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Abstract 
 

In disposal site, municipal solid waste (MSW) decomposes and produces three components of 
solid; liquid (leachate) and landfill gas. Open dumping facilities release huge quantity of metal 
elements into the surrounding water bodies, underlying soil layer and atmosphere. The main 
focus of this study was to identify the correlations of metal elements in soil, possible sources 
of their generation and contamination, distribution of metal elements spatially as well as the 
level of contamination of soil of a disposal site. To these endeavors, sixty soil samples were 
collected at a depth of 0-30 cm from the existing ground surface from a selected waste disposal 
site at Rajbandh, Khulna, Bangladesh. These study periods covered both the dry season 
(March to May, 2016) and rainy seasons (June to August, 2016). In the laboratory, the relevant 
metal elements of Aluminium (Al), Arsenic (As), Barium (Ba), Calcium (Ca), Cadmium (Cd), 
Cobalt (Co), Chromium (Cr), Copper (Cu), Iron (Fe), Mercury (Hg), Potassium (K), 
Manganese (Mn), Sodium (Na), Nickel (Ni), Lead (Pb), Antimony (Sb), Scandium (Sc), 
Strontium (Sr), Titanium (Ti), Vanadium (V) and Zinc (Zn) were measured through the 
standard test methods. Furthermore, the spatial distribution of metal elements in soil is 
necessitated to explore their extents. Implementation of interpolation techniques can provide 
better prediction of the distribution of metal elements in soil with least prediction errors.  

To these attempts, conventional statistics such as K-S test, S-W test and normal QQ plot was 
performed using SPSS. Based on normal QQ plot, it was observed that almost all the metal 
elements were distributed normally except As in soil for both the dry and rainy seasons. The 

agglomerative hierarchical clustering (AHC) was performed using XLSTAT. Results of 

each other indicating these metal elements derived from the same generation sources. In 
addition, results of PCA and AHC depicted that almost all the metal elements in soil derived 
from anthropogenic/human activities; least number of metal elements from natural sources as 
well as from both the natural and anthropogenic sources. 

In this study, Geostatistical analysis such as inverse distance weighting (IDW), local 
polynomial interpolation (LPI), radial basis functions (RBF) and ordinary kriging (OK) was 
performed using ArcGIS. Furthermore, the cross validations of IDW with power 1 to 5, LPI 
with order 1 to 3, RBF with five kernal functions as well as OK with eleven distinct models 
were performed to select the best fitted model for further assessing the performance of these 
interpolation techniques. Based on least value of MAPE, IDW with power 1 to 5 and RBF with 
different kernel functions showed comparatively more accurate prediction than that of LPI and 
OK. Based on RI, IDW1 showed best performance followed by OK. Lastly, based on all 
indices (MAPE, RI, etc.), IDW1 showed the best technique for all metal elments.  

Moreover, produced prediction surface for all the interpolation techniques showed most of the 
contaminated hotspots was found near the centre of disposal site for all the metal elements. 
Semivariogram showed that almost all the metal elements were moderately correlatated 
spatially and least number of metal elements were strongly and weekly correlated. In this 
study, a network model was developed by ANN to predict and depict the validity of observed 
concentration of metal elements obtained from laboratory based MSE and R-value. It was 
found that the predicted values from ANN were almost same as obtained from laboratory. 
Finally, it can be concluded that this study will so guide for more efficient prediction of spatial 
distribution of metal elements with their possible generation sources, and to remedial measures 
regarding the contamination of soil of the waste disposal sites all over the world. 
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Abstract 
 

In disposal site, municipal solid waste (MSW) decomposes and produces three components of 

solid; liquid (leachate) and landfill gas. Open dumping facilities release huge quantity of metal 

elements into the surrounding water bodies, underlying soil layer and atmosphere. The main 

focus of this study was to identify the correlations of metal elements in soil, possible sources 

of their generation and contamination, distribution of metal elements spatially as well as the 

level of contamination of soil of a disposal site. To these endeavors, sixty soil samples were 

collected at a depth of 0-30 cm from the existing ground surface from a selected waste disposal 

site at Rajbandh, Khulna, Bangladesh. These study periods covered both the dry season 

(March to May, 2016) and rainy seasons (June to August, 2016). In the laboratory, the relevant 

metal elements of Aluminium (Al), Arsenic (As), Barium (Ba), Calcium (Ca), Cadmium (Cd), 

Cobalt (Co), Chromium (Cr), Copper (Cu), Iron (Fe), Mercury (Hg), Potassium (K), 

Manganese (Mn), Sodium (Na), Nickel (Ni), Lead (Pb), Antimony (Sb), Scandium (Sc), 

Strontium (Sr), Titanium (Ti), Vanadium (V) and Zinc (Zn) were measured through the 

standard test methods. Furthermore, the spatial distribution of metal elements in soil is 

necessitated to explore their extents. Implementation of interpolation techniques can provide 

better prediction of the distribution of metal elements in soil with least prediction errors.  

To these attempts, conventional statistics such as K-S test, S-W test and normal QQ plot was 

performed using SPSS. Based on normal QQ plot, it was observed that almost all the metal 

elements were distributed normally except As in soil for both the dry and rainy seasons. The 

multivariate statistics such as Pearson’s correlation, principal component analysis (PCA) and 

agglomerative hierarchical clustering (AHC) was performed using XLSTAT. Results of 

Pearson’s correlation revealed that almost all the metal elements were strongly correlated with 

each other indicating these metal elements derived from the same generation sources. In 

addition, results of PCA and AHC depicted that almost all the metal elements in soil derived 

from anthropogenic/human activities; least number of metal elements from natural sources as 

well as from both the natural and anthropogenic sources. 

In this study, Geostatistical analysis such as inverse distance weighting (IDW), local 

polynomial interpolation (LPI), radial basis functions (RBF) and ordinary kriging (OK) was 

performed using ArcGIS. Furthermore, the cross validations of IDW with power 1 to 5, LPI 

with order 1 to 3, RBF with five kernal functions as well as OK with eleven distinct models 

were performed to select the best fitted model for further assessing the performance of these 

interpolation techniques. Based on least value of MAPE, IDW with power 1 to 5 and RBF with 

different kernel functions showed comparatively more accurate prediction than that of LPI and 

OK. Based on RI, IDW1 showed best performance followed by OK. Lastly, based on all 

indices (MAPE, RI, etc.), IDW1 showed the best technique for all metal elments.  

Moreover, produced prediction surface for all the interpolation techniques showed most of the 

contaminated hotspots was found near the centre of disposal site for all the metal elements. 

Semivariogram showed that almost all the metal elements were moderately correlatated 

spatially and least number of metal elements were strongly and weekly correlated. In this 

study, a network model was developed by ANN to predict and depict the validity of observed 

concentration of metal elements obtained from laboratory based MSE and R-value. It was 

found that the predicted values from ANN were almost same as obtained from laboratory. 

Finally, it can be concluded that this study will so guide for more efficient prediction of spatial 

distribution of metal elements with their possible generation sources, and to remedial measures 

regarding the contamination of soil of the waste disposal sites all over the world. 
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CHAPTER I 

 

INTRODUCTION 

 

 

1.1  Background Information 

 

The term ―landfill‖ is a unit, designed and operated for the disposal of municipal solid 

waste (MSW) to protect the environmental receptors such as human, water, air, soil, etc. 

from the contaminants like metal elements presence in MSW stream (Alamgir et al., 

2005). Open dumping is the main disposal method of MSW in developing countries like 

Bangladesh (Rafizul et al., 2012). In disposal sites, MSW decomposes and produces three 

components of solid (degraded waste); liquid (leachate that is infiltrating into the 

underlying layer) and landfill gas (Vaalgamaa and Conley, 2008). The huge quantities of 

MSW in open dumping sites; biological, physical and chemical process as well as due to 

the emission of toxic metal element from MSW, leachate and contaminated soil create 

vulnerable to the environmental components and nearby inhabitants (Nriagu and Pacyna, 

1988). With the increasing demand for metals in industries and rapid urbanization in many 

parts of the world, contamination by metal elements in the terrestrial environment has 

become widespread in a global context. Increasing metal pollution has severely disturbed 

the natural geochemical cycling of the ecosystem. The sources of metal elements are either 

natural parent rock materials or anthropogenic/human activities (Tahir et al., 2007). The 

geological composition of parent materials primarily influences the nature of metal 

elements presence in soil. Human activities such as urban-industrial development, landfill 

management, vehicular emissions, fossil fuel combustion and agricultural practices also 

influence metal element contents in soil (Mireles et al., 2004).  

 

The effects of metal elements are found to vary with the conditions prevailing in the 

dumping sites and its binding forms (Pebesma et al., 2007). In addition, the contamination 

of soil with metal elements draws prodigious consideration due to its impending threat to 

food safety and injurious belongings on the environmental components. Marina et al. 

(2003) indicated that non-biodegradability characteristics and elongated biological half-

lives of metal elements for abolition, their accretion in nutrition chain will obligate a 
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substantial effect on humanoid well-being in elongated period. There has long been 

concern about the issue of contamination of soil by metal elements because of their 

toxicity for plant, animal and human beings as well as their lack of biodegradability 

(Zhuang et al., 2009). Interests arise among the researchers to find out the origin and 

consequences of these metal elements on the earth due to its toxic and detrimental effects 

in the environment (Jia et al., 2010). 

 

Soil is one of the principal natural resources of the earth and a vital part of the natural 

environment. It mainly provides a habitat for a wide range of organisms and influences the 

plant species thus contribute to the diet of human and animal. So, soil is an indispensable 

to all living being in the world. Recently, open dumping for MSW is considered an 

increasing threat to the underlying soil layer and the surrounding environment of disposal 

sites. In addition, soil contamination as part of land degradation is caused by the presence 

of xenobiotic (human-made) chemicals or other alteration in the natural soil environment. 

It is typically caused by improper disposal of MSW, industrial activity and agricultural 

chemicals. Soil contamination occurs when the presence of toxic chemicals, pollutants or 

contaminants with high concentrations in soil and it has great risk to plants, wildlife, 

humans and of course for the soil itself (Jia et al., 2010). Materials that find their entry into 

the soil system persist and accumulate in toxic concentrations becoming sources of 

pollution in soil (Misra and Mani, 2009). The concentration of metal elements in soil and 

their impact on ecosystems can be influenced by many factors such as the parent rock, 

climate and anthropogenic activities (Jia et al., 2010). Among the pollutants that persist 

and accumulate in the soils include; inorganic toxic compounds for example fertilizers, 

organic wastes, organic pesticides and radio cucleides (Misra and Mani, 2009). The soil is 

thus becoming increasingly contaminated with chemicals and other pollutants which can 

reach the food chain, surface water or ground water and ultimately be ingested by man 

(Misra and Mani, 2009). 

 

Khulna is one of the fast growing commercial cities in Bangladesh. In this city, most of the 

MSWs are collected from door-to-door without any sorting and dumped in open disposal 

site at Rajbandh. Due to inadequate management practices of MSW in disposal site, the 

generated leachate percolates into the underlying soil, ground and surface water bodies and 

then contaminates the environmental components. The emission of toxic metal element 
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from deposited MSW, leachate and contaminated soil will be vulnerable to the 

environmental components (soil, air, water, etc.) and inhabitants. Moreover, soil is a 

crucial component of rural and urban environments, and in both places, land management 

is the key to safeguard the quality of soil (Bhuiyan et al, 2016).  In present time, more 

concern about soil contamination by metal elements is necessary. Necessities arise to take 

steps for the proper disposal of MSW as well as maintenance of disposal site in Khulna 

city of Bangladesh. Moreover, to date, there is no comprehensive study to examine how 

the metal elements are correlated to each other as well as their possible sources of 

contamination such as anthropogenic or human activities and natural parent materials.  In 

addition, there is no ready manual or guidebook related to this research from where one 

can easily get the information about quantitative distribution of metal elements spatially as 

well as the level of contamination of soil due to presence of metal elements in soil. 

 

A statistical analysis of Hu et al. (2013) pointed that the metal element content in soil is 

usually a skewed normal distribution and is spatially auto correlated in case of soil 

pollution surveys. The incorporation of multivariate statistics and geostatistical analysis is 

a progressive method for ascertaining of pollution characteristics of metal elements in soil 

and distinctive their natural sources. The application of multivariate statistical approaches 

permit a better technique for classification, modeling and interpretation of soil monitoring 

data (Smith et al., 2007). In addition, geostatistical approaches can provide steadfast 

evaluations at unsampled positions providing that the sampling interval revolves the 

dissimilarity at the level of concentration (Kerry and Oliver, 2004). The technique of 

geographic information system (GIS) is enabling to manage large volume of spatial and 

non-spatial data that comes from various sources. Spatial distribution is essential for 

assessing the effect of metal elements in soil and to delineate contamination zones 

(Omran and Razek, 2012). Among   statistical     approaches, geostatistical  kriging-based   

practices,   including  simple  kriging and  ordinary kriging, universal  kriging  as well as 

simple  co-kriging have been continually  used  for  three-dimensional  analysis of soil 

data.  Deterministic interpolation approaches, such as inverse distance weighting (IDW) 

method and its revisions are frequently applied (Chary et al., 2008) as well as Radial basis 

functions (RBF) and Local polynomial interpolation (LPI) through ArcGIS are also used 

to predict of values, standard error and condition number that are comparable to ordinary 
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kriging with measurement errors (Zhang, 2011). Creutin   and Obled   (1982) compared 

the performance of several interpolation techniques from produced prediction surfaces. 

  

Artificial Neural Networks (ANN) is an information processing systems, which imitate 

the functioning of the human brain. Neurons are spread over several layers in the network 

to send each other information via given connections (Neuner, 2012). These connections 

are weighted and due to the change of weight they will be adapted in a way that the 

network is able to provide the best solution for a neural network has at least one input and 

output layer. ANN is considered as dependable and inexpensive techniques for data 

interpretation and prediction. The self-organizing map (SOM) is an unsupervised ANN 

used for data training to classify and effectively recognize patterns embedded in the input 

data space. Kohonen (2014) found that the application of SOM-ANN is useful for 

recognizing spatial patterns in contaminated zones by integrating chemical, physical, Eco 

toxicological and toxic kinetic variables in the identification of pollution sources and 

similarities in the quality of the samples. Remarkable SOM methods have been used in 

soil as well as water quality assessment for pollutant sources identification, pattern 

recognition and classification (Lee et al., 2006).  

 

In this study, in total sixty soil samples were collected at a depth of 0-30 cm from the 

existing ground surface from different selected locations of waste disposal site at 

Rajbandh, Khulna, Bangladesh. The soil samples were collected in two different seasons; 

dry season (March to May, 2016) as well as rainy season (June to August, 2016). In the 

laboratory, the concentration of metals elements of Aluminium (Al), Arsenic (As), Barium 

(Ba), Calcium (Ca), Cadmium (Cd), Cobalt (Co), Chromium (Cr), Copper (Cu), Iron (Fe), 

Mercury (Hg), Potassium (K), Manganese (Mn), Sodium (Na), Nickel (Ni), Lead (Pb), 

Antimony (Sb), Scandium (Sc), Strontium (Sr), Titanium (Ti), Vanadium (V) and Zinc 

(Zn) was measured through the standard test methods. Therefore, this study was conducted 

to examine the spatial distribution and temporal variation of the concentration of metal 

elements in soil. In this study, the distribution of the concentration of metal elements was 

described using conventional statistics such as mean, maximum, minimum, median, 

standard deviation (SD), co-efficient of variation (CV), skewness and kurtosis by 

performing Statistical Package for the Social Sciences (SPSS).  
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The Pearson’s correlation coefficient of metal elements was also conducted using SPSS to 

determine the accumulated concentrations of metal elements irrespective to their sources 

which provide an effective way to reveal the relationships between the multiple variables. 

Principal Component Analysis (PCA) and Agglomerative Hierarchical Clustering (HCA) 

were performed using XLSTAT to get the information about spatial distribution of metal 

concentrations in soil by comparing the linkage between different sampling sites.  These 

PCA and HCA were performed also to know how the metal elements are correlated to each 

other as well as their possible sources of contamination such as anthropogenic or human 

activities and natural parent materials.  

 

Furthermore, geostatistical analysis such as IDW, Ordinary Kriging, LP and RBF were 

performed using ArcGIS. These geostatistical analyses were performed to examine the 

quantitative distribution of metal elements spatially in soil as well as the level of 

contamination of soil due to presence of metal elements in soil. In addition, semivariogram 

parameters obtained ordinary kriging exhibited spatial dependence of metal elements in 

soil. The performance of interpolation techniques will assess by ascertaining the prediction 

error based on Mean Absolute Percentage Error (MAPE), Root Mean Square Error 

(RMSE), Goodness of prediction (G-value) and Relative Improvement (RI).  In this study, 

these prediction errors were used to select the best fitted model by performing cross 

validation of different models. In addition, ANN through MATLAB will perform to 

determine Mean Standard Error (MSE) and Regression factor (R-value) to check the 

validity and accuracy of the metal element concentration obtained from laboratory. 

Moreover, to date, there is no comprehensive study regarding the effect of metal element 

concentration from waste disposal site in Bangladesh. The main outcome of this study was 

to know the correlation of metal elements with each other in soil, possible sources of their 

contamination, distribution of metal elements spatially and the level of contamination of 

soil due to presence of metal elements in soil. Finally, this study will so guide for more 

efficient management practices of MSW and adoption of suitable technological solutions 

for the disposal of MSW in disposal sites not only the developing countries like 

Bangladesh but also all over the world. 

 

 



6 

 

1.2   Soil and Metal Element  

 

Disposal site is one of the sources for the contamination of underlying soil, surface and 

ground water due to generation of leachate from MSW and its migration through MSW in 

and around of the disposal site (Wang et al., 2015). It is known that the impact of disposal 

sites can cause contaminate of all the environmental components (Ehab and Ahmed, 

2015). The study of the impact of disposal sites on the environment dedicated to the 

scientific works of many scientists and researchers. In addition, land degradation or soil 

contamination caused by human activities has significant adverse effects on all the 

environmental components and ecosystems world-wide (Bai et al., 2013), and MSW is an 

important and emerging environmental problem.  

 

Disposal sites containing hazardous materials are under critical observation today for 

potential hazards, resulting in the need for thorough risk analyses along with the soil, 

surface water and ground water that have been contaminated with metal elements leaching 

from disposal sites (Bai et al., 2013).  Soil contamination by metal elements has become a 

critical environmental concern due to its potential adverse ecological effects (Li et al., 

2013). The term ―metal element‖ is generally used to describe a group of metals and 

metalloids with an atomic density greater than 5.0 g/cm
3
 and is toxic or poisonous even at 

low concentration. Their effects on living organisms generally results from contamination 

of either a biotic systems (soil, water and air). Metal elements occur naturally at low 

concentrations in soils; however, they are considered soil contaminants due to their 

widespread occurrence, as well as their acute and chronic toxicity. When metal elements 

are incorporated into the MSW generated regularly and these MSW are subsequently 

disposed of in disposal sites at their end of life or use, there is a high possibility that with 

time, the metal elements will be released into the surrounding ecosystems mainly soil and 

water (Chen et al., 2012).  Metal elements also occur naturally, but rarely at toxic levels.  

Once metal elements released into the environment, they are often considered as a 

problematic environmental pollutant because of their well-known effects on living 

organisms.  

 

In addition, metal elements constitute an ill-defined group of inorganic chemical hazards, 

and those most commonly found at contaminated disposal sites are Pb, Cr, As, Zn, Cd, Cu, 
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Hg, and Ni. Soil is a crucial component of rural and urban environments, and in both 

places, land management is the key to safeguard the quality of soil.  Increased concern on 

soil contamination by metal elements has been shown in recent years. Soils are sources of 

substrate nutrients and are the basis of sustenance to livelihood. Thus, soils play an 

important role in ecological stability. Nevertheless, the quality of soil with regards to the 

concentrations of metal elements may be compromised (Nabulo et al., 2008). They are 

notorious when they bio-accumulate in soil and due to their long persistence time in the 

course of interaction with soil component, they consequently enter food chain through 

plants or animals. Thus plants grown on contaminated soils bio-accumulate these metal 

element contaminants which pose high risk to human health. 

 

One of the major and still topical issues is the estimation of the effect of various factors 

and processes on the quality of soil. Unfavorable changes in the physical, chemical or 

biological properties of soil may result not only in a decrease of its fertility, but also the 

effects of they can even totally exclude it from production (Zhang et al., 2012).  Several 

reports have been published which are documented only on the characterization of leachate 

and its effect on groundwater pollution in Bangladesh, but little information is available on 

the effect of disposal sites on soil contamination and its toxicological effects. Soil is the 

key part of the earth system as it control the hydrological, erosional, biological, and 

geochemical cycles. The soil system also offers goods, services and resources to 

humankind (Keesstra et al., 2012). This is why it is necessary to know how soils are 

contaminated by disposal sites and how metal elements are distributed spatially.  

 

1.3   Problem Statement and Justification 

 

Unplanned and uncontrolled disposal of MSW has become a thread to all living element of 

the earth as they contain toxic metal elements. Consumption patterns of population have 

dramatically changed with passage of time. In consequence, the amount of waste generated 

from household, industrial and commercial field have increased than before. Although 

there are many alternative options of waste disposal, disposal site is the primary mean of 

MSW disposal in developing countries like Bangladesh (Samiul, 2016) 
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The only authorized MSW dumping site of Khulna is Rajbandh disposal site. The location 

of this site is not only for sore of eyes, but also causes hazard for environment. The soil in 

and around the dumping site is usually rich in toxic metal elements due to long retention 

and decomposition of MSW in this site. The metal elements get blended not only with the 

in-place soil, but also spread over surrounding soils of disposal site. This soil is used by 

the people living around the dumping site for planting vegetables and fruits. These plants 

bio- accumulates metal elements from the soil and when they are eaten by human beings 

and animals, the metal element accumulate in the body with serious health effects (UN, 

2010). Leachate and rain water passes through MSW have also become a major source of 

contamination in water bodies surrounding the selected disposal site area. Consumption of 

this contaminated water may directly cause metal element poisoning to the consumer. In 

addition, hazardous MSW containing harmful chemicals and metal elements are openly 

disposed in the disposal site, which may even cause to death. The long-term input of 

heavy-metal elements could result in decreased defending capacity of soil, threatening the 

ecological environment (Murtaza, 2012). Despite of such terrible effects of metal 

contamination in soils of this disposal site, no proper step is taken to control or reduce the 

spread of metal elements in and around the soil of disposal site. Therefore it is essential to 

carry out an intensive study and monitor the nature and extent of such pollution on in and 

around the disposal site. 

 

Disposal sites are supposed to be located away from residence because of the inherent 

environmental nuisance and poor aesthetic value associated with their operations. Rapid 

urbanization has resulted in existing dumping sites originally located at a safe distance 

outside the municipal boundaries now being increasingly encircled by settlements and 

housing estates. This research seeks to display the seasonal variability in concentration of 

metal elements in the soil in and around of the waste disposal site as well as the sources of 

their generation. The distribution of metal elements in soil of the surrounding areas of 

disposal site is also necessary to explore their extents. In this study, implementation of 

different interpolation techniques can provide better prediction of the distribution of metal 

elements spatially as well as the possible sources of contamination of metal elements in 

soil of the selected disposal site. 
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1.4  Objectives of the Study 

 

Soil contamination is a crucial part of land degradation caused by the presence of toxic 

chemicals or metal elements and other alteration in the natural soil environment. Soil 

contamination occurs when the presence of toxic chemicals, pollutants or contaminants 

with high concentrations in soil. There has long been concern about the issue of 

contamination of soil by metal elements because of their toxicity (Keesstra et al., 2012). 

Now a day, interest arise among the researchers to find out the origin and consequences of 

these metal elements on the earth due to its toxic and detrimental effects in the 

environment. Moreover, in this study, statistical and Geostatistical techniques were 

performed to know the information about correlation of metal elements in soil, possible 

sources of their contamination, quantitative distribution and the level of contamination of 

soil due to presence of metal elements in soil. The overall objectives can be summarized as 

follows: 

 

1. To develop correlations of metal elements and their possible sources of 

contamination in soil of waste disposal site. 

2. To predict the best fitted geostatistical model by assessing cross validation of 

different interpolation techniques. 

3. To visualize the level of contamination and distribution of metal element 

spatially in the soil of the waste disposal site. 

4. To develop a model and check the accuracy of the observed and predicted values 

of metal elements in soil using neural network modeling. 

 

1.5   Contribution to Knowledge 

 

It is expected that this research will provide a guideline for performing various 

interpolation techniques to distribute metal elements spatially and their possible sources of 

contaminations. The multivariate statistics used in this study will contribute a clear 

knowledge about the origin of metal element, i.e., from where these are generated either 

from natural parent material or anthropogenic/human activities. This study will provide an 

easy and simpler way to express the pattern of contamination level of metal elements in 

form of map in soil. Different colors attributed to different concentration levels indicated 
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the how intensely the region is contaminated and how immediate steps should be taken to 

reduce the contamination. Moreover, interpolation techniques used in this study will offer 

a reference to interpolate soil data for unsampled location provided with best interpolation 

technique with least prediction errors. Performance assessment of observed and predicted 

values will give chance to interpret the accuracy of assessment i.e., how accurately the real 

field condition is presented in the produced map. Finally, this study can be used as a 

reference of guideline for future research related or similar to this one. 

 

1.6   Significance of the Study 

 

The generation and measurement of the concentration of metal elements of Al, As, Ba, Ca, 

Cd, Co, Cr, Cu, Fe, Hg, K, Mn, Na, Ni, Pb, Sb, Sc, Sr, Ti, V and Zn will be used to aware 

the general population of Khulna region. In addition, multivariate statistical analysis will 

offer a clear conception about the sources of metal element generation. The study will also 

help to inform the authorities about the sources of spread as well as the distribution pattern 

of these metal elements in soil of the disposal site. So, necessary steps can be taken to 

control the spread of metal elements outside the disposal site area. The results from the 

study will also be used to find out the area needed to take under immediate remedial action 

to remove the metal elements where the levels were too high. 

 

1.7   Scope and Limitations 

 

Rapid growth of population and industrialization surrounding the Khulna city tends to 

increase the generation of MSW, creates additional load to MSW management system and 

finally contaminated the environmental components and surrounding soil layer. 

Contaminations of metal element in and around of the Rajbandh disposal site possess a 

thread to the inhabitant of the study area. The spatial and temporal variation of metal 

elements concentration in and around the soil of waste disposal site was described using 

conventional statistics which shows the magnitude and pattern of contamination of metal 

elements in both the dry and rainy seasons. This study aims at categorize metal elements 

depending on its origin, i.e., either the metal element comes from parent materials or 

originate due to human activities based on multivariate statistics included Pearson 

correlation, PCA and AHC. These analyses also indicated the correlation or similarity or 
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dissimilarity between the metal elements irrespective to their sources. Different 

interpolation techniques were implemented to show the spatial distribution of metal 

elements in and around the soil which offers mapping of the concentration of metal 

elements for different samples collected from different location as well as varying depth. 

Different interpolation techniques were implemented to produce prediction surface 

provided with prediction error to check the accuracy. The produced surface with least error 

offered more clear visualization of spread of metal elements in and around soil of waste 

disposal site. In this study, ANN presented a developed network to predict the unknown 

values of concentration of metal elements, if latitude, longitude and depth of sampling 

were set as input. This helps to evaluate the contamination of metal element at larger depth 

and the spatial distribution also can be displayed. Thus, it will be feasible to take necessary 

steps to manage the unintended disposal of waste to stop the spread of metal elements. 

Further study can also be carried out where it is needed to implement in future. 

 

The main limitation of the study was no direct computation of index to assess the risk due 

to metal element contamination in and around the soil of waste disposal site. Some field 

conditions were ignored during the sampling procedure and the laboratory test values do 

not represent the in-situ condition of collected soil samples. More carefulness will help to 

get expected result. 

 

1.8   Outline of the Thesis  

 

The thesis outline has been divided in five distinct chapters comprising different aspects of 

study. The outline and the relations between these five chapters are shown in Figure 1.1. 

The chapters portrayed the knowledge of origin and generation of metal elements and the 

sources of the contamination of soil of the selected waste disposal site. Consequences due 

to unplanned waste generation and disposal were described briefly. Distributions of metal 

elements in and around the soil were also represented for different interpolation 

techniques.   

Chapter I represented a general knowledge on the background of waste disposal sites, 

MSW, contaminated soil, metal element and the possible sources of contamination of soil 

in disposal site. In addition, the problems associated to unplanned waste disposal and its 
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justification in context of world, objectives of the study and the scope and limitations of 

this study are also highlighted in this chapter. 

Chapter II encompassed a literature review related to this topic. This chapter mainly deals 

about the MSW disposal facilities, MSW and impacts of disposal sites on the 

environmental components and surrounding areas. In addition, present scenario of MSW 

management and disposal facilities in Bangladesh, providence and distribution pattern of 

heavy metals in soil and its environmental impacts are also dealt in this chapter. This 

chapter deals about the review of previous studies conducted to assess spatial and temporal 

distribution of metal elements in soil, water as well as sediments in perspective of the 

world as well as in Bangladesh. This chapter also illustrates the conventional statistics, 

multivariate analysts and the geostatistical techniques used in this study. 

Chapter III contained elaborate description of methodology of research. The sampling 

process, testing in the laboratory, principles of multivariate statistics, i.e., Pearson’s 

correlation, PCA, AHC and geostatistical analyses; i.e., IDW, LPI, RBF and Ordinary 

kriging was described in this chapter. Prediction and performance assessment by ANN 

were also described. Stepwise implementations of different software’s for analysis were 

also presented in this chapter. 

Chapter IV depicted the concentration of metal elements present in collected sample from 

waste disposal site tested in the laboratory. Descriptive statistics including normality test 

i.e. Shapiro-Wilk test, K-S test and normal Q-Q plot was revealed for each metal element. 

Conventional statistics was described for the metal element concentration in the soil of the 

study. An incorporation of multivariate statistics with Pearson correlation, PCA and AHC 

were shown in this chapter. Geostatistical analysis was performed using GIS approach. A 

developed network of ANN was represented and performance assessment of the 

interpolation techniques was described based on literature indices as well as ANN 

network.  

Chapter V represents the comparison and validation of the findings of the present with the 

results of published by various researches for similar cases of this study available in the 

literature. 
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Chapter VI comprises the conclusion and recommendations of the study based on logical 

experimental results and recommendations required for proper waste handling and 

management procedures with sufficient environmental and health safety and also 

recommendations for actions and studies to be required in future. 

 

 

 

Figure 1.1: Outline and relations between six chapters of this study. 

 

 

 

Multivariate Statistics and Geostatistical Analyses of Metal 
Elements in Soil of Waste Disposal Site in Khulna 

Introduction 

Literature Review 

Methodology 

Results and Discusssion 

Comparison and Validation 

Conclusions and Recommendations 
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CHAPTER II 

 

LITERATURE REVIEW 

 

 

2.1  Introduction 

 

This chapter deals with the information related to the contamination of soil due to the 

presence of heavy metals in the soil of disposal site.  This chapter also illustrates the 

background of different multivariate and Geostatistical techniques as well as artificial 

neural network (ANN) used in this study. The literature review presented in this chapter 

was collected from available previous research reports and technical papers related to this 

topics. The organization of the literature review begins with an introduction to MSW and 

waste disposal facilities first, and is followed by the generation of MSWs and 

contamination of soil due to heavy metals. The interrelationship between soil, MSW and 

heavy metals is illustrated in this chapter. An assessment of multivariate statistics is also 

done to comprehend the generation sources of heavy metals as well as the correlation 

between the metals elements irrespective to their sources. After establishing the literature 

review related to heavy metal and soil, general discussion on conventional and multivariate 

statistical analysis is also discussed in this chapter.  

 

2.2  Municipal Solid Waste  

 

Municipal solid waste (MSW) can be defined as useless, unused, unwanted or discarded 

material available in solid or semisolid form (Qasim and Chiang, 1994). It normally 

includes all the community waste such as durable good, non-durable goods, containers and 

packaging, food waste, yard wastes and small amount of inorganic waste except industrial 

wastes. Many changes of MSW generation and composition have taken place due to 

urbanization including increase in the population. The rate of consumption has risen and 

the lifestyle of the people, too, has changed. Several studies have shown how increasing 

waste has affected society and the environmental components. The amount of waste 

production is a sign of the level of industrialization or a degree of development of a 

country or a city. 
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2.3  Dumping Facilities of MSW 

 

Municipal solid waste (MSW) is generated by natural and human activities and it has 

significant adverse effects on the environmental components (soil, water, etc.) and 

atmosphere worldwide (Li et al., 2013). The improper management of MSW raises public 

concern over potential harmful effects to the local communities as well as the 

environmental components. These concerns probably have become more pragmatic when 

recent intensive studies demonstrated increased human health risk caused by exposure to 

toxic chemicals and heavy metals in waste dumping sites (Agusa et al., 2003). MSW 

management simply means the collection, transport, processing, disposal, managing and 

monitoring of MSW materials to minimize its' consequences on humans and environment. 

There are several methods of managing of various types of MSW all over the world (Bai et 

al., 2013). Landfilling practices in developing countries like Bangladesh differ from that of 

the developed countries, which follow advanced landfilling practices such as sanitary 

landfill (engineered landfill) as opposed to open dumping practiced in the developing 

countries. There are two methods for the final disposal of MSW, one is open dumping and 

the other is sanitary landfill shown in Figure 2.1 (Rafizul et al., 2012). Open dump 

facilities cause additional harm to the environment, but not doing anything is not an 

option.  

 

2.3.1  Sanitary Landfill 

 

Sanitary landfill is one of the most widely used MSW management techniques; however, it 

needs high standard of environment protection in the operation of landfill (Oyeku and 

Eludoyin, 2010). The changing from dumping to high standard of environment protection 

needed time change technology, change in thinking and behavior (Pugh, 1999). In 

addition, sanitary landfill is an engineered technique for the disposal of MSW on the land 

by spreading them in thin layers followed by compacting them to the smallest practical 

volume before covering them with soil at regular intervals (Figure 2.1a). Sanitary 

landfilling involves placing MSW in lined pits with appropriate means of leachate and 

landfill gas control (Oyeku and Eludoyin, 2010). It is highly recognized as an 

environmentally and internationally desired technique of MSW disposal since it minimizes 

environmental damage and thus eliminates odors.  



16 

 

2.3.2  Open Dumping  

 

Open dump is a disposal practice without waste compaction during placement; neither 

compacts nor covers with soil. The land is used without preparation of engineering 

planning (Daniel and Koerner, 1995). Thus, the open dump site characteristic are 

unplanned heaps of uncover waste, burning waste at the dump site, pools of standing 

polluted water, rat and fly infestation and waste scavenging at dump site (Pugh, 1999). 

Most widespread method of MSW disposal is open dumping practices.  An open dumping 

is defined as a land disposal site at which MSW are disposed of in a manner that does not 

protect the environment, are susceptible to open burning, surface and ground water 

contamination (Figure 2.1b).  

 

 

 

 

 

 
 

 

 

 

 

 

Figure 2.1: Methods of MSW dumping facilities (a) Sanitary landfills (b) Open dumping 

(Source: http://earthsci.org/ basicgeol/solid_waste/solid_waste.html). 

 

In developed countries, landfills have historically been the primary method of MSW 

disposal because this method is the most convenient and because the threat of groundwater 

contamination was not initially recognized (Smith, 2007).  The practice of landfill system 

as a method of MSW disposal in many developing countries is rarely practiced (Oyeku and 

Eludoyin, 2010). Internationally, almost 70% of MSW is disposed of at landfills. In 

landfill, deposited MSW generates leachate that constitutes a pollution source into the 

environment and water resources.  
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Figure 2.2: Sources of land pollution in MSW disposal site (Source: 

http://imnh.isu.edu/digitalatlas/hydr/concepts/gwater/aquifer.html). 

 

In many towns, sorting is not done, and all the MSW (paper, food, diapers, glass etc.) is 

mixed up and deposited in the nearby landfill. In absence of proper unloading operation of 

landfill, it soon become full, smelly and unsafe for the environment due to disposal of all 

types of degradable and non-degradable materials of generated MSW (Chary et al.,2008). 

Thus, contamination of heavy metal occurs in and around the soil of MSW disposal site. 

Figure 2.2 illustrates a diagrammatical representation of the sources for land pollution due 

to unplanned and uncontrolled dumping of MSW in landfill. Sanitary landfills are lined at 

the bottom to minimize the leakage of soil pollutants and other toxins from getting into the 

water table and surrounding surface water bodies. This method is effective, but 

maintenance of landfill is expensive and difficult. 

 

2.3.3  Overall Impacts of MSW Disposal Site  

 

Pollutants can escape from improperly designed landfill in a variety of ways such as 

leachate and landfill gases. Leachate consists of a mixture of organic and inorganic 

compounds, many of which have a hazardous impact on the environment (Wang et al., 

2015). According to Li et al., (2006), the greatest contamination threat to groundwater 

comes from the leachate generated in unlined landfill from the materials which most often 

contain toxic substances, especially when MSWs of industrial origins are dumping in 

http://imnh.isu.edu/digitalatlas/hydr/concepts/gwater/aquifer.htm
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landfill. Li et al., (2006) stated that heavy metals such as Cd, As and Cr have been reported 

at excessive levels in groundwater due to landfills operation. Leachates contain a host of 

toxic and carcinogenic chemicals, which may cause harm to both humans and the 

environment. Furthermore, leachate-contaminated groundwater can adversely affect 

industrial and agricultural activities that depend on well water (Ashraf et al, 2013). 

Leachate impacts to groundwater may also present danger to aquatic species if the 

leachate-contaminated groundwater plume discharges to wetlands or streams. 

 

 

Figure 2.3: Impacts of MSW disposal (Source: St. Mary’s Country: Maryland, 

http://www.co.saint-marys.md.us/dpw/recycleoverview.asp). 

 

Carbon dioxide, which comprises 40% to 60% of landfill gas, may pose specific 

asphyxiation hazard concerns. In assessing the public health issues of migrating landfill 

gas, environmental health professionals should investigate the presence of buried utility 

lines and storm sewers on or adjacent to the landfill (Agusa, 2003). But, hopefully there 

are some advantages of MSW disposal in landfill. While resource 

recovery and incineration both require extensive investments in infrastructure, and material 

recovery also requires extensive manpower to maintain, landfills have fewer fixed or 

ongoing costs, allowing them to compete favorably (Daniel and Koerner, 1995). Another 

advantage is having a specific location for disposal that can be monitored, where MSW 

https://en.wikipedia.org/wiki/Resource_recovery
https://en.wikipedia.org/wiki/Resource_recovery
https://en.wikipedia.org/wiki/Incineration
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can be processed to remove all recyclable materials before tipping. Figure 2.3 

demonstrates impacts of uncontrolled MSW disposal in landfill site. 

 

2.4  Context of Heavy Metal 

 

Metals are defined as any element that has a silvery luster and is a good conductor of heat 

and electricity (Mclean and Bledsoe, 1992). Theoretically, there are many terms used to 

describe and categorize metals, including trace metals, transition metals, micronutrients, 

toxic metals and heavy metals. A metal having a specific gravity more than 5gm/cm
3
 is 

classified as heavy metal. In this study, to know the behavior and distribution pattern of 

metal elements in soil statistical and geostatistical analysis were performed. The 

providence of heavy metals in soil as well as environment and interrelationship between 

them is described in the following articles. 

 

2.4.1  Providence of Heavy Metals in Soil and Environment 

 

The incapability to determine metal species in soils obstructs efforts to understand the 

mobility, bioavailability and fate of contaminant metals in the environmental systems 

together with the assessment of health risks posed by metal elements, and the development 

of methods to remediate metal contaminated sites. In soil, metals are found in one or more 

of the following several "pools" in the soil: 

i. dissolved in the soil solution; 

ii. occupying exchange sites in inorganic soil constituents; 

iii. specifically adsorbed in inorganic soil constituents; 

iv. associated with insoluble soil organic matter; 

v. precipitated as pure or mixed solids; 

vi. present in the structure of secondary minerals; and/or 

vii. present in the structure of primary minerals 

 

However, in some natural soils, up to 30 to 60% of heavy metals can occur in unstable 

forms developed from parent materials rich in metal contamination as-well as in the 

contaminated soils. Natural and anthropogenic sources are one of the root cause of heavy 

metal contamination which has caused widespread and variable the hazardous possibilities 

of environmental and health effect (Tahir et al., 2007). According to Ross (1994) the 



20 

 

anthropogenic sources of metal contamination can be divided into five main groups: (1) 

metalliferous mining and smelting (As, Cd, Pb and Hg); (2) industry (As, Cd, Cr, Co, Cu, 

Hg, Ni and Zn); (3) atmospheric deposition (As, Cd, Cr, Cu, Pb and Hg); (4) agriculture 

(As, Cd, Cu, Pb, Zn); and (5) MSW disposal (As, Cd, Cr, Cu, Pb, Hg and Zn). Vaalgamaa 

and Conley (2008) also stated a natural activity is another cause of heavy metal 

contamination. Industries such as plating, ceramics, glass, mining and battery manufacture 

are considered the main sources of heavy metals in local water systems causing the 

contamination of groundwater with heavy metals. Furthermore, heavy metals which are 

frequently found in high concentrations of waste landfill leachate are also a potential 

source of pollution for groundwater and underlying soil layer (Bai et al., 2013).  

 

2.4.2  Behavior of Heavy Metals in Soil 

 

Monitoring the endangerment of soil by heavy metals is of interest due to their influence 

on water bodies and underlying soil layers and also on plant life animals and humans 

shown in Figure 2.4. The chemical behavior of heavy metals in soils is controlled by a 

number of processes, including metal cation release from contamination source materials 

(e.g., fertilizer, sludge, smelter dust, ammunition, slag), cation exchange and specific 

adsorption onto surfaces of minerals and soil organic matter, and precipitation of 

secondary minerals. Increased anthropogenic inputs of Cu and Zn in soils have caused 

considerable concern relative to their effect on water contamination (Zhang et al., 2012). In 

addition, oxidizing conditions generally increase the retention capacity of metals in soil, 

while reducing conditions will generally reduce the retention capacity of metals (Mclean 

and Bledsoe, 1992). Soil reduction has been shown to result in the coincident release of 

metals associated with minerals that are susceptible to reductive dissolution, in particular 

Mn and Fe oxides (Asante-Duah, 1998). Contaminants reaching the soil can be divided 

into two groups, namely micro pollutants and macro pollutants. Micro pollutants are 

natural or anthropogenic molecules, which are toxic at very low concentration. Macro 

pollutants are present in the environment locally and/or temporarily to a much higher 

degree than normal level. The main micro pollutants of soils are inorganic or organic 

compounds. (i) Inorganic micro pollutants such as Pb, Cd, Ni, Cr, Hg, Cu, Zn etc are 

mainly the toxic and potentially toxic heavy metals (ii) Organic micro pollutants include 

pesticides and certain non-pesticide organic molecules: e.g. aliphatic solvents, monocyclic 
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aromatics, halogenated aromatics, polychlorinated biphenyls (PCBs) and polycyclic 

aromatic hydrocarbons (PAHs), surfactants, plastifiers.  

 

 

Figure 2.4: Contamination of soil from disposal site (Source: Environment and Climate 

Change: Canada, https://www.ec.gc.ca/eau-water/default.asp?lang=En&n=6A7FB7). 

 

2.4.2.1  Accumulation 

 

Human activities have considerably increased the abundance of heavy metals in the 

environment. Their consequences in polluted soils is a subject of study as they exhibit 

direct potential toxic effects on biota and possess indirect threat to human health via the 

contamination of groundwater and accumulation in food crops (McLean and Bledsoe, 

1992). Bioaccumulation characteristics of heavy metals make it more dangerous. Heavy 

metal pollution of soil enhances plant uptake causing accumulation in plant tissues and 

eventual phytotoxicity and change of plant community (Chary et al., 2008). In 

environments with high nutrient levels, metal uptake can be inhibited because of complex 

formation between nutrient and metal ions. Therefore, a better understanding of heavy 

metal sources, their accumulation in the soil and the effect of their presence in water and 

soil on plant systems seems to be a particularly important issue (Jia et al., 2010). 

Accumulation of heavy metals can also cause a considerable detrimental effect on soil 

ecosystems, environment and human health due to their mobilities and solubilities which 

determine their speciation (Kadar, 1995). Several studies have indicated that crops grown 

on soils contaminated with heavy metals have higher concentrations of heavy metals than 
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those grown on uncontaminated soil (Nabulo et al., 2006). Heavy metals accumulating in 

soil directly or indirectly through plants enter in food chains, thus endangering herbivores, 

indirectly carnivores and not least the top consumer humans (Kadar, 1995). Total levels of 

heavy metals have shown a trend relationship between metal concentration in soil and long 

term irrigation. Metals such as lead, arsenic, cadmium, copper, zinc, nickel, and mercury 

are continuously being added to our soils through various agricultural activities such as 

agrochemical usage and long-term. Application of urban sewage sludge in agricultural 

soils, industrial activities such as MSW disposal, MSW incineration and vehicle exhausts, 

together with anthropogenic sources. All these sources cause accumulation of metals and 

metalloids in our agricultural soils and pose threat to food safety issues and potential 

health risks due to soil to plant transfer of metals . 

  

2.4.2.2  Solubility and Mobility 

 

Metals in the soil, surface  and ground water can occur either as bonded to suspended or 

colloidal material (organic or inorganic) or dissolved in liquid. Soluble compounds are 

most common in soil and groundwater, while the suspended material can make a 

significant contribution in rivers and lakes. Soluble metals appear as cation complexes 

(e.g. Pb 
2+,

 Zn
2+

) with either water molecules (common water solution) or some inorganic 

or organic molecules coordinated, or as anions. Precipitation of metals can occur in the 

presence of e.g. sulphides, carbonates (at high pH), oxides, hydroxides, sulphates and 

phosphates.  Partitioning coefficients can be used to correlate concentrations in different 

environmental compartments (Asante-Duah, 1998). The basic assumption is that the 

distribution of chemicals is driven by equilibrium. The partitioning coefficient can then be 

used to predict the concentration in the media of interest, such as soil, sediment, water or 

biota. Modeling can be used to assess the transportation and exposure of chemicals. 

 

2.4.2.3  Bioavailability 

 

Bioavailability depends on biological parameters and on the physicochemical properties of 

metals, their ions, and their compounds. In addition, the bioavailability and mobility of 

metals in soil strongly depends on the extent of their sorption with solid phases.  The 

bioavailability of some metals (Co, Ni, Cu, Zn) decreases of the soils with clay illuviation 
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due to their enhanced adsorption capacity. Agusa (2003) stated that  Fe, Al and Mn and 

their insoluble compounds become toxic to plants and in addition, aluminum, iron and 

phosphorus. 

 

2.4.2.4  Toxicity 

 

Recently pollution of the general environment has gathered an increased global interest. In 

this respect, contamination of agricultural soils with heavy metals has always been 

considered a critical challenge in the scientific community. Heavy metals are generally 

present in agricultural soils at low levels. Due to their cumulative behaviour and toxicity, 

however, they have a potentially hazardous effect not only on crop plants but also on 

human health (Agusa et al., 2003). Even metals essential to plant growth, like Cu, Mn, and 

Zn can be toxic at high concentrations in the soil. Some elements not known to be essential 

to plant growth, such as As, Ba, Cd, Cr, Pb and Ni, also are toxic at high concentrations or 

under certain environmental conditions in the soil. Chemical hazards include chemical 

agents such as heavy metals, nutrients such as nitrogenous compounds, phosphorus 

compounds, minerals, insecticides, pesticides, fertilizers, fungicides, herbicides and 

organic hazards (Nabulo et al., 2008). Metals, unlike the hazardous organics cannot be 

degraded. Some metals such as Cr, As, Se, and Hg can be transformed to other oxidation 

states in soil, thus influencing their mobility and toxicity (Mclean and Bledsoe, 1992). 

Many of them (Hg, Cd, Ni, Pb, Cu, Zn, Cr, Co) are highly toxic both in elemental and 

soluble salt forms. High concentration of heavy metals in soils is toxic for soil organisms: 

bacteria, fungi and higher organisms. Short-term and long-term effects of pollution differ 

depending on metal and soil characters (Kadar, 1995). In the after-effect of heavy metal 

pollutions, the role of pollutant bounding or leaching increases which determines their 

bioavailability and toxicity. 

 

2.4.3  Consequences of MSW, Soil and Heavy Metal in Disposal Site 

 

The municipal solid waste (MSW) that disposed without proper planning and treatment are 

rich in different types of heavy metals. When MSW is dumped in a disposal site, they take 

a long time to disintegrate depending on their nature. For example, paper towel takes 2-4 

weeks to disintegrate, whereas plastic bag takes 200-1000 years. The metals of the greatest 

concern due to their extensive use, their toxicity and their widespread distribution is Hg, 
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Pb, Cd, Cr and As (Baird et al., 2013). The toxicant may also cause effects on the 

microorganisms and soil fauna. However, the risk for further dispersion of the pollution to 

other recipients must also be considered. Figure 2.5 clearly demonstrates the relation 

between MSW, soil and heavy metals in disposal site.  

 

 

Figure 2.5: Relation between MSW, soil and heavy metals in disposal site (Source: Heavy 

metal treatment project, http://www.sagasiki-kankyo.co.jp/en/jukinzoku/what/index.html). 

 

2.5  Present Scenario of MSW Management and Disposal Facilities in Bangladesh 

 

Bangladesh is the ninth most populous country and twelfth most densely populated 

country in the world. There are six major cities in Bangladesh like Dhaka, Chittagong, 

Khulna, Rajshahi, Sylhet and Barisal. Currently, according to a UNFPA report, Dhaka is 

one of the most polluted cities in the world and one of the issues concerned is the 

management of municipal MSW. A study conducted by Samiul (2016) and found that 

Dhaka city produce more MSW in different ways, like- hospital, small industry, tannery 

and others heavy industry. Debnath (2015) investigated a study on the sources and 

collection process of MSW and existing management practice in Chittagong City 

Corporation. It has been found that total 122 tons of MSW of different type are being 

generated daily. The responsibility of the management is of them is mostly an authority in 

community system and a few on the house owner. Of the total quantity 45-55 percent is 

collected efficiently and the rest is left. It is broadly estimated that between 10-15 percent 
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of the total municipal budget is used for MSW management. The MSWs which are remain 

uncollected and dumped in open spaces, street and drains, clogging the drainage system 

that creates serious environmental degradation and health risks. The collected MSW is 

presently being disposed of mainly in a low-lying area. Few amount of MSW are being 

reclaimed or salvaged for recycling according to its market value. 

 

 

 

Figure 2.6: Present scenario of MSW disposal site in Dhaka (Matuail landfill) (Source: 

https://jessicamudditt.com/2011/02/04/dhakas-largest-waste-site-photographs-of-matuail-

landfill/). 

 

A blog published by Jessica Muddit (2011) informed about four thousand tonnes of MSW 

are deposited at Matuail Landfill, is the largest MSW site in Dhaka as it is responsible for 

65 percent of the total MSW generated.  Figure 2.6 shows the present scenario of matuail 

landfill site. However, according to a 15 month study conducted in 2003 by the Japanese 

International Cooperation Agency (JICA), only 44 percent of all MSW generated is 

collected.  That means that 1,200 tons of garbage swamps Dhaka’s public places every 

day.  When garbage is illegally deposited into waterways, the fishermen lose their 

livelihood; and the fish, their habitat. JICA’s urged Dhaka City Corporation, a self-

governing corporation that is associated with the task of running the affairs of the city 

since 1864, to increase the scope of its MSW maintenance facilities in order to combat the 

odour, drain clogging, pollution and mosquitoes that afflicts many parts of Dhaka. 

In Khulna, the waste disposal site located at Rajbandh, with an area of 5 acres, is 8 km far 

from the city centre i.e. Royal and Castle Salam Square of Khulna city and situated along 
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the North-side of Khulna-Satkhira highway. Khulna is one of the fast growing commercial 

cities in Bangladesh with a population of 1.9 million which produce about 450-520 tons of 

MSW per day. 

 

 

Figure 2.7: Amount of MSW collected in Khulna city (in ton/day) (Source: Aborjona and 

Paribesh, http://www.wasteconcern.org/newsletters/issue5/issue5.html). 

 

Khulna City Corporation (KCC), community based organizations (CBOs) and non-

government organizations (NGOs) are taking care of only 42% of the total MSW 

generated while the rest of them are unattended. In fact, most of the MSWs are collected 

from door-to-door without any sorting and either dumped in open space or improperly 

landfilled which is likely to contaminate the air and ground water. Figure 2.7 shows the 

amount of collected MSW in Khulna city by both the government and non-government 

organizations. Due to inadequate management practices and the low standard sanitary 

landfill, the leachate percolates into the groundwater and contaminates the groundwater 

source which is a potential threat to next generation. Necessities arise to take steps for 

proper disposal of MSW as well as maintenance of MSW disposal site in different cities of 

Bangladesh. 

 

2.6  Distribution Pattern of Heavy Metals in Soil 

 

The interpolated map using geostatistics provides the best and simpler way to comprehend 

the risk of contamination zone depending on the metal concentrations plotted with the 

optimal interpolation model exhibits the peak distribution for metal contamination.  Soil 
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maps convey information about the soil to land users. In the United States, soil map units 

are grouped based on the underlying principles of Soil Taxonomy (Soil Survey Staff, 

1999). Known information about a map unit can be used to extrapolate those properties to 

similar map units across landscapes and regions. Soil properties are generally considered 

to be continuous across a landscape (Isaake and Srivastava, 1989). Within map units, there 

is a varying degree of heterogeneity, can lead to difficulties in using the map to predict 

properties at any point within or along the boundary of a soil map unit. Despite these 

problems, soil maps provide a readily available source of soil property information across 

a landscape. These maps can be used to predict and model properties that were not 

explicitly classified in the map itself.  

 

Figure 2.8 shows the distribution pattern of pollutants in a river and landfill site (Smith et 

al., 2007). Figure 2.8 (a) shows a typical diagram of distribution pattern of extent of heavy 

metals in groundwater layer due to presence of MSW site near a river. The deep ash color 

represents high contamination of pollutants, whereas with the increased distance the effect 

of pollutant decreases. Thus the map shows light brown color to indicate less 

contamination.  Figure 2.8 (b) shows a diagram of contamination of cadmium in soil due to 

incineration of MSWs dumped in a landfill, where different color zone is assigned for 

different contamination level, which provide a simple knowledge of amount of 

contamination in soil layer. The red color represents contamination hotspots and blue color 

represents less contamination zone. 

 

 

 

 

 

 

 

 

 

 
 

(a)                                                                            (b) 

Figure 2.8: Contaminant plume in (a) groundwater; (b) soil (Source: US.EPA, 1993). 
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Several studies were performed to show distribution pattern of heavy metal concentration 

in soils. A case study of Beijing, China by Zou et al. (2015) found that that the peak 

distribution of heavy metal was in the northwest for Cu, Cd, Pb and Zn; in the southeast 

for As; mainly on the urban fringe for Hg; and mainly in the southwest for Cr and Cd. A 

study of heavy metal contamination of urban soil was done by Li et al. (2012) to analyze 

the impacts of land use on the heavy metal pollution of soils and development of the maps 

of the spatial distribution of heavy metal concentrations in an old industrial city (shenyang) 

in northeast china. 

 

2.7  Conventional Statistics 
 

 

Statistical theory delivers a guide to compare methods of data collection, where the 

problem is to generate informative data using optimization and randomization while 

measuring and controlling for observational error. In this study, conventional statistics 

includes normality test to determine whether the data is normally distributed or not. In 

addition descriptive test offers quantitative descriptions in a manageable form. 

 

2.7.1  Normality Test 

 

Normality tests are used to verify whether a data set is well-modeled by a normal 

distribution and to compute how probable it is for a random variable underlying the data 

set to be distributed normally. The choice of a non-parametric test is important as in the 

real world we are mostly faced with data which fails to meet the assumptions of normality 

and stationarity underlying parametric tests. In this study, normality test was performed by 

K-S test and Shapiro-wilk test using SPSS. Nevertheless, for more accuracy normal QQ 

plot was also plotted to check the normality and hence discussed in the following articles. 

 

2.7.1.1  Kolmogorov-Smirnov Test 

 

The Kolmogorov-Smirnov (K-S) test is a hypothesis test procedure for determining if two 

samples of data are from the same distribution. The K-S test is presented for distinguishing 

of distribution of forecasts errors and identifying the model with the lower stochastic error. 

The two-sample one-sided K-S test aims at ascertaining whether the forecast with the 

https://en.wikipedia.org/wiki/Data_collection
https://en.wikipedia.org/wiki/Optimization_(mathematics)
https://en.wikipedia.org/wiki/Randomization
https://en.wikipedia.org/wiki/Observational_error
https://en.wikipedia.org/wiki/Data_set
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Random_variable
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lowest error according to some loss function also has a stochastically smaller error in 

comparison to the competing forecast and thereby enables the comparison of the predictive 

accuracy of forecasts. A study conducted by Yasrebi et al. (2009) and performed K-S test 

to check either the heavy metal parameters are normally distributed or not.  Lu et al. 

(2012) also used K-S test in a study of multivariate and geostatistical analyses of the 

spatial distribution and origin of heavy metals in the agricultural soils in Beijing, China to 

check normality of the data points and it was normally distributed by applying log 

transformation. In the present study, normality test was performed using SPSS to test the 

accuracy of the statistical analysis. 

 

2.7.1.2  Shapiro-Wilk Test 

 

According to Razali and Wah (2011), the Shapiro-Wilk (SW-test) test is based on the 

correlation between the data and the corresponding normal scores and provides better 

power than the K-S test. Power is the most frequent measure of the value of a test for 

normality that the ability to detect whether a sample comes from a non-normal distribution 

(Conover, 1999). Some researchers recommend the S-W test as the best choice for testing 

the normality of data. On the other hand, Shapiro and Wilk (1965) recommended that the 

limitation of this test is what feature of the distribution is non-normal. In the present study, 

S-W test was also performed to test the normality. 

 

2.7.1.3  Normal Quantile-Quantile Plot 

 

The normal quantile-quantile (QQ) plot is implemented to find the linearity of statistical 

data where the S-W test does not utilize deviations from the theoretical distribution 

function. According to Razali and Wah (2011)  research, based on a visual inspection in a 

Q-Q plot, a sample is therefore considered to be consistent with a normal distribution if the 

empirical and theoretical quantiles fall close to the line representing the theoretical 

distribution. This decision is helped additionally by an assessment of whether the points 

fall inside the envelope of 95% pointwise confidence intervals. Anderson and Darling 

(1954) also recommended new graphical methods and test statistics for testing composite 

normality. In the present study, normal QQ plot was plotted for all metal elements using 

XLSTAT. 
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2.7.2  Descriptive Statistics 

 

Heckman (1976) gave an idea about the statistical terms. The median of a data set is the 

value in the middle when the data items are arranged in ascending order. A study of Stuart 

and Ord, 1987 found that whenever a data set has extreme values, the median is the 

preferred measure of central location. It is often desirable to consider measures of 

variability (dispersion), as well as measures of location. The range of a data set is the 

difference between the largest and smallest data values. It is the simplest measure of 

variability. The variance is a measure of variability that utilizes all the data. The standard 

deviation of a data set is the positive square root of the variance. The coefficient of 

variation indicates how large the standard deviation is in relation to the mean. 

 

2.7.3  Case Studies of Application of Conventional Statistics in Soil 

 

Lu et al. (2012) performed an analysis on descriptive statistics of the heavy metal 

concentrations in the agricultural soils  for As, Cd, Cu, Hg, Pb and Zn, respectively. 

Another case study of Yasrebi (2009) showed to identify the variability of different soil 

properties.  Furthermore, numerous studies were performed for statistical analysis. In this 

study, conventional statistics including normality test and descriptive statistics were 

performed to see the concentration distribution as well as temporal variation of heavy 

metal contamination in and around the landfill site. 

 

2.8  Multivariate Statistics 

 

Multivariate analysis is the area of statistics that deals with observations made on many 

variables. The main objective of this analysis is to study how the variables are related to 

one another, and how they work in combination to distinguish between the cases on which 

the observations are made. In this study, multivariate statistics including Pearson’s 

correlation, principal component analysis (PCA) and agglomerative hierarchical clustering 

(AHC) were performed using XLSTAT and discussed in the following articles. 
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2.8.1  Pearson’s Correlation 

 

In statistics, Pearson’s correlation is a parametric measurement developed by Karl 

Pearson from a related idea introduced by Francis Galton in 1880s. The bivariate Pearson’s 

correlation produces a sample correlation coefficient, r, which measures the strength and 

direction of linear relationships between pairs of continuous variables. 

The bivariate Pearson’s Correlation is commonly used to measure the following: 

I. Correlations among pairs of variables. 

II. Corrrelations within and between the sets of variables. 
 

Pearson's correlation should be used only when there is a linear relationship between 

variables. It can be a positive or negative relationship, as long as it is significant. 

Correlation is used for testing in within groups studies. In case of heavy metal 

contamination in soil, several studies were performed to find the association between metal 

elements and the similarity of their contamination sources. Zou et al. (2015) studied on 

sources of heavy metals in farmland soils of beijing suburbs, China based on pearson’s 

correlation. It was found that some metal eelments such as Cr was moderately correlated 

with Cd and Zn, whereas, Hg was only correlated with As and not with the other elements 

as the pair. Another study by Mahmoudabadi on accuracy assessment of geostatistical 

methods for zoning of metal elements in soil of urban-industrial areas also found that for 

the elements Cd, Cu, Pb and Zn were derived from different sources due to lack of high 

correlation. In this study, the principal of pearson’s correlation was performed using 

XLATAT to examine the association of metal elements in soil irrespective to their sources. 

 

2.8.2  Principal Component Analysis  

 

According to the definition given by Abdi and Williams (2010), multivariate statistics is a 

subdivision of statistics encompassing the simultaneous observation and analysis of more 

than one outcome variable. The application of multivariate statistics is multivariate 

analysis. Analysis performed by Anderson and Darling (1954) interpreted that multivariate 

statistics concerns understanding the different aims and background of each of the 

different forms of multivariate analysis, and how they relate to each other. Principal 

component analysis (PCA) estimates those components that contribute most to the 

variation in the data sets. Large-scale investigations of metal concentrations have been 

https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Karl_Pearson
https://en.wikipedia.org/wiki/Karl_Pearson
https://en.wikipedia.org/wiki/Francis_Galton
https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Multivariate_analysis
https://en.wikipedia.org/wiki/Multivariate_analysis
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conducted in China, mainly in the areas with natural background levels and minor 

anthropogenic pollution sources (Liu et al., 2003). According to Abdi and Williams 

(2010),  the goals of PCA are: 

(1) to extract the most important information from the data table; 

(2) to compress the size of the data set by keeping only this important information;  

(3) to simplify the description of the data set; and 

(4) to analyze the structure of the observations and the variables. 

 

2.8.3  Agglomerative Hierarchical Clustering 

 

Although not substantially different from PCA, cluster analysis could be used as an 

alternative method to confirm results and provide grouping of variables. Statistician 

manual refers to cluster analysis comprises a group of statistical techniques that measures 

similarity or distance between the objects. Agglomerative hierarchical clustering (AHC) 

accomplishes successive fusions of data into clusters where each object initially starts out 

as its own cluster. It also differs to the extent that different measures are employed to 

measure the distance between clusters. A study conducted by Zhang et al. (2012) for heavy 

metals in agricultural soils in northern china and it showed the correlation between heavy 

metals by construction of dendrogram.  

 

2.8.4  Case Studies of Multivariate Statistics for Assessment of Heavy Metals in Soil  

 

The application of multivariate statistical approaches to the problem allows a better 

classification, modeling, and interpretation of soil monitoring data. This strategy makes it 

possible to detect relationships between the chemical pollutants and specific soil 

parameters, between sampling sites and, therefore, to achieve a stratification of the 

pollution (Zou et al., 2015). Further, it becomes possible to identify possible pollution 

sources and to construct apportioning models allowing the determination of the 

contribution of each identified source to the formation of the total pollutant mass (Einax 

and Soldt, 1995).  
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Table 2.1: Several researches on application of multivariate statistics for assessment of soil pollution 

Authors Title of the Research Location Objectives of the Research Findings of the Research 

Maria et al. 

(2010) 

Soil Contamination Interpretation by the 

Use of Monitoring Data Analysis 
Bulgaria 

to identify possible 

pollution sources. 

Two major clusters were found to explain the sampling site 

locations according to soil composition i.e. one cluster for coastal 

and mountain   and another—for typical rural and industrial sites 

Lu et al. (2012) 

Multivariate and geostatistical analyses 

of the spatial distribution and origin of 

heavy metals in the agricultural soils in 

Shunyi, Beijing, China 

China 

to determine possible 

sources of heavy metals in 

agricultural land in Shunyi 

The analysis suggested the heavy metals of Cd, Cu and Zn derived 

from agricultural practices, whereas As and Pb from parent 

materials and Hg from atmospheric deposits. 

Xiaoyu et al. 

(2013) 

Heavy metal contamination of urban soil 

in an old industrial city (Shenyang) in 

Northeast China 

China 

to identify the relationship 

between urban land use and 

the heavy metal 

contamination of urban soil 

Industrial District was polluted by heavy metals and that the high 

concentrations of Pb, Cu, Zn, Cd and Hg were not only distributed 

in industrial areas, but were also widely distributed in residential 

areas and parks. 

Zou et al. 

(2015) 

Analysis of Spatial Variations and 

Sources of Heavy Metals in Farmland 

Soils of Beijing Suburbs 

China 

To provide comprehensive 

understanding of heavy 

metal distributions in the 

farmland soils of the Beijing 

The Cu, Cd, Pb and Zn pollutant levels were mainly affected by 

the road distribution and land use status, Hg derived from 

industrial MSW, Ni had no significant effects. 

Lee et al.(2006) 

Metal contamination in urban, suburban, 

and country park soils of 

Hong Kong: A study based on GIS and 

multivariate statistics 

Hong Kong 

to assess and compare metal 

contamination in soils of 

urban, suburban and country 

park areas of Hong Kong 

The peak distribution was in the northwest for Cu, Cd, Pb and Zn; 

in the southeast for As; mainly on the urban fringe for Hg; and 

mainly in the southwest for Cr and Cd. 

Lu et al. (2010) 

The spatial distribution and sources of 

metals in urban soils of 

Guangzhou,China 

China 
to identify possible sources 

for these metals 

Fe, Ni and Mn are derived from natural sources; As, Cu, Hg, Pb 

and Zn from anthropogenic sources and Cd from both sources. 

Candeias et al. 

(2011) 

The use of multivariate statistical 

analysis of geochemical data for 

assessing the spatial distribution of soil 

contamination by potentially toxic 

elements in the Aljustrel mining area 

Portugal 

To identify possible sources 

of contamination that can 

explain the spatial patterns 

of soil pollution in the area; 

The source of heavy metals originated from geogenic or 

anthropogenic origin 

Fahad et al. 

(2016) 

Spatial distribution and source 

identification of heavy metal pollution in 

roadside surface soil: a study of Dhaka  

Bangladesh 

to assess  the concentration 

and distribution patterns of 

heavy metals in urban soil 

high positive loading is found near 

the Boilapur-Amin Bazar landfill site (PC1), near Boilapur (PC2), 

and near the Noyahati-Amin Bazar landfill site (PC3). CA formed 

three major clusters for both 

water parameters and sampling site. 
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Multivariate analytical techniques give more details on the data structure collected from 

environmental media than univariate methods since multiple parameters are measured 

during soil, sediment, water and air quality analysis. In soil analytical studies, a variety of 

geostatistical tools with a wide range of applications exist (Facchinelli et al., 2001). 

Zamani et al. (2012) made a research on multivariate statistical assessment of heavy metal 

pollution sources of groundwater. The results illustrated PC1with Pb and Cu are important 

byproducts of lead industries indicating its anthropogenic sources. PC2 reveals 24.4% of 

the total variances are positively loaded with Zn and negatively loaded with Co. PC3 

shows that 17.4% of total variance is positively loaded with Ni. PC4 explains 15.1% of 

total variance, is positively loaded with Cd and Fe.  

 

Multivariate statistical analysis has been widely used for source apportionment of metals 

in soil and water in different parts of the world. In context of Bangladesh, a research was 

done by Bhuiyan et al. (2016) to assess the groundwater quality of lakshimpur district of 

Bangladesh using water quality indices,  geostatistical methods and multivariate analysis. 

The results of principal component/factor analysis indicate that anthropogenic (agrogenic, 

surface runoff, and domestic sewage) and natural/geogenic sources (weathering of source 

rock) are responsible for variation in physicochemical parameters and metal contents in 

groundwater systems at the southeastern coastal region of Bangladesh. Table 2.1 provides 

a summary of several research cases on application of multivariate statistics for the 

assessment of contamination of soil. In this research, Pearson’s correlation offers the 

correlation between the metal elements irrespective to their sources. In addition, PCA and 

AHC were performed to evaluate the origin of metal elements presence in soil and 

correlation between these metal elements. The results obtained by multivariate statistics 

can be used as a guideline to reduce the roots of metal elements spread over the disposal 

site area.  

 

2.9  Geostatistical Analysis 

 

Geostatistics is a subset of statistics specialized in analysis and interpretation of 

geographically referenced data. Moreover, Geostatistics is a class of statistics used to 

analyze and predict the values associated with spatial or spatiotemporal phenomena. It 
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incorporates the spatial (and in some cases temporal) coordinates of the data within the 

analyses. Many geostatistical tools were originally developed as a practical means to 

describe spatial patterns and interpolate values for locations where samples were not taken 

(Nielsen and Wendroth, 2003). Those tools and methods have since evolved to not only 

provide interpolated values, but also measures of uncertainty for those values. The 

measurement of uncertainty is critical to informed decision making, as it provides 

information on the possible values (outcomes) for each location rather than just one 

interpolated value.  

 

 

 

 

 

 

 

 

Figure 2.9: Spatial prediction implies application of a prediction algorithm to an array of 

grid nodes (point ´a point spatial prediction). The results are then displayed using a raster 

map (Source: Heckman, 1976). 

 

Geostatistical analysis has also evolved from uni- to multivariate and offers mechanisms to 

incorporate secondary datasets that complement a (possibly sparse) primary variable of 

interest, thus allowing the construction of more accurate interpolation and uncertainty 

models. According to the bibliographic research of Nielsen and Wendroth, 2003, the top 

10 application fields of geostatistics are: (1) geosciences, (2) water resources, (3) 

environmental sciences, (4) agriculture and/or soil sciences, (5/6) mathematics and 

statistics, (7) ecology, (8) civil engineering, (9) petroleum engineering and (10) limnology. 

One of the main uses of geostatistics is to predict values of a sampled variable over the 

whole area of interest, which is referred to as spatial prediction or spatial interpolation. An 

important distinction between geostatistical and conventional mapping of environmental 

variables is that the geostatistical prediction is based on the application of quantitative and 

statistical techniques.  A guideline by EPA defines spatial distribution as the graphical 

display of an arrangement of a phenomenon across the earth, is an important tool in 

https://en.wikipedia.org/wiki/Graphical_display
https://en.wikipedia.org/wiki/Graphical_display
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geographical and environmental statistics. Geostatistical mapping represents analytical 

production of maps by using field observations, auxiliary information and a computer 

program that calculates values at locations of interest. Figure 2.9 shows the mechanism of 

establishing interpolation map of predicting unsampled points using geostatistics. The 

geostatistics and ArcGIS are useful tools for the identification of pollution sources, the 

assessment of pollution trends and the potential risks of heavy metals. In this study, the 

most widely used geostatistical interpolation techniques such as inverse distance weighting 

(IDW), local polynomial interpolation (LPI), radial basis function (RBF) and ordinary 

kriging (OK) were used to predict the spatial distribution of metal elements with best fitted 

model. 

 

2.9.1  Inverse Distance Weighting  

 

Inverse distance weighting (IDW) is a type of deterministic method for multivariate 

interpolation with a known scattered set of points. The assigned values to unknown points 

are calculated with a weighted average of the values available at the known points. The 

name given to this type of methods was motivated by the weighted average applied, since 

it resorts to the inverse of the distance to each known point, when assigning weights 

(Pebesma, et al., 2007). Greater weighting values are assigned to values closer to the 

interpolated point. As the distance increases the weight decreases (ESRI, 2001) and 

weighting power that decides how the weight decreases as the distance increases. 

Numerous researches were performed to show the spatial distribution of heavy metals in 

soil and assessment of accuracy of interpolation techniques using IDW through GIS 

technique. In this study, the technique of IDW with power 1 to 5 was performed to find out 

the best interpolation technique to provide spatial distribution of metal elements in soil of 

waste disposal site to understand the actual field condition. 

 

2.9.2  Local Polynomial Interpolation  

 

Local polynomial interpolation (LPI)  is a moderately quick deterministic interpolator that 

is provides prediction, prediction standard error and condition number surfaces that are 

comparable to ordinary kriging with measurement errors (Smith et al.,2007).  It is more 

flexible than the global polynomial method, but there are more parameter decisions. Local 

https://en.wikipedia.org/wiki/Environmental_statistics
https://en.wikipedia.org/wiki/Deterministic_algorithm
https://en.wikipedia.org/wiki/Multivariate_interpolation
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polynomial methods do not allow you to investigate the autocorrelation of the data, 

making it less flexible and more automatic than kriging. There are no assumptions required 

of the data (ESRI, 2001). 

 

LPI fits the local polynomial using points only within the specified neighborhood instead 

of all the data. A first-order global polynomial fits a single plane through the data.; a 

second –ordedr global polynomial fits a surface with a bend in it, allowing surfaces 

representing valleys; a three-order global polynomial allows for two bends. Order of 

polynomial greater than 3 is not generally recommended for most situations due to its high 

critical spatial condition number  thershold value  which indicate less reliability. Then the 

neighborhoods can overlap, and the surface value at the center of the neighborhood is 

estimated as the predicted value. Numerous studies were done to examine the performance 

of LPI for spatial distribution of heavy metals in soils. In this study, the technique of LPI 

with order 1 to 3 was performed to find out the best interpolation technique to provide 

spatial distribution of metal elements in soil of waste disposal site to understand the actual 

field condition. 

 

2.9.3  Radial Basis Functions  

 

Radial Basis Functions (RBF’s) are moderately quick deterministic interpolator . This 

method provides prediction surfaces that predicts values identical with those measured at 

the same point and the generated surface requires passing through each measured point. 

Xie et al. (2011) suggested that the predicted values can vary above the maximum or 

below the minimum of the measured values. A research of  Johnston et al. (2001) 

identified  RBF fits a surface through the measured sample values while minimizing the 

total curvature of the surface. RBF is ineffective when there is a dramatic change in the 

surface values within short distances (Xie et al., 2011). In this study, the technique of 

RBFs were performed to find out the best interpolation technique to provide spatial 

distribution of metal elements in soil of waste disposal site to understand the actual field 

condition. 
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2.9.4  Ordinary Kriging  

 

Kriging is deterministic interpolation method that focuses on estimation that gives the best 

unbiased (minimum variance) linear estimate of point values or block averages. The 

method was created by Dr. D.G. Krige, for the South African mine fields and was 

improved by Professor G. Matheron into the techniques used today (Zhang, 2011). 

Ordinary kriging (OK) is the original form of Kriging, is the most widely used, and the 

most robust form (Zhang, 2011). Ordinary Kriging is usually referenced with the acronym 

B.L.U.E. meaning best linear unbiased estimator. Ordinary kriging is ―linear‖ because its 

estimates are weighted linear combinations of the data used in analysis; it is ―unbiased‖ 

since it tries to have the mean residual error equal zero; is ―best‖ because it aims at 

minimizing the variance of the errors associated with the analysis (Isaaks and Srivastava 

1989). The whole idea behind ordinary kriging is to find the optimal weights that minimize 

the mean square estimation error (Yan et al., 2015). The assumptions made in Ordinary 

Kriging are: 1) the sample is the partial realization of a random function Z(s), where (s) 

denotes the spatial location; 2) Z(s) is second order stationary or can honor the intrinsic 

hypothesis; 3) the mean is constant but unknown (no trend). In this study, the technique of 

ordinary kriging was performed to find out the best fitted model to provide spatial 

distribution of metal elements in soil of waste disposal site to understand the actual field 

condition. 

 

2.9.5  Semi-variogram and its Estimation 

 

The spatial variability of the soil heavy metal pollution was described using 

semivariogram methodology, which reflects the variations between two observed values at 

different distances. The variogram is the basic geostatistical tool for measuring spatial 

autocorrelation of a regionalized variable (Isaaks and Srivastava 1989). Semi- variogram 

models are the spatial structure of the regionalized variable and provides weighting 

information to the kriging algorithm for interpolation (Yan et al., 2015). Kriging uses the 

semi-variogram to predict values at unobserved location using minimization of errors 

(Krige, 1951). These principles have been applied to soil science for over two decades 

(Burgess and Webster, 1980).  
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(a) 

 

(b) 

Figure 2.10: Typical diagram of semivariogram (Source: Heckman, 1976). 

 

Upon completion of the semivariogram plot a mathematical function is then applied to fit 

the data. A properly fitted mathematical model then allows for a computer program to 

calculate linear estimates that reflect the spatial extent and orientation of autocorrelation in 

the variable to be mapped. All variograms that have mathematical functions fitted to them 

have a range and a sill by which predictions are no longer valid due to a lack of correlation 

between data points (Isaaks and Srivastava 1989). This sill is the limiting value of the 

mathematical model and the range is the lag distance from the origin of the variogram to 

sill. Figure 2.10 is a typical example of a semi variogram indicating different parameters to 

give a clear conception for interpretating these terms. 
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Variograms that reach a sill and have a finite range are named as bounded and variograms 

that do not reach a sill are named as unbounded. In many cases mathematical model fitting 

can be a difficult task to achieve. In those cases it may be necessary to change the lag 

intervals by increasing or shortening them to achieve a more distinct trend (Candeias et 

al.,2011)). A study of Yang et al. (2013) described semivariogram results nugget to sill 

ratios representing nature of heterogeneity. The nugget effect may be caused by random 

factors highlighted the stronger spatial correlation. 

 

2.9.6  Case Studies of Application of Geostatistics of Heavy Metals in Soil 

 

New computer applications have allowed more wide-spread development and use of 

geostatistical techniques. However, there are still many applications of geostatistics that 

have not yet been explored. The purpose of this study is to use geostatistics to evaluate and 

compare the spatial distribution of soil properties in a native landfill. Numerous studies 

were performed to assess the spatial distribution metal elements present in soil. Yang et al. 

(2013) examined ability of kriging interpolation by creating heavy metals maps at a high 

level of spatial resolution in soil of Norway. Xie et al. (2011) showed the spatial 

distribution of heavy metal in soil Beijing using different interpolation methods, and to 

investigate the relationship between the accuracy of prediction and local variation in soil 

heavy metal content. Accuracy of geostatistical interpolation techniques such as kriging, 

cokriging and IDW, was also examined by Mahmoudabadi et al. (2012) for zoning of 

heavy metals in soils of urban-industrial areas of Iran. 

 

A study of Xie et al. (2011) gave a detailed discussion on different types of interpolation 

techniques. According to his statement, IDW is an example of a gradual, exact, 

mathematical interpolator in which points closer to the measured data receives more 

weight in the averaging formula. He also stated that RBF can predict values above the 

maximum or below the measured number. Global polynomial interpolation accounts for 

bends in the data; whereas Surfaces that do not display a series of bends, however, such as 

one that increases, flattens out, and increases again, can be better represented using local 

polynomial interpolation. The variability in the kriging estimates is less than the variability 

of the unobserved, true spatial process. He stated that spatial variation is analyzed using 

variograms, which plot the variance of paired sample measurements as a function of 
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distance between samples. The spatial distribution and source identification of heavy metal 

pollution in roadside surface soil in Dhaka Aricha highway. Table 2.2 enlisted some of 

previous studies of application of geostatistics with their aims and goals obtained. In this 

study, spatial distribution of heavy metals in and around the soil of studied landfill site is 

represented in a better and simplified way. The maps produced from spatial analysis 

provide knowledge of pattern of contamination level of heavy metals in form of map. 

Different colors attributed to different concentration levels indicate the how intensely the 

region is contaminated and how immediate steps should be taken to reduce the 

contamination. 
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Table 2.2: Several researches on application of geostatistics for assessment of soil pollution 

 

Authors Title of the Research Location Objectives of the Research Findings of the Research 

Maria et 

al. (2010) 

Soil Contamination Interpretation by the 

Use of Monitoring Data Analysis 

Bulgaria to get information about some spatial 

distribution of the soil pollutants. 

Accurate shaded maps were presented according to 

surface and subsurface soil layers. 

Lu et al. 

(2012) 

Multivariate and geostatistical analyses of 

the spatial distribution and origin of heavy 

metals in the agricultural soils in Shunyi 

China to determine the spatial distribution 

of heavy metals in agricultural land in 

Shunyi 

Contaminants were displayed in form of geoststistical 

maps. 

Xiaoyu et 

al. (2013) 

Heavy metal contamination of urban soil 

in an old industrial city (Shenyang) in 

Northeast China 

China to assess  the concentration and 

distribution patterns of heavy metals 

in urban soil 

The estimated maps of Cr, Zn, Mn, Cd, As and Hg are 

presented several hotspots of high metal concentration; 

Pb and Cu showed a very similar spatial pattern, 

indicating from same sources. 

Zou et al. 

(2015) 

Analysis of Spatial Variations and Sources 

of Heavy Metals in Farmland Soils of 

Beijing Suburbs 

China To provide comprehensive 

understanding of heavy metal 

distributions in the farmland soils. 

The Cu, Cd, Pb and Zn pollutant levels were higer than 

Hg; Ni had no significant effects. 

Lee et 

al.(2006) 

Metal contamination in urban, suburban, 

and country park soils of Hong Kong: A 

study based on GIS and multivariate 

statistics 

Hong 

Kong 

to evaluate the relationship between 

heavy metals and their possible 

sources using GIS spatial analysis 

The urban and suburban soils were highly enriched with 

metals such as Cu, Pb, and Zn, in comparison with the 

country park soils. The urban soils were found to be more 

contaminated than the suburban soils. 

Lu et al. 

(2010) 

The spatial distribution and sources of 

metals in urban soils of Guangzhou,China 

China to determine concentrations of metals 

including variability and spatial 

distribution patterns 

The spatial distribution maps of As, Cd, Cu, Hg,Pb and 

Zn concentrations displayed several hotspots of heavy 

metal pollution. 

Candeias 

et al. 

(2011) 

The use of multivariate statistical analysis 

of geochemical data for assessing the 

spatial distribution of soil contamination 

by potentially toxic elements in the 

Aljustrel mining area 

Portugal to determine the associations between 

the different toxic elements and their 

spatial distribution 

it is possible to conclude that soils aroundAlgares/Feitais 

tailing deposits, Este´reis and A´guas Clarasmine dams 

and S. Joa˜o mine showed severe contamination. 
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2.10  Artificial Neural Network 

 

A study conducted by Shahin et al. (2004) and stated that over the last few years or so, the 

use of artificial neural network (ANN) has increased in many areas of engineering. In 

particular, ANN has been applied to many geotechnical engineering problems and have 

demonstrated some degree of success. A review of the literature reveals that ANN has 

been used successfully in pile capacity prediction, modeling of soil behaviour, site 

characterization, earth retaining structures, settlement of structures, slope stability, design 

of tunnels and underground openings, liquefaction, soil permeability and hydraulic 

conductivity, soil compaction, soil swelling and classification of soils (Rooki et al.,2011). 

Figure 2.11 shows a typical architectural model of ANN. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11: Typical ANN architecture model (Source: Alkaiem et al., 2016). 

 

Back propagation is the best known training algorithm for neural networks and has the best 

performance. Shahin et al. (2004) found that the Marquardt-Levenberg method, based on 

Gauss-Newton’s equations can be used for training the network with a neuron in the output 

layer to minimize the square sum of the nonlinear objective function. A studies conducted 

by Yun and Uchimura (2007) used the SOM algorithm for spatial clustering of health and 

census data. Standard SOM algorithms have been applied to remote-sensing studies for 

classifications and spatial clustering. Rooki et al.(2011) made a research on prediction of 

heavy metal in acid mine drainage using ANN. Alkaiem et al. (2016) used of artificial 



44 

 

intelligence techniques to predict distribution of heavy metals in groundwater of Lakan 

lead-zinc mine in Iran. In that study, the ANN was developed to estimate the heavy metals 

concentrations in groundwater using SO4, Cl, and TDS as input parameters, and Fe, Mn, 

Pb, and Zn as output parameters and the performance of ANN was satisfactory. Mehidi et 

al. (2014) used ANN process to assess risk in cement industries in Bangladesh and it was 

found that ANN is most flexible and useful tool for predicting risk in any industry(Yun 

and Uchimura., 2007). Furthermore, more studies as needed to understand this problem. In 

the present study, ANN was used to predict concentration of higher depth that has not been 

tested in laboratory as well as the accuracy of predicted values. 
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CHAPTER III 

 

RESEARCH METHODOLOGY 

 

 

3.1  Introduction 

 

This chapter deals with the overall research methodology in this study. It includes the 

information about the study area and soil condition. In this study, total sixty disturbed soil 

samples were collected at a depth of 0-30 cm from the existing ground surface from 

different selected locations within the waste disposal site in both the dry season (March to 

May, 2016) and rainy season (June to August, 2016). The method of soil sampling was 

also highlighted in this chapter. In the laboratory, the concentration of metal elements such 

as aluminium (Al), arsenic (As), barium (Ba), calcium (Ca), iron (Fe), mercury (Hg), 

potassium (K), manganese (Mn), sodium (Na), nickel (Ni), lead (Pb), antimony (Sb), 

scandium (Sc), strontium (Sr), titanium (Ti), vanadium (V) and zinc (Zn) in soil were 

measure and monitor through standard test methods. Then, the measured concentrations of 

metal elements were used to perform the descriptive conventional statistics using 

Statistical Package for the Social Sciences (SPSS) 16 to assess the basic features of soil 

data in a simpler, but meaningful way.  

 

Firstly, the normality test was performed through Kolmogorov–Smirnov test using 

XLSTAT. The Pearson correlation coefficient was accomplished to measure the linear 

correlation between metal elements in soil using SPSS.  The principle component analysis 

(PCA) was implemented to explain the variance-covariance structure of variables through 

linear combinations using XLSTAT. In addition, the cluster analysis through 

agglomerative hierarchical analysis (AHC) was also performed using XLSTAT to classify 

the metal elements on the basis of dissimilarity between sets of observations. To find out 

the spatial distribution of metal elements in soil GIS was performed and also highlighted in 

this chapter. The different geostatistical interpolation techniques such as inverse distance 

weighting (IDW), local polynomial (LP) interpolation, radial basis function (RBF) 

interpolation and ordinary kriging (OK) were implemented to predict the accuracy of 

spatial distribution of the concentrations of metal elements in soil and the possible sources 
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of contamination of soil. The performance of these interpolation techniques were assessed 

on the basis of indices such as mean absolute percentage error (MAPE), relative 

improvement (RI) and goodness of prediction (G-value). Furthermore, a model was 

developed using nntool of artificial neural network (ANN) to predict the concentration of 

metal elements presence in soil of the waste disposal site using MATLAB. For evaluating 

predicted values of metal elements in soil using ANN, the value of mean standard error 

(MSE) and regression coefficient (R-value) were considered to check the validity or 

accuracy of obtained results from laboratory and also described in this chapter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Location map of Rajbandh at Khulna city of Bangladesh (Source: Aborjona 

and Paribesh, http://www.wasteconcern.org/newsletters/issue5/issue5.html). 
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3.2  Description of Study Site  

 

Khulna is the third established metropolitan city of Bangladesh. It is located in the Khulna 

Division. It has an area of 4394.45 km² and is bordered on the north by the Jessore 

district and the Narail district, on the south by the Bay of Bengal, on the east by 

the Bagerhat District, and on the west by the Satkhira district. The geological location of 

Khulna is 22.35
0
N and 89.30

0
E, surrounded by Rupsa, Arpangachhia, Shibsa, Pasur, and 

the Koyra. Urban development is dribbling into neighboring zones to the North and West 

results a huge amount of waste generation. The areas of KCC and KCPA are 45.65sq.km 

and 69.50sq.km, respectively. The increasing population in Khulna city tends to dispose 

increasing amount of municipal solid waste (MSW) as well as liquid waste termed as 

leachate. These MSW contain a large amount of metal elements which get direct contact to 

the environment. This may result a great thread to the environment and human health. The 

selected waste disposal site, Rajbandh is the only certified waste dumping site of Khulna 

shown in Figure 3.1. Based on aforementioned authenticities, it has become inevitable of 

comprehensive study of distribution of metal elements in soils ascends in the vicinity of 

the Rajbandh waste disposal site.  

 

3.3  Location and Soil Conditions of Waste Disposal Site 

 

The waste disposal site located at Rajbandh, Khulna with an area of 5 acres, is 8km far 

from the city centre i.e. Royal & Castle Salam Square of Khulna city and situated along 

the North-side of Khulna-Satkhira highway. The percolation and seepage capacity of 

leachate from MSW in disposal sites depends mainly on the basic characteristics of the 

soils (Daniel and Koerner, 1995). It is therefore important to know the physical and 

mechanical properties of underlying soils as thoroughly as possible before assessing their 

physico-chemical or hydro-mechanical behavior. Based on these concepts, in laboratory 

through standard ASTM (2004) methods, some relevant physical and mechanical 

properties of soil from this selected disposal site were determined by Rafizul (2011). Soil 

moisture content, plastic limit, liquid limit, plasticity index and shrinkage limit of clay soil 

used as CCL were found 22, 22, 43, 21 and 16 %, respectively. In addition, the 

percentages of soil constituents were found as sand, silt and clay of 10, 56.6 and 33.4%, 

https://en.wikipedia.org/wiki/Khulna_Division
https://en.wikipedia.org/wiki/Khulna_Division
https://en.wikipedia.org/wiki/Jessore_District
https://en.wikipedia.org/wiki/Jessore_District
https://en.wikipedia.org/wiki/Narail_District
https://en.wikipedia.org/wiki/Bay_of_Bengal
https://en.wikipedia.org/wiki/Bagerhat_District
https://en.wikipedia.org/wiki/Satkhira_District
https://en.wikipedia.org/wiki/Rupsa_River
https://en.wikipedia.org/wiki/Arpangachhia_River
https://en.wikipedia.org/wiki/Shibsa_River
https://en.wikipedia.org/wiki/Pasur_River
https://en.wikipedia.org/w/index.php?title=Koyra_River&action=edit&redlink=1
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respectively. Then the value of soil pH, optimum moisture content, maximum dry density 

and coefficient of permeability were found 6.7, 18 %, 16 kN/m
3
 and 1.90x10

-7
 cm/sec, 

respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Map showing of soil sampling locations in waste disposal site. 

 

3.4  Soil Sampling 
 

In this study, total sixty soil samples were collected from the distinct locations of the waste 

disposal site (Figure 3.2). All the samples were collected at a depth of 0-30 cm from the 

existing ground surface of waste disposal site. The latitude and departure of all the soil 

sampling locations was recorded using GPS device, which were later imported into a 

geographic information system (ArcGIS 10.1). In total sixty soil samples, forty samples 

were collected in dry season (April, 2016) then rest twenty samples were collected in rainy 

season (June, 2016). In dry season, the sampling points were selected maintaining gradual 
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addition of about 10 m distance from the 1st borehole (BH-1) by the subsequent boreholes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Flow diagram of research methodology in this study. 
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The first sampling point, BH-1 is located at the centre of the waste disposal site. On the 

other hand, the first borehole of rainy season (BH-41) is about 30 m apart from BH-1 

which is the centre of the site and maintains a gradual addition of about 15 m in selecting 

other following boreholes. Proper care was taken to remove any loose material, debris, 

coarse aggregates from the bottom of the excavated pit. The soil samples were collected 

from the bottom of the borehole by excavating the ground manually by using hand shovels. 

Samples were taken in large polythene bags and eventually transported to the laboratory. 

Figure 3.2 depicted the soil sampling locations in waste disposal site at Rajbandh, red 

circles indicated sampling points in dry season and blue triangles indicated sampling 

points in rainy season. The overall research methodology of this study is illustrated in 

Figure 3.3. 

 

3.5  Laboratory Investigations  

 

The soil samples were carried in the laboratory to measure the concentration of metal 

elements of Al, As, Ba, Ca, Fe, Hg, K, Mn, Na, Na, Pb, Sb, Sc, Sr, Ti, V and Zn in the soil 

samples. Moreover, the values of some metal element concentrations were collected from 

secondary sources. The procedure of acid digestion and atomic absorption 

spectrophotometer (AAS) analysis are described in the following articles. 

 

3.5.1  Acid Digestion 

 

To measure the concentration of metal elements in soil, laboratory work was done 

following the standard test method. In laboratory investigation, at first 10 g of each soil 

sample was taken into a 100 mL conical flask. Already, the flask had been washed with 

deionized water prepared by adding 6 mL HNO3/HClO4 acid in ratio 2:1 and left 

overnight. Each sample was kept into the temperature of 150°C for about 90 minutes. 

Later, temperature was raised to 230°C for 30 minutes. Subsequently, HCl solution was 

added in ratio 1:1 to the digested sample and re-digested again for another 30 minutes. The 

digested sample was washed into 100 mL volumetric flask and mixture obtained was 

cooled down to room temperature.  
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3.5.2  Analysis of Metal Elements with AAS 

 

After performing the digestion procedure, metal element concentrations in this digested 

solution were determined using atomic absorption spectrophotometer (AAS) and the 

amount of each heavy metal was deduced from the calibration graph. The concentration of 

the metal elements of Al, Fe, Mn, Cr, Cu, Pb, Zn, Ni, Cd, As, Co, Sb, Sc and Hg in mg/kg 

were measured in the laboratory. 

 

3.6  Descriptive Statistics 

 

The descriptive statistics including normality test such as Shapiro-Wilk test and K-S test 

was performed. In normality test, the normal quantile- quantile (QQ) plot was also 

schemed to check the distribution of data points more accurately. Moreover, the 

conventional statistics was also performed to see the variability of measured 

concentrations of metal elements and hence discussed in the following articles. 

 

3.6.1  Normality Test 

 

In statistics, normality tests are used to determine if a data set is well-modeled by a normal 

distribution and to compute how likely it is for a random variable underlying the data set to 

be normally distributed depending on one's interpretations of probability. In descriptive 

statistics, one measures a goodness of fit of a normal model to the data (Royston, 1991).  

In this study, the normality test was analyzed and hence discussed in the following articles.  

 

3.6.1.1  Shapiro-Wilk Test 

 

The Shapiro–Wilk test was published in 1965 by Samuel Sanford Shapiro and Martin 

Wilk, is a test of normality in frequentist statistics designed to detect all departures from 

normality. In this study, the deviation from normality, W was calculated using the 

following equation considering the dataset of soil samples as           . 

 

  
(∑   

 
       )

 

(∑    
 
    ̅)

 ………………………..(3.1) 

 

https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Data_set
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Random_variable
https://en.wikipedia.org/wiki/Interpretations_of_probability
https://en.wikipedia.org/wiki/Descriptive_statistics
https://en.wikipedia.org/wiki/Descriptive_statistics
https://en.wikipedia.org/wiki/Goodness_of_fit
https://en.wikipedia.org/wiki/Samuel_Sanford_Shapiro
https://en.wikipedia.org/wiki/Martin_Wilk
https://en.wikipedia.org/wiki/Martin_Wilk
https://en.wikipedia.org/wiki/Normality_test
https://en.wikipedia.org/wiki/Statistics
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Where, the      is the ordered sample value i.e. concentration of metal elements 

corresponding to boreholes      is the concentration of first borehole point) and the      are 

constants generated from the means, variances and covariances of the order statistics of a 

sample of size   from a normal distribution. The test rejects the hypothesis of normality 

when the significance value (p) is less than or equal to 0.05. Failing the normality test 

allows to state with 95% confidence the data does not fit the normal distribution. 

 

3.6.1.2  Kolmogorov–Smirnov test 

 

A nonparametric test of Kolmogorov–Smirnov test (K–S test ), named on Andrey 

Kolmogorov and Nikolai Smirnov is used to compare a sample with a reference 

probability distribution (one-sample K–S test), or two samples (two-sample K–S test) to 

equalize of continuous and one-dimensional probability distributions. In this study, the 

following formula for the computation of the Kolmogorov-Smirnov goodness of fit 

statistic was used. 

 

             
   

 
 
 

 
              ; (1     ……………..(3.2) 

 

Where, F is the theoretical cumulative distribution of the distribution being tested which 

must be a continuous distribution, and it must be fully specified (i.e., the location, scale, 

and shape parameters cannot be estimated from the data. In this study, the null distribution 

of K–S test was calculated under the null hypothesis that the sample was drawn from the 

reference distribution. Here, it can be noted that If the significance value (p) of the K-S test 

is greater than 0.05, the data is normal. If it is below 0.05, the data significantly deviate 

from a normal distribution. The K-S test was performed on all metal element considering 

the significance level as 0.05.  The hypothesis of this test are as follows: 

H0: The data are normally distributed 

Ha: The data are not normally distributed 

So, when testing for normality: 

Probability > 0.05; the data are normally distributed. 

Probability < 0.05; the data are not normally distributed. 

 

The steps of normality test performed by SPSS is given in Figure A.1 in Annex-A. 

https://en.wikipedia.org/wiki/Andrey_Kolmogorov
https://en.wikipedia.org/wiki/Andrey_Kolmogorov
https://en.wikipedia.org/wiki/Nikolai_Smirnov_(mathematician)
https://en.wikipedia.org/wiki/Random_sample
https://en.wikipedia.org/wiki/Probability_distribution
http://www.itl.nist.gov/div898/handbook/eda/section3/eda364.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda363.htm
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3.6.1.3  Normal QQ Plot 

 

The quantile-quantile (Q-Q) plot is a probability plot, which is a graphical technique to 

assess if a set of data probably came from some theoretical distribution such as a Normal 

or exponential. If a set of intervals for the quantiles is chosen, a point (x, y) on the plot 

corresponds to one of the quantiles of the second distribution (y-coordinate) plotted against 

the same quantile of the first distribution (x-coordinate) (ESRI,2001). The points plotted in 

a Q–Q plot are always non-decreasing when viewed from left to right. The steps of 

constuction of normal QQ plot using XLSTAT is given in Figure A.2 provided in Annex-

A. Though the Q–Q plot follows the 45° line y = x, if the two distributions agree after 

linearly transforming the values in one of the distributions, then the Q–Q plot follows 

some line, but not necessarily the line y = x. Q–Q plots are commonly used to compare a 

data set to a theoretical model (Engineering Statistics Handbook). An assessment of 

"goodness of fit" that is graphical, rather than reducing to a numerical summary. In this 

study, the normal QQ Plot was drawn for each metal element in soil to verify either its 

normal distributed or not. 

 

3.6.2  Conventional Statistics 

 

The researchers of Heckman (1976) gave an idea about the desire to measure the 

variability, as well as the location. In a research of Yasrebi et al. (2009) were also 

computed the conventional statistical parameters to describe the distribution of metal 

element concentration. In this study, through SPSS, the conventional statistical parameters 

interms of mean, maximum, minimum, median, SD, CV, skewness and kurtosis for two 

seasons (i.e. dry and rainy) was analyzed to show the seasonal variation of metal elements 

in soil. Many other researchers also concluded. The steps of computing conventional 

statistics are illustrated in Figure A.3 in the Annex-A. 

 

3.7  Multivariate Statistics 

 

In this research work, the multivariate statistical analysis of pearson correlation, principal 

component analysis (PCA) and agglomerative hierarchical clustering (AHC) was 

performed and hence discussed in the following articles. 

 

https://en.wikipedia.org/wiki/Probability_plot
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3.7.1  Pearson Correlation 

  

The bivariate Pearson correlation produces a sample correlation coefficient, r, which 

measures the strength and direction of linear relationships between pairs of continuous 

variables. In this study, the value of correlation coefficient, r,  was computed using the 

following equation considering one dataset {x1,...,xn} containing n values and another 

dataset {y1,...,yn} containing n values. 

 

  
∑      ̅ 

          ̅ 

√∑      ̅   
   √∑      ̅   

   

…………….(3.3) 

 

Correlation varies in the range [-1, 1]. The sign of the correlation coefficient indicated the 

direction of the relationships, while the magnitude of the correlation indicates the strength 

of the relationship (Rogers and Nicewander,1988). A perfectly negative linear relationship 

indicated by the value of -1, 0 values indicated no relationship and 1 indicated perfectly 

positive linear relationship. In this study, Pearson correlation coefficient was performed for 

both the dry and rainy seasons. The null hypothesis (H0) and alternative hypothesis (H1) of 

the significance test for correlation was expressed depending on a two-tailed test. Two-

tailed significance test are as follows. 

H0: r = 0 (―the correlation coefficient is 0, there is no association‖) 

H1: r > 0 (―the correlation coefficient is not 0, a nonzero correlation could exist‖) 

 

As all the correlations, r>0, a nonzero correlation existed between the metal elements in 

soil of waste disposal site. The steps of computing Pearson Correlation coefficient, r is 

illustrated in Figure A.4 in the Annex-A.  

 

3.7.2  Principal Component Analysis  

 

The principal component analysis (PCA) is probably the most popular multivariate 

technique that is used to analyze a dataset of inter-correlated quantitative dependent 

variables. Fundamentals of PCA involves the transformation of a set of multivariate data 

containing analytical constituents (variables) into a new orthogonal set by allocating total 

variance to uncorrelated variables (principal components – PCs) using the correlation 
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matrix, whereby the individual variable represent the linear combination of the initial data 

variables. The PCs are in decreasing order based on factor loading, having the PCs with 

the largest variance occupying the first PC (PC1) and this follows successively to the PC 

with the smallest variance (PCn).  

 

A large amount of quantitative analysis relies on Principal Component Analysis (PCA). 

This is usually referred to in tandem with eigenvalues, eigenvectors and lots of numbers. 

The first principal component accounts for as much of the variability in the data as 

possible, and each succeeding component accounts for as much of the remaining 

variability as possible. The eigenvalue for a given factor measures the variance in all the 

variables which is accounted for by that factor. A factor's eigenvalue may be computed as 

the sum of its squared factor loadings for all the variables to measure the amount of 

variation in the total sample accounted for by each factor. The factor loadings are the 

correlation coefficients between the variables and factors .To get the percent of variance in 

all the variables accounted for by each factor, add the sum of the squared factor loadings 

for that factor. This is the same as dividing the factor's eigenvalue by the number of 

variables. In this study, the following equation was used through XLSTAT to compute the 

variance. 

 

                         

     ∑      
 
                 

where; 

    = eigenvectors obtained from the correlation matrix 

   = input variables 

 

In this study, the PCA method was performed sequentially, first by information extraction 

in the input space (with n-dimensions) to determine the directions of which the input 

variables display the most substantial variability. The PC coefficients and the eigenvalues 

(                 0 for the correlation matrix (   {       with respect to their 

eigenvectors (                  0, is called the loadings were then calculated  which 

gives a new set of variables that explains the variability in the original dataset; the first 

PCs retained a greater proportion of the total variance, consequently leading to effective 

and practical dimensionality reduction exercise. The steps of PCA are illustrated in Figure 

A.5 in the Annex-A.  

……….. (3.4) 
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3.7.3  Agglomerative Hierarchical Analysis 

  

AHC is a statistical modeling of input data used for multivariate analysis. The main goal of 

the AHC analysis is to spontaneously classify the data into groups of similarity (clusters) 

searching objects in the n-dimensional space located in closest neighborhood and to 

separate a stable cluster from other clusters. In case of metal element concentrations, the 

sampling sites were considered as objects for classification, each one determined by a set 

of variables. In order to achieve the goal this series of procedures was maintained in the 

present study: 

 

1.  Normalization of the raw input data to dimensionless units in order to avoid the 

influence of the different range of chemical dimensions (concentration); 

2.  Determination of the distance between the objects of classification by application 

of some similarity measure, e.g., Euclidean distance or correlation coefficient; 

3.  Performing appropriate linkage between the objects by some of the cluster 

algorithms like single, average or centroid linkage; 

4.  Plotting the results as dendrogram; 

5.  Determination of the clustering pattern; 

6.  Interpretation of the clusters both for objects and variables. 

 

Figure A.6 in the Annex-A showed the steps of AHC performed by XLSTAT software. 

Dendrograms were the output of AHC which display the cluster hierarchy and the 

distances at which the clusters were joined which is helpful to select an appropriate 

number of clusters for the dataset. Cluster was selected  by cutting the dendrogram where 

there is a significant jump in the distance of the cluster joins which is equivalent to 

selecting the knee point in a k-Means curve as established in the research of Anderberg 

(1973).Terzano et al. (2007) made an assessment on the origin and fate of Cr, Ni, Cu, Zn, 

Pb, and V in industrial polluted soil by combined microspectroscopic techniques and bulk 

extraction methods.  

 

3.8  Geostatistical Analysis  

 

Spatial interpolation is widely used when data are collected at distinct locations (e.g. soil 

profiles) for producing continuous information. According to Burgess and Webster (1980), 
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geostatistics has been applied in case of spatial interpolation for more than 20 years. A 

research conducted by Zhang et al. (2011) also verified this statement. In the present 

investigation of metal elements in waste disposal site, deterministic (i.e., create surfaces 

from measured points) and geostatistical (i.e., utilize the statistical properties of the 

measured points) interpolation techniques were used. A selection of deterministic 

interpolation techniques was made based on the extent of similarity such as IDW and LPI. 

In addition, an Interpolation technique based on degree of smoothing such as RBF was 

also selected. Geostatistical interpolation, namely ordinary kriging (OK) was used to 

generate the spatial distribution of metal elements in soil of the study area. The common 

steps for all type of interpolation techniques of geostatistical analysis using ArcGIS were 

illustrated in Figure A.7 in the Annex-A. 

   

3.8.1  Inverse Distance Weighting  

 

The inverse distance weighting (IDW) is one of the commonly applied deterministic 

interpolation technique which explicitly implements the assumption that things that are 

close to one another are more alike than those that are farther apart. To predict a value for 

any unmeasured location, IDW will use the measured values surrounding the prediction 

location (ESRI,2001). In IDW method,   it  is expected  substantially  that the rate of 

correlations  and similarities between   neighbors    is  proportional    to  the distance  

between  them  which is  defined  as a distance reverse  function  of every point  from  

neighboring  points. Isaake and Srivastava, 1989 recommended that the value of the power 

parameter is one of the important factor of IDW interpolation method . It is established 

that the default value of power,  p=2, is called the inverse distance squared weighted 

interpolation. There is no thoretical justification to prefer this value of others, and the 

effect of changing p should be investigated by previewing the output and examining the 

cross validation result statistics (ESRI,2001). It was proposed   that the weights assigned to 

the interpolating points are the inverse of its distance from the interpolation point. 

Consequently, the close points are made-up to have more weights (so, more impact) than 

distant points and vice versa. As an estmation with closest sampled points was given more 

importance, it is just considered   integer values   of parameter,  because   the values  lower 

than one are closest to a simple average estimation (Isaake and Srivastava, 1989). 
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∑   

 
     

  

∑   
   

   

……………………..(3.5) 

 

Where, Z0 is the estimation value of variable z in point i,  Zi is the sample value in point i, 

di is the distance of sample point to estimated point, N is the coefficient that determines 

weigh based on a distance., n is the total number of predictions for each validation case. In 

this study, estimations were made using  different  integer  powers of 1 to 5 as mentioned 

in the research of Yasrebi et al., 2009 proposed  the smaller theroot mean square prediction 

error (RMSPE), the smaller will be the error of the prediction surface. Figure A.8 in the 

Annex-A indicated the steps of IDW interpolation techniques. 

 

3.8.2  Local Polynomial Interpolation  

 

LPI  is a moderately quick deterministic interpolator that is provides prediction, prediction 

standard error and condition number surfaces that are comparable to ordinary kriging with 

measurement errors. According to ESRI, 2001 it was statted that it is more flexible than 

the global polynomial method, but there are more parameter decisions. Local polynomial 

methods do not allow you to investigate the autocorrelation of the data, making it less 

flexible and more automatic than kriging (Xie et al.,2011). There are no assumptions 

required of the data . According to Hani and Abari, 2011, LPI fits the local polynomial 

using points only within the specified neighborhood instead of all the data. According to 

ESRI (2001) a first-order global polynomial fits a single plane through the data.; a second 

–ordedr global polynomial fits a surface with a bend in it, allowing surfaces representing 

valleys; a three-order global polynomial allows for two bends. Order of polynomial greater 

than 3 is not generally recommended for most situations due to its high critical spatial 

condition number  thershold value  which indicate less reliability Then the neighborhoods 

can overlap, and the surface value at the center of the neighborhood is estimated as the 

predicted value. LPI is capable of producing surfaces that capture the short range variation. 

Interpolation quality was judged by examining the RMSPE of the crossvalidation and the 

validation: the smaller the RMSPE’s are, the better the interpolation is (Brovelli et al., 

2011). Figure A.9 showed the steps of LP interpolation techniques in the Annex-A. 
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3.8.3  Radial Basis Function 

 

RBF are moderately quick deterministic interpolator . This method provides prediction 

surfaces that predicts values identical with those measured at the same point and the 

generated surface requires passing through each measured point. Xie et al., (2011) 

suggested that the predicted values can vary above the maximum or below the minimum of 

the measured values .A study of Yao et al.,(2013) radial basis function (RBF) is a real-

valued function whose value depends only on the distance from the origin, so that       

    ‖ ‖ ; or alternatively on the distance from some other point c, called a center, so 

that             ‖   ‖ ;. Any function   that satisfies the property       

    ‖ ‖  is a radial function. The norm is usually Euclidean distance, although 

other distance functions are also possible. ESRI 2001 recommended  RBF method is a 

family of five deterministic exact interpolation techniques: thin-plate spline (TPS), spline 

with tension (SPT), completely regularized spline (CRS), multi-quadratic function (MQ) 

and inverse multi-quadratic function (IMQ).  

Commonly used types of radial basis functions include (writing   ‖    ‖ . 

                         Multiquadric:       √       ………………(3.6) 

Inverse Multiquadric:       
 

       
…………………..(3.7) 

Thin Plate Spline:              ……………(3.8) 

 

Johnston et al. (2001) identified  RBF fits a surface through the measured sample values 

while minimizing the total curvature of the surface. RBF is ineffective when there is a 

dramatic change in the surface values within short distances (ESRI, 2001). The most 

widely used RBF that is IMQ was selected in this study. Brovelli (2011) stated that once a 

specific kernel function was selected, by modifying the parameters in the control panel and 

the power of the interpolation, it is possible to alter the neighborhood search strategy. 

Interpolation quality was judged by examining the RMSPE of the cross validation and the 

validation: the smaller they are, the better the interpolation is (Brovelli, 2011). Figure A.10 

in the Annex-A showed the steps of RBF interpolation using ArcGIS software. 

 

 

https://en.wikipedia.org/wiki/Real-valued_function
https://en.wikipedia.org/wiki/Real-valued_function
https://en.wikipedia.org/wiki/Origin_(mathematics)
https://en.wikipedia.org/wiki/Radial_function
https://en.wikipedia.org/wiki/Euclidean_distance
https://en.wikipedia.org/wiki/Distance_function
https://en.wikipedia.org/w/index.php?title=Multiquadric&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Multiquadric&action=edit&redlink=1
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3.8.4  Ordinary Kriging  

 

The kriging approach is used to express the spatial continuity (autocorrelation). Ordinary 

kriging method is the most general and widely used of the kriging methods, incorporates 

statistical properties of the measured data (spatial autocorrelation).  It delivers estimation at 

an   unobserved    location   of   variable   z,   based   on   the weighted   average   of 

adjacent   observed   sites within   a given area. An assessment by  the  ordinary  kriging 

analyst   at  an unsampled  site z (s0) is defined by (Yasrebi et al., 2009): 

 

       ∑        
 
   ……………….(3.9) 

 

where,   are the weights  assigned to each of the observed samples.  Summation of these 

weights equal to unit value so that the analyst offers an unbiased  estimation (Yasrebi et al., 

2009): 

∑      
   ……………………..(3.10) 

 

ESRI 2001 provides with ordinary kriging which have functions such as Circular, 

Spherical, Tetraspherical, Pentaspherical, Exponential, Gaussian, Rational quadratic, Hole 

effect, K-Bessel, J-Bessel, Stable from which to choose for modeling the empirical 

semivariogram. Geostatistical analyses were initiated with semivariogram to evaluate for 

each soil property as follow (Isaake and Srivastava, 1989): 

 

     
 

     
∑ [             ]

     
   ………………..(3.11) 

 

Where,     = The experimental semivariogram value at distance interval h. 

           N(h) = Number of sample pairs within the distance interval h. 

                 ,           = Sample values at two points separated by distance interval h. 

 

The semivariogram measures the strength of the statistical correlation as a function of lag 

distance. Nugget variance (C0)   as  the  variance   at  nil  distance, range (A) as the 

distance at which the spatial correlation vanishes and the sill (C+C0) corresponds to the 

maximum variability in the absence of spatial dependence. The coefficient of 

determination (R
2
) was employed to determine goodness of fit. Spatial   dependence  for 
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the soil  variables   were  assessed   by  the  ratio  between  the nugget  semivariance   and  

the  total  semivariance (Cambardella et al., 1994). The objective of cross-validation is to 

make an informed decision about which model provides the most accurate predictions. The 

predictions are unbiased, by a mean prediction error close to 0 and standard errors are 

accurate, indicate by a root-mean-square-standardized prediction error close to 1 (Brovelli 

et al., 2011). A study of Xie et al. (2011) found that the prediction do not deviate much 

from the measured values, indicate by root-mean-square error and average standard error 

that are as small as possible. Figure A.11 in the Annex-A showed the steps of RBF 

interpolation using ArcGIS software. 

 

3.9  Assessment of Method Performance 

 

The precision of interpolation techniques was measured based on several literature indices. 

MAPE is defined as the percentage errors between predicted and observed value. Yao et 

al., (2013) found that small values of MAPE represents a model with less errors and more 

accurate predictions. The MAPE is computed by the equation given below (Yao et al., 

2013; Yasrebi et al., 2009): 

 

      
 

 
∑

       

  

 
   …………………..(3.12) 

 

The effectiveness of the models was evaluated using a goodness of prediction statistic (G), 

also known as the coefficient of determination, is computed by (Yao et al., 2013; Yasrebi 

et al., 2009): 

 

    [
∑        

  
   

∑      ̅   
   

]……………………...(3.13) 

 

Where   is the number of validation points,   is the predicted value at point i,   is the 

observed value at point i, and   ̅is the sample arithmetic mean. A study of Yasrebi et 

al.,(2009) showed G-value equal to 1 indicates perfect prediction, a more reliable model 

than if the sample mean had been used, a negative value specifies a less reliable model 

than if the sample mean had been used, and a value of zero indicates that the sample mean 

should be used (Yao et al., 2013).   
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Finally, the relative improvement (RI) of the best method compared with the others is 

calculated with equation (Yasrebi et al., 2009): 

 

   
    |                    |

        
……………………(3.14) 

 

In order to analyze the effect of model parameters on pollution assessment, ordinary 

kriging, IDW with power 1 to 5, LP with order 1 to 3  and RBF five kernel functions of 

CRS, IMQ, MQ, ST and TPS were selected. 

 

3.10  Artificial Neural Networks  

 

Silipo et al., (1999) stated Artificial Neural Networks (ANNs) are intelligent methods in 

advanced computing that quantitatively analyze information by learning, the same way as 

human intelligent systems. The composition of the ANN includes an array of several units 

(neurons) connected together that function as a processing system which can be used for 

specialized problem solving by classifying data and also for recognizing patterns in a data 

set (Neuner, 2012). The ANN is characterized by a group of models that can carry out 

dimensionality reduction tasks by transforming non-linear input data into neurons with a 

lower dimensionality structure (Figure. 3.16 and Figure 3.17). The fundamental 

application of the self-organizing map (SOM) consists of cooperation, competition and 

updating mechanisms in accomplishing unsupervised learning, with the goal of reducing 

the dimensions found in any data set. These are presented by mapping the high dimensions 

in the data to a 2- dimensional lattice feature map which also retains the topology of the 

data, presented as a discrete map. 

 

According to Kohonen, 2001, the input space is the environment where the original data 

are prior to the application of the SOM technique, while after the data have been treated, it 

forms a grid of neurons that represents the output space, which is often in 2 dimensions 

and with a rectangular or hexagonal grid of neurons. The SOM output space can also be in 

either 1-dimensional or even 3-dimensional (Kohonen, 2014).  
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Figure 3.16: SOM input space and output space. Red dots signify input patterns while blue 

dots show the connected SOM neurons (Source: Olawoyin et al., 2012). 

 

 

Figure 3.17: Artificial neural network, identical to the human neural network (Source: 

Olawoyin et al., 2012). 

 

In this study, the connection patterns of metal elements were presented in soil of waste 

disposal site. The weight planes for each element of the input vector that connect each 

input to each of the neurons were visualized. According to Kohonen (2014), darker colors 

represented larger weights and correlation between the metal elements. The early-

stopping-approach was used to generalize the network. The available learning data in the 

network is divided into three sets: training data, validation data and test data. The training 

data set was used to train the neural network through weight adaption. The errors of the 

output of the validation data set in relation to the training data set were recorded during the 

training phase and diminish at the beginning of the training. When the neural network 

tends to overfit, this error increases and the weights are determined on the basis of the 

minimum error (Rooki et al., 2011). The data was divided like this: 70% training data, 

20% validation data and 10% test data. According to Shahin et al., (2004) statement, there 
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were no hard rules applied for data division. It was collected depending on the complexity 

of the problem and on the amount and nature of the learning data. Alkaiem et al. (2016) 

recommended the most important indicator for the quality of the network generalization is 

its mean square error (MSE) in MATLAB. MSE measured the average of the squares of 

the errors or deviations.  It is always non-negative, and values closer to zero are better. The 

error histogram plotted for training data were to provide additional verification of network 

performance which shows the distribution of the residuals between targets and network 

output (Shahin et al., 2004). On the basis of research of Neuner (2012) stated smaller error 

indicates perfect prediction. The R-value measures the correlation between observed and 

predicted values. R value of 1 and 0 means a close and random relationship, respectively 

(Alkaiem et al., 2016). The R-value between the predicted and the actual values of metal 

elements present in contaminated soil for training, validation, testing and the whole 

datasets and errors for training cities was determined to find the accuracy of nntool of 

ANN. Figure A.12 showed the steps of nntool modeling of ANN provided in the Annex-A. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/Expected_value
https://en.wikipedia.org/wiki/Error_(statistics)
https://en.wikipedia.org/wiki/Deviation_(statistics)
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CHAPTER IV 

 

RESULTS AND DISCUSSION 

 

 
 

4.1  General 

 

This chapter deals with the spatial distribution and temporal variation of the concentration 

of metal elements such as  aluminium (Al), arsenic (As), barium (Ba), calcium (Ca), iron 

(Fe), mercury (Hg), potassium (K), manganese (Mn), sodium (Na), nickel (Ni), lead (Pb), 

antimony (Sb), scandium (Sc), strontium (Sr), titanium (Ti), vanadium (V) and zinc (Zn) in 

soil of waste disposal site. The statistical analysis of the concentration of metal elements 

was described in terms of mean, maximum, minimum, median, standard deviation (SD), 

co-efficient of variation (CV), skewness and kurtosis using Statistical Package for the 

Social Sciences (SPSS). The Pearson’s correlation of metal elements was also performed 

using SPSS to examine the accumulation of the concentration of metal elements 

irrespective to their sources. In this chapter, Principal Component Analysis (PCA) and 

Agglomerative Hierarchical Clustering (AHC) were performed using XLSTAT to get the 

information about the spatial distribution of metal elements and to identify the possible 

sources of contamination of soil. In this chapter, Geostatistical analysis such as ordinary 

kriging (OK), inverse distance weighting (IDW), local polynomial interpolation (LP) and 

radial basis function (RBF) were performed using ArcGIS to find out the best fitted model 

and to distribute the metal elements spatially in soil. Semivariogram parameters obtained 

from ordinary kriging (OK) exhibited spatial dependence of metal elements in soil and also 

discussed in this chapter. The performance of various interpolation techniques were 

assessed by ascertaining the error in the predictions based on Mean Absolute Percentage 

Error (MAPE), Goodness of prediction (G-value) and Relative Improvement (RI). 

Accuracy of interpolation was also assessed by determining and plotting local CV with 

mean relative error (MRE). In this chapter, the validity and accuracy of the metal elements 

concentration obtained from laboratory were checked interms of Mean Standard Error 

(MSE) and Regression factor (R-value) based on Artificial Neural Network (ANN) using 

MATLAB. 
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4.2  Descriptive Statistics 

 

Descriptive statistics analysis was performed to examine the quantitative distribution of 

metal elements presence in soil of waste disposal site in a manageable form. Firstly, the 

normality of metal elements were performed using the Kolmogoroph- Smironov (K-S) 

test, Shapiro-Wilk (S-W) test and Normal QQ Plot. Statistical characteristics of metal 

elements were analyzed using SPSS (Reza et al., 2010). In this study, the normal QQ plot 

for each metal element was done by XLSTAT and hence discussed in the following 

articles. 

 

4.2.1  Normality Test 

 

Table 4.1: Normality test of metal elements in soil of waste disposal site 
 

M
et

al
s 

 Dry season Rainy season 

Kolmogorov-

Smirnov
a
 

Shapiro-Wilk 
Kolmogorov-

Smirnov
a
 

Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. Statistic df Sig. Statistic df Sig. 

Al 0.11 40 0.200
*
 0.954 40 0.104 0.157 20 0.200

*
 0.934 20 0.18 

As 0.201 40 0 0.891 40 0.001 0.354 20 0 0.711 20 0 

Ba 0.17 40 0.005 0.898 40 0.002 0.122 20 0.200
*
 0.952 20 0.403 

Ca 0.123 40 0.132 0.928 40 0.013 0.154 20 0.200
*
 0.951 20 0.38 

Cd 0.095 40 0.200
*
 0.972 40 0.421 0.206 20 0.026 0.884 20 0.021 

Co 0.151 40 0.022 0.942 40 0.042 0.16 20 0.194 0.896 20 0.035 

Cr 0.173 40 0.004 0.922 40 0.009 0.285 20 0 0.791 20 0.001 

Cu 0.245 40 0 0.751 40 0 0.138 20 0.200
*
 0.92 20 0.101 

Fe 0.128 40 0.097 0.949 40 0.068 0.208 20 0.023 0.865 20 0.01 

Hg 0.148 40 0.028 0.904 40 0.002 0.239 20 0.004 0.734 20 0 

K 0.12 40 0.148 0.933 40 0.02 0.208 20 0.023 0.853 20 0.006 

Mn 0.179 40 0.002 0.816 40 0 0.179 20 0.091 0.881 20 0.018 

Na 0.202 40 0 0.85 40 0 0.179 20 0.093 0.916 20 0.084 

Ni 0.111 40 0.200
*
 0.94 40 0.035 0.118 20 0.200

*
 0.944 20 0.285 

Pb 0.159 40 0.013 0.842 40 0 0.19 20 0.058 0.942 20 0.263 

Sb 0.084 40 0.200
*
 0.95 40 0.076 0.094 20 0.200

*
 0.952 20 0.398 

Sc 0.115 40 0.199 0.958 40 0.143 0.101 20 0.200
*
 0.974 20 0.828 

Sr 0.122 40 0.133 0.94 40 0.035 0.107 20 0.200
*
 0.957 20 0.477 

Ti 0.095 40 0.200
*
 0.94 40 0.035 0.091 20 0.200

*
 0.964 20 0.628 

V 0.149 40 0.026 0.949 40 0.071 0.097 20 0.200
*
 0.971 20 0.77 

Zn 0.182 40 0.002 0.921 40 0.008 0.153 20 0.200
*
 0.952 20 0.404 

a
Lilliefors Significance Correction;  

*This is a lower bound of the true significance.
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From K-S test, for an alpha level of 0.05, a set of data with a significance value (p) of less 

than 0.05 would reject the null hypothesis that the datasets were form of normally 

distributed. The output obtained from both the nonparametric normality test of K-S and S-

W for all the studied metal elements in soil for both the dry and rainy seasons is provided 

in Table 4.1. Based on Table 4.1, the highest p value for Al, Ni, Sb and Ti (0.200) and 

lowest one is for As (0.000) in soil was observed for both the dry and rainy seasons in case 

of K-S test. In addition, the metal elements of Al, Ca, Cd, Fe, K, Ni, Pb, Sb, Sc, Sr and Ti 

in soil for dry season were normally distributed which indicated that the null hypothesis 

was accepted at the significance value (p) greater than 0.05.  

 

  
(a) Cd (b) Ni 

  

(c) Pb (d) Zn 

 

Figure 4.1: Normal QQ plots for dry season (a) Cd; (b) Ni; (c) Pb and (d) Zn. 
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Results also showed that the other metal elements of As, Ba, Co, Cr, Cu, Hg, Mn, Na, V 

and Zn in soil were not normally distributed and log transformation was applied to 

distribute of these metal elements normally. In rainy season, the metal elements of Al, Ba, 

Ca, Co, Cu, Mn, Na, Ni, Pb, Sb, Sc, Sr, Ti, V and Zn in soil were normally distributed as 

the significance p-value was greater than 0.05. However, in this rainy season, some metal 

elements were not satisfied the significance level, then the normally distribution was 

performed by log transformation system. Moreover, in S-W test, the metal elements of As, 

Ba, Ca, Co, Cr, Cu, Hg, K, Mn, Na, Ni, Sr, Ti and Zn in soil were normally distributed in 

dry season. In rainy season, all the metal elements were normally distributed except As, 

Cd, Co, Cr, Fe, Hg and Mn as the significance p- value was less than 0.05.  

 

  

(a) Cd (b) Ni 

  

(c) Pb (d) Zn 
 

 

Figure 4.2: Normal QQ Plots in the rainy season (a) Cd; (b) Ni; (c) Pb and (d) Zn. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6

Q
u
an

ti
le

 -
 N

o
rm

al
 

 (
0
.2

8
, 
0
.1

4
) 

Cd 

Q-Q plot (Cd) 

0.5

1.5

2.5

3.5

4.5

5.5

6.5

0.5 1.5 2.5 3.5 4.5 5.5 6.5

Q
u
an

ti
le

 -
 N

o
rm

al
  

(2
.5

8
, 
1
.0

9
) 

Ni 

Q-Q plot (Ni) 

10

12

14

16

18

20

22

24

26

10 12 14 16 18 20 22 24 26

Q
u
an

ti
le

 -
 N

o
rm

al
 

(1
7
.5

4
,3

.7
8
) 

 

Pb 

Q-Q plot (Pb) 

10

12

14

16

18

20

22

24

26

10 12 14 16 18 20 22 24 26

Q
u
an

ti
le

 -
 N

o
rm

al
  

(1
7
.5

8
, 
3
.1

3
) 

Zn 

Q-Q plot (Zn) 



69 

 

As normality tests were too sensitive to sample size, it would be better to avoid using them 

unless there were a large number of inspections to do and automate the process. Graphical 

methods are a better alternative to evaluate normality; in particular QQ plots 

(Royston,1991). The normal QQ plot for the metal elements of Cd, Ni, Pb and Zn in soil 

for both the dry and rainy season is depicted in Figure 4.1 and Figure 4.2, respectively. In 

this analysis, the cumulative distribution values  obtained from cumulative distribution plot 

and cumulative distribution values obtained from standard normal distribution plot were 

considered as ordinate and abscissa, respectively for plotting of normal QQ.   
 

 

Based on Figure 4.1 and Figure 4.2, it can be interpreted that the metal elements of Al, Ba 

and Ca in soil were normally distributed because all points fall very close to ―45
0
 reference 

line‖. Moreover, it was observed that the data points for metal element of As for rainy 

season, were deviated from ―45
0
 reference line‖ referred to the data points were not 

normally distributed. Moreover, based on results obtained from K-S test, S-W test and 

normal QQ Plot, it can be concluded almost all the metal elements in soil for both the dry 

and rainy seasons were distributed normally except As. Thus, log transformation was 

applied to As for normal distribution.  In contrast, the normal QQ plot for other metal 

elements of Cd, Co,Cr, Cu, Fe, Hg, K, Mn, Na, Ni, Pb, Sb, Sc, Sr, Ti, V and Zn, is 

provided in Figure B.1 to Table B.17 and  B. 18 to Table B.34 in Annex-B for both the dry 

and rainy season, respectively. 

 

4.2.2  Conventional Statistics 

 

In this study, the conventional statistics include mean, maximum, minimum, median, SD, 

CV, skewness and kurtosis was determined using SPSS of metal elements in soil for both 

the dry and rainy seasons. This analysis was performed to check the variability of metal 

elements due to anthropogenic activities as well as from natural parent materials and hence 

discussed in the following articles. 

 

4.2.2.1  Dry Season 

 

The descriptive statistics of metal elements in soil for dry season of waste disposal site is 

provided in Table 4.2. Table 4.2 reveals that for all studied metal elements, the total 

concentration showed a great degree of variability; indicated by the large CV from 22.11% 
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of Zn to 59.41% for Cu for dry season. The contours rising of CV values reflected the non-

homogeneous distribution of concentrations of anthropogenically emitted metal elements 

(Li et al., 2012). Result also showed that the greatest and the smallest SD were observed in 

case of Ti (406.26) and Cd (1.14), respectively.  

 

Table 4.2: Descriptive statistics of metal elements in soil for dry season (n=40) 

 

Metal Min Max Median Mean CV (%) SD Skewness Kurtosis 

Al 158.35 874.78 458.46 490.25 40.31 197.61 0.303 -0.727 

As 1.55 8.77 3.42 4.15 48.79 2.03 0.733 -0.709 

Ba 37.88 121.90 60.61 65.25 37.36 24.38 0.667 -0.709 

Ca 100.20 318.00 173.19 183.80 33.55 61.67 0.577 -0.793 

Cd 2.55 7.03 4.46 4.55 24.99 1.14 0.387 -0.530 

Co 3.40 12.02 6.67 7.00 34.50 2.42 0.391 -1.015 

Cr 4.19 9.82 5.83 6.03 23.63 1.43 0.841 -0.023 

Cu 2.92 16.45 4.82 6.20 59.41 3.68 1.541 1.110 

Fe 733.19 1987.7 1386.5 1363.94 25.67 350.15 -0.081 -1.199 

Hg 1.98 9.20 4.01 4.63 44.63 2.07 0.797 -0.460 

K 104.88 460.33 316.37 292.00 35.98 105.06 -0.416 -0.937 

Mn 10.82 30.76 14.16 15.69 29.82 4.68 1.654 2.382 

Na 19.50 100.54 77.89 68.30 42.78 29.22 -0.511 -1.326 

Ni 2.56 8.06 4.71 4.83 33.02 1.60 0.409 -0.984 

Pb 21.29 90.55 33.94 37.61 36.34 13.67 1.840 4.393 

Sb 2.92 12.55 5.76 6.07 36.04 2.19 0.787 0.496 

Sc 7.30 20.41 11.67 12.16 26.89 3.27 0.451 -0.603 

Sr 15.44 54.12 26.62 27.53 30.33 8.35 0.869 0.825 

Ti 643.33 1937.3 1223.8 1221.2 33.27 406.26 0.160 -1.198 

V 20.83 83.35 40.83 43.44 33.35 14.49 0.736 0.264 

Zn 22.79 50.76 34.64 34.57 22.11 7.65 0.612 -0.116 

 

In case of dry season, the skewness of metal elements of Al, Cd, Co, K, Na, Ni, Sc and Ti 

was found between -0.5 to 0.5, indicated the data were approximately symmetrical. The 

metal elements of As, Ba, Ca, Cr, Hg, Sb, Sr, V and Zn indicated the data points were 

moderately skewed as the skewness value varied from -0.1 to -0.5 and 0.5 to 0.1. 

Moreover, metal elements of Cu, Fe, Mn and Pb were highly skewed exhibited skewness 

value of  -1 and   . In addition, the metal elements of Al, As, Ba, Ca, Cd, Co, Cr, Fe, 

Hg, K, Na, Ni, Sc, Ti and Zn exhibited  platykurtic distribution (Kurtosis<0), whereas the 
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metal elements of Cu, Mn, Pb, Sb, Sr and V exhibited leptokurtic distribution (Kurtosis 

 0). These results provide a quite reliable analysis. 

 

4.2.2.2  Rainy Season 

 

The descriptive statistics of metal elements in soil for rainy season of waste disposal site is 

provided in Table 4.3. For all metal elements, the total concentrations showed a great 

degree of variability as CV varied from 18.25% of Zn to 77.25% of Mn reflecting 

contamination by anthropogenic activities.  

 

Table 4.3: Descriptive statistics of metal elements in soil for rainy season (n=20) 
 

Metal Min Max Median Mean 
CV 

(%) 
SD Skewness Kurtosis 

Al 119.22 412.55 224.02 239.76 38.27 91.77 0.402 -1.118 

As 0.87 3.68 1.11 1.56 56.70 0.88 1.335 0.245 

Ba 18.20 74.00 39.92 39.58 39.77 15.74 0.304 -0.682 

Ca 44.20 153.23 105.32 100.16 32.34 32.39 -0.169 -1.194 

Cd 1.20 3.90 1.88 2.03 36.26 0.74 1.029 0.284 

Co 1.98 9.02 4.95 5.11 49.65 2.54 0.197 -1.483 

Cr 0.77 5.55 1.54 1.94 68.01 1.32 1.511 1.302 

Cu 0.73 6.33 2.43 2.55 50.37 1.29 1.120 1.845 

Fe 160.71 683.92 287.66 365.79 48.95 179.06 0.423 -1.407 

Hg 0.72 5.21 1.12 1.72 75.25 1.29 1.655 1.552 

K 55.04 262.08 110.52 126.86 52.53 66.64 0.917 -0.473 

Mn 1.02 13.43 3.88 5.41 77.25 4.18 0.545 -1.135 

Na 8.23 55.60 21.68 25.74 56.01 14.42 0.688 -0.528 

Ni 1.08 5.04 2.70 2.58 43.09 1.11 0.494 -0.327 

Pb 10.88 24.29 16.34 17.54 22.12 3.88 0.316 -0.838 

Sb 0.98 6.12 3.35 3.41 48.60 1.66 0.127 -1.124 

Sc 3.02 12.12 7.87 7.73 34.03 2.63 -0.132 -0.928 

Sr 8.88 30.44 16.20 16.92 33.96 5.75 0.668 -0.137 

Ti 243.88 1445.56 696.69 707.89 42.08 297.85 0.627 0.295 

V 6.92 40.88 20.15 21.43 44.48 9.53 0.345 -0.790 

Zn 11.82 24.33 17.23 17.58 18.25 3.21 0.458 -0.064 
 

 

Moreover, in this study, large SD were found in all the studied metal elements except Cd 

and As.  The greatest and the smallest SD were detected of 297.8519 and 0.736449 for the 

metal elements of Ti and Cd, respectively (Table 4.3). Moreover, the skewness of metal 
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elements of Al, Ba, Co, Fe, Ni, Pb, Sb, V and Zn were fairly symmetrical; however the 

metal elements of Ca, K, Mn, Na, Sc, Sr and Ti indicated the data points were moderately 

and metal elements of As, Cd, Cr, Cu and Hg were highly skewed. Furthermore, the metal 

elements of Al, Ba, Ca, Co, Fe, K, Mn, Na, Ni, Pb, Sb, Sc, Sr, V and Zn 

exhibited  platykurtic distribution, whereas the metal elements of  As, Cd, Cr, Cu, Hg and 

Ti exhibited leptokurtic distribution. These results provide a quite reliable analysis. 

 

4.2.2.3  Seasonal Comparison of the Concentration of Metal Elements  

 

Based on descriptive statistical analysis, large SD was found for all metal elements, 

especially for Fe, Al, K and Ca in both the dry and rainy seasons indicated wide variation 

of their concentrations in soil. Table 4.3 showed the highest mean concentration of Fe and 

Ti both the dry and rainy season. Moreover, based on mean concentration, the level of 

metal elements in soil can be ordered as Fe> Al  K  Ca  Ba  Na  P b  V  Ti> Sr 

 Zn  Mn  Sc  Cu   Sb  Co  Cr  Hg  As  Ni  Cd in dry season and Fe>Al  K 

 Ca  Ba  Na  V      Sr  Zn      Mn  Sc  Co  Cu  Sb Cr Hg As Ni Cd 

in rainy season (Table 4.3). The concentrations of metal elements for rainy reason were 

relatively lower as compared to the dry season and the magnitude of concentrations 

followed almost same pattern for both the dry and rainy seasons. Result reveals that the 

CV varied from 22.11% of Zn to 59.41% of Cu in dry season as well as 18.25% of Zn to 

77.25% of Mn in rainy season, respectively, which indicated a great degree of variability.  

The greatest and the smallest SD were detected for metal element of Ti (406.26) and Cd 

(1.14) in the dry season. Similarly, the greatest and the smallest SD were detected for 

metal element of Ti (297.85) and Cd (0.74) in the rainy season. This result was also 

supported by a researcher of Reza et al. (2010) in case of soil for a landfill site. 

 

4.3  Multivariate Statistics 

 

In this study, multivariate analysis was performed to study how the variables are related to 

one another, and how they work in combination to distinguish between the cases on which 

the observations are made. The multivariate statistics including Pearson’s correlation, 

principal component analysis (PCA) and agglomerative hierarchical clustering (AHC) 

were performed using XLSTAT and discussed in the following articles. 
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Table 4.4: Correlation analysis and coefficients for the metal elements in dry season 
 

 Fe Mn Cr Cu Pb Zn Ni Cd As Hg Co Na K Ca Al Ti Sb Sc Sr V Ba 

Fe 1.000 0.554 0.768 0.755 0.739 0.844 0.927 0.888 0.914 0.760 0.948 0.942 0.966 0.947 0.952 0.982 0.951 0.967 0.938 0.929 0.943 

Mn 0.554 1.000 0.448 0.761 0.871 0.708 0.631 0.741 0.656 0.726 0.653 0.461 0.570 0.657 0.645 0.598 0.687 0.650 0.708 0.727 0.667 

Cr 0.768 0.448 1.000 0.669 0.567 0.710 0.753 0.747 0.739 0.575 0.797 0.738 0.774 0.750 0.776 0.796 0.713 0.765 0.700 0.740 0.752 

Cu 0.755 0.761 0.669 1.000 0.804 0.887 0.874 0.815 0.879 0.882 0.855 0.632 0.745 0.883 0.865 0.822 0.852 0.853 0.849 0.878 0.887 

Pb 0.739 0.871 0.567 0.804 1.000 0.799 0.761 0.824 0.809 0.788 0.810 0.620 0.738 0.811 0.799 0.759 0.840 0.815 0.866 0.857 0.814 

Zn 0.844 0.708 0.710 0.887 0.799 1.000 0.885 0.796 0.867 0.788 0.879 0.752 0.856 0.881 0.888 0.881 0.895 0.893 0.883 0.906 0.887 

Ni 0.927 0.631 0.753 0.874 0.761 0.885 1.000 0.880 0.959 0.855 0.941 0.818 0.887 0.958 0.952 0.955 0.943 0.958 0.945 0.940 0.963 

Cd 0.888 0.741 0.747 0.815 0.824 0.796 0.880 1.000 0.892 0.807 0.918 0.816 0.866 0.920 0.901 0.914 0.901 0.922 0.912 0.916 0.926 

As 0.914 0.656 0.739 0.879 0.809 0.867 0.959 0.892 1.000 0.885 0.955 0.785 0.882 0.974 0.974 0.954 0.952 0.964 0.966 0.958 0.970 

Hg 0.760 0.726 0.575 0.882 0.788 0.788 0.855 0.807 0.885 1.000 0.831 0.635 0.743 0.881 0.867 0.815 0.829 0.838 0.862 0.875 0.867 

Co 0.948 0.653 0.797 0.855 0.810 0.879 0.941 0.918 0.955 0.831 1.000 0.879 0.926 0.970 0.960 0.973 0.956 0.976 0.956 0.958 0.971 

Na 0.942 0.461 0.738 0.632 0.620 0.752 0.818 0.816 0.785 0.635 0.879 1.000 0.950 0.849 0.862 0.915 0.848 0.884 0.832 0.822 0.834 

K 0.966 0.570 0.774 0.745 0.738 0.856 0.887 0.866 0.882 0.743 0.926 0.950 1.000 0.918 0.947 0.962 0.925 0.946 0.915 0.921 0.902 

Ca 0.947 0.657 0.750 0.883 0.811 0.881 0.958 0.920 0.974 0.881 0.970 0.849 0.918 1.000 0.979 0.978 0.972 0.985 0.974 0.970 0.992 

Al 0.952 0.645 0.776 0.865 0.799 0.888 0.952 0.901 0.974 0.867 0.960 0.862 0.947 0.979 1.000 0.976 0.965 0.979 0.967 0.974 0.963 

Ti 0.982 0.598 0.796 0.822 0.759 0.881 0.955 0.914 0.954 0.815 0.973 0.915 0.962 0.978 0.976 1.000 0.966 0.987 0.958 0.956 0.975 

Sb 0.951 0.687 0.713 0.852 0.840 0.895 0.943 0.901 0.952 0.829 0.956 0.848 0.925 0.972 0.965 0.966 1.000 0.986 0.987 0.984 0.975 

Sc 0.967 0.650 0.765 0.853 0.815 0.893 0.958 0.922 0.964 0.838 0.976 0.884 0.946 0.985 0.979 0.987 0.986 1.000 0.985 0.980 0.983 

Sr 0.938 0.708 0.700 0.849 0.866 0.883 0.945 0.912 0.966 0.862 0.956 0.832 0.915 0.974 0.967 0.958 0.987 0.985 1.000 0.984 0.973 

V 0.929 0.727 0.741 0.878 0.857 0.906 0.940 0.916 0.958 0.876 0.958 0.822 0.921 0.970 0.974 0.956 0.984 0.980 0.984 1.000 0.967 

Ba 0.943 0.667 0.753 0.887 0.814 0.887 0.963 0.926 0.970 0.867 0.971 0.834 0.902 0.992 0.963 0.975 0.975 0.983 0.973 0.967 1.000 
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Table 4.5: Correlation analysis and coefficients for the metal elements in rainy season 

 

 Fe Mn Cr Cu Pb Zn Ni Cd As Hg Co Na K Ca Al Ti Sb Sc Sr V Ba 

Fe 1.000 0.947 0.818 0.846 0.846 0.800 0.832 0.840 0.809 0.733 0.943 0.938 0.909 0.922 0.971 0.913 0.946 0.927 0.940 0.948 0.928 

Mn 0.947 1.000 0.896 0.803 0.843 0.812 0.874 0.835 0.853 0.718 0.917 0.949 0.918 0.895 0.969 0.891 0.955 0.916 0.925 0.940 0.935 

Cr 0.818 0.896 1.000 0.803 0.803 0.653 0.772 0.830 0.879 0.763 0.710 0.859 0.853 0.711 0.847 0.807 0.831 0.779 0.852 0.812 0.843 

Cu 0.846 0.803 0.803 1.000 0.774 0.782 0.873 0.888 0.826 0.783 0.792 0.897 0.849 0.844 0.883 0.947 0.879 0.884 0.945 0.901 0.918 

Pb 0.846 0.843 0.803 0.774 1.000 0.637 0.774 0.852 0.753 0.697 0.762 0.872 0.861 0.837 0.876 0.865 0.870 0.855 0.870 0.847 0.853 

Zn 0.800 0.812 0.653 0.782 0.637 1.000 0.787 0.721 0.733 0.569 0.856 0.845 0.721 0.854 0.850 0.861 0.861 0.870 0.855 0.883 0.850 

Ni 0.832 0.874 0.772 0.873 0.774 0.787 1.000 0.872 0.790 0.695 0.844 0.930 0.893 0.890 0.911 0.927 0.922 0.918 0.924 0.913 0.936 

Cd 0.840 0.835 0.830 0.888 0.852 0.721 0.872 1.000 0.899 0.873 0.767 0.942 0.930 0.818 0.898 0.927 0.886 0.867 0.933 0.879 0.910 

As 0.809 0.853 0.879 0.826 0.753 0.733 0.790 0.899 1.000 0.886 0.726 0.907 0.900 0.691 0.856 0.847 0.814 0.760 0.881 0.830 0.820 

Hg 0.733 0.718 0.763 0.783 0.697 0.569 0.695 0.873 0.886 1.000 0.664 0.827 0.884 0.641 0.772 0.785 0.754 0.708 0.819 0.761 0.745 

Co 0.943 0.917 0.710 0.792 0.762 0.856 0.844 0.767 0.726 0.664 1.000 0.910 0.855 0.957 0.949 0.904 0.941 0.935 0.914 0.961 0.927 

Na 0.938 0.949 0.859 0.897 0.872 0.845 0.930 0.942 0.907 0.827 0.910 1.000 0.959 0.917 0.979 0.971 0.969 0.950 0.984 0.973 0.967 

K 0.909 0.918 0.853 0.849 0.861 0.721 0.893 0.930 0.900 0.884 0.855 0.959 1.000 0.858 0.949 0.915 0.937 0.901 0.946 0.920 0.909 

Ca 0.922 0.895 0.711 0.844 0.837 0.854 0.890 0.818 0.691 0.641 0.957 0.917 0.858 1.000 0.956 0.943 0.967 0.985 0.937 0.971 0.961 

Al 0.971 0.969 0.847 0.883 0.876 0.850 0.911 0.898 0.856 0.772 0.949 0.979 0.949 0.956 1.000 0.961 0.986 0.969 0.979 0.986 0.976 

Ti 0.913 0.891 0.807 0.947 0.865 0.861 0.927 0.927 0.847 0.785 0.904 0.971 0.915 0.943 0.961 1.000 0.959 0.967 0.991 0.978 0.977 

Sb 0.946 0.955 0.831 0.879 0.870 0.861 0.922 0.886 0.814 0.754 0.941 0.969 0.937 0.967 0.986 0.959 1.000 0.988 0.973 0.982 0.978 

Sc 0.927 0.916 0.779 0.884 0.855 0.870 0.918 0.867 0.760 0.708 0.935 0.950 0.901 0.985 0.969 0.967 0.988 1.000 0.965 0.981 0.976 

Sr 0.940 0.925 0.852 0.945 0.870 0.855 0.924 0.933 0.881 0.819 0.914 0.984 0.946 0.937 0.979 0.991 0.973 0.965 1.000 0.984 0.979 

V 0.948 0.940 0.812 0.901 0.847 0.883 0.913 0.879 0.830 0.761 0.961 0.973 0.920 0.971 0.986 0.978 0.982 0.981 0.984 1.000 0.982 

Ba 0.928 0.935 0.843 0.918 0.853 0.850 0.936 0.910 0.820 0.745 0.927 0.967 0.909 0.961 0.976 0.977 0.978 0.976 0.979 0.982 1.000 
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4.3.1  Pearson’s Correlation  

 

In this study, Pearson’s correlation coefficients were calculated for the concentrations of 

metal elements in soil for both the dry and rainy using XLSTAT. The interrelationship 

studies between different variables are very helpful tools in promoting research and 

opening new frontiers of knowledge. The study of correlation reduces the range of 

uncertainty associated with decision making (Rogers and Nicewander, 1988). The 

correlation analysis is a preliminary descriptive technique to estimate the degree of 

association among the variables involved. The purpose of the correlation analysis was to 

measure the intensity of association between two variables. Such association is likely to 

lead to reasoning about causal relationship between the variables. The Pearson’s 

correlation matrix of metal elements in soil for both the dry and rainy seasons is provided 

in Table 4.4 and Table 4.5, respectively. The most significant correlation was observed for 

Ca and Ba (0.992) in dry season and Ti and Sr (0.991) in rainy season. In dry season, the 

concentration of Cr showed very weak correlations with Mn, indicated Mn is from 

different sources than Cr (Li et al., 2012).  

 

However, the concentrations of Hg showed very weak correlations with Zn (0.569) in 

rainy season. This indicated that Hg was from different sources than Zn (Li et al., 2012).  

Based on the results of Pearson’s correlations matrix on soil of waste disposal site during 

dry season, it was observed the high positively correlations between Ba and Ca (0.992), Sc 

and Ti (0.987), Sb and Sc (0.986), Sb and V (0.984), Sc and Ba (0.983), Al and Sc (0.979), 

Ti and Ba (0.975), As and Al (0.974), V and Ca (0.974) , As and Ba (0.970) Ti and Sb 

(0.966), Ni and Fe(0.927), Zn and V (0.906), Fe and Cd (0.888), Al and Mn (0.645),Cr and 

Hg (0.575) as well as Hg and V (0.876)  (Table 4.4). In addition, the some parameters in 

on soil of waste disposal site in rainy season showed also high positively correlated as Sr 

and Ti (0.991), Al and V (0.986), V and Ba (0.982), Ca and Sc (0.985), Ti and V (0.978) 

and Co and Ca (0.957), V and Co (0.961), Fe and V (0.948), Fe and Na (0.938), Cd and Sr 

(0.933), Ni and Sc (0.918), Zn znd Ti (0.861), Zn and Sb (0.861), Hg and Fe (0.733), Fe 

and Mn (0.947) and As and Ca (0.691) (Table 4.5) . Here it should be noted that from 

Table 4.4, the 8x8 sub matrix at the bottom-right square have similar values indicating 

strong correlation between metal elements variables. Concentrations of Ca, Al, Ti, Sb, Sc, 

Sr, V, Ba showed strong correlation with each other in dry season, which indicated same 

sources of contamination for these metals. Similarly, the 8x8 sub matrix in Table 4.5 also 
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showed strong correlation between Ca, Al, Ti, Sb, Sc, Sr, V and Ba in rainy season 

(Olawoyin, 2012) indicating same sources of contamination. 

 

4.3.2  Principal Component Analysis  

 

In principal component analysis (PCA), the principal components (PCs) with variables, the 

high loadings (eigenvalues) depicted greater importance from the contamination sources, 

whereas, lower loadings (eigenvalues) point to lower importance with regards the sources 

of these contaminations (Lee et al., 2006; Zou et al., 2015).  

 

Table 4.6: PCA of metal elements in soil for dry and rainy seasons 

 

PCs 

Dry season Rainy season 

Eigenvalue 
Variability 

(%) 

Cumulative 

(%) 
Eigenvalue 

Variability 

(%) 

Cumulative 

(%) 

F1 18.267 86.987 86.987 18.533 88.253 88.253 

F2 1.07 5.118 92.105 0.906 4.3147 92.567 

F3 0.416 1.98 94.085 0.398 1.8962 94.464 

F4 0.391 1.861 95.946 0.335 1.5943 96.058 

F5 0.23 1.095 97.041 0.263 1.2521 97.310 

F6 0.162 0.774 97.814 0.180 0.8575 98.168 

F7 0.119 0.566 98.38 0.151 0.7183 98.886 

F8 0.076 0.362 98.742 0.080 0.3829 99.269 

F9 0.058 0.277 99.019 0.055 0.26 99.529 

F10 0.051 0.244 99.263 0.043 0.2068 99.736 

F11 0.042 0.202 99.465 0.016 0.077 99.813 

F12 0.035 0.167 99.633 0.015 0.0734 99.886 

F13 0.026 0.122 99.755 0.009 0.0452 99.931 

F14 0.016 0.077 99.832 0.007 0.0318 99.963 

F15 0.013 0.063 99.895 0.003 0.0165 99.979 

F16 0.008 0.036 99.931 0.002 0.0121 99.991 

F17 0.004 0.02 99.952 0.001 0.0047 99.996 

F18 0.004 0.018 99.97 0.0005 0.0025 99.999 

F19 0.003 0.013 99.983 0.0002 0.001 100 

F20 0.002 0.01 99.993       

F21 0.001 0.007 100       

 

A research conducted by Olawoyin et al. (2012) and stated when the eigenvalues less than 

unique, the PCs as considered of insignificant. Based on this postulation, in PCA, for cut 
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off of PCs, eigenvalues of 1 was considered as reference value. In this study, most of the 

metal element’s correlation showed similar trends which indicated same sources of 

contamination. Moreover, for variability calculation based on eigenvector and factor 

loadings, PCs of 21 for dry and 19 for rainy were considered for the metal elements and 

results provided in Table 4.6. The larger eigenvalue obtained for F1 (18.267) indicated 

large proportion of variability (86.987%) for dry season (Table 4.6). Based on the results 

of PCA for metal elements of dry season, the eigenvalues upto the second extracted 

components (F2) were found greater than 1.0.  Moreover, as the eigenvalues for the PCs 

(F3 to F21) as well as (F2 to F19) were found less than 1 for dry and rainy season, 

respectively, so, these PCs were depicted as very negligible contribution in the analysis. 

Thus, the variables could be reduced to 2 components model (dry season) with 92.105% 

variation as well as 1 component model (rainy season) that accounts for 88.253% variation 

(Table 4.6). In addition, the larger eigenvalue obtained for F1 (18.533) that indicated large 

proportion of variability (88.253%) for rainy season (Table 4.6).The percentage 

contribution of the 1
st
 to 2

nd
 PCs for the metal elements in dry season as represented in 

Equation 4.1 was 92.105%. 

 

({∑  
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The selection of the first two parameters as the PCs since there was significant evidence of 

high enough total variance from the percentage contributions. The eigenvalues    

(                                                                      , had little 

contributions to the total structure of the data under study. The percentage contribution of 

the 3th to 21st components (Equation 4.2) is 7.895% (Olawoyin, 2012). This suggested 

that very little information, which can be considered negligible, will be lost. 
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However, the percentage contribution of the 1st PC for the metal elements in rainy season 

as represented in Equation 4.3 was 88.25%  

 

({∑  

 

   

}  {∑  

  

   

})                       



78 

 

 

Which verbalized the selection of the first three parameters (eigenvalues, variability and 

cumulative) as the PCs and the eigenvalues    

(                                                                had minimal 

contributions to the nature of the general data. The percentage contribution of the 2
nd

 to 

19
th

 PCs as illustrated in Equation 4.4 was 11.75% for rainy season. 
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(a) 

 

(b) 

Figure 4.3: Scree plot of the PCs (a) dry season; (b) rainy season. 
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The scree plots for the factor variability of metal elements in both the dry and rainy season 

are presented in Figure 4.3 (a) and Figure 4.3(b) respectively. The scree plots of PCs were 

represented in a form of simple line segment plot that shows the fraction of total variance 

in the data. In this PCA, varimax rotation was applied to simplify the factor interpretation 

by reducing total number of variables that exhibit high loadings per factor. For all the 

metal elements analyzed, correlation matrix was built with equal weights. Table 4.7 

showed the factor analysis of PCA before and after the varimax rotation for dry season. 

Natural and anthropogenic sources are one of the root cause of metal element 

contamination which has caused widespread and variable the hazardous possibilities of 

environmental and health effect (Tahir et al., 2007). Moreover, some previous 

investigations indicated first principal component (PC1) and second component (PC2) 

refers to the contamination of soil due to anthropogenic or human activities and natural 

parent materials, respectively (Tahir et al., 2007). In this study, factor analysis revealed 

that metal elements of Al, As, Ba, Ca, Cd, Co, Fe, K, Na, Ni, Sb, Sc, Sr, Ti and V were 

closely related to PC1 indicated derived from anthropogenic activities and rests of the 

metal elements of Cu, Hg, Mn, Pb and Zn in soil were related to PC2 indicated derived 

from natural parent materials. In addition, the metal element of Cr was closed to PC1 and 

PC2 indicated derived from both the anthropogenic activities and natural parent materials.  

 
 

In addition, the factor analysis of PCA for rainy season before and after the varimax 

rotation is provided in Table 4.8. It can be estimated that As, Cr, Hg, K, Mn and Na in soil 

were related to PC2 indicating derived from natural parent materials. Other metal elements 

of Al, Ba, Ca, Co, Cu, Fe, Ni, Sb, Sc, Sr, Ti and V were related to PC1 indicating derived 

from anthropogenic activities.  Moreover, as the metal elements of Al, Ba, Ca, Co, Cu, Fe, 

Ni, Sb, Sc, Sr, Ti and V in soil showed closed to PC1 indicated derived from 

anthropogenic activities. 
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Table 4.7: All explained variables and factors derived using the orthogonal varimax rotation method of dry season 

 

M
et

al
 

Before rotation 
After 

rotation 

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 F21 D1 D2 

Fe 0.96 -0.24 0.02 -0.11 0.01 0.01 -0.01 -0.01 0.05 0.01 -0.01 -0.04 -0.05 -0.08 -0.04 0.00 -0.03 0.00 0.00 0.00 0.00 0.91 0.37 

Mn 0.72 0.61 0.29 -0.07 0.00 0.10 -0.05 -0.11 0.02 -0.07 0.02 0.02 -0.03 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.22 0.91 

Cr 0.78 -0.28 0.32 0.44 -0.08 -0.05 0.08 -0.03 0.01 -0.01 0.02 -0.03 -0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.79 0.24 

Cu 0.89 0.28 -0.11 0.25 0.09 0.08 -0.10 0.13 -0.04 -0.08 -0.06 -0.03 0.01 -0.01 -0.01 -0.01 -0.01 0.00 0.00 0.00 0.00 0.55 0.75 

Pb 0.85 0.40 0.18 -0.14 0.00 -0.16 0.13 0.13 0.06 0.04 -0.04 -0.02 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.45 0.82 

Zn 0.92 0.09 0.02 0.10 0.35 0.01 -0.02 -0.02 -0.01 0.12 0.04 0.03 -0.01 0.01 -0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.68 0.62 

Ni 0.96 -0.04 -0.13 0.08 0.01 -0.01 -0.07 -0.09 0.15 0.02 -0.07 -0.04 0.06 0.00 0.02 0.01 0.01 0.00 0.00 0.00 0.00 0.80 0.53 

Cd 0.94 0.04 0.14 -0.04 -0.23 0.04 -0.16 0.02 -0.07 0.12 -0.03 0.01 0.03 0.00 -0.01 0.00 0.00 0.00 0.00 -0.01 0.00 0.73 0.59 

As 0.97 0.01 -0.15 0.05 -0.07 -0.08 0.03 -0.04 0.02 -0.02 -0.05 0.11 -0.03 0.01 -0.02 -0.04 0.00 -0.02 -0.01 0.00 0.00 0.77 0.59 

Hg 0.88 0.27 -0.25 0.07 -0.13 0.20 0.17 -0.01 0.02 0.05 0.05 -0.03 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 0.54 0.74 

Co 0.98 -0.08 0.01 0.02 -0.03 -0.02 -0.02 0.08 0.05 -0.03 0.08 0.10 0.06 -0.04 0.02 0.01 0.00 0.01 0.01 -0.01 0.00 0.84 0.52 

Na 0.87 -0.38 0.15 -0.18 0.04 0.19 0.00 0.07 0.05 -0.04 0.01 0.00 0.02 0.04 -0.03 0.00 0.01 -0.02 0.00 0.00 0.00 0.92 0.21 

K 0.94 -0.23 0.10 -0.12 0.09 0.08 0.09 -0.01 -0.06 0.00 -0.07 0.01 0.01 -0.01 0.07 -0.02 -0.01 0.00 0.00 -0.01 0.00 0.90 0.37 

Ca 0.99 -0.03 -0.10 0.00 -0.05 -0.01 -0.02 0.04 -0.02 -0.01 0.02 -0.01 -0.06 0.03 0.02 0.05 -0.01 -0.01 -0.02 -0.01 -0.01 0.81 0.56 

Al 0.98 -0.07 -0.07 0.01 0.00 0.01 0.07 -0.03 -0.06 -0.03 -0.08 0.03 -0.01 -0.01 -0.03 0.04 0.02 0.01 0.02 0.00 0.01 0.83 0.53 

Ti 0.98 -0.17 -0.02 -0.02 0.00 0.01 -0.02 -0.01 0.00 0.01 0.01 0.02 -0.04 0.00 0.02 -0.01 0.02 0.02 -0.01 0.03 -0.02 0.89 0.44 

Sb 0.98 -0.01 -0.04 -0.10 0.05 -0.10 -0.03 -0.03 -0.03 -0.06 0.04 -0.06 0.00 -0.02 -0.01 -0.02 0.03 0.00 0.00 -0.02 0.00 0.80 0.57 

Sc 0.99 -0.08 -0.03 -0.05 0.00 -0.05 -0.02 0.00 -0.02 -0.01 0.02 -0.02 0.02 0.04 -0.01 -0.01 -0.01 0.04 -0.02 0.00 0.02 0.85 0.52 

Sr 0.98 0.03 -0.06 -0.11 -0.01 -0.10 0.02 -0.04 0.00 -0.02 0.02 -0.01 0.02 0.05 -0.02 -0.01 -0.03 0.00 0.02 0.00 -0.02 0.77 0.61 

V 0.99 0.05 -0.02 -0.03 0.01 -0.05 0.04 -0.06 -0.09 -0.02 0.04 -0.03 0.06 -0.03 0.00 0.01 -0.01 -0.02 -0.02 0.02 0.00 0.77 0.62 

Ba 0.99 -0.02 -0.09 0.02 -0.04 -0.05 -0.08 0.03 0.01 0.01 0.05 -0.02 -0.05 0.01 0.04 -0.01 0.00 -0.02 0.02 0.01 0.02 0.80 0.57 
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Table 4.8: All explained variables and factors derived using the orthogonal varimax rotation method of rainy season 

 

M
et

al
 

Before rotation 
After 

rotation 

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 D1 

Fe 0.95 -0.08 0.14 0.09 0.11 -0.06 0.12 0.13 0.04 -0.08 -0.04 -0.02 -0.01 0.02 -0.01 0.01 0.00 0.00 0.00 0.95 

Mn 0.95 -0.04 0.19 0.21 -0.03 0.08 -0.01 0.00 0.00 0.00 0.04 -0.03 -0.02 -0.02 0.00 -0.02 0.00 0.01 0.00 0.95 

Cr 0.87 0.29 0.19 0.20 -0.25 0.01 0.12 -0.10 0.02 0.01 -0.04 0.02 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.87 

Cu 0.92 0.07 -0.22 -0.14 -0.15 -0.07 0.21 0.06 -0.05 -0.03 0.03 -0.02 0.01 -0.01 0.01 -0.01 0.00 0.00 0.00 0.92 

Pb 0.88 0.08 0.33 -0.21 -0.07 -0.19 -0.13 0.01 -0.07 0.03 0.00 -0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.88 

Zn 0.85 -0.29 -0.28 0.23 -0.07 -0.15 -0.14 -0.05 -0.01 -0.04 -0.01 -0.01 0.02 0.01 0.00 -0.01 0.00 0.00 0.00 0.85 

Ni 0.93 -0.06 -0.09 -0.11 -0.13 0.29 -0.07 0.04 -0.05 0.01 -0.02 -0.03 0.01 0.02 -0.01 0.00 0.00 0.00 0.00 0.93 

Cd 0.93 0.25 -0.08 -0.15 -0.02 -0.01 -0.10 0.02 0.17 -0.02 0.00 0.01 0.02 0.00 0.01 0.00 0.01 0.00 0.00 0.93 

As 0.88 0.38 -0.10 0.21 -0.02 -0.03 -0.10 0.10 -0.03 0.03 0.03 0.02 -0.02 0.00 -0.02 0.01 0.01 0.00 0.00 0.88 

Hg 0.81 0.48 -0.14 -0.03 0.26 -0.02 0.05 -0.11 -0.03 0.02 0.00 -0.04 0.00 0.02 -0.01 0.00 0.00 0.00 0.00 0.81 

Co 0.93 -0.28 0.03 0.10 0.19 0.03 0.06 0.03 0.01 0.10 -0.02 0.00 0.04 -0.02 0.00 0.00 0.01 -0.01 0.00 0.93 

Na 0.99 0.05 -0.02 0.02 0.02 0.02 -0.07 0.03 0.01 0.02 -0.04 -0.04 -0.04 -0.01 0.03 0.00 -0.01 -0.01 0.00 0.99 

K 0.96 0.18 0.07 -0.03 0.13 0.11 -0.04 0.00 -0.05 -0.07 0.00 0.06 0.02 -0.01 0.01 -0.01 0.00 0.00 0.01 0.96 

Ca 0.94 -0.30 0.04 -0.11 0.05 -0.01 0.01 -0.04 0.02 0.01 0.02 0.01 -0.01 0.04 0.01 0.00 0.02 0.00 0.00 0.94 

Al 0.99 -0.06 0.07 0.04 0.04 0.01 0.00 0.03 0.01 -0.02 0.05 0.02 0.01 0.03 0.00 0.00 -0.02 -0.01 -0.01 0.99 

Ti 0.98 -0.04 -0.11 -0.11 -0.04 -0.06 0.00 0.02 -0.01 0.05 -0.04 0.03 -0.01 -0.01 -0.02 -0.02 0.00 0.00 0.00 0.98 

Sb 0.99 -0.11 0.05 -0.01 0.02 0.03 -0.01 -0.08 -0.01 -0.06 0.02 -0.02 0.01 -0.03 0.00 0.02 0.00 0.00 0.00 0.99 

Sc 0.97 -0.19 0.00 -0.08 0.00 0.00 0.00 -0.09 0.00 -0.06 -0.02 0.02 -0.04 -0.01 -0.02 0.00 0.00 -0.01 -0.01 0.97 

Sr 0.99 0.01 -0.06 -0.04 -0.01 -0.03 0.03 0.02 -0.02 0.00 -0.02 0.03 0.01 0.00 0.01 0.02 0.00 0.01 0.00 0.99 

V 0.99 -0.12 -0.03 0.01 0.04 -0.02 0.02 -0.02 -0.03 0.06 0.00 0.03 -0.03 0.01 0.02 0.01 0.00 0.00 0.00 0.99 

Ba 0.98 -0.09 -0.01 -0.05 -0.07 0.03 0.05 -0.03 0.08 0.06 0.03 0.00 0.00 -0.01 -0.02 0.01 -0.01 0.00 0.01 0.98 
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In this study, metal elements were distributed in a correlation circle which indicated four 

distinct quadrants relative to the PCs for dry season shown in Figure 4.4.  This circle 

exhibited a graphical representation of loading vectors for metal elements in order to 

determine the most influential variables (metal elements) interaction in this model. All the 

metal elements were positively correlated as the appearance of variables on the same 

quadrant (Lu et al., 2007). The impact of any individual variable to the entire PCA model 

was measured by the distance by how far the variable is from the origin (Olawoyin et al., 

2012).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: Correlation circle for metal elements in soil for dry season. 

 

Variables that showed longer distances from origin of circle have larger impacts on the 

general architecture of the model than variables with shorter distances (Olawoyin et al., 

2012).  In the loading plot corresponding to the first two PCs (Figure 4.4); the following 

eight metal elements of Ca, Al, Ti, Sb, Sc, Sr, V and Ba showed clear positive correlation 

because they were in the same quadrant. In addition, these metal elements have stronger 

impact on the PCA model because these metal elements were at a longer distance from 
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origin. Besides, the metal elements of Na, Pb, Cu, K, Ni, Co, Hg, Fe, As, Zn and Cd, 

which also positively correlated with less stronger impact because they were comparative 

in shorter distance from origin than that of Ca, Al, Ti, Sb, Sc, Sr, V and Ba. Moreover, the 

metal elements of Mn and Cr having the least impact on the PCA model because they were 

far from each other in the same quadrant. It was noticed that Cu, Hg, Mn, Pb and Zn in soil 

were located at a distance from origin of circle than that of other metal elements. This 

indicated the origin of these metal elements was differing from other metal elements. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: Correlation circle for metal elements in soil for rainy season. 

 

Figure 4.5 illustrates the projection of variables and their correlation in the factor space for 

rainy season. It was clearly illustrated that 8 variables; Ca, Al, Ti, Sb, Sc, Sr, V and Ba in 

soil showed clear positive correlation but they have stronger impact on the PCA model 

than that of Na, Pb, Cu, K, Ni, Co, Mn, Fe, As, Cr and Cd, which also correlates positively 

with 8 variables, whereas Hg and Zn having the least impact on the PCA model (Olawoyin 

et al., 2012). It was also found from PCA analysis that Mn, Hg, As, Cr, Na and K were 

located far from other metal elements indicating different origin from other metal 

elements. 
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Figure 4.6: Correlation plot of soil sampling locations of dry season. 

 

The correlation soil sampling locations for dry season is shown in Figure 4.6. Figure 4.6 

reveals that the same soil sampling location indicated similar pattern of concentration of 

metal elements in soil. The biplot of soil sampling locations and concentration of metals 

elements in soil depicts in Figure 4.7. 
 

 

Figure 4.7: Biplot of soil sampling locations and concentrations of metal elements of dry 

season. 
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Figure 4.8: Correlation plot of soil sampling locations of rainy season. 
 

 

Figure 4.7 illustrates the correlation between the observation locations, indicating a 

nucleated pattern for the most of locations to depict the correlation between the variables 

and how strongly they impacted the overall model with respect to the observations during 

dry season (Olawoyin et al., 2012).  

 

 

 

Figure 4.9: Biplot plot of the locations for metal elements (rainy) in soil of waste disposal 

site. 
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This suggested high similarities between the locations, but due to locational, geological 

and concentration there were some differences too. There seem to be a consistent trend in 

the correlation between the metal elements concentrations in soil of waste disposal site. 

Figure 4.8 and Figure 4.9 illustrated the correlation between the observation locations and 

the biplots, respectively, for the metal elements variables in rainy season. These plots 

showed positive correlations between the variables, observations and all areas with 

positive correlation (Olawoyin et al., 2012).  

 

Based on the results of PCA for metal elements in dry season, it can be decided that the 

metal elements of Cu, Hg, Mn, Pb, and Zn derived from natural sources as they were 

closed to PC2, whereas, Al, As, Ba, Ca, Cd, Co, Fe, K, Na, Ni, Sb, Sc, Sr, Ti and V were 

also derived from anthropogenic activities because they were closed to PC1. Nevertheless, 

the metal element of Cr also derived from both natural soil parent materials and 

anthropogenic sources. In context of rainy season, the PCA results demonstrated that metal 

elements of As, Cr, Hg, K, Mn and Na were derived from different sources as the location 

of these metal elements were distinct from other metal elements of Al, Ba, Ca, Co, Cu, Fe, 

Ni, Sb, Sc, Sr, Ti and V.  Moreover, it can be estimated as the metal elements of  Al, Ba, 

Ca, Co, Cu, Fe, Ni, Sb, Sc, Sr, Ti and V were derived from anthropogenic activities and 

As, Cr, Hg, K, Na and Mn were derived from natural parent materials. Other metal 

elements of Cd, Pb and Zn were derived from both natural parent materials and 

anthropogenic sources. 

 

4.3.3  Cluster Analysis: Agglomerative Hierarchical Clustering  

 

Agglomerative Hierarchical Clustering (AHC) is one of the most popular clustering 

methods. It is an iterative classification method whose principle is simple. In this study, 

AHC analysis was performed using XLSTAT software. Figure 4.10(a) and Figure 4.10(b) 

represents the hierarchical dendrograms for the classification of variables (metal elements) 

presence in soil for dry and rainy season, respectively. Clustering obtained by cutting the 

dendogram at a desired level, each connected metal elements formed a cluster.  The cluster 

formed for both the dry and rainy seasons were found to be very similar results as PCA. A 

study conducted by Anderberg (1973) reviewed that in case of soil, the minimum distance 

to centroid referred to close relation between generation sources of metal elements. The 
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metal elements exhibited smallest distance indicated generation from both the natural and 

anthropogenic activities; whereas the largest maximum distance to centroid indicated the 

possible pollutant generation source is natural parent material, while comparative smaller 

value indicated pollutant due to anthropogenic activities. 

 

 

(a) 

 

(b) 

Figure 4.10: Dendrogram for metal elements in soil during (a) dry and (b) rainy season. 
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In case of dry season, cluster 1 comprises with metal elements of Al, As, Ba, Ca, Cd, Co, 

Fe, K, Na, Ni, Sb, Sc, Sr, Ti and V in soil which indicated these metal elements were 

generated from anthropogenic activities . In addition, cluster 2 comprises with Cu, Hg, 

Mn, Pb, and Zn, indicating origination from natural sources and Cluster 3 comprises with 

Cr which derived from both the natural parent materials and anthropogenic sources. Table 

4.9 and Table 4.10 showed the results of cluster analysis by class for both the dry and rainy 

season, respectively. 
 

Table 4.9: Results of cluster analysis for dry season 

 

 

Class 1 2 3 

Objects 15 5 1 

Sum of weights 15 5 1 

Within-class variance 4511.6859 18600.6792 0.0000 

Minimum distance to centroid 24.7282 91.2381 0.0000 

Average distance to centroid 58.8082 118.9985 0.0000 

Maximum distance to centroid 122.5230 170.2796 0.0000 

 

Fe, Ni, Cd, As, Co, Na, K, 

Ca, Al,Ti, Sb, Sc, Sr, V, Ba 

Mn, Cu, Pb 

Zn, Hg 
Cr 

 

 

In this study, maximum distance to centroid was found for cluster 2 of 170.279 between 

three clusters, indicating generation of metal elements from natural sources (Table 4.9). 

Moreover, maximum distance to centroid for cluster 1 was found comparatively smaller of 

122.5230 than that of cluster 2, indicating generation of metal elements from 

anthropogenic or human activities. Cluster 3 showed maximum distance to centroid was 

zero, indicating it was closed to both the clusters, consequently generated from both 

natural sources and anthropogenic activities. In addition, for rainy season, cluster 1 

comprises with metal elements of Al, Ba, Ca, Co, Cu, Fe, Ni, Sb, Sc, Sr, Ti and V which 

indicated these metal elements were generated from anthropogenic activities (Figure 4.10). 

Cluster 2 comprises with As, Cr, Hg, Mn, K and Na indicating origination from natural 

sources and Cluster 3 comprises with Cd, Pb and Zn which derived from both natural 

parent materials and anthropogenic sources. 

 

Maximum distance to centroid cluster 2 was found as 148.207 between three clusters, 

indicating generation of metal elements from natural sources. The maximum distance to 

centroid was found to be smaller for cluster 1 (89.064) than that of cluster 2 (148.2072), 

indicating generation of metal elements from anthropogenic activities. Cluster 3 showed 
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maximum distances to centroid was smaller (64.249) than that of cluster 1 and 2, 

indicating it was closed to both classes, consequently generated from both natural and 

anthropogenic sources (Table 4.10). 

 

Table 4.10: Results of cluster analysis for rainy season 

 

Class 1 2 3 

Objects 12 6 3 

Sum of weights 12 6 3 

Within-class variance 3042.8452 12931.7509 4559.6888 

Minimum distance to centroid 25.5419 66.0451 41.0257 

Average distance to centroid 48.7729 99.0971 54.2642 

Maximum distance to centroid 89.0645 148.2072 64.2498 

 

Fe, Cu, Ni, Co, Ca, Al, Ti, 

Sb, Sc, Sr, V, Ba 

Mn, Cr, As, 

Hg, Na, K 
Pb, Zn, Cd 

 

 

 

Based on AHC results for dry season, it can be decided that the metal elements of Cu, Hg, 

Mn, Pb, and Zn in soil derived from natural sources, whereas Al, As, Ba, Ca, Cd, Co, Fe, 

K, Na, Ni, Sb, Sc, Sr, Ti and V in soil were also derived from anthropogenic activities and 

Cr also derived from both natural soil parent materials and anthropogenic sources. In 

context of rainy season, the AHC results demonstrated that metal elements of As, Cr, Hg, 

K, Mn and Na in soil were derived from different sources as the location of these metal 

elements were distinct from other metal elements of Al, Ba, Ca, Co, Cu, Fe, Ni, Sb, Sc, Sr, 

Ti and V.  Moreover, it can be estimated as the metal elements of  Al, Ba, Ca, Co, Cu, Fe, 

Ni, Sb, Sc, Sr, Ti and V were derived from anthropogenic activities and As, Cr, Hg, K, Na 

and Mn were derived from natural soil parent materials. Other metal elements of Cd, Pb 

and Zn were derived from both natural parent materials and anthropogenic sources. 

 

4.4  Cluster Analysis: Artificial Neural Network 

 

Clustering is the process of training of a neural network on patterns so that the network 

comes up with its own classifications according to patterns similarity and relative topology 

(Kohonen, 2001). This analysis is used to identify the possible sources of contamination of 

metal elements by different color patterns. This analysis is also useful for gaining insight 

into data, or simplifying it before further processing. Pattern recognition is the process of 

training a neural network to assign the correct target classes to set of input patterns. In this 

analysis, self-organizing map (SOM) was used to represent the cooperation, competition 
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and updating mechanisms in accomplishing unsupervised learning, with the goal of 

reducing the dimensions found in any data set. In this study, the connection patterns of 

metal elements were presented in soil of waste disposal site. The weight planes for each 

element of the input vector that connect each input to each of the neurons were visualized. 

Darker colors represented highly contamination with high concentration and the 

correlations between the metal elements were very strong (Kohonen, 2014). 

 

 

 

 

 

 

 

 

 

 

(a) (b)     

Figure 4.11: Plot of SOM sample hits for metal elements in (a) dry season (b) rainy season. 

 

Figure 4.11 showed the neuron locations in the topology which indicated how many of the 

training data were associated with each of the neurons (cluster centers). The topology was 

10-by-10 grid, so there were 100 neurons by default. The maximum number of hits 

associated with any neuron was 2 in case of dry season. Thus, there were 2 input vectors in 

that cluster.  

 

Plot of SOM weight plane for metal elements of Cd, Ni, Pb and Zn in dry season is shown 

in Figure 4.12 (a) to Figure 4.12(d), respectively. The weight plane for each element of the 

input vector that connect each input to each of the neurons were visualized in the Annex-B 

except Cd, Ni, Pb and Zn.  In this analysis, darker colors represented higher contamination 

with high concentrations of metal elements. Connection patterns of the concentration of all 

studied metal elements were almost similar, which interpreted these metal elements were 

highly correlated (Figure 4.12). The connection patterns of all metal elements were very 

similar as these metal elements were highly correlated. In case of dry season, K, Ca, Al, 
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Ti, Sb, Sc, Sr, V and Ba the connection pattern were very similar as these parameters were 

highly correlated. This statement was also verified from Pearson’s correlation as 

correlation coefficient for these metal elements in dry season were very high (r > 0.90).  

 

Figure 4.12: Plot of SOM weight plane for metal elements of (a) Cd, (b) Ni, (c) Pb and (d) 

Zn in dry season. 

 

Figure 4.13 showed the connection pattern for Cd, Ni, Pb and Zn in the rainy season 

respectively. Rest of the cluster patterns were reported in Figure B.35 and Figure B.36 in 

the Annex- B for both the dry and rainy season, respectively. It was found from Figure 

B.35 and Figure B.36, the connection pattern for metal elements such as Fe. Mn, Cr, Cd, 

As, Hg, Co, Na and K, which were very similar. On the other hand, the cluster pattern for 

Ca, Al, Ti was almost same, whereas the pattern of Sb, Sc, Sr, V and Ba were similar, 

 

 

 

 

Cd Ni 

 

 

 

 

 

 

 

 

 

Pb Zn 
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which represent the correlation between metal elements present in soil of waste disposal 

site. 
 

Figure 4.13: Plot of SOM Weight Plane for metal elements of (a) Cd, (b) Ni, (c) Pb and (d) 

Zn, in rainy season. 

 

4.5  Geostatistical Analysis 

 

In this study, Geostatistical analyses including ArcGIS and Artificial Neural Network 

(ANN) were considered. Different interpolation methods of ArcGIS showed spatial 

distribution of metal elements in soil of waste disposal site with prediction errors. 

Moreover, ANN was also used to predict values considering standard error and hence 

discussed in the following articles.  

  

Cd Ni 

 

 

 

 

 

 

 

 

 

Pb Zn 
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4.5.1  ArcGIS Approach  

 

In this study, geostatistical analysis such as ordinary kriging (OK), inverse distance 

weighting (IDW), local polynomial interpolation (LP) and radial basis function (RBF) 

were performed using ArcGIS to distribute the metal elements in soil spatially. In addition, 

semivariogram parameters obtained from ordinary kriging exhibited spatial dependence of 

metal elements in soil and hence discussed in the following articles.  

 

 

4.5.2  Deterministic Methods 

 

Deterministic techniques have parameters that control either (1) the extent of similarity 

(for example, IDW) of the values or (2) the degree of smoothing (for example, RBF). 

These techniques are not based on a random spatial process model. In this study, 

deterministic methods included IDW, LPI and RBFs were used for distributing metal 

elements spatially in soil. In this analysis, various prediction errors such as mean 

prediction error (MPE) and root mean square prediction error (RMSPE), mean 

standardized prediction error (MSPE), root mean square standard prediction error 

(RMSSPE) and average standard prediction error (ASPE) were considered. 

 

4.5.2.1 Inverse Distance Weighting 

 

In case of IDW analysis, several powers of 1 to 5  were used to identify predicted surface 

with least prediction errors. To find out the best interpolation technique of IDW, cross 

validation of IDW with power 1 to 5 was performed for each metal elements. The result of 

cross validation  for metal elements were reported in Annex-B, except Cd, Ni, Pb and Zn 

which is explained in details in this section.  In the produced predicted surface from IDW 

interpolation, green with yellow color region represented the level of less contamination 

whereas orange, orange-red, ocher and red color area represented the level of highly 

contaminated soil (Yasrebi et al., 2009).   
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Cross Validation of Cadmium  

To find out the best interpolation technique for IDW, cross validation of IDW with power 

1 to 5 was performed for each metal elements and the results of cross validation for Cd is 

provided in Table 4.11.  Figure. 4.14 showed the spatial distribution of Cd for IDW with 

power 1 to 5. Based on Figure 4.14, it was noticed that IDW with power 1 (IDW1) with 

highest RMSPE value (1.445) indicated the highest prediction error.  Furthermore, in the 

produced prediction surface, there was a slighter greenish and yellow color region i.e. most 

of the region covered by red, ocher, orange-red and orange color with Cd concentration 

ranges approximately from 3.97 to 7.03 mg/kg indicated the soil of the study area was 

highly contaminted by Cd.  In addition, IDW2 showed RMSPE (1.359), IDW3 of RMSPE 

(1.324) and  IDW4 of  RMSPE (1.318). The spatial distribution pattern with IDW with 

power 2 to 5 were almost same, except  exhibited comparatively little greenish,  little more 

greenish  and more greenish color region, respectively (Figure 4.14). 

Table 4.11: Cross validation of IDW for Cd 

 

Metal element Power 
a
MPE 

b
RMSPE 

 

 

Cd 

1 0.675 1.445 

2 0.594 1.359 

3 0.495 1.324 
4 0.412 1.318 

5 0.349 1.306 
a
MPE=Mean Prediction Error, 

b
RMSPE= Root Mean Square Prediction Error 

 

In addition, IDW with power 5 (IDW5) exhibited maximum greenish color region and 

showed the lowest RMSPE value of 1.324 indicated the lowest predition error in case of 

Cd. The produced prediction surface, comparatively more greenish color region was 

observed with Cd concentration ranges approximately from 1.2 to 3.97 mg/kg indicated 

the soil of the study area was found to be less contaminted in comparison of IDW1 to 

IDW4. A study conductd by Brovelli et al. (2011) and stated the IDW1 showed 

comparatively the severe contamination of Cd in soil, whereas for IDW5 was 

comparatively less contamination. So, the findings of this study are well agreed by the 

other researcher. From Figure 4.14, it was concluded that IDW5 showed better field 

condition. From this study, it was found that the contamination hotspots were near the 

center of the waste disposal site for metal element of Cd. 
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IDW1 IDW2 IDW3 IDW4 IDW5  

Explanation:   

 Comparatively 

higher contamination 

was visible between 

IDW1 to IDW5. 

 Most of the region 

exhibited ocher, 

orange red and 

orange color. 

 Yellow color also 

covered a noticable 

region with a very 

small green region.  

Explanation: 

 Comparatively lesser 

contamination than 

IDW1.  

 Little red region 

along with smaller 

ocher, orange red and 

orange color region.  

 Yellow color also 

covered a noticable 

region with a a little 

larger green region. 

Explanation:  

 Pattern was almost 

same as IDW2. 

 Comparatively lesser 

contamination than 

IDW1 and IDW2. 

 Little more red 

region along with 

ocher, orange red 

and orange color 

region.  

 Comparative little 

yellow color and 

larger green region 

was visible. 

Explanation:   

 Pattern was almost 

same as IDW3. 

 Comparatively lesser 

contamination than 

IDW1, IDW2 and 

IDW3. 

 Little more red 

region along with 

ocher, orange red 

and orange color 

region.  

 Comparative little 

yellow color and 

larger green region 

was visible. 

Explanation:   

 Pattern was almost 

same as IDW4. 

 Comparatively lesser 

contamination than 

IDW1, IDW2, 

IDW3 and IDW4. 

  Red region along 

with ocher, orange 

red and orange color 

region.  

 Comparative little 

yellow color and 

larger green region 

was visible than 

other powers. 

Color 

variation and 

visual 

contamination 

level from 

spatial 

distribution 

Figure 4.14: Spatial distribution of Cd in soil using IDW with power of 1- 5. 
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Cross Validation of Nickel, Lead and Zinc 

The result of cross validation for IDW with power 1-5 for Ni, Pb and Zn was listed in 

Table 4.12. Table 4.12 reveals IDW1  with highest RMSPE value of 1.477 indicated the 

highest prediction error.  In this case, most of the region covered by red and deep orange 

color which indicated the soil of the study area was highly contaminted for Ni. Moreover, 

for IDW5, the produced prediction surface showed comparatively more greenish color 

region which indicated the soil of the study area was found to be less contaminated with 

respect to IDW1 to  IDW4 (Figure 4.15). 

 

Table 4.12: Cross validation of IDW with different power for Ni, Pb and Zn 

 

 

Metal Elements Power 
a
MPE 

b
RMSPE 

Ni 

1 0.766 1.477 

2 0.674 1.389 

3 0.573 1.354 
4 0.491 1.340 

5 0.427 1.339 

Pb 

1 8.053 15.618 

2 6.667 14.555 

3 5.230 13.967 

4 4.180 13.558 
5 3.458 13.263 

Zn 

1 3.994 9.577 

2 3.670 9.095 

3 3.120 8.867 

4 2.608 8.742 

5 2.209 8.693 
a
MPE=Mean Prediction Error, 

b
RMSPE= Root Mean Square Prediction Error 

 

This study (Table 4.12) also reveals the controlling parameters define prediction of 

variability of spatial distribution of Pb and Zn in soil of study area with IDW of power 1-5. 

IDW1  with highest RMSPE (15.618) indicated the highest prediction error. Moreover, for 

IDW5, the RMSPE value was found to be 13.263. Thus, the produced prediction surface 

showed comparatively more greenish color region indicated the soil of the study area was 

found to be less contaminated in comparison of  IDW of power 1 to 4. 
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IDW1 IDW2 IDW3 IDW4 IDW5  

Explanation:   

 Comparatively 

higher contamination 

was visible between 

IDW1 to IDW5. 

 Most of the region 

exhibited ocher, 

orange red and 

orange color. 

 Yellow color also 

covered a noticable 

region with a very 

small green region.  

Explanation: 

 Comparatively lesser 

contamination than 

IDW1.  

 Little red region 

along with smaller 

ocher, orange red and 

orange color region.  

 Yellow color also 

covered a noticable 

region with a a little 

larger green region. 

Explanation:  

 Pattern was almost 

same as IDW2. 

 Comparatively lesser 

contamination than 

IDW1 and IDW2. 

 Little more red 

region along with 

ocher, orange red and 

orange color region.  

 Comparative little 

yellow color and 

larger green region 

was visible. 

Explanation:   

 Pattern was almost 

same as IDW3. 

 Comparatively lesser 

contamination than 

IDW1, IDW2 and 

IDW3. 

 Little more red 

region along with 

ocher, orange red and 

orange color region.  

 Comparative little 

yellow color and 

larger green region 

was visible. 

Explanation:   

 Pattern was almost 

same as IDW4. 

 Comparatively lesser 

contamination than 

IDW1, IDW2, IDW3 

and IDW4. 

  Red region along 

with ocher, orange 

red and orange color 

region.  

 Comparative little 

yellow color and 

larger green region 

was visible than 

other powers. 

Color variation 

and visual 

contamination 

level from 

spatial 

distribution 

Figure 4.15: Spatial distribution of Ni in soil using IDW with power of 1- 5. 
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IDW1 IDW2 IDW3 IDW4 IDW5  

Explanation:   

 Comparatively higher 

contamination was 

visible between 

IDW1 to IDW5. 

 Most of the region 

exhibited ocher, 

orange red and 

orange color. 

 Yellow color also 

covered a noticable 

region with a very 

small green region.  

Explanation: 

 Comparatively lesser 

contamination than 

IDW1.  

 Little red region 

along with smaller 

ocher, orange red and 

orange color region.  

 Yellow color also 

covered a noticable 

region with a a little 

larger green region. 

Explanation:  

 Pattern was almost 

same as IDW2. 

 Comparatively lesser 

contamination than 

IDW1 and IDW2. 

 Little more red region 

along with ocher, 

orange red and orange 

color region.  

 Comparative little 

yellow color and 

larger green region 

was visible. 

Explanation:   

 Pattern was almost 

same as IDW3. 

 Comparatively lesser 

contamination than 

IDW1, IDW2 and 

IDW3. 

 Little more red 

region along with 

ocher, orange red and 

orange color region.  

 Comparative little 

yellow color and 

larger green region 

was visible. 

Explanation:   

 Pattern was almost 

same as IDW4. 

 Comparatively 

lesser contamination 

than IDW1, IDW2, 

IDW3 and IDW4. 

  Red region along 

with ocher, orange 

red and orange color 

region.  

 Comparative little 

yellow color and 

larger green region 

was visible than 

other powers. 

Color variation 

and visual 

contamination 

level from 

spatial 

distribution 

Figure 4.16: Spatial distribution of Pb in soil using IDW with power of 1- 5. 
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Table 4.12 also exposes IDW with power 1  with highest RMSPE value of 9.577 which 

indicated the highest prediction error.  In this case, most of the region covered by red color 

with a little light green region which indicated the soil of the study area was highly 

contaminted for Zn. Moreover, for IDW with power 5, the produced prediction surface 

showed comparatively more greenish color region which indicated the soil of the study 

area was found to be less contaminated in comparison of  IDW of power 1 to 4 (Figure 

4.17). 

 

Figure 4.15, Figure 4.16 and Figure 4.17 displayed IDW5 deliver better field condition for 

metal elements of Ni, Pb and Zn, respectively in soil of waste disposal site. It was 

comprehended from the analysis that the contamination hotspots were near the center of 

the selected disposal site for metal element of Ni, Pb and Zn. 
 

In addition, the cross validation of IDW with power  1 to 5  was performed and the results 

are  provided  in Table C.1 to Table C.17 as well as the spatial distribution for metal 

elements of Al, As, Ba, Ca, Co, Cr, Cu, Fe, Hg, K, Mn, Na, Sb, Sc, Sr, Ti, and V in soil of  

the study area is depicted in Figure C. 1 to Figure C.17 in Annex-C.  Results reveals that in 

produced prediction surface for all these metal elements,, greenish color region represented 

the level of less contamination and redish color area represented the level of highly 

contaminated soil. Almost all the metal elements exhibited severe contamination for 

IDW1; whereas comparativly less contaminated region was obtained for IDW5 

interpolation techniques. 
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IDW1 IDW2 IDW3 IDW4 IDW5  

Explanation:   

 Comparatively 

higher contamination 

was visible between 

IDW1 to IDW5. 

 Most of the region 

exhibited ocher, 

orange red and 

orange color. 

 Yellow color also 

covered a noticable 

region with a very 

small green region.  

Explanation: 

 Comparatively lesser 

contamination than 

IDW1.  

 Little red region 

along with smaller 

ocher, orange red 

and orange color 

region.  

 Yellow color also 

covered a noticable 

region with a a little 

larger green region. 

Explanation:  

 Pattern was almost 

same as IDW2. 

 Comparatively lesser 

contamination than 

IDW1 and IDW2. 

 Little more red 

region along with 

ocher, orange red 

and orange color 

region.  

 Comparative little 

yellow color and 

larger green region 

was visible. 

Explanation:   

 Pattern was almost 

same as IDW3. 

 Comparatively lesser 

contamination than 

IDW1, IDW2 and 

IDW3. 

 Little more red 

region along with 

ocher, orange red 

and orange color 

region.  

 Comparative little 

yellow color and 

larger green region 

was visible. 

Explanation:   

 Pattern was almost 

same as IDW4. 

 Comparatively lesser 

contamination than 

IDW1, IDW2, IDW3 

and IDW4. 

  Red region along 

with ocher, orange 

red and orange color 

region.  

 Comparative little 

yellow color and 

larger green region 

was visible than 

other powers. 

Color variation 

and visual 

contamination 

level from 

spatial 

distribution 

Figure 4.17: Spatial distribution of Zn in soil using IDW with power of 1- 5. 
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4.5.2.2  Local Polynomial Interpolation 

 

Local polynomial (LP) is a moderately quick deterministic interpolator technique. It is 

more flexible for analysis than that of global polynomial method. In this analysis, cross 

validation of LP was performed with six kernal function of Exponential, Polynomial, 

Gaussian, Epanechnikov, Quartic, Constant for order 1 to 3 for each metal elements and 

hence discussed in the following sections. Interpolation quality may be judged by 

examining RMSPE of the cross validation. A researcher Brovelli et al. (2011) stated that 

when RMSPE showed the lowest, the interpolation technique was considerd as best fitted 

model.  The cross validation result of metal elements were reported in the Annex-D, 

except for the metal elements such as Cd, Ni, Pb and Zn which are provided in this section. 

A study conductd by Li et al. (2013) and stated the interpolation techniques showed red 

color with high concentration of metal elements indicated the contamination hotspots, 

while green with yellow color indicated comparatively less contamination of soil by metal 

elements.  In this study, from produced predicted surface by LP interpolation with different 

order of 1 to 3, it was comprehended that green and yellow color area represented less 

contamination and orange,orange red, ocher and red color area represented high 

contamination. 

  

Cross Validation of Cadmium  

The results of cross validation of LP with order 1 to 3 for different kernal function of Cd 

are provided in Table 4.13. Based on the interpolation analysis, it was observed LP with 

order 1 (LP1) for gaussian function showed comparatively the lower value of RMSPE 

(1.359) than that of other kernal functions. Based on this finding, gaussian function was 

chosen as the  best fitted model for Al. In addition, for second order polynomial (LP2), 

exponential function showed comparatively the lower of RMSPE  with 1.428, and 

exponential function was chosen as the  best fitted model. Finally, LP with order 3 (LP3) 

for exponential function showed the lowest value of RMSPE (1.436) and this function was 

chosen as the  best fitted model.  

Figure 4.18 showed the spatial distribution of Cd for the best fitted model of LP with order 

1 to 3.  The produced prediction surface area for LP2, there was a small yellow greenish 

color region i.e. most of the region covered by ocher and orange red color. with Cd 

concentration approximately ranges from 5.01 to 6.29 mg/kg, indicated the soil of the 

study area was highly contaminted by Cd (Figure 4.18).  
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Table 4.13: Cross validation of LP for Cd 

Order 1 
Kernal function Exponential Polynomial Gaussian Epanechnikov Quartic Constant 
a
MPE 0.353 0.282 0.284 0.265 0.282 0.198 

b
RMSPE 1.377 1.371 1.360 1.371 1.369 1.650 

c
MSPE 0.084 0.028 0.041 0.013 0.028 0.049 

d
RMSSPE 0.906 0.955 0.939 0.963 0.955 0.950 

e
ASPE 1.525 1.469 1.472 1.462 1.466 2.395 

Order 2 

Kernal function Exponential Polynomial Gaussian Epanechnikov Quartic Constant 
a
MPE 0.450 0.466 0.455 0.476 0.461 0.584 

b
RMSPE 1.428 1.474 1.461 1.481 1.474 1.526 

c
MSPE 0.174 0.174 0.170 0.180 0.171 0.239 

d
RMSSPE 0.914 0.956 0.947 0.958 0.956 0.963 

e
ASPE 1.542 1.513 1.519 1.521 1.512 1.571 

Order 3 

Kernal function Exponential Polynomial Gaussian Epanechnikov Quartic Constant 
a
MPE 0.342 0.411 0.350 0.392 0.407 0.405 

b
RMSPE 1.436 1.584 1.449 1.450 1.516 1.458 

c
MSPE 0.124 0.104 0.123 0.145 0.140 0.159 

d
RMSSPE 0.933 0.936 0.953 0.956 0.958 0.960 

e
ASPE 1.584 3.092 1.567 1.590 1.627 1.597 

 

a
MPE= Mean Prediction Error, 

b
RMSPE= Root Mean Square Prediction Error, 

c
MSPE= Mean Standardized Prediction Error, 

d
RMSSPE= 

Root Mean Square Standard Prediction Error, 
e
ASPE= Average Standard Prediction Error. 
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LP1 LP2 LP3  

Explanation for LP1 

 Comparatively less contamination 

was visible between LP2 and LP3. 

 Most of the region exhibited orange 

red and ocher color. 

  Yellow color also covered a 

noticable region with a large green 

region. 

Explanation for LP2 

 Spatial pattern was almost same as 

LP1.  

 Comparatively more contamination 

than LP2. 

  Large orange with smaller ocher 

region was presented. 

  Yellow color also covered a 

noticable region with a  little light 

green region. 

Explanation for LP3 

 Spatial pattern was almost same 

as LP1 and LP2.  

 Comparatively less contamination 

was visible between LP2 as most 

of the region exhibited a small red 

region with large orange red and 

ocher color. 

  Yellow color also covered a 

noticable region with a large 

green region. 

Color variation 

and visual 

contamination 

level from 

spatial 

distribution 

 

Figure 4.18: Spatial distribution of Cd in soil using LP with order of 1- 3. 
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Table 4.14: Cross validation of LP for Ni 

 

Order 1 

Kernal function Exponential Polynomial Gaussian Epanechnikov Quartic Constant 
a
MPE 0.207 0.120 0.179 0.098 0.115 0.214 

b
RMSPE 1.385 1.339 1.406 1.353 1.343 1.577 

c
MSPE 0.019 -0.065 -0.011 -0.085 -0.066 -0.047 

d
RMSSPE 0.903 0.945 0.931 0.954 0.944 0.944 

e
ASPE 1.783 1.651 1.787 1.670 1.673 3.894 

Order 2 
Kernal function Exponential Polynomial Gaussian Epanechnikov Quartic Constant 
a
MPE 0.419 0.466 0.406 0.504 0.383 0.394 

b
RMSPE 1.433 1.511 1.484 1.502 1.513 1.519 

c
MSPE 0.163 0.208 0.147 0.228 0.133 0.128 

d
RMSSPE 0.933 0.939 0.961 0.940 0.968 0.977 

e
ASPE 1.561 1.978 1.591 1.955 1.611 1.618 

Order 3 

Kernal function Exponential Polynomial Gaussian Epanechnikov Quartic Constant 

a
MPE 0.328 0.282 0.291 0.244 0.303 0.263 

b
RMSPE 1.466 1.432 1.438 1.445 1.625 1.729 

c
MSPE 0.077 0.0524 0.060 0.029 0.114 0.117 

d
RMSSPE 0.917 0.942 0.933 0.946 0.982 0.999 

e
ASPE 2.351 2.442 2.477 2.676 1.720 1.665 

a
MPE= Mean Prediction Error, 

b
RMSPE= Root Mean Square Prediction Error, 

c
MSPE= Mean Standardized Prediction Error, 

d
RMSSPE= 

Root Mean Square Standard Prediction Error, 
e
ASPE= Average Standard Prediction Error. 
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LP1 LP2 LP3  

Explanation for LP1 

 Comparatively less contamination 

was visible between LP2 and LP3. 

 Most of the region exhibited orange 

red and ocher color. 

  Yellow color also covered a 

noticable region with a large green 

region. 

Explanation for LP2 

 Spatial pattern was almost same as 

LP1.  

 Comparatively more contamination 

than LP2. 

  Large orange with smaller ocher 

region was presented. 

  Yellow color also covered a 

noticable region with a  little light 

green region. 

Explanation for LP3 

 Spatial pattern was almost same as 

LP1 and LP2.  

 Comparatively less contamination 

was visible between LP2 as most 

of the region exhibited a small red 

region with large orange red and 

ocher color. 

  Yellow color also covered a 

noticable region with a large green 

region. 

Color variation 

and visual 

contamination 

level from 

spatial 

distribution 

Figure 4.19: Spatial distribution of Ni in soil using LP with order of 1- 3. 
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In addition, LP1 exhibited maximum yellow with smaller area of greenish color with Cd 

concentration combindly ranges from 2.48 to 3.97 mg/kg indicated the soil of the study 

area less contaminted with respect to LP of order 1 and 2. Figure 4.18 displayed LP1 better 

field condition for metal elements of Cd respectively in soil of waste disposal site. It was 

comprehended from the analysis that the contamination hotspots were near the center of 

the selected dispoal site for metal element of Cd. A study conductd by Brovelli et al. 

(2011) and stated the LP2 showed comparatively the severe contamination of Al in soil, 

whereas for LP3 was comparatively less contamination. So, the findings of this study are 

well agreed with the other researchers in the similar cases of studies.  

 

Cross Validation of Nickel, Lead and Zinc  

The result of cross validation for LP with order 1-3  for Ni, Pb and Zn was listed in Table 

4.14, Table 4.15 and Table 4.16 respectively. Table 4.14 reveals polynomial kernal 

function for LP2  was showed the highest RMSPE value of 1.433 indicated the highest 

prediction error for Ni.  In this case, most of the region covered by red and deep orange 

color indicated the soil of the study area was highly contaminted for Ni. Moreover, for 

LP1, the produced prediction surface by showed comparatively more greenish and yellow 

color region which indicated the soil of the study area was found to be less contaminated 

in comparison of LP2 and LP3 (Figure 4.19).  

 

Figure 4.20 showed the spatial distribution of Pb for the best fitted model of LP with order 

1 to 3.  The produced prediction surface area for LP2, there was a small yellow greenish 

color region i.e. most of the region covered by orange color with Pb concentration 

approximately ranges from 27.77 to 59.19 mg/kg indicated the soil of the study area was 

moderately contaminted in case of Pb (Figure 4.20). In addition, LP3 exhibited maximum 

yellow with smaller area of greenish color with Pb concentration combindly ranges from 

6.17 to 23.61 mg/kg which indicated the soil of the study area was found to be less 

contaminted in comparison of  LP of order 1 and 2 (Table 4.15). From Table 4.16 for Zn, 

exponential kernal function of LP2 showed the highest RMSPE indicated the highest 

prediction error.  In this case, most of the region covered by red and deep orange color 

indicated the soil of the study area was highly contaminted for Zn (Figure 4.21).  
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Table 4.15: Results of cross validation for LP with different order for Pb in soil 

 

Order 1 

Kernal function Exponential Polynomial Gaussian Epanechnikov Quartic Constant 

a
MPE 3.025 2.544 2.816 2.485 2.946 -0.938 

b
RMSPE 12.878 12.853 12.913 13.451 13.461 26.938 

c
MSPE 0.057 0.022 0.038 0.012 0.026 -0.148 

d
RMSSPE 0.842 0.908 0.883 0.943 0.917 0.916 

e
ASPE 20.721 19.730 20.180 19.418 21.767 55.672 

Order 2 

Kernal function Exponential Polynomial Gaussian Epanechnikov Quartic Constant 
a
MPE 5.287 5.505 5.407 4.571 5.562 4.656 

b
RMSPE 14.878 15.580 15.246 15.530 15.608 15.417 

c
MSPE 0.193 0.191 0.190 0.141 0.195 0.143 

d
RMSSPE 0.916 0.961 0.948 0.979 0.961 0.985 

e
ASPE 19.857 19.694 19.754 18.985 19.724 18.821 

Order 3 

Kernal function Exponential Polynomial Gaussian Epanechnikov Quartic Constant 
a
MPE 3.915 3.956 3.973 4.685 4.610 4.749 

b
RMSPE 14.936 15.616 15.459 15.784 16.029 15.960 

c
MSPE 0.125 0.123 0.121 0.151 0.141 0.164 

d
RMSSPE 0.917 0.954 0.947 0.956 0.953 0.963 

e
ASPE 20.987 20.284 20.784 21.137 21.238 21.518 

a
MPE= Mean Prediction Error, 

b
RMSPE= Root Mean Square Prediction Error, 

c
MSPE= Mean Standardized Prediction Error, 

d
RMSSPE= 

Root Mean Square Standard Prediction Error, 
e
ASPE= Average Standard Prediction Error. 
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LP1 LP2 LP3  

Explanation for LP1 

 Comparatively less contamination 

was visible between LP2 and LP3. 

 Most of the region exhibited orange 

red and ocher color. 

  Yellow color also covered a 

noticable region with a large green 

region. 

Explanation for LP2 

 Spatial pattern was almost same as 

LP1.  

 Comparatively more contamination 

than LP2. 

  Large orange with smaller ocher 

region was presented. 

  Yellow color also covered a 

noticable region with a  little light 

green region. 

Explanation for LP3 

 Spatial pattern was almost same as 

LP1 and LP2.  

 Comparatively less contamination 

was visible between LP2 as most of 

the region exhibited a small red 

region with large orange red and 

ocher color. 

  Yellow color also covered a 

noticable region with a large green 

region. 

Color variation 

and visual 

contamination 

level from 

spatial 

distribution 

Figure 4.20: Spatial distribution of Pb in soil using LP with order of 1- 3. 
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Table 4.16: Cross validation of LP for Zn 

Order 1 

Kernal function Exponential Polynomial Gaussian Epanechnikov Quartic Constant 

a
MPE 2.421 1.668 2.111 1.631 1.681 1.035 

b
RMSPE 9.149 9.279 9.218 9.405 9.306 11.675 

c
MSPE 0.107 0.049 0.091 0.046 0.053 0.065 

d
RMSSPE 0.858 0.940 0.913 0.949 0.939 0.929 

e
ASPE 12.186 10.886 10.362 11.135 11.020 14.440 

Order 2 
Kernal function Exponential Polynomial Gaussian Epanechnikov Quartic Constant 
a
MPE 2.930 2.872 2.854 2.518 2.930 2.475 

b
RMSPE 9.958 10.114 9.980 10.066 9.958 10.095 

c
MSPE 0.192 0.180 0.178 0.127 0.192 0.120 

d
RMSSPE 0.894 0.931 0.921 0.973 0.894 0.978 

e
ASPE 11.338 13.188 13.087 10.427 11.338 10.435 

Order 3 

Kernal function Exponential Polynomial Gaussian Epanechnikov Quartic Constant 
a
MPE 2.106 1.924 2.041 1.786 2.170 2.103 

b
RMSPE 9.942 10.126 10.038 10.393 10.291 10.755 

c
MSPE 0.118 0.054 0.067 0.035 0.116 0.137 

d
RMSSPE 0.921 0.936 0.930 0.945 0.958 0.973 

e
ASPE 11.421 16.039 15.537 17.199 11.345 11.175 

a
MPE= Mean Prediction Error, 

b
RMSPE= Root Mean Square Prediction Error, 

c
MSPE= Mean Standardized Prediction Error, 

d
RMSSPE= 

Root Mean Square Standard Prediction Error, 
e
ASPE= Average Standard Prediction Error. 
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LP1 LP2 LP3  

Explanation for LP1 

 Comparatively less contamination 

was visible between LP2 and LP3. 

 Most of the region exhibited orange 

red and ocher color. 

  Yellow color also covered a 

noticable region with a large green 

region. 

Explanation for LP2 

 Spatial pattern was almost same as 

LP1.  

 Comparatively more contamination 

than LP2. 

  Large orange with smaller ocher 

region was presented. 

  Yellow color also covered a 

noticable region with a  little light 

green region. 

Explanation for LP3 

 Spatial pattern was almost same as 

LP1 and LP2.  

 Comparatively less contamination 

was visible between LP2 as most of 

the region exhibited a small red 

region with large orange red and 

ocher color. 

  Yellow color also covered a 

noticable region with a large green 

region. 

Color variation 

and visual 

contamination 

level from 

spatial 

distribution 

 

Figure 4.21: Spatial distribution of Zn in soil using LP with order of 1- 3. 
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Moreover, for LP3, it was found the highest RMSPE value of 14.936. The  produced 

prediction surface by showed comparatively more greenish and yellow color region which 

indicated the soil of the study area was found to be less contaminated in comparison of 

LP1 and LP2 (Figure 4.21). Figure 4.19, Figure 4.20 and Figure 4.21 displayed LP1 

provided better field condition for metal elements of Ni, Pb and Zn, respectively in soil of 

waste disposal site. It was comprehended from the analysis that the contamination hotspots 

were near the center of the selected disposal site for the metal element of Ni, Pb and Zn.  

 

In addition, the cross validation of LP with order 1 to 3  was performed and the results are  

provided  in Table D.1 to Table D.17 as well as the spatial distribution for metal elements 

of Al, As, Ba, Ca, Co, Cr, Cu, Fe, Hg, K, Mn, Na, Sb, Sc, Sr, Ti, and V in soil of  the study 

area is depicted in Figure D. 1 to Figure D.17 in Annex-D.  Results reveals that in 

produced prediction surface for all these metal elements,, greenish color region represented 

the level of less contamination and redish color area represented the level of highly 

contaminated soil. Almost all the metal elements exhibited severe contamination for LP2; 

whereas comparativly less contaminated region was obtained for LP3 interpolation 

techniques. 

 

4.5.2.3  Radial Basis Function 

 

Radial basis functions (RBF) is the name given to a large family of exact interpolators 

which use a basic equation dependent on the distance between the interpolated point and 

the sampling points (Brovelli et al., 2011). In this study, RBF analysis, cross validation of 

RBF with five kernal function of thin-plate spline (TPS), spline with tension (SPT), 

completely regularized spline (CRS), multi-quadratic function (MQ) and inverse multi-

quadratic function (IMQ) was performed for each metal elements and hence discussed in 

the following sections. The cross validation result of metal elements were reported in the 

Annex-E, except for the metal elements such as Cd, Ni, Pb and Zn which is provided in 

this chapter. When kernal function showed higher value of the kernel parameter, it will 

provide a smoother surface except IMQ. When kernal function showed lower value of the 

kernel parameter, it will provide a smoother surface in case of IMQ (ESRI, 2001; Zhao et 

al., 2010; Yao et al., 2013). A researcher Brovelli et al. (2011) stated that when RMSPE 

showed the lowest value, the interpolation technique was considerd as best fitted model. 
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CRS ST MQ IMQ TPS  

Explanation for CRS  

 Comparatively less 

contamination was 

visible between 

functions. 

 Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible.  

 Large green color 

portion with 

noticeable yellow 

region. 

Explanation for ST 

 Comparatively less 

contamination was 

visible between 

functions. 

 Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 
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Figure 4.22: Spatial distribution of Cd in soil using RBF’s. 
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Cross Validation of Cadmium 

In RBF analysis, cross validation of RBF with five different kernal functions of CRS, ST, 

MQ, IMQ and TPS was performed for Cd to find the best fitted model for showing spatial 

distribution and provided in Table 4.17. Based on the interpolation analysis, it was 

observed RBF for IMQ showed comparatively the lower value of RMSPE (1.2054) than 

that of other kernal functions. Based on this finding, IMQ was chosen as the  best fitted 

model for Cd.  In case of  Cd,  the kernal parameter of IMQ showed 0.000121 indicated a 

very small value tends to zero thus it provided a smoother surface. In addition, the kernal 

function of TPS showed comparatively the highest value of kernel parameter and provided 

a smoother surface. Figure 4.18 showed the spatial distribution of Cd for distinct RBF’s. 

The produced prediction surface area for TPS, there exhibited maximum greenish color 

region with Cd concentration approximately ranges from 1.87 to 3.52 mg/kg. In addition, 

RBF with TPS exhibited maximum red and orange color with Cd concentration combindly 

ranges from 4.47 to 7.03 mg/kg, indicated the soil of the study area was highly 

contaminted by Cd (Figure 4.22).  

  

Table 4.17: Results of cross validation of RBF with different kernal functions for Cd 

 

Model CRS ST MQ IMQ TPS 
a
MPE 0.076 0.075 0.068 0.115 0.122 

b
RMSPE 1.2239 1.2241 1.3372 1.2054 1.6159 

Kernel Parameter 55181.22 43835.15 0 0.000121 1.00E+20 
a
MPE=Mean Prediction Error, 

b
RMSPE= Root Mean Square Prediction Error 

 

 

Cross Validation of Nickel, Lead and Zinc  

In case of Ni, Pb and Zn, the cross validation of RBF with five different kernal functions 

of CRS, ST, MQ, IMQ and TPS was performed to find the best fitted model and the results 

are provided in Table 4.18.  The kernal function IMQ was chosen as best fitted model for 

RBF interpolation in case of Ni. It was found from the cross validation result, RMSPE 

(0.115) was comparatively lower than that of other kernal functions. The kernal parameter 

of IMQ showed 0.00013 indicated a very small value tends to zero thus it provided a 

smoother surface. The kernal function of TPS showed comparatively the highest value of 

kernel parameter and also provided a smoother surface. 
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Figure 4.23: Spatial distribution of Ni in soil using RBF’s.
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Table 4.18: Cross validation of RBF for Ni,Pb and Zn 
 

Metals Model 
a
MPE 

b
RMSPE Kernel Parameter 

Ni 

CRS 0.147 1.204 35188.1 

ST 0.144 1.206 35234.7 

MQ 0.097 1.294 0 

IMQ 0.211 1.197 0.00013 

TPS 0.161 1.586 1.00E+20 

Pb 

CRS 0.736 11.999 91048.6 

ST 0.738 11.999 71818.2 

MQ 0.477 12.830 0 

IMQ 1.187 12.139 0.00011 

TPS 0.891 15.644 1.00E+20 

Zn 

CRS 0.613 7.866 20297.9 

ST 0.536 7.915 18199.2 

MQ 0.502 8.336 0 

IMQ 0.713 7.745 0.00016 

TPS 0.849 9.500 1.00E+20 
a
MPE=Mean Prediction Error, 

b
RMSPE= Root Mean Square Prediction Error 

 

 

IMQ was chosen as best fitted model for RBF interpolation in case of Ni. It was found 

from the cross validation result, RMSPE (1.197) was comparatively lower than that of 

other kernal functions. The kernal parameter of IMQ showed 0.00013 indicated a very 

small value tends to zero thus it provided a smoother surface. The kernal function of TPS 

showed comparatively the highest value of kernel parameter and provided a smoother 

surface. Figure 4.23 showed the spatial distribution of Ni for different RBF’s. The 

produced prediction surface area for TPS, maximum greenish color region with Ni 

concentration approximately ranges from 1.08 to 4.08 mg/kg. In addition, RBF with TPS 

exhibited yellow color with concentration of 4.08 to 4.51 mg/kg. Maximum ocher, orange, 

orange red and red color with Ni concentration combindly ranges from 4.08 to 8.06 mg/kg, 

which indicated the soil of the study area was moderately contaminted in case of Ni 

(Figure 4.23).  From Table 4.18 for Pb, it was observed RBF for CRS showed 

comparatively the lower value of RMSPE (11.999) than that of other kernal functions. 

Thus,  CRS was chosen as the  best fitted model for Pb.  In case of  Pb,  the kernal 

parameter of CRS showed 91048.62 indicated a large value tindicated a smoother 

produced surface. The kernal function of TPS showed comparatively the highest value of 

kernel parameter and provided more smoother surface. Figure 4.24 showed the spatial 

distribution of Pb using distinct RBF’s. The produced prediction surface area for TPS, 

there exhibited maximum greenish color region with Pb concentration approximately 

ranges from 10.88 to 33.06 mg/kg.  
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Figure 4.24: Spatial distribution of Pb in soil using RBF’s. 
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In addition, RBF with TPS exhibited maximum ocher, orange,orange-red and red color 

with Pb concentration combindly ranges from 39.78 to 90.55 mg/kg, which indicated the 

soil of the study area was moderately contaminted in case of Pb (Figure 4.24). 

 

In addition, from the cross validation result of RBF, RMSPE (7.745) was comparatively 

lower for IMQ than that of other kernal functions. The kernal parameter of IMQ showed 

0.00016 indicated a very small value tends to zero thus it provided a smoother surface. The 

TPS showed comparatively the highest value of kernel parameter and provided a smoother 

surface. The produced prediction surface area for TPS, maximum greenish color region 

with Zn concentration approximately ranges from 11.82 to 23.8 mg/kg (Figure 4.18). In 

addition, RBF with TPS also exhibited maximum red and orange color with Zn 

concentration combindly ranges from 31.39 to 50.76 mg/kg, which indicated the soil of the 

study area was moderately contaminted in case of Zn (Figure 4.25). Figure 4.23, Figure 

4.24 and Figure 4.25 displayed IMQ  provided better field condition for metal elements of 

Ni, Pb and Zn, respectively in soil of waste disposal site. It was comprehended from the 

analysis that the contamination hotspots were near the center of the selected disposal site 

for metal element of Ni, Pb and Zn.  

 

In addition, the cross validation of RBF with five distinct functions  was performed and the 

results are  provided  in Table E.1 to Table E.17 as well as the spatial distribution for metal 

elements of Al, As, Ba, Ca, Co, Cr, Cu, Fe, Hg, K, Mn, Na, Sb, Sc, Sr, Ti, and V in soil of  

the study area is depicted in Figure E. 1 to Figure E.17 in Annex-E.  Results reveals that in 

produced prediction surface for all these metal elements,, greenish color region represented 

the level of less contamination and redish color area represented the level of highly 

contaminated soil.  
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Figure 4.25: Spatial distribution of Zn in soil using RBF’s. 
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4.5.3  Geostatistical Methods 

 

Geostatistical techniques assume that at least some of the variation observed in natural 

phenomena can be modeled by random processes with spatial autocorrelation and require 

that the spatial autocorrelation be explicitly modeled. Geostatistical techniques can be used 

to describe and model spatial patterns (variography), predicts values at unmeasured 

locations (kriging), and assess the uncertainity associated with a predicted value at the 

unmeasured locations (kriging). The geostatistical wizard offers several types of kriging, 

which are suitable for different types of data and have different underlying assumption of 

Ordinary, Simple, Universal, Indicator, Probability, Disjunctive, Areal interpolation etc.. 

These mean standardized prediction error (MSPE), root mean square standard prediction 

error (RMSSPE) and average standard prediction error (ASPE) was used to select the best 

fitted models. 

 

4.5.3.1  Ordinary Kriging 

 

The ordinary kriging (OK) with eleven distinct models such as Circular, Spherical, 

Tetraspherical, Pentaspherical, Exponential, Gaussian, Rational quadratic, Hole effect, K-

Bessel, J-Bessel and Stable was performed to select the best fitted model for each metal 

elements in soil. This selected model was used for modeling the empirical semivariogram 

and spatial distribution of the concentration of metal elements in soil. A study conducted 

by Brovelli et al. (2011) and stated when MSPE closed to 0 and RMSSPE tends to 1 for a 

particular model, then the model will be choosen as the best fitted model. In addition, 

when ASPE closed to RMSPE for a specific model, then it can be confidently said that the 

prediction model was appropriate (Johnston et al., 2001; Zhao et al., 2010). 

 

Cross Validation of Cadmium 

The cross-validation result of eleven distinct models stated earlier using ordinary kriging 

for Cd is shown in Table 4.19. The values of MSPE ranges from 0.0081 to 0.0358 and 

RMSSPE from 0.8980 to 1.0139. Result reveals the value of MSPE was closest to zero 

(0.0358), RMSSPE closest to 1(1.0139) and the ASPE (1.3924) closed to RMSPE (1.2498) 

for the model of rational quadratic (Table 4.19). So, in this case, rational quadratic was 

selected as the best fitted model using ordinary kriging interpolation.  The spatial 

distribution of Cd for this best fitted model shown in Figure. 4.26.  
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Table 4.19: Cross validation results of ordinary kriging for different models of Cd in soil 
 

Models 
a
MPE 

b
RMSPE 

c
ASPE 

d
MSPE 

e
RMSSPE 

Circular 0.0244 1.2724 1.4398 0.0081 0.9097 
Spherical 0.0361 1.2590 1.4399 0.0161 0.8994 
Tetraspherical 0.0436 1.2520 1.4348 0.0199 0.8986 
Pentaspherical 0.0442 1.2475 1.4141 0.0200 0.9148 
Exponential 0.0597 1.2521 1.4073 0.0245 0.9244 
Gaussian 0.0295 1.2638 1.4375 0.0107 0.9102 
Rational quadratic 0.0959 1.2498 1.3924 0.0358 1.0139 
Hole  Effect 0.0524 1.2634 1.4322 0.0310 0.9219 
K-Bessel 0.0550 1.2359 1.4111 0.0231 0.9043 
J-Bessel 0.0220 1.2359 1.4284 0.0087 0.8980 
Stable 0.0630 1.2322 1.4074 0.0275 0.9036 
 

 
Table 4.20: Cross validation results of ordinary kriging for different models of Ni in soil 

 

Models 
a
MPE 

b
RMSPE 

c
ASPE 

d
MSPE 

e
RMSSPE 

Circular 0.0730 1.2542 1.4066 0.0295 0.9257 

Spherical 0.0883 1.2427 1.4049 0.0392 0.9180 

Tetraspherical 0.0967 1.2424 1.4034 0.0442 0.9170 

Pentaspherical 0.0978 1.2380 1.4023 0.0445 0.9152 

Exponential 0.1151 1.2264 1.4036 0.0519 0.9001 

Gaussian 0.0622 1.2659 1.4332 0.0261 0.9234 

Rational quadratic 0.1468 1.2260 1.4029 0.0696 0.9516 

Hole  Effect 0.0938 1.3416 1.4173 0.0484 0.9768 

K-Bessel 0.1160 1.2229 1.3948 0.0523 0.9116 

J-Bessel 0.0732 1.2664 1.4220 0.0329 0.9255 

Stable 0.1186 1.2283 1.3929 0.0541 0.9145 
a
MPE= Mean Prediction Error, 

b
RMSPE= Root Mean Square Prediction Error, 

c
MSPE= Mean Standardized Prediction Error, 

d
RMSSPE= 

Root Mean Square Standard Prediction Error, 
e
ASPE= Average Standard Prediction Error 
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Cd Ni Pb Zn 

Explanation of Cd 

 Larger green region was visible 

with a small yellow region. 

 Noticeable red region with 

ocher, orange and orange red 

color region were found. 

 Most contaminated spot was 

found near the center of the 

waste disposal site with high 

intensity Cd concentration. 

Explanation of Ni 

 Considerable orange red region 

near the center of the study 

area.  

 Similar orange and ocher color 

pattern were also noticeable.  

 Considerable green region was 

also detected. 

 Most contaminated spot was 

also found near the center of 

disposal site with high Ni 

concentration. 

Explanation of Pb 

 No red or orange red region 

was visible. 

 Small ocher region with 

large yellow region was 

observed. 

 Considerable green region 

was also detected. 

 Contamination of soil of 

waste disposal site is 

comparatively less. 

Explanation of Zn 

 Larger green region 

was visible with a 

small yellow region. 

 Noticeable red region 

with ocher, orange and 

orange red color 

region were found. 

 Most contaminated 

spot was found near 

the center of the 

waste disposal site 

with high intensity Zn 

concentration. 

Color 

variation and 

visual 

contamination 

level from 

spatial 

distribution 

Figure 4.26: Spatial distribution of Cd, Ni, Pb and Zn  in soil using ordinary kriging for best fitted model. 
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The prediction surface produced by rational quadratic model represented larger greenish 

and yellow region indicated the level of contamination of soil was low. Fom Figure 4.26, 

the contamination hotspots were found near the center of the waste disposal site. 

 

Cross Validation of Nickel, Lead and Zinc  

Among the cross validation results of eleven distinct models for Ni, it was observed that 

the values of MSPE ranges from 0.0261 to 0.0696 and RMSSPE from 0.9001 to 0.976793. 

The value of MSPE (0.0484) was found to be closest to zero, RMSSPE (0.9768) closest to 

1 as well as ASPE (1.4173) closed to RMSPE with 1.3416 for the model of hole effect 

(Table 4.20). So, based on this configuration, hole effect model was selected for metal 

element Ni. The spatial distribution of Ni for this best fitted model shown in Figure. 4.26 

and this figure repepresented larger greenish and yellow region indicated the low level of 

contamination in soil. Figure 4.26 also showed the contamination hotspots for Pb and Zn 

near the center of the waste disposal site.  

Similarly, the best fitted models were seleced through cross validation of eleven distinct 

models using ordinary kriging interpoltaion for other metal elements following the same 

procedure based on the statement of MSPE, RMSSPE, ASPE and RMSPE stated earlier. 

Cross validation results revealed that the best fitted model for Pb and Zn was same as hole 

effect (Table 4.21 and Table 4.22).  Results reveals in produced prediction surface, 

greenish color region represented the level of less contamination and redish color area 

represented the level of highly contaminated soil for both the metal elements of Pb and Zn.  

 

In addition, the cross validation of eleven distinct models using ordinary kriging was 

performed for the metal elements of Al, As, Ba, Ca, Co, Cr, Cu, Fe, Hg, K, Mn, Na, Sb, 

Sc, Sr, Ti, and V in soil and the results are  provided  in Table F.1 to Table F.17 as well as 

the spatial distribution for these metal elements is depicted in Figure F. 1 to Figure F.17 in 

the Annex-F.  Result reveals that in produced prediction surface for all these metal 

elements,, greenish color region represented the level of less contamination and redish 

color area represented the level of highly contaminated soil.  
 

In addition, the best fitted model from cross validation results of eleven distinct models 

using ordinary kriging interpolation for  the studied metal elements of Al, As, Ba, Ca, Cd, 

Co, Cr, Cu, Fe, Hg, K, Mn, Na, Ni, Pb, Sb, Sc, Sr, Ti, V and Zn in soil is provided in Table 

4.23. 
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Table 4.21: Cross validation results of ordinary kriging for different models of  Pb in soil 
 

Models 
a
MPE 

b
RMSPE 

c
ASPE 

d
MSPE 

e
RMSSPE 

Circular 0.0998 12.1487 17.6798 -0.0008 0.7172 
Spherical -0.2039 12.1431 17.5225 -0.0183 0.7173 
Tetraspherical -0.2009 12.1397 17.4972 -0.0186 0.7199 
Pentaspherical -0.2148 12.1331 17.4802 -0.0195 0.7202 
Exponential -0.0502 12.2256 17.5881 -0.0101 0.7242 
Gaussian -0.1240 12.1179 17.5628 -0.0141 0.7174 
Rational quadratic 0.0842 12.1877 17.5603 -0.0031 0.7257 
Hole  Effect -0.5162 12.1974 17.4139 -0.0338 0.7204 
K-Bessel -0.1292 12.1086 17.5570 -0.0145 0.7168 
J-Bessel -0.3339 12.1375 17.3920 -0.0259 0.7232 
Stable -0.1234 12.0964 17.5665 -0.0141 0.7158 
 

 

Table 4.22: Cross validation results of ordinary kriging for different models of Zn in soil 
 
 

Models 
a
MPE 

b
RMSPE 

c
ASPE 

d
MSPE 

e
RMSSPE 

Circular 0.2522 8.0045 10.3394 0.0017 0.7936 
Spherical 0.1441 7.9873 10.2595 -0.0074 0.7829 
Tetraspherical 0.1452 8.0009 10.2872 -0.0076 0.7814 

Pentaspherical 0.1489 8.0015 10.3103 -0.0072 0.7789 
Exponential 0.1497 8.0794 10.5987 -0.0032 0.7682 
Gaussian 0.5291 7.9571 10.1408 0.0374 0.9158 

Rational quadratic 0.2064 8.0041 10.3895 -0.0009 0.7678 
Hole  Effect -0.0197 8.0749 9.1687 -0.0402 0.9258 
K-Bessel 0.4592 7.8992 10.1817 0.0262 0.8399 

J-Bessel 0.1210 7.6625 9.7297 -0.0117 0.8264 
Stable 0.4636 7.9276 10.1875 0.0245 0.8386 
a
MPE= Mean Prediction Error, 

b
RMSPE= Root Mean Square Prediction Error, 

c
MSPE= Mean Standardized Prediction Error, 

d
RMSSPE= 

Root Mean Square Standard Prediction Error, 
e
ASPE= Average Standard Prediction Error 
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Table 4.23: Fitted parameters of the theoretical variogram model for heavy metal 

parameter 

Metal 

elements 
Models 

Predicted errors 
a
MPE 

b
RMSPE 

c
ASPE 

d
MSPE 

e
RMSSPE 

Al Hole  Effect 10.844 145.577 170.976 0.05278 0.8876 

As J-Bessel 0.0701 1.4997 1.8929 0.0269 0.8365 

Ba J-Bessel 0.5681 14.5981 17.296 0.02793 0.8887 

Ca Hole  Effect 6.5894 48.8408 48.068 0.0529 1.5581 

Cd Rational quadratic 0.0958 1.2498 1.39247 0.03582 1.0139 

Co K-Bessel 0.0469 1.3034 1.2201 0.01969 1.1676 

Cr Circular -0.0038 2.081 2.217 -0.0045 0.965 

Cu Hole  Effect 0.1637 2.5916 3.5444 0.04146 0.7525 

Fe J-Bessel 17.891 496.523 482.812 0.00085 1.0234 

Hg J-Bessel 0.2565 2.0116 1.8865 0.1207 1.7894 

K Exponential 6.7203 80.83 86.4309 0.04847 0.9687 

Mn J-Bessel 0.0597 5.627 6.737 -0.0032 0.88 

Na Rational quadratic 0.6671 24.2788 24.1802 0.0147 1.0495 

Ni Hole  Effect 0.0938 1.3416 1.4173 0.0484 0.9767 

Pb Hole  Effect -0.516 12.1973 17.4139 -0.03381 0.7203 

Sb J-Bessel 0.0132 1.54348 1.78 0.00981 0.9004 

Sc J-Bessel 0.0203 2.4072 2.62 0.00956 0.9546 

Sr J-Bessel 0.267 6.185 7.3186 0.033 0.8779 

Ti Rational quadratic 12.739 280.391 296.743 0.02302 1.0204 

V Hole  Effect 0.7895 12.1697 14.4548 0.0451 0.8677 

Zn Hole  Effect -0.0196 8.0749 9.1687 -0.0402 0.9258 
a
MPE= Mean Prediction Error, 

b
RMSPE= Root Mean Square Prediction Error, 

c
MSPE= 

Mean Standardized Prediction Error, 
d
RMSSPE= Root Mean Square Standard Prediction 

Error, 
e
ASPE= Average Standard Prediction Error 

 

 

4.5.3.2  Semivariogram 

 

The semivariogram depicts the spatial autocorrelation of the measured sample points. 

Once each pair of locations is plotted, a model is fit through them. In plot, ordinate 

represents the semivariance and abcissa represents lag daitance (distance between points). 

There are certain characteristics or semovariagram parameters such as nugget, sill, range 

and nugget to sill ratio that are commonly used to describe these models (ESRI, 2001). The 

full nugget effect should be used at zero distance i.e.  the nugget effect refers to the 

nonzero intercept of the variogram . It is an overall estimate of error caused by 

measurement inaccuracy and environmental variability (Burgess and Webster, 1980).  
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Range represents the distance where the model first flattens out. Sample locations 

separated by distances closer than the range are spatially autocorrelated, whereas locations 

farther apart than the range are not. In addition, sill indicated the value that semivariogram 

model attains at the range (the value on the y-axis). The partial sill is the sill minus the 

nugget (ESRI, 2001).   

 

In this study, to find out the best fitted model, cross validation ordinary kriging with eleven 

distcinct models stated earlier was performed for each metal elements in soil. The 

semivariogram was originated for each metal elements bsed on this best fitted model.  In 

case of Cd, Rational quadratic model was obtained as the best fitted model and originated 

semivariagram shown in Figure 4.27(a). Similarly, for Ni, Pb and Zn, the best fitted 

models were obtained Hole effect model for each metal elements and the originated 

semivariagram shown in Figure 4.27(b) to Figure 4.27(d), respectively.   

 

Table 4.24: Semivariogram parameters of best fitted models for metal elements 

 

Metals Models Range (A) Nugget (C0)  Sill (C+C0) C0 / (C+C0) 

Al Hole  Effect 0.0002 21643.0200 39039.8600 0.5544 

As J-Bessel 0.0003 2.5213 5.2603 0.4793 

Ba J-Bessel 0.0041 238.6232 656.6376 0.3634 

Ca Hole  Effect 0.0007 0.0000 2701.6600 0.0000 

Cd Rational quadratic 0.0012 0.0027 2.7114 0.0010 

Co K-Bessel 0.0035 0.8716 10.2777 0.0848 

Cr Circular 0.0013 2.2889 6.2986 0.3634 

Cu Hole  Effect 0.0036 10.7931 14.5641 0.7411 

Fe J-Bessel 0.0007 0.0000 269384.0000 0.0000 

Hg J-Bessel 0.0010 0.0000 5.1108 0.0000 

K Exponential 0.0028 37.1119 17528.7320 0.0021 

Mn J-Bessel 0.0006 17.6414 47.8002 0.3691 

Na Rational quadratic 0.0058 381.8491 1365.4756 0.2796 

Ni Hole  Effect 0.0022 1.2869 2.7768 0.4634 

Pb Hole  Effect 0.0005 150.6974 272.1019 0.5538 

Sb J-Bessel 0.0045 2.6217 5.9723 0.4390 

Sc J-Bessel 0.0044 5.6103 14.3584 0.3907 

Sr J-Bessel 0.0042 44.3647 86.1366 0.5151 

Ti Rational quadratic 0.0004 42693.8900 262171.1400 0.1628 

V Hole  Effect 0.0026 158.4399 257.0829 0.6163 

Zn Hole  Effect 0.0006 0.0000 96.4491 0.0000 
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(a) Cd 

 
 (b) Ni 

 
 (c) Pb 

 
 (d) Zn 

 

Figure 4.27: Semi variogram of metal elements. 
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The semivariagram parameters such as range, nugget, patial sill and nugget to sill ratio 

from obtained best fitted model for each metal elements are provided in Table 4.24. A 

study conducted by Yasrebi et al. (2010) and stated that when the nugget to sill ratio, C0/ 

(C0 + C) was found <25%, 25 to 75% and >75%, it was considered the soil parameters are 

strongly, moderately and weakly distributed spatially, respectively. In this study, from 

semivariogram parameters, C0/ (C0 + C were found to be 0.099, 8.48, 0.21 and 16.28% for 

the metal elements of Cd, Co, K, and Ti respectively. This satatement (less than 25%) that 

exhibited that the these metal elements were strongly distributed spatially. In addition, 

C0/(C0 + C) were found as 55.44, 47.93, 36.34, 36.34, 74.11, 36.91, 27.96, 46.34, 55.38, 

43.90, 39.07, 51.50 and 61.63% for Al, As, Ba, Cr, Cu, Mn, Na, Ni, Pb, Sb, Sc, Sr and V, 

respectively, indicated that these metal elements in soil were moderately correlated 

spatially. In contrast, the metal elements of  Ca, Fe, Hg and Zn were non spatially 

correlated as the C0/ (C0 + C) was found to be zero. 

 

4.6  Assessment of Method Performance  

 

The performance of interpolation methods of IDW, LP, RBF and ordinary kriging (OK) 

were assessed for evaluating the accuracy of these selected models. In this analysis, to 

check the accuracy of the selected models of IDW, LP, RBF and OK, the mean absolute 

percentage error (MAPE), Relative improvement (RI) and goodness of prediction (G-

value) were considered provided in Table 4.25. A research of Yao et al. (2013) stated that 

small values (zero) of MAPE represented a model with less errors and more accurate 

predictions. Furthermore, G-value equal to 1 indicated perfect prediction, a positive value 

indicated a more reliable model, whereas a negative value specified a less reliable model 

(Yao et al., 2013). In addition, small values (zero) of RI indicated a model with perfect 

predictions. 

 

4.6.1  Mean Absolute Percentage Error 

 

 

The performance of interpolation methods of IDW, LP, RBF and ordinary kriging (OK)  

for all studied metal elements were analyzed based on MAPE. On the basis of MAPE, 

result reveals that IDW with power 1 to 5 and RBF with five functions as CRS, ST, MQ, 
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IMQ and TPS performed better than that of ordinary kriging and LP with power of 1 to 3 

(Table 4.25).  

 

Table 4.25: Performance assessment of interpolation methods based on MAPE 

 

Parameter MAPE 

OK IDW (1-5) LP RBF 

1 2 3 CRS ST MQ IMQ TPS 

Fe 0 0 0.92

9 

1.02

3 

0.987 0 0 0 0 0 

Mn 0.28 0 1.41

0 

1.55

5 

1.382 0 0 0 0 0 

Cr 0.21 0 0.49

8 

0.92

4 

0.868 0 0 0 0 0 

Cu 0.29 0 0.37

7 

0.59

6 

0.417 0 0 0 0 0 

Pb 0.06 0 0.33

4 

0.41

6 

0.386 0 0 0 0 0 

Zn 0 0 0.14

2 

0.24

8 

0.279 0 0 0 0 0 

Ni 0.10 0 0.35

6 

0.38

4 

0.327 0 0 0 0 0 

Cd 0 0 0.40

9 

0.41

5 

0.391 0 0 0 0 0 

As 0.22 0 0.53

7 

0.55

0 

0.575 0 0 0 0 0 

Hg 0 0 0.65

7 

0.98

0 

0.779 0 0 0 0 0 

Co 0.05 0 0.08

0 

0.18

3 

0.198 0 0 0 0 0 

Na 0.22 0 0.61

8 

0.68

6 

0.692 0 0 0 0 0 

K 0.01 0 0.44

9 

0.48

1 

0.460 0 0 0 0 0 

Ca 0 0 0.07

6 

0.30

2 

0.224 0 0 0 0 0 

Al 0.14 0 0.29

6 

0.38

2 

0.329 0 0 0 0 0 

Ti 0.05 0 0.24

4 

0.26

7 

0.013 0 0 0 0 0 

Sb 0.13 0 0.30

4 

0.28

2 

0.305 0 0 0 0 0 

Sc 0.06 0 0.18

7 

0.20

1 

0.192 0 0 0 0 0 

Sr 0.07 0 0.20

0 

0.17

9 

0.201 0 0 0 0 0 

V 0.16 0 0.33

8 

0.32

6 

0.023 0 0 0 0 0 

Ba 0.07 0 0.21

8 

0.25

6 

0.222 0 0 0 0 0 

 

In this study, IDW with power 1 to 5 exhibited MAPE value of zero for each metal 

element which means the percentage of relative error for IDW interpolation was zero 

(Table.4.25). For Cd, MAPE value for LP2 exhibited comparatively poor performance as 

the MAPE value was found as 0.41. The MAPE value was found to be zero for IDW with 

power of 1 to 5 and different kernel functions of RBF.  The LP2 performed poor for 

showing spatial distribution of metal elements of Fe, Mn, Cr, Cu, Pb, Ni, Cd, Hg, K, Ca, 

Al, Ti, Sc and Ba than that of other interpolation methods. In addition, IDW and RBF 

provided accurate prediction of spatial distribution of metal elements in soil. Furthermore, 

ordinary kriging also provided better mapping for Fe, Zn, Cd, Hg, Ca. The value of MAPE 

for Pb, Co, K, Ti, Sc, Sr and Ba was also very insignificant, which indicated better 

interpolation of metal elements, LP1 showed poor performance for the metal element of V.  
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In summary, IDW with power 1 to 5 and RBF with different kernel functions provided the 

most accurate prediction. Moreover, ordinary kriging (OK) and LP3 also made better 

interpolation for spatial distribution of metal elements. Besides, LP2 showed worst 

performance between all interpolation techniques. 

 

4.6.2  Goodness of Prediction 

 

The performances of interpolation methods of IDW, LP, RBF and ordinary kriging (OK) 

for all studied metal elements were analyzed based on the concept of goodness of 

prediction (G-value). From Table 4.26, it was found that IDW with power 1 to 5 and RBF 

with five functions of CRS, ST, MQ, IMQ and TPS exhibited the value of 1 for each metal 

element which means in IDW and RBF, the prediction statistic was perfect. 

 

Table 4.26: Performance assessment of interpolation methods based on G-value 

 

Parameter G-Value 

OK IDW 

(1-5) 

LP RBF 

1 2 3 CRS ST MQ IMQ TPS 

Fe 1 1 0.272 0.12

7 

0.169 1 1 1 1 1 

Mn 0.86 1 0.196 0.00

4 

0.178 1 1 1 1 1 

Cr 0.81 1 0.687 0.13

3 

0.218 1 1 1 1 1 

Cu 0.55 1 0.710 0.47

5 

0.618 1 1 1 1 1 

Pb 0.82 1 0.367 0.27

0 

0.325 1 1 1 1 1 

Zn 1 1 0.259 0.45

2 

0.414 1 1 1 1 1 

Ni 0.72 1 0.541 0.47

6 

0.476 1 1 1 1 1 

Cd 1 1 0.399 0.37

3 

0.430 1 1 1 1 1 

As 0.42 1 0.594 0.55

5 

0.526 1 1 1 1 1 

Hg 1 1 0.637 0.21

5 

0.443 1 1 1 1 1 

Co 0.87 1 0.954 0.82

5 

0.805 1 1 1 1 1 

Na 0.70 1 0.526 0.46

1 

0.452 1 1 1 1 1 

K 0.99 1 0.575 0.50

9 

0.536 1 1 1 1 1 

Ca 1 1 0.840 0.85

3 

0.888 1 1 1 1 1 

Al 0.67 1 0.683 0.52

6 

0.617 1 1 1 1 1 

Ti 0.86 1 0.701 0.52

6 

-2.949 1 1 1 1 1 

Sb 0.66 1 0.691 0.72

9 

0.682 1 1 1 1 1 

Sc 0.66 1 0.623 0.66

9 

0.693 1 1 1 1 1 

Sr 0.62 1 0.669 0.59

7 

0.655 1 1 1 1 1 

V 0.64 1 0.583 0.54

7 

-2.302 1 1 1 1 1 

Ba 0.73 1 0.742 0.65

4 

0.713 1 1 1 1 1 
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Moreover, LP showed poor prediction, as the G-value was smaller than 1, especially in 

case of Fe, Mn,  Pb, Zn and Cd (G-value < 0.5). For Cr and Hg, LP with order 2 offered 

very poor performance as the G-values were obtained 0.475 and 0.215, respectively. LP 

with order 3 provided negative values for Ti and V represented a less reliable model. The 

metal elements of Co, Ca and Ba contributed better result for all the performed 

interpolation techniques. On the basis of G-value, the technique of IDW with power 1 and 

RBF with five functions of CRS, ST, MQ, IMQ and TPS provided the best prediction 

interpolation for all metal elements in soil. 

 

4.6.3  Relative Improvement  

 

Relative improvement (RI) is considered to check the performance of interpolation 

methods used in this study for all the studied metal elements were analyzed based on The 

RI of interpolation techniques was also reported in Table 4.27.  

 

Table 4.27: Performance assessment of interpolation methods based on RI 

 

Parameter 
RI 

OK IDW LP RBF 

1 2 3 4 5 1 2 3 Best Fitted 

Model Fe 12.8

6 

0 4.9

0 

7.71 9.39 10.5

9 

5.15

9 

1.005 3.20

0 

23.232 

Mn 19.1

4 

0 5.2

1 

7.76 9.55 11.0

3 

5.35

5 

3.253 6.04

8 

26.975 

Cr 12.2

1 

0 5.3

6 

8.63 9.90 10.2

1 

20.9

2 

3.211 7.89

2 

23.449 

Cu 32.1

5 

0 8.5

9 

14.4 18.5 20.7

7 

33.5

4 

22.78 7.47

5 

24.827 

Pb 21.9

0 

0 6.8

0 

10.5 13.1 15.0

8 

52.2

8 

4.678 6.81

8 

23.301 

Zn 15.6

9 

0 5.0

3 

7.41 8.72 9.23

3 

21.6

3 

1.536 7.55

6 

18.470 

Ni 9.15

4 

0 5.9

0 

8.33 9.27 9.28

2 

15.0

6 

5.700 17.1

6 

24.526 

Cd 13.4

7 

0 5.9

0 

8.34 8.75 8.34

4 

17.6

1 

6.372 9.33

7 

25.406 

As 23.0

5 

0 10.

7 

17.9 21.2 22.5

1 

7.38

7 

13.13 10.2

1 

22.592 

Hg 13.1

5 

0 8.1

9 

13.8 16.9 18.4

6 

27.3

1 

7.083 11.5

7 

25.382 

Co 32.3

3 

0 9.5

5 

15.8 20.4 22.9

8 

20.2

3 

8.839 15.9

0 

17.512 

Na 16.9

0 

0 7.0

7 

10.5 11.8 12.4

7 

6.26

8 

0.814 5.45

4 

24.512 

K 21.5

5 

0 9.5

3 

14.7 17.3 18.7

1 

14.7

3 

3.114 5.91

9 

21.444 

Ca 7.46

6 

0 8.1

0 

12.7 15.6 17.4

4 

29.9

5 

7.925 17.1

7 

19.284 

Al 12.3

6 

0 9.8

4 

15.3 18.4 20.0

6 

7.63

9 

5.069 12.8

5 

20.196 

Ti 14.0

9 

0 9.4

0 

14.1 16.5 17.7

9 

19.3

1 

7.905 28.7

6 

17.546 

Sb 12.9

6 

0 10.

5 

16.2 19.9 22.2

8 

19.5

4 

8.476 10.6

8 

19.089 

Sc 10.1

8 

0 7.8

6 

12.1 14.5 15.6

4 

32.8

5 

7.579 7.53

4 

17.184 

Sr 11.0

2 

0 9.3

2 

14.1 16.8 18.0

9 

26.0

1 

9.735 10.8

1 

19.312 

V 10.5

4 

0 8.5

5 

13.2 16.0 17.5

6 

28.0

9 

7.802 21.5

3 

21.812 

Ba 18.3

0 

0 11.

1 

17.5 21.6 23.9

7 

20.4

8 

10.31 20.4

2 

16.104 
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The zero value of this mathematical term exhibited better performance (Yasrebi et al., 

2009). In this study, IDW with power 1 contributed zero value for Fe which indicated 

perfect interpolation, whereas, LP with order 2 has the RI value of 1.005, also indicated 

better interpolation technique than that of other techniques. The interpolation technique of 

ordinary kriging and selected best fitted model (IMQ) obtained from cross validation of 

RBF interpolation offered poor interpolation prediction that contributed poor map quality 

for metal elements of Fe, Mn, Cr, Pb, Zn, Ni, Hg, Co, Na, K, Al, Ti, Sb, Sc, V and Ba 

(Table 4.27).  

 

IDW with power 1 followed by LP with order 2 performed better than other interpolation 

technique for metal elements of Fe, Mn, Cr, Pb, Zn, Ni, Hg, Co, Na, K, Al, Ti, Sb, Sc, V 

and Ba. Similar results and relation were also obtained by Yao et al. (2013). In this study, 

result reveals that IDW with power 1 followed by LP with order of 3 performed better than 

that of other interpolation techniques for the metal elements of Cu and As, as the value of 

RI was found smaller in compare to others. In addition, for Cd and Sr, IDW with power 1 

provided perfect interpolation, whereas, IDW with power 2 also provided better 

predictions. Moreover, for Ca, IDW with power 1 followed by ordinary kriging performed 

better than that of other interpolation techniques as the value of RI was  found 

comparatively smaller than that of other techniques.  

 

On the basis of RI, IDW with power 1 provided best prediction as the RI value was found 

to be 0 for all the studied metal elements. LP with order 2 also contributed better 

interpolation as the RI value was smaller compared to other interpolation techniques.  On 

the basis of MAPE and G-value, IDW with power 1 to 5 and RBF with different functions 

of CRS, ST, MQ, IMQ and TPS provided better prediction interpolation as MAPE and G-

value was found to be 0 and 1, respectively, for all studied metal elements. Finally, based 

on the above analysis, it can be concluded that IDW with power of 1 was the most accurate 

interpolation techniques among all interpolation techniques  

 

4.7  Artificial Neural Network  

 

In this study, artificial neural network (ANN) was performed to predict the accuracy of the 

observed data for metal elements obtained from laboratory. Predictions of observed data 

were evaluated by ANN and a relation between the predicted and observed values was 
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established for each metal elements presence in soil of waste disposal site. In ANN 

analysis, the data was divided like this: 70% training data, 20% validation data and 10% 

test data. The performance of ANN was investigated by plotting mean squared error 

(MSE) plot for each metal element. The value of MSE is always non-negative, and values 

are closer to zero which indicated better prediction results (Shahin et al.,2004). In addition, 

the error histogram plots for training data were to provide additional verification of 

network performance. The correlation coefficient (R-value) measures the correlation 

between observed and predicted values. The value of R varies from 1 to 0. The R-value of 

1 is meant for a close relationship between observed and predicted data; whereas, The R-

value of 0 indicated random relationships between observed and predicted values. The 

MSE and R-value from ANN for all studied metal elements are provided in Table 4.28. 

The outputs of ANN for the metal elements of Cd, Ni, Pb and Zn are discussed in details in 

this section. Moreover, the he outputs for the other metal elements of Al, As, Ba, Ca, Co, 

Cr, Cu, Fe, Hg, K, Mn, Na, Sb, Sc, Sr, Ti, and V were reported in Figure G.1 to Figure 

G.51, respective, in the Annex-G.  

 

4.7.1  Mean Standard Error  

 

MSE measures the average of the squares of the errors or deviations—that is, the 

difference between the observed and predicted values that occurs because 

of randomness or because the estimator doesn't account for information that could produce 

a more accurate estimate (Alkaiem et al., 2016). The performance plot for the metal 

elements of Cd, Ni, Pb and Zn was presented and hence described in this section.  

 

 

Performance Plot of Cadmium 
 

 

The performance plot is shown in Figure 4.28. The performance plot for Cd indicated that 

MSE became small as nu number of epochs (one complete sweep of training, testing and 

validation) were increased (Figure 4.28). The error of validation set and test set consumed 

similar characteristics and no significant over fitting had occurred by epoch 1000 (where 

best validation performance has occurred). From Figure 4.28, the best validation 

performance for Cd was found as 5.1068*10
-6

, closed to zero which indicated a close 

relation between the observed and predicted data for Cd.   

https://en.wikipedia.org/wiki/Expected_value
https://en.wikipedia.org/wiki/Error_(statistics)
https://en.wikipedia.org/wiki/Deviation_(statistics)
https://en.wikipedia.org/wiki/Randomness
https://en.wikipedia.org/wiki/Omitted-variable_bias
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Performance Plot for Nickel, Lead and Zinc 

The performance plot for Ni, Pb and Zn were provided in Figure 4.29. It was found that 

the best performance was obtained at 1.4143*10
-5

 in case of Ni, which indicated the error 

between observed and predicted value was very negligible. 

 

 

Figure 4.28: Performance plot of Cd. 

 

 

Figure 4.29: Performance plot of Ni. 

 

Thus the prediction was accurate for Ni. Similarly, 1.1693*10
-7

 was reported as the MSE 

value for Pb, which was closed to zero (Figure 4.30). Thus, the prediction was precise. 

Furthermore, the best performance was obtained at 3.1212*10
-5

 in case of Zn, which 

indicated the error between observed and forecasted value was very negligible (Figure 

4.31). Thus the prediction was exact. In addition, the performance plot for metal elements 

of Al, As, Ba, Ca, Co, Cr, Cu, Fe, Hg, K, Mn, Na, Sb, Sc, Sr, Ti, and V were reported in 

Figure G.1 to Figure G.17, respectively, in Annex-G. 
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Figure 4.30: Performance plot of Pb. 

 

Figure 4.31: Performance plot of Zn. 

 

 

4.7.2  Regression Coefficient  

 

The correlation coefficient (R-value) measures the correlation between observed and 

predicted values. The value of R varies from 1 to 0. The R-value of 1 is meant for a close, 

relationship between observed and predicted data; whereas R-value of 0 indicates random 

relationships between observed and predicted data. The R-value between the predicted and 

the actual values of metal elements present in contaminated soil were shown in Figures 

4.32-4.35 for training, validation, testing and the whole datasets. 
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Result reveal that the values of R varies from 0.99922 to 1 obtained for the training, 

validation, testing and the whole dataset, respectively (Table 4.28). Results showed that the 

predicted concentration of metal elements were very close to the actual values for all the 

datasets. The R-value of observed and predicted data for metal elements of Cd, Ni, Pb and 

Zn was represented in this section.  

Table 4.28: Performance assessment of nntool model 
 

Parameter Mean Standard Error 
(MSE) 

Regression Coefficient 
(R-value) 

Al 2.19*10
-7

 0.99993 

As 0.0266 0.99922 

Ba 4.22*10
-8

 1 

Ca 0.00011 1 

Cd 5.11*10
-6

 0.99999 

Co 2.41*10
-8

 0.99958 

Cr 7.92*10
-8

 0.99942 

Cu 9.61*10
-6

 0.99998 

Fe 3.05*10
-8

 1 

Hg 0.00012 0.99998 

K 0.0017 1 

Mn 0.095 0.99974 

Na 9.17*10
-6

 1 

Ni 1.41*10
-5

 1 

Pb 1.17*10
-7

 0.99996 

Sb 1.35*10
-8

 0.99995 

Sc 9.28*10
-8

 0.99991 

Sr 2.99*10
-6

 1 

Ti 1.73*10
-6

 1 

V 7.27*10
-5

 1 

Zn 3.12*10
-5 

1 

 

 

Regression Coefficient of Cadmium  

In case of Cd, the R-values obtained from training, validation, testing and the whole 

datasets for metal elements presence in soil of waste disposal site reported in Figure 4.32. 

The R-value were obtained 0.99999, 0.99969, 0.99995 and 0.99993 for training, 

validation, testing and the whole datasets, respectively. This R-value was closed to 1, 

indicated a close relationship between observed and predicted values (Figure 4.32). 
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Figure 4.32: Regression coefficient of Cd in soil. 

 

 
Figure 4.33: Regression coefficient of Ni in soil. 
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Figure 4.34: Regression Coefficient of Pb. 

 

 
 

Figure 4.35: Regression Coefficient of Zn. 
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Regression Coefficient of Nickel, Lead and Zinc 

The R-values of training, validation, testing and the whole datasets were found to be 1, 

which directly represented the observed values of Ni was predicted accurately (Figure 

4.33). From Figure 4.34, the R-values acquired as 1, 1, 0.99992 and 0.99996 from training, 

validation, testing and the whole datasets, respectively, for the metal element of Pb.  As the 

R-value was closed to 1 (0.99996), the prediction was considered to be precise. Moreover, 

based on the above statement, it can be decided that there was a close relationship between 

observed and predicted data in case of Zn (Figure 4.35). In addition, the error histogram 

plotted by ANN  for metal elements of Al, As, Ba, Ca, Co, Cr, Cu, Fe, Hg, K, Mn, Na, Sb, 

Sc, Sr, Ti, and V provided  in Figure G.18 to Figure G. 34 in the Annex-G.   

 
 

4.7.3  Error Histogram 

 

The error histogram plot for training data provided the additional verification of network 

performance which showed the distribution of the residuals between targets and network 

outputs. In this study, the error histogram plot for training data shown in Figure 4.36-4.39. 

In this plot the yellow color ―outliers‖ indicated the average value of error between target 

and output. The blue, green and red bars represented training data, validation data and 

testing data, respectively (Figure 4.36 to Figure 4.39). When the data falls near to zero 

error line (outliers) indicates low error and perfect prediction of the predicted values 

(Alkaiem et al., 2016). The error histograms of target and output values were represented 

for metal elements of Cd, Ni, Pb and Zn were represented in this section.  

 

Error Histogram of Cadmium  

The error histogram of Cadmium is shown in Figure 4.36. Figure 4.36 reveals that most of 

the data falls very near to zero error line (outliers ) which provided an idea to check either 

the data points were similar to the rest of the data set or not.  This findings are well agreed 

with research conducted by Alkaiem et al. (2016) and it was found that most data fall on 

zero error line included testing and training. In this study, the error was reported as -

0.00026 for Cd, which indicated smaller error, tends to zero with perfect prediction. 

 

Error Histogram of Nickel, Lead and Zinc  

For metal element of Ni, most data fall on zero error line which provided an idea to check 

the outliers to indicate those data points were similar to the rest of the data set. From 
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Figure 4.37, the error was reported as -6.3*10
-5

, which indicated smaller error, tends to 

zero which indicate perfect prediction. 

   

Figure 4.36: Histogram plot of Cd.  Figure 4.37: Histogram plot of Ni. 

   

Figure 4.38: Histogram plot of Pb.  Figure 4.39: Histogram plot of Zn. 

 

Metal element of  Pb showed that most data fall on zero error line which provided an idea 

to check the outliers to indicate those data points were similar to the rest of the data set 

(Figure 4.38). The error was reported as -0.0205, which indicated smaller error, tends to 

zero which indicate perfect prediction. Furthermore, Zn also showed negligible value of 

error (0.0029), which indicate prediction of the concentration of metal element of Zn was 

faithfully perfect (Figure 4.39). In addition, the error histogram plotted by ANN  for metal 

elements of Al, As, Ba, Ca, Co, Cr, Cu, Fe, Hg, K, Mn, Na, Sb, Sc, Sr, Ti, and V provided  

in Figure G.35 to Figure G.51 in the Annex-G.  
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4.8 Concluding Remarks 

 

The term ―landfill‖ is a unit, designed and operated for the disposal of municipal solid 

waste (MSW) to protect the environmental components (water, soil, air, etc.) and all the 

living beings from the contaminants like metal elements presence in MSW stream 

(Alamgir et al., 2005). MSW can be disposed either in form of open dumping or disposal 

in sanitary landfill. In developing countries like Bangladesh, open dumping has become a 

traditional practice to dispose MSW. Due to long retention of MSW on dumping site, 

MSW decomposes and produces three components of solid, liquid and landfill gas. In 

addition, leachate and contaminated soil creates vulnerable effects to the environmental 

components and nearby inhabitants. There has long been concern about the issue of 

contamination of soil by metal elements because of their toxicity for plant, animal and 

human beings as well as their lack of biodegradability (Li et al., 2006; Zhuang et al., 

2009). Soil is a multi-phase system contaminated with the presence of xenobiotic (human-

made) chemicals or other alteration in the natural soil environment due to improper 

disposal of MSW, industrial activity and agricultural chemicals. Soil contamination occurs 

when the presence of toxic chemicals, pollutants or contaminants with high concentrations 

in soil and it has great risk to plants, wildlife, humans and of course for the soil itself (Jia 

et al., 2010). The concentration of metal elements in soil and their impact on ecosystems 

can be influenced by many factors such as the parent rock, climate and anthropogenic 

activities (Jia et al., 2010).  

 

In Khulna city, most of the MSWs are collected from door-to-door without any sorting and 

dumped in open disposal site at Rajbandh. Due to inadequate management practices of 

MSW, necessities arise to take steps for the proper disposal of MSW as well as 

maintenance of disposal site at Rajbandh, Khulna, Bangladesh.  Moreover, to date, there is 

no comprehensive study to examine how the metal elements are correlated to each other as 

well as their possible sources of contamination such as anthropogenic or human activities 

and natural parent materials.  In addition, there is no ready manual or guidebook related to 

this research from where one can easily get the information about quantitative distribution 

of metal elements spatially as well as the level of contamination of soil due to presence of 

metal elements in soil. Thus unplanned disposal, irregular unloading and improper 

maintenance of MSW in waste disposal site consequent of contamination of pollutants 
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such as metal elements in soil and environment of waste disposal site as well as in 

surrounding areas. This random disposal of MSW also consequences health effects on all 

living being near the waste disposal site 

 

The main purpose of this study was to find out the possible sources of contamination of 

metal elements and the distribution of metal elements spatially in soil of waste disposal 

site. To these endeavors, total sixty soil samples were collected at a depth of 0-30 cm from 

the existing ground surface from different selected locations within the waste disposal site. 

These study periods covered both the dry season (March to May, 2016) and rainy season 

(June to August, 2016). In the laboratory, the concentration of metal elements such as Al, 

As, Ba, Ca, Fe, Hg, K, Mn, Na, Na, Pb, Sb, Sc, Sr, Ti, V and Zn in soil were measured 

through standard test methods. To evaluate the nature of measured concentration of all the 

studied metal elements, the normality test was performed through K-S test and S-W test 

categorized distinctly for both the dry and rainy season. For more accurate result, normal 

QQ plot was also plotted to check the distribution of metal elements either normally or not. 

Conventional statistics, based on mathematical indices such as mean, median, maximum, 

minimum, CV, SD, skewness and kurtosis were evaluated to show the variability of metal 

elements in soil for both the dry and rainy season. Moreover, multivariate statistics 

including pearson correlation was accomplished to measure the linear correlation between 

metal elements in soil. In addition, The PCA was implemented to explain the major 

generation sources of metal elements to exploit the soil of waste disposal site. 

Furthermore, the AHC was also performed to classify the metal elements on the basis of 

dissimilarity between sets of observations.  Perfect prediction of metal elements using 

different interpolation techniques of IDW, LP, RBF’s and ordinary kriging exhibited better 

field condition of spread out of metal elements in soil of waste disposal site. Moreover, the 

accuracy of these interpolation techniques were checked based several indices such as 

MAPE, RI and G-value. In this study, a network model was developed by ANN to predict 

and depict the validity based MSE and R-value of the observed data of metal elements 

obtained from laboratory. It was found that the predicted values from ANN were almost 

same as obtained from laboratory. The main outcome of this study was to know the 

correlation of metal elements with each other in soil, possible sources of their 

contamination, distribution of metal elements spatially and the level of contamination of 

soil due to presence of metal elements in soil. 
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CHAPTER V 
 

COMPARISON AND VALIDATION 

 
 

 

5.1  General 

 

This chapter deals with the comparison of results obtained from this study with previous 

studies conducted in different parts of world similar to this study. Previously, conventional 

statistics were performed in many researches to understand the distribution of metal 

element concentrations in soil. Based on multivariate statistics such as principal 

component analysis (PCA), agglomerative hierarchical clustering (AHC), generation 

sources of heavy metal contamination in soil were identified in previous studies. In 

addition, geostatistical analyses were performed to identify contamination hotspots of 

respective study areas. In most of the studies, inverse distance weighting (IDW) and 

ordinary kriging (OK) were performed to see the actual condition spread of metal elements 

in study area. In some cases other interpolation techniques such as, radial basis function’s 

(RBF’s), local polynomial interpolation (LPI) were also performed. Artificial neural 

network (ANN) also used to check the accuracy of predicted values in some previous 

studies. In this study, conventional statistics in terms of mean, median, skewness, kurtosis 

was evaluated to see the distribution of metal contamination in and around the soil of 

waste disposal site in Khulna. To identify the possible generation sources of metal 

elements, weather it comes from anthropogenic activities or natural sources, multivariate 

statistics such as principal component analysis (PCA), agglomerative hierarchical 

clustering (AHC) were performed. Moreover, to visualize the contamination pattern of 

metal elements in and around the soil of waste disposal site, geostatistical analyses such as 

IDW, LPI, RBF’s and ordinary kriging (OK) were performed. A prediction was made for 

each metal concentration and accuracy was checked using ANN. 

 

5.2  Comparison with Previous Studies 

 

Case I: Beijing suburbs 
 

A study was performed in Beijing at 2015 by Zou et al. to analyze spatial variations and 

sources of heavy metals in farmland soils of Beijing suburbs. In his study, he analyzed for 



143 

 

eight metal elements. The results exhibited Cd and Hg concentrations in the soils showed 

greater spatial heterogeneity than the concentrations of the other heavy metals, with 

coefficients of variation of 0.50 and 0.86, respectively (Table 5.1). Because the entire 

study was located on plains areas without significant differences in the types of soil parent 

material or land use, the strong spatial heterogeneity in the distribution of these two heavy 

metals was most likely directly related to human activities. The coefficients of variation 

for the As, Cr, Ni, Pb and Zn in soil concentrations were small, indicating a relatively 

uniform external influence on these metals and the likely homogeneity of their 

concentrations throughout the region. 

 

 

Table 5.1: Statistics of heavy metal concentrations in soils of the suburbs of Beijing 

Heavy 

metal 

Sample 

count 

Minimum 

(mg/kg) 

Maximum 

(mg/kg) 

Mean 

(mg/kg) 

SD 

(mg/kg) 

CV 

(mg/kg) 

Cu 758 11.87 97.22 26.78 9.21 0.34 

As 758 3.41 12.82 7.99 1.31 0.16 

Cd 758 0.07 1.04 0.20 0.10 0.50 

Cr 758 36.38 102.96 58.15 6.74 0.12 

Hg 758 0.01 0.83 0.13 0.11 0.86 

Ni 758 11.76 31.50 21.22 2.35 0.11 

Pb 758 4.81 60.78 22.64 6.51 0.29 

Zn 758 37.34 207.47 78.03 17.56 0.23 

 

A significant correlation between the concentrations of Cu and the concentrations of Cd, 

Pb and Zn were found. The correlation coefficients were large, between 0.53 and 0.89, and 

highly significant. As and Ni were moderately but highly significantly correlated. In 

addition, Cr was moderately correlated with Cd and Zn, whereas Hg was only correlated 

with As and not with the other heavy metals. These results indicate that there were special 

sources of the Hg pollution. 

 

From PCA, the first principal component (PC1) explained 40.16% of the total variance and 

was dominated by Cu, Cd, Pb and Zn (Table 5.2). The second principal component (PC2) 

indicated enrichment for As and Hg, and explained an additional 17% of the total variance; 

PC3 explained an additional 14% of the total variance and was dominated by Cr, Hg and 

Ni, with a negative loading for Ni. However, the proportions of soil Hg in F2 and F3 were 
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similar. There was no significant correlation between the concentration of Cr or Ni with 

any of the other six elements, indicating a degree of uniqueness. 

 

Table 5.2: All explained variables and factors derived using the varimax rotation method. 
 

Element 
Before rotation After rotation 

F1 F2 F3 F1 F2 F3 

Cu 0.924 0.004 -0.040 0.916 0.125 0.021 

As 0.307 0.798 0.026 0.199 0.770 0.315 

Cd 0.879 -0.239 0.079 0.893 -0.047 -0.191 

Cr 0.286 -0.231 0.562 0.266 0.075 -0.612 

Hg 0.060 0.666 0.597 -0.074 0.857 -0.252 

Ni 0.183 0.382 -0.689 0.188 0.076 0.782 

Pb  0.711 0.020 -0.190 0.716 0.044 0.166 

Zn 0.931 -0.103 0.026 0.932 0.059 -0.085 
 

Semivariogam parameters showed that the C0/ (C0 + C) values of the six heavy metals 

other than Ni and Cr were less than 25% and thus exhibited strong spatial correlation. The 

C0/ (C0 + C) value for Ni and Cr were 50% and 30.4%, respectively, indicating moderate 

spatial correlation. The interpolated spatial distribution of the eight heavy metal 

concentrations plotted with the optimal interpolation model showed that the peak 

distribution was in the northwest for Cu, Cd, Pb and Zn; in the southeast for As; mainly on 

the urban fringe for Hg; and mainly in the southwest for Cr and Cd (Figure 5.1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Spatial distribution maps of soil heavy metal concentrations 
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Case –II: Northeast China 

 

Another study of Li et al. (2012) made analysis on heavy metal contamination of urban 

soil in an old industrial city (shenyang) in northeast china. For all metals, the total 

concentrations showed a great degree of variability, indicated by the large CV from 

21.99% of Mn to 139.14% of Cd. The elevated coefficients of variation reflected the non-

homogeneous distribution of concentrations of anthropogenically emitted heavy metals. 

Large standard deviations were found in all heavy metals except Hg. This also indicated 

the wide variation of concentrations in urban soils. The extent of this skew was shown by 

the differences between the mean and the median values. The difference was greatest for 

Cd (105%) and Pb (66.6%) and the least for Cr (4.3%). This clearly demonstrated the 

anthropogenic contribution and revealed the significant pollution levels in the area. The 

distribution of concentrations was skewed by a small number of large values 

(contamination hotspots). The concentration of Pb showed a high significant positive 

relationship with Cu (0.793), Cr (0.363), Zn (0.730), Cd (0.835), As (0.650), and Hg 

(0.525). Additionally, the correlations between Cu and Pb, Cr, Zn, Mn, Cd, As and Hg 

were significantly positive. However, the concentrations of Cr and Mn showed very weak 

correlations with Cd, As and Hg. This indicates that Cr and Mn were from different 

sources than Cd, As and Hg. 

 

The initial component matrix (Table 5.3) indicated that Pb, Cu, Zn, Cd, As and Hg are 

closely associated with the first principal component (PC1), while Cr and Mn are mainly 

distributed with the second component (PC2). The metals in the PC1 mainly come from 

anthropogenic sources, such as industrial production and traffic activities. Cr and Mn in 

PC2 are strongly correlated and clearly separate from the other heavy metals regarding 

their correlation coefficient analysis and PCA. This separation between them and other 

heavy metals may suggest that Cr and Mn mainly came from non-anthropogenic sources, 

indicating that they originated from natural sources. 

 

Table 5.3: Matrix of the principal component analysis loadings of heavy metals. 

 

 Pb Cu Cr Zn Mn Cd As Hg 

PC1 0.936 0.844 0.49 0.807 0.362 0.821 0.705 0.638 

PC2 -0.134 0.142 0.701 0.006 0.751 -0.222 -0.368 -0.269 
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The spatial distribution of metal concentrations is a useful aid to assess the possible 

sources of enrichment and to identify hotspots with high metal concentrations. The 

estimated maps of Pb, Cu, Cr, Zn, Mn, Cd, As and Hg are presented in Figure 5.2; several 

hotspots of high metal concentration were identified by the geochemical maps. In these 

metals, Pb and Cu showed a very similar spatial pattern, with contamination hotspots 

located simultaneously in the north and east of the study area, indicating that they were 

from the same sources. This provided a refinement and reconfirmation of the results of the 

statistical analysis, in which strong associations were found between these two metals. 

 

 
 

Figure 5.2. Estimated Ordinary Kriging concentration maps for Pb, Cu, Cr, Zn, Mn, Cd, 

As and Hg (mg/kg). 
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A study of Yasrebi et al. (2009) on evaluation and comparison of ordinary kriging and 

IDW methods for prediction of spatial variability of some soil chemical parameters 

aimed at determining   degree  of  spatial  variability   of  soil  chemical properties  with  

Ordinary  Kriging  (OK)  and Inverse  Distance  Weighting  (IDW)  methods for 6 soil 

chemical properties  were examined  in a fallow land in Bajgah,  Iran. The range of 

spatial dependence was found to vary within soil parameters.   Overall,   the results 

obtained from the comparison of the two applied. interpolation  methods  indicated  that 

kriging  was the most suitable  methods  for prediction   and mapping  the  spatial 

distribution   of soil chemical  properties  in this  area. The results showed, IDW with 

powers  of 4 and had almost the same  precisions,  but IDW with  power  of 4 was  is 

better than  IDW  with  power   of  5.  Results also revealed   that although the IDW is 

relatively simple and easy to use, but is less accurate   than OK.  In comparison   to OK,   

IDW increase the error more than 22% for pH, 15% for EC,TN, K,  OM and 20% for 

available P. The results of present study were in agreement to other studies. 

 

Context of this Study 

 

In this study, Results from conventional statistics depicted that the concentration of all 

studied metal elements showed a great degree of variability due to the generation of metal 

elements from anthropogenic activities.  The greatest SD of Ti indicated that the 

concentration of Ti were spread out from the mean value of Ti, while, and the smallest SD 

of Cd indicated Cd were very closed to the mean value of Cd. Results of skewness for Al, 

Cd, Co, K, Na, Ni, Sc and Ti in soil indicated the data were fairly symmetrical; As, Ba, Ca, 

Cr, Hg, Sb, Sr, V and Zn were moderately skewed as well as Cu, Fe, Mn and Pb were 

highly skewed for dry season. Results of Kurtosis revealed that the metal elements of Al, 

As, Ba, Ca, Cd, Co, Cr, Fe, Hg, K, Na, Ni, Sc, Ti and Zn in soil exhibited  platykurtic 

distribution, whereas, Cu, Mn, Pb, Sb, Sr and V exhibited leptokurtic distribution for dry 

season. Based on descriptive statistical analysis, the level of metal elements can be ordered 

as Fe> Al   K  Ca  Ba  Na   Pb  V      Sr  Zn> Mn  Sc  Cu   Sb  Co  Cr  

 Hg  As  Ni  Cd in dry season; and Fe> Al K Ca Ba  Na V Ti> Sr  Zn    

 Mn  Sc  Co  Cu  Sb Cr Hg As Ni Cd in rainy season. 

 

Results of Pearson’s correlation revealed that most of the significant correlations were 

observed for Ca and Ba (0.992) in dry season, while, Ti and Sr (0.991) in rainy season. 
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Almost all the metal elements were strongly correlated with each other indicating these 

metal elements were derived from the same generation sources. 

 

Results of PCA revealed that Cu, Hg, Mn, Pb, and Zn in soil derived from natural parent 

materials; Al, As, Ba, Ca, Cd, Co, Fe, K, Na, Ni, Sb, Sc, Sr, Ti and V from anthropogenic 

activities and Cr from both the natural and anthropogenic sources in dry season. PCA 

results also demonstrated that As, Cr, Hg, K, Na and Mn in soil derived from natural 

parent materials; Al, Ba, Ca, Co, Cu, Fe, Ni, Sb, Sc, Sr, Ti and V from anthropogenic 

activities as well as Cd, Pb and Zn from both the natural parent and anthropogenic sources 

in rainy season.  Results from AHC also proved the same generation sources of metal 

elements as similar of PCA in soil for both the dry and rainy seasons. Cluster analysis 

showed similar contamination pattern for almost all the metal elements indicated the same 

sources of contamination for both the dry and rainy season. This statement was also 

confirmed from the results of Pearson’s correlation analysis.  

 

Geostatistical analysis demonstrated IMQ was the best fitted model almost all the metal 

elements for least RMSPE; Hole effect model for Al, Ca, Cu, Ni, Pb, V; as well as J-

Bessel for As, Ba, Fe, Hg, Mn, Sb, Sc and Sr in soil. In addition, rational quadric, circular 

and exponential model was the best fitted model for Cd, Na and Ti; Cr as well as K, 

respectively. Produced prediction surface for all the interpolation techniques showed most 

of the contaminated hotspots was found near the central point of the disposal site for all 

studied metal elements. Semivariogram obtained from ordinary kriging interpolation 

showed strong spatial correlation between Cd, Co, K and Ti in soil; moderate correlation 

for Al, As, Ba, Cr, Cu, Mn, Na, Ni, Pb, Sb, Sc, Sr and V as well as no spatial correlation  

between Ca, Fe, Hg and Zn. Based on least value of MAPE, IDW with power 1 to 5 and 

RBF with different kernel functions showed comparatively more accurate prediction than 

that of other interpolation techniques. Based on RI, IDW1 showed best performance 

followed by ordinary kriging.  Based on all indices, IDW1 showed the best technique for 

metal elements in soil considered in this study. Finally, the obtained results in this study 

were agreed well with the results published by various researchers for similar cases of 

studies.  
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CHAPTER VI 
 

CONCLUSION AND RECOMMENDATIONS 

 

 

 

6.1  Conclusion 

 

Despite the terrible effects of metal contamination in soil of the selected waste disposal 

site, no proper step is taken to control or reduce the spread of metal elements in and around 

the soil of disposal site. Therefore, it is necessary to carry out an intensive study and 

monitor the nature and extent of such metal elements in and around of the disposal site. 

Based on the findings of the study, the following conclusions have been drawn: 

 

1. From normal QQ plot, it can be concluded that almost all the metal elements in soil 

for both the dry and rainy seasons were distributed normally, except As.  

2. Results from conventional statistics depicted that the concentration of metal elements 

considered in this study showed a great degree of variability due to the generation of 

metal elements from anthropogenic activities.   

3. Based on descriptive statistical analysis, the level of metal elements can be ordered 

as Fe> Al   K  Ca  Ba  Na   Pb  V      Sr  Zn> Mn  Sc  Cu   Sb  Co  

Cr   Hg  As  Ni  Cd in dry season; and Fe> Al K Ca Ba  Na V Ti> 

Sr  Zn     Mn  Sc  Co  Cu  Sb Cr Hg As Ni Cd in rainy season. 

4. Results of Pearson’s correlation revealed that all the metal elements were strongly 

correlated with each other indicating these metal elements were derived from the 

same generation sources. 

5. The generation sources of all studied metal elements in soil obtained  from PCA were 

completely in agreement with AHC  for both the dry and rainy seasons.  

6. Cluster analysis showed similar contamination pattern for almost all the metal 

elements indicated the same sources of contamination for both the dry and rainy 

season. This statement was also confirmed from the results of Pearson’s correlation 

analysis.  

7. Produced prediction surface for all the interpolation techniques showed most of the 

contaminated hotspots was found near the central point of the disposal site for all 

studied metal elements. 
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8. Semivariogram obtained from ordinary kriging interpolation showed strong spatial 

correlation between Cd, Co, K and Ti in soil; moderate correlation for Al, As, Ba, Cr, 

Cu, Mn, Na, Ni, Pb, Sb, Sc, Sr and V as well as no spatial correlation  between Ca, 

Fe, Hg and Zn. 

9. Based on least value of MAPE, RI and G-value, IDW1 showed best performance 

followed by ordinary kriging.  

10. The predicted values of metal elements in soil from ANN were almost same as 

obtained from laboratory. 

 

Finally, it can be concluded that the results from the study will also be used to find out the 

area needed to take under immediate remedial action to remove the metal elements where 

the levels were too high. 

 

6.2 Recommendation for Further Study 

 

The soil samples should be collected more carefully to obtain better field condition. As the 

S-W test gives better results for smaller dataset (< 2000). If the number of observation is 

greater than 2000, the S-W test can be avoided as it gives less reliable result. The updated 

version of softwares can be used to comprehend better results from further study.  
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Annex-A 

 

Screenshots of steps of all performed analysis 

 

Steps of S-W and K-S test 

 

Step 1: The “Data View” of SPSS window represented the data required for the analysis. 

 

 Step 2: “Descriptive Statistics” under “Analysis” dialog box was selected. Then the dialog 

box of “Explore” was selected.  All metal elements were selected to analyze normality test. 
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Step 3: The dialog box “Descriptive Statistics” was selected to analyze descriptive data for 

95% confidence level for mean. “Continue” in dialog box was pressed to continue analysis. 
 

 

Step 4: “Explore Plot” under the “Analysis” dialog box was selected. “Normality plots with 

tests” was chosen. “Continue” in the dialog box was pressed to continue the analysis. 
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Step 5: SPSS output file represented the result originated from SPSS analysis. 

 

Figure A.1: Stepwise analysis procedure for K-S and S-W test. 
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Steps of Normal QQ Plot 

 

Step 1: The data needed to analyze was displayed in the excel sheet. 

 Step 2: The “Descriptive Statistics” dialog box was opened. The “Quantative Data” was 

selected to continue the analysis. The chemical formula of metal elements and their 

concentrations for all boreholes cells were selected. 
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Step 3: The “Chart” dialog box was selected and Normal Q-Q plot was selected for analysis. 

“OK” was pressed to continue the analysis. 

 

Step 4: The Normal Q-Q plot was originated for each metal element under this study. 
 

 

 

 

 

 

 

 

 

 

 

Figure A.2: Stepwise plotting procedure for Normal QQ Plot. 

 



161 

 

Steps of Conventional Statistics 

 

Step 1: “Descriptive Statistics” under the “Analysis” dialog box was selected. All the metal 

elements were selected to analyze for computing conventional statistics. 

 

  
Step 2: “Conventional Statistics Option” was selected. All the required parameters were 

selected to compute. “Continue” was pressed to run the analysis. 
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Step 3: SPSS output file represented the result of descriptive statistics originated from SPSS 

analysis. 

 
Figure A.3: Stepwise computation procedure for conventional statistics. 
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Steps of Pearson’s Correlation 

 

Step 1: “Correlate” under the “Analysis” dialog box was selected. Then the dialog box of 

“Bivariate Correlation” was selected. Correlation coefficient for pearson was specified, with 

two tailed significance value. Flag significance correlations were also selected. 

 

Step 2: The “Bivariate Correlations Option” was selected. “Continue” in the dialog box was 

pressed to continue the analysis. 
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Step 3: The “Correlation Coefficient” was originated for metal elements was recorded. 

  

Figure A.4: Stepwise computation procedure for Pearson‟s correlation. 
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Steps of Principal Component Analysis 

 

Step 1: The data needed to analyze was displayed in the excel sheet. 

 Step 2: “Principal Component Analysis (PCA)” under “Analyzing data” was selected. The 

data for “Observation/variables tables” was selected. ”Observation labels” was selected. 

”OK” was clicked to continue. Options” wizard of PCA was selected. “Rotation” was 

selected. 

zing  
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Step 3: “Chart” wizard of PCA was selected. All parameters were chosen to analyze. 

 
 

Step 4: SPSS output file represented the result of PCA originated from XLSTAT analysis. 

 

 

 

Figure A.5: Stepwise Analysis of Principal Component Analysis. 
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Steps of Agglomerative Hierarchical Clustering 

Step 1: “Agglomerative Hierarchical Analysis (AHC)” under “Analyzing data” was selected. 

 

Step 2: The data for “Observation/variables tables” was selected. ”Row labels” was selected. 

”OK” was clicked to continue. 
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Figure A.6 : Stepwise analysis procedure of AHC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 3: SPSS output file represented the result of AHC originated from XLSTAT analysis. 
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Common Steps of Geostatistical Analysis 

 

Step 1: The excel sheet was added to ArcGIS map. 

 

Step 2: The “Display XY Data” dialog box was opened and X, Y and Z field was specified. 
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Step 3: “World Coordinate System (WGS 1984)” under “Geographic Coordinate System” was 

selected. 

  

 

Step 4: The sampling locations of the study were displayed on ArcMap wizard. 
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Step 5: Right click was done to “Layer” that lead to “Export”, followed by “Export Data”. 

“OK” was pressed to continue the analysis. 

 

Step 6: Data Frame Properties” was selected and the extent was specified as “Rajbandh 

landfill”. “Clip Options” was selected to clip to shape of Rajbandh landfill. “OK” was clicked 

to continue. 
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Step 7: “Graticule” was selected to display the grids in the ArcMap. The specifications for the 

wizard “New Grid” were identified. 

 
 

Step 8: “Font Size” under the “Properties” wizard was also specified. 
 

Step 8:”Font Size” under the “Properties” wizard was also specified, 
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Step 9: “Frame” was chosen to change the border color of ArcMap. “No color” was selected. 

“OK” was pressed to continue. 

 

 

Step 10: The “Symbology” wizard under the”Properties” of generated surface was selected. 

Modification in “Legend” was done.”OK” was clicked. 

 



174 

 

Step 11: “Insert” option was chosen and the legend of the shape file needed was chosen. 

“Next” was clicked to continue. 

 

 
 

 

Step 12: The generated output surface map with the” Legend” in the “Layout view “. 
 

 

 
 

 

Figure A.7 : Common steps of geostatistical analysis by ArcGIS. 
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Steps of Inverse Distance Weighting 

 

Step 1:  “Inverse Distance Weighting” under “Geostatistical Analyst” was chosen. “Data 

Field” and “Weight Field” was chosen. 

 

Step 2: “Power of the Method” was chosen. ”Next” was clicked to continue. 
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Step 3: This wizard represented the prediction errors of interpolation techniques in terms of 

MPE and RMSPE. ”Finish” was clicked to continue. 
 

 

Step 4: “OK” was clicked to continue. 
 

 

Figure A.8: Stepwise interpolation techniques of IDW. 
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Steps of Local polynomial Interpolation 

Step 1:  “Local Polynomial Interpolation” under “Geostatistical Analyst” was chosen. “Data 

Field” and “Weight Field” was chosen. 

 

Step 2:  “Kernal Function” was chosen. ”Next” was clicked to continue 
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Step 3: This wizard represented the prediction errors of interpolation techniques in terms of 

MPE and RMSPE. ”Finish” was clicked to continue. 

 

Step 4: “OK” was clicked to continue. 

 

Figure A.9: Stepwise interpolation techniques of LPI. 
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Steps og Radial Basis Functions 

Step 1:  “Radial Basis Function‟s” under “Geostatistical Analyst” was chosen. “Data Field” 

and “Weight Field” was chosen. 

 

Step 2:  “Kernal Function” was chosen. ”Next” was clicked to continue 
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Step 3: This wizard represented the prediction errors of interpolation techniques in terms of 

MPE and RMSPE. ”Finish” was clicked to continue. 

 

Step 4: “OK” was clicked to continue. 

 

Figure A.10: Stepwise interpolation techniques of RBF‟s Interpolation. 
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Steps of Ordinary Kriging 

 

Step 1: “Geostatistical Analyst” wizard was opened and “Kriging/Cokriging” was selected. 

The inputs were inserted and “Next” were pressed to continue. 

 

 

Step 2: “Ordinary Kriging Type” and “Prediction type of output surface” was selected. 

“Transformation Type” and “Order of trend removal” was selected as “None”. “Next” was 

pressed to continue. 
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Step 3: “The variable type” was selected as „Semivariogram‟, The “Model#1‟ was chosen. 

The nugget and partial sill were obtained from this wizard. 

 

Step 4: “Maximum neighbors‟ and „Minimum neighbors‟ were given as input. “Next‟” was 

clicked to continue the analysis. 
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Step 5: This wizard represented the prediction errors of interpolation techniques in terms of 

MPE, RMSPE, MSPE, RMSSPE and ASPE. ”Finish” was clicked to continue. 

  

Step 6: “OK” was clicked to continue. 

 Figure A.11: Stepwise interpolation techniques of ordinary kriging Interpolation. 
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Steps of Artificial Neural Network 

 

Step 1: A new file was added in the workspace, renamed as “Input_Dry”.  
 

Step 2: The copied data was pasted in the “Input_Dry” file. The data was transposed in form. 
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Step 3: A new file was opened as “Prediction_Dry” and same transpose data was pasted here 

too. 
 
 

Step 4: A new file was opened as “Target_Dry” and the concentration of each metal element 

was pasted here in transpose form. 
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Step 5: “nntool” model was opened to start the analysis. 
 
 

Step 6: The “Input_Dry, Prediction_Dry, Target_Dry” file was selected as input data.  
 
 

 



187 

 

Step 7: The selected files were displayed in the nntool wizard. 
 
 

Step 8: A new network “Hg_Dry” was created, where input and target data was inserted. 

MSE was selected as performance function. 
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Step 9: A dynamic network was created showing the structure of the analysis. 
 
 

Step 10: Neural Network Training was started where “Input_Dry” was treated as “Input data: 

and “Target_Dry” as target data. 
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Step 11: The network was trained several times to get the best result. It was found  that the 

MSE value was 0.0900, close to 0,indicate a better prediction. 
 

 

Step 12: Regression coefficient was obtained for training, validation, test and overall method, 

respectively. The R-value was found 0.98095, close to 1. This also indicated a better 

prediction. 
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Step 13: Prediction of future data was estimated by simulating the network.   
 

 

Step 14: The output was exported to the workspace in matrix form. 
 

 

Figure A.12: Stepwise analysis of nntool model using ANN. 
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Annex- B 

Representation of Normal Q-Q Plot and Self Organizing Map (SOM) of Metal 

Elements using XLSTAT 

 
Figure B.1: Normal QQ plot of Al for the dry season (n=40). 

 

Figure B.2: Normal QQ plot of As for the dry season (n=40). 
 

Figure B.3: Normal QQ plot of Ba for the dry season (n=40). 
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Figure B.4: Normal QQ plot of Ca for the dry season (n=40). 

 

 
Figure B.5: Normal QQ plot of Co for the dry season (n=40). 

 

 
Figure B.6: Normal QQ plot of Cr for the dry season (n=40). 
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Figure B.7: Normal QQ plot of Cu for the dry season (n=40). 

 

 
Figure B.8: Normal QQ plot of Fe for the dry season (n=40). 

 

 
Figure B.9: Normal QQ plot of Hg for the dry season (n=40). 
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Figure B.10: Normal QQ plot of K for the dry season (n=40). 

 

 
Figure B.11: Normal QQ plot of Mn for the dry season (n=40). 

 

 
Figure B.12: Normal QQ plot of Na for the dry season (n=40). 
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Figure B.13: Normal QQ plot of Sb for the dry season (n=40). 

 

 
Figure B.14: Normal QQ plot of Sc for the dry season (n=40). 

 

 
Figure B.15: Normal QQ plot of Sr for the dry season (n=40). 
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Figure B.16: Normal QQ plot of Ti for the dry season (n=40). 

 

 
Figure B.17: Normal QQ plot of V for the dry season (n=40). 
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Figure B.18: Normal QQ plot of Al for the rainy season (n=20). 
 

Figure B.19: Normal QQ plot of As for the rainy season (n=20). 
 

Figure B.20: Normal QQ plot of Ba for the rainy season (n=20). 
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Figure B.21: Normal QQ plot of Ca for the rainy season (n=20). 

 

Figure B.22: Normal QQ plot of Co for the rainy season (n=20). 

 

Figure B.23: Normal QQ plot of Cr for the rainy season (n=20). 
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Figure B.24: Normal QQ plot of Cu for the rainy season (n=20). 

 

Figure B.25: Normal QQ plot of Fe for the rainy season (n=20). 
 

 

Figure B.26: Normal QQ plot of Hg for the rainy season (n=20). 

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

Q
u
an

ti
le

 -
 N

o
rm

al
  

(2
.5

5
, 
1
.2

5
) 

Cu 

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9

Q
u
an

ti
le

 -
 N

o
rm

al
  

(2
.5

1
, 
0
.2

1
) 

Fe 

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-0.4 -0.2 0 0.2 0.4 0.6 0.8

Q
u
an

ti
le

 -
 N

o
rm

al
  

(0
.1

5
, 
0
.2

5
) 

Hg 



 

200 
 

 

Figure B.27: Normal QQ plot of K for the rainy season (n=20). 

 

Figure B.28: Normal QQ plot of Mn for the rainy season (n=20). 

 

Figure B.29: Normal QQ plot of Na for the rainy season (n=20). 
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Figure B.30: Normal QQ plot of Sb for the rainy season (n=20). 

 

Figure B.31: Normal QQ plot of Sc for the rainy season (n=20). 

 

Figure B.32: Normal QQ plot of Sr for the rainy season (n=20). 
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Figure B.33: Normal QQ plot of Ti for the rainy season (n=20). 

 

 

 

Figure B.34: Normal QQ plot of V for the rainy season (n=20). 
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Figure B.35: SOM obtained using ANN for metal elements in dry season. 
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Figure B.36: SOM obtained using ANN for metal elements in rainy season. 
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Annex – C 

 

Cross Validation Results and Spatial Distribution of Metal Elements using IDW  

 

Table C.1: Cross validation of IDW for Al 

 

Table C.2: Cross validation of IDW for As 

 
Method 

a
MPE 

b
RMSPE Method 

a
MPE 

b
RMSPE 

IDW 1 96.217 166.117 IDW 1 1.195 1.949 

IDW 2 82.885 149.770 IDW 2 1.014 1.739 

IDW 3 68.693 140.647 IDW 3 0.820 1.600 
IDW 4 57.664 135.536 IDW 4 0.674 1.536 
IDW 5 49.862 132.793 IDW 5 0.574 1.510 

 

Table C.3: Cross validation of IDW for Ba 

 

Table C.4: Cross validation of IDW for Ca 

 
Method 

a
MPE 

b
RMSPE Method 

a
MPE 

b
RMSPE 

IDW 1 10.354 17.869 IDW 1 28.391 52.770 

IDW 2 8.689 15.878 IDW 2 24.831 48.494 

IDW 3 7.016 14.738 IDW 3 20.899 46.068 

IDW 4 5.714 14.012 IDW 4 17.679 44.492 
IDW 5 4.767 13.586 IDW 5 15.290 43.565 

 

 

Table C.5: Cross validation of IDW for Co 

 

 Table C.6: Cross validation of IDW for Cr 

 
Method 

a
MPE 

b
RMSPE  Method 

a
MPE 

b
RMSPE 

IDW 1 0.963 1.639  IDW 1 1.117 2.371 

IDW 2 0.785 1.482  IDW 2 1.001 2.244 

IDW 3 0.619 1.379  IDW 3 0.845 2.166 
IDW 4 0.493 1.304  IDW 4 0.706 2.136 
IDW 5 0.403 1.262  IDW 5 0.593 2.129 

 

Table C.7: Cross validation of IDW for Cu 

 

Table C.8: Cross validation of IDW for Fe 

 
Method 

a
MPE 

b
RMSPE Method 

a
MPE 

b
RMSPE 

IDW 1 1.981 3.425 IDW 1 305.811 569.813 

IDW 2 1.683 3.131 IDW 2 277.247 541.882 

IDW 3 1.373 2.930 IDW 3 241.160 525.837 

IDW 4 1.127 2.790 IDW 4 208.707 516.264 
IDW 5 0.947 2.713 IDW 5 181.154 509.430 

 
Table C.9: Cross validation of IDW for Hg 

 

Table C.10: Cross validation of IDW for K 

Method 
a
MPE 

b
RMSPE Method 

a
MPE 

b
RMSPE 

IDW 1 1.395 2.316 IDW 1 57.983 103.040 

IDW 2 1.252 2.127 IDW 2 49.877 93.217 
IDW 3 1.070 1.996 IDW 3 40.762 87.876 
IDW 4 0.919 1.923 IDW 4 33.486 85.119 

IDW 5 0.806 1.889 IDW 5 28.142 83.754 
a
MPE=Mean Prediction Error, 

b
RMSPE= Root Mean Square Prediction Error. 
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Table C.11:Cross validation of IDW for Mn 

 
 

Table C.12:Cross validation of IDW for Na 

Method 
a
MPE 

b
RMSPE Method 

a
MPE 

b
RMSPE 

IDW 1 3.805 6.959 IDW 1 16.341 29.218 

IDW 2 3.392 6.596 IDW 2 14.165 27.152 

IDW 3 2.893 6.419 IDW 3 11.751 26.134 
IDW 4 2.474 6.294 IDW 4 9.826 25.763 
IDW 5 2.123 6.191 IDW 5 8.373 25.573 

 
 

Table C.13: Cross validation of IDW for Sb 

 

Table C.14: Cross validation of IDW for Sc 

Method 
a
MPE 

b
RMSPE Method 

a
MPE 

b
RMSPE 

IDW 1 1.028 1.773 IDW 1 1.330 2.680 

IDW 2 0.867 1.587 IDW 2 1.157 2.469 
IDW 3 0.699 1.485 IDW 3 0.963 2.357 
IDW 4 0.565 1.420 IDW 4 0.798 2.292 
IDW 5 0.466 1.378 IDW 5 0.675 2.261 

 
Table C.15: Cross validation of IDW for Sr 

 

Table C.16: Cross validation of IDW for Ti 

Method 
a
MPE 

b
RMSPE Method 

a
MPE 

b
RMSPE 

IDW 1 3.638 6.952 IDW 1 176.868 326.413 

IDW 2 3.115 6.304 IDW 2 149.913 295.712 

IDW 3 2.550 5.968 IDW 3 122.780 280.265 
IDW 4 2.106 5.785 IDW 4 101.694 272.254 
IDW 5 1.790 5.694 IDW 5 0.675 2.261 

 
Table C.17: Cross validation of IDW for V 

 

Method 
a
MPE 

b
RMSPE 

IDW 1 7.457 13.604 
IDW 2 6.532 12.440 

IDW 3 5.462 11.806 

IDW 4 4.574 11.426 
IDW 5 1.790 5.694 

a
MPE=Mean Prediction Error, 

b
RMSPE= Root Mean Square Prediction Error 
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IDW 1 IDW 2 IDW 3 IDW 4 IDW 5  
Explanation of IDW 1   

 Comparatively 

higher contamination 

was visible between 

IDW1 to IDW5. 

 Most of the region 

exhibited red, orange 

red, orange and 

ocher color.  

 Yellow color also 

covered a noticable 

region with no green 

region.  

Explanation of IDW 2   

 Comparatively lesser 

contamination than 

IDW1. 

 Little red region 

along with smaller 

ocher, orange red 

and orange color 

region .  

 Yellow color also 

covered a noticable 

region with a a little 

larger green region. 

Explanation of IDW 3   

 Pattern was almost 

same as IDW2. 

  Comparatively lesser 

contamination than 

IDW1 and IDW2.  

 Little more red region 

along with ocher, 

orange red and 

orange color region .  

 Comparatively more 

yellow color and 

larger green region 

was visible. 

Explanation of IDW 4   

 Pattern was almost 

same as IDW3. 

  Comparatively lesser 

contamination than 

IDW1, IDW2 and 

IDW3.  

 Little red region 

along with ocher, 

orange red and 

orange color region .  

 Comparatively higher 

yellow color and 

larger green region 

was visible. 

Explanation for IDW 5   

 Pattern was almost 

same as IDW4.  

 Comparatively lesser 

contamination level 

than IDW1, IDW2, 

IDW3 and IDW4.  

 Little more red 

region along with 

ocher, orange red 

and orange color 

region .  

 Larger yellow color 

and larger green 

region was visible 

than other powers. 

Color variation 

and visual  

contamination 

level from 

spatial 

distribution 

Figure C.1:  Spatial distribution of Al in soil using IDW with power of 1- 5. 
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IDW 1 IDW 2 IDW 3 IDW 4 IDW 5  

Explanation of IDW 1   

 Comparatively 

higher contamination 

was visible between 

IDW1 to IDW5. 

 Most of the region 

exhibited red, orange 

red, orange and 

ocher color.  

 Yellow color also 

covered a noticable 

region with no green 

region.  

Explanation of IDW 2   

 Comparatively lesser 

contamination than 

IDW1. 

 Little red region 

along with smaller 

ocher, orange red 

and orange color 

region .  

 Yellow color also 

covered a noticable 

region with a a little 

larger green region. 

Explanation of IDW 3   

 Pattern was almost 

same as IDW2.  

 Comparatively lesser 

contamination than 

IDW1 and IDW2. 

 Little more red region 

along with ocher, 

orange red and 

orange color region .  

 Comparatively more 

yellow color and 

larger green region 

was visible. 

Explanation of IDW 4   

 Pattern was almost 

same as IDW3.  

 Comparatively lesser 

contamination than 

IDW1, IDW2 and 

IDW3.  

 Little red region 

along with ocher, 

orange red and 

orange color region .  

 Comparatively higher 

yellow color and 

larger green region 

was visible. 

Explanation for IDW 5   

 Pattern was almost 

same as IDW4.  

 Comparatively lesser 

contamination than 

IDW1,IDW2, IDW3 

and IDW4.  

 Little more red region 

along with ocher, 

orange red and 

orange color region .  

 Larger yellow color 

and larger green 

region was visible 

than other powers. 

Color variation 

and visual 

contamination 

level from 

spatial 

distribution 

Figure C.2:  Spatial distribution of As in soil using IDW with power of 1- 5. 
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IDW 1 IDW 2 IDW 3 IDW 4 IDW 5  

Explanation of IDW 1   

 Comparatively 

higher contamination 

was visible between 

IDW1 to IDW5. 

  Most of the region 

exhibited red, orange 

red, orange and 

ocher color.  

 Yellow color also 

covered a noticable 

region with no green 

region.  

Explanation of IDW 2   

 Comparatively lesser 

contamination than 

IDW1. 

 Little red region 

along with smaller 

ocher, orange red 

and orange color 

region .  

 Yellow color also 

covered a noticable 

region with a a little 

larger green region. 

Explanation of IDW 3   

 Pattern was almost 

same as IDW2. 

  Comparatively 

lesser contamination 

than IDW1 and 

IDW2. 

 Little more red 

region along with 

ocher, orange red 

and orange color 

region .  

 Comparatively more 

yellow color and 

larger green region 

was visible. 

Explanation of IDW 4   

 Pattern was almost 

same as IDW3. 

  Comparatively lesser 

contamination than 

IDW1, IDW2 and 

IDW3. 

 Little red region along 

with ocher, orange red 

and orange color 

region .  

 Comparatively higher 

yellow color and 

larger green region 

was visible. 

Explanation of  IDW 5   

 Pattern was almost 

same as IDW4. 

  Comparatively lesser 

contamination than 

IDW1,IDW2, IDW3 

and IDW4. 

 Little more red region 

along with ocher, 

orange red and 

orange color region .  

 Larger yellow color 

and larger green 

region was visible 

than other powers. 

Color variation 

and visual 

contamination 

level from 

spatial 

distribution 

Figure C.3:  Spatial distribution of Ba in soil using IDW with power of 1- 5. 
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IDW 1 IDW 2 IDW 3 IDW 4 IDW 5  

Explanation of IDW 1   

 Comparatively 

higher contamination 

was visible between 

IDW1 to IDW5. 

  Most of the region 

exhibited red, orange 

red, orange and 

ocher color.  

 Yellow color also 

covered a noticable 

region with no green 

region.  

Explanation of IDW 2   

 Comparatively lesser 

contamination than 

IDW1. 

 Little red region 

along with smaller 

ocher, orange red 

and orange color 

region .  

 Yellow color also 

covered a noticable 

region with a a little 

larger green region. 

Explanation of IDW 3   

 Pattern was almost 

same as IDW2. 

  Comparatively 

lesser contamination 

than IDW1 and 

IDW2.  

 Little more red 

region along with 

ocher, orange red 

and orange color 

region .  

 Comparatively more 

yellow color and 

larger green region 

was visible. 

Explanation of IDW 4   

 Pattern was almost 

same as IDW3. 

  Comparatively 

lesser contamination 

than IDW1, IDW2 

and IDW3. 

 Little red region 

along with ocher, 

orange red and 

orange color region .  

 Comparatively 

higher yellow color 

and larger green 

region was visible. 

Explanation of  IDW 5   

 Pattern was almost 

same as IDW4.  

 Comparatively lesser 

contamination than 

IDW1,IDW2, IDW3 

and IDW4. 

  Little more red 

region along with 

ocher, orange red 

and orange color 

region .  

 Larger yellow color 

and larger green 

region was visible 

than other powers. 

Color variation 

and visual 

contamination 

level from spatial 

distribution 

Figure C.4: Spatial distribution of Ca in soil using IDW with power of 1- 5. 
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IDW 1 IDW 2 IDW 3 IDW 4 IDW 5  

Explanation of IDW 1   

 Comparatively 

higher contamination 

level was visible 

between IDW1 to 

IDW5. 

  Most of the region 

exhibited red, orange 

red, orange and 

ocher color.  

 Yellow color also 

covered a noticable 

region with no green 

region.  

Explanation of IDW 2   

 Comparatively lesser 

contamination level 

than IDW1. 

 Little red region 

along with smaller 

ocher, orange red 

and orange color 

region .  

 Yellow color also 

covered a noticable 

region with a a little 

larger green region. 

Explanation of IDW 3   

 Pattern was almost 

same as IDW2. 

  Comparatively 

lesser contamination 

level than IDW1 and 

IDW2.  

 Little more red 

region along with 

ocher, orange red 

and orange color 

region .  

 Comparatively more 

yellow color and 

larger green region 

was visible. 

Explanation of IDW 4   

 Pattern was almost 

same as IDW3. 

  Comparatively 

lesser contamination 

level than IDW1, 

IDW2 and IDW3. 

 Little red region 

along with ocher, 

orange red and 

orange color region .  

 Comparatively 

higher yellow color 

and larger green 

region was visible. 

Explanation of  IDW 5   

 Pattern was almost 

same as IDW4. 

Comparatively lesser 

contamination level 

than IDW1,IDW2, 

IDW3 and IDW4. 

 Little more red 

region along with 

ocher, orange red 

and orange color 

region .  

 Larger yellow color 

and larger green 

region was visible 

than other powers. 

Color variation 

and visual 

contamination 

level from spatial 

distribution 

Figure C.5:  Spatial distribution of Co in soil using IDW with power of 1- 5. 
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IDW 1 IDW 2 IDW 3 IDW 4 IDW 5  

Explanation of IDW 1   

 Comparatively 

higher contamination 

was visible between 

IDW1 to IDW5. 

 Most of the region 

exhibited red, orange 

red, orange and 

ocher color.  

 Yellow color also 

covered a noticable 

region with little 

green region.  

Explanation of IDW 2   

 Comparatively lesser 

contamination than 

IDW1. 

 Little red region 

along with smaller 

ocher, orange red 

and orange color 

region .  

 Yellow color also 

covered a noticable 

region with a a little 

larger green region. 

Explanation of IDW 3   

 Pattern was almost 

same as IDW2. 

  Comparatively 

lesser contamination 

than IDW1 and 

IDW2. 

 Little more red 

region along with 

ocher, orange red 

and orange color 

region .  

 Comparatively more 

yellow color and 

larger green region 

was visible. 

Explanation of IDW 4   

 Pattern was almost 

same as IDW3. 

 Comparatively lesser 

contamination than 

IDW1, IDW2 and 

IDW3.. 

  Little red region 

along with ocher, 

orange red and 

orange color region .  

 Comparatively 

higher yellow color 

and larger green 

region was visible. 

Explanation of IDW 5   

 Pattern was almost 

same as IDW4.  

 Comparatively lesser 

contamination than 

IDW1,IDW2, IDW3 

and IDW4. 

 Little more red 

region along with 

ocher, orange red 

and orange color 

region .  

 Larger yellow color 

and larger green 

region was visible 

than other powers. 

Color variation 

and visual 

contamination 

level from spatial 

distribution 

Figure C.6: Spatial distribution of Cr in soil using IDW with power of 1- 5. 
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IDW 1 IDW 2 IDW 3 IDW 4 IDW 5  

Explanation of IDW 1   

 Comparatively 

higher contamination 

was visible between 

IDW1 to IDW5. 

 Most of the region 

exhibited red, orange 

red, orange and 

ocher color.  

 Negligible yellow 

color also covered a 

noticable region with 

negligible green 

region.  

Explanation of  IDW 2   

 Comparatively lesser 

contamination than 

IDW1. 

 Little red region 

along with smaller 

ocher, orange red 

and orange color 

region .  

 Yellow color also 

covered a noticable 

region with a a little 

larger green region. 

Explanation of IDW 3   

 Pattern was almost 

same as IDW2.  

 Comparatively lesser 

contamination than 

IDW1 and IDW2. 

 Little more red region 

along with ocher, 

orange red and 

orange color region .  

 Comparatively more 

yellow color and 

larger green region 

was visible. 

Explanation of IDW 4   

 Pattern was almost 

same as IDW3.  

 Comparatively lesser 

contamination than 

IDW1, IDW2 and 

IDW3. 

  Little red region along 

with ocher, orange red 

and orange color 

region .  

 Comparatively higher 

yellow color and 

larger green region 

was visible. 

Explanation of  IDW 5   

 Pattern was almost 

same as IDW4.  

 Comparatively lesser 

contamination than 

IDW1,IDW2, IDW3 

and IDW4. 

 Little more red 

region along with 

ocher, orange red 

and orange color 

region .  

 Larger yellow color 

and larger green 

region was visible 

than other powers. 

Color variation 

and visual 

contamination 

level from 

spatial 

distribution 

Figure C.7: Spatial distribution of Cu in soil using IDW with power of 1- 5. 
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IDW 1 IDW 2 IDW 3 IDW 4 IDW 5  

Explanation of IDW 1   

 Comparatively 

higher contamination 

was visible between 

IDW1 to IDW5. 

 .Most of the region 

exhibited red, orange 

red, orange and 

ocher color.  

 Yellow color also 

covered a noticable 

region with 

negligible green 

region.  

Explanation of IDW 2   

 Comparatively lesser 

contamination than 

IDW1.  

 Little red region 

along with smaller 

ocher, orange red 

and orange color 

region .  

 Yellow color also 

covered a noticable 

region with a a little 

green region. 

Explanation of IDW 3   

 Pattern was almost 

same as IDW2.  

 Comparatively lesser 

contamination than 

IDW1 and IDW2. 

  Little more red 

region along with 

ocher, orange red 

and orange color 

region .  

 Comparatively more 

yellow color and 

larger green region 

was visible. 

Explanation of IDW 4   

 Pattern was almost 

same as IDW3.  

 Comparatively lesser 

contamination than 

IDW1, IDW2 and 

IDW3. 

  Little red region 

along with ocher, 

orange red and 

orange color region .  

 Comparatively 

higher yellow color 

and larger green 

region was visible. 

Explanation of IDW 5   

 Pattern was almost 

same as IDW4.  

 Comparatively lesser 

contamination than 

IDW1,IDW2, IDW3 

and IDW4. 

 Little more red region 

along with ocher, 

orange red and orange 

color region .  

 Larger yellow color 

and larger green 

region was visible 

than other powers. 

Color variation 

and visual 

contamination 

level from 

spatial 

distribution 

Figure C.8: Spatial distribution of Fe in soil using IDW with power of 1- 5. 
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IDW 1 IDW 2 IDW 3 IDW 4 IDW 5  

Explanation of IDW 1   

 Comparatively 

higher contamination 

was visible between 

IDW1 to IDW5. 

  Most of the region 

exhibited red, orange 

red, orange and 

ocher color.  

 Yellow color also 

covered a noticable 

region with no green 

region.  

Explanation of IDW 2   

 Comparatively lesser 

contamination than 

IDW1. 

 Little red region 

along with smaller 

ocher, orange red 

and orange color 

region .  

 Yellow color also 

covered a noticable 

region with a a little 

larger green region. 

Explanation of IDW 3   

 Pattern was almost 

same as IDW2. 

  Comparatively 

lesser contamination 

than IDW1 and 

IDW2. 

 Little more red 

region along with 

ocher, orange red 

and orange color 

region .  

 Comparatively more 

yellow color and 

larger green region 

was visible. 

Explanation of IDW 4   

 Pattern was almost 

same as IDW3. 

  Comparatively lesser 

contamination than 

IDW1, IDW2 and 

IDW3. 

 Little red region 

along with ocher, 

orange red and 

orange color region .  

 Comparatively higher 

yellow color and 

larger green region 

was visible. 

Explanation of  IDW 5   

 Pattern was almost 

same as IDW4.  

 Comparatively lesser 

contamination than 

IDW1,IDW2, IDW3 

and IDW4. 

  Little more red 

region along with 

ocher, orange red and 

orange color region .  

 Larger yellow color 

and larger green 

region was visible 

than other powers. 

Color variation 

and visual 

contamination 

level from 

spatial 

distribution 

Figure C.9: Spatial distribution of Hg in soil using IDW with power of 1- 5. 
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IDW 1 IDW 2 IDW 3 IDW 4 IDW 5  

Explanation of  IDW 1   

 Comparatively higher 

contamination was 

visible between IDW1 

to IDW5. 

 Most of the region 

exhibited red, orange 

red, orange and ocher 

color.  

 Yellow color also 

covered a noticable 

region with no green 

region.  

Explanation of  IDW 2   

 Comparatively lesser 

contamination than 

IDW1. 

  Little red region 

along with smaller 

ocher, orange red and 

orange color region .  

 Yellow color also 

covered a noticable 

region with a a little 

green region. 

Explanation of IDW 3   

 Pattern was almost 

same as IDW2.  

 Comparatively lesser 

contamination than 

IDW1 and IDW2. 

  Little more red 

region along with 

ocher, orange red and 

orange color region .  

 Comparatively more 

yellow color and 

larger green region 

was visible. 

Explanation of IDW 4   

 Pattern was almost 

same as IDW3. 

 Comparatively lesser 

contamination level 

than IDW1, IDW2 

and IDW3. 

  Little red region 

along with ocher, 

orange red and 

orange color region .  

 Comparatively 

higher yellow color 

and larger green 

region was visible. 

Explanation of IDW 5   

 Pattern was almost 

same as IDW4.  

 Comparatively lesser 

contamination level 

than IDW1,IDW2, 

IDW3 and IDW4. 

 Little more red 

region along with 

ocher, orange red 

and orange color 

region .  

 Larger yellow color 

and larger green 

region was visible 

than other powers. 

Color 

variation and 

visual 

contamination 

level from 

spatial 

distribution 

Figure C.10: Spatial distribution of K in soil using IDW with power of 1- 5. 
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IDW 1 IDW 2 IDW 3 IDW 4 IDW 5  

Explanation of IDW 1   

 Comparatively 

higher contamination 

was visible between 

IDW1 to IDW5. 

 Most of the region 

exhibited red, orange 

red, orange and 

ocher color.  

 Yellow color also 

covered a noticable 

region with little 

green region.  

Explanation of IDW 2   

 Comparatively lesser 

contamination than 

IDW1. 

 Little red region 

along with smaller 

ocher, orange red 

and orange color 

region .  

 Yellow color also 

covered a noticable 

region with a a little 

larger green region. 

Explanation of IDW 3   

 Pattern was almost 

same as IDW2. 

  Comparatively 

lesser contamination 

than IDW1 and 

IDW2.  

 Little more red 

region along with 

ocher, orange red 

and orange color 

region .  

 Comparatively more 

yellow color and 

larger green region 

was visible. 

Explanation of IDW 4   

 Pattern was almost 

same as IDW3. 

 Comparatively lesser 

contamination than 

IDW1, IDW2 and 

IDW3. 

  Little red region 

along with ocher, 

orange red and 

orange color region .  

 Comparatively higher 

yellow color and 

larger green region 

was visible. 

Explanation of IDW 5   

 Pattern was almost 

same as IDW4.  

 Comparatively lesser 

contamination than 

IDW1,IDW2, IDW3 

and IDW4.. 

 Little more red region 

along with ocher, 

orange red and orange 

color region .  

 Larger yellow color 

and larger green 

region was visible 

than other powers. 

Color variation 

and visual 

contamination 

level from 

spatial 

distribution 

Figure C.11: Spatial distribution of Mn in soil using IDW with power of 1- 5. 
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IDW 1 IDW 2 IDW 3 IDW 4 IDW 5  

Explanation of IDW 1   

 Comparatively 

higher contamination 

was visible between 

IDW1 to IDW5. 

 Most of the region 

exhibited red, orange 

red, orange and 

ocher color.  

 Yellow color also 

covered a noticable 

region with 

negligible green 

region.  

Explanation of IDW 2   

 Comparatively lesser 

contamination than 

IDW1. 

 Little red region 

along with smaller 

ocher, orange red 

and orange color 

region .  

 Yellow color also 

covered a noticable 

region with a a little 

larger green region. 

Explanation of IDW 3   

 Pattern was almost 

same as IDW2. 

  Comparatively 

lesser contamination 

than IDW1 and 

IDW2. 

 Little more red 

region along with 

ocher, orange red 

and orange color 

region .  

 Comparatively more 

yellow color and 

larger green region 

was visible. 

Explanation of IDW 4   

 Pattern was almost 

same as IDW3. 

 Comparatively lesser 

contamination than 

IDW1, IDW2 and 

IDW3. 

  Little red region 

along with ocher, 

orange red and 

orange color region .  

 Comparatively 

higher yellow color 

and larger green 

region was visible. 

Explanation of IDW 5   

 Pattern was almost 

same as IDW4.  

 Comparatively lesser 

contamination than 

IDW1,IDW2, IDW3 

and IDW4. 

 Little more red 

region along with 

ocher, orange red 

and orange color 

region .  

 Larger yellow color 

and larger green 

region was visible 

than other powers. 

Color variation 

and visual 

contamination 

level from spatial 

distribution 

Figure C.12: Spatial distribution of Na in soil using IDW with power of 1- 5. 

8
9

°2
9

'5
2
"E

8
9

°2
9

'5
2
"E

8
9

°2
9

'5
6
"E

8
9

°2
9

'5
6
"E

8
9

°3
0

'0
"E

8
9

°3
0

'0
"E

2
2

°4
7

'4
8
"N

2
2

°4
7

'4
8
"N

2
2

°4
7

'4
5
"N

2
2

°4
7

'4
2
"N

8
9

°2
9

'5
2
"E

8
9

°2
9

'5
2
"E

8
9

°2
9

'5
6
"E

8
9

°2
9

'5
6
"E

8
9

°3
0

'0
"E

8
9

°3
0

'0
"E

2
2

°4
7

'4
8
"N

2
2

°4
7

'4
8
"N

2
2

°4
7

'4
5
"N

2
2

°4
7

'4
2
"N

8
9

°2
9

'5
2
"E

8
9

°2
9

'5
2
"E

8
9

°2
9

'5
6
"E

8
9

°2
9

'5
6
"E

8
9

°3
0

'0
"E

8
9

°3
0

'0
"E

2
2

°4
7

'4
8
"N

2
2

°4
7

'4
8
"N

2
2

°4
7

'4
5
"N

2
2

°4
7

'4
2
"N

8
9

°2
9

'5
2
"E

8
9

°2
9

'5
2
"E

8
9

°2
9

'5
6
"E

8
9

°2
9

'5
6
"E

8
9

°3
0

'0
"E

8
9

°3
0

'0
"E

2
2

°4
7

'4
8
"N

2
2

°4
7

'4
8
"N

2
2

°4
7

'4
5
"N

2
2

°4
7

'4
2
"N

8
9

°2
9

'5
2
"E

8
9

°2
9

'5
2
"E

8
9

°2
9

'5
6
"E

8
9

°2
9

'5
6
"E

8
9

°3
0

'0
"E

8
9

°3
0

'0
"E

2
2

°4
7

'4
8
"N

2
2

°4
7

'4
8
"N

2
2

°4
7

'4
5
"N

2
2

°4
7

'4
2
"N

Legend

Na

Prediction Map

[Na_RBF].[Na]

Filled Contours

8.23 – 14.03

14.03 – 21.55

21.55 – 31.3

31.3 – 43.95

43.95 – 60.35

60.35 – 72.99

72.99 – 82.75

82.75 – 90.27

90.27 – 96.07

96.07 – 100.54



 

223 
 

   
 

  
 

 

IDW 1 IDW 2 IDW 3 IDW 4 IDW 5  

Explanation of IDW 1   

 Comparatively higher 

contamination was 

visible between IDW1 

to IDW5. 

 Most of the region 

exhibited red, orange 

red, orange and ocher 

color.  

 Yellow color also 

covered a noticable 

region with no green 

region.  

Explanation of IDW 2   

 Comparatively lesser 

contamination than 

IDW1. 

 Little red region 

along with smaller 

ocher, orange red 

and orange color 

region .  

 Yellow color also 

covered a noticable 

region with a a little 

larger green region. 

Explanation of IDW 3   

 Pattern was almost 

same as IDW2. 

  Comparatively 

lesser contamination 

than IDW1 and 

IDW2.  

 Little more red 

region along with 

ocher, orange red 

and orange color 

region .  

 Comparatively more 

yellow color and 

larger green region 

was visible. 

Explanation of IDW 4   

 Pattern was almost 

same as IDW3. 

 Comparatively lesser 

contamination than 

IDW1, IDW2 and 

IDW3. 

  Little red region 

along with ocher, 

orange red and 

orange color region .  

 Comparatively 

higher yellow color 

and larger green 

region was visible. 

Explanation of IDW 5   

 Pattern was almost 

same as IDW4.  

 Comparatively lesser 

contamination than 

IDW1,IDW2, IDW3 

and IDW4. 

 Little more red 

region along with 

ocher, orange red 

and orange color 

region .  

 Larger yellow color 

and larger green 

region was visible 

than other powers. 

Color variation 

and visual 

contamination 

level from 

spatial 

distribution 

Figure C.13: Spatial distribution of Sb in soil using IDW with power of 1- 5. 
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IDW 1 IDW 2 IDW 3 IDW 4 IDW 5  

Explanation of IDW 1   

 Comparatively higher 

contamination was 

visible between IDW1 

to IDW5. 

 Most of the region 

exhibited red, orange 

red, orange and ocher 

color.  

 Yellow color also 

covered a noticable 

region with no green 

region.  

Explanation of IDW 2   

 Comparatively lesser 

contamination than 

IDW1. 

 Little red region 

along with smaller 

ocher, orange red 

and orange color 

region .  

 Yellow color also 

covered a noticable 

region with a a little 

larger green region. 

Explanation of IDW 3   

 Pattern was almost 

same as IDW2. 

  Comparatively 

lesser 

contamination than 

IDW1 and IDW2. 

 Little more red 

region along with 

ocher, orange red 

and orange color 

region .  

 Comparatively 

more yellow color 

and larger green 

region was visible. 

Explanation of IDW 4   

 Pattern was almost 

same as IDW3. 

 Comparatively lesser 

contamination than 

IDW1, IDW2 and 

IDW3. 

  Little red region 

along with ocher, 

orange red and 

orange color region .  

 Comparatively 

higher yellow color 

and larger green 

region was visible. 

Explanation of IDW 5   

 Pattern was almost 

same as IDW4.  

 Comparatively lesser 

contamination than 

IDW1,IDW2,IDW3 

and IDW4.  

 Little more red 

region along with 

ocher, orange red 

and orange color 

region .  

 Larger yellow color 

and larger green 

region was visible 

than other powers. 

Color variation 

and visual 

contamination 

level from spatial 

distribution 

Figure C.14: Spatial distribution of Sc in soil using IDW with power of 1- 5. 
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IDW 1 IDW 2 IDW 3 IDW 4 IDW 5  

Explanation of IDW 1   

 Comparatively higher 

contamination was 

visible between IDW 1 

to IDW5. 

 Most of the region 

exhibited red, orange 

red, orange and ocher 

color.  

 Yellow color also 

covered a noticable 

region with no green 

region.  

Explanation of IDW 2   

 Comparatively lesser 

contamination than 

IDW1. 

 Little red region 

along with smaller 

ocher, orange red 

and orange color 

region .  

 Yellow color also 

covered a noticable 

region with a a little 

larger green region. 

Explanation of IDW 3   

 Pattern was almost 

same as IDW2. 

  Comparatively 

lesser contamination 

than IDW1 and 

IDW2. 

 Little more red 

region along with 

ocher, orange red 

and orange color 

region .  

 Comparatively more 

yellow color and 

larger green region 

was visible. 

Explanation of IDW 4   

 Pattern was almost 

same as IDW3. 

 Comparatively lesser 

contamination than 

IDW1, IDW2 and 

IDW3. 

  Little red region 

along with ocher, 

orange red and 

orange color region .  

 Comparatively 

higher yellow color 

and larger green 

region was visible. 

Explanation of IDW 5   

 Pattern was almost 

same as IDW4.  

 Comparatively lesser 

contamination than 

IDW1 and IDW3. 

 Little more red 

region along with 

ocher, orange red 

and orange color 

region .  

 Larger yellow color 

and larger green 

region was visible 

than other powers. 

Color variation 

and visual 

contamination 

level from 

spatial 

distribution 

Figure C.15: Spatial distribution of Sr in soil using IDW with power of 1- 5. 
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IDW 1 IDW 2 IDW 3 IDW 4 IDW 5  

Explanation of IDW 1   

 Comparatively 

higher contamination 

was visible between 

IDW1 to IDW5. 

 Most of the region 

exhibited red, orange 

red, orange and 

ocher color.  

 Yellow color also 

covered a noticable 

region with no green 

region.  

Explanation of IDW 2   

 Comparatively lesser 

contamination level 

than IDW1. 

 Little red region 

along with smaller 

ocher, orange red and 

orange color region .  

 Yellow color also 

covered a noticable 

region with a a little 

green region. 

Explanation of IDW 3   

 Pattern was almost 

same as IDW2. 

  Comparatively lesser 

contamination than 

IDW1 and IDW2. 

 Little more red region 

along with ocher, 

orange red and 

orange color region .  

 Comparatively more 

yellow color and 

larger green region 

was visible. 

Explanation of IDW 4   

 Pattern was almost 

same as IDW3. 

  Comparatively lesser 

contamination than 

IDW1, IDW2 and 

IDW3. 

  Little red region 

along with ocher, 

orange red and 

orange color region .  

 Comparatively higher 

yellow color and 

larger green region 

was visible. 

Explanation of IDW 5   

 Pattern was almost 

same as IDW 4. 

  Comparatively lesser 

contamination level 

than IDW1 and 

IDW3, little more red 

region along with 

ocher, orange red and 

orange color region .  

 Larger yellow color 

and larger green 

region was visible 

than other powers. 

Color 

variation and 

visual 

contamination 

level from 

spatial 

distribution 

Figure C.16:  Spatial distribution of Ti in soil using IDW with power of 1- 5. 
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IDW 1 IDW 2 IDW 3 IDW 4 IDW 5  

Explanation of IDW 1 

   Comparatively 

higher contamination 

level was visible 

between IDW1 to 

IDW5. 

 Most of the region 

exhibited red, orange 

red, orange and 

ocher color.  

 Yellow color also 

covered a noticable 

region with a very 

small green region.  

Explanation of IDW 2   

 Comparatively lesser 

contamination level 

than IDW1. 

 Little red region 

along with smaller 

ocher, orange red 

and orange color 

region . 

  Yellow color also 

covered a noticable 

region with a a little 

larger green region. 

Explanation of IDW 3   

 Pattern was almost 

same as IDW2.  

 Comparatively lesser 

contamination level 

than IDW1 and IDW2. 

 Little more red region 

along with ocher, 

orange red and orange 

color region .  

 Comparative little 

yellow color and 

larger green region 

was visible. 

Explanation of IDW 4   

 Pattern was almost 

same as IDW3. 

  Comparatively 

lesser contamination 

level than IDW1, 

IDW2 and IDW3. 

  Little red region 

along with ocher, 

orange red and 

orange color region . 

 Comparative little 

yellow color and 

larger green region 

was visible. 

Explanation of IDW 5   

 Pattern was almost 

same as IDW4.  

 Comparatively lesser 

contamination level 

than IDW1, IDW2, 

IDW3 and IDW4. 

 Little more red 

region along with 

ocher, orange red 

and orange color 

region .  

 Comparative little 

yellow color and 

larger green region 

was visible. 

Color variation 

and visual 

contamination 

level from 

spatial 

distribution 

Figure C.17: Spatial distribution of V in soil using IDW with power of 1- 5. 
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Annex –D 

Cross Validation Results and Spatial Distribution of Metal Elements using LPI 

 

Table D.1: Cross validation of LP for Al 
 

Order 1 

Kernal function Exponential Polynomial Gaussian Epanechnikov Quartic Constant 
a
MPE 38.3474 22.5334 22.0472 17.9884 20.9309 0.0743 

b
RMSPE 149.4701 141.5211 138.0518 144.7918 141.7094 141.2395 

c
MSPE 0.0715 -0.0192 -0.0044 -0.0528 -0.0235 -0.1044 

d
RMSSPE 0.8683 0.8996 0.8834 0.9273 0.9055 0.9745 

e
ASPE 226.7868 215.0220 198.8298 215.6663 191.9776 167.4523 

Order 2 

Kernal function Exponential Polynomial Gaussian Epanechnikov Quartic Constant 
a
MPE 44.7554 59.7076 55.2460 61.3524 59.8381 44.7554 

b
RMSPE 158.2909 159.4017 160.3474 159.3847 166.7433 158.2909 

c
MSPE 0.1645 0.2122 0.2062 0.2267 0.2216 0.1645 

d
RMSSPE 0.9185 0.9067 0.9262 0.9151 0.9434 0.9185 

e
ASPE 187.8413 242.2169 196.3436 239.9590 198.4051 187.8413 

Order 3 

Kernal function Exponential Polynomial Gaussian Epanechnikov Quartic Constant 
a
MPE 36.8085 41.2147 37.8243 41.0332 39.7708 40.9897 

b
RMSPE 158.8542 170.1771 163.9462 170.9420 168.0804 182.2876 

c
MSPE 0.1198 0.1188 0.1122 0.1398 0.1258 0.1549 

d
RMSSPE 0.9066 0.9462 0.9381 0.9552 0.9490 0.9692 

e
ASPE 207.2221 209.9345 206.7214 206.1396 206.5775 206.9261 

a
MPE= Mean Prediction Error, 

b
RMSPE= Root Mean Square Prediction Error, 

c
MSPE= Mean Standardized Prediction Error, 

d
RMSSPE= Root 

Mean Square Standard Prediction Error, 
e
ASPE= Average Standard Prediction Error. 
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Table D.2: Cross validation of LP for As 
 

Order 1 

Kernal function Exponential Polynomial Gaussian Epanechnikov Quartic Constant 
a
MPE 0.4076 0.3524 0.3260 0.3260 0.3457 0.2890 

b
RMSPE 1.5350 1.5432 1.5227 1.5791 1.5494 1.6441 

c
MSPE 0.0505 -0.0029 0.0062 -0.0283 -0.0083 -0.0416 

d
RMSSPE 0.8508 0.8960 0.8862 0.9258 0.9047 0.9286 

e
ASPE 2.2839 2.4583 2.2414 2.4327 2.4275 5.3608 

Order 2 

Kernal function Exponential Polynomial Gaussian Epanechnikov Quartic Constant 
a
MPE 0.6729 0.8191 0.7792 0.8520 0.8324 0.6259 

b
RMSPE 1.7519 1.7917 1.7587 1.8259 1.7993 2.0168 

c
MSPE 0.2352 0.2687 0.2499 0.2892 0.2753 0.1651 

d
RMSSPE 0.8364 0.8988 0.8810 0.9106 0.8993 0.9783 

e
ASPE 3.0450 2.7237 2.7399 2.7058 2.7113 2.2364 

Order 3 

Kernal function Exponential Polynomial Gaussian Epanechnikov Quartic Constant 
a
MPE 0.6013 0.5266 0.5574 0.4138 0.4970 0.5908 

b
RMSPE 1.8618 1.7753 1.7784 1.6731 1.7741 1.8633 

c
MSPE 0.1139 0.0823 0.0997 0.0816 0.0721 0.1196 

d
RMSSPE 0.8635 0.9053 0.8984 0.9264 0.9023 0.9395 

e
ASPE 3.1453 3.1887 2.9450 2.3149 3.4999 2.6828 

a
MPE= Mean Prediction Error, 

b
RMSPE= Root Mean Square Prediction Error, 

c
MSPE= Mean Standardized Prediction Error, 

d
RMSSPE= Root 

Mean Square Standard Prediction Error, 
e
ASPE= Average Standard Prediction Error. 
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Table D.3: Cross validation result of LP for Ba 

 

Order 1 

Kernal function Exponential Polynomial Gaussian Epanechnikov Quartic Constant 
a
MPE 0.8571 1.1494 2.0730 0.3634 0.8361 -0.8900 

b
RMSPE 18.3029 14.5529 14.7503 15.0827 14.6713 14.6843 

c
MSPE -0.0219 -0.0669 -0.0171 -0.1115 -0.0838 -0.1405 

d
RMSSPE 0.9230 0.8937 0.8797 0.9280 0.9038 0.9706 

e
ASPE 24.5952 23.7291 20.9875 20.8050 23.6350 17.5082 

Order 2 

Kernal function Exponential Polynomial Gaussian Epanechnikov Quartic Constant 
a
MPE 4.6885 5.8079 5.0301 6.0707 5.8498 7.3310 

b
RMSPE 16.4951 16.3065 16.2908 16.3134 16.2937 18.1627 

c
MSPE 0.2039 0.2161 0.2000 0.2345 0.2217 0.2624 

d
RMSSPE 0.8475 0.9062 0.8890 0.9174 0.9064 0.9404 

e
ASPE 35.3169 27.1548 28.9570 26.0910 27.1646 25.5920 

Order 3 

Kernal function Exponential Polynomial Gaussian Epanechnikov Quartic Constant 
a
MPE 2.6264 2.8849 2.2781 2.2226 2.4224 2.8833 

b
RMSPE 16.6680 17.8794 15.8664 16.2989 16.4151 19.9388 

c
MSPE 0.0930 0.0823 0.0175 -0.0061 0.0070 0.1237 

d
RMSSPE 0.9087 0.9497 0.8946 0.9120 0.9058 0.9753 

e
ASPE 21.9288 22.4668 34.1811 40.5156 36.6516 22.7962 

a
MPE= Mean Prediction Error, 

b
RMSPE= Root Mean Square Prediction Error, 

c
MSPE= Mean Standardized Prediction Error, 

d
RMSSPE= Root 

Mean Square Standard Prediction Error, 
e
ASPE= Average Standard Prediction Error. 
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Table D.4:Cross validation of LP for Ca 

Order 1 

Kernal function Exponential Polynomial Gaussian Epanechnikov Quartic Constant 
a
MPE 6.1596 6.2387 8.7111 4.2527 5.6160 5.2003 

b
RMSPE 45.2333 45.9318 46.6204 47.3228 46.5236 64.5781 

c
MSPE 0.0351 -0.0190 0.0254 -0.0614 -0.0312 -0.0861 

d
RMSSPE 0.8372 0.8955 0.8785 0.9275 0.9099 0.8868 

e
ASPE 65.7952 69.3335 62.6609 69.5774 60.6907 102.8070 

Order 2 

Kernal function Exponential Polynomial Gaussian Epanechnikov Quartic Constant 
a
MPE 13.5223 17.3282 15.5816 17.9585 17.0742 12.4510 

b
RMSPE 54.3850 51.7428 50.8292 51.1013 52.3593 55.2043 

c
MSPE 0.1886 0.1979 0.1831 0.2131 0.2007 0.1140 

d
RMSSPE 0.8472 0.9079 0.9239 0.9170 0.9400 0.9779 

e
ASPE 105.7380 80.4923 61.8614 76.9287 62.3092 61.1293 

Order 3 

Kernal function Exponential Polynomial Gaussian Epanechnikov Quartic Constant 
a
MPE 9.8409 11.0696 8.7111 10.8182 10.4356 10.7018 

b
RMSPE 50.4415 53.6921 46.6204 53.2313 52.5837 56.2887 

c
MSPE 0.1047 0.0998 0.0254 0.1211 0.1077 0.1350 

d
RMSSPE 0.9024 0.9426 0.8785 0.9508 0.9457 0.9624 

e
ASPE 65.2710 66.0995 62.6609 64.4359 64.5886 66.0564 

a
MPE= Mean Prediction Error, 

b
RMSPE= Root Mean Square Prediction Error, 

c
MSPE= Mean Standardized Prediction Error, 

d
RMSSPE= Root 

Mean Square Standard Prediction Error, 
e
ASPE= Average Standard Prediction Error. 
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Table D.5: Cross validation of LP for Co 

 

Order 1 

Kernal function Exponential Polynomial Gaussian Epanechnikov Quartic Constant 
a
MPE 0.1109 0.0525 0.1382 -0.0572 0.0109 -0.1794 

b
RMSPE 1.1691 1.3074 1.3196 1.3760 1.3256 1.4657 

c
MSPE -0.0164 -0.1131 -0.0533 -0.1860 -0.1396 -0.2596 

d
RMSSPE 0.8548 0.9118 0.9148 0.9360 0.9195 0.9574 

e
ASPE 1.5581 1.8736 1.6192 1.9511 1.8862 2.1057 

Order 2 

Kernal function Exponential Polynomial Gaussian Epanechnikov Quartic Constant 
a
MPE 0.4978 0.5489 0.5105 0.5945 0.5715 0.5835 

b
RMSPE 1.4495 1.4725 1.4532 1.4981 1.4830 1.5901 

c
MSPE 0.2296 0.2542 0.2342 0.2790 0.2641 0.2859 

d
RMSSPE 0.8947 0.9256 0.9175 0.9305 0.9258 0.9605 

e
ASPE 1.8667 1.9714 1.9223 2.0181 2.0127 1.7400 

Order 3 

Kernal function Exponential Polynomial Gaussian Epanechnikov Quartic Constant 
a
MPE 0.2088 0.1808 0.2237 0.1032 0.2847 0.3318 

b
RMSPE 1.4155 1.4034 1.4171 1.6688 1.5285 1.6011 

c
MSPE 0.0189 -0.0131 0.0121 -0.0628 0.0959 0.1369 

d
RMSSPE 0.9164 0.9301 0.9251 0.9608 0.9519 0.9651 

e
ASPE 2.2783 2.2836 2.2128 1.8818 1.7702 1.8511 

a
MPE= Mean Prediction Error, 

b
RMSPE= Root Mean Square Prediction Error, 

c
MSPE= Mean Standardized Prediction Error, 

d
RMSSPE= Root 

Mean Square Standard Prediction Error, 
e
ASPE= Average Standard Prediction Error. 
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Table D.6: Cross validation of LP for Cr 

 

Order 1 

Kernal function Exponential Polynomial Gaussian Epanechnikov Quartic Constant 
a
MPE 0.7301 0.7566 0.8245 0.7085 0.7464 0.4587 

b
RMSPE 2.1203 2.2708 2.2941 2.2816 2.2745 2.6814 

c
MSPE 0.1398 0.1099 0.1463 0.0762 0.1049 0.0744 

d
RMSSPE 0.8502 0.9390 0.9255 0.9585 0.9403 0.9887 

e
ASPE 2.5769 2.5150 2.6326 2.3734 2.5122 3.3372 

Order 2 

Kernal function Exponential Polynomial Gaussian Epanechnikov Quartic Constant 
a
MPE 0.9772 0.9799 0.9869 0.9620 0.9753 1.0834 

b
RMSPE 2.3716 2.4278 2.4104 2.4279 2.4254 2.4502 

c
MSPE 0.2186 0.2156 0.2213 0.2076 0.2140 0.2634 

d
RMSSPE 0.9115 0.9538 0.9420 0.9559 0.9524 0.9535 

e
ASPE 2.4790 2.4048 2.4303 2.4066 2.4083 2.5069 

Order 3 

Kernal function Exponential Polynomial Gaussian Epanechnikov Quartic Constant 
a
MPE 0.8541 0.7667 0.8744 0.9303 0.8677 0.8764 

b
RMSPE 2.3274 2.5268 2.3600 2.3843 2.3529 2.3714 

c
MSPE 0.1764 0.1145 0.1813 0.2011 0.1847 0.1953 

d
RMSSPE 0.9203 0.9317 0.9411 0.9475 0.9450 0.9543 

e
ASPE 2.5380 2.9201 2.5049 2.5250 2.4655 2.4854 

a
MPE= Mean Prediction Error, 

b
RMSPE= Root Mean Square Prediction Error, 

c
MSPE= Mean Standardized Prediction Error, 

d
RMSSPE= Root 

Mean Square Standard Prediction Error, 
e
ASPE= Average Standard Prediction Error. 

 



 

234 
 

Table D.7: Cross validation of LP for Cu 

Order 1 

Kernal function Exponential Polynomial Gaussian Epanechnikov Quartic Constant 

a
MPE 0.6032 0.3770 0.3925 0.5378 0.4081 0.0885 

b
RMSPE 2.4525 2.5627 2.5000 2.5361 2.5796 3.6902 

c
MSPE 0.0447 -0.0133 0.0005 -0.0042 -0.0066 -0.1533 

d
RMSSPE 0.8303 0.9034 0.8838 0.9382 0.9137 0.9585 

e
ASPE 4.1827 4.5969 4.2428 4.1410 4.5913 7.1241 

Order 2 

Kernal function Exponential Polynomial Gaussian Epanechnikov Quartic Constant 

a
MPE 0.8536 1.1235 1.0635 1.2643 1.1693 1.5250 

b
RMSPE 3.3442 3.2290 3.1319 3.2889 3.2317 4.0559 

c
MSPE 0.2099 0.2417 0.2282 0.2700 0.2512 0.2730 

d
RMSSPE 0.8654 0.9279 0.9184 0.9308 0.9263 0.9144 

e
ASPE 5.7158 5.1581 5.0615 5.5094 5.2507 137.2448 

Order 3 

Kernal function Exponential Polynomial Gaussian Epanechnikov Quartic Constant 

a
MPE 0.4153 0.3793 0.3616 0.5075 0.3789 0.6472 

b
RMSPE 3.0396 3.1774 3.2668 3.0417 3.1040 3.2852 

c
MSPE 0.0602 0.0444 0.0445 0.0357 0.0355 0.0559 

d
RMSSPE 0.8985 0.9365 0.9282 0.9390 0.9347 0.9502 

e
ASPE 6.1200 5.9179 5.9814 6.1621 6.1004 6.1687 

a
MPE= Mean Prediction Error, 

b
RMSPE= Root Mean Square Prediction Error, 

c
MSPE= Mean Standardized Prediction Error, 

d
RMSSPE= Root 

Mean Square Standard Prediction Error, 
e
ASPE= Average Standard Prediction Error. 

 



 

235 
 

Table D.8 Cross validation of LP for Fe 

 

Order 1 

Kernal function Exponential Polynomial Gaussian Epanechnikov Quartic Constant 
a
MPE 183.2705 195.3167 174.5920 173.9638 168.1433 87.7411 

b
RMSPE 523.4628 538.8153 526.6695 526.6449 525.5781 551.9420 

c
MSPE 0.1167 0.1229 0.0934 0.0843 0.0750 0.0246 

d
RMSSPE 0.8779 0.9200 0.9226 0.9289 0.9406 0.9311 

e
ASPE 566.9098 574.5741 547.0827 584.9735 538.1291 708.1670 

Order 2 

Kernal function Exponential Polynomial Gaussian Epanechnikov Quartic Constant 
a
MPE 228.0063 231.3812 230.8207 230.0194 230.6624 225.5643 

b
RMSPE 554.0003 559.6246 558.8425 559.0286 559.2687 557.7059 

c
MSPE 0.2164 0.2267 0.2243 0.2247 0.2255 0.2164 

d
RMSSPE 0.8862 0.9386 0.9284 0.9402 0.9368 0.9528 

e
ASPE 568.2313 537.9670 544.1347 538.3904 539.1265 530.6620 

Order 3 

Kernal function Exponential Polynomial Gaussian Epanechnikov Quartic Constant 
a
MPE 212.8792 214.6612 216.0453 222.7809 230.7473 223.6761 

b
RMSPE 548.4714 556.2259 550.8707 551.7820 566.6045 550.8948 

c
MSPE 0.1938 0.1985 0.2004 0.2134 0.2120 0.2213 

d
RMSSPE 0.8931 0.9264 0.9199 0.9284 0.9253 0.9355 

e
ASPE 589.2222 570.1125 573.9597 574.0499 591.3344 571.6585 

a
MPE= Mean Prediction Error, 

b
RMSPE= Root Mean Square Prediction Error, 

c
MSPE= Mean Standardized Prediction Error, 

d
RMSSPE= Root 

Mean Square Standard Prediction Error, 
e
ASPE= Average Standard Prediction Error. 

 



 

236 
 

Table D.9:Cross validation of LP for Hg 

 

Order 1 
Kernal function Exponential Polynomial Gaussian Epanechnikov Quartic Constant 
a
MPE 0.5558 0.6096 0.5914 0.5152 0.5196 0.5416 

b
RMSPE 1.8675 2.0502 1.9208 1.9389 1.9184 2.5691 

c
MSPE 0.0889 0.0288 0.0656 0.0190 0.0293 -0.0756 

d
RMSSPE 0.9108 0.9359 0.9410 0.9523 0.9438 0.9441 

e
ASPE 2.2292 21798214.1900 2.3130 2.3863 2.3514 3.4805 

Order 2 

Kernal function Exponential Polynomial Gaussian Epanechnikov Quartic Constant 

a
MPE 0.9273 0.9373 0.9832 0.9141 0.9522 0.9534 

b
RMSPE 2.2317 2.2495 2.2692 2.2422 2.2368 2.4018 

c
MSPE 0.2404 0.2443 0.2560 0.2522 0.2485 0.2068 

d
RMSSPE 0.9378 0.9417 0.9470 0.9341 0.9380 0.9811 

e
ASPE 2.4466 3.2593 2.5495 3.5903 3.2315 2.5943 

Order 3 

Kernal function Exponential Polynomial Gaussian Epanechnikov Quartic Constant 
a
MPE 0.6885 0.6325 0.6739 0.7349 0.7297 0.6999 

b
RMSPE 2.1904 2.2222 2.2775 2.3546 2.3135 2.4772 

c
MSPE 0.1721 0.0955 0.1565 0.1848 0.1743 0.1828 

d
RMSSPE 0.9611 0.9802 0.9742 0.9756 0.9734 0.9851 

e
ASPE 2.5826 2.4313 2.5988 2.6761 2.6722 2.6227 

a
MPE= Mean Prediction Error, 

b
RMSPE= Root Mean Square Prediction Error, 

c
MSPE= Mean Standardized Prediction Error, 

d
RMSSPE= Root 

Mean Square Standard Prediction Error, 
e
ASPE= Average Standard Prediction Error. 
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Table D.10: Cross validation of LP for K 

 

Order 1  
Kernal function Exponential Polynomial Gaussian Epanechnikov Quartic Constant 
a
MPE 24.3834 12.4496 14.7802 10.7630 12.2381 14.2105 

b
RMSPE 90.0177 88.3450 88.0716 88.6391 88.2734 103.2877 

c
MSPE 0.0880 -0.0353 -0.0077 -0.0603 -0.0403 0.0597 

d
RMSSPE 0.8951 0.9366 0.9288 0.9457 0.9376 0.9279 

e
ASPE 111.4180 108.9467 103.6384 108.5254 108.5496 168.0926 

Order 2 
Kernal function Exponential Polynomial Gaussian Epanechnikov Quartic Constant 

a
MPE 29.6641 29.6782 29.9749 28.6604 29.3338 28.8146 

b
RMSPE 93.4976 96.0027 95.5725 96.2202 95.9345 96.5028 

c
MSPE 0.1697 0.1625 0.1668 0.1533 0.1599 0.1544 

d
RMSSPE 0.9008 0.9497 0.9391 0.9564 0.9492 0.9669 

e
ASPE 105.5451 101.7685 102.9100 100.6093 101.6367 99.4799 

Order 3 

Kernal function Exponential Polynomial Gaussian Epanechnikov Quartic Constant 
a
MPE 26.1237 25.7761 26.1237 28.5106 30.0185 26.9004 

b
RMSPE 93.4137 97.8116 93.4137 95.2750 99.2911 94.8895 

c
MSPE 0.1367 0.1079 0.1367 0.1522 0.1512 0.1515 

d
RMSSPE 0.9106 0.9238 0.9106 0.9404 0.9387 0.9474 

e
ASPE 110.5204 152.0699 110.5204 109.4085 112.7709 106.7050 

a
MPE= Mean Prediction Error, 

b
RMSPE= Root Mean Square Prediction Error, 

c
MSPE= Mean Standardized Prediction Error, 

d
RMSSPE= Root 

Mean Square Standard Prediction Error, 
e
ASPE= Average Standard Prediction Error. 
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Table D.11: Cross validation of LP for Mn 

Order 1 

Kernal function Exponential Polynomial Gaussian Epanechnikov Quartic Constant 
a
MPE 2.4752 2.3410 2.4000 2.4749 2.3849 0.8529 

b
RMSPE 6.9628 6.6564 6.5899 6.7015 6.6676 6.8799 

c
MSPE 0.1077 0.0945 0.1054 0.1035 0.1000 -0.0051 

d
RMSSPE 0.9315 0.9511 0.9285 0.9498 0.9518 0.9452 

e
ASPE 9.0623 8.8016 9.1781 9.3061 8.7896 10.1622 

Order 2 

Kernal function Exponential Polynomial Gaussian Epanechnikov Quartic Constant 
a
MPE 3.0179 3.1444 2.9997 2.9539 2.9458 2.9788 

b
RMSPE 7.0494 7.2864 7.1897 7.2223 7.2674 7.1887 

c
MSPE 0.2102 0.2215 0.1949 0.1869 0.1896 0.1887 

d
RMSSPE 0.9405 0.9567 0.9653 0.9724 0.9697 0.9780 

e
ASPE 8.7966 9.2559 8.8728 8.8574 8.9303 8.7733 

Order 3 
Kernal function Exponential Polynomial Gaussian Epanechnikov Quartic Constant 
a
MPE 2.5631 2.8303 2.5517 2.6989 2.7061 3.0281 

b
RMSPE 7.1084 7.5660 7.1830 7.3362 7.2895 7.2708 

c
MSPE 0.1683 0.1703 0.1590 0.1814 0.1737 0.2080 

d
RMSSPE 0.9438 0.9606 0.9569 0.9627 0.9599 0.9702 

e
ASPE 9.5066 9.8590 9.4611 9.6051 9.6461 9.1412 

a
MPE= Mean Prediction Error, 

b
RMSPE= Root Mean Square Prediction Error, 

c
MSPE= Mean Standardized Prediction Error, 

d
RMSSPE= Root 

Mean Square Standard Prediction Error, 
e
ASPE= Average Standard Prediction Error. 
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Table D.12: Cross validation of LP for Na 

 

Order 1 
Kernal function Exponential Polynomial Gaussian Epanechnikov Quartic Constant 
a
MPE 6.9290 4.8300 5.4521 8.7793 5.0860 3.0048 

b
RMSPE 24.4825 24.2281 24.2850 25.8485 24.2722 24.7396 

c
MSPE 0.0736 0.0088 0.0305 0.1082 0.0130 -0.0523 

d
RMSSPE 0.9535 0.9505 0.9446 0.9961 0.9557 0.9703 

e
ASPE 28.9314 30.9012 30.7415 28.9047 30.8758 32.8656 

Order 2 
Kernal function Exponential Polynomial Gaussian Epanechnikov Quartic Constant 
a
MPE 8.9819 9.0801 9.0741 9.4030 9.2094 9.7725 

b
RMSPE 25.5843 25.6581 25.6355 25.6903 25.6561 25.7944 

c
MSPE 0.1752 0.1783 0.1797 0.1911 0.1834 0.2036 

d
RMSSPE 0.9430 0.9605 0.9620 0.9685 0.9624 0.9744 

e
ASPE 28.7541 28.3623 28.1163 27.8549 28.1733 27.7148 

Order 3 

Kernal function Exponential Polynomial Gaussian Epanechnikov Quartic Constant 
a
MPE 9.2009 9.2009 9.2898 9.1895 9.5348 8.9639 

b
RMSPE 26.5412 26.5412 26.8312 26.8870 27.7154 26.2035 

c
MSPE 0.1695 0.1695 0.1722 0.1692 0.1709 0.1702 

d
RMSSPE 0.9280 0.9280 0.9459 0.9524 0.9467 0.9595 

e
ASPE 31.7319 31.7319 31.1203 31.0220 31.9916 30.2065 

a
MPE= Mean Prediction Error, 

b
RMSPE= Root Mean Square Prediction Error, 

c
MSPE= Mean Standardized Prediction Error, 

d
RMSSPE= Root 

Mean Square Standard Prediction Error, 
e
ASPE= Average Standard Prediction Error. 
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Table D.13 Cross validation of LP for Sb 

 

Order 1 

Kernal function Exponential Polynomial Gaussian Epanechnikov Quartic Constant 
a
MPE 0.1919 0.1995 0.2643 0.1316 0.1710 -0.4740 

b
RMSPE 1.9285 1.5516 1.5714 1.5831 1.5530 1.5536 

c
MSPE 0.0622 -0.0363 -0.0057 -0.0741 -0.0494 -0.3464 

d
RMSSPE 0.8923 0.9011 0.8911 0.9298 0.9098 0.8598 

e
ASPE 2.8898 2.5364 2.3020 2.5331 2.5155 4.4231 

Order 2 

Kernal function Exponential Polynomial Gaussian Epanechnikov Quartic Constant 
a
MPE 0.5380 0.6577 0.6088 0.6768 0.6044 0.4238 

b
RMSPE 1.6881 1.7230 1.7046 1.7311 1.8037 1.8445 

c
MSPE 0.1964 0.2145 0.1994 0.2310 0.1946 0.1076 

d
RMSSPE 0.8598 0.9135 0.8968 0.9216 0.9512 0.9798 

e
ASPE 2.9985 2.8055 2.8494 2.8278 2.2761 2.2168 

Order 3 

Kernal function Exponential Polynomial Gaussian Epanechnikov Quartic Constant 

a
MPE 0.3838 0.4462 0.3509 0.4278 0.4149 0.4198 

b
RMSPE 1.6775 1.8657 1.7419 1.7929 1.7849 1.8781 

c
MSPE 0.1027 0.1050 0.0900 0.1239 0.1109 0.1362 

d
RMSSPE 0.9056 0.9457 0.9425 0.9527 0.9482 0.9643 

e
ASPE 2.4041 2.4559 2.3687 2.3985 2.4021 2.4529 

a
MPE= Mean Prediction Error, 

b
RMSPE= Root Mean Square Prediction Error, 

c
MSPE= Mean Standardized Prediction Error, 

d
RMSSPE= Root 

Mean Square Standard Prediction Error, 
e
ASPE= Average Standard Prediction Error. 
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Table D.14: Cross validation of LP for Sc 

 

Order 1 

Kernal function Exponential Polynomial Gaussian Epanechnikov Quartic Constant 
a
MPE 0.5435 0.2709 0.3087 0.2562 0.2562 0.3518 

b
RMSPE 2.4791 2.4476 2.4372 2.4599 2.4599 3.6293 

c
MSPE 0.0669 -0.0202 -0.0078 -0.0336 -0.0336 -0.0122 

d
RMSSPE 0.8928 0.9086 0.9073 0.9202 0.9202 0.9271 

e
ASPE 3.4692 3.4543 3.0242 3.0372 3.0372 4.6562 

Order 2 

Kernal function Exponential Polynomial Gaussian Epanechnikov Quartic Constant 
a
MPE 0.7424 0.8149 0.7538 0.8640 0.7363 0.8724 

b
RMSPE 2.5662 2.6553 2.6362 2.6468 2.6899 2.7767 

c
MSPE 0.1765 0.1906 0.1752 0.2071 0.1703 0.2204 

d
RMSSPE 0.9002 0.9210 0.9309 0.9266 0.9481 0.9549 

e
ASPE 3.0715 3.7565 3.0844 3.7022 3.0596 3.3540 

Order 3 

Kernal function Exponential Polynomial Gaussian Epanechnikov Quartic Constant 
a
MPE 0.4627 0.5310 0.2960 0.5071 0.4935 0.5234 

b
RMSPE 2.5894 2.8004 2.7359 2.6662 2.6793 2.7353 

c
MSPE 0.0898 0.0859 0.0139 0.1047 0.0926 0.1225 

d
RMSSPE 0.9139 0.9471 0.9144 0.9517 0.9484 0.9608 

e
ASPE 3.2365 3.2928 5.1505 3.2041 3.2155 3.2181 

a
MPE= Mean Prediction Error, 

b
RMSPE= Root Mean Square Prediction Error, 

c
MSPE= Mean Standardized Prediction Error, 

d
RMSSPE= Root 

Mean Square Standard Prediction Error, 
e
ASPE= Average Standard Prediction Error. 
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Table D.15: Cross validation of LP for Sr 

Order 1 

Kernal function Exponential Polynomial Gaussian Epanechnikov Quartic Constant 

a
MPE 1.2621 0.6048 0.8960 0.3570 0.4901 0.6000 

b
RMSPE 6.2697 6.0837 6.1866 6.2596 6.1202 8.2229 

c
MSPE 0.0394 -0.0367 -0.0015 -0.0698 -0.0500 0.0153 

d
RMSSPE 0.8549 0.8997 0.8896 0.9295 0.9090 0.9154 

e
ASPE 9.9260 9.5698 8.5826 8.4181 9.5048 13.5659 

Order 2 

Kernal function Exponential Polynomial Gaussian Epanechnikov Quartic Constant 
a
MPE 2.0750 2.2732 1.9352 2.3195 2.0420 1.4485 

b
RMSPE 6.5960 6.8420 7.0409 6.8327 7.1743 7.3073 

c
MSPE 0.1837 0.1959 0.1843 0.2067 0.1745 0.0968 

d
RMSSPE 0.8677 0.9151 0.8989 0.9231 0.9530 0.9794 

e
ASPE 10.5401 11.0016 11.9573 10.8568 8.5890 8.3549 

Order 3 

Kernal function Exponential Polynomial Gaussian Epanechnikov Quartic Constant 
a
MPE 1.2219 1.4605 1.0412 1.3558 1.3267 1.3732 

b
RMSPE 6.8222 7.5907 7.1267 7.3086 7.2749 7.6491 

c
MSPE 0.0905 0.0906 0.0737 0.1070 0.0956 0.1210 

d
RMSSPE 0.9108 0.9503 0.9490 0.9572 0.9528 0.9686 

e
ASPE 9.0857 9.2670 8.8339 9.0345 9.0571 9.2764 

a
MPE= Mean Prediction Error, 

b
RMSPE= Root Mean Square Prediction Error, 

c
MSPE= Mean Standardized Prediction Error, 

d
RMSSPE= Root 

Mean Square Standard Prediction Error, 
e
ASPE= Average Standard Prediction Error. 
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Table D.16: Cross validation of LP for Ti 

Order 1 

Kernal function Exponential Polynomial Gaussian Epanechnikov Quartic Constant 
a
MPE 27.8406 34.4402 35.9088 18.0595 27.8406 -18.7581 

b
RMSPE 283.2086 282.1172 282.6346 288.3609 283.2086 349.6378 

c
MSPE -0.0505 -0.0307 -0.0194 -0.0853 -0.0505 -0.2601 

d
RMSSPE 0.9138 0.9069 0.9072 0.9303 0.9138 0.9593 

e
ASPE 408.0986 410.6313 360.2554 410.8174 408.0986 557.3885 

Order 2 

Kernal function Exponential Polynomial Gaussian Epanechnikov Quartic Constant 
a
MPE 81.1144 81.1144 86.8835 107.4198 88.3055 68.9752 

b
RMSPE 300.5327 300.5327 311.0297 309.6579 318.3270 326.3302 

c
MSPE 0.1594 0.1594 0.1671 0.2155 0.1677 0.1069 

d
RMSSPE 0.8998 0.8998 0.9346 0.9175 0.9485 0.9749 

e
ASPE 355.4000 355.4000 355.8500 452.8700 356.8215 349.4247 

Order 3 

Kernal function Exponential Polynomial Gaussian Epanechnikov Quartic Constant 
a
MPE 41.2382 71.8272 56.7519 64.2719 57.1410 65.7470 

b
RMSPE 242.6174 340.5921 312.0925 316.1629 294.6907 320.5818 

c
MSPE 0.1104 0.1013 0.0883 0.1137 0.0668 0.1303 

d
RMSSPE 0.9765 0.9478 0.9430 0.9536 0.9336 0.9591 

e
ASPE 288.8967 387.8213 370.9719 372.6687 358.9454 373.6147 

a
MPE= Mean Prediction Error, 

b
RMSPE= Root Mean Square Prediction Error, 

c
MSPE= Mean Standardized Prediction Error, 

d
RMSSPE= Root 

Mean Square Standard Prediction Error, 
e
ASPE= Average Standard Prediction Error. 
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Table D.17: Cross validation of LP for V 

Order 1 

Kernal function Exponential Polynomial Gaussian Epanechnikov Quartic Constant 
a
MPE 3.7059 2.2955 2.4294 2.0153 2.1748 -0.2915 

b
RMSPE 13.1669 12.3488 12.3179 12.5643 12.3519 17.1316 

c
MSPE 0.0804 0.0007 0.0181 -0.0231 -0.0067 -0.0841 

d
RMSSPE 0.8684 0.9038 0.8990 0.9307 0.9112 0.8919 

e
ASPE 18.9594 17.9464 15.9653 16.1406 17.8291 27.9832 

Order 2 

Kernal function Exponential Polynomial Gaussian Epanechnikov Quartic Constant 
a
MPE 4.5060 4.9092 4.8307 5.0050 5.0052 3.8837 

b
RMSPE 13.1147 13.5578 13.4810 13.6689 14.0946 14.2245 

c
MSPE 0.2015 0.2080 0.2016 0.2226 0.2093 0.1327 

d
RMSSPE 0.8651 0.9152 0.9023 0.9202 0.9480 0.9768 

e
ASPE 19.7136 19.8385 19.7048 20.4761 16.6833 16.1783 

Order 3 

 
Kernal function Exponential Polynomial Gaussian Epanechnikov Quartic Constant 
a
MPE 2.4563 3.6357 3.4081 2.6776 3.4860 3.4046 

b
RMSPE 11.9549 14.2389 14.1614 13.7793 14.0206 15.2368 

c
MSPE 0.1224 0.1199 0.1359 0.0271 0.1257 0.1473 

d
RMSSPE 0.9043 0.9455 0.9525 0.9270 0.9481 0.9689 

e
ASPE 16.1363 17.8743 17.2930 27.2407 17.5692 17.9151 

a
MPE= Mean Prediction Error, 

b
RMSPE= Root Mean Square Prediction Error, 

c
MSPE= Mean Standardized Prediction Error, 

d
RMSSPE= Root 

Mean Square Standard Prediction Error, 
e
ASPE= Average Standard Prediction Error. 
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LP1 LP2 LP3 
 

Explanation for LP1 

 Comparatively less contamination 

was visible between LP2 and LP3. 

 Most of the region exhibited orange 

red and ocher color. 

  Yellow color also covered a 

noticable region with a large green 

region. 

Explanation for LP2 

 Spatial pattern was almost same as 

LP1.  

 Comparatively more contamination 

than LP2. 

  Large orange with smaller ocher 

region was presented. 

  Yellow color also covered a 

noticable region with a  little light 

green region. 

Explanation for LP3 

 Spatial pattern was almost same as 

LP1 and LP2.  

 Comparatively less contamination 

was visible between LP2 as most of 

the region exhibited a small red 

region with large orange red and 

ocher color. 

  Yellow color also covered a 

noticable region with a large green 

region. 

Color variation 

and visual 

contamination 

level from 

spatial 

distribution 

Figure D.1: Spatial distribution of Al in soil using LP with order of 1- 3. 
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LP1 LP2 LP3  

Explanation for LP1 

 Comparatively less contamination 

was visible between LP2 and LP3. 

 Most of the region exhibited orange 

red and ocher color. 

  Yellow color also covered a 

noticable region with a large green 

region. 

Explanation for LP2 

 Spatial pattern was almost same as 

LP1.  

 Comparatively more contamination 

than LP2. 

  Large orange with smaller ocher 

region was presented. 

  Yellow color also covered a 

noticable region with a  little light 

green region. 

Explanation for LP3 

 Spatial pattern was almost same as 

LP1 and LP2.  

 Comparatively less contamination 

was visible between LP2 as most of 

the region exhibited a small red 

region with large orange red and 

ocher color. 

  Yellow color also covered a 

noticable region with a large green 

region. 

Color variation 

and visual 

contamination 

level from 

spatial 

distribution 

Figure D.2: Spatial distribution of As in soil using LP with order of 1- 3. 
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LP1 LP2 LP3  

Explanation for LP1 

 Comparatively less contamination 

was visible between LP2 and LP3. 

 Most of the region exhibited orange 

red and ocher color. 

  Yellow color also covered a 

noticable region with a large green 

region. 

Explanation for LP2 

 Spatial pattern was almost same as 

LP1.  

 Comparatively more contamination 

than LP2. 

  Large orange with smaller ocher 

region was presented. 

  Yellow color also covered a 

noticable region with a  little light 

green region. 

Explanation for LP3 

 Spatial pattern was almost same as 

LP1 and LP2.  

 Comparatively less contamination 

was visible between LP2 as most of 

the region exhibited a small red 

region with large orange red and 

ocher color. 

  Yellow color also covered a 

noticable region with a large green 

region. 

Color variation 

and visual 

contamination 

level from 

spatial 

distribution 

Figure D.3: Spatial distribution of Ba in soil using LP with order of 1- 3. 
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LP1 LP2 LP3  

Explanation for LP1 

 Comparatively less contamination 

was visible between LP2 and LP3. 

 Most of the region exhibited orange 

red and ocher color. 

  Yellow color also covered a 

noticable region with a large green 

region. 

Explanation for LP2 

 Spatial pattern was almost same as 

LP1.  

 Comparatively more contamination 

than LP2. 

  Large orange with smaller ocher 

region was presented. 

  Yellow color also covered a 

noticable region with a little light 

green region. 

Explanation for LP3 

 Spatial pattern was almost same as 

LP1 and LP2.  

 Comparatively less contamination 

was visible between LP 2 as most 

of the region exhibited a small red 

region with large orange red and 

ocher color. 

  Yellow color also covered a 

noticable region with a large green 

region. 

Color variation 

and visual 

contamination 

level from 

spatial 

distribution 

Figure D.4: Spatial distribution of Ca in soil using LP with order of 1- 3. 
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LP1 LP2 LP3  

Explanation for LP1 

 Comparatively less contamination 

was visible between LP2 and LP3. 

 Most of the region exhibited orange 

red and ocher color. 

  Yellow color also covered a 

noticable region with a large green 

region. 

Explanation for LP2 

 Spatial pattern was almost same as 

LP1.  

 Comparatively more contamination 

than LP2. 

  Large orange with smaller ocher 

region was presented. 

  Yellow color also covered a 

noticable region with a little light 

green region. 

Explanation for LP3 

 Spatial pattern was almost same as 

LP1 and LP2.  

 Comparatively less contamination 

was visible between LP2 as most of 

the region exhibited a small red 

region with large orange red and 

ocher color. 

  Yellow color also covered a 

noticable region with a large green 

region. 

Color variation 

and visual 

contamination 

level from 

spatial 

distribution 

Figure D.5: Spatial distribution of Co in soil using LP with order of 1- 3. 
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LP1 LP2 LP3  

Explanation for LP1 

 Comparatively less contamination 

was visible between LP2 and LP3. 

 Most of the region exhibited orange 

red and ocher color. 

  Yellow color also covered a 

noticable region with a large green 

region. 

Explanation for LP2 

 Spatial pattern was almost same as 

LP1.  

 Comparatively more contamination 

than LP2. 

  Large orange with smaller ocher 

region was presented. 

  Yellow color also covered a 

noticable region with a little light 

green region. 

Explanation for LP3 

 Spatial pattern was almost same as 

LP1 and LP2.  

 Comparatively less contamination 

was visible between LP2 as most of 

the region exhibited a small red 

region with large orange red and 

ocher color. 

  Yellow color also covered a 

noticable region with a large green 

region. 

Color variation 

and visual 

contamination 

level from 

spatial 

distribution 

Figure D.6: Spatial distribution of Cr in soil using LP with order of 1- 3. 
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LP1 LP2 LP3  

Explanation for LP1 

 Comparatively less contamination 

was visible between LP2 and LP3. 

 Most of the region exhibited orange 

red and ocher color. 

  Yellow color also covered a 

noticable region with a large green 

region. 

Explanation for LP2 

 Spatial pattern was almost same as 

LP1.  

 Comparatively more contamination 

than LP2. 

  Large orange with smaller ocher 

region was presented. 

  Yellow color also covered a 

noticable region with aa little light 

green region. 

Explanation for LP3 

 Spatial pattern was almost same as 

LP1 and LP2.  

 Comparatively less contamination 

was visible between LP2 as most of 

the region exhibited a small red 

region with large orange red and 

ocher color. 

  Yellow color also covered a 

noticable region with a large green 

region. 

Color variation 

and visual 

contamination 

level from 

spatial 

distribution 

Figure D.7: Spatial distribution of Cu in soil using LP with order of 1- 3. 
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LP1 LP2 LP3  

Explanation for LP1 

 Comparatively less contamination 

was visible between LP2 and LP3. 

 Most of the region exhibited orange 

red and ocher color. 

  Yellow color also covered a 

noticable region with a large green 

region. 

Explanation for LP2 

 Spatial pattern was almost same as 

LP1.  

 Comparatively more contamination 

than LP 2. 

  Large orange with smaller ocher 

region was presented. 

  Yellow color also covered a 

noticable region with a little light 

green region. 

Explanation for LP3 

 Spatial pattern was almost same as 

LP1 and LP2.  

 Comparatively less contamination 

was visible between LP2 as most of 

the region exhibited a small red 

region with large orange red and 

ocher color. 

  Yellow color also covered a 

noticable region with a large green 

region. 

Color variation 

and visual 

contamination 

level from 

spatial 

distribution 

Figure D.8: Spatial distribution of Fe in soil using LP with order of 1- 3. 
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LP1 LP2 LP3  

Explanation for LP1 

 Comparatively less contamination 

was visible between LP2 and LP3. 

 Most of the region exhibited orange 

red and ocher color. 

  Yellow color also covered a 

noticable region with a large green 

region. 

Explanation for LP2 

 Spatial pattern was almost same as 

LP1.  

 Comparatively more contamination 

than LP2. 

  Large orange with smaller ocher 

region was presented. 

  Yellow color also covered a 

noticable region with a little light 

green region. 

Explanation for LP3 

 Spatial pattern was almost same as 

LP1 and LP2.  

 Comparatively less contamination 

was visible between LP2 as most of 

the region exhibited a small red 

region with large orange red and 

ocher color. 

  Yellow color also covered a 

noticable region with a large green 

region. 

Color variation 

and visual 

contamination 

level from 

spatial 

distribution 

Figure D.9: Spatial distribution of Hg in soil using LP with order of 1- 3. 
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LP1 LP2 LP3  

Explanation for LP1 

 Comparatively less contamination 

was visible between LP2 and LP3. 

 Most of the region exhibited orange 

red and ocher color. 

  Yellow color also covered a 

noticable region with a large green 

region. 

Explanation for LP2 

 Spatial pattern was almost same as 

LP1.  

 Comparatively more contamination 

than LP2. 

  Large orange with smaller ocher 

region was presented. 

  Yellow color also covered a 

noticable region with a little light 

green region. 

Explanation for LP3 

 Spatial pattern was almost same as 

LP1 and LP2.  

 Comparatively less contamination 

was visible between LP2 as most of 

the region exhibited a small red 

region with large orange red and 

ocher color. 

  Yellow color also covered a 

noticable region with a large green 

region. 

Color variation 

and visual 

contamination 

level from 

spatial 

distribution 

Figure D.10: Spatial distribution of K in soil using LP with order of 1- 3. 
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LP1 LP2 LP3  

Explanation for LP1 

 Comparatively less contamination 

was visible between LP2 and LP3. 

 Most of the region exhibited orange 

red and ocher color. 

  Yellow color also covered a 

noticable region with a large green 

region. 

Explanation for LP2 

 Spatial pattern was almost same as 

LP1.  

 Comparatively more contamination 

than LP2. 

  Large orange with smaller ocher 

region was presented. 

  Yellow color also covered a 

noticable region with a little light 

green region. 

Explanation for LP3 

 Spatial pattern was almost same as 

LP1 and LP2.  

 Comparatively less contamination 

was visible between LP2 as most of 

the region exhibited a small red 

region with large orange red and 

ocher color. 

  Yellow color also covered a 

noticable region with a large green 

region. 

Color variation 

and visual 

contamination 

level from 

spatial 

distribution 

Figure D.11: Spatial distribution of Mn in soil using LP with order of 1- 3. 
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LP1 LP2 LP3  

Explanation for LP1 

 Comparatively less contamination 

was visible between LP2 and LP3. 

 Most of the region exhibited orange 

red and ocher color. 

  Yellow color also covered a 

noticable region with a large green 

region. 

Explanation for LP2 

 Spatial pattern was almost same as 

LP1.  

 Comparatively more contamination 

than LP2. 

  Large orange with smaller ocher 

region was presented. 

  Yellow color also covered a 

noticable region with a little light 

green region. 

Explanation for LP3 

 Spatial pattern was almost same as 

LP1 and LP2.  

 Comparatively less contamination 

was visible between LP2 as most of 

the region exhibited a small red 

region with large orange red and 

ocher color. 

  Yellow color also covered a 

noticable region with a large green 

region. 

Color variation 

and visual 

contamination 

level from 

spatial 

distribution 

Figure D.12: Spatial distribution of Na in soil using LP with order of 1- 3. 
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LP1 LP2 LP3  

Explanation for LP1 

 Comparatively less contamination 

was visible between LP2 and LP3. 

 Most of the region exhibited orange 

red and ocher color. 

  Yellow color also covered a 

noticable region with a large green 

region. 

Explanation for LP2 

 Spatial pattern was almost same as 

LP1.  

 Comparatively more contamination 

than LP2. 

  Large orange with smaller ocher 

region was presented. 

  Yellow color also covered a 

noticable region with a little light 

green region. 

Explanation for LP3 

 Spatial pattern was almost same as 

LP1 and LP2.  

 Comparatively less contamination 

was visible between LP2 as most of 

the region exhibited a small red 

region with large orange red and 

ocher color. 

  Yellow color also covered a 

noticable region with a large green 

region. 

Color variation 

and visual 

contamination 

level from 

spatial 

distribution 

Figure D.13: Spatial distribution of Sb in soil using LP with order of 1- 3. 
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LP1 LP2 LP3  

Explanation for LP1 

 Comparatively less contamination 

was visible between LP2 and LP3. 

 Most of the region exhibited orange 

red and ocher color. 

  Yellow color also covered a 

noticable region with a large green 

region. 

Explanation for LP2 

 Spatial pattern was almost same as 

LP1.  

 Comparatively more contamination 

than LP2. 

  Large orange with smaller ocher 

region was presented. 

  Yellow color also covered a 

noticable region with a alittle light 

green region. 

Explanation for LP3 

 Spatial pattern was almost same as 

LP1 and LP2.  

 Comparatively less contamination 

was visible between LP2 as most of 

the region exhibited a small red 

region with large orange red and 

ocher color. 

  Yellow color also covered a 

noticable region with a large green 

region. 

Color variation 

and visual 

contamination 

level from 

spatial 

distribution 

Figure D.14: Spatial distribution of Sc in soil using LP with order of 1- 3. 

89°29'52"E

89°29'52"E

89°29'56"E

89°29'56"E

89°30'0"E

89°30'0"E

22°47'48"N
22°47'48"N

22°47'44"N

89°29'52"E

89°29'52"E

89°29'56"E

89°29'56"E

89°30'0"E

89°30'0"E

22°47'48"N
22°47'48"N

22°47'44"N

89°29'52"E

89°29'52"E

89°29'56"E

89°29'56"E

89°30'0"E

89°30'0"E

22°47'48"N
22°47'48"N

22°47'44"N

Legend

Sc

Prediction Map

[Sc_RBF].[Sc]

Filled Contours

3.02 – 5.61

5.61 – 7.41

7.41 – 8.67

8.67 – 9.55

9.55 – 10.17

10.17 – 11.05

11.05 – 12.31

12.31 – 14.11

14.11 – 16.7

16.7 – 20.41



 

259 
 

    

LP1 LP2 LP3  

Explanation for LP1 

 Comparatively less contamination 

was visible between LP2 and LP3. 

 Most of the region exhibited orange 

red and ocher color. 

  Yellow color also covered a 

noticable region with a large green 

region. 

Explanation for LP2 

 Spatial pattern was almost same as 

LP1.  

 Comparatively more contamination 

than LP2. 

  Large orange with smaller ocher 

region was presented. 

  Yellow color also covered a 

noticable region with a little light 

green region. 

Explanation for LP3 

 Spatial pattern was almost same as 

LP 1 and LP 2.  

 Comparatively less contamination 

was visible between LP 2 as most 

of the region exhibited a small red 

region with large orange red and 

ocher color. 

  Yellow color also covered a 

noticable region with a large green 

region. 

Color variation 

and visual 

contamination 

level from 

spatial 

distribution 

Figure D.15: Spatial distribution of Sr in soil using LP with order of 1- 3. 
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LP1 LP2 LP3  

Explanation for LP1 

 Comparatively less contamination 

was visible between LP2 and LP3. 

 Most of the region exhibited orange 

red and ocher color. 

  Yellow color also covered a 

noticable region with a large green 

region. 

Explanation for LP2 

 Spatial pattern was almost same as 

LP1.  

 Comparatively more contamination 

than LP2. 

  Large orange with smaller ocher 

region was presented. 

  Yellow color also covered a 

noticable region with a light green 

region. 

Explanation for LP3 

 Extent of metal elements in a large 

portion of the study area was unable 

to interpolate by LP3. 

 Large orange with smaller ocher 

region was presented. 

  Yellow color also covered a 

noticable region with a light green 

region. 

Color variation 

and visual 

contamination 

level from 

spatial 

distribution 

Figure D.16: Spatial distribution of Ti in soil using LP with order of 1- 3. 
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LP1 LP2 LP3  

Explanation for LP1 

 Comparatively less contamination 

was visible between LP 2 and LP3. 

 Most of the region exhibited orange 

red and ocher color. 

  Yellow color also covered a 

noticable region with a large green 

region. 

Explanation for LP2 

 Spatial pattern was almost same as 

LP 1.  

 Comparatively more contamination 

than LP 2. 

  Large orange with smaller ocher 

region was presented. 

  Yellow color also covered a 

noticable region with a light green 

region. 

Explanation for LP3 

 Extent of metal elements in a large 

portion of the study area was unable 

to interpolate by LP3. 

 Large orange with smaller ocher 

region was presented. 

  Yellow color also covered a 

noticable region with a light green 

region. 

Color variation 

and visual 

contamination 

level from 

spatial 

distribution 

Figure D.17: Spatial distribution of V in soil using LP with order of 1- 3. 
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Annex – E 
 

Cross Validation Results and Spatial Distribution of Metal Elements using RBF’s 

 

 

Table E.1: Cross validation of RBF’s for Al 
 

Model CRS ST MQ IMQ TPS 
a
MPE 18.380 17.126 10.958 24.137 15.759 

b
RMSPE 118.158 119.072 126.136 117.522 147.141 

Kernel Parameter 20297.85 16393.93 0 0.00017 1.00E+20 
a
MPE= Mean Prediction Error, 

b
RMSPE= Root Mean Square Prediction Error. 

 

Table E.2: Cross validation of RBF for As 
 

Model CRS ST MQ IMQ TPS 
a
MPE 0.1627 0.1579 0.0860 0.2396 0.1155 

b
RMSPE 1.3397 1.3418 1.4295 1.3410 1.7307 

Kernel Parameter 31702.47 21858.47 0 0.000137 1.00E+20 
a
MPE= Mean Prediction Error, 

b
RMSPE= Root Mean Square Prediction Error. 

 

Table E.3: Cross validation of RBF for Ba 
 

Model CRS ST MQ IMQ TPS 
a
MPE 2.2042 2.0635 1.0405 3.0503 1.4402 

b
RMSPE 12.6961 12.7171 13.0694 12.8418 15.1331 

Kernel Parameter 21771.43 14833.09 0 0.000177 1.00E+20 
a
MPE= Mean Prediction Error, 

b
RMSPE= Root Mean Square Prediction Error. 

 

Table E.4: Cross validation of RBF for Ca 
 

Model CRS ST MQ IMQ TPS 
a
MPE 6.0454 5.7355 3.7103 8.2862 5.6899 

b
RMSPE 39.9360 40.0504 42.0299 39.8239 49.3384 

Kernel Parameter 25261.25 18582.56 0 0.000151 1.00E+20 
a
MPE= Mean Prediction Error, 

b
RMSPE= Root Mean Square Prediction Error. 

 

Table E.5:  Cross validation of RBF for Co 

 

Model CRS ST MQ IMQ TPS 
a
MPE  0.1982 0.1903 0.0867 0.2867 0.1544 

b
RMSPE 1.1999 1.1974 1.2015 1.2438 1.4516 

Kernel Parameter 25261.25 16393.93 0 0.000192 1.00E+20 
a
MPE=Mean Prediction Error, 

b
RMSPE= Root Mean Square Prediction Error. 
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Table E.6: Cross validation of RBF for Cr 

 

Model CRS ST MQ IMQ TPS 
a
MPE 0.036001 0.03529 0.070301 0.051787 0.176951 

b
RMSPE 1.998 1.9999 2.1436 1.9691 2.5723 

Kernel Parameter 30970.43 21858.47 0 0.000142 1.00E+20 
a
MPE=Mean Prediction Error, 

b
RMSPE= Root Mean Square Prediction Error. 

 

Table E.7: Cross validation of RBF for Cu 

 

Model CRS ST MQ IMQ TPS 
a
MPE 0.2648 0.2637 0.1527 0.4132 0.1691 

b
RMSPE 2.1957 2.1957 2.3459 2.2583 2.9209 

Kernel Parameter 56077.92 42160.04 0 9.35E-05 1.00E+20 
a
MPE=Mean Prediction Error, 

b
RMSPE= Root Mean Square Prediction Error. 

 

Table E.8: Cross validation of RBF for Fe 

 

Model CRS ST MQ IMQ TPS 
a
MPE 30.8837 29.3903 34.0156 38.2507 65.0609 

b
RMSPE 458.8827 459.9148 492.0969 451.4522 588.072 

Kernel Parameter 29800.49 21858.47 0 0.000136 1.00E+20 
a
MPE=Mean Prediction Error, 

b
RMSPE= Root Mean Square Prediction Error. 

 

Table E.9: Cross validation of RBF for Hg 

 

Model CRS ST MQ IMQ TPS 
a
MPE 0.1916 0.1860 0.1748 0.2588 0.2988 

b
RMSPE 1.5867 1.5893 1.7244 1.5819 2.1201 

Kernel Parameter 35188.06 28268.34 0 1.34E-04 1.00E+20 
a
MPE=Mean Prediction Error, 

b
RMSPE= Root Mean Square Prediction Error. 

 

Table E.10: Cross validation of RBF for K 

 

Model CRS ST MQ IMQ TPS 
a
MPE 8.5122 8.3415 6.3503 11.9169 9.9865 

b
RMSPE 76.8219 76.9904 83.1852 75.8925 96.6094 

Kernel Parameter 33069.1 21858.47 0 0.000142 1.00E+20 
a
MPE=Mean Prediction Error, 

b
RMSPE= Root Mean Square Prediction Error. 

 

Table E.11: Cross validation of RBF for Mn 

 

Model CRS ST MQ IMQ TPS 
a
MPE 0.1460 0.1015 0.1974 0.2045 0.6123 

b
RMSPE 5.4496 5.4696 5.8785 5.4164 7.4172 

Kernel Parameter 25261.25 36183.49 0 0.000129 1.00E+20 
a
MPE=Mean Prediction Error, 

b
RMSPE= Root Mean Square Prediction Error. 
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Table E.12: Cross validation of RBF for Na 

 

Model  CRS ST MQ IMQ TPS 
a
MPE 2.3547 2.3467 1.9191 3.3361 2.9474 

b
RMSPE 22.6961 22.7055 24.8567 22.2998 29.5410 

Kernel Parameter 49963.41 36183.49 0 0.000117 1.00E+20 
a
MPE=Mean Prediction Error, 

b
RMSPE= Root Mean Square Prediction Error. 

 

  

Table E.13: Cross validation of RBF for Sb 
 
 

Model CRS ST MQ IMQ TPS 
a
MPE 0.1809 0.1687 0.1003 0.2457 0.1617 

b
RMSPE 1.2749 1.2842 1.3587 1.2667 1.5655 

Kernel Parameter 20297.85 16393.93 0 0.000174 1.00E+20 
a
MPE=Mean Prediction Error, 

b
RMSPE= Root Mean Square Prediction Error 

 
 

Table E.14: Cross validation of RBF for Sc 
 

Model CRS ST MQ IMQ TPS 
a
MPE 0.2941 0.2820 0.1771 0.4112 0.2699 

b
RMSPE 2.1859 2.1905 2.2959 2.1771 2.6288 

Kernel Parameter 25261.25 21858.47 0 0.000155 1.00E+20 
a
MPE=Mean Prediction Error, 

b
RMSPE= Root Mean Square Prediction Error. 

 
 

Table E.15: Cross validation of RBF for Sr 
 

Model CRS ST MQ IMQ TPS 
a
MPE 0.6956 0.6852 0.4197 1.0424 0.6577 

b
RMSPE 5.4249 5.4180 5.6799 5.4907 6.7148 

Kernel Parameter 42129.16 21858.47 0 0.000134 1.00E+20 
a
MPE=Mean Prediction Error, 

b
RMSPE= Root Mean Square Prediction Error. 

 
 

Table E.16: Cross validation of RBF for Ti 

 

Model CRS ST MQ IMQ TPS 
a
MPE 37.1608 35.4811 20.9896 51.0683 30.705 

b
RMSPE 254.1218 254.8953 267.9789 253.0138 306.8545 

Kernel Parameter 22775.35 18514.25 0 0.000169 1.00E+20 
a
MPE=Mean Prediction Error, 

b
RMSPE= Root Mean Square Prediction Error 

 

Table E.17: Cross validation of RBF for V 

 

Model CRS ST MQ IMQ TPS 
a
MPE 1.2233 1.1507 0.8884 1.6596 1.4865 

b
RMSPE 10.3253 10.3339 10.9972 10.2142 13.0635 

Kernel Parameter 25261.25 21858.47 0 0.000153 1.00E+20 
a
MPE=Mean Prediction Error, 

b
RMSPE= Root Mean Square Prediction Error 
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CRS ST MQ IMQ TPS  

Explanation for CRS  

 Comparatively less 

contamination was 

visible between 

functions. 

 Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible.  

 Large yellow color 

portion with 

noticeable green 

region. 

Explanation for ST 

 Comparatively less 

contamination was 

visible between 

functions. 

 Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible.  

 Large yellow color 

portion with 

noticeable green 

region. 

Explanation for MQ 

 Comparatively more 

contamination was 

visible between 

functions. 

  Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible.  

 Large yellow color 

portion with 

noticeable green 

region. 

Explanation for IMQ   

 Comparatively 

lowest adulteration 

was visible between 

functions. 

 Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible.  

 Large yellow color 

portion with 

noticeable green 

region. 

Explanation for TPS  

 Comparatively 

higher contamination 

was visible between 

functions. 

 Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible. 

 Large yellow color 

portion with 

noticeable green 

region. 

Color 

variation and 

visual 

contamination 

level from 

spatial 

distribution 

Figure  E.1: Spatial distribution of Al  in soil using RBF’s. 
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CRS ST MQ IMQ TPS  

Explanation for CRS  

 Comparatively less 

contamination was 

visible between 

functions. 

 Most of the region 

exhibited orange red 

and ocher color. 

 A small red color 

region was also 

visible.  

 Large yellow color 

portion with 

noticeable green 

region. 

Explanation for ST 

 Comparatively less 

contamination was 

visible between 

functions. 

  Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible.  

 Large yellow color 

portion with 

noticeable green 

region. 

Explanation for MQ 

 Comparatively more 

contamination was 

visible between 

functions. 

  Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible.  

 Large yellow color 

portion with 

noticeable green 

region. 

Explanation for IMQ   

 Comparatively 

lowest adulteration 

was visible between 

functions. 

 Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible.  

 Large yellow color 

portion with 

noticeable green 

region. 

Explanation for TPS  

 Comparatively 

higher contamination 

was visible between 

functions. 

 Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible. 

 Large yellow color 

portion with 

noticeable green 

region. 

Color 

variation and 

visual 

contamination 

level from 

spatial 

distribution 

Figure  E.2: Spatial distribution of As in soil using RBF’s. 
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CRS ST MQ IMQ TPS  

Explanation for CRS  

 Comparatively less 

contamination was 

visible between 

functions. 

 Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible.  

 Large yellow color 

portion with 

noticeable green 

region. 

Explanation for ST 

 Comparatively less 

contamination was 

visible between 

functions. 

 Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible.  

 Large yellow color 

portion with 

noticeable green 

region. 

Explanation for MQ 

 Comparatively more 

contamination was 

visible between 

functions. 

  Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible.  

 Large yellow color 

portion with 

noticeable green 

region. 

Explanation for IMQ   

 Comparatively 

lowest adulteration 

was visible between 

functions. 

 Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible.  

 Large yellow color 

portion with 

noticeable green 

region. 

Explanation for TPS  

 Comparatively 

higher contamination 

was visible between 

functions. 

 Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible. 

  Large yellow color 

portion with 

noticeable green 

region. 

Color 

variation and 

visual 

contamination 

level from 

spatial 

distribution 

Figure  E.3: Spatial distribution of  Ba in soil using RBF’s. 
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CRS ST MQ IMQ TPS  

Explanation for CRS  

 Comparatively less 

contamination was 

visible between 

functions. 

 Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible.  

 Large yellow color 

portion with 

noticeable green 

region. 

Explanation for ST 

 Comparatively less 

contamination was 

visible between 

functions. 

 Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible.  

 Large yellow color 

portion with 

noticeable green 

region. 

Explanation for MQ 

 Comparatively more 

contamination was 

visible between 

functions. 

  Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible.  

 Large yellow color 

portion with 

noticeable green 

region. 

Explanation for IMQ   

 Comparatively 

lowest adulteration 

was visible between 

functions. 

 Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible.  

 Large yellow color 

portion with 

noticeable green 

region. 

Explanation for TPS  

 Comparatively 

higher contamination 

was visible between 

functions. 

 Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible. 

  Large yellow color 

portion with 

noticeable green 

region. 

Color 

variation and 

visual 

contamination 

level from 

spatial 

distribution 

Figure  E.4: Spatial distribution of  Ca in soil using RBF’s. 
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CRS ST MQ IMQ TPS  

Explanation for CRS  

 Comparatively less 

contamination was 

visible between 

functions. 

 Most of the region 

exhibited orange red 

and ocher color. 

 A small red color 

region was also 

visible.  

 Large yellow color 

portion with 

noticeable green 

region. 

Explanation for ST 

 Comparatively less 

contamination was 

visible between 

functions. 

 Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible.  

 Large yellow color 

portion with 

noticeable green 

region. 

Explanation for MQ 

 Comparatively more 

contamination was 

visible between 

functions. 

  Most of the region 

exhibited orange red 

and ocher color. 

  Small red color 

region was also 

visible.  

 Large yellow color 

portion with 

noticeable green 

region. 

Explanation for IMQ   

 Comparatively 

lowest adulteration 

was visible between 

functions. 

 Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible.  

 Large yellow color 

portion with 

noticeable green 

region. 

Explanation for TPS  

 Comparatively 

higher contamination 

was visible between 

functions. 

 Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible. 

 Large yellow color 

portion with 

noticeable green 

region. 

Color 

variation and 

visual 

contamination 

level from 

spatial 

distribution 

Figure  E.5: Spatial distribution of Co  in soil using RBF’s. 
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CRS ST MQ IMQ TPS  

Explanation for CRS  

 Comparatively less 

contamination was 

visible between 

functions. 

 Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible.  

 Large yellow and 

green color region. 

Explanation for ST 

 Comparatively less 

contamination was 

visible between 

functions. 

 Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible.  

 Large yellow and 

green color region. 

Explanation for MQ 

 Comparatively more 

contamination was 

visible between 

functions. 

  Most of the region 

exhibited orange red 

and ocher color. 

  Small red color 

region was also 

visible.  

 Large green color 

portion with 

noticeable yellow  

region. 

Explanation for IMQ   

 Comparatively 

lowest adulteration 

was visible between 

functions. 

 Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible.  

 Large yellow and 

green color region 

Explanation for TPS  

 Comparatively 

higher contamination 

was visible between 

functions. 

 Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible. 

 Large green color 

portion with 

noticeable yellow 

region. 

Color 

variation and 

visual 

contamination 

level from 

spatial 

distribution 

Figure  E.6: Spatial distribution of Cr in soil using RBF’s. 
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CRS ST MQ IMQ TPS  

Explanation for CRS  

 Comparatively less 

contamination was 

visible between 

functions. 

 Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible.  

 Large yellow color 

portion with 

noticeable green 

region. 

Explanation for ST 

 Comparatively less 

contamination was 

visible between 

functions.  

 Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible.  

 Large yellow color 

portion with 

noticeable green 

region. 

Explanation for MQ 

 Comparatively more 

contamination was 

visible between 

functions. 

  Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible.  

 Large green color 

portion with 

noticeable yellow 

region. 

Explanation for IMQ   

 Comparatively 

lowest adulteration 

was visible between 

functions. 

 Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible.  

 Large yellow color 

portion with 

noticeable green 

region. 

Explanation for TPS  

 Comparatively 

higher contamination 

was visible between 

functions. 

 Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible. 

 Large green color 

portion with 

noticeable yellow 

region. 

Color 

variation and 

visual 

contamination 

level from 

spatial 

distribution 

Figure  E.7: Spatial distribution of Cu in soil using RBF’s. 
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CRS ST MQ IMQ TPS  

Explanation for CRS  

 Comparatively less 

contamination was 

visible between 

functions. 

 Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible.  

 Large green color 

portion with 

noticeable yellow 

region. 

Explanation for ST 

 Comparatively less 

contamination was 

visible between 

functions. 

 Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible.  

 Large green color 

portion with 

noticeable yellow 

region. 

Explanation for MQ 

 Comparatively more 

contamination was 

visible between 

functions. 

 Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible.  

 Large green color 

portion with 

noticeable yellow 

region. 

Explanation for IMQ   

 Comparatively 

lowest adulteration 

was visible between 

functions. 

 Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible.  

 Large green color 

portion with 

noticeable yellow 

region. 

Explanation for TPS  

 Comparatively 

higher contamination 

was visible between 

functions. 

  Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible. 

 Large green color 

portion with 

noticeable yellow 

region. 

Color 

variation and 

visual 

contamination 

level from 

spatial 

distribution 

Figure  E.8: Spatial distribution of Fe in soil using RBF’s. 
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CRS ST MQ IMQ TPS  

Explanation for CRS  

 Comparatively less 

contamination was 

visible between 

functions. 

 Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible.  

 Large yellow color 

portion with 

noticeable green 

region. 

Explanation for ST 

 Comparatively less 

contamination was 

visible between 

functions. 

 Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible.  

 Large yellow color 

portion with 

noticeable green 

region. 

Explanation for MQ 

 Comparatively more 

contamination was 

visible between 

functions. 

  Most of the region 

exhibited orange red 

and ocher color with  

 Small red color 

region was also 

visible.  

 Large yellow color 

portion with 

noticeable green 

region. 

Explanation for IMQ   

 Comparatively 

lowest adulteration 

was visible between 

functions. 

 Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible.  

 Large yellow color 

portion with 

noticeable green 

region. 

Explanation for TPS  

 Comparatively 

higher contamination 

was visible between 

functions, as most of 

the region exhibited 

orange red and ocher 

color. 

 Small red color 

region was also 

visible and Large 

yellow color portion 

with noticeable 

green region. 

Color 

variation and 

visual 

contamination 

level from 

spatial 

distribution 

Figure  E.9: Spatial distribution of Hg  in soil using RBF’s. 
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CRS ST MQ IMQ TPS  

Explanation for CRS  

 Comparatively less 

contamination was 

visible between 

functions. 

 Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible.  

 Large yellow color 

portion with 

noticeable green 

region. 

Explanation for ST 

 Comparatively less 

contamination was 

visible between 

functions. 

 Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible.  

 Large yellow color 

portion with 

noticeable green 

region. 

Explanation for MQ 

 Comparatively more 

contamination was 

visible between 

functions. 

  Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible.  

 Large yellow color 

portion with 

noticeable green 

region. 

Explanation for IMQ   

 Comparatively 

lowest adulteration 

was visible between 

functions. 

 Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible.  

 Large yellow color 

portion with 

noticeable green 

region. 

Explanation for TPS  

 Comparatively 

higher contamination 

was visible between 

functions. 

 Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible. 

 Large yellow color 

portion with 

noticeable green 

region. 

Color 

variation and 

visual 

contamination 

level from 

spatial 

distribution 

Figure  E.10: Spatial distribution of K  in soil using RBF’s. 
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CRS ST MQ IMQ TPS  

Explanation for CRS  

 Comparatively less 

contamination was 

visible between 

functions. 

 Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible.  

 Large green color 

portion with 

noticeable yellow 

region. 

Explanation for ST 

 Comparatively less 

contamination was 

visible between 

functions. 

 Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible.  

 Large green color 

portion with 

noticeable yellow 

region. 

Explanation for MQ 

 Comparatively more 

contamination was 

visible between 

functions. 

  Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible.  

 Large green color 

portion with 

noticeable yellow 

region. 

Explanation for IMQ   

 Comparatively 

lowest adulteration 

was visible between 

functions. 

 Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible.  

 Large green color 

portion with 

noticeable yellow 

region. 

Explanation for TPS  

 Comparatively 

higher contamination 

was visible between 

functions. 

 Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible.  

 Large green color 

portion with 

noticeable yellow 

region. 

Color 

variation and 

visual 

contamination 

level from 

spatial 

distribution 

Figure  E.11: Spatial distribution of Mn in soil using RBF’s. 
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CRS ST MQ IMQ TPS  

Explanation for CRS  

 Comparatively less 

contamination was 

visible between 

functions. 

 Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible.  

 Large yellow color 

portion with 

noticeable green 

region. 

Explanation for ST 

 Comparatively less 

contamination was 

visible between 

functions. 

 Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible.  

 Large yellow color 

portion with 

noticeable green 

region. 

Explanation for MQ 

 Comparatively more 

contamination was 

visible between 

functions. 

 Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible.  

 Large yellow color 

portion with 

noticeable green 

region. 

Explanation for IMQ   

 Comparatively 

lowest adulteration 

was visible between 

functions. 

 Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible.  

 Large yellow color 

portion with 

noticeable green 

region. 

Explanation for TPS  

 Comparatively 

higher contamination 

was visible between 

functions. 

 Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible. 

 Large yellow color 

portion with 

noticeable green 

region. 

Color 

variation and 

visual 

contamination 

level from 

spatial 

distribution 

Figure  E.12: Spatial distribution of he Na in soil using RBF’s. 
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Explanation for CRS  

 Comparatively less 

contamination was 

visible between 

functions. 

 Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible.  

 Large yellow color 

portion with 

noticeable green 

region. 

Explanation for ST 

 Comparatively less 

contamination was 

visible between 

functions. 

 Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible.  

 Large yellow color 

portion with 

noticeable green 

region. 

Explanation for MQ 

 Comparatively more 

contamination was 

visible between 

functions. 

  Most of the region 

exhibited orange red 

and ocher color. 

  Small red color 

region was also 

visible.  

 Large yellow color 

portion with 

noticeable green 

region. 

Explanation for IMQ   

 Comparatively 

lowest adulteration 

was visible between 

functions. 

 Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible.  

 Large yellow color 

portion with 

noticeable green 

region. 

Explanation for TPS  

 Comparatively 

higher contamination 

was visible between 

functions. 

 Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible. 

 Large yellow color 

portion with 

noticeable green 

region. 

Color 

variation and 

visual 

contamination 

level from 

spatial 

distribution 

Figure  E.13: Spatial distribution of Sb in soil using RBF’s. 
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Explanation for CRS  

 Comparatively less 

contamination was 

visible between 

functions. 

 Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible.  

 Large yellow color 

portion with 

noticeable green 

region. 

Explanation for ST 

 Comparatively less 

contamination was 

visible between 

functions. 

 Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible.  

 Large yellow color 

portion with 

noticeable green 

region. 

Explanation for MQ 

 Comparatively more 

contamination was 

visible between 

functions. 

  Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible.  

 Large yellow color 

portion with 

noticeable green 

region. 

Explanation for IMQ   

 Comparatively 

lowest adulteration 

was visible between 

functions. 

 Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible.  

 Large yellow color 

portion with 

noticeable green 

region. 

Explanation for TPS  

 Comparatively 

higher contamination 

was visible between 

functions. 

 Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible.  

 Large yellow color 

portion with 

noticeable green 

region. 

Color 

variation and 

visual 

contamination 

level from 

spatial 

distribution 

Figure  E.14: Spatial distribution of Sc in soil using RBF’s. 
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Explanation for CRS  

 Comparatively less 

contamination was 

visible between 

functions. 

 Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible.  

 Large yellow color 

portion with 

noticeable green 

region. 

Explanation for ST 

 Comparatively less 

contamination was 

visible between 

functions. 

 Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible.  

 Large yellow color 

portion with 

noticeable green 

region. 

Explanation for MQ 

 Comparatively more 

contamination was 

visible between 

functions. 

  Most of the region 

exhibited orange red 

and ocher color. 

  Small red color 

region was also 

visible.  

 Large yellow color 

portion with 

noticeable green 

region. 

Explanation for IMQ   

 Comparatively 

lowest adulteration 

was visible between 

functions. 

 Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible.  

 Large yellow color 

portion with 

noticeable green 

region. 

Explanation for TPS  

 Comparatively 

higher contamination 

was visible between 

functions. 

  Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible.  

 Large yellow color 

portion with 

noticeable green 

region. 

Color 

variation and 

visual 

contamination 

level from 

spatial 

distribution 

Figure  E.15: Spatial distribution of Sr in soil using RBF’s. 
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Explanation for CRS  

 Comparatively less 

contamination was 

visible between 

functions. 

 Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible.  

 Large yellow color 

portion with 

noticeable green 

region. 

Explanation for ST 

 Comparatively less 

contamination was 

visible between 

functions. 

 Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible.  

 Large yellow color 

portion with 

noticeable green 

region. 

Explanation for MQ 

 Comparatively more 

contamination was 

visible between 

functions. 

  Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible.  

 Large yellow color 

portion with 

noticeable green 

region. 

Explanation for IMQ   

 Comparatively 

lowest adulteration 

was visible between 

functions. 

 Most of the region 

exhibited orange red 

and ocher color/ 

 Small red color 

region was also 

visible.  

 Large yellow color 

portion with 

noticeable green 

region. 

Explanation for TPS  

 Comparatively 

higher contamination 

was visible between 

functions. 

 Most of the region 

exhibited orange red  

and ocher color. 

 Small red color 

region was also 

visible. 

 Large yellow color 

portion with 

noticeable green 

region. 

Color 

variation and 

visual 

contamination 

level from 

spatial 

distribution 

Figure  E.16: Spatial distribution of Ti in soil using RBF’s. 
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Explanation for CRS  

 Comparatively less 

contamination was 

visible between 

functions. 

 Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible.  

 Large green color 

portion with 

noticeable yellow 

region. 

Explanation for ST 

 Comparatively less 

contamination was 

visible between 

functions. 

 Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible.  

 Large green color 

portion with 

noticeable yellow 

region. 

Explanation for MQ 

 Comparatively more 

contamination was 

visible between 

functions. 

  Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible.  

 Large green color 

portion with 

noticeable yellow 

region. 

Explanation for IMQ   

 Comparatively 

lowest adulteration 

was visible between 

functions. 

 Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible.  

 Large green color 

portion with 

noticeable yellow 

region. 

Explanation for TPS  

 Comparatively 

higher contamination 

was visible between 

functions. 

 Most of the region 

exhibited orange red 

and ocher color. 

 Small red color 

region was also 

visible. 

 Large green color 

portion with 

noticeable yellow 

region. 

Color 

variation and 

visual 

contamination 

level from 

spatial 

distribution 

Figure  E.17: Spatial distribution of V  in soil using RBF’s. 
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Annex – F 
 

Cross Validation Data and Spatial Distribution of Metal Elements using OK  
 

Table F.1: Cross validation of OK for Al 
 

Models 
a
MPE 

b
RMSPE 

c
ASPE 

d
MSPE 

e
RMSSPE 

Circular 7.9811 131.1189 170.1680 0.0298 0.8138 

Spherical 8.3799 129.1836 169.5963 0.0310 0.8031 

Tetraspherical 8.2673 127.7511 169.7848 0.0308 0.7930 

Pentaspherical 9.0704 127.7458 169.1689 0.0340 0.7937 

Exponential 13.8886 118.8524 166.0145 0.0539 0.7440 

Gaussian 7.0387 135.3897 172.3418 0.0273 0.8328 
Rational quadratic 18.1793 116.1146 166.6314 0.0762 0.7342 
Hole  Effect 10.8442 145.5775 170.9768 0.0528 0.8876 

K-Bessel 14.0068 119.4834 165.4350 0.0547 0.7502 

J-Bessel 8.2231 137.1476 170.6431 0.0345 0.8455 

Stable 13.9179 119.6027 164.9862 0.0544 0.7525 
 

Table F.2: Cross validation of OK for As 
 

Models 
a
MPE 

b
RMSPE 

c
ASPE 

d
MSPE 

e
RMSSPE 

Circular 0.0634 1.4289 1.8967 0.0218 0.8012 

Spherical 0.0603 1.4190 1.8919 0.0201 0.7983 

Tetraspherical 0.0686 1.4178 1.8882 0.0235 0.7976 

Pentaspherical 0.0836 1.4187 1.8816 0.0307 0.7995 

Exponential 0.0925 1.3498 1.8387 0.0308 0.7847 

Gaussian 0.0496 1.4739 1.9091 0.0172 0.8220 

Rational 

quadratic 

0.1067 1.3443 1.8399 0.0364 0.7981 

Hole  Effect 0.0841 1.5398 1.9331 0.0378 0.8265 
K-Bessel 0.1068 1.3456 1.8353 0.0361 0.7792 

J-Bessel 0.0702 1.4997 1.8930 0.0270 0.8366 

Stable 0.1198 1.3435 1.8251 0.0420 0.7827 
a
Mean Percentage Error,

  b
Root Mean Square Percentage Error, 

c
Average Standadrd Percentage Error, 

d
Mean Standardized Percentage Error, 

e
Root Mean Square Standard Percentage Error. 
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Table F.3: Cross validation of OK for Ba 

 

Models 
a
MPE 

b
RMSPE 

c
ASPE 

d
MSPE 

e
RMSSPE 

Circular 0.7639 13.0556 17.7070 0.0266 0.7866 

Spherical 1.0014 13.2106 17.5297 0.0366 0.8056 

Tetraspherical 0.9895 13.1541 17.3851 0.0357 0.8127 

Pentaspherical 0.9871 13.1994 17.2951 0.0351 0.8200 

Exponential 1.3768 13.0460 16.7660 0.0508 0.8494 

Gaussian 0.5709 14.9903 18.1179 0.0218 0.8812 

Rational quadratic 0.8295 14.1263 17.2743 0.0275 0.9025 

Hole  Effect 0.5545 14.6336 17.5492 0.0257 0.8823 

K-Bessel 0.5670 14.9074 18.3094 0.0203 0.8646 

J-Bessel 0.5682 14.5982 17.2958 0.0279 0.8887 

Stable 0.5709 14.9903 18.1179 0.0218 0.8812 

 

Table F.4: Cross validation of OK for Ca 

 

Models 
a
MPE 

b
RMSPE 

c
ASPE 

d
MSPE 

e
RMSSPE 

Circular 3.7648 41.0653 55.0245 0.0347 0.7653 

Spherical 3.1377 40.9446 54.5189 0.0264 0.7542 

Tetraspherical 3.2083 41.0547 54.6894 0.0272 0.7542 

Pentaspherical 3.2002 41.0241 54.8289 0.0273 0.7506 

Exponential 3.0570 41.0198 56.4323 0.0283 0.7324 

Gaussian 6.0369 40.9597 54.0746 0.0683 0.9453 

Rational quadratic 3.4196 40.8019 55.2144 0.0314 0.7425 

Hole  Effect 6.5894 48.8409 48.0683 0.0529 1.5581 

K-Bessel 5.7057 40.7235 54.0170 0.0625 0.8854 

J-Bessel 5.8123 43.2724 51.4492 0.0538 1.0899 

Stable 5.8001 40.9089 53.9264 0.0650 0.8999 
a
Mean Percentage Error,

  b
Root Mean Square Percentage Error, 

c
Average Standadrd Percentage Error, 

d
Mean Standardized Percentage Error, 

e
Root Mean Square Standard Percentage Error. 
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Table F.5: Cross validation of OK for Co 
 

Models 
a
MPE 

b
RMSPE 

c
ASPE 

d
MSPE 

e
RMSSPE 

Circular 0.1180 1.2117 1.3446 0.0481 1.0523 

Spherical 0.1217 1.2202 1.3511 0.0503 1.0607 

Tetraspherical 0.0999 1.2066 1.0727 0.0409 1.0727 

Pentaspherical 0.1048 1.2117 1.3764 0.0422 1.0616 

Exponential 0.1174 1.1985 1.6388 0.0397 0.8508 

Gaussian 0.0551 1.3343 1.2166 0.0237 1.1859 

Rational quadratic 0.1263 1.2228 1.4419 0.0461 0.9982 

Hole  Effect -0.0022 1.3244 1.1496 0.0013 1.2298 

K-Bessel 0.0469 1.3035 1.2202 0.0197 1.1677 

J-Bessel -0.0317 1.3411 1.1090 -0.0085 1.2689 

Stable 0.0554 1.3331 1.2169 0.0238 1.1846 

 

Table F.6: Cross validation of OK for Cr 

 

Models 
a
MPE 

b
RMSPE 

c
ASPE 

d
MSPE 

e
RMSSPE 

Circular -0.0039 2.0813 2.2178 -0.0046 0.9649 

Spherical 0.0003 2.0645 2.2123 -0.0031 0.9591 

Tetraspherical 0.0091 2.0602 2.2091 0.0009 0.9577 

Pentaspherical 0.0045 2.0434 2.2049 -0.0017 0.9517 

Exponential 0.0227 2.0161 2.1966 0.0006 0.9345 

Gaussian -0.0045 2.0800 2.2363 -0.0069 0.9569 

Rational quadratic 0.0423 1.9899 2.1944 0.0058 0.9355 

Hole  Effect -0.0475 2.0300 2.2114 -0.0190 0.9475 

K-Bessel 0.0164 2.0155 2.1949 -0.0020 0.9356 

J-Bessel -0.0001 2.0554 2.2199 -0.0023 0.9542 

Stable 0.0270 2.0154 2.1945 0.0033 0.9347 
a
MPE= Mean Prediction Error, 

b
RMSPE= Root Mean Square Prediction Error, 

c
MSPE= Mean Standardized Prediction Error, 

d
RMSSPE= Root 

Mean Square Standard Prediction Error, 
e
ASPE= Average Standard Prediction Error. 
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Table F.7: Cross validation of OK for Cu 

 

Models 
a
MPE 

b
RMSPE 

c
ASPE 

d
MSPE 

e
RMSSPE 

Circular 0.1095 2.2359 3.5069 0.0210 0.6839 

Spherical 0.1262 2.2081 3.5006 0.0247 0.6795 

Tetraspherical 0.1418 2.1966 3.4932 0.0284 0.6780 

Pentaspherical 0.1403 2.1826 3.4895 0.0281 0.6742 

Exponential 0.1505 2.1650 3.4627 0.0281 0.6764 

Gaussian 0.0857 2.2258 3.4985 0.0148 0.6860 

Rational quadratic 0.1453 2.1377 3.4507 0.0263 0.6767 

Hole  Effect 0.1638 2.5917 3.5444 0.0415 0.7525 

K-Bessel 0.1449 2.1495 3.4613 0.0257 0.6735 

J-Bessel 0.1013 2.1794 3.4742 0.0198 0.6766 

Stable 0.1617 2.1254 3.4478 0.0289 0.6710 
 

Table F.8: Cross validation of OK for Fe 
 

Models 
a
MPE 

b
RMSPE 

c
ASPE 

d
MSPE 

e
RMSSPE 

Circular 15.5978 473.5868 526.5564 0.0064 0.8837 

Spherical 14.0698 473.7971 528.6544 0.0040 0.8770 

Tetraspherical 13.4335 474.4378 530.6899 0.0030 0.8741 

Pentaspherical 13.4994 474.8952 532.4967 0.0036 0.8718 

Exponential 9.9977 473.7029 545.1669 0.0006 0.8579 

Gaussian 30.1262 473.3400 522.1413 0.0364 0.9126 

Rational quadratic 12.3342 472.1590 535.1266 0.0021 0.8576 

Hole  Effect 21.3869 515.5247 459.5201 0.0103 1.1554 

K-Bessel 28.1910 471.0704 521.7186 0.0316 0.8911 

J-Bessel 17.8915 496.5230 482.8127 0.0009 1.0235 

Stable 30.1262 473.3400 521.1676 0.0364 0.9143 
a
MPE= Mean Prediction Error, 

b
RMSPE= Root Mean Square Prediction Error, 

c
MSPE= Mean Standardized Prediction Error, 

d
RMSSPE= Root 

Mean Square Standard Prediction Error, 
e
ASPE= Average Standard Prediction Error. 
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Table F.9: Cross validation of OK for Hg 
 

Models 
a
MPE 

b
RMSPE 

c
ASPE 

d
MSPE 

e
RMSSPE 

Circular 0.1721 1.6429 1.9178 0.0528 0.9540 

Spherical 0.1728 1.6347 1.9276 0.0544 0.9353 

Tetraspherical 0.1855 1.6332 1.9546 0.0581 0.9074 

Pentaspherical 0.1924 1.6314 1.9779 0.0600 0.8831 

Exponential 0.1636 1.5863 2.0577 0.0481 0.7874 

Gaussian 0.2177 1.7181 1.9206 0.0845 1.2411 

Rational quadratic 0.2095 1.5941 2.0216 0.0679 0.8200 

Hole  Effect 0.2569 1.9193 1.7835 0.0984 1.4018 

K-Bessel 0.2391 1.7386 1.9103 0.0922 1.1471 

J-Bessel 0.2566 2.0116 1.8865 0.1208 1.7895 

Stable 0.2354 1.7193 1.9143 0.0823 1.0969 
 

Table F.10: Cross validation of OK for K 
 

Models 
a
MPE 

b
RMSPE 

c
ASPE 

d
MSPE 

e
RMSSPE 

Circular 3.3108 81.3544 95.4607 0.0235 0.8825 

Spherical 3.9613 81.3065 94.2829 0.0282 0.8938 

Tetraspherical 3.8030 81.1803 93.5258 0.0263 0.9009 

Pentaspherical 3.8236 81.3200 93.0550 0.0261 0.9067 

Exponential 6.7203 80.8301 86.4310 0.0485 0.9688 

Gaussian 2.5606 87.8723 95.8443 0.0182 0.9549 

Rational quadratic 3.3852 83.1154 91.0340 0.0216 0.9633 

Hole  Effect 0.7908 87.7489 96.0632 0.0084 0.9449 

K-Bessel 5.8927 79.1427 91.0463 0.0394 0.8883 

J-Bessel 0.7759 88.6311 95.5048 0.0097 0.9583 

Stable 6.1178 79.3421 90.3025 0.0414 0.8969 
a
MPE= Mean Prediction Error, 

b
RMSPE= Root Mean Square Prediction Error, 

c
MSPE= Mean Standardized Prediction Error, 

d
RMSSPE= Root 

Mean Square Standard Prediction Error, 
e
ASPE= Average Standard Prediction Error 
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Table F.11: Cross validation of OK for Mn 
 

Models 
a
MPE 

b
RMSPE 

c
ASPE 

d
MSPE 

e
RMSSPE 

Circular -0.0424 5.4551 6.7255 -0.0122 0.8431 

Spherical -0.0201 5.4858 6.7195 -0.0105 0.8515 

Tetraspherical 0.0101 5.5161 6.7161 -0.0073 0.8593 

Pentaspherical 0.0086 5.5081 6.7123 -0.0083 0.8606 

Exponential 0.0001 5.4503 6.6959 -0.0111 0.8579 

Gaussian -0.0674 5.6086 6.7535 -0.0207 0.8738 

Rational quadratic 0.0148 5.3970 6.6924 -0.0122 0.8537 

Hole  Effect 0.0795 5.5538 6.6673 0.0045 0.8585 

K-Bessel 0.0004 5.4504 6.6937 -0.0111 0.8584 

J-Bessel 0.0598 5.6270 6.7378 -0.0032 0.8802 

Stable 0.0183 5.4579 6.6912 -0.0078 0.8585 
 

Table F.12: Cross validation of OK for Na 
 

Models 
a
MPE 

b
RMSPE 

c
ASPE 

d
MSPE 

e
RMSSPE 

Circular 1.1712 23.6778 24.7096 0.0323 0.9807 

Spherical 1.1046 23.7292 24.5166 0.0288 0.9911 

Tetraspherical 0.8044 23.4226 24.4146 0.0195 0.9895 

Pentaspherical 0.7201 23.3740 24.3630 0.0169 0.9913 

Exponential 1.0030 23.5503 23.6622 0.0228 1.0269 

Gaussian 0.8527 24.2030 25.1575 0.0242 0.9857 

Rational quadratic 0.6671 24.2789 24.1803 0.0147 1.0496 

Hole  Effect 0.2724 23.4469 24.8908 0.0093 0.9728 

K-Bessel 0.8188 23.5122 24.4669 0.0178 0.9905 

J-Bessel 0.1945 23.5170 24.7507 0.0076 0.9812 

Stable 0.7350 23.8103 24.9044 0.0177 0.9854 
a
MPE= Mean Prediction Error, 

b
RMSPE= Root Mean Square Prediction Error, 

c
MSPE= Mean Standardized Prediction Error, 

d
RMSSPE= Root 

Mean Square Standard Prediction Error, 
e
ASPE= Average Standard Prediction Error. 
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Table F.13: Cross validation of OK for Sb 
 

Models 
a
MPE 

b
RMSPE 

c
ASPE 

d
MSPE 

e
RMSSPE 

Circular 0.0788 1.3858 1.8104 0.0301 0.8054 

Spherical 0.0800 1.3840 1.8023 0.0296 0.8100 

Tetraspherical 0.0778 1.3851 1.7987 0.0282 0.8121 

Pentaspherical 0.0773 1.3863 1.7965 0.0276 0.8138 

Exponential 0.0842 1.3430 1.7608 0.0280 0.8098 

Gaussian 0.0551 1.5386 1.8383 0.0229 0.8763 

Rational quadratic 0.0682 1.4500 1.7911 0.0225 0.8704 

Hole  Effect 0.0150 1.5334 1.7967 0.0093 0.8907 

K-Bessel 0.0444 1.5266 1.8370 0.0179 0.8725 

J-Bessel 0.0132 1.5435 1.7800 0.0098 0.9005 

Stable 0.0551 1.5386 1.8383 0.0229 0.8763 
 

Table F.14: Cross validation of OK for Sc 
 

Models 
a
MPE 

b
RMSPE 

c
ASPE 

d
MSPE 

e
RMSSPE 

Circular 0.1225 2.2521 2.6607 0.0292 0.8858 

Spherical 0.1375 2.2557 2.6429 0.0330 0.8957 

Tetraspherical 0.1363 2.2678 2.6301 0.0319 0.9043 

Pentaspherical 0.1473 2.2796 2.6210 0.0343 0.9105 

Exponential 0.0716 2.4712 2.7192 0.0180 0.9507 

Gaussian 0.0716 2.4712 2.7192 0.0180 0.9507 

Rational quadratic 0.1131 2.3652 2.5998 0.0242 0.9750 

Hole  Effect 0.0274 2.4032 2.6521 0.0099 0.9459 

K-Bessel 0.0884 2.4574 2.7136 0.0225 0.9480 

J-Bessel 0.0203 2.4072 2.6201 0.0096 0.9546 

Stable 0.0894 2.4383 2.7191 0.0227 0.9388 
a
MPE= Mean Prediction Error, 

b
RMSPE= Root Mean Square Prediction Error, 

c
MSPE= Mean Standardized Prediction Error, 

d
RMSSPE= Root 

Mean Square Standard Prediction Error, 
e
ASPE= Average Standard Prediction Error. 
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Table F.15: Cross validation of OK for Sr 
 

Models 
a
MPE 

b
RMSPE 

c
ASPE 

d
MSPE 

e
RMSSPE 

Circular 0.2620 5.6219 7.4673 0.0241 0.7900 

Spherical 0.3324 5.6434 7.4303 0.0314 0.7971 

Tetraspherical 0.3020 5.6138 7.4012 0.0277 0.7989 

Pentaspherical 0.3049 5.6152 7.3871 0.0278 0.8010 

Exponential 0.3732 5.4821 7.2911 0.0315 0.7998 

Gaussian 0.2278 6.1425 7.5146 0.0227 0.8552 

Rational quadratic 0.2848 5.7021 7.3102 0.0241 0.8319 

Hole  Effect 0.2283 6.1783 7.3757 0.0268 0.8719 

K-Bessel 0.3013 5.6363 7.4151 0.0262 0.8027 

J-Bessel 0.2679 6.1855 7.3187 0.0330 0.8779 

Stable 0.2514 5.8078 7.4630 0.0221 0.8182 
 

Table F.16: Cross validation of OK for Ti 
 

Models 
a
MPE 

b
RMSPE 

c
ASPE 

d
MSPE 

e
RMSSPE 

Circular 12.5442 264.7115 308.0773 0.0230 0.8985 

Spherical 17.9196 265.8008 303.4312 0.0363 0.9171 

Tetraspherical 17.2483 265.9167 300.3178 0.0340 0.9290 

Pentaspherical 18.7797 267.7512 298.6754 0.0375 0.9382 

Exponential 25.0203 265.8430 289.5669 0.0522 0.9575 

Gaussian 9.3971 294.3402 315.9850 0.0191 0.9806 

Rational quadratic 12.7394 280.3912 296.7434 0.0230 1.0204 

Hole  Effect 6.2457 283.8775 308.6859 0.0169 0.9642 

K-Bessel 18.1275 262.7769 305.4450 0.0340 0.8953 

J-Bessel 3.7947 283.5454 304.7957 0.0130 0.9712 

Stable 15.3638 273.4276 311.5708 0.0294 0.9238 
a
MPE= Mean Prediction Error, 

b
RMSPE= Root Mean Square Prediction Error, 

c
MSPE= Mean Standardized Prediction Error, 

d
RMSSPE= Root 

Mean Square Standard Prediction Error, 
e
ASPE= Average Standard Prediction Error. 
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Table F.17: Cross validation of OK for V 
 

Models 
a
MPE 

b
RMSPE 

c
ASPE 

d
MSPE 

e
RMSSPE 

Circular 0.4901 11.2247 14.4912 0.0218 0.8042 

Spherical 0.5535 10.9931 14.4034 0.0247 0.7937 

Tetraspherical 0.5700 10.8401 14.3249 0.0255 0.7879 

Pentaspherical 0.6037 10.6842 14.2530 0.0267 0.7809 

Exponential 0.9192 10.3221 14.0155 0.0395 0.7722 

Gaussian 0.5173 11.1754 14.4656 0.0232 0.8112 

Rational quadratic 1.3221 10.3888 13.9480 0.0516 0.9463 

Hole  Effect 0.7895 12.1698 14.4549 0.0451 0.8677 

K-Bessel 0.9419 10.3017 13.9821 0.0414 0.7715 

J-Bessel 0.5437 11.1034 14.3451 0.0247 0.8095 

Stable 0.9095 10.2412 13.9460 0.0399 0.7692 
a
MPE= Mean Prediction Error, 

b
RMSPE= Root Mean Square Prediction Error, 

c
MSPE= Mean Standardized Prediction Error, 

d
RMSSPE= Root 

Mean Square Standard Prediction Error, 
e
ASPE= Average Standard Prediction Error. 
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Explanation of Al 

 Considerable orange red region 

near the center of the study 

area.  

 Similar orange and ocher color 

pattern were also noticeable.  

 Considerable green region was 

also detected. 

 Most contaminated spot was 

also found near the center of 

disposal site with high Al 

concentration. 

Explanation of As 

 Considerable orange red region 

near the center of the study area.  

 Similar orange and ocher color 

pattern were also noticeable.  

 Considerable green region was 

also detected. 

 Most contaminated spot was 

also found near the center of 

disposal site with high As 

concentration. 

Explanation of Ba 

 Considerable orange red 

region near the center of the 

study area.  

 Similar orange and ocher 

color pattern were also 

noticeable.  

 Considerable green region 

was also detected. 

 Most contaminated spot was 

also found near the center of 

disposal site with high As 

concentration. 

Explanation of Ca 

 Superior green region 

was visible with a small 

yellow region. 

 Noticeable red region 

with ocher, orange and 

orange red color region 

were found. 

 Most contaminated spot 

was found near the 

center of the waste 

disposal site with high 

intensity Ca 

concentration. 

Color variation 

and visual 

contamination 

level from 

spatial 

distribution 

Figure F.1:Spatial distribution for 

the best  

fitted model (Hole effect) of Al. 

Figure F.2: Spatial distribution for 

the best  

fitted model (J-Bessel) of As. 

Figure. F.3: Spatial distribution 

for the best fitted model (J-

Bessel) of Ba. 

Figure F.4: Spatial 

distribution for the best 

fitted model (Hole effect) 

of Ca. 

Legend
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Explanation of Co 

 Larger orange red region near 

the center of the study area.  

 Similar orange and ocher color 

pattern were also noticeable.  

 Considerable green region was 

also detected. 

 Most contaminated spot was 

also found near the center of 

disposal site with high Co 

concentration. 

Explanation of Cr 

 No red or orange red region was 

visible. 

 Small ocher region with large 

yellow region was observed. 

 Considerable green region was 

also detected. 

 Contamination of soil of waste 

disposal site is comparatively 

less 

Explanation of Cu 

 Larger orange red region near 

the center of the study area.  

 Similar orange and ocher 

color pattern were also 

noticeable.  

 Considerable green region 

was also detected. 

 Most contaminated spot was 

also found near the center of 

disposal site with high Co 

concentration 

Explanation of Fe 

 Larger green region 

was visible with a 

small yellow region. 

 Noticeable red region 

with ocher, orange and 

orange red color region 

were found. 

 Most contaminated 

spot was found near the 

center with high 

intensity Fe 

concentration. 

Color variation 

and visual 

contamination 

level from 

spatial 

distribution 

 

Figure F.5: Spatial distribution for 

the best fitted model (K-Bessel) 

of Co. 

Figure F.6: Spatial distribution for 

the best fitted model (Circular) of 

Cr. 

Figure F.7:Spatial distribution 

for the best fitted model (Hole 

effect) of Cu. 

Figure F.8: Spatial 

distribution for the best 

fitted model (J-Bessel) of 

Fe. 
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Explanation of Hg 

 Larger green region was visible 

with a small yellow region. 

 Noticeable red region with 

ocher, orange and orange red 

color region were found. 

 Most contaminated spot was 

found near the center of the 

waste disposal site with high 

intensity Hg concentration. 

Explanation of K 

 Noticeable green region was 

visible with a large yellow 

region. 

 Clear red region with ocher, 

orange and orange red color 

region were found. 

 Most contaminated spot was 

found near the center of the 

waste disposal site with high 

intensity K concentration. 

Explanation of Mn 

 Green region was visible with 

large yellow region. 

 Red region with ocher, orange 

and orange red color region 

were found. 

 Most contaminated spot was 

found near the center of the 

waste disposal site with high 

intensity Mn concentration. 

Explanation of Na 

 No orange red region near 

the center of the study 

area.  

 Noticeable orange and 

ocher color pattern were 

also noticeable.  

 Considerable green region 

was also detected. 

 Most contaminated spot 

was also found near the 

center of disposal site with 

high Na concentration. 

Color 

variation and 

visual 

contamination 

level from 

spatial 

distribution 

Figure F.9: Spatial distribution for 

the best fitted model (J-Bessel) of 

Hg. 

Figure F.10: Spatial distribution 

for the best fitted model 

(Exponential) of K. 

Figure F.11: Spatial distribution 

for the best fitted model (J-

Bessel) of Mn 

Figure F.12: Spatial 

distribution for the best fitted 

model (rational quadratic) of 

Na. 
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Explanation of Sb 

 Larger orange region near the 

center of the study area.  

 Similar orange and ocher color 

pattern were also noticeable.  

 Considerable green region was 

also detected. 

 Most contaminated spot was 

also found near the center of 

disposal site with high Sb 

concentration. 

Explanation of Sc 

 Larger orange red region near 

the center of the study area.  

 Similar orange and ocher color 

pattern were also noticeable.  

 Considerable green region was 

also detected. 

 Most contaminated spot was 

also found near the center of 

disposal site with high Sc 

concentration. 

Explanation of Sr 

 Considerable orange red 

region near the center of the 

study area.  

 Similar orange and ocher 

color pattern were also 

noticeable.  

 Considerable green region 

was also detected. 

 Most contaminated spot was 

also found near the center of 

disposal site with high Sr 

concentration. 

Explanation of Ti 

 Larger red and orange red 

region near the center of 

the study area.  

 Similar orange and ocher 

color pattern were also 

noticeable.  

 Considerable green region 

was also detected. 

 Most contaminated spot 

was also found near the 

center of disposal site with 

high Ti concentration. 

Color 

variation and 

visual 

contamination 

level from 

spatial 

distribution 

Figure F.13: Spatial distribution 

for the best fitted model (J-

Bessel) of Sb. 

Figure F.14: Spatial distribution 

for the best fitted model (J-Bessel) 

of Sc. 

Figure F.15: Spatial distribution 

for the best fitted model (J-

Bessel) of Sr. 

Figure F.16: Spatial 

distribution for the best fitted 

model (Rational quadratic) 

of Ti. 
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Explanation of V 

 Larger orange red with small red 

region near the center of the study 

area.  

 Similar orange and ocher color 

pattern were also noticeable.  

 Considerable green region was also 

detected. 

 Most contaminated spot was also 

found near the center of disposal site 

with high Sb concentration. 

Color variation 

and visual 

contamination 

level from spatial 

distribution 

Figure F.17: Spatial distribution for the 

best fitted model (Hole effect) of V. 
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Figure F.18: Semivariogram of Al. 

 
 

Figure F.19: Semivariogram of As. 

 

Figure F.20: Semivariogram of Ba. 

 

 

 

Figure F.21: Semivariogram of Ca. 
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Figure F.22: Semivariogram of Co. 

 
Figure F.23: Semivariogram of Cr. 

 
Figure F.24: Semivariogram of Cu. 

 
Figure F.25: Semivariogram of Fe. 
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Figure F.26: Semivariogram of Hg. 

 

Figure F.27: Semivariogram of K. 

 
Figure F.28: Semivariogram of Mn. 

 

Figure F.29: Semivariogram of Na. 
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Figure F.30 Semivariogram of Sb 

 

 

Figure F.31: Semivariogram of Sc. 

 

Figure F.32 Semivariogram of Sr. 

 

Figure F.33: Semivariogram of Ti. 
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Figure F.34: Semivariogram of V. 
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Annex –G 
 

Performance Assessment of Predicted Data obtained using  ANN 
 

 

 

 
Figure G.1: Performance plot of Al.  Figure G.2:Performance plot of As. 

   

 

 

 
Figure G.3: Performance plot of Ba.  Figure G.4:  Performance plot of Ca. 

   

 

 

 
Figure G.5: Performance plot of Co.  Figure G.6: Performance plot of Cr. 
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Figure G.7: Performance plot of Cu.  Figure G.8: Performance plot of Fe. 

   

 

 

 
Figure G.9: Performance plot of Hg.  Figure G.10: Performance plot of K. 

   

 
 

 

 

Figure G.11: Performance plot of Mn.  Figure G.12: Performance plot of Na. 
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Figure G.13: Performance plot of Sb.  Figure G.14: Performance plot of Sc. 

   

 

 

 

Figure G.15: Performance plot of Sr.  Figure G.16: Performance plot of Ti. 

   

 

  

Figure G.17: Performance plot of V   
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Figure G.18: Regression Coefficient of Al. 

 

 
 

Figure G.19: Regression Coefficient of As. 
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Figure G.20: Regression Coefficient of Ba. 

 

 
  

Figure G.21 Regression Coefficient of Ca 
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Figure G.22: Regression Coefficient of Co. 
 

 
 

Figure G.23: Regression Coefficient of Cr. 
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Figure G.24: Regression Coefficient of Cu. 
 

 
 

Figure G.25: Regression Coefficient of Fe. 
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Figure G.26: Regression Coefficient of Hg. 

 

 
 

Figure G.27: Regression Coefficient of K. 
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Figure G.28: Regression Coefficient of Mn. 
 
 
 

 

Figure G.29: Regression Coefficient of Na. 
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Figure G.30: Regression Coefficient of Sb. 
 

 
Figure G.31: Regression Coefficient of Sc. 
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Figure G.32: Regression Coefficient of Sr. 

 

 
Figure G.33: Regression Coefficient of Ti. 
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Figure G.34: Regression Coefficient of V. 
 

 

   

Figure G.35: Histogram plot of Al.  Figure G.36: Histogram plot of As. 

   

Figure G.37: Histogram plot of Ba.  Figure G.38: Histogram plot of Ca. 
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Figure G.39: Histogram plot of Co.  Figure G.40: Histogram plot of Cr. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure G.41: Histogram plot of Cu.  Figure G.42: Histogram plot of Fe. 

   

Figure G.43: Performance plot of Hg.  Figure G.44: Performance plot of K. 

   

 

 

 

 

 

 

 

 

 

 

Figure G.45: Performance plot of Mn.  Figure G.46: Performance plot of Na. 
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Figure G.47: Performance plot of Sb.  Figure G.48: Performance plot of Sc. 

   

Figure G.49: Performance plot of Sr.  Figure G.50: Performance plot of Ti. 

   

Figure G.51: Performance plot of V.   
 


