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Abstract

Neural activation measurement regarding voluntary and imagery movement is a
crucial argument for brain-computer interface. Generally, movement-related
hemodynamics is measured from the central lobe of the brain which may be
erroneous for the paralyzed people due to their inactiveness of this brain area. To
overcome this limitation, this thesis work proposes an approach to measure the
movement-related hemodynamics from the prefrontal cortex. In the proposed
research work, the changes of the oxidized hemoglobin (HbO,) and deoxidized
hemoglobin (dHb) concentration regarding different voluntary and imagery
movement stimuli are captured by functional near-infrared spectroscopy (fNIR) from
several subjects. With necessary preprocessing, the fNIR signals are statistically
analyzed by ANOVA and effect size method to localize the most significantly
activated regions of the prefrontal cortex regarding the voluntary and imagery
stimuli. The experimental results show that voluntary and imagery movements have
a strong correlation with the prefrontal cortex. The temporal pattern of HbO, and
dHb signals regarding the most activated regions are modeled by polynomial
regression. Consequently, the model activation patterns are used to classify the
voluntary and imagery tasks based on the maximum similarity approach. In
addition, conventional classification methods are used to classify the signals. In this
work, we consider two, four, and six class fNIR data of movement-related tasks for
classification. The classification accuracies of the proposed method are convincing
and found almost similar to the conventional procedure. The outcomes of this
proposed work suggest that the prefrontal hemodynamics can be used for the
modeling and classification of the voluntary and imagery movement-related tasks
which will be helpful for the brain-computer interface applications. The combination
of fNIR and electroencephalography (EEG) signals has become the best choice of
accurate brain-computer interface (BCI) because of their finer spatiotemporal
resolution. The purpose of this work is to develop an effective BCI model to classify
the brain signals (fNIR and EEG) regarding the voluntary and imagery movements.
For achieving the high classification accuracy from the developed BCI system,
convolutional neural network (CNN) has been used to extract the features

automatically from the multiple channel fNIR and EEG signals instead of the
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manual feature selection. In this work, eight different movement-related stimuli (four
voluntary and four imagery movements of hands and feet) have been considered. The
multiple channel fNIR and EEG signals are used to prepare functional neuroimages
to train and test the performance of the proposed BCI system. In addition, the
proposed procedure is applied to prepare neuroimages from the individual modality
(fNIR and EEG) to train and test the performance of the CNN based BCI system.
The results reveal that the combined-modality approach of fNIR and EEG provides
improved classification accuracy than the individual one. From the results, we found
that the proposed CNN-based BCI system of bimodal (fNIR+EEG) approach
outperforms the unimodal (only fNIR) methods in terms of the classification
accuracy. Therefore, the outcomes of the proposed research work will be very helpful

to implement the finer BCI system, in future.
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CHAPTER 1

Introduction

1.1 Motivation

The brain controls all human activities like movements, mental workload, emotion,
vision, thinking, attention, cognitive skills, senses, etc. The brain functions are
related to the wvariation of oxygen saturation of the blood which is called
hemodynamics. During the brain functioning, neurons (the unit of brain tissue)
communicate with each other by the low potential electric signal. Therefore, changes
in the concentration of oxygenated hemoglobin (HbO,) and deoxygenated hemoglobin
(dHb) hemoglobin, as well as electrical potential measurement, provide information
about brain functioning, non-invasively. Electroencephalogram (EEG) and functional
near infrared spectroscopy (fNIR) are two non-invasive methods to measure electric

potential and hemoglobin concentrations in our brain, respectively.

Functional brain imaging has added a new dimension in biomedical engineering and
explored the pathway to reach the ideal brain-computer interface (BCI). BCI
contributes to various fields of research in biomedical applications like prevention,
detection, diagnosis, rehabilitation, and restoration [1-3|. In the field of BCI, EEG
and MEG are two non-invasive modalities based on scalp electric potential. EEG has
a very high temporal resolution (~1ms) with a poor spatial resolution (EEG: 5 to 9
cm) [4] (Burle, et al. 2015). Though MEG has both high temporal (~1ms) and spatial
resolution (<lcm), it is not suitable for BCI because of its noise sensitivity and
heavyweight [5-6]. Based on hemodynamics, functional magnetic resonance imaging
(fMRI) provides excellent spatial resolution (3~6mm) but its temporal resolution is
poor (1~3sec) [6]. Nonetheless, due to its very high cost, motion sensitivity, and
being bulky it is also not suitable for BCI [7-9]. To optimize the aforementioned
limitations and requirements, it is a high demand for a new modality. fNIR is such a
neuroimaging modality discovered in 1977 by Jobsis [10]. The researches in [11-13]
reported that wavelength of NIR range (650-1000 nm) enables real-time non-invasive
detection of hemoglobin oxygenation using fNIR technique. fNIR provides very good

spatial resolution (~1-1.5¢cm), moderate temporal resolution (up to 100Hz),
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portability to use, low cost, high value of signal to noise ratio (SNR), less motion
artifact compared to fMRI, MEG, EEG, and PET [9]. Furthermore, fNIR is not as
physically confining as fMRI and it allows movement during imaging. Recent
publications [14-16] demonstrated that the results of fNIR are comparable to fMRI
and reliable for cortical activations measurement. Since fNIR provides finer spatial
resolution and EEG provides finer temporal resolution, combined information of
fNIR and EEG is getting the most attention for the recent researches [14, 17-25| in
the field of neuroimaging and BCI.

According to the statistics of World Bank, around one billion people in the world
experience some forms of disability [26]. Since, the brain of the most of these disable
persons work partially or completely, BCI could be a possible solution to provide

them easier life by declining their physical limitations.

1.2 Problem Statements

There's a large body of existing BCI designs that utilizes a single neuroimaging
modality such as either EEG or f{NIR. From the current literature review [27] found
that the mostly proposed BCI system is based on motor imagery tasks with
compared to the other like mental counting, mental arithmetic, word formation, etc.
The limitations of the single modality based BCI related to motor imagery as well as
motor execution or voluntary movement is lower accuracy for multiple tasks
classifications. Therefore high performance BCI system implementation, multimodal
imaging methods are proposed. Several research works [19, 22-24, 28| based on
movement related tasks classification have been accomplished combination of fNIR &
EEG signals for BCI. With the help of neural signals of motor actions, authors in
[22-24] showed that the classification efficiency of combining fNIR & EEG is better
than that of the individual modalities but in these studies, two class problems were
discussed. For multiple motor tasks, asynchronous BCI technique by hybrid fNIR-
EEG has been discussed in [19].

Since EEG has very lower spatial resolution, for multiple stimuli the classification
accuracy remains lower. As a result to differentiate the multiple tasks like hands and
feet imagery and voluntary movement related neural activations, fNIR is a good

choice because of it high spatial resolution. The research works [28-31] have been
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broadly studied on about motor imagery and voluntary tasks (movements of hands
and feet) by fNIR. These research works have drawn their conclusion based on the
data acquired from the central part of their brain except the most recent research
work [28]. Nonetheless, the movement disordered or paralysed persons have
inactiveness of their central part of the brain. On the other hand, it is reported in
[28, 32-35] that the motor action planning (related to motor imagery tasks) is
occurred in frontal lobe. This motor action sensitivity in prefrontal cortex was
checked by our research work described in [36-38] where we found that there is a
strong correlation with the prefrontal lobe during upper limb movements or
movement imagination (or planning). Therefore, avoiding prefrontal cortex
information proper BCI would be inappropriate where multiple motor-tasks are

deliberated as stimuli.

In addition, no previous works performed the localized hemodynamic action
modelling which is also important for BCI. Since both voluntary and imagery
movement create same localized activation, it is also obligatory to differentiate the
activations of voluntary and imagery movements. Therefore based on the all existing

research works, following limitations are originated:

»  Existing research works did not model the localized hemodynamic models
of human movements.

* The impacts of motor planning activations are not considered in previous
research works for BCI purpose.

* Most of the existing BCIl’s are designed based on single modality which
limits the issue of spatiotemporal resolution.

= No significant research works are accomplished for movement related BCI

by multimodal neuroimaging method.

Therefore, some scopes arise to overcome the previous limitations. This proposal
scopes to design multimodal BCI and activation modelling of multiple motor actions

of voluntary and imagery movements by combining fNIR and EEG.
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1.3 Objectives

The objective of this work is to find the neuronal activation pattern of the human
brain during the voluntary and imagery movement execution. Since this activation
can be measured by the optical method (fNIR) and electrical method (EEG), using
both of these modalities proper information about human movements (imagery and
voluntary) will be extracted and modeled mathematically for the BCI. The model
can be applicable to neuro-rehabilitation and mind controlled device. Eventually,

the objectives of this research proposal are-

» To model the pattern of the neuro-activations of movement related tasks

based on the motor planning activations from prefrontal f{NIR signals.

» To establish statistical relationship between voluntary and imagery events

to find the best possible regions of prefrontal cortex.

» To develop a CNN based predictive model for classification of voluntary

and imagery tasks from fNIR data.

» To include EEG information with fNIR to cover frontal and central lobe
for improving the effectiveness of CNN based predictive model for high

performance multiclass BCI.

1.4 Contributions of the Proposed Research

This research work has been contributed into some significant areas of functional

neuroimaging those can be presented briefly by the following points:

» A novel method to measure the voluntary and imagery movements:
This research work proposes to measure the voluntary and imagery
movements of hands and feet from the prefrontal hemodynamics, for the
first, by a novel method. The hemodynamic properties regarding these
voluntary and imagery movements in the prefrontal cortex have been widely
examined with the proposed method and validated with several statistical

methods.
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» Activation modeling of wvoluntary and imagery movements: The
activation pattern of the HbO, and dHb due to different voluntary and
imagery movements are modeled using polynomial regression method from

the prefrontal hemodynamics.

» A novel proposal to combine the fNIR and EEG signals for BCI
applications: A novel approach of fNIR and EEG signal combination has
been proposed and examined by this work. The proposed method combines
the fNIR and EEG signals to prepare the neuroimages considering its

spatiotemporal and time-frequency information.

» Development of a CNN based predictive model to classify multiple
motor tasks from fNIR-EEG signals: A deep neural network, CNN has
been deployed to build a predictive model for classifying combining
information of fNIR and EEG signals regarding the voluntary and imagery
movements. This novel approach can predict the movement activity from the
fNIR-EEG signal (converted as the proposed combining method) with very

high classification accuracy.

1.5 Organization of the Dissertation

Chapter 1  : Introduction
This chapter includes the motivations of this research work. The
current  research  development and limitations regarding the
motivations and further scopes to solve the existing limitations are
widely discussed. In addition, this chapter deliberates the objectives of
this research work. The fundamental contributions of this research

work and organization of the Dissertation have been also mentioned
briefly.

Chapter 2 : Optical and Electrical Techniques of Functional Neuroimaging
In this chapter the basic mechanisms of functional neuroimaging with

the optical (fNIR) and neuro-electric (EEG) methods are widely

explained. The related mathematical models and the fundamental
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Chapter 3

Chapter 4

Chapter 5

Chapter 6

characteristics of the fNIR and EEG signals are also reflected by the

contents of this chapter.

: Signal Preprocessing Techniques

The processing techniques applied in this research work on fNIR and
EEG signal are explained in mathematical and graphical manner to
provide a clear conception about them. Several algorithms are
explained here with a modified way to cope them with our proposed

working methods.

: Statistical Modeling of Voluntary and Imagery Movement

This chapter describes the omne of our basic contribution on the
statistical modeling of wvoluntary and imagery movements through
multichannel fNIR signals. The mathematical models of voluntary and
imagery movement related neuro-activations are presented in this
chapter. In addition, the performance of fNIR modality to classify the
movement related multiclass neuro-activations are extensively

conferred.

: Predictive Modeling by CNN through fNIR and EEG Signal

In this chapter, a novel method has been approached to combine the
fNIR and FEG signal to make it a multimodal functional neuroimage.
Using this proposed functional neuroimages of multiple movements
related tasks are classified by CNN. The performance improvement in
case of multiclass BCI through the proposed approach has been
revealed by the contents of this chapter.

: Conclusions and Future Perspectives

In this Chapter, we concluded all of the research work briefly. The
main contributing objectives of this research work and the final
outcomes are compared here comprehensively. The limitations of this
work are also discussed and the probable solutions to overcome the
limitations are mentioned. There is some recommended future
research perspective for the future researcher so that this work can be

improved further.
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CHAPTER 2

Optical and Electrical Techniques of Functional Neuroimaging

2.1 Introduction

Functional brain imaging is different from other neuroimaging procedures like
Computed Tomography (CT) and Magnetic Resonance Imaging (MRI). It provides
the functional activities of the brain, not the structure of the brain tissue. By two
basic methods, functional brain imaging can be performed: ) based on hemodynamic
behavior (changes in the concentration of HbO, and dHb) and i) based on electrical

activities estimation from the scalp of the brain.

Recall that, based on the hemodynamic property, one of the finest functional
neuroimaging modalities is fMRI. This modality offers a very high degree of spatial
resolution. That’s why it is possible to capture the functional images from the surface
to very deeper brain. But, its temporal resolution is very poor [1]. In addition, this
modality has some more limitations like its noise sensitivity, bulk size, huge cost, and
most importantly it is physically confined for the subjects. As a result, fMRI is not
suitable for practical BCI implication. On the other hand, fNIR is a functional brain
imaging modality based on hemodynamics of the human brain in the superficial layer
which provides some nice features like good spatial resolution (~1-1.5¢m), moderate
temporal resolution (up to 100Hz), portability to use, low cost, high value of SNR,
and less motion artifact compared to fMRI [2|. Furthermore, fNIR is not as
physically confining as fMRI and it allows more movements compared to fMRI
during imaging. As a result, nowadays, fNIR is getting the most attention for the
recent researches in the field of neuroimaging and BCI. Consequently, based on the
cortical electrical activities, brain function measuring modality is EEG and magneto-
encephalography (MEG). MEG is not widely used for functional brain imaging due
to its high degree of sensitivity with environmental and magnetic interference [3].
That is why EEG is the best choice for BCI in the context of electrical method of
functional neuroimaging. Though EEG has a very excellent temporal resolution, its
spatial resolution is quite poor (5 to 9 c¢cm) [4]. For proper BCI, both temporal and

spatial information are necessary. Therefore, combined information of fNIR and EEG
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signals can be a suitable solution for a highly efficient BCI. In this chapter, the basic
methodologies of these two modalities (fNIR and EEG) are discussed with the origin
and property of the signals.

2.2 The Fundamentals of fINIR

The most biological tissues are relatively transparent to light in the near-infrared
range between 700 to 900 nm because the absorbance of the main constituents in the
human tissue like H,O, HbO,, and dHb is small in this range [5-6]. The absorbance
coefficients of H,O, HbO, and dHb as well as their optical windows in NIR are given
in Figure 2.1. When an amount of NIR light is shone through the human scalp, the
injected photons of that light follow various paths inside the head. Some of these
photons are absorbed by skin, skull, and the brain tissue. Rest of the photons exit
the head after following the so-called “banana” shaped path due to scattering effect
of the tissue [7, 8]. The main absorbers in the NIR range are blood chromophores of
HbO, and Hb whereas water and lipid are relatively transparent to NIR light.
Therefore, changes in the amplitude of backscattered light can be represented as the
changes in the blood chromophore concentrations. The estimating technique of the

Hb and HbO, concentrations by means of near infrared light is called fNIR.

0.4 Optical Window

Absorption Coefficient (cm™)

6o0 7oo 8oo 900 1000 1100
Wavelegth (nm)

Figure 2.1: Absorption coefficients of H,O, HbO,, and dHb [5].
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2.2.1 Oximetry & Hemodynamic Response

According to the change in cognitive activity results the variation in the
concentrations of HbO, and dHb in the brain tissue. This relationship is not
surprising, since cerebral hemodynamic changes are related to functional brain
activity through a mechanism called neurovascular coupling [9, 10]. When any part
of the brain becomes activated to send some signal to perform any physiological or
psychological work, the neurons of that area need energy. To supply proper energy to
that area, it is necessary to metabolize the glucose available there. On the other
hand, to metabolize the glucose oxygen is necessary. The need of oxygen is supplied
by the blood. The hemoglobin, Hb existed in blood combines with oxygen and
transformed itself as HbO, and transports oxygen to that area. Through capillary
bed HbO, releases O, and transformed itself as dHb again which is also known as
deoxidized hemoglobin |11, 12]. Therefore, indirectly we can say that increased rate
of HbO, and decreased rate of dHb in a specific area indicates the activation of that
area. This mechanism of neural activation and concentration change of HbO, and
dHb is called hemodynamics [13, 14]. The aforementioned mechanism is illustrated in

Figure 2.2.

Synapse Astrocyte

Glutamate <—Glucose

Capillary

032 <> Glucose

Glucose o
poOz

Figure 2.2: Relation between hemodynamic response and oxygen concentration [15].
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Emitter Emitter detector distance
(3~4 cm)

Detector
Grey matter

The path of
detected light

Figure 2.3: Position of NIR source and detector on human scalp [11].

2.2.2 Optical Measurement

In practice the detector and the NIR emitter diode are placed 3-4 cm apart as
Figure 2.3. As NIR light enters the cerebrum, it traces a banana-shaped path from
NIR emitter to detector like Figure 2.3. An array of sources and detectors, secured
in a headband such as 16 channel fNIR as in Figure 2.4, allows the hemoglobin
concentrations measurement at various places in the cerebrum. Using the modified
Beer-Lambert law, the attenuation of light between the source and detector can be

formulated as [16, 17],

I, =1,107°P (2.1)

Here OD, is the optical density at the wavelength, A. The term optical density is
generally used in optical spectroscopy that describes the propagation of light wave
through a medium. Mathematically, it is a logarithmic ratio of the falling light
intensity to the incident intensity through a material. Therefore, according to the

previous definition the optical density can be found as,

l
OD; = —log]"—'“t = attenuation = Ay + 5, (2.2)

m
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Figure 2.4: Optode and channel configuration of {NIR devices (Model 1200) head band [12].

Here A, and S, are the absorbing and scattering factors, respectively. In this case,
main absorbers of light are blood chromophores HbO, and dHb in the NIR spectra.
Therefore, absorption of light can be formulated as [17],

Aﬂ = zgi,ﬂCiL/l (23)

’i=Hb.Hb02
In (2.3), &, is the specific extinction coefficient of blood chromophore for wavelength
A and C; is the concentration of blood chromophores and L, is the path-length of
light at A. Path-length is a very important parameter which can be expressed in

terms of source detector separation as [17],
Aﬂ = d_DPFA (24)

In (2.4), d is the linear difference between the light emitter and detector and the
DPF stands for differential path factor. Differential path-length factor is the actual
factor to correct the proper length of the light travels. DPF can apparently
calculated as [17],

3 !
DPF, ~ 1( ”3"] (2.5)
2 /ua,/l

where p, is the absorption coefficient, and ', ; is the reduced scattering coefficient at

wavelength A.

To remove the effect of scattering two successive measurements, yield the differential
value of optical density and the procedure can be described as,

OD; = 0D finai — OD; initiai

= > &,.AC;.d.DPF, (2.6)
i=Hb.HbO,
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Now the effect of scattering is cancelled. Since each chromophore has a specific
extinction coefficient and differential pathlength factor, measurement with two
wavelengths leads to:

AOD = M x AC (2.7)
Where the values of OD, C, and M are given below.

50D <| 290 (2.8)
AOD,,
__ [AC ]
A0 - { 02 (2.9)
ACym, |
DPF o T\
W - dx €HbOy, 2y EHDO, Ay y A (2.10)
Eqtb,a,  EdHbA, 0 DPFy,

From (2.8) we get a transformation from light output change to change in blood
chromophore concentrations. Using the blood chromophore concentrations as given in
(2.9), we can define two other parameters; those are oxygenated blood concentration
(OXY) and blood volume (BV) by the following relations,

OXY = AC0, —ACym, (2.11)

BV =ACk0, + ACym (2.12)

2.2.3 The Characteristics of fNIR Signals: Basically, from the measurement of
hemodynamics in the form of optical signal, MBLL gives us the value of dHb and
HbO, concentration. From the higher concentration of HbO, or the lower
concentration of dHb, we come to know the activation of the region of human brain
because the HbO, and dHb signal always shows the negative correlation. The
continuous raw (containing physiological noises) fNIR signals (HbO, and dHb) for a
particular mental activity of a specific channel are given in Figure 2.5. In this
figure, it can be found that the signals are negatively correlated. Generally, the raw
fNIR signals are mixed with some physiological noises. When we are interested to
remove the noise from fNIR signal, it is obvious to know the frequency spectral
characteristics of fNIR signal. The power spectral density (PSD) of a typical fNIR
(HbO,) signal has been given in Figure 2.6. From the spectral information of fNIR
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signal, it is generally expected to contain four frequency bands centered on 0.7Hz,
0.2Hz, 0.1Hz, and 0.03Hz [18] - [20]. The neural activation due to hemodynamic
response is embedded in the 0.1Hz and 0.03Hz bands. The 0.8Hz and 0.2Hz bands

are corresponding to the heart rate and respiration, respectively.

15 |

— HbO,
——dHb A

1A A WA
20 )

_500\,/"\ /\/N\A A
LA S
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¢

Figure 2.5: Example of raw fNIR signal (both dHb & HDbO,) of a particular channel. It is easily
discernable that these two signals are negatively correlated.
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Figure 2.6: The PSD of an {NIR (HbO,) signal. The magnitudes are not normalized in this figure.
The numerical values of frequency spectra are connected by b-spline interpolation.
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The 0.03Hz band is known as B-waves and it is very low frequency oscillations
(VLFO). It is assumed to reflect the periodic variations generated by the various
brain stem nuclei in the vasomotor tone of cerebral arterioles [21]. The 0.1Hz band
consists of vasomotive signal (rhythmic dilation and contraction of the pre-capillary
sphincters in the cortical capillary beds), B wave, and M-wave. Therefore, this band
is considered by far the most influential spectral band on event related optical signal.
In this circumstance, different researchers [22-29] proposed to remove noise by
considering different frequency bands like 0-0.1 Hz, 0-0.14 Hz, 0.03-0.1 Hz, etc. In
this work, all fNIR signals are filtered to remove all the signal components greater
than 0.1Hz with a low pass 20 order FIR filter or its equivalent Savitzky-Golay (SG)

filter as instructed in [30].

2.2.4 Hemodynamics of Voluntary and Imagery Movements

A number of stimuli have been used for BCI purpose such as arithmetic test, mental
work load, visual stimuli, auditory stimuli, etc. The review work [31] has shown that
the mostly used stimuli for BCI purpose are motor imagery. All other stimuli except
motor imagery need some extra staffs for creating the proper stimuli for neuro-
activation. Since we move our upper and lower limb all the time of our
consciousness, this work is very easy to consider as neural stimulation as well as it
needs no basic training for the participants. The movements we actually execute by
our voluntary muscles are called voluntary movements (like movement of hands, feet,
tongue, head, finger, etc.) but the planning of the movements of any organ is called

imagery movement which is a mental work, actually.

The voluntary movement of an organ of our body is controlled by our brain with a
series of tasks. When we think to move an organ, the motor area of prefrontal cortex
make a suitable plan for that movement and send a message to the motor cortex
which is situated in the central part of our brain. This motor cortex is the lateral
part of the frontal lobe. The motor neurons become excited and activated with the
frontal cortex message and send the command to the specific voluntary muscle to
perform the task [32|. Suppose that the task is to grab a pen or a cup. When we
touch the pen and cup, the sensory motor neurons get a message from the muscle
nerves and the brain decides the performance of the voluntary movements. Such a

procedure is given in Figure 2.7 illustrating the neural connectivity mechanism of
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the planning to completion the voluntary movement related tasks. Therefore, we
found that there is a relation of voluntary movement related hemodynamic
activation in prefrontal and frontal cortex. There are several research works those
have shown that the imagery movements create same pattern of hemodynamic
activation properties with lower activation level. The activation of voluntary and its
imagery movement are created in a same place of the brain. One of the significant
research works [33] compared the activations of voluntary and imagery movement of
hands from the primary motor cortex, somatosensory cortex, and prefrontal cortex
by fNIR modality. The main outcomes of this research work were presented by two
significant graphs. The corresponding research outcomes of this research work are

reproduced and presented in Figure 2.8 and Figure 2.9.

From the results we find that in both movement of left hand and right hand in
voluntary and imagery manner create activation in both the left and right lobe of the
brain. In ever cases, it is clearly observable that the voluntary and imagery
movements created almost similar activation pattern but the activation strength of
the voluntary movements are higher than that of the imagery movements. In
addition, the left hand imagery movement creates the stronger activation in the right
lobe of the brain and vice versa. In result, the important information about the
neuro-activation is that the concentration change in the HbO, is much greater than

that of the concentration change of dHb in every case and in every lobe.

The motor neurons carry the message to the muscles to move

Sensory cortex receives the message after completion of the movement

Prefrontal lobe motor areas plans and commands for movement

Suppose that the brain wants to grab a pen by the hand. To
conduct such a movement at first the prefrontal lobe plans
to move the hand and this command is sent to the motor
cortex. The motor cortex becomes activated and sends the
message to the muscle of the hand. Then the hand will move
and grab the pen. As soon as the hand touches the pen, the
nervous system of hand sends the message to the sensory
motor neurons. This makes a complete activation cycle in
brain regarding movement execution.

Figure 2.7: The movement related brain activations and the significance of the brain lobes in cyclic
operations of a complete movement cycle.
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The results given in Figure 2.9, describes that the activation pattern in PFC, MI,
and SMC are similar. In some cases, their activation strengths are also same for both
the voluntary and imagery movements. The hemodynamic properties of these three
regions of interest (ROI) are correlated to each other. Therefore, for a significant
discriminative signal acquisition we should not concentrate on the central lobe, only,
it is also necessary to consider the hemodynamic pattern of the prefrontal cortex as
well. This consideration is assumed to be more significant for multiple class stimuli
like feet movements in imagery manned. In addition, since the imagery movement is
one kind of mental activities there should be a strong correlation of the mental

workload to the prefrontal lobe.
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Figure 2.8: These results are based on the 5 sec tasks + 20 sec hemodynamic observation. Here, the
mean activation changes in HbO, (solid lines) and dHb (dotted lines) regarding the response of a left
and right hand movements in both voluntary and imagery manner. The most significant channel
information about mean activation changes in HbO, and dHb has been represented for both
hemispheres: right hemisphere (left panel) and left hemisphere (right panel) [33].
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Figure 2.9: The change in concentration of HbO, (solid lines) and dHb (dotted lines) for right hand
(left panel) and left hand (right panel) movement execution (upper panel) and imagery (lower panel)
of three positions of interest: prefrontal cortex (PFC); primary motor areas (MI); somatosensory

motor areas (SMC) regarding the left and right hand movement for both voluntary and imagery tasks
[33].

2.3 Fundamentals of Electroencephalography (EEG)

A human brain consists of more than 100 billion neurons (unit of brain cell). The
connections among these neurons make the complex path and communicate with
each other. These communication procedure is electrical that means they
communicate with each other by electrical impulses. Therefore, the neural activation
of a specific region means indirectly the higher rate of change of electrical activities.
The method electroencephalogram or EEG is actually the recording of this change of
electrical potentials generated by activation of the neurons of the human cerebral
cortex. In this section we describe the procedure of the EEG generation and its

fundamental properties.

2.3.1 How is EEG Generated?

There are two types of cells in our brain those are called nervous cells or neurons and

glial cells. In case of the both cells, the resting potential is nearly -80mV. The
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difference of the concentration of cations: Ca’, K', Na' and anions: CI', large organic
anions create this potential difference. Actually, the difference of potential is
sustained by the active cation K to the inside of the cell and Na' to the outside of

the cell using the energy provided through the metabolic processes.

Electric activity of neurons is demonstrated by production of action potentials and
postsynaptic potentials (PSP). Action potentials are occurred when the electrical
excitation of the membrane surpasses a threshold. PSP are the sub-threshold
phenomena. The action potential generation is correlated with the prompt increase of
permeability for Na  ions. The consequent influx causes a prompt increase the inside
cell potential and the polarity changes from negative to positive (about +30 mV).
Therefore, a subsequent increase is occurred in membrane permeability of the K
ions and a decrement is occurred in the permeability of the Na ions. This makes
negative the inside of the cell, again compared to the surrounding medium. Such a
way, action potential of spike-like shape characteristic is produced. It obeys the ‘“all
or nothing”’ rule. This rule can be concluded as: “For supra-threshold stimuli, a pulse

of constant amplitude is generated and for sub-threshold excitation, the neuron

doesn’t fire” |34].

If we want to visualize and monitor the microvolt range of cerebral electrical activity
(common EEG pattern in temporal domain), there must be a sufficient duration with
sustained strength. To place it inappropriately, one has to catch a platform on which
both the examiner and the examined brain discover themselves in the similar time-
space scale. Only synaptic activity willingly achieves those principles and is most
important foundation of EEG potentials. The synapse of the brain tissue works like a
battery driving current in a small loop. Both excitatory postsynaptic potentials
(EPSPs) and inhibitory postsynaptic potentials (IPSPs) subsidize to the synaptic
activity logged as EEG [35]. A demo procedure has been given in Figure 2.10.
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Figure 2.10: The procedure of the extracellular voltage field generation from graded synaptic activity
[34]. Here, the relationship between the polarity of site of dendritic PSP and surface potentials has
been illustrated.

2.3.2 EEG Acquisition Method

For measuring EEG signal from cerebral cortex, electrode placement is a major
concern. For noninvasive recording of EEG signal, 10-20 system is the most widely
acceptable technique. To understand the electrode placement on the scalp of human
brain according to the international 10-20 system we have presented the following
illustration which is given in Figure 2.11. This figure represents the external circle
at the level of the nasion and inion. The inner circle represents the temporal line of
electrodes. This illustration is responsible for an advantageous stamp for the sign of
electrode placements in tedious recording. The “10” and “20” are inter-electrodes
distances that is either 10% or 20% of the total font-back or right-left distance of the
skull based on the number of the electrodes [36, 37|.
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Figure 2.11: A single plane projection of the head, showing all standard positions and the location.
This figure is redrawn according to the recommendation of the international federation [3§].

2.3.3 Rhythmic Properties of EEG Signal

The EEG signals are often regarded as a random signal. But the information of EEG
signal is often described by its rhythmic activities and transients. The rhythmic
activities are associated with some specific frequency bands and they play crucial role
to make the EEG signals meaningful. The major frequency bands of EEG signals are
characterized by the name Delta, Theta, Alpha, Beta, and Gamma. Here, these
bands with frequency limit and their characteristics have been shown in Figure

2.12.

Delta (8): This rhythmic activity is found in frequency ranges between 0.5 to 3 Hz.
Generally, the amplitude of this band is between 100 and 200 ¢V in amplitude. Delta
band signals are mostly dominant in frontal lobe and regarded as the highest in

amplitude and the slowest in waves. The delta rhythm is primarily responsible for
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the mental states related to deep sleep, unconsciousness, serious brain disorder, and

waking [39].

Theta (#): The theta band components are found in frequency ranges within 4 to 7
Hz with amplitude of less than 30 uV. Theta waves are originated in the central and
temporal lobe of the human cortex and it is considered that this band is responsible
for drowsiness, resting with eyes close, emotional stress or frustration, and deep

meditation [39].

Filtered Full Band EEG Signal
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-200 : :
0 500 1000 1500
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_50 | |
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Figure 2.12: A typical full band EEG signal and its different rhythmic band signals.
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Alpha (a): Frequency ranges from 8 to 13 Hz are regarded as the alpha band.
Alpha band signal’s amplitudes are found within the amplitude of 30-50 uV. This
band appears in all over the cerebral cortex which is typically concomitant when a
person is in a relaxed state or in stress and tension. When a person awake from the
resting state and starts to think, blink then o waves disappear. This is called alpha
block. If a person is active with eyes open, o power remains low and in resting

conditions with eyes closed, o power increases [40].

Beta (f): The frequency range of beta band lies within 14 to 30 Hz with low
amplitude (5-20 uV). Beta band is generally generated in the frontal area as well as
in the parietal lobe. When the brain is actively engaged with mental activities

(concentrating, thinking, alert), it generates beta waves [41].

Gamma (p): This electromagnetic wave has the frequency above 30 Hz with
amplitude of between 5 to 10 pV. It is connected with several cognitive activities,

perceptual tasks, and motor functions [39].

Mu (p): The range of p is considered 10-12 Hz. It is observed that p partially
overlays with other bands. During resting state it replicates the synchronous firing of
motor neurons. The summation of the power of the mu and beta rhythms calculated
from common spatial pattern is closely related to the event-related phenomena like

imagery movement [42, 43].

2.3.4 Noise Sensitivities of EEG signal

EEG signal is very noise sensitive signal. During data acquisition power line noise
(50Hz or 60 Hz) is surely incorporated with EEG signal. In addition to that, some
other artifacts are also induced in EEG signal those are created from cardiac activity,
electrode displacement, muscle artifact, and ocular artifact. These artifacts have
some illogical distribution. It is very important to remove these artifacts from EEG
signal for further processing or application. Some artifacts can be primarily removed
like electrode displacement. With proper caution and concern can save the signal
from such artifacts. Cardiac activity is a slow process that can be easily removed by

high pass filtering technique.
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The major concern about artifact removal from EEG signal is ocular and muscle
activity or electrooculography (EOG) signal impurity removal. To remove the EOG
impurity from EEG signal, the most logical technique is to use a separate channel
that can be capable to acquire only EOG signal. The distribution of EOG is quite
dissimilar to EEG signal. Therefore based on the information of EOG, we can apply
ICA (Independent Component Analysis) to extract the EOG impurity from EEG

signal and remove it [44, 45].

2.3.5 Spatiotemporal Resolution of EEG

EEG signal has a very high temporal (~10ms) resolution but its spatial resolution is
poor (3-6 cm). Due to very high temporal resolution still EEG technology has a great
importance in the field of BCI. Nonetheless, the main concerning issue is its spatial
resolution. Because of poor spatial resolution it is quite difficult to allocate the
position of different physical or mental activities. As a result misclassification can be
often occurred for multiple event classification. Modern researchers suggest that the
information of EEG signal can be added to the fNIR signal. This combination or
hybridization of fNIR and EEG signal would be nice approach to take challenges of
spatiotemporal resolution. Eventually, it can be assumed that the combination of
fNIR and EEG signal in appropriate way facilitate to find the high classification

accuracy during multiple class classifications.

2.3.6 EEG Signal Behavior for Imagine Movement

A number of research works [43, 46-48| based on movement classification by EEG
signal have claimed that the activation related to voluntary and imagery movement
is occurred in the motor area of the human brain. Motor area is the part of frontal
lobe as given in Figure 2.13. It is actually situated in the central part of our cortex.
Therefore, the channel named by Cz, C3, and C4 are closely associated to the
activation acquisition through EEG. It is also found from some research work that
there is some activation occurred in the frontal lobe as well. The channel named by
F3, Fz, and F4 are also necessary to consider for the EEG signal acquisition of
multiple motor tasks. Most of the researchers designed their classification mechanism
by the feature extraction of these channels among multiple channels regarding EEG

acquisition.
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Figure 2.13: Human brain and its major lobe allocation.

Generally, the movement of voluntary and imagery influent the band are mostly
responsible in the alpha and beta band. In this work, the PSD of alpha and beta
separately calculated with time series EEG signal with a suitable window range so
that the variation in the power level of the EEG signal due to voluntary and imagery
movements can be observed. Finally, it has been added to the fNIR signal to produce

the neuroimages.

2.4 Conclusion

This chapter has been presented the basic mechanism of the optical and electrical
neuroimaging methods in the context of fNIR and EEG modality. In addition, the
acquisition technologies with multiple channel information from the brain are
discussed in this chapter. The voluntary and imagery movement related changes in
the neuro-electric and hemodynamic aspects are also widely presented in this
chapter. In the next chapter, we would like to present the processing steps of the

fNIR and EEG signal with their mathematical interpretations.
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CHAPTER 3

Signal Preprocessing Techniques

3.1 Introduction

This chapter describes different signal processing techniques regarding this thesis
work. Since this research work is associated with both the fNIR and EEG signal, the
signal processing techniques to achieve the objectives of this dissertation are
elaborately discussed in this chapter. The mathematical clarifications about the
signal and image processing techniques, classification methodologies, combinations of
fNIR and EEG signal to prepare the neuroimages are discussed widely. The
methodologies of this chapter are implemented for the results found in Chapter 4 and

Chapter 5.

3.2 fNIR Signal Processing

In the context of fNIR signal preprocessing, several techniques are necessary to be
performed to make it ready for further analysis like filtering, baseline correction,
compression, feature extraction, classification, modeling, etc. The preprocessing steps
are to perform in chronological order and this series of signal processing methods are

to perform as presented by the following flow diagram in Figure 3.1.

At first, the raw fNIR signal is tested to check its perfectness in the context of signal
quality. Generally, in this case sliding window motion artifact rejection algorithm
(SMAR) [1] is applied to the raw signal to reject the effect of motion artifact from
the signal. After that, signal is sometimes compressed to reduce the dimension of the

signal based on the similar correlated characteristics of the signals.

Raw fNIR Acquisition Perfection Compression Filterin Baseline Further
Signal Test by SMAR P 9 Correction Analysis

Figure 3.1: Preprocessing steps of raw fNIR signals and their chronological order.
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3.2.1 Motion Artifact Rejection by SMAR Algorithm

Sometimes the acquired fNIR signals can be infected by head movement and some
special noises are introduced in raw fNIR signals. Due to the motion of participant
during optical brain imaging through fNIR causes coupling or the changes of pressure
in the light sources and detectors. This reason and its corresponding effect can be
captured within the raw fNIR signals as noise. This noise is found as spikes or burst

noise with much higher or lower amplitudes than regular cortical activity.

Additionally, the temporal sequences of these abrupt variations by reason of motion
artifact in the raw fNIR signal are much faster than the typical raw signals. Sliding-
window motion artifact rejection or SMAR algorithm can scan the fNIR signal to
identify the segments with such characteristics. This algorithm measures light
intensity at two different wavelengths (730nm and 850nm) and also a dark current
condition to estimate the existence of any possible ambient light leakage. The detail
mathematical interpretation regarding the SMAR algorithm is given in appendix

section.

3.2.2 Compression

Since the data are acquired with 16 channels, the processing could have faced the
curse of high dimensionality. To check the actual dimensions, the data was
transformed by principal component analysis (PCA) and we found that the actual
dimensions of the signals are 4 instead of 16. The result of PCA has been shown in
Figure 3.2 with the similar channel numbers of ilk dimension. The resulting 4
dimensions are termed as Left Lateral (LL: channel 1, 2, 3, 4), Left Medial (LM:
channel 5, 6, 7, 8), Right Medial (RM: channels 9, 10, 11, 12), Right Lateral (RL:
channels 13, 14, 15, 16). The signals having the same dimensions are to average
which is also known as common averaging method. Therefore, the 16 channel
information become compressed from ix16 to ix4. This compression helps to reduce
the feature dimension which is very important for achieving high classification

accuracy in machine learning approach.
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Figure 3.2: This figure presents the actual signal dimensions in Eigen-space which is formed by the
three principal components of PCA analysis. The figure shows four linearly uncorrelated solution
vectors with the channel number.

Therefore, the prefrontal cortex can be divided into four major areas of interest those
are- LL, LM, RM, and RL. [2]|. It is found that the 4 signals corresponding four
channels in every defined region show very strong correlation (0.95 < r < 1).
Therefore, these four signals can be averaged to compress the total dimension ix16

to ix4. Here, i means the sample number. If, a signal, X(N) is of ix16, then the

i x16

procedure to reduce its dimensions according to the previous description as,

1 d
z><1 = Z Z_: z><A (31)
18
N)ixl = Z ZX(N)ixk: (3~2)
k=5
142
N)m = Z ZX(N)z'xk; (3~3)
1 6
RL(N)ixl = Z ZX(N)M: (3~4)
k=12
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3.2.3 Filtering

To filter the noisy fNIR signal generally a low pass filter based on FIR hamming
window method is applied. The order of FIR filter should be considered as 20 for 2Hz
fNIR signal. The cut-off frequency should be taken 0.1 Hz because meaningful
information remains usually inside the band [3]. An FIR filter of order M with the

input sequences x|n| and output sequences y|n| is described as [4],
y[n] = bya[n] + bya{n — 1)+ byan — 2]+ ...+ by _yz[n — M +1]

= Afbkx[n — k] (3:5)
i=0

In (3.5), b.denotes filter coefficient or weight. We can express the output sequences

as the convolution form of the unit sample response of hln]as,

M-1
yln] = D hiklaln — k] (3.6)
k=0

Here, b,=hlk] and k = 0, 1, 2, 3, ....... , M-1. In this work, we are interested to

design window based linear phase FIR filter. For this method, we have to begin with

the desired frequency response specification H,(w)as well as we also find out the
corresponding unit sample response, hy[n|. Frequency response, H;(®)and unit sample

response, hy[n]are related to each other by Fourier transform as,
Hyw) = Shfue ™ where, hin] = —= [ (@}’ do 37)
o 2r el

Thus, with our desired frequency response, H;(®), we are able to determine the unit
sample response hy[n]by estimating the integral in (3.7). Here, it is a fact that the
unit sample response fy[nlis infinite in duration and it is necessary to truncate at

some point. If the FIR filter designed for the length of M, it must be truncated at
n=»M-1. Truncation of hy[n|to a length M-1 is equivalent to multiplying hy[n]by a

window, w[n]of length M. There are a number of window functions named by

Rectangular, Hamming, Hanning, Blackman, Kaiser, Lanczos, Tukey, Barlett, etc.
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Figure 3.3: The characteristics of Hamming window in the time domain (a) and frequency domain
(b) for 20 order low pass linear phase FIR filter.

By default, the Hamming window is considered to filter the fNIR signals in this

work. The Hamming window is defined by the following equation [4].

0.54 — 0.46 cos -2 n=012 ..., M—1
w[n] = M1 (3.8)

0, otherwise

The relation given in (3.8) represents the time domain characteristics of the
Hamming window to be applied in low pass FIR filtering. The time domain and
frequency domain characteristics of 20 order low pass Hamming window are shown in
Figure 3.3. According to the relationship explained by (3.8), the unit sample

response of our desired filter will be as,
h(n) = hy(n)a(n) (3.9)

A number of research works [5-8|, used SG filter to remove the physiological noises
from the fNIR signals. The basic technique of SG filter is to fit a data vector with
the different polynomial order. A center data point with a set of the data point at
the behind and front create a frame and then the data set is fitted with considering
the polynomial order. The smoothed points are computed and the central point is
replaced by the new one and the frame is shifted to consider the next center point.
More succinctly, SG filter is a least square error polynomial fitting procedure that is
deliberated as piece-wise fitting of a polynomial function to the signal. This time

domain filter has some benefits over the FIR filter. The Euclidian distance of FIR
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filter between the signal variations related to the original and noisy signals is higher
than that of SG filter. The higher Euclidian distance for the FIR filter is due to its
shifting effect (group delay). This shifting effect may damage the structure of the
original signal pattern in the time-frequency plane. Since SG filter has the intrinsic
ability to remove the high-frequency noise from the signals, we are concerned about
the applicability of SG filter with optimal conditions to remove physiological noises

(high-frequency noise) from the fNIR signals.

In the procedures of SG filtering technique, the fitting is done by the least square
error estimation. Suppose, we have a sequence of samples x|n| of the fNIR signal. We
are interested to perform a smoothing or filtering procedure by SG filter. SG filter is
designed based on local least-squares polynomial approximation. Suppose, the
moment of the group of 2M+1 samples and their center is considered at n=0. In case

of any polynomial of n, the coefficients can be represented as,
n .
fln] = Znya]‘ (3.10)
=0

According to the least-square error, we are interested to minimize the error between
raw actual value and estimated value. Therefore, the consequent error function can

be predicted by the following consideration given in (3.11).

M

e= D (fln]—an])’

n=—

M n 2
= Z { njaj—x[n]J
0

n=—M \_j=

(3.11)

If we consider any other group of 2M+1 input samples, the analysis will be the same.
Here, M is the half width of the total sample length of the group. Therefore, the
actual frame size is 2M+1. According to the original paper by Savitzky and Golay
[9], the set of 2M+1 input samples within the approximation interval is effectively
combined by a fixed set of weighting coefficients that can be computed once for given
polynomial order N and approximation interval of length 2M+1[10]. Eventually, the

output samples can be computed by a discrete convolution of the form,
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M n+M
yin]= D hmlaln—m] or yn]= D hn—mam] (3.12)
m=—M m=n—M

The impulse response could be used to compute the output samples instead of using
the polynomial fit process at each sample with its 0™ polynomial coefficient. The
mathematical explanation is described in detailed nicely in [10]. In addition to that,
the coefficients of different frame and order are given in [9]. Therefore, with

coefficients of different orders and frame sizes of SG, the signal is filtered.

In addition to that, by SG filter with appropriate order and frame length same
filtering effect can be achievable which is shown in our research work [11]. A
concluding remarks of this research work has been presented by Table 3.1, where we
find the equivalent performance of the FIR filter and SG filter with their
specifications. For smoothing the fNIR signals, we can use SG filter because of its
special benefit i.e., SG filter is better than FIR filter for removing high frequency
contents from fNIR signals. Because, in case of FIR filter, Euclidian distance between
original and filtered signal is more than that of the SG filter [12]. Furthermore,
employing SG needs no delay correction as FIR filter. The results of FIR filter and
corresponding SG filter on the raw FIR filter has been given in Figure 3.4. From
this result we get that the output by the two methods are almost similar after being
filtered.

Table 3.1: Recommended optimal conditions of SG filter for removing physiological noises from fNIR
signal [11] with compared to the conditions of FIR filter.

- FIR Filter Specification Opt:)’f?gl(;c;,’ﬁ?;lons Level of
Number | Order Number Cut—off(IF_Ize;quency (Order, Frame Size) Corre:.atlon,
1 20 0.1 (3,21) 0.9916
2 30 0.1 (1,11) 0.9912
3 40 0.1 (1,13) 0.9908
4 20 0.14 (1,7) 0.9961
5 30 0.14 (3,19) 0.9942
6 40 0.14 (4,27) 0.9921
7 20 0.03-0.1 (1,9) 0.9937
8 30 0.03-0.1 (3,19) 0.9910
9 40 0.03-0.1 (4, 31) 0.9790
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Figure 3.4: Filtering performance comparison between SG and FIR filter for {NIR signal for both
HbO, and dHb signals [11].

3.1.4 Baseline Correction

For each trial of the fNIR data had been corrected by subtracting baseline from the
original signal. Baseline was calculated from the average of the first five seconds of
the task. This consideration helps to represent the activation in such a way that the
starting of the task, the hemodynamic activation remains at the baseline and that is
zero or the value closed to zero. Baseline is calculated from the average of the first 2
seconds of the task. This consideration [13, 14] ensures the initial signal points
regarding each trial to remain at the zero level or the value closed to zero. After
baseline correction, the signals can be considered for the further analysis like

statistical inference, feature extraction, classification, etc.

3.3 EEG Signal Preprocessing

For EEG signal preprocessing, the most important action is to filter the EEG signal.
EEG signals are filtered in several steps because EEG signal is very noise sensitive
and complex in nature. A number of noises are incorporated in EEG signal like
power line noise, eye blink, EOG etc. those are already discussed in previous chapter.
To filter the EEG signal several steps have been considered in this work those are
discussed gradually. In addition, the most significant features from EEG signal was

extracted by relative PSD calculation from alpha and beta band of EEG signal.
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3.3.1 Notch Filter

In the field of signal processing, a notch filter is a special type of band-stop filter.
A band-stop filter permits to pass all frequencies except a specific range of frequency
band. Therefore, it acts as the opposite characteristics of a band-pass filter. The
band-stop filter rejects a very narrow frequency band with very high quality factor is
often called a notch filter. The characteristic of a notch filter is given in Figure 3.5.
For a 256 Hz sampling rate EEG signal, a notch filter has been designed to remove
50 Hz noise. From the magnitude response of the notch filter in Figure 3.5, it has

been found that the 60 Hz frequency will be stopped by the filter.
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Figure 3.5: Magnitude response of the 50 Hz notch filter with 256 Hz sampling rate. The frequency
has been normalized here and the magnitude has been presented in dB.

3.2.2 Elliptic Filter

The elliptic filter provides sharp cut off frequency and less values of filter order than
the other TIR filters like Chebyshev, Butterworth, Bessel, etc. [15]. It is also known
as Zolotarev or Cauer filters. This filter shows equi-ripple characteristics both in the
pass-band and stop-band. Since elliptic filter achieves the minimum order value for a
given specification, it is considered as optimal filter [16]. Eventually, it is slightly
complex to design and it often needs several complex algorithms to design and
implement it. The response of an elliptical filter in the magnitude-square aspect in

frequency domain can be presented as [16],
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1+8272(%)
(0)

C

|H (io)| = (3.13)

Here, @wand o, are for the frequency and cut off frequency, respectively. In
addition, the pass band ripples are presented by . Here, Jy(e)is the N order

Jacobian elliptical function. Though analysis to solve the relation (3.13) is difficult,

the order calculation procedure is compact at all [17-19] and which is given by,

v VR vk

= (3.14)
2
vk (V1= 1)
@, o
In (3.14), K = —and k= AQ—Where, @, is stop band frequency and A is stop
Wy -1
T do
band attenuation. Besides, w(k)= J. which is a complete elliptical
o V1— k2 sin@

integral. This elliptical filter is used to filter the signal according to the interest of
the frequency band of the EEG signal. With arbitrary pass band and stop band
ripple, the frequency response of an elliptical filter having 5™ order has been given in

Figure 3.6.
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Figure 3.6: Frequency response of an elliptical filter of 5™ order with arbitrary pass band and stop
band ripple.
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3.2.3 Eye Blink Removal

Eye blink removal is an important step of EEG signal filtering. Eye blink removal is
a complex process. Various proposals have been proposed to remove eye blink from
EEG signal. The most significant eye blink removal technique from the EEG signal is
wavelet based ICA. We have applied this method to remove the eye blink from the
EEG signal. To do this, we have used the enhanced automatic wavelet independent
component analysis (EAWICA) toolbox [20] on or EEG data. The detail about the
EAWICA has been added in Appendix.

3.2.4 Wavelet Packet Transformation based Feature Extraction

The EEG signals are complex in nature and its properties belong both time and
frequency domain. Therefore wavelet analysis is quite logical for the EEG signal
feature extraction. In this work the EEG signals are separately utilized to extract
feature using wavelet packet transformation (WPT) so that single modality EEG-
based classification performance of multiclass problem can be measured. The WPT is
a concept that is different from conventional wavelet transformation (WT). WPT
decomposes both the approximate coefficients and the detailed coefficients. The
extracted coefficients through WPT up to a defined level could be considered as the
features of the EEG signals, because the value of the coefficients depends on the time
and frequency domain characteristics of the EEG signal. This concept has been
utilized in this work for feature extraction from the EEG signal for classification
through conventional classifiers like artificial neural network, support vector

machine, k-nearest neighbor, linear discriminant analysis, etc.

The WPT may be considered as a subspace tree. We can present the original signal

as 71, which reflects the root mood of the tree in the original signal space.

0,0

Generally the notation j and k in 77,, denotes the scale and sub-band space. The

WPT decomposes an original signal 77  into two different subspaces: an

J.k

approximation space 77, — 77, ., and a detailed space, 17, — 1T This space

k j+1.2k+1 "

decomposition utilizes the concept of dividing the orthogonal basis function

{¢,(t—2v’k)}k€z of the original signal space into two new orthogonal bases, 1)
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and 1) {W‘M(t—T”k)} of detailed

keZ

{¢7+1(t—2"*1k)}ksz of approximate space /7,

+1,2k

space /7

j+1,2k+1 "

Here, ¢ () and ¥ (t) represents the scaling and wavelet functions,

respectively. These functions are equated as [21, 22],

L 4 t=2k (3.15)

¢/.k(t)zﬁ¢( 5 )

‘//j.,k(t): 1, l//(t_?jk) (3.16)
e

Here 2’ is the scaling parameter that measures the scaling or compression degree of
the original signal. In addition, 2’k is the location parameter or translation
parameter that indicates the time location of the wavelet. The aforesaid process can
be repeated Jtimes, where Jmust be less than log, N. Here, nis the total number
of samples in the original signal. This process of WPT J x N founds coefficients.
Therefore, at any level of transformation j [j=12,...,J], the tree has N/(2j)
coefficient blocks. This iterative process in a WPT can be treated as a tree-like
structure, where the tree nodes represent the subspaces of different frequency
localization characteristics. The corresponding decomposition procedure can be

presented as Figure 3.7 [22, 23|.

Iy

L L L L

HZ,O H2,1 1_IZ,Z H2,3

| | |

(Mo | [ | (e | [T | [T ] [Mhe | [The | [y |

Figure 3.7: Graphical representation of wavelet packets decomposition method that decomposes /7,

into tree-structured subspaces
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3.2.5 Power Spectral Density Calculation

For random signals, it is only possible to propose probabilistic reports about the
dissimilarity of the signals based on the probability of occurrence. To assess EEG
signal PSD as a frequency domain feature provides crucial information about the
distribution of power. Power spectrum or spectral analysis of the signal z(t) is the
distribution of power over its frequency components. In this research work, beta PSD
is calculated from each to point out the variation of PSD (uV?/Hz) according to the
different tasks using the FFT algorithm. A random signal usually contains finite
average power which is characterized as average power spectral density. The average

power, P of the signal z(t) during the total length of the signal period is defined as,

T
P= 7}2130 _T|:1:(t)| dt (3.17)

The mathematical relation given in (3.17) is for a continuous time signal. For
discrete time signal, the notation z(t) becomes 2(n) where t=nT (T is sampling time
interval and n is the sequence number). Therefore, for analyzing the frequency
content of the discrete time signal, PSD is the Fourier transform of the auto-

correlation function which can be represented as [24],

P(e”)= Tr(k)e ™ (3.18)

In (3.18), r (k) means autocorrelation for the periodic signal. But for the ergodic

process,

> a(n + k) ® x(n) (3.19)

1
k)=1Li
r,(k) Lzm{2N 1.2 }

N>

Where ‘®’ denotes convolution of two signals [24, 25].

PSD calculation adopting windowing method is very important for nonparametric
such as EEG signal. For nonparametric power spectral density estimation, the Welch
method is most renowned method than the other methods (Periodogram and
Bartlett). Let’s assume that the successive sequences are offset by D points and that

each sequence is L point long, then the i sequence is,

z,(n) = z(n + iD) (3.20)
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Thus L-D points are overlapped. If entire U data points are covered by K sequences

then,
N=L+DK -1) (3.21)

According to the previous conditions, Welch’s method is written as,

2
Fole) = KLU P o“nzéw e+ D) 522
Therefore, the expected value by Welch’s estimation [26] is,
~ . . . 2
Jo _ JoN x jo
ElP, (7)) = B{Py (7)) = anUPf”(e ) e (3.23)

The absolute power (AP) of a frequency band is calculated by the summation of all
the power values in its frequency range. Relative power (RP) for each band was
originated through articulating AP in apiece frequency band as the percent of the
AP over the two frequency bands. If any band relates to specific neural activities, its
relative power also increases with respect to resting condition. Therefore, relative
power plays important roles in finding the specific electrical activities from the EEG
signal. In this research work, AP is calculated from 1 to 100 Hz (50 Hz already
filtered by notch filter). Due to the aforementioned consequences, the RP is

calculated as [5, 26],

P )
RP(¢y,¢,) = P(gllgg))xlm% (3.24)

Here, P indicates the power, RP represents the Relative Power, and ¢, & ¢, is the

low and high frequency, respectively.

3.4 Combining fNIR and EEG Signal to Produce Neuroimages

A two dimensional data arrangement of the combined fNIR-EEG data has been
proposed in this work. Since the sampling rate of fNIR (2Hz) and EEG (256Hz) are
not similar, the data of EEG signal has been transformed into frequency domain to
represent it into the similar sampling rate of the fNIR signal. According to this
proposal, fNIR signal length was 30 sec (10 sec stimuli + 20 sec activation). There
are 16 channels of both HbO, and dHb data. The 16 channel data of HbO, and dHb

are arranged as the procedure shown in Figure 3.8.
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{ INIR Data of 16 Channels  H{EEG data of 6 Channels}

dHb Data
A_

Time

HbO, Data
AN

g T e Y
Data of Left Data of Right PSD of PSD of
Frontal L.obe Frontal T.obe Beta Band Alpha Band

Figure 3.8: Combining the fNIR and EEG data to prepare the spatiotemporal neuroimages for
classification by CNN.

Now, the data samples per channel become 120. Since the EEG data has been taken
as the same time frame of the EEG signal during the concurrent fNIR-EEG
recording. As, a result a suitable window length can be taken with 50% overlapping
mode to calculate the PSD of the alpha and beta band of the EEG signal to get the
exact 120 samples from per channels. In case of the EEG signal, only frontal and
central channels are taken into account. Therefore, in total 6 channels (F3, Fz, F4,
C3, Cz, and C4) are considered for the PSD calculation. We exclude the parietal (P3,
Pz, and P4) lobe EEG data from the acquired 9 channels. The PSD data of alpha
and beta band of the EEG signal are placed at the side of the fNIR data as given in

Figure 3.8. These data are used to make the spatiotemporal neuroimages for using
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in CNN classifier. Furthermore, before applying the combined fNIR-EEG data to
make the required neuroimages the HbO,, dHb, alpha PSD, and beta PSD are

normalized separately using the following equation:

7= L Zmin_ (3.25)

Tmax ~ Zmin

Here, 7'are the feature values those are rescaled between the range 0 and 1. On the
other hand, 7' eR" are the actual values of the features. The maximum and

minimum value of the features are presented as 7, and 7, respectively.

{ fNIR Data of 16 Channels H EEG data of 6 Channels }

dHb Data

Time

HbO, Data

N
PSD of
Beta Band Alpha Band

Data of Left Data of Right PSD of
Frontal Lobe Frontal Lobe

Figure 3.9: Prepared spatiotemporal neuroimage combining the fNIR and EEG data by the proposed
method.
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According to our novel proposal of the fNIR-EEG combined spatiotemporal EEG
data, a typical {NIR and EEG data of a particular stimulus has been considered to
make the neuro-image and the found image is given in Figure 3.9. The colorbar is
given in the right side of the Figure 3.9. Therefore, using the proposed method the
combined fNIR-EEG data can be transformed into images those can be applied to
the input of the CNN. The Matlab code of the image generation has been given in
Appendix. This is a novel approach of presenting the combined fNIR-EEG time
series data because so far our knowledge, no research work has not proposed such

style of f{NIR and EEG data combination process.

3.5 Classification

For classification the voluntary and imagery tasks from the fNIR signal, conventional
feature extraction and classification technique can be applied. Moreover, in this
work, we have proposed a statistical way to classify the fNIR signal utilizing the
proposed activation model of the HbO, and dHb concentration. Although the
proposed classification method is not too powerful to the conventional classifiers, it is
very simple to implement and significant in the results. Here, both the proposed
method and the conventional classification method have been applied to compare the
results. Additionally, to classify the combined information of EEG and fNIR, CNN

has been used. The fundamentals of the CNN have also been explained here.

3.5.1 Proposed Classification Method

Suppose that an fNIR signal is to test whether it is the signal of LH, RH, iLH, iRH,
iLF, or iRF stimuli. The testing signal can be presented as, S, =[5;; S Sny Szl that

contains 4 columns of data of 4 different ROI’s of the prefrontal cortex and every
column of signal contain N number of data sample. The value of £=1,2,3,and 4
indicates the positions (LL, LM, RM, and RL, respectively). Again, we have six

model equations of six different stimuli (voluntary and imagery). The temporal
activation model can be represented as, M’ where the notation 7 =1,2,3,4,5 and 6
(LH, RH, iLH, iRH, iLF, and iRF, respectively) represents the index of the stimuli
and ¢ =(1,2) = (HbO,, dHb) represents the concentration information. Therefore, M,

means the activation model of iLH in HBR concentration. To measure the maximum
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similarity index of the testing signal S, with the models M?, the following error has

been calculated.

. 1 i=N.=4 . o~

ez;,k = 7 Z (SL(Z) - Mz’ )2 (3'26)
N i=1r=1

Therefore, testing with the six different models we get two final error matrices, e;,

and ¢’ for the HbO, and dHb, respectively where,e;, =[ef, €5, €5, e, €5, €rl -

Moreover, the size of e, is 1x24. According to the proposed methodology, the

maximum similarity pattern will show the minimum error. Therefore, the minimum

value in the elements of the error matrix e;, indicates the signal class. Therefore,

the index of the minimum valued element, [

dx

of the error matrix e;, can be found
by applying the following argument,

1

dx

= index(min(e,) = ¢! ,) (3.27)

If the model activation patterns are loaded in the algorithm of data testing in the
proposed sequences, the proposed model suggests that the minimum valued index of
a specific task will follow a fixed pattern. The aforementioned methodology has been
briefly presented with a flow diagram in Figure 3.10. The index for the value of ¢
will be 3, 6, 11, 14, 20, and 21 for all six classes, respectively. This same design can
be regarded as two to six classes. For that proposition, the value of 7ris to set
according to the number of the classes. In this work, classifications of the two, four,

and six class approaches were conducted.

Testing Preprocessing L/ Compare withthe| | Find the index of
fNIRS signal P g model equations the minimum error
Predicted Find the index of

results the task

Figure 3.10: Classification mechanism of the proposed method utilizing the proposed activation
models.

Page | 42



3.5.2 Conventional Shallow Network-based Classification Methods

In the conventional classification approaches, feature extraction is a primary step to
classify the data set. Although there are many techniques to extract features from
the signals like ICA, PCA, CSP etc., these methods are often used in the feature
extraction of the complex signals like EEG, MEG, EOG, etc. for its time and
frequency domain properties. Since fNIR signals exhibit simple time-domain
characteristics, most of the classification techniques need only time domain features
like mean, slope, skewness, median, maximum, minimum, etc. [27-29] to classify the
signals. For classification purpose, the signals are generally separated into two parts:
i) for training purpose and i) for testing purpose. For a 5-fold cross-validation
technique, 4/5 portion of the data is used to train the classifier to make a model and
the rest of the data are used to predict the performance of the model. The training
and testing files are separated with 5-different combinations from the original data
set. Then the overall classification accuracy is found by averaging the results of the 5
different classification accuracies. This training and the testing procedures are shown
in Figure 3.11 where there are two phases: training phase Figure 3.11(a) and

testing phase Figure 3.11(b).

Although “No Free Lunch” theorem claims that no classification mechanism is
entirely superior to the other [30], the most commonly used classifiers in fNIR based
event classification was utilized in this work. The review work [31] found that four
classifiers are repeatedly used by the researchers of fNIR based BCI and those are
linear discriminant analysis (LDA), support vector machine (SVM), k-nearest
neighbor (kNN), and artificial neural network (ANN). These four classifiers were
used to classify the events. Though the detail mathematical explanations of these
machine learning based algorithms are out of the scope of this research work, a short

note on the working method of each individual classification method is given here.

Feature Train the Machine Learning
Extraction Clssifier based Model

fNIR Signal —— Preprocessing

(a) Training Phase
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Features of Testing Machine Learning Predicted

fNIR signal based Model Results

(b) Testing Phase

Figure 3.11: The overall mechanism of the conventional machine learning based classifiers.

LDA: LDA is the widely used classification technique in fNIR signal classification
due to its low computational complexity and high speed [32, 33]. To classify or
separate the two or more that two classes data, LDA employs discriminant hyper-
plane(s). Since the main mechanism of the LDA is dimension reduction, it chooses
the hyperplane(s) by minimizing the ratio of within-class variance and maximizing
the ratio of between-class variance (i.e., Fisher’s criterion [33|) assuming the data of
the classes are Gaussian distributed with equal covariance. Based on Fisher’s

criterion, the effective projection matrix P is calculated in LDA as [29, 33,

_ det(PTz,P)

fiF)= det(P'z,P)

(3.28)

In (3.28),7,and 7, stand for the between-class scatter matrix and the within-class
scatter matrix, respectively. Besides, det(e)represents the determinant of the matrix.

We can define r,and 7, by the following relations [31, 34]:

6= D vl — X)u - X" (3.29)

7 =, (v = i) = )" (3.30)

Here, s are the samples of the feature vector of a class, u, and X represent the
sample mean of class ¢ and the grand mean of all the samples of m classes,

respectively. The number of total samples is represented by v where, v, represents

the number of samples in class, i. The solutions of (3.29) and (3.30) can be found
considering them as an eigenvalue problem that leads to finding the optimum values
of the projection matrix, P. In Matlab 2018a, fitclda() was used to construct the
LDA based predictive model which was further utilized with 5-fold cross-validation

to check the classification performance.
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SVM: SVM is an extensively employed classifier for its high prediction accuracy in
high-dimensional features [35-37]. SVM can be used as a linear or nonlinear method.
The main mechanism followed by SVM is to generate the hyper-planes that
maximize the margin among the classes. The nearest points of the hyper-planes are
called support vectors. The discriminating hyper-plane in a 2D feature space can be

formularized as,

o(r)=dz+c, (3.31)

In (3.31),2,d e R?and ¢ eR'. To find the optimal results of d maximizes the

distance between the hyper-plane and the support vectors. This maximization
procedure is obtained by minimizing the following cost function (3.32) cogitating the

restrictions given in (3.33) 37, 38].

1 Z
od: &) =Sl + T 28, (3:32)
z=1
(z,d+c))21-¢&,  for y, =+1
(z,d+c))>-1+¢&, for vy, =-1 (3.33)
>0V,

In (3.32) dld = ||d||2 and 7" is a regularization parameter that can be chosen by the
users based on the penalty factor of classification errors. Besides, &, represents the
measurement of error during the training period, Z represents the number of

samples those are misclassified, and Y» represent the class label for the nth sample
(for a binary classification problem, it is +1 and —1). In this work, we used the
Matlab toolbox as one versus all approach of SVM. The SVM structure was defined

with polynomial kernel function with default order value 3.

kNN: Although kNN is known as a lazy nonparametric classifier, till now it is
chosen by the researchers of various fields because of its simplicity. This method does
not need any explicit training phase to generalize the training feature vectors.
Therefore, the training phase is precisely fast. During the training period, kNN
actually keeps all the training features with their labels for the testing phase. The
kNN algorithm finds the points from the training data those are nearest to be

considered for the selection of the class of a new testing observation. To take a
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decision on the nearest points, there are several distance calculating formulas like
Euclidean, Minkowoski, Cityblock, Manhattan, Mahalanobis, Cosine, Chebychev, etc.
Therefore, we find there key steps of the kNN approach: i) a set of training feature
vectors with label information i) a distance metric to measure the distance between
objects, and i) the number of the nearest neighbors, k. Suppose, we have a training

set, (T(¢,y) € T')that contains the feature vectors, ¢ with their labels,yand a test
object t =(¢',y’) where ¢' is the feature vectors of the test object and 3’ is its class.
Now, the kNN algorithm measures the distance between (¢',y') €t and the training
objects (@,y) € T'to estimate the nearest neighbor list,(¢;,y;) € T,. From the list of

the nearest neighbors, the class of the object will be decided by the following

majority voting condition [39],

Majority Voting : y' = arg max Z[(U =) (3.34)
v (¢1 ,?/,,')

where v is a class label. On the other hand, y, is the class label for the i™ nearest
neighbors and I(*) is a function that indicates the value 1 for the true argument and

0 otherwise. In our proposed kNN based predictive model, the distance calculation
was performed by the Euclidean method with k£ =3for two class and k =5for four

and six class classification.

ANN: ANN is a complex but very efficient classifier. This algorithm was also used
in this research work to find the highest classification accuracy of fNIR based BCI
system [40]. ANN has a quality to mimic the comportment of the human brain. For
the feedforward networks, commonly multilayer perceptors consist of three type
layers: input, output, and hidden layers. The objective of the input layer is to buffer
the distribution of the input signals z,(n=1,23...) towards the hidden layer

neurons. Each hidden layer neuron adds the input signals (z,)after weighing the
input signals by the strengths an from the input layer and calculate the output, Y

where Y is a function of their summations [40].

Yj = f(ivvjnxnj (3'35)
n=1
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Here j is neuron numbers, Aan is the adjustment weight of a connection between n
and j according to their relation, AW, =nd;x,. Here, 5 is the rate of learning
parameter and the factor, 5j depends on the condition whether j is an input or
hidden neuron. The adjustments of the weights are generally estimated by the back-
propagation algorithm. Let, V; be the prediction for jth’ observation in an ANN
system and is a function of the network weights vector W = (W}, W,,...). Therefore, ¢,
the total prediction error will also be a function of W' as, e(W)=>[Y; —V]-(W)]2 [40].

For every weight W, according to the gradient descent algorithm the updating

7

=W,

formula is considered as, W, f

ncw

i +o(0e/OW)y . Here, @ is the learning

parameter and the value of & lies between 0 and 1. In this work, we used two
hidden layers for two class classifications and four hidden layers for the four and six
class classification problems. In every case, the classification accuracy was calculated

with a 5-fold cross-validation technique.
3.5.3 Convolutional Neural Network (CNN)

Previously, the structures and the applying methodologies of the ANN, kNN, SVM,
and LDA classifiers are discussed. These classifiers are known as shallow network.
There are some limitations of these shallow networks. With the variations of the
features, the classification accuracies of these networks are varied. In addition, for a
wide number of classes having the similar properties classification accuracies fall in
unacceptable ranges. Therefore, to outtake these pitfalls of shallow neural network,
deep neural networks (DNN) are often used. In short, we can say that DNN is a
machine learning method that employs the deep neural network. A DNN contains
the multi-layer neural network having two or more hidden layers. The concept of a

DNN can be expressed briefly by Figure 3.12.

Although DNN works much better than that of the shallow neural network (SNN), it
actually does not need any critical technologies to imply. The innovation of DNN is
actually a result of a number of small technical improvements [38]. In case of neural
network with deeper layers provide poor performance because the network cannot be
properly trained. During the training period, three major difficulties: i) Vanishing

Gradient, i) Overfitting, and ) Computational Load are experienced by the
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backpropagation algorithm
[41].

which makes it unable to

attain the expected outcomes

Training Data

Learning Rule

Input Data

» Deep Neural Network

Output

Figure 3.12: The block diagram illustrates the basic concept of deep learning approach with its
relationship in the field of machine learning.

Input Data |
(Input, Correct Output)

Feature Extractor

A 4

Classifier

/

Figure 3.13: Feature extraction as a separate function to be used for the classifier. The feature
extraction step was independent to the machine learning.
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Figure 3.14: Basic architecture of a typical CNN.

The CNN is one of the best approaches in the field of DNN. CNN is quite alike to
the ordinary neural networks having learnable weights and biases. Each neuron
receives some inputs, performs a dot product and optionally follows it with a non-
linearity. CNN represents a specialization of the conventional neural networks where
the individual neurons create a mathematical estimation of the biological visual
receptive field (BVRF) [42]. It means the CNN is not only a DNN that contains the
many hidden layer but also it imitates the procedure of human visual cortex to
recognize images. Before the usage of the CNN, the network designer has to extract
the features of the training images for SNN that needs experts in that field. So, it
required unusual time and cost and it also returned an unexpected level of
performance. Such a procedure of SNN can be briefly explained in Figure 3.13. On
the other hand, CNN includes this feature extraction step in its training process
rather than manual performing step as the SNN. The CNN uses a special kind of
neural network where the weights are determined itself inside its training process. So,
CNN reduces the time and cost of the feature extraction step for the classification.
Using the CNN, we get the benefit of automated process of feature extraction and
classification as its internal training process which is shown in Figure 3.14 as the

training concept of CNN.

Architecture of A CNN: The basic structure of a CNN consists of a number of
layers. In each parallel path, there is a convolutional layer. A convolutional layer is
followed by a batch normalization layer, a rectified linear unit (ReLU) activation
layer and a max pooling layer. An inception block extracts the feature maps from the
input images which are concatenated and passed on to a global average pooling layer.

Eventually, there is a two unit dense layer with a softmax activation layer which
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gives the categorical probability. To prevent the overfitting problem, the weights of
the dense layers are L2 regularized. The individual steps of the different layer are

described below.

i) Convolutional Layer: A convolution layer generates a set of new images those
are called feature maps. The feature map highlights the exclusive features of the
actual image. The convolution layer operates in a very different way compared to the
other neural network layers. This layer is not involved in the measures of the weights
or weighted sum. The impact of the convolutional layer can be compared to filtering
effect and it is also known as convolution filters. Figure 3.15 exhibits the
functioning of the convolution layer where “*) denotes the convolution operation and
" denotes the activation function. In case of a traditional CNN, the filters of a
particular layer could have the same window length and this procedure is gradually
reduced in the subsequent layers [43]. Although there is no exact rule to consider the
window length of the filter, the window length is generally considered experimentally.

The feature maps are computed through the convolutional layers by convolving the
preceding layer with a defined kernel. Suppose that, M lis a feature map regarding

the layer [ as well as M "l is a feature map of the previous layer. Again consider

that M,and M denotes the width and height of the feature map, respectively and
the width and height of the kernels are indicated by the K, ,and K,. During a
convolution operation, consider that S, and S, characterizes the horizontal and

vertical steps of the kernels, respectively.
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Input Image

Convolutional Layer Feature Map

Figure 3.15: The basic process of a convolutional layer in CNN.

Therefore, the size of the output feature map depends on the size of feature maps of
the previous layer, kernels and stepping factors [44]. The output width and height of

the feature maps are then found as,

-1

Ml = My =Ky g (3.36)
Sw
-1

M, = My =Ky g (3.37)
Sh

i1) Batch Normalization Layer: According to the changes of the training
parameters of a convolutional layer, the corresponding output will also be changed.
The regarding layers are to adapt continuously to the new distributions that require
it to be a slow learning rate. This occurrence is known as internal covariate shift [45].
To overcome this issue, an additional layer is to add after the convolutional layer
which is referred to a batch normalization layer or regularizer. This layer performs a

normalization step that is able to fix the mean and variance of the regarding layer
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inputs. As a result, faster training time can be achieved using higher learning rate. A

typical batch normalization algorithm has been presented below.

Input:  Values of z over a mini-batch: B={mz, 1, ..., Zum};
Parameters to me learned &, 8
Output: {y=BN;;(z:)} [BN(°)=Batch Normalization Function]
m
Hp —Z T; // mini-batch mean
14
i=l
5 1 m 5
op <« —Z (z; — up)” // mini-batch variance
mi
T; < 2 H ;/uB / /normalize
o + &
Y, < Or; + B= BNL;_ﬁ(:I:i) // scale and shift

i) ReLU layer: The word ReLu means rectified linear [46] layer which persuades
a nonlinearity in the incoming layer’s values. This ReLU layer can be summarized as

a mathematical function given below.

(3.38)

T if x>0
f<x>={ fa>

0 if <0

So, this function passes the values z in the condition of being greater than 0. Some
other functions are also utilized in this case to upsurge non-linearity, such as the

saturating ~ hyperbolic ~ tangent  function f(z)= |tanh(3;)| ,  logistic  function

f(z) = 14& —1[47], hyperbolic tangential sigmoidal function f(x) =1.7159 tanh(% x)
+ e

[48], and the sigmoidal function f(z)= It is often preferred utilizing the ReLU

1+e"
layers with the other functions because it helps to train the neural network faster

beyond facing a significant penalty to the generalization accuracy.

iv) Max Pooling Layer: The pooling layer combines the neighbor pixels of a
defined area of the image into a group of features by one feature and thus it reduces
the dimensionality of the feature maps. There are several types of pooling operations

but the widely used pooling layers are mean pooling layer and maximum pooling
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layer. Usually, the mean pooling layers are used in earlier works [49] whereas recent
works prefer the maximum pooling layer because it always outperforms the mean
pooling operation [50|. Suppose, we have a 4x4 pixel input image as given in
Figure 3.16. The operation of a mean pooling and a max pooling are given in the
example. We also get that the dimensionality of the input image of the pooling layer
becomes reduces after being the operation of the pooling layer. Since the pooling
process reduces the image size, it is highly helpful for the getting rid of the

computational load and avoiding the issue of overfitting.

v v
1 1 1 3 3 4

s | 3 [ Mean Pooling
4 6
30 0 TG T8 "

> .
| Max Pooling
0| 2924 > 30| 5 [«
|

Figure 3.16: A simple example of the process of mean and max pooling operation

v) Fully Connected Layer: To detect the high level features, a fully connected
layer is attached to the end of a CNN. This layer basically takes the output of the
conv or ReLLU or pooling layer as input and set an output as an N dimensional vector
where N is the number of defined classes to be classified. As for example, if we want
to classify the digits then the number of N will be 10. The individual number of this
N dimensional vector presents the classification probability of a specific class.
Suppose that, in case of digit classification problem the resulting vector we get is [0
.1.20.6500 00 .05]. Therefore, the result gives that the number has a chance to be
1 (10%), 2 (20%), 4(65%), and 9 (5%) (according to the softmax approach). By this
way, fully connected layer looks at the output and determines which features most
correlate to a particular class. Basically, a fully connected layer looks at what high

level features most strongly correlate to a particular class and has particular weights
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so that when you compute the products between the weights and the previous layer,

you get the correct probabilities for the different classes [51].

3.6 Conclusion

In this chapter, the basic steps of the signal processing methods have been widely
discussed. In addition, this chapter proposes a novel approach to combine the fNIR
and EEG signal to produce a neuroimage compatible to the CNN classifier. Besides,
a novel classification mechanism is proposed in this chapter to classify the voluntary
and imagery related prefrontal hemodynamics from the proposed model equation
obeying the rule of maximum likelihood approach. The conventional feature
extraction procedure and the existing widely used classifiers are also discussed in this
chapter with their mathematical interpretation. These methods will be used
frequently for the processing and finding the objective outcomes of this dissertation.
In the next chapters, these methods will be mentioned without its mathematical
details and presented the effect of these methodologies in the signal processing

aspects.
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CHAPTER 4

Statistical Modeling of Voluntary and Imagery Movement

4.1 Introduction

This chapter concerns with the modeling and classification of voluntary and imagery
movements from the prefrontal fNIR signals. In this work, four different movements
of hands and feet have been considered as both voluntary and imagery manner.
According to these stimuli, {NIR data were recorded from the prefrontal cortex of
several young and healthy male subjects. With proper signal pre-processing, the f{NIR
data were separated based on their class. Then, analysis of variance (ANOVA) was
used to localize the most significantly activated area regarding the stimuli. The
ANOVA results were verified by effect size (ES) estimation. The temporal pattern of
the change in the concentration of both HbO, and dHb signals regarding the mostly
significant areas were modeled by polynomial regression. Utilizing the model
activation patterns, a simple statistical classifier has been proposed based on the
spatiotemporal maximum similarity approach. This proposed classification algorithm
has been utilized to classify the movement related fNIR signals. For classification of
the fNIR signal, two, four, and six class problems were considered. Plus, we utilized
the conventional time domain feature extraction and classification strategy to classify
the signals by four different classification algorithms. We found that the classification
accuracies of the proposed and conventional methods are almost similar. Eventually,
this work has contributed to revealing- i) The most significant activation regions for
the different voluntary and imagery movements in the prefrontal cortex, i) The
modelled hemodynamic activation pattern based on the HbO, and dHb
concentration, and iii) Classification of the multiple-class fNIR signals using the
model activation pattern. The overall idea of the proposed research framework is

given in Figure 4.1.
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Figure 4.1: An illustration to describe the framework of this research work. This work localizes the
significant activated areas regarding voluntary & imagery movements and models those hemodynamic
activation patterns. The fNIR signals corresponding to the different movement related tasks have been
classified by several machine learning algorithms considering the polynomial regression coefficients as
features.

4.2 Materials and Methods

4.2.1 Data Acquisition Protocol

In this work, every participant performed eight different movement related tasks
(four voluntaries + four imageries). Since most significant voluntary movements of
the human beings are performed by hands and feet, the movements by hands and
feet (by means of voluntary and imagery) were considered for the neural stimuli. The
subjects were verbally informed about the protocol of the data acquisition and
according to the protocol all the subjects lifted their left hand, right hand, left foot,

and right foot, sequentially.

These four movements were performed in two comportments: i) voluntary and i)
imagery. The time scheduling for the data acquisition protocols is given in Figure
4.2. In one session this unit protocol was performed four times by a participant.
After every session, each participant took rest at least five minutes. Eventually,
every participant performed 20 trials for each movement related task. A Matlab
based graphical protocol (as Figure 4.3) was designed for this research work that
helped the participants by providing the instructions to make the data acquisition

procedure easy with proper scheduling. The code of the designed graphical protocol is
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freely available in [1]. This program blinked according to the scheduled tasks and
instructed the participant to follow and perform the tasks. In this graphical program,
five different tasks were arranged and those were movements of the left hand, right
hand, left foot, right foot, and rest. Finally, eight different tasks have been
considered for analysis those are voluntary left hand (LH), right hand (RH), left foot
(LF), right foot (RF) and imagery left hand (iLH), right hand (iRH), left foot (iLF),
and right foot (iRF).

Left Hand Right Hand Left Foot Right Foot
Movement Rest Movement Rest Movement Rest Movement Rest Repeat...
10 sec 20 sec 10 sec 20 sec 10 sec 20 sec 10 sec 20 sec

Figure 4.2: Time schedule of data acquisition protocol for each participant regarding both the
voluntary and imagery movements. This is a unit task performing schedule that was repeated four
times in each session to complete 20 individual trials of every task.

(a) (b)

Figure 4.3: Schematic illustration of MATLAB based protocol instruction aiding application for the
experiment. Regarding the instruction of this application, the participant is asked to move left hand
(voluntary or imagery) by Figure 4.3(a) and after that, Figure 4.3(b) instructs to take rest.

4.2.2 Data Acquisition

Thirty-five male subjects (age range=20 to 25) participated in the data acquisition
procedure among them the recorded signals of four participants were excluded due to
their poor signal quality. All participants were tested and found right handed
depending on the recommendation of Edinburg Handedness Inventory |[2]. No
participants had any history of the psychiatric, neurological or visual disorder. In
addition, no participant had pain in their both hands and feet. Also, their verbal

consents were taken before the data acquisition related to this research work as the
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rule of the university. All data acquisition procedures were completed in the
Neuroimaging Laboratory of the Biomedical Engineering department of KUET
obeying the declaration of Helsinki [3].

For this work, a 16 channel continuous-wave fNIR system (model: Biopac 1200 fNIR
imager) was used. By the system, hemodynamic signals from the prefrontal cortex
were acquired from all the participants. The optode band for data acquisition for this
fNIR system contains four NIR light sources and 16 detectors. The physical
configurations of the optode band on prefrontal cortex are given in Figure 4.4. The
data sampling rate was 2 Hz and COBI (cognitive optical brain imaging) software [4]
was used for data acquisition. The total hardware configuration associated with the

data acquisition is presented in Figure 4.5.

Participant
Computer

Figure 4.5: Data acquisition procedure from participant connecting by used hardware.

4.2.3 Preprocessing

At first all the fNIR signals were separated according to the tasks and thereafter
signals of same tasks for all the participants were arranged in individual arrays. Since
we used 16 channel fNIR system, the 16 channel fNIR data carry the information of
16 different spatial positions of the prefrontal cortex. The positions and
corresponding channels are shown in Figure 4.3. Interestingly, all these channels are

not linearly uncorrelated. To check the linearly correlated and uncorrelated channels,
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principal component analysis (PCA) was applied and found that the signals are of
four dimensions. The linearly uncorrelated profiles of the channels have been shown
in Figure 3.2 where the Eigen-space is formed by the three principal components. In
this consequence, the prefrontal cortex has been divided into four major region of
interest (ROI) those are- Left Lateral (LL: includes channels 1, 2, 3, & 4), Left
Medial (LM: includes channels 5, 6, 7, & 8), Right Medial (RM: includes channels 9,
10, 11, & 12), and Right Lateral (RL: includes channels 13, 14, 15, & 16) [5]. It is
found that the 4 signals corresponding to four channels in every defined region show
a very strong correlation (0.95 < r < 1). The detail mechanism of the fNIR data

compression has been given in the previous chapter.

SG filter with frame length 19 and order 3 was used to filter the noisy fNIR signal.
For smoothing the fNIR signals, we have used SG filter because of its special benefit
i.e., SG filter is better than FIR filter for removing high-frequency contents from
signals. Because, in the case of FIR filter, the euclidian distance between original and
filtered signal is more than SG filter [6]. Furthermore, employing SG filter needs no
delay correction as an FIR filter. For each trial of the fNIR data had been corrected
by subtracting the baseline from the original signal. Baseline was calculated from the
average of the first 2 seconds of the task. The baseline correction procedure has been

already discussed in Chapter 3.

4.2.4 Statistical Analysis & Activation Modeling

One-way repeated ANOVA was used to find the significant ROI for each activity,
separately. The signal mean was taken from three sample window (0-10, 10-20, and
20-30 samples) for one-way repeated measures of ANOVA. The mathematical detail
of the ANOVA has been described in the Appendix section. Student’s t-distribution
statistics were also used to find the significant difference between the hemispheres
regarding any voluntary or imagery event. Since the p values of ANOVA is not
enough to find the significance level for a big dataset [7], we also calculated effect
size (ES) of the event to localize the hemodynamic activation. Statistically, we can
find the difference of activation level by the use of ES calculation. ES is a simple
statistical method of measuring the difference between groups of mental activation

due to external excitation and resting state activation. The common way to
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calculate ES is Cohen’s d method. Suppose that, z;, and z, are the mean values of the
entries of group 1 and 2, respectively, then, the ES between z, and z, is calculated by
the method as [8],

d= i) (4.1)

(V) D)8} + (N, ~1)S3
N, + N,

Here, N, and N, are the numbers of entries in each vector and S, and S, are the
standard deviation of the dataset, respectively. The ROI’s satisfied the significance
by both ANOVA and ES test were considered for most significant activated ROI for
a specific event. After that, the signals of all trials from all subjects were averaged to
fit as model activation pattern regarding the event by polynomial regression. To fit a
time series of data by polynomial fitting or regression, we generally consider a
polynomial equation as an estimation function and suppose the estimation function,

E(z)is of k™ degree polynomial that can be presented as,

E(z) = ag + ay% + ayz’ + ... +ayz” (4.2)

Therefore, the difference between actual value, Y and the estimated value derived by

the proposed model estimating equation, F(x) is termed as residual,

R? = |E(z) — Y|2. For achieving the best fitted estimated model equation, it is the

foremost target to minimize the value of the residual. It is reported in [9][26] that
hemodynamic activations can be modeled by polynomial fitting with the value of

k =5. In this work, £ = 5has been taken to get the minimum value of residual and
for the coefficient, «’at the minimum error condition, the partial derivative of R%is

zero. To achieve the regression with kU polynomial we get,

_yl 1 11 T :1712 .o :L’f _&o_
Y2 1 4 x% oo :L"IQ‘ ay
= (4.3)
L N A
The previous relation can be represented as,
Y =2Xa (4.4)
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Here, X is a vandermonde type matrix. This can be solved as,
Xy = x"Xa
or, o = (XT X)Xy (4.5)

The order of the polynomial equation was estimated from the error performance of
the fitted results. A satisfactory level of error was taken as the threshold for different

activation modeling.

4.3 Results and Discussions

The activations of the four voluntary and imagery movements have been presented
in Figure 4.6 and Figure 4.7, respectively. This is a result of an arbitrarily selected
participant. The results have been presented after separating the data based on the
ROI’s, correcting baseline, and filtering. In the figures, both HbO, and dHb
activation patterns have been presented. From the graphical depiction of the neural
activations, the most significant activated areas and the activation patterns can be
assessed. From the hemodynamic responses (HbO, and dHb) of four voluntary and
four imagery tasks have been given regarding four ROI's (LL, LM, RM, and RL).
From the results of Figure 4.6, we get the voluntary hand movements to create
significant activation in the prefrontal cortex. The hemodynamic responses due to
voluntary movements of the left and right hand show contralateral activation in the
opposite hemisphere. Due to the left-hand movement, the activation is noticeable in
the RM region of the prefrontal cortex and oppositely the LM region is activated due
to the right-hand movement. The other regions show the random activation which
does not indicate the clear hemodynamic activation. On the other hand, the
voluntary movements of the left and right feet also show random activations as given
in Figure 4.6(c) and Figure 4.6(d). From the results of imagery movements
given in Figure 4.7, we find that the hemodynamic activations due to the imagery
hand movements show similarity with the voluntary movements but the activation
strength is lower than that of the voluntary movements. In addition, the imagery
feet movements show significant activation in the lateral area of the prefrontal
cortex. The imagery left and right foot activates the right and left hemisphere of the
prefrontal cortex, respectively where the activations of the RL and LL regions are

mostly noticeable as given in Figure 4.7(c) and Figure 4.7(d).
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Figure 4.6: The change in hemodynamic concentration (HbO, and dHb) regarding the movement
execution stimuli: LH (a), RH (b), LF (c), and RF (d) correspond to the ROI’s: LL, LM, RM, and
RL. It is the hemodynamic activations of a single participant. The activations are regarding 20 trials
of four movement execution tasks.
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Figure 4.7: The change in the concentration of HbO, and dHb regarding the imagery movement
stimuli: iLH (a), iRH (b), iLF (c¢), and iRF (d) correspond to the ROI’s: LL, LM, RM, and RL. It is
the hemodynamic activations of the same participant as the data of Figure 7. Here, there are 20 trials

of four imagery movement tasks.
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To examine the significant neuro-activation considering the data of the total
population involved in this research, statistical analysis, ANOVA was performed.
One way repeated measures (three levels: 0-5, 5-10, and 10-15 sec) ANOVA was
performed on the fNIR data of the tasks (left-hand, right-hand, left-foot, and right-
foot movement as voluntary and imagination manner) to reveal the significant
activation localization of the region of interests (LL, LM, RM, and RL). The
ANOVA was conducted on the mean value of HbO, and dHb concentration. From

the results of ANOVA, the following significant hypothesis has been found:

LH & iLH: Due to the left hand movement execution and imagination, significant
(p<0.001) increase of HbO, concentration (F(2,90)=108.34, for voluntary movement,
F(2,90)=106.35 for imagery movement) and decrease and dHb concentration
(F(2,90)=103.58 for voluntary movement, F(2,90)=80.73 for imagery movement)
were occurred in RM region of PFC. Moreover, other regions showed insignificant
activations (p>0.01). The effect of the hemisphere on the left-hand movement
(voluntary and imagery) was tested by t-distribution on the mean value of HbO,
concentration of left and right hemisphere. The right hemisphere (RM+RL) showed
the significant difference (t=6.7510, p<0.001 for movement execution and t=5.6555,
p<0.001 for imagery movement) than the left hemisphere (LL+LM). Moreover, the
activated region (RM) due to the task (left hand voluntary and imagery movement)

showed significant ES (2.4439 and 1.5233) with compared to the control (rest) state.

RH & iRH: Due to the right hand movement as voluntary and imagery, significant
(p<0.001) increase of HbO, concentration (F(2,90)= 195.67 for voluntary movement
& F(2,90)= 56.62 for imagery movement) and consequently there occurred a
significant decrement in dHb concentration (#(2,90)= 138.8 for voluntary movement,
F(2,90)= 40.39 for imagery movement) in LM region of PFC. Moreover, other
regions showed insignificant activations (p>0.01). The effect of the hemisphere on
the left-hand movement (voluntary and imagery) was tested by tdistribution on the
mean value of HbO, concentration of left and right hemisphere. The left hemisphere
(LL+LM) showed the significant difference (¢=13.4297, p<0.001 for movement
execution and t=4.2874, p<0.001 for imagery movement) with the right hemisphere
(RM+RL). Moreover, the activated region (LM) due to the task (movement of the

right-hand as voluntary and imagery manner) showed significant ES (1.6527 and
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1.1997) than the control (rest) state. In case of voluntary and imagery movements of

LH and RH some other regions showed significant activation (p<0.01) based on the

results of repeated ANOVA (see Table: 4.1) but for large observations the p value

is not enough [51| for taking a statistical decision. Therefore, we also considered the

value of ES to confirm the activation strength of the concerned ROI. The regions

showed the significant ES have been considered as the significantly activated regions

for the corresponding task (see the Table: 4.1).

Table 4.1: The statistical results of the activations regarding all voluntary and imagery stimuli. Here,

both results of ANOVA and ES are tabularized.

F(2,90), p values [significance level=(<0.001)]
Region Effect Size (ES)
of Movement Execution Imagery Movement
I?E{eoriit LH Movement | Movement
HbO, dHb HbO, dHab Execution Imagery
LL 5.16, 0.0092 4.9, 0.0109 6.12, 0.0032 5.9, 0.0039 -1.6009 -0.9602
LM 2,0.1416 1.8, 0.1718 0.1, 0.9068 0.09, 0.9116 -0.6344 -1.1246
108.34, 103.58, 106.3, 80.73,
RM <0.001 <0.001 <0.001 <0.001 2.4439 1.5233
RL 0.46, 0.6323 0.44, 0.6455 0.13, 0.8793 0.12, 0.8851 0.4930 0.6684
RH
LL 2.4,0.1126 1.8, 0.1718 0.83, 0.4372 0.78, 0.4593 0.1305 0.0321
195.67, 138.8, 56.62, 40.39,
LM <0.001 <0.001 <0.001 <0.001 1.6527 1.1997
RM 3.53, 0.0129 6.73, 0.0018 0.45, 0.6379 0.42, 0.66 -0.6590 -1.3082
20.32, 24.99, .
RL <0.001 <0.001 0.48, 0.6321 5.9, 0.0039 0.0232 -0.4930
LF
LL 0.49, 0.6149 0.42, 0.6598 2,0.1416 1.8, 0.1718 -1.011 -0.5641
LM 0.43, 0.6506 0.49, 0.613 2,0.1416 1.8, 0.1718 -0.7519 -0.6344
. 56.62, 40.39, ‘
RM 0.77, 0.4652 0.94, 0.3954 <0.001 <0.001 -0.73477 -0.2693
) 330.16, 265.94, .
RL 5.85, 0.0041 5.6, 0.0051 <0.001 <0.001 0.2631 3.0541
RF
300.71, 246.56,
LL 2.43,0.094 0.57, 0.6598 <0.001 <0.001 0.2097 1.1872
- 358.22, 314.48,
LM 0.52, 0.5949 0.41, 0.8667 <0.001 <0.001 -0.7654 -0.2292
RM 0.22, 0.7998 0.23, 0.7929 2.95, 0.0573 2.5, 0.0878 -0.8489 -0.6692
10.47, 12.87,
RL 0.37, 0.6929 0.4, 0.6747 <0.001 <0.001 -1.1874 0.6232
LF & RF: The data regarding the voluntary movements of the left and right foot

showed no significant activation either in HbO, or dHb concentration with
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insignificant ES. Since the activation region of the lower body part is situated in the
deep brain, this inactiveness may occur. This result suggested us to advise the
participants to concentrate deeply to imagine the feet movement during data
acquisition so that there a significant cognitive load may occur in the prefrontal
cortex. In case of left and right foot imagery movement, several ROI’s were found as
significant according to the results of ANOVA. Due to the LF imagery movement
showed the significant activations in RL (F(2,90)= 56.62, p<0.001 for HbO, and
F(2,90)= 40.39, p<0.001 for dHb) and RM ((F(2,90)= 330.16, p<0.001 for HbO, and
F(2,90)= 265.94, p<0.001 for dHb). However two different regions (RM & RL)
showed significant activations with the ANOVA outcomes, only the RL region
showed significant ES (3.0541). As a result, only the RL region can be considered as
the responsible area of interest for the activation of LF imagery movement. Similarly,
from the one-way repeated ANOVA test several significant activated regions are
found for the right foot movement (LL: F(2,90)= 300.71, p<0.001 for HbO, and
F(2,90)= 246.56, p<0.001 for dHb, LM: F(2,90)= 358.22, p<0.001 for HbO, and
F(2,90)= 314.48, p<0.001 for dHb, and RM: F(2,90)= 10.47, p<0.001 for HbO, and
F(2,90)= 12.87, p<0.001 for dHb). Although three different regions were found as
activated according to the ANOVA results, two of them showed significant ES values
(LL: 1.1872 and RL: 0.6232) and between them, only the LL showed the highest
(around two times than RL) ES value. Therefore, LL is the most significant region of
activation due to the imagined movement of RF. All the results regarding ANOVA
and the ES have been tabulated in Table 4.1. The statistical results of ANOVA and
ES, the most significant areas were selected according to the stimuli. Based on these
results, the concentration changing pattern of HbO, and dHb regarding the most
activated area were averaged from the data of all the trials of all participants. The
activation patterns of HbO, and dHb of the corresponding stimuli have been
presented with their error disparity by Figure 4.8. Moreover, to show the activation
pattern due to the voluntary and imagery movements in the total area of the
prefrontal cortex the functional neuroimages are given in Table 4.2. These
functional neuroimages have been prepared based on the grand average value of the
total population dividing five equal windows from the beginning of the task to the

end of the trial. The concentration changes of the HbO, were considered here to
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construct the neuroimages where the activation level was registered on the MRI

brain images. The total area covered with the activation level of the 16 channels was

done with 20 point B-Spline interpolation technique using the fNIRSoft [10],[67].
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Figure 4.8: The grand average hemodynamic activation pattern (HbO, & dHb) from all the trials of
all the participants regarding only the most activated regions of prefrontal cortex. Here the activation
pattern of LF and RF movements are excluded due to their insignificant (p>0.05) activation level.
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Table 4.2: The functional neuroimages of prefrontal cortex regarding different voluntary and imagery
movements. These images are prepared from the grand average of all population’s trials.
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Figure 4.9: The average activation pattern of HbO, and dHb of different voluntary and imagery
movements and their model activation pattern by 5" order polynomial regression.

The mean value of HbO, concentration due to voluntary hand movements (both
hands) are more than that of the imagery movements of hands. In addition, the
activation level of imagery feet movements is comparatively lowest than the
voluntary and imagery movements of the hand. These results reveal that the
voluntary and imagery movements of upper limbs show more activation than that of
lower limbs. To observe the difference in the concentration of HbO, and dHb
corresponding to the different stimuli the mean concentrations are given in Figure
4.9. The mean concentration changes of HbO, and dHb in Figure 4.9 have been
considered as the model activation pattern regarding the stimuli. The model
activation patterns of voluntary and imagery movements were modeled by the 5™
order polynomial regression. The dotted lines in Figure 4.9 represent the fitted line
by the polynomial regression. The mean concentration of the HbO, and dHb have
been presented with the solid lines and corresponding fitted curves with 5™ order

polynomial regression have been presented by the dotted line with the same color of
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solid lines. The model equations of the significant voluntary and imagery stimuli
regarded activation patterns in the concentration change in HbO, and dHb have been

given by the following relations (4.6) and (4.7), respectively.

[LH(z)py | [—0.33000 0.85623 1.58377 —3.88827 —1.83626 4.20650] |[°

RH(z);,, | |-0.26068 0.91684 0.97558 —3.90405 —0.74627 4.00871| |g*

ILH(z)gy | _|-0.15412 080454 043885 —3.14731 -012302 276679 | |4° (4.6)
iRH(z)py | | —0.17562 0.58642 0.82504 —2.55847 —0.96458 2.39623 | | 42

iLF(x)p; | |-027519 040188 1.22956 —1.75371 —1.32351 1.81244 | | 4!

iRF(x)y;, | |-024658 043323 102428 179568 —0.99342 175580 | ||
[LH(z)py | [0.17856 —0.44935 —0.85301 2.04847 0.98713 —2.225087 [4°]

RH(z);, | 014227 —0.45453 —0.52526 1.90815 0.39006 —1.92825 | |z*

iLH(z)yy | | 010783 ~056848 —030631 221202 0.08637 -1.92738 | |5° (4.7)
iRH(z);y, | 012302 —0.41530 —0.58065 1.81203 0.69179 —1.85155| |42

iLF(z)p, | 1018331 —0.82022 —0.82071 1.21678 0.88556 —1.24722| |l
LiRF(z)pp | [0.18479 -0.30402 —0.77679 1.25803 0.76630 —122039] |o°|

It can be hypothesized that the most activated region for a typical stimulus shows
the activation pattern closely correlated with its model equation. Therefore, the
maximum temporal similarity pattern with its proper spatial region according to the
proposed activation model gives us the class of the signal. Implementing the
proposed methodology of the signal classification technique, subject dependent task
classification was conducted based on the 2, 4, and 6-class perspectives. The subject
dependent classification accuracies of the proposed method have been given in
Figure 4.10. Here, the results of 2, 4, and 6-class movement-related tasks are given.
Moreover, the data classes have been oriented as two classes with iLH and iRH, four
classes with iLH, iRH, iLF, and iRF, and six classes with LH, RH, iLH, iRH, iLF,
and iRF. From the results we found that utilizing the model activation pattern of the
proposed work, the average classification accuracies are 75.16+7.12 (2-class),
57.58+6.69 (4-class), and 38.11+7.74 (6-class). Since the spatiotemporal activation
pattern of the LH & iLH and RH & iRH are similar (see Figure 4.8 and Figure
4.9), 6-class classification accuracies are slightly inferior. Further processing is
necessary to improve the classification accuracies of 6-class problems. On the other
hand, the average classification accuracies of the 2 and 4-class aspects are quite

convincing.
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Figure 4.10: Subject dependent classification accuracies utilizing the spatiotemporal activation model
with the proposed classification method regarding the 2, 4, and 6-class viewpoints.

We also classified the fNIR data of voluntary and imagery movements considering
the time domain features (mean, slope, variance, and maximum). The HbO, and dHb
signals of proposed ROI’s were considered for these time domain feature extraction.
The signal window for feature extraction was considered as 5-15s since this window is
the mostly activated period (see Figure 4.9). The features of 2, 4, and 6-class data
were used to train and test the LDA, kNN, SVM, and ANN classifiers. The
classification accuracies of the 2, 4, and 6-class data by the four different classifiers
are given in Figure 4.11, Figure 4.12, and Figure 4.13, respectively. The

classification accuracies have been presented as the subject dependent approach.

O AT T T T T T T T T T T T T T T T T T T T T T T T T T T T T 1
g0 | kNN - i
[ svm n - o -

8o |1 ANN a L

Classification Accuracy (%)

2 3 4 5 6 7 8 9 10 N 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Participants #

Figure 4.11: Subject dependent classification accuracies for 2-class data (iLH & iRH).

Page | 71



@ EN o
S S S

Classification Accuracy (%)

N
S

13

14

15 16 17
Participants #

28

22 23 24 25 26 27 29 31

Figure 4.12: Subject dependent classification accuracies

for 4-class data (iLH, iRH, iLF, & iRF).
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The average classification accuracies of the conventional classifiers along with the
proposed activation model are given in Figure 4.14. From the results, we can see
that the classification accuracies found by ANN and SVM are better than the kNN
and LDA. Although LDA provides better results for 2 class problem, the accuracies
are decreased with the increment of the number of the class, significantly. It can be
happened due to its linear characteristics. In case of ANN and SVM, the nonlinear
kernel function has been used and the accuracies are quite good for 4 and 6 class
problem. On the other hand, the proposed classification method shows significant
classification accuracies. Although it provides slightly lower classification accuracies
than that of the ANN and SVM, the proposed method has no training stage like the
conventional classifiers (ANN, SVM, kNN, and LDA). Therefore, by utilizing the
proposed mechanism it is easier to implement a classifier to find the class of a signal
from its activated region (spatial information) and the temporal pattern of the

activation.

4.4 Conclusion

This research reports the localization of activations in prefrontal cortex due to
voluntary and imagery movements and modeled the activations of different
movement-related events with polynomial regression. This work opens the doorway
to measure the voluntary and imagery movements from the prefrontal hemodynamics
by fNIR modality. From the overall results of the proposed research work, we reveal
that the upper limb movements (LH and RH) by voluntary and imagery movements
are easily measurable from the prefrontal cortex due to their activation strength than
the lower limb (iLF and iRF) activation. Although voluntary movements of lower
limb (LF and RF) did not create activation significantly in the prefrontal cortex.
This may be happened due to being the functional area of lower lamb activities
situated in the deep brain. The hemodynamic activations based on the concentration
change in HbO, and dHb regarding the significant activities have been also modeled
by the polynomial regression. These model equations will be helpful to assess the
prefrontal hemodynamic activation pattern of the proposed movement-related events.

In addition, this work proposes a classification technique utilizing the proposed
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activation models to classify the fNIR data. We classified the 2, 4, and 6 class fNIR
data including the voluntary and imagery tasks. The resulting classification accuracy
of the proposed approach has been found convincing. The same signals were also
classified by the conventional classifiers from the temporal features of the signals.
From the comparisons of the classification accuracies by the conventional and the
proposed approach, it has been found that the proposed method provides accuracies
slightly lower than the ANN and SVM but it provides better result than that of the
kNN and LDA. Another benefit of the application of the proposed method is its non-
necessity of the training phase. The matrices of the polynomial coefficients (see (4.6)
and (4.7)) regarding the propose activation models are used as the initial marker to
compare a signal to find its class. So, it is easier to implement the proposed
classification methods for the voluntary and imagery movement related task
classification from the prefrontal hemodynamics. Since this work has found the very
convincing classification accuracy from the prefrontal hemodynamics regarding
voluntary and imagery movements, this result will be very helpful for implementing
BCI for the paralyzed people as well as for those people has a major injury in their
central lobe of the brain. Therefore, the proposed research work contributes
significantly to model and classify the voluntary and imagery movements from the

prefrontal hemodynamics.

As all the participants of this study were normal, the actual scenarios of the
physically challenged or paralyzed persons were not taken into this research which
can be considered as the limitation of this study. Nonetheless, this limitation may be
a future direction of research to find the actual scenario of motor imagery (planning)
activation in the prefrontal cortex regarding the physically challenged persons. In our
future work, aforesaid undone work will be performed to present a comparative
scenario of voluntary and imagery movement-related activations of the prefrontal

cortex concerning both the normal and physically challenged persons.
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CHAPTER 5

Predictive Modeling by CNN through fNIR and EEG Signals

5.1 Introduction

Functional brain imaging has been added a new dimension in biomedical engineering
and explored the pathway to reach BCI. BCI contributes in various field of research
in biomedical applications like prevention, detection, diagnosis, rehabilitation, and
restoration [1]. In the field of BCI, EEG and MEG are two non-invasive modalities
based on scalp electric potential. EEG has a very high temporal resolution (~1ms)
with poor spatial resolution (EEG: 5 to 9 cm) [2]. Though MEG has both high
temporal (~1ms) and spatial resolution (<lcm), it is not suitable for BCI because of
its noise sensitivity and heavy weight [3]. Based on the hemodynamics, fMRI
provides an excellent spatial resolution (3~6mm) but its temporal resolution is poor
(1~3 sec). Nonetheless, due to its very high cost, motion sensitivity, and being bulky
it is also not suitable for BCI [4]-[6]. To optimize the aforementioned limitations and
requirements, it is a high demand for a new modality. f{NIR is such a neuroimaging
modality discovered in 1977 by Jobsis [7]. The researchers in [8-10] reported that
NIR range enables real-time non-invasive detection of hemoglobin oxygenation using
fNIR. The fNIR modality provides a very good spatial resolution (~1-1.5cm),
moderate temporal resolution (up to 100Hz), portability to use, low cost, the high
value of the SNR, less motion artifact compared to fMRI, MEG, EEG, and PET, etc.
[4]. Furthermore, fNIR is not as physically confining as fMRI and it allows
movement during imaging. Recent publications [11, 12| demonstrated that the results
of f{NIR are comparable to fMRI and reliable for cortical activations measurement.
Since, fNIR provides finer spatial resolution and EEG provides finer temporal
resolution, combined information of fNIR and EEG is getting the most attention for

the recent researches [13-18] in the field of neuroimaging and BCI.

Millions of people in the world are in different form of disability [19], whereas the
brain of the most of these disabled persons work partially or completely. In this
situation, a finer BCI system is a hope to provide to provide them easier life by

operating different devices by brain command. There are various proposals for BCI
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using single modality EEG or fNIR. One of the main limitations of the single
modality based BCI is lower accuracy (less than 50%) for multiple motor imagery
tasks classifications. Therefore, to implement suitable BCI, multimodal neuroimaging
methods are proposed. Some recent research works [13, 14, 18] based on imagery
movement-related tasks classification have been proposed by combining fNIR & EEG
signals for BCI implementation. It has been revealed in [13-18] that the classification
efficiency of combining fNIR & EEG is better than that of the individual modality.
These multimodal proposals used conventional shallow machine learning algorithm to
classify the multiple class problems. As the result, the achieved -classification
accuracies so far are still lower than the expectations. To achieve higher accuracy,
several proposals [20-23] have been approached with convolutional neural network
(CNN) which is a deep neural network to achieve the higher classification accuracy
than that of the conventional shallow networks. From the aforementioned issues, two

significant limitations of the existing works are found:

» Most of the existing BCI’s are designed based on single modality which limits
classification accuracies for multiple classes due to spatiotemporal resolution.

» No significant research work has been accomplished for deep neural network

based BCI from the combination of fNIR and EEG signal.

To overcome these challenges, this proposed work scopes to design multimodal BCI
and hence the objectives of this research work are to develop a CNN-based predictive

model for multiclass BCI from fNIR and EEG signals.

The purpose of this work is to develop an effective BCI model to classify the brain
signals (fNIR and EEG) regarding the voluntary and imagery movements. For
achieving the high classification accuracy from the developed BCI system, CNN has
been used to extract the features automatically from the multiple channel fNIR and
EEG signals instead of the manual feature selection. In this work, eight different
movement-related stimuli (four voluntary and four imagery movements of hands and
feet) have been considered. The multiple channel {NIR and EEG signals are used to
prepare functional neuroimages to train and test the performance of the proposed
BCI system. In addition, the proposed procedure is applied to prepare neuroimages
from the individual modality (fNIR and EEG) to train and test the performance of
the CNN based BCI system. The results reveal that the combined-modality approach
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of fNIR and EEG provides the improved classification accuracy than the individual
one. The conventional feature extraction methods are also deployed in the previous
chapter. We expect that the proposed CNN based predictive model will outperform

the conventional methods in terms of the classification accuracy.
5.2 Materials and Methods

5.2.1 Data Acquisition Protocol

Eight different tasks were considered for neural stimulation. Every participant
engaged in this research work performed four voluntary and four imagery tasks.
Generally movements are mostly conducted by hands and feet. The participants were
asked to perform movements by hands and feet by means of voluntary and imagery
manner. The subjects were verbally informed and practiced the protocol of the data
acquisition before actual data acquisition. The subjects lifted their left hand, right
hand, left foot, and right foot, sequentially. For the proposed neural stimulation, the
task was performed during 10 second with 20 second resting period. Therefore, the
scheduling of the proposed data acquisition protocol can be presented by Figure
5.1. In one session this unit protocol was performed four times by a participant.
After every session, each participant took rest at least five minutes. Eventually,
every participant performed 40 trials for each movement related task. A graphical
protocol aiding software was used for this research work that instructed graphically
to perform the tasks according to the schedule designed about which we have already
discussed in previous chapter. In this program, there are five different tasks those are
movements of the hands, feet (left & right), and rest. Eventually, eight different
tasks have been considered for analysis: voluntary left hand (LH), right hand (RH),
left foot (LF), right foot (RF) and imagery left hand (iLH), right hand (iRH), left
foot (iLF), and right foot (iRF).

-

10 sec 20 sec 10 sec 20 sec 10 sec 20 sec 10 sec 20 sec

Figure 5.1: Time schedule of data acquisition protocol for each participant regarding both the
voluntary and imagery movements. This is a unit task performing schedule that was repeated four
times in each session to complete 40 individual trials of every task.
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5.2.2 Data Acquisition

Fifteen right handed male subjects (age range=22 to 26) participated in this data
combined fNIR-EEG data acquisition procedure. No participant had a history of the
psychiatric, neurological, or visual disorder. Plus, no participant was reported to
have any pain in their both hands and feet. The verbal consents of the participants
were taken prior to the data acquisition as the rule of the university. All data
acquisition procedures were completed in the Neuroimaging Laboratory of the
Biomedical Engineering department of KUET obeying the declaration of Helsinki
[24].

For this work, a 16 channel continuous-wave fNIR system (model: Biopac 1200 fNIR
imager) and 9-channel EEG device (model B-Alert X-10) were used. The 9-channel
electrode system of B-alert X-10 device has been illustrated in Figure 5.2. The data
acquisition wireless device is also given in the figure. It covers the frontal, central,
and parietal lobe with 9 channels so far. It is a wireless system to transmit the data.

The data is logged by Acknowledge Software (version 4.4).

Utilizing both fNIR and EEG device, the prefrontal, frontal, and central part of the
brain are covered. The hemodynamic signals from the prefrontal cortex were acquired
by the fNIR device and the EEG signals of the frontal and central part of the brain
were captured by the 9 channel EEG device. The optodes of fNIR devices and the
electrode of B-Alert system were placed as the positions indicted by Figure 5.3. The
COBI studio and Acknowledge software were used to log the combined fNIR-EEG
signal. Although there is a time gap between the starting of the EEG and fNIR
signal acquisition software, it has been corrected by reverse counting approach. In
practice the illustration of concurrent fNIR and EEG data acquisition from a
participant has been given in Figure 5.4. From the figure, the usage of the fNIR

devices and EEG system are clearly observable.
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The electrodes and the data acquisition module of B-Alert X-10 wireless EEG system.
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5.3 Figure: The combined fNIR-EEG sensor positions on the scalp and prefrontal cortex. The data of
parietal lobe are acquired through the main data acquisition period but excluded for proposed offline
processing.

Figure 5.4: Data acquisition of voluntary and imagery movements by concurrent fNIR and EEG
modalities.

5.2.3 Methods

For multimodal signals fusion between fNIR and EEG, at first, all raw EEG signals
are filtered by a 50Hz notch filter to remove power line noise. After that bandpass,
elliptical filters are used to separate the strong band power from 1-60 Hz. The order
of filter are taken as optimal selection considering passband range (1 to 60 Hz),
stopband range (0 to 0.5 and 60.5 to oo Hz), the sampling frequency (256 Hz),
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passband ripple (0.1), and stopband ripple (30) [25]. Since neural activities of
imagery and voluntary movements are connected with the frontal and central part of
the brain, only frontal three channels, and central three channels are taken for
further processing. The most dominant features are included in the alpha, beta, and
total band power of the EEG signal in case of imagery and voluntary movements |11,
26]). As a result, the relative powers of the alpha and beta band from the six
channels are extracted by short-term Fourier transform (time period is 0.5 sec with
50% overlapping containing 128 samples). The average power of these prominent
bands will be varied according to the tasks of voluntary and imagery movements
those are fed into the CNN [27] classifier as 12 column feature vector combining with
fNIR temporal samples of 16 channel. Finally, we get data matrix of 120x28 size. In
our proposed method, neuroimages have been prepared by 16 column fNIR data

(both HbO, and dHb) with 6 column EEG features.

Organize the HbO, and dHb
signals (120x16)
fNIR Signal l
preprocessing -
_Combine NIR & EEG Train CNN CNN based
information and create 120 by N .
. : for modeling predictive model
_ 1 fNIR & EEG 28 size Neuroimage
Load Signals H Signal
Prepare 12 column feature
EEG Signal vectors with relative band power
filtering of frontal and central EEG
channel (2x6 channels)
Separate the STFT of frontal and central
channel: F3 Fz F4 channels to calculate the relative
C3CzC4 power of alpha and beta band
Preprocessing for Proposed Model
Training Phase
fNIR and Prffrggsgsgg dfe"lr Task classification ar\]/do'i‘;‘;ag
EEG signals proposec me for BCI gery
compatibility movements
Testing Phase

Figure 5.5: The training and testing phase of CNN based predictive model to classify the voluntary
and imagery tasks for BCIL.
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These images of combined information of fNIR and EEG are fed to CNN to train the
network that can be able to model itself as a movement related task classifier. This
multimodal neuro-image based predictive model by CNN will be capable to provide
highly efficient BCI. This complex methodology with prominent steps can be
explained briefly by the following block diagram given in Figure 5.5.

5.3 Results and Discussions

Since the preprocessing results of the fNIR signals have been discussed in the
previous chapters with clarified illustrations, in this chapter, some results of
prominent preprocessing steps of EEG signal has been illustrated. The effect of notch
filter on raw EEG signal has been presented in Figure 5.6. In addition, the elliptical
filtering effects and eye blink removal steps are also given in this figure. Raw EEG
signal is filtered by 50 Hz notch filter to remove the power line noises from the
signal. After that, a third order elliptical filter has been used to filter up to 45 Hz
EEG signal. This signal is still contaminated with the eye blinking effect. This effect
has been removed using the Matlab based toolbox, EWICA. All the corresponding
results of the preprocessing steps have been given in a chronological order in Figure
5.6. According to the assumption of the proposed work, with the variation of the
task (either voluntary or imagery tasks) the band power of alpha and beta band will
be changed. A grand variation has been estimated between left and right hand
imagery movements using PSD and the outcomes of this assumption have been given
in Figure 5.7. From the results, we can see that the variations are observable both

in frontal and central lobe of the brain with a similar pattern.

It has already been claimed that we considered the central and frontal EEG channel.
This is because the functional changes occur in the central lobe mostly, but the
frontal lobes become also activated due to voluntary and imagery movement related
tasks. For the justification, we have added the activation level of the different
positions of the brain concerning frontal, central, and parietal lobe of the brain as
topoplot. The topoplots are presented in Table 5.1. The topoplots are prepared
from the average activations of five randomly chosen subjects. A Matlab based free
toolbox [28] has been utilized to prepare the graphical topoplots, which is solely
designed for the 9-channel EEG data of B-Alert wireless devices.
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Figure 5.6: Step by step EEG signal pre-processing: (a) Raw EEG signal of a single channel, (b)
EEG signal after removing 50 Hz power line noise, (c¢) Filtered EEG signal upto 45 Hz by third order
elliptical filter, and (d) Eye-blink and EOG artifact free EEG signal which is filtered by the EWCA
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Figure 5.7: The power of alpha and beta band of left and right hand imagery movement.
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Table 5.1: The average neural activations regarding different stimuli. The activation was calculated
based on the relative power spectral density of the channels.

LH iRH

From the topoplots we get that the voluntary movements of hands and feet create
significant activations in the central lobe. On the other hand, due to imagery
movements, both the frontal and central lobes become activated. One thing is
noticeable for the imagery feet movements that the impact of the activation is
slightly lower than that of the imagery hand movements. In addition, the patterns
are also irregular compared to the movements of the voluntary feet movements. In
most of the cases, the parietal lobe was inactive and that is why the information of

the parietal lobe is excluded in the functional neuro-image construction.

Consequently, according to the proposal the fNIR and EEG signals have been
combined obeying the rule proposed in the previous chapter. It should be mentioned
that with the combined fNIR-EEG based image, we also used only the fNIR data
(HbO, and dHDb) to produce the neuroimages for the training of the CNN. It is
performed to show that the difference in the classification accuracy between the
single fNIR modality and the combined modality approach. The neuroimages

regarding the single and bimodal data of eight different class stimuli have been
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presented by Table 5.2 and Table 5.3, respectively. The images are prepared on

the basis of their normalized value. Furthermore, these images are RGB color image

those are prepared to feed the CNN. The image size is (384 x384x3).

Table 5.2: Neuroimages from the temporal HbO, and dHb fNIR data of 10 sec task plus 20 sec
activation. Here, there are the images of eight types of tasks with 6 trials of each task.

Trial # 1
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Table 5.3: Neuroimages from the combined fNIR and EEG data of 10 sec task plus 20 sec activation.

Trial # 1

Trial # 2

Trial # 3

Trial # 4

Trial # 5

Trial # 6

Color bar

iLH

|

A

iRH

|

iLF

iRF

LH

RH

LF

RF

1

These images are sequentially fed to the CNN for automatic feature extraction and

to train the predictive model for further classification. The typical CNN structure
and the outcome features of the fed images with each convolution layer have been

presented in Figure 5.8 and Figure 5.9, respectively.
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Figure 5.8: The general structure of a CNN based classifier.
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Figure 5.9: The features of the input images with the changes of layers of the CNN based classifiers.

The CNN structure of the proposed work has been given in Figure 5.10. This is a
demo code of the CNN structure of the proposed work where the filter size and
numbers were changed to get the optimum classification accuracy for all conditions.
Here, the basic structure of the designed CNN network has been shown with its
different parameter considerations. The architecture information regarding the
proposed CNN model of this work are summarized in Table 5.4. With three
convolution layers (given in Figure 5.9 with detail information), there are 15 layers
in the proposed CNN model that includes three convolutional, two maxpooling, three
batch normalization, and four/six/eight fully connected layers. In the case of four,
six, and eight class problems, the fully connected layers are set to four, six, and
eight, respectively. As explained earlier, the input image size is 384 x384x3, which
indicates the image matrix size 384 x384 with its 3-dimensional color information.
The filter kernel was used as 8x8, 4x4, and 4x4 for the 1*, 2", and 3™ convolutional
layers, respectively meanwhile the filter number was 9, 16, and 16, respectively. We
have used stride |1 1] for the convolutional layers and [2 2| for maxpooling layers.
The convolution layers and its kernel and filter numbers of this proposed CNN model

are given in Figure 5.9 along with the feature maps for the 4-class problem of a
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typical subject. : The proposed CNN model was trained based on some initial
considerations about different parameters, which are defined in Table 5.5. The loss
function was calculated from the cross-entropy in the softmax layer. On the other
hand, the training and testing data ration was considered 4:1. The classification
accuracy was performed based on the 5-fold cross-validation technique. The 25%
training data was used for validation. The training and testing of the proposed model
were conducted as the subject-dependent approach. Eventually, the data of 15
participants were separately used for training and testing. The classification accuracy

was conducted for 4, 6, and 8 class where the class level was set as 4 class: [LH, RH,

iLH, and iRH]|, 6 class:| LH, RH, iLH, iRH, iLF, and iRF|, and 8 class [LH, RH, LF,

RF, iLH, iRH, iLF, and iRF|.

Table 5.4: The details about the layers of the proposed CNN structure applied in this research.

Layers Type Description
0-1 Image Input Layer 384x384%3
19 Convolution Layer 1 Filter size=[8,8]; Number of Channels=3; Number of
Filters=9; Padding Size=[3,4,3,4]; Stride=[1,1]
2-3 Batch Normalization Layer
3-4 ReLU Layer
4-5 Maxpooling Layer Pool Size=[2,2]; Stride= [2,2]
56 Convolution Layer 2 Filter size=[4,4]; Number of Channels=9; Number of
Filters=16; Padding Size=[1,2,1,2]; Stride=[1,1]
6-7 Batch Normalization Layer
7-8 ReLU Layer
8-9 Maxpooling Layer Pool Size=[2,2]; Stride= [2,2]
. Filter size=|4,4|; Number of Channels=16; Number of
9-10 Convolution Layer 3 Filters:?EG; ]Padding Size=[1,2,1,2]; Stride=[1,1]
10-11 Batch Normalization Layer
11-12 ReLLU Layer
12-13 Fully Connected Layer Qutput Size=4/6/8
13-14 Softmax Layer
14-15 Classification Output Layer Qutput Size=4/6/8; Loss Function=Crossentropy

Table 5.5: Parameters considerations in the proposed CNN based model training.

Parameter Name Consideration Parameter Name Consideration
Activation Function Sigmoid Maximum Epoch 20
Momentum 0.90 Mini Batch Size 128
Initial Learning Rate 0.01 Verbose Frequency 50
L, Regularization 1.00x10™ Validation Frequency 4
Gradient threshold L2 norm Validation Patience 5
method
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The trained model was constructed for 4-, 6-, and 8-class. The training and
validation accuracy with respect to the iteration of 4-, 6-, and 8-class problems are
given in Figure 5.10, Figure 5.11, and Figure 5.12, respectively. The loss
reduction during training and validation of the proposed CNN models is also given in
the figures. The training and validation accuracy of the proposed CNN model are
found best in case of 4-class problem. On the other hand, the validation accuracy was

slightly inferior in the case of 6 and 8 class.
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Figure 5.10: The training and validation accuracy with loss performances with respect to the epoch
iterations for 4-class problem.
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Figure 5.11: The training and validation accuracy with loss performances with respect to the epoch
iterations for 6-class problem.
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Figure 5.12: The training and validation accuracy with loss performances with respect to the epoch
iterations for 8-class problem.

These results are found for subject 1 while the models were trained by combined
fNIR and EEG data. We have applied two different approaches to find the
classification accuracy: one is based on fNIR data only and the other is based on the
combined information of fNIR and EEG data. The results of 15 participants are
given in Table 5.6 and Table 5.7, respectively. In addition, according to the
proposition and scope of this work, the conventional classification methods such as
LDA and SVM were also applied to check their performance. The extracted features
of the fNIR data and the combined fNIR and EEG data were classified utilizing the
SVM and LDA method and the regarding results are also given in Table 5.6 and

Table 5.7, respectively.

From the result, we get that the combined information provides us greater
classification accuracy. For 4-, 6-, and 8-class problems, the classification accuracies
are significantly improved by 9%, 11%, and 17% on average by the combined fNIR-
EEG information in case of the CNN. On the other hand, the improvement in the
classification accuracy occurred 10%, 8%, and 8% for SVM and 7%, 4%, and 5% for
LDA. In the case of the conventional classifiers, the performances for the 6- and 8-
class are not convincing at all and that is why, the choice of CNN is inevitable. The
average classification performance of SVM, LDA, and the proposed CNN model for

single and bimodal data are presented in Figure 5.13 and Figure 5.14, respectively
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to reflect the importance of utilizing the combined information of fNIR and EEG
signal as well as choosing CNN as a classifier. The results claim that for 8-class
problem classification, CNN exceptionally plays a significant role to achieve the
expected BCI goal. In addition, the combination of the EEG information with the
fNIR signal provides an excellent increment in the classification performances. The
result proves that combined information of fNIR and EEG outperforms the
information regarding the fNIR signal alone. In addition, the classification accuracy
has been achieved 90 + 4.54%, 82 + 5.12%, and 72 + 4.34% for 4-, 6-, and 8-class

problems, respectively, which is too convincing for the BCI implementation.

Although there is numerous research work on motor imagery signal classification,
their data acquisition protocol, devices, participants, and modalities are different
from each other. Therefore, to compare them directly are difficult in the scientific
aspect. Although some research works have existed that deploys 4-class motor
imagery EEG or fNIR signal classification, there is only one work [29] that presents
both 4-class and 8-class BCI for robot hand control. Since the main objective of all
these research works is to implement BCI, a general comparison regarding their
protocols, methods, and performances could be a nice presentation to observe the
overall concept about the trends of the multiple-class BCI implementation through
fNIR, EEG or combined fNIR & EEG. Such a comparison of 4-class and 8-class BCI
of the proposed method with the others has been presented in Table 5.8. From the
performance of the proposed method it is clear that in the process of improvement
trending in the research of BCI, our proposed bimodal approach outperforms the

existing previous works.
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Table 5.6: The classification accuracy of the SVM, LDA, and the proposed model with the fNIR data

only.
. . 4-class 6-class 8-class
Participant Proposed Proposed Proposed
# SVM | LDA CNN SVM | LDA CNN SVM | LDA CNN
1 60% 76% 82% 52% 61% 74% 48% 45% 55%
2 63% 66% 78% 53% 59% 71% 45% 48% 50%
3 68% 66% 80% 57% 53% 7% 52% 43% 50%
4 70% 74% 84% 60% 63% 7% 58% 54% 55%
5 65% 70% 85% 53% 54% 67% 37% 39% 65%
6 68% 69% 76% 61% 58% 1% 54% 47% 60%
7 64% 72% 81% 56% 67% 5% 41% 50% 60%
8 69% 67% 78% 64% 58% 61% 52% 56% 55%
9 66% 70% 89% 54% 53% 8% 43% 35% 50%
10 65% 68% 78% 59% 62% 65% 48% 48% 55%
11 2% 66% 78% 59% 60% 62% 48% 58% 45%
12 68% 64% 82% 56% 59% 71% 3% 48% 50%
13 73% 5% 84% 65% 66% 1% 56% 52% 60%
14 70% 74% 90% 62% 62% 74% 58% 51% 65%
15 74% 72% 75% 65% 64% 64% 43% 50% 50%
/(*Sie;ggzrﬁ 68% + | T0% + | 81% + | 58% & | 60% £ | T1% + | 48% + | 48% + | 55% +
Deviation) (3.88) | (3.76) (4.45) (4.42) | (4.33) (5.56) (6.98) | (6.07) (5.97)

Table 5.7: The classification accuracy of the SVM, LDA, and the proposed model with the combined
fNIR and EEG data.

.. 4-class 6-class 8-class
Participant Proposed Proposed Proposed
# SVM | LDA CNN SVM | LDA CNN SVM | LDA CNN
1 7% 80% 92% 70% 65% 90% 54% 50% 74%
2 82% 76% 88% 61% 63% 82% 52% 58% 72%
3 81% 80% 88% 69% 57% 84% 58% 60% 5%
4 86% 82% 90% 65% 64% 90% 61% 52% 76%
5 "% 8% 94% 73% 70% 38% 48% 54% 70%
6 75% 80% 92% 58% 57% 86% 60% 50% 80%
7 80% "% 94% 62% 69% 32% 55% 48% 8%
8 2% 66% 86% 70% 61% 75% 61% 56% 69%
9 78% 74% 98% 65% 65% 85% 58% 55% 1%
10 71% 76% 84% 65% 53% 75% 55% 50% 70%
11 81% 79% 83% 66% 69% 78% 58% 58% 63%
12 7% 68% 91% 1% 68% 2% 48% 52% 65%
13 78% 80% 90% 65% 63% 80% 60% 54% 65%
14 76% 82% 96% 61% 58% 78% 62% 55% 72%
15 84% 78% 87% 64% 70% 75% 54% 50% 70%
j?sze;ggzrﬁ 8% 4+ | TT% £ | 90% £ | 66% + | 64% + | 82% + | 56% & | 53% &£ | T2% +
Deviation) (4.11) | (4.66) (4.54) (4.23) | (5.57) (5.12) (4.49) | (3.56) (4.34)
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Figure 5.13: Overall performances (mean+ standard deviation) of the classification accuracy through
SVM, LDA, and the proposed CNN method while only the fNIR data were considered.
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Figure 5.14: Overall performances (mean+ standard deviation) of the classification accuracy through
SVM, LDA, and the proposed CNN method while combined fNIR and EEG data were considered.
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Table 5.8: Comparison of the proposals of the multiple class BCI system.

R%;‘:’)i‘i{ch Work Objectives Methodology Modality i‘zz‘;f:cls
4-class database classification
C. L. Leon et Com.bined motor Feature Extr’.a'ctz'on: lVI(?diﬁed 7
al. 2017 [29] imagery CSP Classifier: Multistep EEG 71.67%
classification SVM
M. A. Moto imagery Feature Extraction: PCA &
Rahman et al. classification Wavelet Classifier: Two-step EEG 74.60%
2019 [30] ANN
S. Ge et al. Moto.i.magfery Feature Extmgtz"on: STFT & EEC 88.1%
2014 [26] classification CSP Classifier: SVM
A. M. Batula Moto imagery Feature Extraction: Mean
et al. 2014 lassification Value fNIR 54%
[31] ¢ Classifier: SVM
Feature Extraction: Statistical
J. Shin et al. Moto imagery Features
2014 [32] classification Classifier: Naive Bayes fNTR 83.15%
classifier
Proposed Moto imager Feature Extraction and
Method classificagiony Classification by CNN INIR+EEG 90%
8-class database classification
C. L. Leon et Com.b ined motor Feature Extraction: Modified X
al. 2017 [29] Huasery CSP Classifier: Multistep SVM EEG SLET7
classification
Voluntary and
Proposed imagery motor Feature Extraction and
Method m%)ve}:ment Classification by CNN INIR+EEG %
classification

CSP~Common Spatial Pattern, PCA~ Principal Component Analysis, and STFT—Short Time Fourier Transform

These results are found for subject 1 while the models were trained by combined
fNIR and EEG data. We have applied two different approaches to find the
classification accuracy: one is based on the only fNIR data and the other is the
combined information of fNIR and EEG data. The results of 15 participants
according are given in Table 5.6 and Table 5.7, respectively. From the result, we
get that the combined information provides us greater classification accuracy. For 4,
6, and 8 class problem, the classification accuracies are significantly improved by 9%,
11%, and 17% on average by the combined fNIR-EEG information. The result proves
that combined information of f{NIR and EEG outperforms the information regarding
the fNIR signal alone. In addition, the classification accuracy has been achieved 90 +
4.54%, 82 £+ 5.12%, and 72 +£4.34% for 4, 6, and 8 class problem, respectively which

is too convincing for the BCI implementation.
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5.4 Conclusion

This chapter presents the first research work based on the combined fNIR and EEG
signals that deals with up to 8 class problems classification by CNN. Besides, this is
the first proposal to decode voluntary and imagery movements combining prefrontal
hemodynamic signals (fNIR) along with the frontal and central neuroelectric signal
(EEG). This proposal on the bimodal approach for CNN-based BCI implementation
founds excellent results in classification accuracy of the voluntary and imagery
movement related tasks. It has been also shown that the classification accuracies are
increased in the combined fNIR-EEG signal rather than the single modality
information (fNIR only). In addition, this proposed research work extends the
pathway to implement up to 8 class problem utilizing f{NIR and EEG data where
most of the current literature discussed 2 or 4 class. This proposed method is robust
and efficient to 8 class classification problem along with 4 and 6 class problems which
makes hope in establishing an effective BCI for the motor impaired or paralyzed

persons.
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CHAPTER 6

Conclusions and Future Perspectives

6.1 Conclusions

This research work has been widely examined the voluntary and imagery movement
through fNIR and EEG signals. These signals were used to model the activation
pattern of the voluntary and imagery movements related prefrontal hemodynamics.
In addition, with conventional approach fNIR signals of different movements are
classified where it was found that the classification accuracies are not satisfactory to
build an effective BCI system. As a result this work has been proposed to add the
EEG signals with a novel approach and deployed deep neural network to construct a
predictive model to classify the combined fNIR-EEG signal. The outcomes of the
proposed method are very significant and convincing. The total outcomes of this

research work can pointed with the following lines:

» The voluntary and imagery movements of hands and feet have been analyzed
from the prefrontal hemodynamics with fNIR device. The hemodynamic
properties regarding these voluntary and imagery movements in the

prefrontal cortex have been widely examined in a novel approach.

» The activation pattern of the HbO, and dHb due to different voluntary and
imagery movements are modeled using polynomial regression method from

the prefrontal hemodynamics.

» A novel approach of fNIR and EEG signal combination has been proposed
and examined by this work. The proposed method combine the fNIR and
EEG signal and make a neuroimage considering its spatiotemporal

information

» A deep neural network, CNN has been deployed to build a predictive model
for classifying combining information of fNIR and EEG signals regarding the
voluntary and imagery movements. This novel approach can predict the
movement activity from the fNIR-EEG signal (converted as the proposed

combining method) with very high classification accuracy.
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» This work has shown that the combined fNIR-EEG signal provides the

higher classification accuracies than that of the fNIR signal only.

» This research work classified the fNIR-EEG signals of eight classes so far
with very high classification accuracy that recommend this outstanding
outcomes of this proposed research method to deploy in practical BCI system

design

6.2 Future Perspectives

There is a time-consuming issue to use the deep learning approach. In future, it can
be a suitable research guideline for the future researchers to reduce the time
consumption of the proposed CNN. In addition, some more classes can be added to
implant the practical BCI system that can be very helpful for the disable persons. In
addition, all this research work and the corresponding methodologies have been
developed for an offline process. With the help of the current research outcomes, an
online classification platform with deep neural network can be constructed to reach

one step ahead of the practical BCI system.
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Appendix

A. SMAR Algorithm

Sometimes the acquired fNIR signals can be infected by head movement and some
special noises are introduced in raw fNIR signals. Due to the motion of participant
during optical brain imaging through fNIR causes coupling or the changes of pressure
in the light sources and detectors. This reason and its corresponding effect can be
captured within the raw fNIR signals as noise. This noise is found as spikes or burst
noise with much higher or lower amplitudes than regular cortical activity.
Additionally, the temporal sequences of these abrupt variations by reason of motion
artifact in the raw fNIR signal are much faster than the typical raw signals. Sliding-
window motion artifact rejection or SMAR algorithm can scan the fNIR signal to
identify the segments with such characteristics. This algorithm measures light
intensity at two different wavelengths (730nm and 850nm) and also a dark current
condition to estimate the existence of any possible ambient light leakage.

Suppose that at the light intenisity of wavelength, A the raw fNIR signal isz;(n)and
the dark current has been measurez;(n)at that time. According to accomplish the

SMAR algorithm following steps should be completed:

i) At first calculate a local coefficient of variation (CV) of the dark current for each

n?
1 n+N /2 1 n+N /2 2
Y ai =) Y
j=n-N /2 TNy
( ) D za(d)
N+1,_ 780

where, N-+1 indicates the sample size of the window.

i1) By the similar procedure, calculate CV;;(n) and CV;,(n) for the wavelength A,

and A,, respectively.

i17) In this step, a threshold is needed to fix on the value of z; and z;; and z,, after
calculating CV;, CV;; and CV,,, respectively. Therefore, to get the cleaned signals,
z; , T; and Z;, following estimations are considered.

~ . xd(n); O‘/d(n) < ,l_dupper
‘Id(n) =

(A.2)
NaN, else
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where NaN indicates “Not a Number” that represents threshold or excluded value.

Here, the upper threshold value for the concerned dark current is taken z,;,"”“". On

the other hand, for the specific wavelength light intensity, window mean X7 is

calculated by (A.2) centering n,

%= (5] S (A3)

N+1 t=n—-N/2
Therefore, the value of z,, and z,,can be calculated obeying the rule given in (A.4)

NaN, X > s & 0% > OV,(n)
a?/l(n) = NGN, CV]’ < Tiu])pe?‘ (A4)

z,(n), else

upper

where, NaN is the excluded value and the upper and lower thresholds are 7, and

70w for the wavelength, 4, and A, respectively. In addition, s is the measure of

saturation which is actually instrument depended. Since MBLL for concentration
estimating equation requires the raw values of the both wavelengths, if one segment

can be excluded forz;;, z;9 or z;it will eliminate the other wavelength raw values

at the same time. The suggested threshold values and window size for the fNIR
devices used in this research work are given in Table A.1l those are considered to

test the acquisition correctness of the fNIR signals.
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Table A.1: The necessary parameters of SMAR algorithm and their recommended values

Parameters N s (mv) rﬁow” T, urer 7, MPer
Recommended Values 10 4000 0.003 0.025 0.015

B. Principal Component Analysis (PCA)
Suppose, a matrix A is consists of the n dimensional data. Now, a matrix U can be
calculated which represents the eigenvectors sorted as the eigenvalues of the
covariance matrix of A. In that case, we can get the PCA transformation of the data
A in the form of Y as,
Y =U"A (B.1)

The eigenvectors are also termed as the principal components. If only first r rows of
Y are selected to project the data, the data becomes of r dimensional from d
dimensions. This transformation is performed by singular value decomposition
(SVD). The procedure to perform PCA by SVD can be described by matrix
decomposition. Suppose, the matrix, A can be decomposed using SVD as,

A =ory? (B.2)
Here, Q is nxm matrix with orthonormal columns (Q'Q=71),%is a mxm
orthonormal matrix (W'W =171), and T is a mxm diagonal matrix with positive or
zero element which is also known as singular value. Besides, we can calculate the

covariance matrix, C of A as,
C=Lan" = Lara? (B.3)
N N

As the singular values are sorted in descending order and if n < m, the first n

columns in Q corresponds to the sorted eigenvalues of matrix C and if m > n, the
first m corresponds to the sorted non-zero eigenvalues of C. Therefore, eventually the
transformed data can be written as,

Yy =UTA =UTure” (B.4)

C. Analysis of Variance (ANOVA)

Analysis of variance or ANOVA test is essential to testify the statistical strength of
the hypothesis made on the data. When a number of subjects participated in a same

working protocol, then the results from the all subjects are not same at all. From
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multiple channels data, only the consistent results are taken into account to take
decision. This consistency measurement is done statistically. One of the major and
well established procedures is ANOVA. A two way ANOVA of samples with 0 mean

and standard deviation o, is described by the following equation:
T =H+a;+ [+, (C.1)
Here, ,is grand mean of population, ¢ is sample effect, g is column effect, and ¢, 1s

the chance of error. Suppose, the number of samples per row is b and number of
samples per column is a then on the basis of samples of two way ANOVA test, the

expectation of variations are,

Error variation, (V) = (a —1) (b — 1)0'2 (C.2)

Variation between rows, E(V,) = (a — Do* + bz 0!]2 (C.3)

Variation between columns, EV,)=0b-)o L4 a. ,BLZ (C.4)
J

Total variation, E(V) = (ab-1)c* + a% B+ b a; (C.5)

Regardless of hypothesis, a best unbiased estimation of variance o?is provided by,
52 = (;)fﬁ which is actually E(S3)=0”. In case of hypothesis, H," or H,®
a—1)(a—

are true, then (C.6) - (C.8) will be unbiased estimates of &°.
Vi

Sp=—"0— C.6
S ()
Vi
Sé=—C9— C.7
T (1
§=C (C8)
(ab—1)
However the two hypotheses are not true, we get from (C.6) and (C.7),
B(SH) = o+ 3 a? (C.9)
a — .
j
E(S)=c"+—2_>a? (C.10)
’ b—17%

According to the results of ANOVA are tested by the fisher values to testify the
hypothetical strength of the data. This result will help us to find the most effective

channel to classify the activities and model the BCI.
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D. Code of Graphical Protocol Aiding Application Software
%% %% % % %0 % %% % % % %o %o %o %0 % %6 Yo %o Yo Yo %o %6 % Yo Yo Yo Yo Yo %o %o %o Yo Yo Yo Yo %o %o %o %o Yo Yo Yo Yo %o %o %o Yo Yo %o Yo Yo %o %o Yo Yo Yo Yo Yo %o %6 %0 % %o Yo

%% %% % This is a MATLAB based graphical protocol of four different %% %% % % %%
%% %% % event-oriented data acquisition aiding software %% % % % % %%
9% %% %% This is coded by Md. Asadur Rahman, PhD Candidate, %% %% % % % %
%% %% % Dept. of BME, Khulna University of Engineering & Technology %% % % % % %%

%% %% and a property of ABC KUET %% %% % % % %
%% %% % (Advanced Bio-Engineering Club of KUET) %% %% %% % %

0(‘0(‘0(‘%%0(‘0(‘%%0(‘0(‘%%%0(‘0(‘%%0(‘0(‘(%‘%%(%‘(%‘%%(%‘(%‘%%%(%>(%>%%(J (70 UO U%%O UO U%%O UO U%OOOOO UO UOUO(?O UO UO UO(\U(70UOUU(\U(\OUOUU(\U(\

cle
clear all
close all

for j=1:1:5 %% Please put the number how many trials you want to take in a session
%% %% % % %0 % % %6 % % %o % %o %o % Yo %o % %o %o Yo Yo Yo %% Yo Yo Y Yo Yo Yo Yo Yo % Yo Yo Y Yo %o Yo Yo Yo % Yo Yo Yo Yo Yo Yo Yo Y6 % Yo %o Yo Yo Yo Yo Yo Y6 Yo o %o Yo Yo Yo

%% % % % % % % %% % % % %0 %0 %o Yo Yo %o Yo %o %o % % % % % % % % %o % Rest %% % %% %o % % %o % % %0 % % % % %o %o %o Yo Yo Fo Yo Yo %o Yo Yo %0 %o

%% %% % % %0 % % %6 % % %o % %o Yo % Yo %o % o %o Yo Yo Yo %% Yo Yo Y Yo Yo Yo Yo Yo % Yo Yo Y Yo %o Yo Yo Yo % Yo Yo Yo Yo Yo Yo Yo Y6 % Yo %o Yo Yo %o Yo Yo Y6 Yo %o %o %o Yo Yo

subplot 335

title("Rest')

% the flashing block on frequency

t = timer;

set(t, 'executionMode', 'fixedRate');
freq — 1;

period = 1/freq;

set(t, 'Period', 1/freq);

set(t, 'TimerFen', 'show');

flash — true;

RectPos = [0,0,1,1];

%// Set the visible property to off.
show — rectangle('Position',RectPos,'FaceColor',"t!,"Visible' 'off");
hide = rectangle('Position'RectPos, FaceColor','t''"Visible''off");

% set the background to green
set (gef, 'Color', [0 1 1]);

for i-0:1:20;

%// Play with the "Visible" property to show/hide the rectangles.
set(show,'Visible','on")

pause(0.1)

set(show, Visible','off")
set(hide,' Visible','on');
drawnow

pause(0.1)
set(hide,' Visible','off");

set(gcea,'xcolor' ,get(gef,'color'));

set(gca,'ycolor',get(gef,'color'));

Yoset(gea,'ytick',[]);

Yoset(gea,'xtick',[]);

i1
end
(%’(%’(%’”(7”(7(%’(%’”(7”(7(%’(%’”(7”(7”(7(%’(%’”(7”(7(%’(%’(%’”(7”(7(%'(%'”(7”(7(%'(%'U(7U(7U(7(%’(%’U(7U(7(%7(%7(%7U(7U(7(%7(%10(7U(7(%1(%10(7”(7U(Y(KV(KVU(7%7(%1(%1(%1”(7”(7(%1(%1”(7”(7(%7(%1”(7%7
%% %% % % % % % % % % % % % % % % % % % % % % % % % Left Hand Movement % % % % % % % % % % % % % % % % % % % % % % % % % % % %
%% % % % % % % %% % % %o %o %o Yo Yo Yo Yo Yo %o Yo Yo %0 %0 %0 %o %0 Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Y6 %6 %6 %0 Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Y6 %0 %0 %0 %o %o %o %o %o Yo Yo Yo %o o
subplot 331
title('Left Hand')
% the flashing block on frequency
t — timer;
set(t, 'executionMode', 'fixedRate');
freq — 5;
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period = 1/freq;

set(t, 'Period’, 1/freq);
set(t, 'TimerFen', 'show');
flash = true;

RectPos = [0,0,1,1];

%/ / Set the visible property to off.
show — rectangle('Position',RectPos,' FaceColor',"g",'Visible','off");
hide = rectangle('Position' RectPos,FaceColor','t','"Visible','off");
% set the background to black
set (gef, 'Color', [01 1] );

for i=1:1:20;

%/ / Play with the "Visible" property to show/hide the rectangles.
set(show,'Visible','on")

pause(0.1)

set(show,'Visible','off")
set(hide,'Visible','on');
drawnow

F(i)—getframe(gcf);
pause(0.1)
set(hide,'Visible','off");

set
set

gea,'xcolor’ ,get(gef,'color'));

gea,'yeolor' get(gef,'color'));
set(gea,"ytick',[]);
set(gea,'xtick',[]);
i=it1;

end

9% % % % % % %6 % % % % % % %6 % %6 % %o % Yo %o % %o % Yo % Yo Y Yo % %o %o %6 Yo % Yo %6 %o % Yo Y Yo %o Yo Yo Yo Yo Yo Yo % %o % Yo Yo %o %6 % %6 % %o % %o % % % Yo
%% % % % % % % % % % % % % % % % % %6 % %o % % % % % % % % %6 % % Rest %% % % % % % % % % %o % Yo %o % % % %o % %6 % % % % % % % % % % % %
9% % % % % % %6 % %6 % % %6 % %6 % %o % %o % %6 Yo %6 Yo % Yo % %o %o Yo Yo %o Yo % Yo % o o Yo %o %o Yo % Yo % Yo Y Yo Yo %o 0 %6 Yo % Yo Yo %o % %o % Yo Yo % %o % %o Yo

subplot 335

title('Rest')

% the flashing block on frequency

t — timer;

set(t, 'executionMode', 'fixedRate');
freq — 1;

period = 1/freq;

set(t, 'Period’; 1/freq);

set(t, 'TimerFen', 'show');

flash = true;

RectPos = [0,0,1,1];
%/ / Set the visible property to off.
show = rectangle('Position',RectPos,' FaceColor','t",'Visible','off");

hide = rectangle('Position'RectPos, FaceColor','t''"Visible','off');

% set the background to black
set (gef, 'Color', [0 1 1] );

for i-0:1:20;

%/ / Play with the "Visible" property to show/hide the rectangles.
set(show,'Visible','on")

pause(0.1)
set(show,'Visible','off")
set(hide,'Visible','on');

drawnow

pause(0.1)
set(hide,'Visible','off");
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set(gca,'xcolor' ,get(gef,'color') );
set(gea,'yeolor' get(gef,'color'));
set(gca,"ytick',[]);
set(gea, xtick![]);
il

end

9% % %% Y % % % % % % % Yo % % % o % % Y % % % % Y % % % % % % % Yo % % % % % % % Y % % % Y % % % Y % % % % % % % % % % % % % % % % % %
%% % % % % % % % % % % % % % % %o %o % % % %o %o % % % % % % % Right Hand %% %% %% % % % % % % % % % % % % % % % % % % % % % % % %

07 07 07 07 07 Oy Oy O7 O7 07 07 07 07 O7 07 07 07 07 O7 07 07 Oy Oy O7 O7 07 07 07 07 O7 07 07 07 07 07 O7 07 07 O7 07 07 07 07 07 O O7 O7 07 07 07 07 07 O7 07 07 07 Oy 07 O7 07 07 07 07 07 07 07 G,
0/0 (‘/()/() 0 (‘/() (7%‘%‘ 070 (7%‘%‘/()/()%‘%’%’/()/()%’%’/0 0 ['AV 070 (7%7 0/0/0/0/0/0/70/0/0/070/70/0/070/7070/0/0/070 UAVAV 0 (\AV 0/0/0/0/70/7070

subplot 333

title('Right Hand")

% the flashing block on frequency

t — timer;

set(t, 'executionMode', 'fixedRate');
freq — 5;

period = 1/freq;

set(t, 'Period', 1/freq);

set(t, 'TimerFen', 'show');

flash — true;

RectPos = [0,0,1,1];

%// Set the visible property to off.
show — rectangle('Position',RectPos, FaceColor',"g",'Visible','off");
hide = rectangle('Position' RectPos,'FaceColor','t'"Visible','off");

% set the background to black
set (gef, 'Color', [0 1 1] );

for i=0:1:20;

%/ / Play with the "Visible" property to show/hide the rectangles.
set(show,'Visible','on")

pause(0.1)

set(show,'Visible','off")
set(hide,'Visible','on');
drawnow

pause(0.1)
set(hide,' Visible','off");

set(gea, xcolor' get(gef,'color'));
set(gea,"ycolor' get(get,'color'));
set(gea,'ytick'|]);
set(gea,'xtick',|]);

=il
end

9% % % % % % % % %6 % % %o % %0 %6 % % Yo % %o %o % %o %o %% %6 Yo % Yo %o % Yo %o % %6 Yo % Yo %o Yo Yo %o % Yo %o % Yo Yo %o Yo Yo Y Yo %o %o Yo %o %o Yo Yo %o Yo %o % %6 Yo

%% %% % % % % %% %% %0 % %0 %0 %o %o Yo Yo Yo %o %o Yo % %0 % % %% Rest: %% %% %o %o %o %o %o %o %0 %0 % 0% % %% %% % %% %6 %0 %0 %0 %o %o Yo %o Yo
%% % % % % % % % % % % %o %0 %0 %o Yo Yo Yo Yo Yo Yo Y% %o Yo %0 % %0 %o %o Yo Yo %o Yo Yo Yo Yo Yo Yo %o %6 %0 %o Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo %6 Yo %6 %0 % %0 %o %o Yo Yo Yo %o o

subplot 335

title('Rest")

% the flashing block on frequency

t — timer;

set(t, 'executionMode', 'fixedRate');
freq — 1;

period = 1/freq;

set(t, 'Period’, 1/freq);

set(t, 'TimerFen', 'show');

flash = true;

RectPos = [0,0,1,1];
%/ / Set the visible property to off.

show = rectangle('Position',RectPos,'FaceColor','t",'Visible','off");
hide = rectangle('Position' RectPos,'FaceColor','t',"Visible','off");
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% set the background to black
set (gef, 'Color', [0 1 1] );

for i—0:1:20;

%/ / Play with the "Visible" property to show/hide the rectangles.
set(show,'Visible','on")

pause(0.1)

set(show,'Visible','off")
set(hide,'Visible','on');
drawnow

pause(0.1)
set(hide,'Visible','off");

set(gea,'xcolor' get(gef,'color'));
set(gea,'ycolor' ,get(gef,'color'));
set(gea,'ytick'|]);
set(gea,'xtick',[]);
=il

end
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subplot 337

title('Left Foot')

% the flashing block on frequency

t — timer;

set(t, 'executionMode', 'fixedRate');
freq — 5;

period — 1/freq;

set(t, 'Period’, 1/freq);

set(t, 'TimerFen', 'show');

flash = true;

RectPos = 10,0,1,1];

%/ / Set the visible property to off.
show = rectangle('Position',RectPos, FaceColor','g',"Visible','off");
hide = rectangle('Position',RectPos,'FaceColor','t",'Visible','off");

% set the background to black
set (gef, "Color', [0 1 1] );

for i-0:1:20;

%// Play with the "Visible" property to show/hide the rectangles.
/ proj y / g
set(show, Visible','on")

pause(0.1)

set(show, Visible','off")
set(hide,' Visible','on');
drawnow

pause(0.1)
set(hide,' Visible','off");

set(gea,'xcolor' get(get,'color'));
set(gca,'ycolor',get(gef,'color'));
set(gea,"ytick',|]);
set(gea,'xtick',[]);

i=itl
end
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subplot 335

title('Rest")

% the flashing block on frequency

t — timer;

set(t, 'executionMode', 'fixedRate');
freq — 1;

period = 1/freq;

set(t, 'Period’, 1/freq);

set(t, "TimerFen', 'show');

flash = true;

RectPos = [0,0,1,1];
%/ / Set the visible property to off.
show = rectangle('Position',RectPos,' FaceColor','t",'Visible','off");

hide = rectangle('Position',RectPos,'FaceColor','t",'Visible','oft");

% set the background to black
set (gef, "'Color', [0 1 1] );

for i-0:1:20;

%/ / Play with the "Visible" property to show/hide the rectangles.
set(show,'Visible','on")

pause(0.1)
set(show, Visible','off")
set(hide,'Visible','on');

drawnow

pause(0.1)
set(hide,'Visible','off");

set
set

gea,"xcolor' get(gcf, 'color'));

gca,'ycolor' get(gef,'color"));
set(gea,'ytick',[]);
set(gea,'xtick',[]);
i=itl;

end
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subplot 339

title('Right Foot')

% the flashing block on frequency

t — timer;

set(t, 'executionMode', 'fixedRate');

freq — 5;

period = 1/freq;

set(t, 'Period', 1/freq);

set(t, "TimerFen', 'show');

flash = true;

RectPos = [0,0,1,1];
%/ / Set the visible property to off.
show = rectangle('Position',RectPos, FaceColor','g',"Visible','oft");

hide = rectangle('Position' RectPos,'FaceColor!,'t'"Visible','off");

% set the background to black
set (gef, 'Color', [0 1 1] );

for i-0:1:20;

%/ / Play with the "Visible" property to show/hide the rectangles.
set(show,'Visible','on")

pause(0.1)
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set(show,'Visible','off")
set(hide,'Visible','on');
drawnow

pause(0.1)
set(hide,'Visible','off");

set(gca,'xcolor' ,get(gef,'color'));
set(gea,'ycolor' get(gef,'color'));
set(gea,'ytick',[]);
set(gea,'xtick',|]);
=il

end

=it
end
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