2 CFL	7	7	1	AT machine (4)	1	3.05
Street Light		60 tubes, 20 CFL	×	×	×	X	×	2.8

Table 5.3: Load for academic area of KUET

Load for academic area of KUET								
	Number of connected equipment				ıd(kW)			
Name	Description	Light	Fan	Computer	Air conditioner	Multimedia set	Refrigerator/ Lift	Total connected Load(kW)
EEE Building	3 storied building, 8 class rooms, 4 labs, 16 teachers rooms, 3 office rooms, 1 seminar room, 3 bathroom space.	93 tubes, 20 CFL	118	68 desktop	12 tons	6	1	40.6
CE Building	3 storied building, 8 class rooms, 4 labs, 16 teachers rooms, 3 office rooms, 1 seminar room, 3 bathroom space.	93 tubes, 20 CFL	118	68 desktop	12 tons	6	1	40.6
ME Building	3 storied building, 8 class rooms, 4 labs, 16 teachers rooms, 3 office rooms, 1 seminar room, 3 bathroom space.	93 tubes, 20 CFL	118	68 desktop	12 tons	6	1	40.6
Science Building	3 storied building, 8 class rooms, 4 labs, 16 teachers rooms, 3 office rooms, 1 seminar room, 3 bathroom space.	93 tubes, 20 CFL	118	68 desktop	12 tons	6	1	40.6
Administrative Building	3 storied building, 30 Office rooms, rooms, 1 bathroom space.	60 tubes, 20 CFL	60	40 desktop	6 tons	×	×	25.4
New Academic Building	5 storied building, 110 class rooms, 10 labs, 72 teachers rooms, 20 office rooms, 2 seminar room, 1central library, 1 central computer center, 10 bathroom space.	560 tubes, 100 CFL	692	152 desktop	40 tons	30	4 lifts	154.96
Leather Building	2 storied building, 8 class rooms, 3 labs, 12 teachers rooms, 3 office rooms, 1 seminar room, 2 bathroom space.	76 tubes, 20 CFL	90	30	6	4	1	23.03
Total Connected Load for Academic area =								365.79

Table 5.4: Connected load for Residence of Student (Hall)

Connected load for Residence of Student (Hall)								
	Number of connected equipment							(W
Hall Name	Description	Light	Ceiling Fan, Table Fan	TV	Computer	Rice cooker	Refrigerator	Total connected Load (kW)
Begum Rokeya Hall (Ladies hall)	4 storied building, 56 rooms, 1 Office room,1 dining, 1 kitchen, 1 common Room, 8 bathroom space.	128 tubes, 25 CFL	80,224	1	112 desktop, 90 laptop	56	1	97.33
Bangabandhu Sheikh Mujibur Rahman Hall	5 storied building, 120 rooms, 1 Office room,4 PG Room, 2 dining, 2 kitchens, 2 Common Room, 1 prayer room, 1 Library, 4 Multiple Room, 20 bathroom space.	334 tubes, 120 CFL	194, 480	2	320 desktop, 160 laptop	12 0	2	156.6
Khan Jahan Ali Hall	3 storied building, 48 rooms, 1 Office room, 1 dining, 1 kitchen, 1 TV Room, 6 bathroom space.	120 tubes, 40 CFL	66, 192	1	100 desktop, 92 laptop	48	1	85.34
Lalon Shah Hall	3 storied building, 50 rooms, 1 Office room, 1 dining, 1 kitchen, 1 TV Room, 6 bathroom space.	122 tubes, 18 CFL	70 , 204	1	110 desktop, 94 laptop	51	1	88.14
Fazlul Haque Hall	3 storied building, 54 rooms, 1 Office room, 1 dining, 1 kitchen, 1 TV Room, 1 Guest Room, 1 Common Room, 6 bathroom space.	138 tubes, 40 CFL	80	1	116 desktop, 100 laptop	54	1	96.54
Rashid Hall	3 storied building, 54 rooms, 1 Office room, 1 dining, 1 kitchen, 1 TV Room, 1 Guest Room, 1 Common Room, 6 bathroom space.	138 tubes, 40 CFL	80	1	116 desktop, 100 laptop	54	1	96.54
Total Connected Load for Residence of Student (Hall) =								

5.3.2 Actual Load for KUET Area

It is important to know the actual condition and characteristics of load and others variables for a specific area. For load calculation purposes, load data has been collected from WZPDCOL and from this data has been observed for a year by dividing it into two seasons April-September and October-March. Though June and July are in a period of pick month but at this time KUET has vacation, therefore minimum load is observed during this period that is shown in Tables 5.5 and 5.6. From collected data it is observed that the average daily load (kWh/day) is 6718.5 kWh /day, hourly average is 279.94 kW/hour and peak load is observed at mid time of any day and it is about 770.33 kW in April.

Table 5.5: Monthly average load for January-June

Monthly average Load for KUET area							
Hour	January	February	March	April	May	June	
0	140.061	210.091	262.614	332.644	350.152	122.553	
1	140.061	210.091	210.091	332.644	315.137	105.046	
2	140.061	210.091	210.091	332.644	315.137	105.046	
3	105.046	210.091	210.091	332.644	280.122	140.061	
4	105.046	210.091	210.091	262.614	262.614	122.553	
5	105.046	140.061	140.061	262.614	245.106	105.046	
6	105.046	122.553	140.061	262.614	280.122	105.046	
7	140.061	140.061	192.584	315.137	280.122	122.553	
8	192.584	192.584	280.122	350.152	332.644	122.553	
9	192.584	227.599	245.106	560.243	490.213	122.553	
10	192.584	262.614	315.137	612.766	752.827	122.553	
11	245.106	297.629	385.167	682.796	682.796	122.553	
12	262.614	332.644	385.167	770.334	735.319	140.061	
13	297.629	262.614	437.69	577.751	630.274	140.061	
14	245.106	297.629	280.122	507.72	612.766	140.061	
15	140.061	262.614	297.629	630.274	612.766	140.061	
16	140.061	262.614	297.629	630.274	612.766	140.061	
17	140.061	210.091	262.614	385.167	437.69	140.061	
18	140.061	210.091	332.644	367.66	402.675	140.061	
19	210.091	262.614	332.644	420.182	437.69	122.553	
20	210.091	297.629	332.644	420.182	402.675	140.061	
21	210.091	332.644	297.629	367.66	437.69	140.061	
22	210.091	332.644	262.614	332.644	350.152	140.061	
23	210.091	262.614	262.614	332.644	385.167	140.061	

Table 5.6: Monthly average load for **July- December**

Hour	July	August	September	October	November	December
0	227.599	332.644	332.644	245.106	140.061	192.584
1	210.091	297.629	297.629	245.106	140.061	192.584
2	210.091	297.629	297.629	192.584	140.061	140.061
3	192.584	262.614	280.122	192.584	105.046	122.553
4	192.584	262.614	262.614	140.061	105.046	122.553
5	192.584	262.614	262.614	140.061	105.046	105.046
6	157.568	210.091	262.614	140.061	122.553	122.553
7	227.599	315.137	262.614	262.614	192.584	140.061
8	227.599	315.137	297.629	262.614	192.584	210.091
9	280.122	437.69	437.69	297.629	192.584	210.091
10	280.122	490.213	525.228	367.66	245.106	210.091
11	367.66	595.258	577.751	385.167	280.122	210.091
12	385.167	612.766	560.243	385.167	350.152	297.629
13	297.629	490.213	612.766	367.66	315.137	262.614
14	297.629	490.213	612.766	367.66	210.091	262.614
15	332.644	525.228	542.736	315.137	210.091	210.091
16	227.599	332.644	490.213	245.106	210.091	140.061
17	227.599	332.644	332.644	245.106	140.061	122.553
18	210.091	297.629	297.629	245.106	210.091	192.584
19	210.091	297.629	297.629	280.122	262.614	192.584
20	227.599	332.644	385.167	280.122	262.614	245.106
21	245.106	367.66	367.66	315.137	262.614	245.106
22	227.599	332.644	385.167	315.137	210.091	192.584
23	227.599	332.644	332.644	280.122	210.091	192.584

5.4 Various Factors of Power Systems

In this section, the various factors of power system such as connected load, maximum demand, demand factor, load factor, power factor, diversity factor, plant capacity factor are described with detail calculation for the specific area needed for power plant design.

5.4.1 Connected Load:

For calculating the connected load it is very important to know the total number of building, which type of equipment is used and how many equipment are present in that area. After estimating the number of equipment uses in every building and multiplied by their own rating the total connected load has been found. Tables 5.1, 5.2, 5.3 and 5.4 show the estimated number of equipment and connected load of every building for residential area of faculties and staff, others recreational buildings, academic buildings, residence of student (halls), respectively. Finally, the total connected load has been found and it is approximately 1683.39 kW.

5.4.2 Maximum Demand:

It is the greatest demand of load on the power station during a given period. It sometimes also called as "system peak". It is also called maximum demand [87]. The load on the power station varies from time to time. The maximum of all the demands that have occurred during a given period is the maximum demand. From Tables 5.5 and 5.6, it can be observed that the maximum demand occurs in July and it is 770.33 kW.

5.4.3 Demand Factor:

Demand factor is the ratio of the maximum load of a system to the total connected load of that system. For connecting the load to the transmission line, the demand factor permits a feeder-circuit ampere to be less than the total current of the sum of all branch-circuit loads that is connected to the feeder. Demand factor can be defined by the following equation [87].

Demand Factor =
$$\frac{\text{Maximum load during a given period}}{\text{Total connected load on the system}}$$
 (5.1)

Demand factor is always less than one. Lower demand factor means the less system capacity required to serve the connected load. In this research at the proposed area, connected load is 1683.39 kW with a maximum demand of 770.33 kW, thus the demand factor = 770.33 kW / 1683.39 kW = 45.76%.

5.4.4 Load Factor

Load factor can be calculated for a single day or month or yearly basis. The cost of energy will be lower for higher load factor because higher load factor implies that load duration curve is a relatively steady state in the pattern. In low load factor sudden increase of demand occurs as a result capacity of power system should set-up at a higher value. Electrical rates are designed so that customers with high load factor are charged less overall per kWh [88]. Load factor can be defined by the following equation

Load Factor =
$$\frac{\text{Average load}}{\text{Maximum load during a given period}}$$
 (5.2)
Load factor of KUET area = $\frac{279.94}{770.33}$ = 0.36

From the equation (5.2) it can be said that the value of load factor is always less than one as maximum demand is always more than average demand.

5.4.5 Power Factor

The ratio of the real power to the apparent power in a given circuit is called the power factor of an AC electrical power system [89, 90]. Power factor can be defined as by the following equation

Power Factor =
$$\frac{\text{real power flowing to the load}}{\text{apparent power in the circuit}} = \frac{\text{kW}}{\text{KVA}}$$
 (5.3)

In another word, cosine angle of the angle between voltage and current is called power factor of a circuit. When this angle goes down to minimum value then the power factor becomes maximum level. With the increase of the phase difference between voltage and current, the power factor decreases. The capacity of the circuit to perform in a given period is called real power and the product of the voltage and current is called apparent power. When the load generates power which flows back to the source then negative power factor is occurred [91, 92]. As KUET has a constant load, the fluctuation of power factor is not wide. It ranges between 0.92 to 0.96 [86].

5.4.6 Diversity Factor:

The diversity factor is defined as the ratio of the sum of individual maximum demand to maximum demand of the system. In other words, the ratio of installed load to the running load is called diversity factor which can be illustrated by the following equation [87].

Diversity factor =
$$\frac{\text{the sum of individual maximum demands}}{\text{maximum demand of the system}} = \frac{\text{installed load}}{\text{running load}}......(5.4)$$

Since installed load of a power system is greater than the running load, the diversity factor is always greater than one. The equation (5.4) also demonstrates that at higher diversity factor the cost of generation of power will be lower [87]. Suppose that one main feeder has two sub feeders; the sub feeder-1 has a demand of 36 kW and the sub feeder-2 has a demand of 43 kW and the maximum demand of the main feeder is 70 kW.

Total individual maximum demand =36+43=79 kW. Maximum demand of whole system=70 kW So, diversity factor of the system= 79/70 =1.128

5.4.7 Plant Capacity Factor and Renewable Energy

The plant capacity factor can be defined as the ratio of average demand to the plant capacity of the power system or it can be expressed as by the following equation [93, 94].

Plant capacity Factor =
$$\frac{\text{Actual energy produced}}{\text{Maximum energy that could have been produced}}$$
$$= \frac{\text{Average demand}}{\text{Plant capacity}}$$
(5.5)

The RE based power plant has lower plant capacity factor. When RE based power plant is in operation the output of that system may not be available due to the unavailability of RE sources although at this time the plant may capable of generating electricity. By the availability of wind resources, the capacity factor is determined. At present, capacity factors of wind farms vary between 25% and 45%, though recently by using tall hub height, the capacity factor of wind firm have been improved to 55% and in future, it is possible to reach at 65% of the capacity factor by implementing 140-meter towers [93, 94]. The capacity factor of the solar firm is lower because of the variability of solar radiation

due to night, seasonal changes, and the cloudy environment. A 15% capacity factor is observed at Sacramento [95]. However, according to the Solar PACES program of the International Energy Agency (IEA), the higher capacity factor is observed by implementing solar power plants at only summer season to serve the excess load that is needed for cooling purposes at Spain and the south-western United States [96].

5.5 System Architecture/Methodology

This project investigates the implementation of an autonomous grid connected hybrid power system to serve the load at KUET. The microgrid consists of photovoltaic arrays, wind turbine, converter, power conditioner that keep the input voltage at the same level, grid system which act as a bidirectional system and serves the needs of the households, academic building, residential building, schools, etc. It is represented by Figure 5.2. The goal is to achieve a reliable and efficient operation of the micro-grid, covering the consumers' needs and successfully managing the power inside it. In order to achieve this, a representative model of the power system is essential. A valid, flexible and reliable model provides the basis for assessing the operation of a system like this, detecting its flaws, implementing different strategies and making the necessary adjustments to establish a system offering a good quality service to the people. In order to design a power system, the first thing to be done is to decide on the power demand, the consumption the system should satisfy and the potential extra services it should provide. The next step is to design the system which will be able to cover these loads; a process carried out in the HOMER software resulting in a techno-economically optimized configuration. This has as a prerequisite for finding data about local costs and equipment that is being traded in the region so that the result is as close to the real conditions as possible. Figure 5.3 shows the complete flow diagram for analyzing the renewable energy based hybrid power system. The flow chart shows how, in different contexts, the best techno-economic combination of RE resources are achieved through the modeling and simulation using HOMER software to combine the input data; the load profile, renewable energy resources and the equipment's cost for best configuration. The key components of this model shown in the flow chart of are the initial site assessment, data bank analysis, component selection, and grid parameters with their CO₂ emission rate to develop a methodology for finding the best

techno-economic combination of RE resources in a hybrid power system for the proposed area.

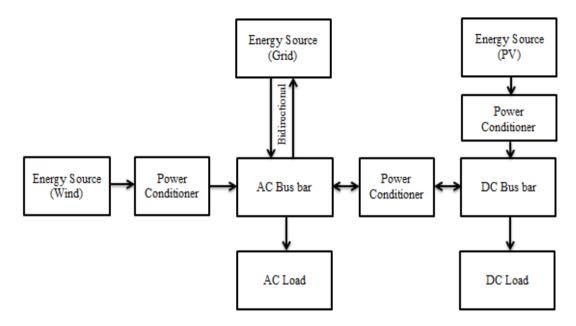


Fig 5.2: Block diagram of hybrid power plant model

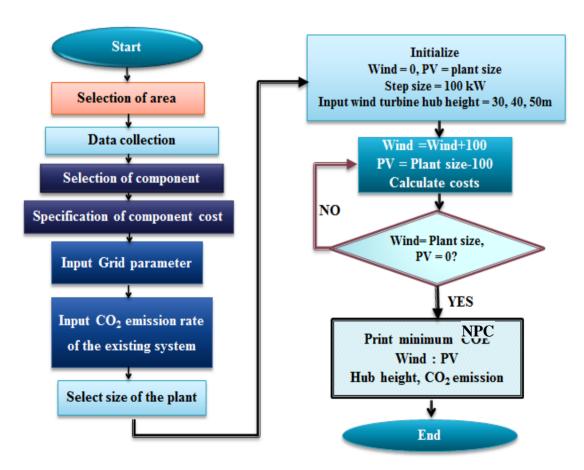


Fig 5.3: Flow chart of the proposed methodology

5.5.1 Area Selection and Land Requirement

The rooftop system is best for solar-based power system because of better solar irradiation, less dusty environment, the floor is ready to use as well as secure place [97]. As wind energy depends on wind speed and direction of wind flow, so it is important to plan where it should be implemented. For better performance, the wind turbine should be faced to south as maximum wind flow is observed from south to north at KUET. Although the wind flow is not quite high at KUET but it is enough to produce wind power [98]. For solar system, 100 ft² per 100 kW is needed for plant installation. The rooftops of the new academic building have enough space for implementing 1 MW, 2 MW even 3 MW plant. On the other hand, a 500 ft² land area is needed for 100 kW wind turbine [77, 78, 81].

5.5.2 Renewable Energy Resources in Khulna

Bangladesh is a country of great potential in RESs, mainly hydro, geothermal and solar, as well as wind and biomass in some parts of the country. In this case, the power sources will be a photovoltaic generator and wind turbine along with the grid system as a backup the source. The solar radiation, clearness index and wind speed data were acquired through various sources used as input to HOMER and are presented in the next section.

5.5.3 Wind Energy Resources

The wind energy potentials in Khulna region were collected and evaluated from Meteoblue [99]. Data collected over a period of years were used to statistically analyze wind speed distributions. It is important to know the number of hours per month or per year during which the given wind speeds occurred, i.e. the frequency distribution of wind speeds. In order to get this frequency distribution, it is necessary to divide the wind speed domain into a number of intervals. Then starting at the first interval, the number of hours is counted in the period concerned that the wind speed was in this interval. This velocity frequency distribution as the relative frequency is obtained from the velocity interval. Figure 5.4 shows the frequency distribution of wind speeds in Khulna from January to December above 20 m height. It also shows how many days within one month can reach certain wind speeds. For April to July, it is quite high but calm winds from August to March are obtained. Figure 5.5 shows the wind rose for Khulna region and it also indicates

how many hours per year the wind blows from the indicated direction. From this figure, the maximum wind direction in a year is found South to North and South-South-East to North-North-West.

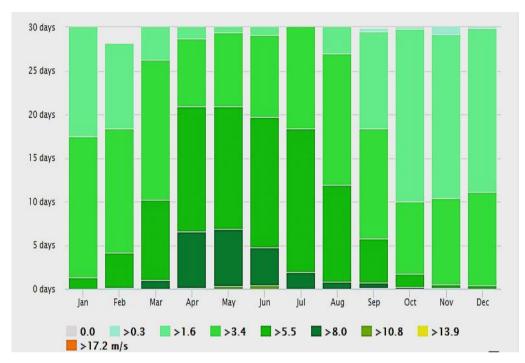


Fig. 5.4: Frequency distribution of wind speeds in Khulna (Above 20 m height) [99].

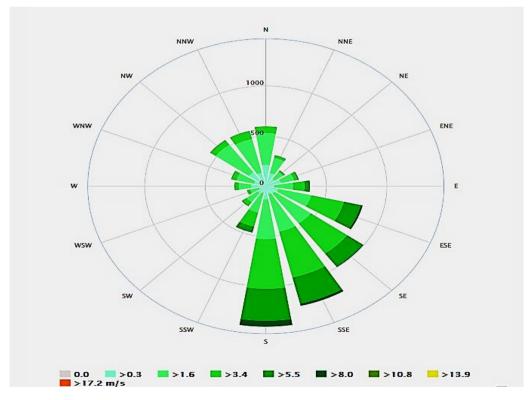


Fig.5.5: Wind Direction over a year in Khulna region [99].

5.5.4 Solar Energy Resources

For assessing the option of using solar (photovoltaic) power, solar resources need to be considered. The solar resource information used for the selected location at 22⁰54.3'N, 89⁰29.8'E was taken from the NASA Surface Meteorology [56]. Table 5.7 shows the monthly average daily solar radiation and clearness index for KUET area.

Table 5.7: Monthly average daily solar radiation and clearness index for KUET area

month	Clearness Index	Daily Radiation(kWh/m²/day)
January	0.602	4.254
February	0.59	4.807
March	0.601	5.691
April	0.578	6.07
May	0.52	5.726
June	0.419	4.658
July	0.363	3.995
August	0.408	4.317
September	0.435	4.223
October	0.583	4.918
November	0.593	4.304
December	0.615	4.127
Average	0.525583	4.7575

Data on the monthly averages of the daily radiation and clearness index are plotted in Figure 5.6. The clearness is a measure of the fraction of the solar radiation that is transmitted through the atmosphere to the earth's surface. The annual average solar radiation was found to be 4.76 kWh/m²/day and the average clearness index was found to be 0.525. From this figure, the peak solar radiation is observed in April but highest clearness index is found in the month of December.

Solar Radiation and Clearness Index at KUET

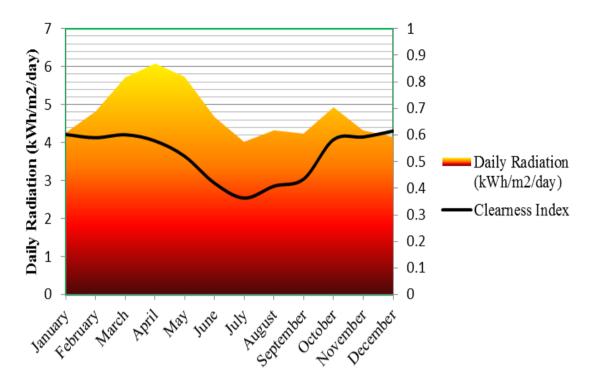
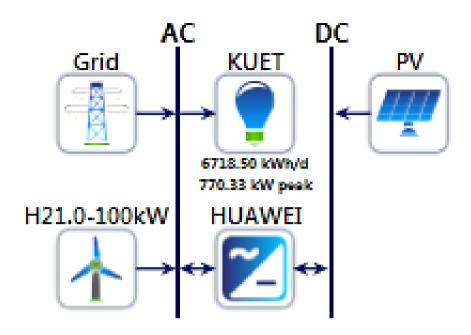


Fig.5.6: Monthly average daily solar radiation (kWh/m²/day) and Clearness Index at KUET

5.5.5 Converter Size Selection for Specific Solar Panel

In this section, results of the techno-economical optimization for converter are presented and further adjustments and considerations are discussed. In previous case studies on renewable energy based power plant, the system uses the same size of the converter with the solar capacity. For a 100 kW solar panel, a 100 kW converter is used [100][101]. In this section, the analysis has been carried out for finding a best suited converter for the specific solar panel and results are shown in Appendix section. It is clear that for cost effective design, the converter does not need to be the same size of the solar panel. It may be lower than the solar panel. For every 100 kW solar panels, for a specific area, simulation process has been performed four times. Finally, suitable converter size for specific solar panel which is the most cost effective is obtained. Table 5.8 shows the suitable converter size for the selected solar panel.


Table 5.8: Converter size selection for specific solar panel

PV (kW)	Converter (kW)	COE (\$)	NPC (\$)	Initial capital (\$)
100	75	0.1012662	3210298	171594.8
200	150	0.1025169	3250559	343189.5
300	225	0.103568	3292331	514784.3
400	275	0.1042126	3337955	681021.8
500	350	0.1038996	3389215	852616.5
600	425	0.1030072	3445495	1024211
700	475	0.102192	3505426	1190449
800	550	0.1006815	3567184	1362044
900	625	0.0989942	3631707	1533638
1000	700	0.09712553	3699248	1705233
1100	750	0.09565477	3768507	1871471
1200	825	0.09366576	3839668	2043065
1300	900	0.09171402	3912352	2214660
1400	950	0.09025752	3985851	2380898
1500	1025	0.08843579	4059938	2552492
1600	1100	0.08671102	4134701	2724087
1700	1175	0.08508768	4209953	2895682
1800	1225	0.0838865	4285570	3061919
1900	1300	0.08240982	4361467	3233514
2000	1375	0.08102023	4437711	3405109
2100	1450	0.07971068	4514279	3576704
2200	1500	0.07874536	4591065	3742941
2300	1575	0.07755716	4667945	3914536
2400	1650	0.07643634	4745048	4086131
2500	1725	0.07537708	4822362	4257725
2600	1775	0.07460269	4899778	4423963
2700	1850	0.07363683	4977262	4595558
2800	1925	0.0727224	5054894	4767152
2900	2000	0.07185455	5132685	4938747
3000	2050	0.07122537	5210530	5104985

5.5.6 Hybrid System Modeling

This section presents the modeling of a hybrid system using the optimization software called HOMER. The model starts by putting the important inputs (resources data and the costs) that demonstrate the technical specifications which are described briefly in the

previous section, which is relevant for modeling the system in HOMER. Figure 5.7 shows the scheme of the hybrid power system modeled using HOMER software.

Fig.5.7: The scheme of the hybrid power system

5.6 Simulation Results for Various System Models

In this section, the results of the techno-economical optimization are presented. The simulation has been done in four steps by varying the plant size. For every step, after running the simulation by varying the PV-wind ratio and observing the output of every simulation, optimum results have been found for the specific plant size. The output results are tabulated in Tables 5.9, 5.10, 5.11, and 5.12 for 1 MW, 1.5, 2 MW and 3 MW power plant, respectively. For 1 MW power plant, the best PV-Wind ratio is observed 8:2 as they have minimum Net present cost (NPC) that is shown in Figure 5.8. Also, 10:5 is found as the best mixer of PV-Wind for 1.5 MW power plant which is shown in Figure 5.9. The optimum PV-Wind ratio for 2 MW and 3 MW is observed 15:5 and 24:6, respectively. Figures 5.10 and 5.11 show the optimum solution for 2 MW and 3 MW power plants, respectively.

Table 5.9: Simulation results for 1 MW power plant

PV	H21.0-	Grid	HUAWEI	COE (\$)	NPC (\$)	Initial	Ren Frac	CO_2
(kW)	100kW	(kW)	(kW)			capital	(%)	(kg/yr)
						(\$)		
0	10	999999	0	0.105306	3369868	1800009	54.65211	595347.8
100	9	999999	75	0.106205	3348473	1791602	55.54696	594037.9
200	8	999999	150	0.10685	3329087	1783196	56.28692	592727.9
300	7	999999	225	0.106991	3313378	1774790	56.70608	591418.1
400	6	999999	275	0.106763	3301030	1761027	56.38049	598442.1
500	5	999999	350	0.105693	3293267	1752621	56.04335	596800.4
600	4	999999	425	0.104214	3288930	1744215	55.42092	595274.6
700	3	999999	475	0.102919	3286988	1730451	54.30345	603308.1
800	2	999999	550	0.100918	3286825	1722045	53.35004	601536.4
900	1	999999	700	0.097944	3299848	1729711	52.87681	577574.6
1000	0	999999	700	0.096509	3292687	1705233	51.10453	598253.1

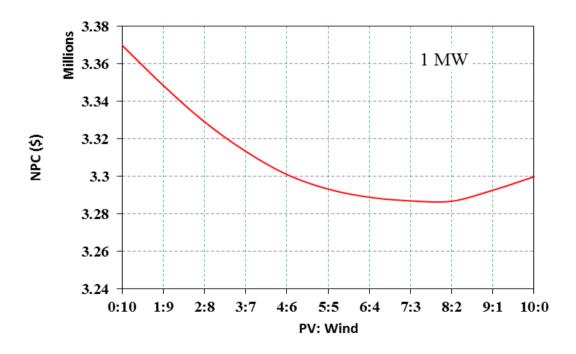


Fig: 5.8: NPC (\$) vs. PV-wind ratio for 1 MW power plant

Table 5.10: Simulation results for 1.5 MW power plant

PV (kW)	H21.0 100k W	Grid (kW)	HUAWEI (kW)	COE (\$)	NPC (\$)	Initial capital (\$)	Ren Frac (%)	CO ₂ emission (kg/yr)
0	15	999999	0	0.100022	3698378	2700013	70.94868	118109.3
100	14	999999	75	0.100874	3675690	2691607	72.06008	116799.4
200	13	999999	150	0.101477	3655412	2683201	72.95973	115489.5
300	12	999999	225	0.101662	3638904	2674795	73.49146	114179.6
400	11	999999	275	0.101718	3624272	2661031	73.46776	121203.6
500	10	999999	350	0.101149	3613618	2652625	73.35631	119562
600	9	999999	425	0.10034	3605392	2644219	73.01363	118036.1
700	8	999999	475	0.099746	3598854	2630456	72.30505	126069.6
800	7	999999	550	0.098503	3594221	2622050	71.58532	124298
900	6	999999	625	0.097104	3591590	2613643	70.7027	122630.3
1000	5	999999	700	0.095578	3590705	2605237	69.68772	121014.6
1100	4	999999	750	0.094389	3590880	2591474	68.42551	129146.1
1200	3	999999	825	0.092652	3592798	2583068	67.21312	127392.3
1300	2	999999	900	0.090878	3596013	2574662	65.94554	125713.3
1400	1	999999	950	0.089483	3600327	2560898	64.47645	134030
1500	0	999999	1025	0.087668	3605265	2552492	63.16243	132229.7

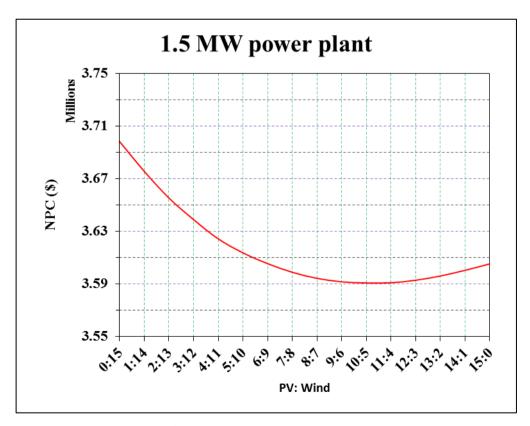


Fig: 5.9: NPC (\$) vs. PV-wind ratio for 1.5 MW power plant

Table 5.11: Simulation results for 2 MW power plant

PV (kW)	H21.0- 100kW	Grid (kW)	HUAWEI (kW)	COE (\$)	NPC (\$)	Initial capital (\$)	Ren Frac (%)	CO ₂ emission (kg/yr)
0	20	999999	0	0.093879	4050880	3600017	81	-359129
100	19	999999	75	0.094477	4028798	3591611	82	-360439
200	18	999999	150	0.094852	4009384	3583205	82	-361749
300	17	999999	225	0.094955	3993088	3574799	83	-363059
400	16	999999	275	0.095043	3977712	3561035	83	-356035
500	15	999999	350	0.094682	3965835	3552629	83	-357677
600	14	999999	425	0.09418	3955837	3544223	83	-359202
700	13	999999	475	0.093905	3946878	3530460	82	-351169
800	12	999999	550	0.09313	3939486	3522054	82	-352941
900	11	999999	625	0.092271	3933449	3513648	81	-354608
1000	10	999999	700	0.091339	3928577	3505242	81	-356224
1100	9	999999	750	0.090708	3924278	3491478	80	-348092
1200	8	999999	825	0.089634	3921206	3483072	79	-349846
1300	7	999999	900	0.088508	3919263	3474666	78	-351525
1400	6	999999	950	0.087693	3918286	3460903	77	-343209
1500	5	999999	1025	0.086455	3918217	3452497	76	-345009
1600	4	999999	1100	0.085193	3919116	3444091	75	-346752
1700	3	999999	1175	0.083889	3921292	3435684	74	-348440
1800	2	999999	1225	0.082879	3924436	3421921	73	-340135
1900	1	999999	1300	0.081515	3928434	3413515	71	-341921
2000	0	999999	1375	0.080162	3933146	3405109	70	-343658

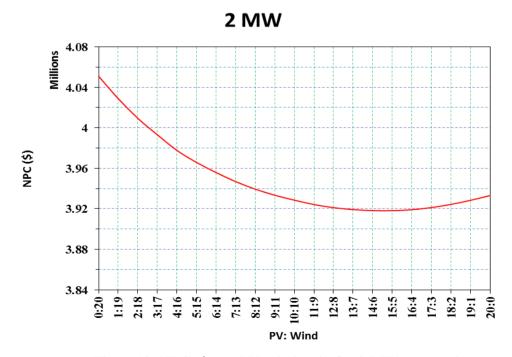


Fig: 5.10: NPC (\$) vs. PV-wind ratio for 2 MW power plant

Table 5.12: Simulation results for 3 MW power plant at KUET

PV	H21.0	Grid	HUAW	COE (\$)	NPC (\$)	Initial	Ren Frac	CO_2
(kW)	-	(kW)	EI (kW)			capital	(%)	emission
	100k					(\$)		(kg/yr)
	W							
0	30	999999	0	0.08331	4797675	5400026	91.10784	-1313606
100	29	999999	75	0.08353	4777985	5391620	91.76632	-1314916
200	28	999999	150	0.083628	4760516	5383214	92.2534	-1316226
300	27	999999	225	0.083601	4745282	5374807	92.56263	-1317536
400	26	999999	275	0.083631	4729823	5361044	92.6706	-1310512
500	25	999999	350	0.083404	4717361	5352638	92.71595	-1312153
600	24	999999	425	0.08312	4706194	5344232	92.66895	-1313679
700	23	999999	475	0.08303	4695280	5330469	92.52372	-1305646
800	22	999999	550	0.08265	4685257	5322062	92.35475	-1307417
900	21	999999	625	0.082247	4675939	5313656	92.14153	-1309085
1000	20	999999	700	0.081825	4667148	5305250	91.8931	-1310701
1100	19	999999	750	0.081632	4658370	5291487	91.5876	-1302569
1200	18	999999	825	0.081165	4650138	5283081	91.28155	-1304323
1300	17	999999	900	0.080683	4642454	5274675	90.94305	-1306002
1400	16	999999	950	0.080438	4635167	5260911	90.54417	-1297685
1500	15	999999	1025	0.079912	4628137	5252505	90.14634	-1299486
1600	14	999999	1100	0.079371	4621660	5244099	89.71622	-1301229
1700	13	999999	1175	0.078814	4615755	5235693	89.25307	-1302917
1800	12	999999	1225	0.07848	4610342	5221930	88.72049	-1294612
1900	11	999999	1300	0.077874	4605400	5213524	88.18488	-1296398
2000	10	999999	1375	0.077247	4601176	5205117	87.60854	-1298135
2100	9	999999	1450	0.076598	4597702	5196711	86.99056	-1299827
2200	8	999999	1500	0.076149	4595053	5182948	86.27866	-1291533
2300	7	999999	1575	0.075434	4593209	5174542	85.55577	-1293307
2400	6	999999	1650	0.074697	4592241	5166136	84.78943	-1295040
2500	5	999999	1725	0.073934	4592298	5157730	83.9718	-1296736
2600	4	999999	1775	0.073366	4593068	5143966	83.07082	-1288451
2700	3	999999	1850	0.072555	4594743	5135560	82.17356	-1290216
2800	2	999999	1925	0.071734	4597213	5127154	81.24928	-1291946
2900	1	999999	2000	0.0709	4600563	5118748	80.2949	-1293644
3000	0	999999	2050	0.070262	4604381	5104985	79.27441	-1285365

3 MW power plant at KUET

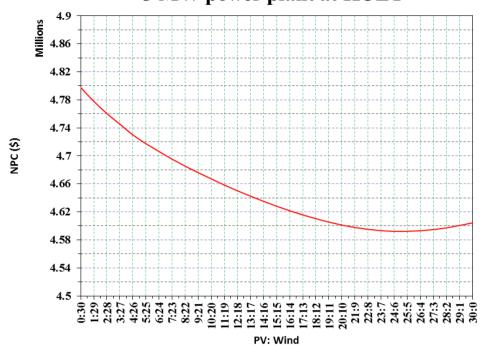


Fig: 5.11: NPC (\$) vs. PV-wind ratio for 3 MW power plant

5.6.1 Comparison of Various System Models

In this section, a brief comparative result has been shown in Table 5.13 and Fig. 5.12 for better understanding to the reader as they can find which model is best with respect to various cost parameters. First column of the Table 5.13 indicates the proposed hybrid model "plant size" where solar power contributes 80% of the total renewable power generation for 1 MW plant but with the increase of the plant size, wind contribution increases hence solar contribution decreases which is shown in column two and three. Fifth column of the table "HUAWEI (kW)" shows the converter rating that is used for various power system models. From this results it can be clearly understood that using about 30% lower converter size than the PV capacity gives the greater economic benefits. Next columns of the table demonstrated chronologically the cost of energy (energy unit price in dollar), net present cost (NPC), initial capital cost that is plotted in Figure 5.12 which gives the simple description of the cost analysis of various models in one figure. Figure 5.12 clearly shows that with the increase of plant size from 1 MW to 3 MW, the cost of energy is falls \$0.10 to \$0.074 but net present cost of plant increases from \$1.72 million to \$5.16 million which is three times than the initial value. This figure also describes that the cost of energy of 1 MW power plant is slightly higher than the grid levelized unit price but after increasing the plant size it goes down under the levelized cost of energy. For 1.5 MW plant, the cost of energy is found almost same as the levelized cost of energy. But for 2 MW plant, the cost of energy is found almost 11% lower than the levelized cost value and for 3 MW plant it is about 24% lower value than the levelized cost of energy. Although for a 2 MW power plant COE is less than 1.5 MW plant however, NPC is quite high. Considering NPC and COE, it can be said that 1.5 MW is most suitable in the considered place.

Table 5.13: Comparative results for various system architecture.

System	PV (kW)	H21.0- 100kW	Grid (kW)	HUA WEI (kW)	COE (\$)	NPC (\$)	Initial capital (\$)	Ren Frac (%)	CO ₂ (kg/yr)
1 MW	800	2	999999	550	0.100	3286825	1722045	53	601536.4
1.5 MW	1000	5	999999	700	0.095	3590705	2605237	69	121014.6
2 MW	1500	5	999999	1025	0.086	3918217	3452497	76	-345009
3 MW	2400	6	999999	1650	0.074	4592241	5166136	84	-1295040

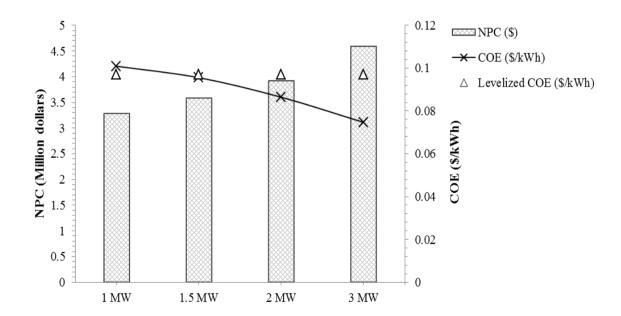


Fig: 5.12: NPC (\$), COE (\$/kWh) vs. PV-wind ratio for various system architectures

5.6.2 CO₂ Reduction

In Bangladesh, most of the powers are generated from natural gas which produces a huge amount of greenhouse gas at a rate of 540 kg/kWh. At present KUET consumers are using electricity from the utility grid system that produces about 1324 tons/yr CO₂. The insertion of grid-connected renewable based hybrid power system instead of the only grid system (existing system) would yield 601.53 tons of CO₂ emission for 1 MW hybrid power plant

which is 55% less than the existing system. Table 5.14 shows the CO₂ emission for 1.5 MW is 121 tons, which is 90% less than the only grid system. For 2 MW and 3 MW power plants it is about 126% and 197% less than the existing system, respectively. For 2 MW and 3 MW plants, negative CO₂ occurs because the system sells more energy to the grid than the purchases.

Table 5.14: CO₂ emission for various system architectures.

System	CO ₂ (kg/yr)
1 MW	601536.4
1.5 MW	121014.6
2 MW	-345009
3 MW	-1295040

5.7 Conclusion:

The crucial objective of this chapter was to find the best techno-economic solution for MW-scale renewable energy based hybrid power plant at KUET. Also, a suitable converter size for the specific solar panel has been determined. To determine the optimum result, the simulation results have been carried out on the basis of NPC and finally, a MW scale RE based hybrid power plant with suitable PV:Wind ratio for the specific area has been determined. For obtaining the best mixer of the wind turbine and the solar panel the PV and wind ratio is determined as 4:1 for 1 MW, 2:1 for 1.5 MW, 3:1 for 2 MW and 4:1 for 3 MW plant. As a final point, it can be concluded that this type of model can be able to save the Mega tone scale natural gas, able to reduce the COE, GHG emission as well as a dependency on grid systems.

CHAPTER VI

Conclusion

6.1 Conclusion

This thesis conducts a feasibility analysis to explore the potentialities of green energy at different locations in Bangladesh. The comparative analysis between off-grid and on-grid model shows that the grid-connected hybrid (PV/wind) system is more efficient and economic compared to the traditional hybrid system (PV/Wind/Battery) for the same load. From the simulation results, it is also investigated that the cost of energy of the proposed model is found less than the off-grid model and also less than the levelized grid cost of energy. Although the off-grid hybrid system uses 100% renewable energy, it needs an extra-large battery bank for storage of electricity. On the other hand, the excess output power of off-grid system goes unused. A grid connected hybrid system does not require an extra battery bank in normal operating condition and the excess power that is produced by renewable energy are added to the grid.

Initially, this thesis has been carried out by investigating the potentialities of green energy at the various location of Bangladesh particularly Kuakata, Magnamaghat, Sitakunda, Rangpur, Dinajpur, and Khulna. After that load estimation has been done by analyzing various studies for a particular region and adding random variability that makes the estimated load consumption in more realistic form. Insertion of a practical case like KUET area, load estimation of this research becomes more real. Considering the various parameters like component specification with their cost, financial aspects with ideal values, simulation works have been carried out. By analyzing the simulation result, it is found that the proposed 1 MW hybrid models with 87% renewable fraction are most suitable for Kuakata, 89% for Magnamaghat, 94% for Sitakunda, 68% for Dinajpur and

77% for Rangpur are economical and eco-friendly than the other models. For 2 MW hybrid power system model it's about 95%, 96%, 97%, 81% and 87%, respectively for the considered regions. For KUET area, the optimum solution is found 53%, 69%, 76% and 84% renewable fraction, repectively for 1 MW, 1.5 MW, 2 MW and 3 MW power system models. It can also be concluded that the proper utilization of renewable energy reduces an enormous amount of CO₂ emission in the atmosphere. It is investigated that although a hybrid model with 100% renewable fraction (off-grid) emits zero kg greenhouse gas, it is not always cost effective. Therefore, it can be said that the proposed grid connected hybrid power system is most suitable and cost effective as it offers several benefits.

6.2 Future Directions

This thesis includes only the potential of solar and wind energy in five locations of Bangladesh. The analysis could be extended to other renewable energy sources available in Bangladesh. The dynamic analysis with detail models of the RE resources could be conducted along with the application of different types of disturbances.

REFERENCES

- [1] H. Rezzouk and A. Mellit, "Feasibility study and sensitivity analysis of a standalone photovoltaic–diesel–battery hybrid energy system in the north of Algeria," Renewable and Sustainable Energy Reviews, vol. 43, pp.1134–1150, 2015.
- [2] G.M. Shafiullah, M.T.O. Amanullah, A.B.M. Shawkat Ali, D. Jarvis, and P. Wolfs, "Prospects of renewable energy a feasibility study in the Australian context" Renewable and Sustainable Energy Reviews, vol. 39, no. 1, pp. 183-197, 2012.
- [3] A. Rohani, K. Mazlumi, and H. Kord, "Modeling of a hybrid power system for economic analysis and environmental impact in HOMER," 18th Iranian conference on Electrical Engineering (ICEE), 2010, pp.819-823, 11-13 May 2011.
- [4] P. Mazumder, M.H. Jamil, C.K. Das, and M.A. Matin, "Hybrid energy optimization: an ultimate solution to the power crisis of St. Martin Island, Bangladesh" 9th International Forum on Strategic Technology (IFOST), pp.363-368, 21-23 Oct. 2014.
- [5] M.S. Nagan and C.W. Tan, "Assessment of economic viability for PV/wind/diesel hybrid energy system in southern Peninsular Malaysia," Renewable and Sustainable Energy Reviews, vol. 16, no. 1, pp. 634–647, January 2012.
- [6] [Online] available on "http://www.bpdb.gov.bd/bpdb/index.php" (accessed 15 July 2015)
- [7] [Online] available on "www.powerdivision.gov.bd" (accessed 15 July 2015)
- [8] S.K. Pawar, Y.V. Aaher, A.C. Chaudhari, and Y.B. Jadhav, "Modeling and simulation of a hybrid solar-wind-grid power generation system for electrification," International Conference on Advances in Engineering and Technology (ICAET), pp.1-6, 2-3 May 2014.
- [9] A. Zubair, A.A. Tanvir, and M. M. Hasan, "Optimal planning of standalone solar-wind-diesel hybrid energy system for a coastal area of Bangladesh," International Journal Of Electrical And Computer Engineering (IJECE), vol. 2, no. 6, pp. 731-738, 2012.
- [10] S. Liu, Z. Wu, X. Dou, and B. Zhao, "Optimal configuration of hybrid solar-wind distributed generation capacity in a grid-connected microgrid" IEEE PES Innovative Smart Grid Technologies (ISGT), pp. 1-6, 24-27 Feb. 2013.
- [11] B. Roy, A.K. Basu, and S. Paul, "Techno-economic feasibility analysis of a grid connected solar photovoltaic power system for a residential load" First International Conference on Automation, Control, Energy and Systems (ACES), pp. 1-5, 1-2 Feb. 2014.

- [12] W. D. Kellogg, M. H. Nehrir, V. Gerez, and G. V. Venkataramanan, "Generation unit sizing and cost analysis for stand-alone wind, photovoltaic and hybrid wind/PV systems," IEEE Trans. on Energy Conversion, vol. 13, pp.70-75, 1998.
- [13] SM Shaahid, I El-Amin. "Techno-economic evaluation of off-grid hybrid photo-voltaic—diesel—battery power systems for rural electrification in Saudi Arabia a way forward for sustainable development". Renewable and Sustainable Energy Reviews, Volume 13, Issue 3, Pages 625–633, April 2009.
- [14] A Khelif, A Talha, M Belhamel, Hadj Arab "A feasibility study of hybrid diesel—PV power plants in the southern of Algeria: case study on AFRA power plant". International Journal of Electrical Power & Energy Systems, Volume 43, Issue 1, Pages 546–553, December 2012.
- [15] N Agarwal, A Kumar, Varun, "Optimization of grid-independent hybrid PV—diesel-battery system for power generation in remote villages of Uttar Pradesh, India". Energy for Sustainable Development, Volume 17, Issue 3, Pages 210–219, June 2013.
- [16] J Dekker, M Nthontho, S Chowdhury, SP Chowdhury, "Economic analysis of PV/diesel hybrid power systems in different climatic zones of South Africa". International Journal of Electrical Power & Energy Systems, Volume 40, Issue 1, Pages 104–112, September 2012.
- [17] Nfah Eustace Mbakaa, Ngundam John Muchob, Kenne Godpromessea, "Economic evaluation of small-scale photovoltaic hybrid systems for mini-grid applications in far north Cameroon". Renewable Energy, Volume 35, Issue 10, Pages 2391–2398, October 2010.
- [18] A.B. Kanase-Patil, R.P. Saini, M.P. Sharma., "Integrated renewable energy systems for off grid rural electrification of remote area", Renewable Energy, Vol. 35, pp. 1342–1349, 2010.
- [19] A.N. Celik., "Optimization and techno-economic analysis of autonomous photovoltaic wind hybrid energy systems in comparison to single photovoltaic and wind systems". Volume 43, Issue 18, Pages 2453–2468, December 2002.
- [20] Fahd Ali Shifa, Muhammad Fasih Uddin Butt., "A feasibility study for deployment of wind energy based power production solution in Islamabad, Pakistan" IEEE International Conference on Emerging Technologies (ICET), 8-9 Oct 2012, Islamabad.
- [21] Sørensen, Breeze, Storvick, Yang, da Rosa, Gupta, Sukanta, Doble, Maegaard, Pistoia, Kalogirou, "Renewable energy focus handbook" (1st Edition). Oxford, UK: Elsevier Inc.
- [22] M. R. Patel, "The Wind and solar power systems: design, analysis, and operation" (2nd Edition), Boca Raton: Taylor & Francis Group, 2006.

- [23] M. R. Rivera, "Small wind / photovoltaic hybrid renewable energy system optimization" MSc. Thesis, University of Puerto Rico, 2008.
- [24] C. Wang, "Modeling and control of hybrid wind/photovoltaic/fuel cell distributed generation systems". Ph.D. Dissertation, Montana State University, 2006.
- [25] [Online] available on "http://www.northernpower.com/products/nps100/". [Accessed on 15 July 2015]
- [26] I. Tsikis, F.A. Coutelieris, "A mathematical model for the estimation of the energetic potential for several renewable energy sources: Application on the design of a modern power plant". Defect Diffusion Forum, Volumes 297-301, pp. 1414-1419, 2009.
- [27] D. B. Fernando, D. B. Hernán, and J. M. Ricardo, "Wind turbine control systems: principles, modeling and gain scheduling design". London: Springer-Verlag, 2007.
- [28] M.A. Delucchi and M.Z. Jacobson, "Providing all global energy with wind, water, and solar power, part II: Reliability, system and transmission costs, and policies". Energy Policy, Volume 39, Issue 3, Pages 1170–1190, March 2011.
- [29] A. R. Jha, "Wind Turbine Technology". Boca Raton, CRC Press, August 3, 2010
- [30] Tony Burton, Nick Jenkins, David Sharpe, Ervin Bossanyi, "Wind Energy Handbook", 2nd Edition (May 2011).
- [31] "Danish Wind Industry Association" online available on "http://www.windpower.org/en/tour", (Accessed on January 2011).
- [32] NREL HOMER getting started guide for HOMER version 3.7.6, "technical report national energy laboratory", Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy; 2016.
- [33] M. L. Kubik, P. J. Coker, C. Hunt., "Using meteorological wind data to estimate turbine generation output: a sensitivity analysis". World Renewable Energy Congress, 2011, Sweden.
- [34] A Doctoral Thesis by Zalengera, Collen, "A study into the techno-economic feasibility of photovoltaic and wind generated electricity for enhancement of sustainable livelihoods on Likoma Island in Malawi". Available on (https://dspace.lboro.ac.uk/2134/16630)
- [35] M.A. Delucchi and M.Z. Jacobson., "Providing all global energy with wind, water, and solar power, part ii: reliability, system and transmission costs, and policies," Energy Policy 39 (2011).
- [36] A. Luque, and S. Hegedus, "Handbook of photovoltaic science and engineering". West Sussex, England: John Wiley & Sons Ltd.

- [37] [Online] available on. "http:// www.tatapowersolar.com/ Projects/ Mithapur_Solar_Power_Plant" [Accessed on 15 July 2015]
- [38] Paula Mints., "The history of photovoltaic industry pricing and future direction in a low incentive environment" IEEE 38th Photovoltaic Specialists Conference (PVSC) 2012, Austin, TX, USA.
- [39] [Online] available on. "http://www.fsec.ucf.edu/en/consumer/solar_electricity/basics/history_of_pv.htm" [accessed on 18 October 2016]
- [40] J.A. Duffie, W.A. Beckman, "Solar engineering of thermal processes". John Wiley & Sons, INC, New York. (1980)
- [41] Md. Alam Hossain Mondal, Manfred Denich., "Assessment of renewable energy resources potential for electricity generation in Bangladesh" Renewable and Sustainable Energy Reviews, Volume 14, Issue 8, Pages 2401–2413, October 2010.
- [42] MJ Khan, MT Iqbal, S Mahboob, "A wind map of Bangladesh". Renewable Energy, Volume 29, Issue 5, Pages 643–660, 2004.
- [43] [Online] available on, https://eosweb.larc.nasa.gov/sse/. [Accessed on 18 October 2016]
- [44] MR Islam, MRA Beg. "Renewable energy resources and technologies Practice in Bangladesh". Renewable & Sustainable Energy Reviews, Volume 12, Issue 2, Pages 299–343, February 2008.
- [45] Surface meteorology and solar energy (SSE). "A renewable energy resource website". Sponsored by NASA's Earth Science Enterprise Program; 2009.
- [46] KQ. Nguyen, "Wind energy in Vietnam: resource assessment, development status and future implications". Energy Policy, Volume 35, Issue 2, Pages 1405–1413, February 2007.
- [47] SK. Khadem, M. Hussain, "A pre-feasibility study of wind resources in Kutubdia Island, Bangladesh". Renewable Energy, Volume 31, Issue 14, Pages 2329–2341, November 2006.
- [48] Muhammad Alam, Kalam Azad, "Wind energy analysis for 3 prospective coastal sites of Bangladesh". 4th International Conference of Industrial Engineering & Operations Management, At Grand Hyatt Bali, Indonesia.
- [49] S K Khadem & M Hussain, "A pre-feasibility study of Wind Resources in Kutubdia Island, Bangladesh". Renewable Energy Journal, 2006
- [50] M. Shamim Kaiser, "Wind energy assessment for the coastal part of Bangladesh", Journal of Engineering and Applied Science, 1(2):87-92, January 2006.

- [51] A.K. Azad and M.M. Alam, "Wind power for electricity generation in Bangladesh." International Journal of Advanced Renewable Energy Research, Vol. 1, Issue. 3, pp. 172-178, 2012.
- [52] M. M Alam., A.K. Azad, "Unusual wind speed pattern of Sitakunda, a windy coastal location of Bangladesh". International Journal of Advanced Renewable Energy Research, Vol. 1, Issue. 1, pp. 89-94, 2012.
- [53] Md. Abul Kalam Azad, "Design and validation of wind turbine's power simulation by remote controlled AC motor". Master's thesis, Department of Mechanical Engineering, BUET.
- [54] Nazia Farha, Md.Nur-Us-Safa, B.D. Rahamatullah, Md.Sekendar Ali, "Prospects of wind energy in the coastal region of Bangladesh". International Journal of Scientific & Engineering Research, Volume 3, Issue 8, August-2012.
- [55] "Renewable energy policy". Ministry of Power, Energy, and Mineral Resources. Dhaka, 2008.
- [56] NASA LARC Power Project "Surface meteorology and solar energy". [Online] "Available from http://eosweb.larc.nasa.gov/sse" [Accessed 22 November 2016].
- [57] H.Camblong, J.Sarr, A. Niang, O.Curea, J. Alzola, E. Sylia and M.Santos, "Microgrids project, part I: Analysis of rural electrification with a high content of renewable energy sources in Senegal". Renewable Energy (Elsevier), vol. 34, pp. 2141-2150, 2009.
- [58] Y. Himri, A. B. Stambouli, B. Draoui and S. Himri, "Techo-economical study of hybrid power system for a remote village in Algeria," Elsevier Energy, vol. 33, no. 7, pp. 1128 1136, 2008.
- [59] Stamatia Gkiala Fikari, "Modeling and simulation of an autonomous hybrid power system" MSc ET 15004, Uppsala University.
- [60] Sayedus Salehin, Md. Mustafizur Rahman, A.K.M. Sadrul Islam, "Technoeconomic feasibility study of a solar PV/diesel system for applications in Northern part of Bangladesh" International Journal of Renewable Energy Research, S. Salehin et al., Vol.5, No.4, 2015.
- [61] N George. Prodromidis, "Mathematical simulation and optimization of a standalone zero emissions hybrid system based on renewable energy sources". Doctoral thesis, University of Patras, May 2014.
- [62] [Online] available on. "https://www.desco.org.bd/?page=bill-calculator" [Accessed on 22 October 2016].
- [63] [Online] available on. "http://nidec-ise.com/pdfs/mg_sets.pdf" [Accessed on 22 October 2016].

- [64] J Geppert, R Stamminger, "Analysis of effecting factors on domestic refrigerators energy consumption in use". Energy Conversion and Management, pp. 76:794-800, 2013.
- [65] Odax Ugirimbabazi, "Analysis of power system options for rural electrification in Rwanda" Master's Thesis, Faculty of Engineering and Science, University of Agder, Grimstad, 2015.
- [66] [Online], available on https://en.wikipedia.org/wiki/Chilmari_Upazila [Accessed on 22 November 2016].
- [67] [Online] available on https://bangladesheconomy.wordpress.com/2010/04/09/solar-power-changes-lifestyle-of-rangpur-char-people/ [Accessed 24 November 2016].
- [68] Md.Zulkefa Rian, Dr. A. N. M. Mizanur Rahman, "Study on power consumption and social aspects of battery operated auto-rickshaw". International Conference on Mechanical, Industrial and Energy Engineering, 26-27 December, 2014, Khulna, Bangladesh.
- [69] [Online] available on "http://www.lged.gov.bd /UploadedDocument/Map/CHITTAGONG/cox's%20bazar/pekua.pdf". [Accessed on 24 November 2016].
- [70] Md.Mosfiqur Rahaman, Shahariar Khan Anik, Md.Rifat Rahamatullah, Provakar Mondal, "Cost effective and highly efficient hybrid renewable energy system for Kutubdia island of Bangladesh" International Journal of Engineering Research-Online, Vol.3, Issue 1, 2015.
- [71] [Online] available on "http://www.lged.gov.bd/DistrictHome.aspx?DistrictID=13" [Accessed 25 November 2016].
- [72] [Online] available on "https://en.wikipedia.org/wiki/Sitakunda_Upazila". [Accessed 26 November 2016].
- [73] Mohammad Shamsuddoha and Tasnuba Nasir, "Ecotourism: A descriptive study on Sitakunda echo park in Chittagong division of Bangladesh" International Journal of Educational Research and Technology, Volume 2, Issue 1, June 2011.
- [74] [Online] available on "http://data.worldbank.org/indicator/ FR.INR.LEND? end=2015&locations=BD&start=1976&view=chart". [Accessed on 22 November 2016].
- [75] [Online] available on "https://www.bb.org.bd/econdata/inflation.php" [Accessed on 22 November 2016].
- [76] Sustainable and Renewable Development Authority (SREDA) Power Division Ministry of Power, Energy & Mineral Resources, available on "www.sreda.gov".
- [77] [Online] available on "http://www.solarland.com/". [Accessed on 22 November 2016].

- [78] [Online] available on "http://www.qdallrun.cn/". Qingdao Allrun New Energy Co., Ltd. [Accessed 22 November 2016].
- [79] FIMEXT corporation, Dhaka, Bangladesh.
- [80] [Online] available on "http://www.huawei.com/en/". [Accessed 22 November 2016].
- [81] [Online] available on "http://www.hummerwindenergy.com/". [Accessed 21 November 2016].
- [82] "Renewable energy technologies: cost analysis series". International Renewable Energy Agency, volume 1, issue 5/5.
- [83] [Online] available on http://powerdivision.portal.gov.bd/site/page/2b909cce-9787-483d-a447-137d3f9edfa4. [Accessed on 28 November 2016].
- [84] [Online] available on, "fd.portal.gov.bd/sites/default/ files/files/fd.portal.gov.bd/notices/ c3379d22_ee62_4dec_9e29_75171074d885/ 19. Power_NCS.pdf". [Accessed on 28 November 2016].
- [85] [Online] available on "www.kuet.ac.bd". [Accessed on 28 November 2016].
- [86] www.wzpdcl.org.bd (Mirerdanga sub-station data)
- [87] V.K. Mehta, Rohit Mehta, "Principles of power system (4th edition)" pages 41-68.
- [88] W. Lackie, "The influence of load and diversity factors on methods of charging for electrical energy," Journal of the Institution of Electrical Engineers, vol. 42, 1909, pp.100-114.
- [89] Authoritative Dictionary of Standards Terms (7th ed.), IEEE, ISBN 0-7381-2601-2, Std. 100-2000.
- [90] "Trial-use standard definitions for the measurement of electric power quantities under sinusoidal, nonsinusoidal, balanced, or unbalanced conditions", IEEE, 2000, ISBN 0-7381-1963-6, Std. 1459-2000.
- [91] Zhang, S., "Analysis of some measurement issues in bushing power factor tests in the field", IEEE Transactions on Power Delivery, Volume: 21, Issue: 3, July 2006
- [92] A. F. Almarshoud et al, "Performance of grid-connected induction generator under naturally commutated AC voltage controller", Electric Power Components and Systems, 32 (7), 2004
- [93] Clayton Handleman, "New NREL Data Suggests Wind Could Replace Coal as Nation's Primary Generation Source" (http://cleantechnica.com).
- [94] [Online] available on https://www.eia.gov/. [Accessed on 29 November 2016].

- [95] Tom Blees, "Prescription for the Planet", ISBN 1-4196-5582-5, 2008.
- [96] "Technology Roadmap Concentrating Solar Power" [Online] available on (https://www.iea.org/publications/freepublications/publication/csp_roadmap.pdf).
- [97] G. Sridhar Reddy, T. Anil Kumar, M. Rajasekhar, Bharath Bushan, B. Madhu, "A 10 kWp rooftop solar power plant at ACE Engineering College" International Conference on Electrical, Electronics, Signals, Communication and Optimization (EESCO), 2015.
- [98] Chatbordin Naksrisuk, Kulyos Audomvongseree, "Dependable capacity evaluation of wind power and solar power generation systems" 10th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), 2013.
- [99] [Online] available on https://www.meteoblue.com/en/ weather/forecast/modelclimate/khulna_bangladesh_1336135. [Accessed on 29 November 2016].
- [100] Pappu Jaiswal, S. K. Srivastava, Kishan Bhushan Sahay, "Modeling & simulation of proposed 100 kW solar PV array power plant for MMMUT Gorakhpur". International Conference on Emerging Trends in Electrical Electronics & Sustainable Energy Systems (ICETEESES), 2016.
- [101] Mehdi Baneshi , Farhad Hadianfard, "Techno-economic feasibility of hybrid diesel/PV/wind/battery electricity generation systems for non-residential large electricity consumers under southern Iran climate conditions" Energy Conversion and Management , Volume 127, Pages 233–244, November 2016.

\

Appendix A

Table A-1: Winter season load consumption scenario for Dinajpur.

no of type house hold																											
		Rating No of appliance type (W) appliance		total power		00:0	00:1	200	3:00	4:00	500	009	7:00 8:00	006	0 10:00	11:00	12:00	13.00	14:00	15:00	071 0091				21:00	22:00	2300
		20	0																		0009	0009 0	0009	0009	0009	0009	0009
	Fan		-	26 82	8 8																2500 5500	0025			2500	2500	2500
high class	Computer		_	556	00																		5500	2500	5500	0000	0000
				375	8 8							NOS	9								37500	0	0000				
	Refrigerator		_	12500		12500	12500	12500	12500	12500	12500 125	12500 12500		0 12500	0 12500	12500	12500	12500	12500	12500 12	12500 12500	0 12500	12500	12500	12500	12500	12500
	Water pum	ps 750	-										37500														
1	toti	Nh/d	h class house																								
	Light			4 16000	00																16000	00091 0	16000	16000	00091	16000	16000
	Fan			2 2400	8 8															1					00000	00000	00000
medium	2				8 9															.2	22000 22000	0 22000	22000	22000	22000	22000	22000
	200 Computer		0		0 0																						
es pla	Iron Pica coortar	1		0000	2 8							00001	9										000001				
3	Refrigerato	r 250	0	0 2000	3 0							IMM	3										TOTOTO				
	Water pum	Water pumps 750 0	9		0																						
	total	kWh/day/medi.	um class hou	se hold																							
	Light	20	4	40	00																4000	0 4000	4000	4000	4000	4000	4000
	Fan	98 5	2 -	0009	8 8															7	0000	0000	0055	2600	2500	0033	2500
					3 0															-					0000	8	2000
bouse 5	50 Iron				0																						
3	Rice coock				0																						
	Refrigerator				0																						
	Water puni	N'A'X) class house		0																						
		and	and comp	2																							
	Public ar	comer																									
	Light	8 8	5 5		009									009	0009	009											
	Z				0																						
School 2	2 Computer				220									220	0 220	220											
	Rice conclu				0 0																						
	Refrigerator				0																						
	Water pumps	ps 750	J		0																						
	toti	1 kWh/day/hig.	h class house														9										
	Light	8 8	200		98 8								100	091 0	091	091	99					160	091	100			
	E 2	8 9			9 9								110	110	011	011					110	011	110	011			
health .	Computer	omputer 110 0	0		0																						
	lab equipment	on 1000	_	10	00												1000	0001	0001	1000	0001 0001	0001 00	1000	1000			
	others	250	_	2	20								25	0 250	0 250	250	250	250									
	Refrigerato	r 250		2	20							250	250				250		250		250	250		250			
	Water pum	ps 750			80								75	0													
	T inh	al kw n/day/mg	n class nouse	Diod :	8									0000	0000	0000					3000	0000	0000				
	Fan 60 1 3	8 98	-	8 8	3000									007		2007					Na.						
	ΛL	110	9		0																						
_	Computer	110	J		0																						
(shops)	Iron	750	J		0																						
	Rice coocker	er 1000		0			0030									00901	00301	00201							00201	00301	10501
	Ketrigerato	r 230	-			00671	00071	00671	00071	17300	71 00071	00671 00671	0071 00	00071 0	00071 0	12300	00071	00071	00071	12300	0051 0051	00671 0	00671	00071	12300	00071	00671
	Water pum		dav/shop		0																						
25			dome from																								
light	Light	100 total	100 300 total kWh	30000		30000	30000	30000	30000													30000	30000	30000	30000	30000	30000
irrigation pump for																											
winter	dund	1100	8	00066		5 00066	00066	5 00066	6 00066	6 00066	00066 00066	00	_					_	_	_	_					1	00066
		total	total Wh		IS	154000	154000	15/000	15/000 12	000701	020701 000701	000203															

Table A-2: Summer season load consumption scenario for Dinajpur.

no of house hold a		_			S.	_								ű.										8								- "	2		.,.			ľ				-		_					- 11	ş			-			Ī					
9	Light	Fan	77	Commuter	Iron	Rice concker	Refrieerator	Water nume	water pumps		Light	Fan	TV	Computer	Iron	Rice coocker	Refrigerator	Water pumps	tota	Light		ΔL	Computer	Iron	000	Refrigerator	Water numb	9	<u>~</u>			ΔL	음	Iron	Kice coocker	Netrigerator	water pumps	Link	Fan	ΔL	Computer	lab equipment	others	Refrigerator	Water pumps	to	Light	Fan	ΔL	Computer	Iron	Rice coocker	Refrigerator	Water pumps		Light	100			dumd	
		09	110	110	750	000	250		007	tal kWh/day/t	20	09	110	110	750	1000	250	750	1kWh/day/me	20	09	110	110	750	1000	250	750	tal kWh/dav/l	Public and comercial load	20	09	110	110	750	0001	0.07	UC/	20	9	110					750	tal kWh/day/b	20	09	110	011	750				total K	90	tot		001	1100	
No of appliance										total kWh/day/high class house hold									total kWh/day/medium class house hold	20 4								w class house i	load		60 15						ioh olase honea	igii cirass ilouse								total kWh/day/high class house hold								M. Cl C. L	total kwn/day/snop		total kWh				
W)	9		-	-	-	-	-	-				2				1 3							0	0	0	0	0	hold		15	15	0	-	0	0 0	> 0) H	8	- 00	-	0	-	-	-	_	pold	2				0					300				0	
ower	0009	0006	5500	2500	37500	20000	12500	37500	21,200		16000	24000	22000	0	0	200000	0	0		4000	0009	2500	0	0	0	0	0			009	1800	0	220	0	0 0	> <	>	160	480	110	0	1000	250	250	750		2000	3000	0	0	0	0	12500	0		30000	0000			0	
00:0		0006					12500					24000									0009																																12500			30000	00000				
00:1		0006					12500					24000									0009																																12500			30000	00000				
5:00		0006					12500					24000									0009																																12500			3000	00000				
3:00		0006					12500					24000									0009																																12500			30000	00000				
00:4		0006					12500					24000									0009																																12500								
2:00		0006					12500					24000									0009																																12500								
009		0006					12500					24000									0009																							250									12500								
7,00		0006				20000	12500		+			24000									0009																																12500								
8:00		0006					12500					24000				100000					0009																	91	3	110			250	250	750								12500								
00:6		0006					12500	37500	21.300			24000									0009									009	1800		220					160	480	110		1000	250				2000	3000					12500								
1000		0006					12500					24000									0009									009	1800		220					160	480	110		1000	250	250			2000	3000					12500								
11:00		0006					12500					24000									0009									009	1800		220					160	480	110		1000	250				2000	3000					12500								
12:00		0006					12500					24000									0009										1800							160	480			1000	250	250				3000					12500								
13:00		6 0006					12500 12					24000 24									9 0009																		480				250					3000					12500 12								
14:00 15:00		0006 0006					12500 12500					24000 24000									0009 0009																		480 48			1000 1000		250				3000 3000					12500 12500								
00:91			5500				0 12500						22000									5500																	480 480			0001 00		250				3000					0 12500								
17:00					37500		12500						22000							4000																				110		1000					2000						12500								
18:00							12500						00022							4000																		16	480			1000		250			2000						12500			30000	5000				
						200																																						0				0													
19:00 20						9	12500 125						22000 220			1000				4000 40																			480			1000					2000						12500 125			300					
2000 21							12500						22000 220			000001				4000 44																		091	3	110		1000		250									12500 12			3000					
21:00							12500						22000 2							4000																																	12500 I			3000					
22:00							12500						22000 2							4000																																	12500			30000					
23:00	0009	0006	2500				12500				0009	000	22000							4000	0009	2200																														1	12500			3000	3				

Table A-3: Hourly load consumption scenario for Chilmari, Rangpur.

Total	kV	Vh/day fo	r Dinajpur (summer season)	То	tal	kWh/day for seas	Dinajpur (Winter on)
Tim	e (ł	nour)	Consumption for March to October (kWh)	Т	ime	(hour)	Consumption for November to February (kWh)
0:00	1	1:00	79.25	0:00	-	1:00	91.75
1:00	-	2:00	79.25	1:00	-	2:00	91.75
2:00	1	3:00	79.25	2:00	-	3:00	91.75
3:00	-	4:00	79.25	3:00	-	4:00	91.75
4:00	-	5:00	49.25	4:00	-	5:00	61.75
5:00	-	6:00	49.25	5:00	-	6:00	61.75
6:00	-	7:00	49.25	6:00	-	7:00	61.75
7:00	-	8:00	49.25	7:00	-	8:00	61.75
8:00	-	9:00	150.52	8:00	-	9:00	163.02
9:00	1	10:00	57.56	9:00	-	10:00	64.48
10:00	-	11:00	57.56	10:00	-	11:00	20.48
11:00	-	12:00	57.56	11:00	-	12:00	20.48
12:00	-	13:00	55.04	12:00	-	13:00	19.16
13:00	-	14:00	53.98	13:00	-	14:00	19
14:00	-	15:00	52.73	14:00	-	15:00	17.75
15:00	-	16:00	52.73	15:00	-	16:00	17.75
16:00	1	17:00	96.73	16:00	-	17:00	61.75
17:00	-	18:00	130.84	17:00	-	18:00	86.66
18:00	-	19:00	161	18:00	-	19:00	116.82
19:00	-	20:00	157.52	19:00	-	20:00	116.82
20:00	-	21:00	255.52	20:00	-	21:00	216.02
21:00	-	22:00	155	21:00	-	22:00	115.5
22:00	-	23:00	133	22:00	-	23:00	93.5
23:00	-	0:00	133	23:00	-	0:00	93.5
		Total (kWh)	2274.29			Total (kWh/day)	1856.69

Table A-4: winter season load consumption scenario for Chilmari, Rangpur.

	Fan		Computer	Rive cooler	coone	Ketngerator	Water pumps			Light		1.4	Computer	Iron	Refrigerator	Water pumps		Light		ΔL	Computer	cooker	Refrigerator	Water pumps	total		=	Fan	TV	Iron	Rice cooker	ngerator	Water pumps		Fan	AL.	Computer lab equipment	others	Refrigerator	Water pumps		Fan		Computer						Light			auna	
								13																	\simeq																۰													
20	09	0110	750	000	350	250	750	Vh/dav/high class h	00	70	90	110	011	750	250	750	vday for medium cla.	20	09	011	750	1000	250	750	Wh/day for low class	Public and comercial	20	09	0 11	750	0001	250	750 total WWh/day for school	20	09	011	000	250	250	750	at Kwinday for nears	09	0110	750	0001	250	750	total kWh/day	No. of the last of	100	totalkWh		001	
9	0 -	-		-	-	1	-	ouse hold	4	d c	0 -	- <	0	0 -	-	0	ss house hold	2	0	-	0 0	0	0	0	house hold	bad		0	0 -	- 0	0	0			0	- 0	0 -	-	-	-	n center 2	0	0	0 0	0	-	0			300			9	2
0	0	0 0	0 0	0 0	> <	0	0		1,000	TOWN	0.0000	7700	0	0				8									300	0	0 01	0	0	0	0	160	0	110	0 00	250	250	750	800	0	0	0 0	0	2000	0			30000			44000	2
- 2	<u>C1</u> °	× ~	0 -	, ,	7 2	3	-												13	9	0 0	0	0	0																		10	0	0 0	0	75				02			0	
0 0	0	0 0	0 0	0 0	0	0	0		5	711	0 27.1	0/1	0 0	0	300	0	788	99	0	132	0 0	0	0	0	88		6.0	0	0 33	0	0	0	133	1.28	0	0.88	0 4	1.5	9	0.75	15.41	0	0	0 0	0	120	0	124.8		300			440	
0	0				c	0				•	0								0																				250					+		2000				30000			44000	
<	0		+		•	0				-	0				12500				0																				250							2000				30000			44000	
-	0				-	0				•	0								0		+									-									250												+		44000	
0	0				0	0				•	0								0																				250 2							5000 50				30000			44000 440	ı
	0 0																																																				000 44000	
	0																																						250														44000	
0	0			0	0	0				•	0				12500				0																				250							2000							44000	
0	0				0	0				0	0			000001	12500				0															99		110		250	250	750						2000							44000	000
0	0		t		0	0	0			0	0				12500				0								300	0	OI.	ATT.				99	0	110	001	250	250		008	0				2000							44000	0000
<	0				0	0				•	0								0								300	0	91	NI.				160	0	110	001	250	250		008	0				2000								
0	0				0	0					0	+							0								300	0	on on	211						110					008													
	0 0																											0						99	0 0							0 0				000 2000								
																																			0				250			0				2000								
0	0				-	0						77								22															0				250 2			0				2000								
			+						000																										0	-			250 22			0												
				0																														-																300				
				0										00001																											00	2												
																																		0		0			0															
										0 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	1	1	1	1	1	1	1	1	1	1	1	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	1	1 1 1 1 1 1 1 1 1 1	1	No. No.	1	No. No.	1	1 1 1 1 1 1 1 1 1 1	1	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	1	1	1	No. No.	1 1 1 1 1 1 1 1 1 1	No. No.	1 1 1 1 1 1 1 1 1 1	1	1	1	1	1	1	1	

Table A-5: Summer season load consumption scenario for Chilmara, Rangpur.

Rating	ce type (W)		TV 110				Water pumps /50		Fan 60		ler	Rice cooker 1000	Refrigerator 250	Water pumps 750	total kWhiday	Fan 60		Computer 110 0	Iron 750	Rice cooker 1000	Reingerator 250	water puritys 600 130	Markwinds 14 K			ran TV 110	ner.	Iron 750	Kre cooker 1000	Water pumps 750	totalkWh/day	Light 20		Computer 110	lab equipment 1000	others 250	Refrigerator 250	Water pumps 750 (20) (20) (20) (20) (20) (20) (20) (20	Light 20		Computer 110			Refrigerator 250	Water pumps 750	differa		Light 100	COORT	
	No of appliance	3	-	-		-	olace housea hold	CKRS HOUSE HOLD	. 61	-	0	> =	-	0	fium class house holy	1 0	7	0	0	0	0	u chee house hold	W CHESS IDEASC IEDA	comercial load	15	0	1	0		0	y for school	8	-	0	_	1	-	r health center	2	- 0	0	0	0	-		differable load		300 Wh	T AN	
total power Run time	(W) (h/d	0 0	0 0	0	0	0	0		24000				125				22000			0						000									1000				2000						0			30000		
ı time	(h/day) kWh	12	» «		2	4.	-	1	12	∞	0	> -	24	0	t	, (1	9	0	0	0	0 0	0				4 C	3	0	0 0				0 8	0 (*	2	9			9	0 0	0	0	0	24	-			01		
		0 0	0 0	0	0	0	0		288	176	0	200	300	0	1076	286	287	0	0	0	0 0	230	400		60	9,0	0.33	0	0 0	0	4.83	1.28	8.8	0.00		1.5	9	20.21	13	8	0	0	0	300	340	75	1	300		
	000	0				0			13000				12500			13000	TOWN																				250							12500				30000		
	1:00	0				0			12000				12500			12000	77007													İ							250							12500				30000		
	2:00	0				0			12000				12500			10000	OVA T																				250							12500				30000		
	3300	0				0			12000				12500			13000	12000																				250							12500				30000		
	4:00	0				0			12000 E				12500 E			13000																					250							12500 L						
	9 00'5	0				0			12000 120				12500 125			00000				+										-							250							12500 125						
	φ.00	0				0			12000				12500 12			00000																					250							12500 12						
	7:00	0			0	0			12000			=	12500			0.000													-							_	250							12500						
	8:00	0				0			12000			00000	12500			13000	7															091	91	OI I		250	250	06/						12500						
	00%	0				0	0		12000				12500			100001									300	OK.	110					091	08 01	TIO	1000	250	250		2000	3000				12500						
	10:00	0				0			12000 120				12500 125			13000									300		110					091			1000				2000 20					12500 125						
	11:00 12:00	0				0			12000 12000				12500 12500			00001				-					300		110						480	OI I	000				2000	3000				12500 12500						
	00 13:00	0 0				0 0			00 12000				00 12500			000001									4	980						091	90		_	250 250				3000				00 12500						
	14:00	0				0			12000				0 12500			12000																	689		Į		250			3000				12500						
	15:00	0				0			12000				12500			00000	777																780				250			3000				12500						
	16.00	0	0			0			12000	22000			12500			12000	22000				+							+	+				680				250			3000				12500						
	17:00	0 0	0	0		0		16000	12000	22000			12500		0000	12000	22000																98 9	OI I			280		2000	3000				12500						
	18:00	0	0			0		16000	12000	22000			12500		1,000	13000	22000															091	480	AT I			250		3000	3000				12500				30000		
			0 0		0	0		00091	12000	22000			12500		00000	12000	22000															160	011	ALI			250		2000					12500				30000		
			0 0			0			12000			000001	12500				22000															160	011	ATT.			250							12500				30000		
	12		0 0			0			12000				12500		10000	12000	22000																											12500			0 0 0	30000		
	22:00					0			12000				12500			12000																												12500				30000		
		0								22000			12500			12000																												12500				30000		

Table A-6: Hourly load consumption scenario for Kuakata.

Total	kW	h/day for Kua	akata (summer season)	To	tal	kWh/day for F	Kuakata (Winter n)
T	im	e (hour)	Consumption for March to October (kWh)	7	Гim	ne (hour)	Consumption for November to February (kWh)
0:00	-	1:00	68.75	0:00	-	1:00	55.25
1:00	-	2:00	68.75	1:00	-	2:00	55.25
2:00	-	3:00	68.75	2:00	-	3:00	55.25
3:00	-	4:00	68.75	3:00	-	4:00	55.25
4:00	-	5:00	38.75	4:00	-	5:00	25.25
5:00	-	6:00	38.75	5:00	-	6:00	25.25
6:00	-	7:00	38.75	6:00	-	7:00	25.25
7:00	-	8:00	88.75	7:00	-	8:00	75.25
8:00	-	9:00	40.02	8:00	-	9:00	26.52
9:00	-	10:00	65.81	9:00	-	10:00	47.93
10:00	-	11:00	47.06	10:00	-	11:00	29.18
11:00	-	12:00	47.06	11:00	-	12:00	29.18
12:00	-	13:00	44.54	12:00	-	13:00	26.66
13:00	-	14:00	43.48	13:00	-	14:00	26.5
14:00	-	15:00	42.23	14:00	-	15:00	25.25
15:00	-	16:00	42.23	15:00	-	16:00	25.25
16:00	-	17:00	64.23	16:00	-	17:00	47.25
17:00	-	18:00	97.09	17:00	-	18:00	80.11
18:00	-	19:00	108.5	18:00	-	19:00	91.52
19:00	-	20:00	160.52	19:00	-	20:00	147.02
20:00	-	21:00	108.52	20:00	-	21:00	95.02
21:00	-	22:00	108	21:00	-	22:00	94.5
22:00	-	23:00	86	22:00	-	23:00	72.5
23:00	-	0:00	86	23:00	-	0:00	72.5
		Total (kWh)	1671.29			Total (kWh/day)	1308.89

Table A-7: Hourly load consumption scenario for Battery run auto rickshaw

Total k	Wh	day for Kuakata (Ba	ttery run auto rickshaw)
		Duration	Load consumed (W)
0:00	-	1:00	192.4
1:00	-	2:00	192.4
2:00	-	3:00	192.4
3:00	-	4:00	192.4
4:00	-	5:00	192.4
5:00	-	6:00	192.4
6:00	-	7:00	192.4
7:00	-	8:00	19.24
8:00	-	9:00	19.24
9:00	-	10:00	19.24
10:00	-	11:00	19.24
11:00	-	12:00	19.24
12:00	-	13:00	19.24
13:00	-	14:00	0
14:00	-	15:00	0
15:00	-	16:00	0
16:00	-	17:00	48.1
17:00	-	18:00	48.1
18:00	-	19:00	48.1
19:00	-	20:00	48.1
20:00	-	21:00	48.1
21:00	-	22:00	48.1
22:00	-	23:00	48.1
23:00	-	0:00	192.4
		Total (kWh/day)	1991.34

Table A-8: load consumption scenario for Magnama, Pekua.

no of house	hold			high class							medium class 700	8						low class 400	no.							School						health centre				commercial	_	(shops)(50%	3				Street light 1			Battery run		
	appliance type	Light	ran TV	Computer	Iron	Refrigerator			Light		nter		Rice cooker Refrigerator			Light Fan	TV	Computer	Rice cooker	Refrigerator		21	Licht	Fan	TV	Iron	Rice cooker	Water pumps		Light			lab equipment others	rator	Water pumps		Fan	Computer	Iron	Rice cooker Refrigerator	Water pumps			Light			hottowy observation	I Datiety Cital gilling
	Rating (W)	200	110	110	750	250	746	total kWhklay/hig	76	R 011	911	750	250	746	IkWh'day for me	8 8	110	110	0001	250	746	tal Kwn/day for	Public and	99	Ĭ I	750	1000	74 27	totalkWh/da	× 8	110	211	0	250	74k total kWhiday f	30	96	110	750	1000	746	total K	ucion	100	total		0000	- Partie
	No of appliance							h class house hold	20						totalkWhiday for medium class house hold							TOTAL KWINDAY TOT KW CIASS INDISC HOXI	omercial load						ny for school		011				or health center					250		Whiday bla land	DEC SOLD		totalkWh			
total power Rt	(W) (h/day)			0 0		1 25000	_		2 56000	7 -	. 0	0 0	0 0			1 24000				0 0	0			15 900							1 3							0 0		1 12500	0 0			300 30000			0	
un time	(h/day) kWh	r- <u>c</u>	8	3	0.5	1 2					0					- 21	9	0	0	0			en	4	3 0	0	0	0.5	4		8 2						0 0	0 0	0	0 %			-	01			œ	>
		36	917	0	0 00	300	37.3	97.3	392	616	0	0	0 0	0	2016	23 88	0	0	0 0	0	0 8	99	60	3.6	0 33	0	0	0 0	4.83	20.5	88.0	0 0	0 0	9	0.746	12	8 9	0 0	0	300		342		300			-	a
	000	000				25000			0000	0007			0			12000																		250						12500				30000			<	۵
	1:00	000	9000			25000				42000			0			12000																		250			-			12500				30000			-	à
	200	900				25000 25				42000 42			0			12000																		250						12500 12				30000			0	>
	3,00 4,0	0000				25000 25000				42000 42000			0			12000																		250 25						12500 12500			-	30000			-	
	4,00 5,00	0000				00 25000				00 47000			0			000 12000																		250 250			-			00 12500							0	
	009	9				25000				42000			0			12000																		250						12500							0	
	7.00	8	WW		000001	25000			0000	42000			0			12000																		250						12500								
	800	9000	MM			25000			OUUCP	42000			0 0			12000														091	110		0	250	746					12500								
	00%		MAN				37300			42000			0			12000							300	006	011	111					011		0			2000	3000			12500								
	1000	9000	MM			25000				42000			0			12000								006	011						e 01		0 0			2000				12500								1
	11:00	9	NON.			25000			0000				0			12000							300	006	011	2				091	011	4	0 0	250		2000	3000			12500								
	12:00	9				25000 25			0000				0			12000								006						090	740		0 0	250			3000			12500 12								-
	13:00 14:00		WW MW			25000 25000				42000 42000			0			12000 12000															047 047		0 0	250 250			3000			12500 12500								-
	0 15:00	9				0 25000				0 42000			0 0			0 12000															740			0 250			3000			0 12500								
	16.00		0			25000				77000	LIMA		0			12000															7#0			250			3000			12500								
	17:00	8000	0		0	25000			20000	77000	- I WW		0		0000	12000	0													040	110			250	t	2000	3000			12500								
	1800	8000	0			25000			26000	77000	LIMA		0		00001	12000	0													091	110			250		2000	3000			12500				30000				
	19:00	8000	0	0	000001	25000			26000	42000 77000	1 1 Was		0		00001	12000	0													160	110			250		2000				12500				30000				
			0	0		25000			2000				0 0			12000														091	110			250						12500				30000				
			0			25000			26000	77000	1 I War		0			12000																								12500				30000				
			0			25000			26000				0			12000																								12500				30000				

Table A-9: Seasonal load consumption for Magnama, Pekua.

Total	kW	h/day for Dina	ijpur (summer season)	Tota	1 kV	Wh/day for Dinaj	ipur (Winter season)
Т	ime	e (hour)	Consumption for March to October (Wh)	,	Tim	ne (hour)	Consumption for November to February (Wh)
0:00	1	1:00	130.75	0:00	1	1:00	67.75
1:00	1	2:00	130.75	1:00	1	2:00	67.75
2:00	-	3:00	130.75	2:00	-	3:00	67.75
3:00	1	4:00	130.75	3:00	1	4:00	67.75
4:00	-	5:00	100.75	4:00	-	5:00	37.75
5:00	1	6:00	100.75	5:00	ı	6:00	37.75
6:00	1	7:00	100.75	6:00	ı	7:00	37.75
7:00	-	8:00	200.75	7:00	ı	8:00	137.75
8:00	-	9:00	101.766	8:00	-	9:00	38.766
9:00	1	10:00	144.87	9:00	1	10:00	77.73
10:00	1	11:00	107.57	10:00	ı	11:00	40.43
11:00	-	12:00	107.57	11:00	ı	12:00	40.43
12:00	-	13:00	105.05	12:00	-	13:00	37.91
13:00	1	14:00	103.99	13:00	ı	14:00	37.75
14:00	1	15:00	103.99	14:00	ı	15:00	37.75
15:00	1	16:00	103.99	15:00	1	16:00	37.75
16:00	-	17:00	180.99	16:00	-	17:00	114.75
17:00	1	18:00	263.1	17:00	ı	18:00	196.86
18:00	1	19:00	293.26	18:00	ı	19:00	227.02
19:00	1	20:00	390.02	19:00	1	20:00	327.02
20:00	-	21:00	288.02	20:00	-	21:00	225.02
21:00	-	22:00	287.5	21:00	-	22:00	224.5
22:00	-	23:00	287.5	22:00	-	23:00	224.5
23:00	-	0:00	287.5	23:00	-	0:00	224.5
		Total (kWh)	4182.686			Total (kWh/day)	2634.686

Table A-10: Hourly load consumption for Sitakunda.

Total	kW	h/day for Dina	ipur (summer season)	Tota	1 kV	Wh/day for Dina	ipur (Winter season)
П	٠	· (1)	Consumption for	,	т:	(1)	Consumption for November to
1	Ш	e (hour)	March to October (Wh)		1 111	ne (hour)	February (Wh)
0:00	_	1:00	77	0:00	_	1:00	56
1:00	-	2:00	77	1:00	_	2:00	56
2:00	_	3:00	77	2:00	-	3:00	56
3:00	-	4:00	77	3:00	_	4:00	56
4:00	_	5:00	47	4:00	-	5:00	26
5:00	-	6:00	47	5:00	-	6:00	26
6:00	_	7:00	47	6:00	-	7:00	26
7:00	_	8:00	72	7:00	_	8:00	51
8:00	_	9:00	73.492	8:00	-	9:00	52.492
9:00	-	10:00	71.96	9:00	_	10:00	47.06
10:00	-	11:00	53.31	10:00	-	11:00	28.41
11:00	-	12:00	53.31	11:00	_	12:00	28.41
12:00	_	13:00	50.9	12:00	-	13:00	26
13:00	_	14:00	50.9	13:00	_	14:00	26
14:00	_	15:00	50	14:00	-	15:00	26
15:00	_	16:00	50	15:00	_	16:00	26
16:00	_	17:00	72	16:00	_	17:00	48
17:00	_	18:00	124	17:00	_	18:00	100
18:00	_	19:00	156.1	18:00	_	19:00	132.1
19:00	_	20:00	128.1	19:00		20:00	107.1
20:00	_	21:00	126.1	20:00	_	21:00	105.1
21:00	_	22:00	125.1	21:00	_	22:00	104.1
22:00		23:00	125.1	22:00		23:00	104.1
23:00	_	0:00	125.1	23:00	_	0:00	104.1
23.00		Total	1955.572	23.00		Total	1417.972
		(kWh)	1755.572			(kWh/day)	1711.712

Appendix B

Table B-1: NPC (Net present cost) for 2 MW plant at Kuakata

	Net Prese	nt Costs (2 MW	grid connecte	ed)		
Component	Capital	Replacement	O&M	Fuel	Salvage	Total
Generic flat plate PV	536,000	0	136,268	0	0	672,268
H21.0-100kW	4,028,560	989,125	1,055,552	0	-561,141	5,512,096
Grid	0	0	-4,033,695	0	0	-4,033,695
HOMER Cycle Charging	0	0	0	0	0	0
System Converter	171,200	143,925	26,625	0	-19,810	321,940
Other	0	0	42,191	0	0	42,191
System	4,735,760	1,133,050	-2,773,060	0	-580,951	2,514,799

Table B-2: NPC (Net present cost) for 3 MW plant at Kuakata

	Net Preser	nt Costs (3 MW	grid connecte	d)		
Component	Capital	Replacement	O&M	Fuel	Salvage	Total
Generic flat plate PV	670,000	0	170,335	0	0	840,335
H21.0-100kW	6,294,625	1,545,507	1,649,300	0	-876,783	8,612,649
Grid	0	0	-6,943,104	0	0	-6,943,104
HOMER Cycle Charging	0	0	0	0	0	0
System Converter	85,600	71,963	13,312	0	-9,905	160,970
Other	0	0	42,191	0	0	42,191
System	7,050,225	1,617,470	-5,067,966	0	-886,688	2,713,040

Table B-3: Contribution of individual component for Kuakata region

Component	Plant size	3 N	ИW	2 N	ЛW	1 1	MW	Units
	Quantity			Va	llue			
	Rated capacity		00		00		00	kW
	Mean output		66	6	59	1	17	kW
PV	Mean output	205	7.57	164	6.05	41	1.51	kWh/d
l pu	Capacity factor	17	.15	17	.15	17	'.15	%
Laı	Total generation		012	600	0810)202	kWh/yr
Solar Land PV	Minimum output)		0		0	kW
Soj	Maximum output		1.54	395	5.63		3.91	kW
	PV penetration		.58		.86		.72	%
	Hours of operation	43	67	43	867	43	367	hrs/yr
	Levelized cost	0.0)85	0.0	085	0.0	085	\$/kWh
	Total rated capacity		00		500		00	kW
	Mean output		48		07		41	kW
Wind Turbine: H21.0-100kW	Capacity factor		.92		.92		.92	%
rbi 000k	Total generation		4051		4592	298	9458	kWh/yr
Tu)-1	Minimum output)		0		0	kW
ind 21.(Maximum output		000		500		00	kW
W.j H2	Wind penetration		7.68	414	1.52		3.16	%
	Hours of operation		517		517		517	hrs/yr
	Levelized cost)79)79		079	\$/kWh
		Inverter	Rectifier	Inverter	Rectifier	Inverter	Rectifier	
	Capacity	400	392	800	784	400	392	kW
	Mean output	75	74	59	75	11	77	kW
er	Minimum output	0	0	0	0	0	0	kW
/ert	Maximum output	400	192	369	192	88	192	kW
Converter	Capacity factor	19	19	7	9	3	19	%
Ŭ	Hours of operation	3,604	5,156	3,499	5,261	2,803	5,957	hrs/yr
	Energy in	671,315	764,318	527,870	769,293	101,419	797,713	kWh/yr
	Energy out	657,889	649,671	517,313	653,899	99,391	678,056	kWh/yr
	Losses	13,426	114,648	10,557	115,394	2,028	119,657	kWh/yr

Appendix C

Table C-1: Simulation results for Sitakunda

PV H21.0-					0.5 M	W			
100					COE (\$)	NPC (\$)	capital		
200 3 999999 100 0.079777 1201694 1044755 81.76856 -157015 300 2 999999 200 0.084796 1202272 969770 76.4793 -110240 400 1 999999 300 0.087848 1224548 830585 67.26948 -30234.9 500 0 999999 300 0.087848 1242640 734200 57.67729 14360.06 0 10 999999 10 0.053179 1690032 2517850 96.87274 -918192 100 9 999999 100 0.055468 1687110 2421465 96.60251 -860340 200 8 999999 100 0.057699 1664929 2303680 96.03112 -791412 300 7 999999 300 0.061812 1649163 2110910 94.33167 -686638 500 5 999999 400 0.06469 1652967 2014525 93.01694	0	5	999999	0	0.069335	1211242	1258925	88.11429	-283795
300 2 999999 200 0.084796 1202272 969770 76.4793 -110240 400 1 999999 300 0.089143 1224548 830585 67.26948 -30234.9 500 0 999999 300 0.087848 1242640 734200 57.67729 14360.06 IMW 0 10 999999 0 0.0553179 1690032 2517850 96.87274 -918192 100 9 999999 100 0.055468 1687110 2421465 96.60251 -860340 200 8 999999 100 0.057699 1664929 2303680 96.03112 -791412 300 7 999999 200 0.059248 1649492 22033680 96.03112 -743037 400 6 9999999 300 0.061812 1649163 2110910 94.3167 -68638 500 5 9999999 400 0.06459 1652967	100	4	999999	100	0.074537	1213626	1162540	85.9187	-225943
1 999999 300 0.089143 1224548 830585 67.26948 -30234.9	200	3	999999	100	0.079777	1201694	1044755	81.76856	-157015
Note	300	2	999999	200	0.084796	1202272	969770	76.4793	-110240
I MW 0 10 999999 0 0.053179 1690032 2517850 96.87274 -918192 100 9 999999 100 0.055468 1687110 2421465 96.60251 -860340 200 8 999999 100 0.057699 1664929 2303680 96.03112 -791412 300 7 999999 300 0.05248 1649497 2207295 95.31518 -743037 400 6 999999 300 0.061812 1649163 2110910 94.33167 -686638 500 5 999999 400 0.06469 1652967 2014525 93.01694 -628932 600 4 999999 500 0.077805 1659616 1918140 91.25594 -571081 700 3 999999 700 0.073805 1669981 1821755 88.86897 -513230 800 2 9999999 700 0.077805 1750795	400	1	999999	300	0.089143	1224548	830585	67.26948	-30234.9
0 10 999999 0 0.053179 1690032 2517850 96.87274 -918192 100 9 999999 100 0.055468 1687110 2421465 96.60251 -860340 200 8 999999 100 0.05799 1664929 2303680 96.03112 -791412 300 7 999999 200 0.059248 1649497 2207295 95.31518 -743037 400 6 999999 300 0.061812 1649163 2110910 94.33167 -686638 500 5 999999 400 0.06469 1652967 2014525 93.01694 -628932 600 4 999999 500 0.067721 1659616 1918140 91.25594 -571081 700 3 999999 700 0.073749 1686436 1725370 85.52188 -455378 900 1 999999 800 0.076192 1712845 1628985 80.74821	500	0	999999	300	0.087848	1242640	734200	57.67729	14360.06
100 9 999999 100 0.055468 1687110 2421465 96.60251 -860340 200 8 999999 100 0.057699 1664929 2303680 96.03112 -791412 300 7 999999 200 0.059248 1649497 2207295 95.31518 -743037 400 6 999999 300 0.061812 1649163 2110910 94.33167 -686638 500 5 999999 400 0.06469 1652967 2014525 93.01694 -628932 600 4 999999 500 0.067721 1659616 1918140 91.25594 -571081 700 3 999999 600 0.073749 1686436 1725370 85.52188 -455378 900 1 999999 900 0.076192 1712845 1628985 80.74821 -397526 1000 0 999999 90 0.043471 2696457 5035700 99.26323					1 MV	V			
200 8 999999 100 0.057699 1664929 2303680 96.03112 -791412 300 7 999999 200 0.059248 1649497 2207295 95.31518 -743037 400 6 999999 300 0.061812 1649163 2110910 94.33167 -686638 500 5 999999 400 0.06469 1652967 2014525 93.01694 -628932 600 4 999999 500 0.067721 1659616 1918140 91.25594 -571081 700 3 999999 600 0.070805 1669981 1821755 88.86897 -513230 800 2 999999 700 0.073749 1686436 1725370 85.52188 -455378 900 1 999999 800 0.076192 1712845 1628985 80.74821 -397526 1000 0 999999 0 0.043471 2696457 5035700 99.26323	0	10	999999	0	0.053179	1690032	2517850	96.87274	-918192
300 7 999999 200 0.059248 1649497 2207295 95.31518 -743037 400 6 999999 300 0.061812 1649163 2110910 94.33167 -686638 500 5 999999 400 0.06469 1652967 2014525 93.01694 -628932 600 4 999999 500 0.067721 1659616 1918140 91.25594 -571081 700 3 999999 600 0.070805 1669981 1821755 88.86897 -513230 800 2 999999 700 0.073749 1686436 1725370 85.52188 -455378 900 1 999999 800 0.076192 1712845 1628985 80.74821 -397526 1000 0 999999 900 0.077886 1750795 1532600 74.50996 -339674 200 18 9999999 100 0.0443412 2691948 4939315 99.26323 <td>100</td> <td>9</td> <td>999999</td> <td>100</td> <td>0.055468</td> <td>1687110</td> <td>2421465</td> <td>96.60251</td> <td></td>	100	9	999999	100	0.055468	1687110	2421465	96.60251	
400 6 999999 300 0.061812 1649163 2110910 94.33167 -686638 500 5 999999 400 0.06469 1652967 2014525 93.01694 -628932 600 4 999999 500 0.067721 1659616 1918140 91.25594 -571081 700 3 999999 600 0.073805 1669981 1821755 88.68897 -513230 800 2 999999 700 0.073749 1686436 1725370 85.52188 -455378 900 1 999999 800 0.076192 1712845 1628985 80.74821 -397526 1000 0 999999 900 0.077886 1750795 1532600 74.50996 -339674 0 20 999999 100 0.044371 2696457 5035700 99.26323 -2186985 100 19 9999999 100 0.0445236 2666847 4821530 99.26323 <td>200</td> <td></td> <td></td> <td>100</td> <td>0.057699</td> <td>1664929</td> <td>2303680</td> <td>96.03112</td> <td>-791412</td>	200			100	0.057699	1664929	2303680	96.03112	-791412
500 5 999999 400 0.06469 1652967 2014525 93.01694 -628932 600 4 999999 500 0.067721 1659616 1918140 91.25594 -571081 700 3 999999 600 0.070805 1669981 1821755 88.86897 -513230 800 2 999999 700 0.073749 1686436 1725370 85.52188 -455378 900 1 999999 900 0.077886 1750795 1532600 74.50996 -339674 - 200 100 19 999999 90 0.074861 1750795 1532600 74.50996 -339674 - 200 19 999999 100 0.043471 2696457 5035700 99.26323 -2186985 100 19 999999 100 0.0445236 2666847 4821530 99.22289 -2060205 300 17 9999999 300 0.045788	300	7	999999	200	0.059248	1649497	2207295	95.31518	-743037
600 4 999999 500 0.067721 1659616 1918140 91.25594 -571081 700 3 999999 600 0.070805 1669981 1821755 88.86897 -513230 800 2 999999 700 0.073749 1686436 1725370 85.52188 -455378 900 1 999999 800 0.076192 1712845 1628985 80.74821 -397526 1000 0 999999 900 0.077886 1750795 1532600 74.50996 -339674 2 MW 0 20 999999 0 0.0443471 2696457 5035700 99.26323 -2186985 100 19 999999 100 0.0443471 2691948 4939315 99.26303 -2129133 200 18 999999 100 0.045236 2666847 4821530 99.22289 -2060205 300 17 999999 300 0.046783 26417			999999		0.061812	1649163	2110910	94.33167	-686638
700 3 999999 600 0.070805 1669981 1821755 88.86897 -513230 800 2 999999 700 0.073749 1686436 1725370 85.52188 -455378 900 1 999999 800 0.076192 1712845 1628985 80.74821 -397526 1000 0 999999 900 0.077886 1750795 1532600 74.50996 -339674	500		999999	400	0.06469			93.01694	-628932
800 2 999999 700 0.073749 1686436 1725370 85.52188 -455378 900 1 999999 800 0.076192 1712845 1628985 80.74821 -397526 1000 0 999999 900 0.077886 1750795 1532600 74.50996 -339674 2 MW 0 20 999999 0 0.043471 2696457 5035700 99.26323 -2186985 100 19 999999 100 0.044412 2691948 4939315 99.26808 -2129133 200 18 999999 100 0.045236 2666847 4821530 99.22289 -2060205 300 17 999999 300 0.045788 2647392 4725145 99.16428 -2011830 400 16 999999 300 0.046783 2641737 4628760 99.0013 -1897725 600 14 999999 500 0.049041 2635						ļ			
900 1 999999 800 0.076192 1712845 1628985 80.74821 -397526 1000 0 999999 900 0.077886 1750795 1532600 74.50996 -339674 2 MW 100 19 999999 0 0.043471 2696457 5035700 99.26323 -2186985 100 19 999999 100 0.044412 2691948 4939315 99.26808 -2129133 200 18 999999 100 0.045236 2666847 4821530 99.22289 -2060205 300 17 999999 200 0.045798 2647392 4725145 99.16428 -2011830 400 16 999999 300 0.046783 2641737 4628760 99.09013 -195431 500 15 999999 500 0.044782 2638478 4532375 99.0013 -1897725 600 14 999999 500 0.050258 2									
1000 0 999999 900 0.077886 1750795 1532600 74.50996 -339674 0 20 999999 0 0.043471 2696457 5035700 99.26323 -2186985 100 19 999999 100 0.044412 2691948 4939315 99.26808 -2129133 200 18 999999 100 0.045236 2666847 4821530 99.22289 -2060205 300 17 999999 200 0.045798 2647392 4725145 99.16428 -2011830 400 16 999999 300 0.046783 2641737 4628760 99.09013 -1955431 500 15 999999 400 0.047882 2638478 4532375 99.0013 -1897725 600 14 999999 500 0.049041 2635676 4435990 98.89494 -1839874 700 13 999999 600 0.05258 2630876 4243220 98.6									
2 MW 0 20 999999 0 0.043471 2696457 5035700 99.26323 -2186985 100 19 999999 100 0.044412 2691948 4939315 99.26808 -2129133 200 18 999999 100 0.045236 2666847 4821530 99.22289 -2060205 300 17 999999 200 0.045798 2647392 4725145 99.16428 -2011830 400 16 999999 300 0.046783 2641737 4628760 99.09013 -1955431 500 15 999999 400 0.047882 2638478 4532375 99.0013 -1897725 600 14 999999 500 0.049041 2635676 4435990 98.89494 -1839874 700 13 999999 600 0.050258 2633087 4339605 98.76982 -1782023 800 12 999999 700 0.05136							+		
0 20 999999 0 0.043471 2696457 5035700 99.26323 -2186985 100 19 999999 100 0.044412 2691948 4939315 99.26808 -2129133 200 18 999999 100 0.045236 2666847 4821530 99.22289 -2060205 300 17 999999 200 0.045798 2647392 4725145 99.16428 -2011830 400 16 999999 300 0.046783 2641737 4628760 99.09013 -1955431 500 15 999999 400 0.047882 2638478 4532375 99.0013 -1897725 600 14 999999 500 0.049041 2635676 4435990 98.89494 -1839874 700 13 999999 600 0.050258 2633087 4339605 98.76982 -1782023 800 12 999999 700 0.051536 2630796 4243220 98	1000	0	999999	900			1532600	74.50996	-339674
100 19 999999 100 0.044412 2691948 4939315 99.26808 -2129133 200 18 999999 100 0.045236 2666847 4821530 99.22289 -2060205 300 17 999999 200 0.045798 2647392 4725145 99.16428 -2011830 400 16 999999 300 0.046783 2641737 4628760 99.09013 -1955431 500 15 999999 400 0.047882 2638478 4532375 99.0013 -1897725 600 14 999999 500 0.049041 2635676 4435990 98.89494 -1839874 700 13 999999 600 0.050258 2633087 4339605 98.76982 -1782023 800 12 999999 700 0.051536 2630796 4243220 98.61885 -1724171 900 11 999999 800 0.052877 2628849 4146835 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
200 18 999999 100 0.045236 2666847 4821530 99.22289 -2060205 300 17 999999 200 0.045798 2647392 4725145 99.16428 -2011830 400 16 999999 300 0.046783 2641737 4628760 99.09013 -1955431 500 15 999999 400 0.047882 2638478 4532375 99.0013 -1897725 600 14 999999 500 0.049041 2635676 4435990 98.89494 -1839874 700 13 999999 600 0.050258 2633087 4339605 98.76982 -1782023 800 12 999999 700 0.051536 2630796 4243220 98.61885 -1724171 900 11 999999 800 0.052877 2628849 4146835 98.437 -1666319 1000 10 999999 1000 0.055761 2626401 3954065 <t< td=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td></t<>				-					
300 17 999999 200 0.045798 2647392 4725145 99.16428 -2011830 400 16 999999 300 0.046783 2641737 4628760 99.09013 -1955431 500 15 999999 400 0.047882 2638478 4532375 99.0013 -1897725 600 14 999999 500 0.049041 2635676 4435990 98.89494 -1839874 700 13 999999 600 0.050258 2633087 4339605 98.76982 -1782023 800 12 999999 700 0.051536 2630796 4243220 98.61885 -1724171 900 11 999999 800 0.052877 2628849 4146835 98.437 -1666319 1000 10 999999 900 0.054285 2627351 4050450 98.21474 -1608468 1100 9 999999 1000 0.055761 2626401 3954065 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
400 16 999999 300 0.046783 2641737 4628760 99.09013 -1955431 500 15 999999 400 0.047882 2638478 4532375 99.0013 -1897725 600 14 999999 500 0.049041 2635676 4435990 98.89494 -1839874 700 13 999999 600 0.050258 2633087 4339605 98.76982 -1782023 800 12 999999 700 0.051536 2630796 4243220 98.61885 -1724171 900 11 999999 800 0.052877 2628849 4146835 98.437 -1666319 1000 10 999999 900 0.054285 2627351 4050450 98.21474 -1608468 1100 9 999999 1000 0.055761 2626401 3954065 97.94209 -1550616 1200 8 999999 1100 0.057306 2626215 3857680 <									
500 15 999999 400 0.047882 2638478 4532375 99.0013 -1897725 600 14 999999 500 0.049041 2635676 4435990 98.89494 -1839874 700 13 999999 600 0.050258 2633087 4339605 98.76982 -1782023 800 12 999999 700 0.051536 2630796 4243220 98.61885 -1724171 900 11 999999 800 0.052877 2628849 4146835 98.437 -1666319 1000 10 999999 900 0.054285 2627351 4050450 98.21474 -1608468 1100 9 999999 1000 0.055761 2626401 3954065 97.94209 -1550616 1200 8 999999 1200 0.058917 2627042 3761295 97.16411 -1434912 1400 6 999999 1300 0.060589 2629217 3664910									
600 14 999999 500 0.049041 2635676 4435990 98.89494 -1839874 700 13 999999 600 0.050258 2633087 4339605 98.76982 -1782023 800 12 999999 700 0.051536 2630796 4243220 98.61885 -1724171 900 11 999999 800 0.052877 2628849 4146835 98.437 -1666319 1000 10 999999 900 0.054285 2627351 4050450 98.21474 -1608468 1100 9 999999 1000 0.055761 2626401 3954065 97.94209 -1550616 1200 8 999999 1100 0.057306 2626215 3857680 97.5997 -1492764 1300 7 999999 1300 0.058917 2627042 3761295 97.16411 -1434912 1400 6 999999 1300 0.060589 2629217 3664910									
700 13 999999 600 0.050258 2633087 4339605 98.76982 -1782023 800 12 999999 700 0.051536 2630796 4243220 98.61885 -1724171 900 11 999999 800 0.052877 2628849 4146835 98.437 -1666319 1000 10 999999 900 0.054285 2627351 4050450 98.21474 -1608468 1100 9 999999 1000 0.055761 2626401 3954065 97.94209 -1550616 1200 8 999999 1100 0.057306 2626215 3857680 97.5997 -1492764 1300 7 999999 1200 0.058917 2627042 3761295 97.16411 -1434912 1400 6 999999 1300 0.060589 2629217 3664910 96.60343 -1377061 1500 5 999999 1500 0.062308 2633254 3568525									
800 12 999999 700 0.051536 2630796 4243220 98.61885 -1724171 900 11 999999 800 0.052877 2628849 4146835 98.437 -1666319 1000 10 999999 900 0.054285 2627351 4050450 98.21474 -1608468 1100 9 999999 1000 0.055761 2626401 3954065 97.94209 -1550616 1200 8 999999 1100 0.057306 2626215 3857680 97.5997 -1492764 1300 7 999999 1200 0.058917 2627042 3761295 97.16411 -1434912 1400 6 999999 1300 0.060589 2629217 3664910 96.60343 -1377061 1500 5 999999 1400 0.062308 2633254 3568525 95.87008 -1319209 1600 4 999999 1500 0.064052 2639780 3472140									
900 11 999999 800 0.052877 2628849 4146835 98.437 -1666319 1000 10 999999 900 0.054285 2627351 4050450 98.21474 -1608468 1100 9 999999 1000 0.055761 2626401 3954065 97.94209 -1550616 1200 8 999999 1100 0.057306 2626215 3857680 97.5997 -1492764 1300 7 999999 1200 0.058917 2627042 3761295 97.16411 -1434912 1400 6 999999 1300 0.060589 2629217 3664910 96.60343 -1377061 1500 5 999999 1400 0.062308 2633254 3568525 95.87008 -1319209 1600 4 999999 1500 0.064052 2639780 3472140 94.9049 -1261357 1700 3 999999 1600 0.06578 2649946 3375755									
1000 10 999999 900 0.054285 2627351 4050450 98.21474 -1608468 1100 9 999999 1000 0.055761 2626401 3954065 97.94209 -1550616 1200 8 999999 1100 0.057306 2626215 3857680 97.5997 -1492764 1300 7 999999 1200 0.058917 2627042 3761295 97.16411 -1434912 1400 6 999999 1300 0.060589 2629217 3664910 96.60343 -1377061 1500 5 999999 1400 0.062308 2633254 3568525 95.87008 -1319209 1600 4 999999 1500 0.064052 2639780 3472140 94.9049 -1261357 1700 3 999999 1600 0.06578 2649946 3375755 93.60649 -1203506 1800 2 999999 1800 0.068785 2691120 3182985									
1100 9 999999 1000 0.055761 2626401 3954065 97.94209 -1550616 1200 8 999999 1100 0.057306 2626215 3857680 97.5997 -1492764 1300 7 999999 1200 0.058917 2627042 3761295 97.16411 -1434912 1400 6 999999 1300 0.060589 2629217 3664910 96.60343 -1377061 1500 5 999999 1400 0.062308 2633254 3568525 95.87008 -1319209 1600 4 999999 1500 0.064052 2639780 3472140 94.9049 -1261357 1700 3 999999 1600 0.06578 2649946 3375755 93.60649 -1203506 1800 2 999999 1800 0.067406 2665894 3279370 91.79729 -1145654 1900 1 999999 1800 0.068785 2691120 3182985									
1200 8 999999 1100 0.057306 2626215 3857680 97.5997 -1492764 1300 7 999999 1200 0.058917 2627042 3761295 97.16411 -1434912 1400 6 999999 1300 0.060589 2629217 3664910 96.60343 -1377061 1500 5 999999 1400 0.062308 2633254 3568525 95.87008 -1319209 1600 4 999999 1500 0.064052 2639780 3472140 94.9049 -1261357 1700 3 999999 1600 0.06578 2649946 3375755 93.60649 -1203506 1800 2 999999 1700 0.067406 2665894 3279370 91.79729 -1145654 1900 1 999999 1800 0.068785 2691120 3182985 89.20876 -1087802									
1300 7 999999 1200 0.058917 2627042 3761295 97.16411 -1434912 1400 6 999999 1300 0.060589 2629217 3664910 96.60343 -1377061 1500 5 999999 1400 0.062308 2633254 3568525 95.87008 -1319209 1600 4 999999 1500 0.064052 2639780 3472140 94.9049 -1261357 1700 3 999999 1600 0.06578 2649946 3375755 93.60649 -1203506 1800 2 999999 1700 0.067406 2665894 3279370 91.79729 -1145654 1900 1 999999 1800 0.068785 2691120 3182985 89.20876 -1087802									
1400 6 999999 1300 0.060589 2629217 3664910 96.60343 -1377061 1500 5 999999 1400 0.062308 2633254 3568525 95.87008 -1319209 1600 4 999999 1500 0.064052 2639780 3472140 94.9049 -1261357 1700 3 999999 1600 0.06578 2649946 3375755 93.60649 -1203506 1800 2 999999 1700 0.067406 2665894 3279370 91.79729 -1145654 1900 1 999999 1800 0.068785 2691120 3182985 89.20876 -1087802									
1500 5 999999 1400 0.062308 2633254 3568525 95.87008 -1319209 1600 4 999999 1500 0.064052 2639780 3472140 94.9049 -1261357 1700 3 999999 1600 0.06578 2649946 3375755 93.60649 -1203506 1800 2 999999 1700 0.067406 2665894 3279370 91.79729 -1145654 1900 1 999999 1800 0.068785 2691120 3182985 89.20876 -1087802									
1600 4 999999 1500 0.064052 2639780 3472140 94.9049 -1261357 1700 3 999999 1600 0.06578 2649946 3375755 93.60649 -1203506 1800 2 999999 1700 0.067406 2665894 3279370 91.79729 -1145654 1900 1 999999 1800 0.068785 2691120 3182985 89.20876 -1087802									
1700 3 999999 1600 0.06578 2649946 3375755 93.60649 -1203506 1800 2 999999 1700 0.067406 2665894 3279370 91.79729 -1145654 1900 1 999999 1800 0.068785 2691120 3182985 89.20876 -1087802									
1800 2 999999 1700 0.067406 2665894 3279370 91.79729 -1145654 1900 1 999999 1800 0.068785 2691120 3182985 89.20876 -1087802									
1900 1 999999 1800 0.068785 2691120 3182985 89.20876 -1087802									
	2000	0	999999	1900	0.069855	2726211	3086600	85.83396	-1037802

Table C-2: Simulation results for Dinajpur

				0.5 MV	W			
PV (kW)	H21.0- 100kW	Grid (kW)	Converter (kW)	COE (\$)	NPC (\$)	Initial capital (\$)	Ren Frac (%)	CO ₂ (kg/yr)
0	5	999999	0	0.177115	2422260	1258575	37.29636	-283795
100	4	999999	100	0.15599	2236964	1162260	41.79016	-225943
200	3	999999	100	0.137844	2055960	1044545	43.05554	-157015
300	2	999999	200	0.113098	1854367	948230	46.59816	-110240
400	1	999999	300	0.094457	1672321	851915	48.73768	-30234.9
500	0	999999	400	0.078784	1496855	755600	50.25818	14360.06
				1 MW	I			
0	10	999999	0	0.217349	3554069	79137.91	2517150	62.38709
100	9	999999	100	0.197186	3372693	72646.07	2420835	64.733
200	8	999999	100	0.180052	3185325	67330.12	2303120	65.38319
300	7	999999	200	0.156724	2985044	59395.36	2206805	66.92722
400	6	999999	300	0.138838	2806172	53094.63	2110490	67.66032
500	5	999999	300	0.124333	2618507	47756.03	1992775	67.54697
600	4	999999	400	0.10816	2430651	40769.6	1896460	68.05184
700	3	999999	500	0.094638	2252483	34522.53	1800145	68.26098
800	2	999999	500	0.083479	2066847	29338.79	1682430	67.84914
900	1	999999	600	0.071796	1882756	22639.7	1586115	68.02563
1000	0	999999	700	0.061712	1704882	16415.1	1489800	68.06743
				2 MW	I			
0	20	999999	0	0.242398	5867766	63610.32	5034300	84.28468
100	19	999999	200	0.229298	5726966	58581.93	4959385	85.17555
200	18	999999	200	0.213089	5507722	50833.21	4841670	85.67354
300	17	999999	200	0.19828	5294776	43565.16	4723955	85.93909
400	16	999999	300	0.184472	5112848	37031.2	4627640	86.14803
500	15	999999	300	0.1734	4921539	31414.49	4509925	86.06419
600	14	999999	400	0.159818	4729672	24121.91	4413610	86.14722
700	13	999999	500	0.148046	4547373	17559.6	4317295	86.10601
800	12	999999	500	0.138517	4357417	12046.13	4199580	85.82981
900	11	999999	600	0.127459	4169048	5020.553	4103265	85.72724
1000	10	999999	700	0.117593	3987062	-1517.83	4006950	85.54885
1100	9	999999	700	0.109426	3798300	-6940.19	3889235	85.15588
1200	8	999999	800	0.1003	3612244	-13789.2	3792920	84.92744
1300	7	999999	900	0.092018	3431097	-20263.6	3696605	84.63615
1400	6	999999	900	0.08499	3243746	-25578.3	3578890	84.13644
1500	5	999999	1000	0.077386	3059833	-32263.8	3482575	83.79411
1600	4	999999	1100	0.070422	2879901	-38645.4	3386260	83.40564
1700	3	999999	1100	0.06438	2693969	-43851.8	3268545	82.83405
1800	2	999999	1200	0.058038	2511625	-50417.5	3172230	82.44389
1900	1	999999	1200	0.052786	2332121	-55133.3	3054515	81.84106
2000	0	999999	1300	0.047019	2147176	-61897.6	2958200	81.48504

Table C-3: Simulation results for Rangpur

				1 N	IW			
PV (kW)	H21.0- 100kW	Grid (kW)	SUN 2000- 23KR L (kW)	COE (\$)	NPC (\$)	Initial capital (\$)	Ren Frac	CO ₂ (kg/yr)
0	10	999999	0	0.068045	2038146	2517850	93.3337	-730951
100	9	999999	100	0.069313	2025153	2421465	92.95972	-698169
200	8	999999	100	0.071263	1991175	2303680	92.14927	-639936
300	7	999999	200	0.070725	1958259	2207295	91.36019	-621327
400	6	999999	300	0.071138	1941989	2110910	90.2498	-594170
500	5	999999	300	0.073267	1918195	1993125	88.499	-533699
600	4	999999	400	0.072758	1898417	1896740	86.7552	-511703
700	3	999999	500	0.07256	1889176	1800355	84.52529	-485772
800	2	999999	500	0.074202	1877848	1682570	81.13007	-424976
900	1	999999	600	0.072892	1875665	1586185	77.63191	-402079
1000	0	999999	700	0.071574	1884952	1489800	73.51135	-376666
				2 M	W			
0	20	999999	0	0.056735	3228824	5035700	98.24643	-1883105
100	19	999999	100	0.05728	3213795	4939315	98.23492	-1850322
200	18	999999	100	0.058055	3176188	4821530	98.16126	-1792089
300	17	999999	200	0.057804	3138339	4725145	98.08422	-1773481
400	16	999999	300	0.058035	3115463	4628760	97.97065	-1746323
500	15	999999	300	0.058975	3083027	4510975	97.79881	-1685853
600	14	999999	400	0.058901	3052166	4414590	97.63398	-1663857
700	13	999999	500	0.059059	3028347	4318205	97.4388	-1637925
800	12	999999	500	0.06007	2997705	4200420	97.16264	-1577129
900	11	999999	600	0.060034	2969657	4104035	96.89871	-1554233
1000	10	999999	700	0.060148	2946455	4007650	96.58829	-1528820
1100	9	999999	700	0.061206	2917822	3889865	96.15185	-1467910
1200	8	999999	800	0.061156	2892721	3793480	95.71272	-1444609
1300	7	999999	900	0.061206	2871947	3697095	95.18195	-1419456
1400	6	999999	900	0.062256	2847050	3579310	94.42926	-1358530
1500	5	999999	1000	0.062116	2827208	3482925	93.62302	-1334985
1600	4	999999	1000	0.063319	2811919	3365140	92.46752	-1271153
1700	3	999999	1100	0.062916	2795913	3268755	91.19896	-1249078
1800	2	999999	1200	0.062511	2787645	3172370	89.59049	-1225361
1900	1	999999	1200	0.063327	2786766	3054585	87.2944	-1161993
2000	0	999999	1300	0.062513	2788916	2958200	84.88644	-1139568

Table C-4: Simulation results for Magnama

1 MW								
PV (kW)	H21.0- 100k W	Grid (kW)	Conve rter (kW)	COE (\$)	NPC (\$)	Initial capital (\$)	Ren Frac	CO ₂ (kg/yr)
0	10	999999	0	0.037762	1877869	2517850	89.48673	-1039876
100	9	999999	100	0.040548	1924789	2421465	88.45948	-936483
200	8	999999	100	0.044119	1974190	2303680	86.96968	-809743
300	7	999999	200	0.046616	2003960	2207295	85.43886	-719607
400	6	999999	300	0.049857	2050054	2110910	83.52692	-621358
500	5	999999	400	0.053568	2103747	2014525	81.20883	-520266
600	4	999999	400	0.058122	2154756	1896740	78.11134	-399338
700	3	999999	500	0.062054	2211283	1800355	74.64513	-302126
800	2	999999	600	0.066228	2279542	1703970	70.28106	-202841
900	1	999999	600	0.071526	2361182	1586185	64.18138	-79069.4
1000	0	999999	700	0.074717	2455148	1489800	57.33502	17666.21
2 MW								
0	20	999999	0	0.023269	2139587	5035700	96.79079	-2873867
100	19	999999	100	0.024367	2181327	4939315	96.61703	-2770475
200	18	999999	100	0.025688	2223364	4821530	96.37747	-2643735
300	17	999999	200	0.026559	2243989	4725145	96.14204	-2553599
400	16	999999	300	0.027708	2278951	4628760	95.8633	-2455350
500	15	999999	400	0.029007	2319352	4532375	95.54086	-2354258
600	14	999999	400	0.030487	2353856	4414590	95.14259	-2233330
700	13	999999	500	0.031829	2388988	4318205	94.72733	-2136118
800	12	999999	600	0.03332	2428510	4221820	94.2462	-2036833
900	11	999999	600	0.035215	2470339	4104035	93.6397	-1913061
1000	10	999999	700	0.036819	2507555	4007650	93.0031	-1816325
1100	9	999999	800	0.038586	2548764	3911265	92.27374	-1717851
1200	8	999999	900	0.040503	2593212	3814880	91.42582	-1618316
1300	7	999999	900	0.042875	2637383	3697095	90.34774	-1496339
1400	6	999999	1000	0.044977	2683296	3600710	89.1703	-1398369
1500	5	999999	1100	0.047234	2733289	3504325	87.78603	-1299467
1600	4	999999	1100	0.050138	2787852	3386540	85.9844	-1176273
1700	3	999999	1200	0.052544	2844465	3290155	83.94063	-1078663
1800	2	999999	1300	0.055016	2910124	3193770	81.38886	-980144
1900	1	999999	1400	0.057452	2987649	3097385	78.16133	-881024
2000	0	999999	1400	0.060329	3078703	2979600	73.83556	-758784

Calculations of wind power:

Consider, Blade length, l= 52 m

Wind speed, v= 12 m/sec

Air density, ρ = 1.23 kg/m³

Power Coefficient, C_p= 0.4

So $A = \pi r^2 = 8495 \text{ m}^2$

Now putting the all value in the following equation

$$p_{power} = \frac{1}{2} A \rho v^3 C_P = 3.6 \text{ MW}$$

List of Publications

- [01] Md. Nurunnabi and N. K. Roy, "Renewable Energy Based Hybrid Power System: the Best Way to Keep the World Pollution Free from GHG," 2nd International Conference on Electrical Information and Communication Technology (EICT), 10-12 December 2015, Khulna (IEEE explorer).
- [02] Md. Nurunnabi and N. K. Roy, "Grid-Connected Hybrid Power System Design Using HOMER," International Conference on Advances in Electrical Engineering (ICAEE), 17-19 December 2015, Dhaka (IEEE Explorer).
- [03] Md. Nurunnabi and N. K. Roy, "Environmental and Socio-Economic Impacts of Renewable Energy," submitted to IET Renewable Power Generation.
- [04] Md. Nurunnabi and N. K. Roy, "Optimal Sizing of MW-Scale Hybrid Power System," submitted to Renewable Energy-Elsevier.