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 Abstract 

The collection of soil samples is labored and time consuming as well as the determination 

of heavy metal concentrations in laboratory was expensive. To these attempts, artificial 

intelligence techniques (AI) such as adaptive neuro-fuzzy inference system (ANFIS), 

support vector machine (SVM) and artificial neural networks (ANN) were implemented for 

the analysis of heavy metal concentrations in soils of a selected waste disposal site at old 

Rajbandh, Khulna. The aim of this study was to fix the functions, algorithms, optimization 

methods for AI techniques based on their best performance and then select a best technique 

for the analysis of heavy metal concentrations in soils.  In this study, soil samples were 

collected from eighty-five locations at a depth 0-30 cm from the existing ground surface 

from the selected disposal site. In the laboratory, the concentrations of heavy metals of Pb, 

Cu, Ni, Zn, Co, Cd, As, Sc, Hg, Mn, Cr, Ti, Sb, Sr, V and Ba in soils were measured.  

 

Result reveals the model with SCP, gaussmf, linear and hybrid was the best-fitted model of 

ANFIS for the prediction of heavy metal concentrations in soils. In addition, in SVM 

analysis, the model SVM-RBF with 15 folds was selected for the prediction of heavy metal 

concentrations in soils. In ANN, the model LT (Levenberg-marquardt and Tansig functions) 

with neuron structure 2-10-1 was selected. The accuracy of the predicted results were 

checked based on the acceptable limits of prediction parameters like R value, RMSE, MAPE, 

GRI and percentage recovery. Among all heavy metals analysis in ANFIS, the maximum R-

value 0.999 was found with the minimum RMSE 0.12 for Sc indicating the best correlation 

in prediction of Sc in soils. The others value of prediction parameters (MAPE= 36.00, 

GRI=1.50, percentage recovery=123.43%) for Sc were found within the acceptable limits. 

In addition, in SVM analysis, maximum R-value 0.73 with RMSE 2.03 was found for Cu; 

while, maximum R-value 0.88 with the minimum RMSE 1.01 for As was found in ANN. 

The results demonstrated that ANFIS model was a reliable technique than that of other 

counterparts of SVM and ANN to analyse the heavy metal concentrations in soils with the 

acceptable degree of robustness and accuracy. Therefore, the performance of AI techniques 

may be expressed by the sequence of ANFIS > SVM > ANN.  Here it can be noted that one 

can easily be computed the concentration of a particular heavy metal in soils by inserting 

GPS values (latitude and longitude) only in the developed rule viewer of ANFIS. Therefore, 

this newly developed model will further be helpful for other researchers in this line to 

analysis heavy metal concentration in soils of selected waste disposal sites. 
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CHAPTER 1  

INTRODUCTION 

1.1 Research Background 

Heavy metals are metallic elements that have relatively high density and toxic behavior even 

at low concentration (Alloway et al., 1990). The study of heavy metals in soils has increased 

in the last decades because of their adverse environmental and human health effects (Tahir 

et al., 2007). In waste disposal site, municipal solid waste (MSW) decomposes and produces 

three components of solid (degraded waste); liquid (leachate that is infiltrating into the 

underlying layer) and landfill gas (Sanjida and Rafizul, 2018). Open dumping facilities 

release huge quantity of harmful as well as poisonous chemicals like heavy metals to the 

surrounding water bodies as well as underlying soil layer, etc. Most of the environmental 

and human health problems come from the emission of heavy metals from the propagated 

leachate, contaminated soil, landfill gas (LFG), non-methanic volatile organic compounds 

as well as hazardous air pollutants in waste disposal site (Talib et al., 2008). In Khulna city, 

most of the MSWs were collected from door to door without any sorting and dumped in an 

open disposal site at Rajbandh. The emissions of toxic metal element from MSW, leachate 

and soil will be vulnerable to the environmental components and the nearby inhabitants. The 

evaluation of heavy metal distribution in soils is important to save the environment. 

Moreover, for various soil assessment techniques, heavy metal concentrations are needed. 

However, the collection of soil samples are labored, time consuming as well as the 

determination of heavy metal concentration in soils from laboratory is expensive. 

The prediction of heavy metal concentration using artificial intelligence techniques (AI) may 

be the solution to solve this problem. In the literature, the AI techniques such as adaptive 

neuro-fuzzy inference system (ANFIS), support vector machine (SVM), artificial neural 

networks (ANN), fuzzy logic (FL), knowledge-based systems (KBSs), genetic algorithms 

(GAs), biogeography-based optimization (BBO) etc. are available and most usable. These 

AI techniques have many functions, algorithms, optimization methods, which can be used 

for the prediction of heavy metal concentration in soils.  The aim of this study is to fix 

functions, algorithms and optimization methods for all AI techniques based on their best 

performance and select a best AI technique for the analysis of heavy metal concentrations in 
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soils. In this study, for the analysis of heavy metal concentrations in soils, the AI techniques 

such as ANFIS, SVM and ANN was performed. 

A study stated that over the last few years or so, various AI techniques for analysis of heavy 

metals concentrations and other quality parameters; environmental modelling; water quality 

monitoring and assessment; estimation as well as forecasting in climatic sciences (Soyupak 

et al., 2003). The ANFIS had been studied to predict the concentrations of Cd in Filyos River, 

Turkey (Sonmez et al., 2018). In recent works on AI have resulted in finding a novel machine 

learning theory called SVM. The SVM method relies on the statistical learning theory, which 

enables learning machines to generalize the unknown data. It was introduced in the 1990s as 

a non-linear solution for classification and regression tasks (Behzad et al., 2009; Wei and 

Yang, 2010). In addition, the use of ANN has also increased in many areas of engineering 

field. ANN has been used successfully for modelling of heavy metal in soil, contaminated 

site characterization, settlement of structures, soil permeability, soil compaction, soil 

swelling and classification of soils (Rooki et al., 2011). In addition, the use of ANN has also 

increased in many areas of engineering field. ANN has been used successfully for modelling 

of heavy metal in soil, contaminated site characterization, settlement of structures, soil 

permeability, soil compaction, soil swelling and classification of soils (Rooki et al., 2011).  

In this study, AI techniques such as ANFIS, SVM and ANN were implemented to analysis 

heavy metal concentrations in soils of a selected waste disposal site at old Rajbandh, Khulna. 

In ANFIS, the validation of models was performed by interchanging different input and 

output membership functions as well as optimization methods to select the best model of 

ANFIS. In addition, for SVM analysis various models with different kernel functions were 

formed to select best-fitted model of SVM. The cross-validation with different folds was 

also performed to control overfitting of the data. Furthermore, for selecting the best-fitted 

model of ANN; different neuron structures, different training functions as well as various 

transfer functions was implemented. The results of ANFIS, SVM and ANN model were also 

compared with the satisfactory values of correlation coefficient (R), root mean square error 

(RMSE), mean absolute percentage error (MAPE), geometric reliability index (GRI) and 

percent recovery. Therefore, the newly developed model of AI techniques will further be 

helpful for other researchers in this line to analysis heavy metal concentration in soils of 

selected waste disposal sites. 
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1.2 Objectives of the Study  

Contamination of soils in MSW disposal site is a common incident in least developed Asian 

countries like Bangladesh. For the assessment and remediation of environmental pollutions 

and risk, it is very important to know the level of risk from contaminated soils. In addition, 

the heavy metal concentrations in soils implied the level of contamination of soils. The 

collection of soils samples from MSW disposal site are labored, time consuming and 

determination of heavy metal concentrations from laboratory is expensive. Prediction of 

heavy metal concentration may be the solution of this problem. In this study, AI techniques 

with various algorithms, kernel functions and membership functions were performed 

for the analysis of heavy metal concentrations in soils of a waste disposal site at old 

Rajbandh, Khulna. The main objectives of this study are summarised as follows: 

 

1. To fix different models of artificial intelligence techniques for the prediction of 

heavy metal concentration in soils of a selected waste disposal site. 

2. To check the validity of predicted results from fix models of artificial intelligence 

techniques. 

3. To select best artificial intelligence technique for the analysis of heavy metal 

concentrations in soils. 

1.3 Significance of the Study 

Urbanization, industrialization, agriculture and exploitation of natural resources are basic 

activities associated with living in contemporary societies that have imposed pollutant loads 

especially toxic metals into natural cycles such as soils, water and air cycles (Gribble, 1994; 

Nasrabadi, 2015).  Nowadays, throughout the world, heavy metals have been taken into 

consideration due to their ability to accumulate in the biota, toxicity and adverse health 

effects even at low concentrations (Hossein et al., 2014; Morillo et al., 2002). In this regard, 

heavy metals pollution of the soils is one of the serious problems for the population as well 

as the environment. The analysis and prediction of heavy metals of Pb, Cu, Ni, Zn, Co, Cd, 

As, Sc, Hg, Mn, Cr, Ti, Sb, Sr, V and Ba will be used to aware the general population of 

Khulna region. The study will also help to inform the authorities about the sources of 

spreading and distribution pattern of these heavy metals in soils of the disposal site as well 
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as help to take necessary steps to control the spread of heavy metals outside the disposal site 

area.  The results from the study will also be used to find out the area needed to take under 

immediate remedial action to remove the heavy metals where the levels were too high. In 

addition, prediction of unknown points by simply putting their coordinate values will be very 

useful when initially a location has to be selected for various purposes and development. 

Otherwise, the laboratory tests can be very expensive and time consuming. Moreover, the 

prediction from different AI techniques is confusing for their various functions and 

algorithms. The study will help to select a best-fitted model with the particular functions and 

algorithms for different AI techniques by the model validation. The particular model of 

prediction of heavy metal concentrations with the best accuracy will help the researchers in 

this line.  

1.4 Scope and Limitations 

Rapid growth of population and industrialization surrounding the Khulna city tends to 

increase the generation of MSW creates additional load to MSW management system and 

finally contaminated the environmental components and surrounding soil layers. 

Contaminations of heavy metal in and around of the old Rajbandh disposal site possess a 

threat to the inhabitant. The spatial and temporal variation of heavy metals concentration in 

and around the soils of waste disposal site was described using conventional statistics, which 

shows the magnitude and pattern of contamination of heavy metals. AI techniques presented 

a developed network to predict the unknown values of heavy metal concentrations, if latitude 

and longitude of sampling were set as input. This helps to evaluate the contamination of 

heavy metal at larger distance and the spatial distribution can be displayed. Thus, it will be 

feasible to take necessary steps to manage the unintended disposal of waste to stop the spread 

of heavy metals. Further study can also be carried out where it is needed to implement in 

future. The main limitation of the study is the software (MATLAB), which predicts the 

values, has its limitations for predicting the unknown concentration points based on the 

input. Also no direct computation of index to assess the risk due to heavy metal 

contamination in and around the soils of waste disposal site. Some field conditions were 

ignored during the sampling procedure and the laboratory test values do not represent the in-

situ condition of collected soils samples. More carefulness will help to get expected result. 
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1.5 Outline of the Study 

The study has been presented in five distinct chapters comprising different aspects of this 

study. The outline and relations among these five chapters as depicted in Figure 1.1. 

Chapter 1 described general knowledge on the background of waste disposal site, MSW, 

contaminated soils, heavy metals and the artificial intelligence (AI) techniques like adaptive 

neuro-fuzzy inference system (ANFIS), support vector machine (SVM) and artificial neural 

network (ANN). In addition, objectives of the present research, scope and limitations of this 

study are also highlighted in this chapter.  

Chapter 2 deals with the information related to the contamination of soils due to the 

presence of heavy metals in the soils of disposal site. This chapter also illustrates the 

background of different functions and algorithms of AI Techniques like ANFIS, SVM and 

ANN used in this study. The literature review presented in this chapter was collected from 

available previous research reports and technical papers related to this topic. The literature 

review begins with an introduction to MSW and waste disposal facilities first, and is 

followed by the generation of MSWs and contamination of soils due to heavy metals. The 

interrelationship between soils, MSW and heavy metals is illustrated in this chapter. After 

instituting, the literature review related to heavy metal and soils, general discussion on AI 

Techniques in field of prediction and comparison using MATLAB also discussed in this 

chapter. 

Chapter 3 deals with the overall research methodology in this study. This chapter includes 

the information about the study area and soils condition. In this study, total eighty-five 

disturbed soils samples were considered from distinct locations in and around the waste 

disposal site at old Rajbandh in Khulna. Among the soils samples, some were collected from 

secondary sources. The method of soils sampling was also highlighted in this chapter. In the 

laboratory, the concentration of relevant heavy metal in soils were measured and monitored 

through standard test methods and hence highlighted in this chapter. Then, the measured 

concentrations of heavy metals were used to perform the descriptive conventional statistics 

using MS Excel to assess the basic features of soils data in a simpler. The AI techniques such 

as ANFIS, SVM and ANN were performed to predict the heavy metal concentrations, which 

were also highlighted in this chapter. 
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Chapter 4 deals with the model selection for ANFIS, SVM and ANN as well as prediction 

the concentrations of heavy metals such as Pb, Cu, Ni, Zn, Co, Cd, As, Sc, Hg, Mn, Cr, Ti, 

Sb, Sr, V and Ba in soils of waste disposal site for the unknown sampling points. In this 

chapter, regression analysis was performed using ANFIS, ANN and SVM through 

MATLAB to get the predicted heavy metal concentrations and accuracy parameters like 

correlation coefficient, R and root mean square error (RMSE). In addition, for the 

performance of various AI techniques were assessed by ascertaining the error in the 

predictions based on mean absolute percentage error (MAPE). For checking the accuracy 

level of prediction percent recovery and geometric reliability index (GRI) were also used 

and hence discussed in this chapter. In addition, this chapter represents the comparison of 

AI techniques based on various prediction parameters and finds the best one for prediction 

of heavy metal concentrations in soils. 

Chapter 5 draws conclusions based on logical reasoning of the laboratory data and the 

analysis of outcomes as well as provides a few recommendations for future studies. 

 

 

 

 

 

 

 

 

 

 

Analysis of Heavy Metals in Soils of a Waste Disposal Site in 

Khulna using Selected Artificial Intelligence Techniques 

Introduction 

Literature Review 

Research Methodology 

Results and Discussion 

Conclusion and Recommendations 

Figure 1.1: Outline and relations between the chapters of this study. 
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CHAPTER 2  

LITERATURE REVIEW 

2.1 General 

This chapter deals with the information related to the contamination of soils due to the 

presence of heavy metals in the soils of disposal site. This chapter also illustrates the 

background of different functions and algorithms of Artificial Intelligence (AI) Techniques 

like adaptive neuro fuzzy inference system (ANFIS), support vector machine (SVM) and 

artificial neural network (ANN) used in this study. The literature review presented in this 

chapter was collected from available previous research reports and technical papers related 

to this topic. The literature review begins with an introduction to MSW and disposal facilities 

first, and is followed by the generation of MSWs and contamination of soils due to heavy 

metals. The interrelationship between soils, MSW and heavy metals is illustrated in this 

chapter. After instituting, the literature review related to heavy metal and soils, general 

discussion on AI Techniques in field of prediction and performance analysis using 

MATLAB also discussed in this chapter. 

2.2 Concept of Municipal Solid Waste  

Municipal Solid Waste (MSW) more commonly known as trash or garbage consists of 

everyday items that use and then throw away, such as product packaging, grass clippings, 

furniture, clothing, bottles, food scraps, newspapers, appliances, paint, and batteries. This 

comes from our homes, schools, hospitals, and businesses (epa.gov/epawaste/nonhaz/ 

municipal/web/html/). Many changes of MSW generation and composition have taken place 

due to urbanization including increase in the population. The rate of consumption has risen 

and the lifestyle of the people, too, has changed (Quina et al., 2008). Several studies have 

shown how increasing waste has affected society and the environment (Hashim and Chu, 

2004). The amount of waste production is a sign of the level of industrialization or a degree 

of development of a country or a city (Ludwig and Keller, 2003). 

2.3 Dumpling Facilities of Municipal Solid Waste 

Landfill is one of the most widely used MSW management techniques; however, it needs 

high standard of environment protection in the operation of landfill (Oyeku and Eludoyin, 
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2010). The changing from dumping to high standard of environment protection needed time 

change technology, change in thinking and behaviour (Pugh, 1999). In addition, sanitary 

landfill is an engineering technique for the disposal of MSW on the land by spreading them 

in thin layers followed by compacting them to the smallest practical volume before covering 

them with soils at regular intervals (Figure 2.1). Sanitary landfilling involves placing MSW 

in lined pits with appropriate means of leachate and landfill gas control (Oyeku and 

Eludoyin, 2010). It is highly recognized as an environmentally and internationally desired 

technique of MSW disposal since it minimizes environmental damage and thus eliminates 

odors. The commonly practices landfills are as follows. 

2.3.1 Sanitary Landfill 

Sanitary landfills are sites where waste is isolated from the environment until it is safe. It is 

considered when it has completely degraded biologically, chemically and physically.  

 

 

 

 

 

 

 

 

In high-income countries, the level of isolation achieved may be high. However, such an 

expensive high level of isolation may not be technically necessary to protect public health. 

Four basic conditions should be met before a site can be regarded as a sanitary landfill 

(Figure 2.1). The ways of doing this should be adapted to local conditions. The immediate 

goal is to meet the best extent possible, the four stated basic sanitary landfill conditions, with 

a longer-term goal to meet them eventually in full. Small incremental improvements in 

Figure 2.1: Sanitary landfill for MSW dumping (Source: https://pixfeeds. 

com/images/ sanitary-landfill-vs-open-dump.png) 
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landfill design and operation over several years are more likely to succeed than attempts to 

make a single, large leap in engineering expectations (Thurgood, 1999).  

2.3.2 Open Dumping of MSW 

An open dumping is defined as a land disposal site at which solid wastes are disposed of in 

a manner that does not protect the environment, are susceptible to open burning, and are 

exposed to the elements, vectors, and scavengers (Figure 2.2). Whether it occurs on an open 

lot or pasture, down a ravine, along the roadside, in rural or urban communities, open 

dumping threatens the health and safety of everyone around it, especially children and older 

adults. It is also against the law. Besides looking bad and smelling worse, open dumps 

threaten surface and drinking water, provide breeding grounds for dangerous vectors such 

as rats (tetanus, rabies, etc.), and mosquitoes (St. Louis Encephalitis). Open dumps also 

present a variety of safety risks from sharp objects or needles, combustible levels of 

explosive methane, and unstable slopes, which can shift and potentially injure or kill. 

 

 

 

 

 

 

 

 

 

2.4 Contaminated Site 

Contaminated land contains substances in or under the land that are actually or potentially 

hazardous to health or the environment. Areas with a long history of industrial 

production are known as brownfield land. Many such sites may be affected by their former 

uses such as mining, industry, chemical and oil spills and waste disposal 

Figure 2.2: Open dumping facility (Source: https://i0.wp. 

com/kashmirreader.com/wp-content/uploads/Dumping-site.jpg). 

https://en.wikipedia.org/wiki/Industrial_production
https://en.wikipedia.org/wiki/Industrial_production
https://en.wikipedia.org/wiki/Brownfield_land
https://en.wikipedia.org/wiki/Mining
https://en.wikipedia.org/wiki/Chemical_spill
https://en.wikipedia.org/wiki/Oil_spill
https://en.wikipedia.org/wiki/Waste_disposal
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(https://en.wikipedia.org/wiki/Contaminated_land). Typically because of previous industrial 

or agricultural activities, it reaches a point where they become or have the potential to 

become dangerous to people or other organisms in the surrounding natural environment. The 

Environmental Protection Agency estimates that tens of thousands of contaminated sites 

remain in the United States that have the potential to cause environmental harm 

(https://www.epa.gov/report-environment/contaminated-land). The present environmental 

condition of Bangladesh is not equilibrium at all. Severe air, water and soils pollution are 

threatening human health, ecosystems and economic growth of Bangladesh. In Khulna, such 

a contaminated site at old Rajbandh (Figure 2.3) governs the environmental effects of 

Khulna city. Clean earth plays an integral part in the process of remediating and reclaiming 

these lands for future productive uses. 

 

 

 

 

 

 

 

 

 

 

2.5 Context of Heavy Metals 

Metals are defined as any element that has a silvery lustre and is a good conductor of heat 

and electricity. Theoretically, there are many terms used to describe and categorize metals, 

including trace metals, transition metals, micronutrients, toxic metals and heavy metals. A 

metal having a specific gravity more than 5 gm/cm3 is classified as heavy metal. In this 

study, to analyse and predict the heavy metal concentrations in soils different AI techniques 

Figure 2.3: Contaminated site at old Rajbandh, Khulna 

(Source:https://encryptedtbn0.gstatic.com/images?q=tbn:ANd9GcR3lHQJM

ZL_CglzCp9-rWhcFAo5AdPUmd-WMIUIyrIGS1qh4a9K). 
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were performed through MATLAB. The providence of heavy metals in soils as well as 

environment and interrelationship between them are described in the following articles.  

2.5.1 Providence of Heavy Metal in Soils and Environment 

The incapability to determine metal species in soils obstructs efforts to understand the 

mobility, bioavailability and fate of contaminant metals in the environmental systems 

together with the assessment of health risks posed by metal elements, and the development 

of methods to remediate metal contaminated sites. In soils, metals are found in one or more 

of the following several “pools” in the soils:  

i. Dissolved in the soils solution; 

ii. Occupying exchange sites in inorganic soils constituents; 

iii. Specially adsorbed in inorganic soils constituents; 

iv. Associated with insoluble soils organic matter;  

v. Precipitated as pure or mixed solids;  

vi. Present in the structure of secondary minerals; and/or  

vii. Present in the structure of primary minerals 

However, in some natural soils, up to 30 to 60% of heavy metals can occur in unstable forms 

developed from parent materials rich in metal contamination as well as in the contaminated 

soils. Natural and anthropogenic sources are one of the root cause of heavy metal 

contamination which has caused widespread and variable the hazardous possibilities of 

environmental and health effect (Tahir et al., 2007). According to  Walker et al., (2003), the 

anthropogenic sources of metal contamination can be divided into five main groups: (1) 

metalliferous mining and smelting (As, Cd, Pb and Hg); (2) industry (As, Cd, Cr, Co, Cu, 

Hg, Ni and Zn); (3) atmospheric deposition (As, Cd, Cr, Cu, Pb and Hg); (4) agriculture (As, 

Cd, Cu, Pb and Zn); and (5) MSW disposal (As, Cd, Cr, Cu, Pb, Hg and Zn). (Vaalgamaa  

and Conley, 2008) also stated a natural activity is another cause of heavy metal 

contamination. Industries such as plating, ceramics, glass, mining and battery manufacture 

are considered the main sources of heavy metals in local water systems causing the 

contamination of groundwater with heavy metals. Furthermore, heavy metals which are 

frequently found in high concentrations of waste landfill leachate are also potential source 

of pollution for groundwater and underlying soils layer ( Xiao et al., 2013). 
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2.5.2 Background on Soil Quality Standards of Heavy Metals used in this Study 

Preventing of heavy metal contamination is critical; because cleaning of contaminated soils 

is extremely expensive and difficult to achieve. In order to evaluate soil quality, soil 

functions and response properties (concentration of heavy metal, climate, hydrology etc.) 

must be assessed. There are different guidelines according to land use; because people use 

land differently and this affects who and how people may be exposed to soil contamination. 

In addition, different organizations and countries provides the maximum allowable limits of 

heavy metal concentrations in soils shown in Table 2.1. This table describes the soil quality 

guidelines for the protection of environment and human health from contaminated sites. 

Table 2.1: Maximum alowable limits of heavy metal concentrations (mg/kg) in soil of 

different sources (After: Fahmida and Rafizul, 2017) 

 

A sustainable soil is referred to as the use of soil as a natural resource on a way that does not 

exert any negative effects on the environment. In this study, soil quality guidelines from 

different countries like  Canadian Council of Ministers of the Environment (CCME), WHO, 

Poland, U.K, U.S.A, Austria, Germany and Japan were used to check the quality of soil.  

2.5.3 Effects of Heavy Metal in Soils  

Heavy metals exhibit toxic effects towards soils biota by affecting key microbial processes 

and decrease the number and activity of soils microorganisms. Even low heavy metal 

concentrations may inhibit the physiological metabolism of plant. Uptake of heavy metals 

Heavy 

Metal 

WHO 

standard 
CCME Austria Canada Poland Japan UK Germany U.S.A 

Pb 15-20 70 100 200 100 400 100 500 200 

Cu - 63 100 100 100 125 100 50 100 

Ni 0-100 45 100 100 100 100 50 100 500 

Zn  20-300 200 300 400 300 250 300 300 300 

Co - 40 50 25 50 50 - - 40 

Cd 0-30 1.4 5 8 3 - 3 - 0.7 

As - 12        

Hg - 6.6        

Mn 
200-

9000 
-        

Cr 0-85 64 100 75 100  50 200 1000 

Sb - 20        

V - 130        

Ba - 750        
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by plants and subsequent accumulation along the food chain is a potential threat to animal 

and human health (Singh et al., 2011). The chemical behavior of heavy metals in soils is 

controlled by a number of processes including metal cation release from contamination 

source materials (e.g., fertilizer, sludge, smelter dust, ammunition, and slag), cation 

exchange and specific adsorption onto surfaces of minerals and soils organic matter, and 

precipitation of secondary minerals. Increased anthropogenic inputs of Zn in soils have 

caused considerable concern relative to their effect on water contamination (Zhang et al., 

2012). In addition, oxidizing conditions generally increase the retention capacity of metals 

in soils, while reducing conditions will generally reduce the retention capacity of metals. 

Soils reduction has been shown to result in the coincident release of metals associated with 

minerals that are susceptible to reductive dissolution, in particular Mn and Fe oxides. The 

MSW that disposed without proper planning and treatment are rich in different types of 

heavy metals. When MSW is dumped in a disposal site, they take a long time to disintegrate 

depending on their nature. For example, paper towel takes 2-4 weeks to disintegrate, whereas 

plastic bag takes 200-1000 years. The metals of the greatest concern due to their extensive 

use, their toxicity and their widespread distribution is Hg, Pb, Cd, Cr and As (Addae, 2013). 

The toxicant may also cause effects on the microorganisms and soils fauna. However, the 

risk for further dispersion of the pollution to other recipients must also be considered.  

2.6 Artificial Intelligence Techniques  

In the literature, the father of Artificial Intelligence named “John McCarthy” stated that “The 

science and engineering of making intelligent machines, especially intelligent computer 

programs”. The AI is accomplished by studying how human brain thinks and how humans 

learn, decide, and work while trying to solve a problem, and then using the outcomes of this 

study as a basis of developing intelligent software and systems. AI field has a very wide 

scope in computation and automation the world. The algorithms and methods studied in AI 

include adaptive neuro-fuzzy inference system (ANFIS), support vector machine (SVM), 

artificial neural network (ANN), fuzzy logic (FL), knowledge-based systems (KBSs), 

genetic algorithms (GAs) and biogeography-based optimization (BBO) etc. (Mayfield and 

Fairbrother, 2013). Recent investigations have highlighted the application of the AI 

techniques such as ANFIS, SVM and ANN to the geotechnical engineering problems. 
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2.6.1 Adaptive Neuro Fuzzy Inference System 

(Jang, 1993) first introduced the adaptive neuro-fuzzy inference system (ANFIS). The neuro-

fuzzy approach combines ANN and fuzzy logic. It effectively integrates the learning 

capability of neural networks into a fuzzy inference system (Sonmez et al., 2018). It can be 

used to approximate any real continuous function on a compact set to any degree of accuracy 

(Jang et al., 1997). Depending on the types of inference operations upon if–then rules, most 

FIS can be classified into three types: Tsukamoto’s system, Mamdani’s system and Sugeno’s 

system (Kişi and Öztürk, 2007). In this study, the first-order Sugeno fuzzy model is used 

because it has been used widely in engineering problems. The ANFIS model is able to use 

two different optimization methods (hybrid and back-propagation) to tune membership 

function (MF) and generate fuzzy rules. The hybrid method is a combination of least squares 

estimation combined with back-propagation method (https://www.mathworks.com/help/ 

fuzzy/train-adaptive-neuro-fuzzy-inference-systems-gui.html). 

2.6.1.1 Basic of ANFIS Model Structure 

ANFIS model structure represents the overall view of ANFIS operation. It consists of five 

layers, and the basic functions of each layer are the input, fuzzification, rule inference, 

normalization and defuzzification (Emamgholizadeh et al., 2014). The equivalent ANFIS 

architecture of the first order is shown in Figure 2.4.  

 

 

 

 

 

 

 

 

 Figure 2.4: Equivalent ANFIS structure (Source: Emamgholizadeh et al., 2014). 
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The relationship between the input and output of each layer is summarized as follows. 

Layer 1 (Input notes):   

Every node (I) in this layer is an adaptive node, and each node in this layer generates 

membership grades of crisp inputs variable, which belong to each of convenient fuzzy sets 

by using the membership functions. Parameters in this layer are called premise parameters. 

The output of each node in this layer 𝑂𝑖
1 is defined by the following Equation (1). 

 

𝑂𝑖
1 = 𝜇𝐴𝑖(𝑥)  𝑓𝑜𝑟 𝑖 = 1,2 𝑜𝑟 

𝑂𝑖
1 = 𝜇𝐵𝑖−2(𝑦)  𝑓𝑜𝑟 𝑖 = 3,4 … … … … … … … …  (1)  

Where x and y are the crisp input to the ith node, and Ai and Bi-2 are the linguistic labels 

characterized by MFs 𝜇Ai and 𝜇Bi, respectively. Another major consideration that should be 

taken into account while designing ANFIS is the selection of proper MF. Several MFs were 

reported in the literature such as Gaussian, generalized bell-shaped, trapezoidal and 

triangular. Selection among the abovementioned MFs is generally based on the trial and 

error. Assuming a generalized bell-shaped as the MF, the node output in first layer 𝑂𝑖
1 can 

then be calculated by the following Equation (2). 

𝑂𝑖
1 = 𝜇𝐴𝑖 =

1

1+(
𝑥−𝑐𝑖

𝑎𝑖
)2𝑏𝑖

    

                  𝑂𝑖
1 = 𝜇𝐵𝑖−2 =

1

1+(
𝑦−𝑐𝑖

𝑎𝑖
)2𝑏𝑖

 … … … … … … … (2) 

Layer 2 (Rule nodes):  

Every node in this layer is a fixed node labelled 𝜋, and the output is the product of all the 

incoming signals. Each node output that represents the firing strength of a rule is computed 

by the following Equation (3):  

𝑂𝑖
2 = 𝜇𝐴𝑖(𝑥)𝜇𝐵𝑖(𝑦),    𝑖 = 1 𝑎𝑛𝑑 2 … … … … … … (3) 
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Layer 3 (Average nodes):  

In this layer, the nodes calculate the ratio of the ith rule’s firing strength to the sum of all 

rules’ firing strengths; the firing strength in this layer is normalized and taken as 𝑤𝑖̅̅ ̅̅ . It is 

represented by the Equation (4): 

𝑂𝑖
3 = 𝑤𝑖̅̅ ̅ =

𝑤𝑖

∑ 𝑤𝑖
,     𝑖 = 1 𝑎𝑛𝑑 2 … … … … … … . … … (4) 

Layer 4 (Consequent nodes): 

This layer’s nodes are adaptive with node functions like the following Equation (5): 

𝑂𝑖
4 = 𝑤𝑖̅̅ ̅. 𝑓𝑖 = 𝑤𝑖(𝑝𝑖𝑥 + 𝑞𝑖𝑦 + 𝑟𝑖),     𝑖 = 1 𝑎𝑛𝑑 2 … . (5) 

Where 𝑤𝑖 the ith node is output from the previous layer and fi is a linear function of input 

variables. 

Layer 5 (Output nodes): 

This layer’s single fixed node computes the final output as the summation of all incoming 

signals. It is represented by the Equation (6): 

𝑂𝑖
5 = 𝑤𝑖̅̅ ̅ =

∑ 𝑤𝑖̅̅ ̅. 𝑓𝑖

∑ 𝑤𝑖̅̅ ̅
… … … … … … … … … … . (6) 
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2.6.1.2 Rules of ANFIS 

The Rules show how the shape of certain membership functions influences the overall result. 

Figure 2.5 shows the rules for first-order Takagi–Sugeno fuzzy model with a two input and 

one output system. 

 

 

 

 

 

 

 

 

 

Where x and y are input variables. Ai and Bi are the linguistic labels (low, medium, high, 

etc.) characterized by convenient membership functions, fi are the outputs within the fuzzy 

region specified by the fuzzy rule; pi, qi and ri are the parameters of the output function (i = 

1 or 2). In first-order Sugeno’s system, if FIS has two inputs x and y and one output f, a 

typical rule set with two fuzzy IF/THEN rules. It can be expressed as: 

Rule 1: If x is A1 and y is B1; then f1 = p1x + q1y + r1 

Rule 2: If x is A2 and y is B2; then f2 = p2x + q2y + r2 

2.6.1.3 Rule Viewer of ANFIS 

The Rule Viewer displays a roadmap of the whole fuzzy inference process shown in Figure 

2.6. The three plots across the top of the figure represent the antecedent and consequent of 

the first rule. Each rule is a row of plots, and each column is a variable. The rule numbers 

are displayed on the left of each row. 

Figure 2.5: Sugeno’s fuzzy if–then rule and fuzzy reasoning mechanism (Source: 

Emamgholizadeh et al., 2014). 
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1. The first two columns of plots (the six yellow plots) show the membership functions 

referenced by the antecedent, or the if-part of each rule. 

2. The third column of plots (the three blue plots) shows the membership functions 

referenced by the consequent, or the then part of each rule. 

3. The fourth plot in the third column of plots represents the aggregate weighted 

decision for the given inference system. 

This decision will depend on the input values for the system. The defuzzified output is 

displayed as a bold vertical line on this plot. The variables and their current values are 

displayed on top of the columns. In the lower left, there is a text field Input in which specific 

input values can be inserted. For the two-input system, it can be inserted as an input vector 

like [9 8] and then pressing Enter, it is adjusted these input values which provides new 

output. The red index line can be moved horizontally in order to change the input values. 

The plots can be shifted using left, right, down, and up to visualize the entire rule viewer. 

 

Figure 2.6: Rule viewer of food and service for tip (Source: Matlab 

Documentation, 2017a). 
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2.6.1.4 Surface Viewer of ANFIS 

The Surface Viewer is a graphical interface that examine the output surface of an FIS for 

any one or two inputs. Surface Viewer is a read-only editor. Using the drop-down menus, 

two desired input variables can be selected to the two input axes (X and Y); as well as the 

output variable can be assigned to the output (or Z) axis. Color bar shows the output range 

with colour variation (Figure 2.7). For creating a smoother plot, the Plot points field is 

specified the number of points on which the membership functions are evaluated in the input 

or output range. This field defaults to the minimum number of plots, 101. The different input 

membership functions of ANFIS is depicted in Table 2.2. 

 

 

 

 

 

 

 

 

Figure 2.7: Surface viewer of food and service for tip (Source: Matlab 

Documentation, 2017a). 
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Table 2.2:Description of different input membership functions of ANFIS (After: Matlab Documentation, 2017a). 

 

 

Membership 

Function
Full Meaning Syntax Description Figure Reference

gaussmf
Gaussian membership 

function
y = gaussmf(x,[sig c]) 

The symmetric Gaussian function depends on two 

parameters σ  and c which  listed in order in the 

vector [sig c].

Matlab 2017a 

Documentation

trimf
Triangle-Shaped 

Membership Function
y = trimf(x,[a b c])

The triangular curve is a function of a vector, x, and 

depends on three scalar parameters a, b, and c.

The parameters a and c locate the "feet" of the triangle 

and the parameter b locates the peak.

Matlab 2017a 

Documentation

trapmf
Trapezoidal-shaped 

membership function
y = trapmf(x,[a b c d]) 

The trapezoidal curve is a function of a vector, x, and 

depends on four scalar parameters a, b, c, and d. The 

parameters a and d locate the "feet" of the trapezoid 

and the parameters b and c locate the "shoulders."

Matlab 2017a 

Documentation

psigmf
Product of two sigmoidal 

membership functions
y = psigmf(x,[a1 c1 a2 c2]) 

The psigmf is simply the product of two such curves 

plotted for the values of the vector x.                                                      

f1(x; a1, c1) × f2(x; a2, c2)

The parameters are listed in the order [a1 c1 a2 c2].

Matlab 2017a 

Documentation

gbellmf
Generalized bell-shaped 

membership function
y =gbellmf(x,params) 

The generalized bell function depends on three 

parameters a , b , and c   where the parameter b is 

usually positive. The parameter c locates the center of 

the curve.

Matlab 2017a 

Documentation
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2.6.2 Support Vector Machine 

Support vector machine (SVM) is a popular machine learning tool both for classification and 

regression, first identified by Vladimir Vapnik and his colleagues in 1992 (Cortes and 

Vapnik, 1995). SVMs are very specific class of algorithms, characterized by usage of 

kernels, absence of local minima, sparseness of the solution and capacity control obtained 

by acting on the margin, or on number of support vectors, etc. SVM regression contains all 

the main features that characterize maximum margin of algorithm. A non-linear function is 

leaned by linear learning machine mapping into high dimensional kernel induced feature 

space. The capacity of the system is controlled by parameters that do not depend on the 

dimensionality of feature space (Cherkassky and Ma, 2002). SVM regression and 

classification are considered as nonparametric technique because they rely on kernel 

functions. This functions are defined the loss function that ignores errors, which are situated 

within the certain distance of the true value. Statistics and Machine Learning Toolbox™ 

implements linear epsilon-insensitive SVM (ε-SVM) regression, which is also known as L1 

loss. In ε-SVM regression, the set of training data includes predictor variables and observed 

response values. The goal is to find a function f(x) that deviates from yn by a value no greater 

than ε for each training point x, and at the same time is as flat as possible. 

2.6.2.1 SVM Classification 

SVM classification is such a machine learning algorithm use to find a hyperplane in an N-

dimensional space (N - the number of features) that distinctly classifies the data points. To 

separate the two classes of data points, many possible hyperplanes could be chosen (Figure 

2.8). The objective is to find a plane that has the maximum margin, i.e. the maximum 

distance between data points of both classes. Maximizing the margin distance provides some 

reinforcement so that future data points can be classified with more confidence. 

2.6.2.2 Hyperplanes  

Hyperplanes are decision boundaries that help classify the data points. Data points falling on 

either side of the hyperplane can be attributed to different classes. In addition, the dimension 

of the hyperplane depends upon the number of features. If the number of input features is 2, 

then the hyperplane is just a line (Figure 2.9a).  
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Figure 2.8: Selected optimal hyper-plane of SVM classification analysis (Source: 

https://cdn images1.medium.com/max/750/0*0o8xIA4k3gXUDCFU.png. 

Figure 2.9: Hyperplanes in (a) 2D and (b) 3D feature space (Source: https://cdn-images-

1.medium.com/max/2000/1*ZpkLQf2FNfzfH4HXeMw4MQ.png). 

https://cdn/
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If the number of input features is 3, then the hyperplane becomes a two-dimensional plane 

(Figure 2.9b). It becomes difficult to imagine when the number of features exceeds 3. 

2.6.2.3 Support Vectors 

Support vectors are data points that are closer to the hyperplane and influence the position 

and orientation of the hyperplane. Using these support vectors, it is maximized the margin 

of the classifier (Figure 2.10). Deleting the support vectors will change the position of the 

hyperplane. These are the points that help to build the SVM. 

 

 

 

 

 

 

 

 

 

 

 

2.6.2.4 SVM Regression  

Support Vector Machine can also be used as a regression method, maintaining all the main 

features that characterize the algorithm (maximal margin). The Support Vector Regression 

(SVR) uses the same principles as the SVM for classification, with only a few minor 

differences. First of all, being output is a real number; it becomes very difficult to predict 

the information at hand, which has infinite possibilities.  

 

Figure 2.10: Support vectors margin (Source: https://cdn-images-

1.medium.com/max/1600/0*ecA4Ls8kBYSM5nza.jpg). 
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In the case of regression, a margin of tolerance (epsilon) is set in approximation to the SVM, 

which would have already requested from the problem. Besides this fact, there is also a more 

complicated reason; the algorithm is more complicated therefore to be taken in 

consideration. However, the main idea is always the same to minimize error, individualizing 

the hyperplane that maximizes the margin, keeping in mind that part of the error is tolerated 

(https://www.saedsayad.com/support_vector_machine_reg.htm). Figure 2.11 shows the 

SVM regression for the actual and predicted data. 

2.6.2.5 Modelling of SVM 

The support vector machine (SVM) is a supervised learning method that generates input-

output mapping functions from a set of labelled training data. The main task of support vector 

machine for regression model is to analyse the model with various kernel functions and then 

provide a predicted value against measured data. The model produced by Support Vector 

Regression has to be close to the prediction line shown in Figure 2.12. Moreover in this 

modelling different kernel functions can be specified for the decision function and so SVMs 

Figure 2.11: Support vectors margin (Source: https://cdn-images-

1.medium.com/max/1600/0*ecA4Ls8kBYSM5nza.jpg). 

https://scikit-learn.org/stable/modules/svm.html#svm-kernels
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are also said to be a “kernel methods” (Wang, 2005). For avoiding over-fitting, choosing 

kernel functions, number of cross validation and regularization term is essential. SVM do 

not directly provide probability estimation, these are calculated using a particular number of 

fold for cross-validation (Smola and Schölkopf, 2004). 

 

 

 

 

 

 

 

 

 

 

 

2.6.2.6 Application of SVM 

SVMs have demonstrated highly competitive performance in numerous real-world 

applications such as bio-informatics, text mining, face recognition and image processing 

which has established SVM as one of the state-of- the-art tools for machine learning and 

data mining, along with other soft computing techniques, e.g., neural networks and fuzzy 

systems (Wang, 2005). SVM has also been applied for development of prediction models, 

in geotechnical engineering. SVM has been applied for settlement prediction of foundations 

on cohesionless soils (Samui, 2008), swelling pressure of expansive soils (Das et al., 2010), 

MDD and unconfined compressive strength of stabilized soils (Das et al., 2011), liquefaction 

of soils (Lee and Chern, 2013), angle of shearing resistance of soils (Roy and Dass, 2014), 

prediction of the concentration of Ni and Fe (Gholami et al., 2011). Prediction of heavy 

metals in soils using SVM is limited in literature. 

Figure 2.12: SVM Regression model in MATLAB (Source: Wang, 2005). 

https://scikit-learn.org/stable/modules/svm.html#svm-kernels
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2.6.2.7 Kernel Function of SVM 

The kernel function determines the correlation in the response as a function of the distance 

between the predictor values. The SVM with different kernel functions like linear support 

vector machine (SVM-L), quadratic support vector machine (SVM-Q), cubic support vector 

machine (SVM-C) and gaussian or radial basis function of support vector machine (SVM-

RBF) is used to predict the heavy metal concentrations in soils. From the MATLAB 2017a, 

it can get use from “Regression Learner App” to train the regression models. After 

performing the models for predictor and response data, it provides the value of R, R², MAE, 

MSE and RMSE value to compare with each other of SVM-L, SVM-Q, SVM-C and SVM-

RBF. 

2.6.2.7.1 Linear Support Vector Machine 

The learning of the hyperplane in linear SVM is done by transforming the problem using 

some linear algebra. This is where the kernel plays role. For linear kernel, the equation for 

prediction of a new input using the dot product between the input (x) and each support vector 

is calculated by the following Equation (7). 

𝑓(𝑥) = 𝐵0 + ∑{𝑎𝑖 (𝑥. 𝑥𝑖)} … … … … … … … … … … . . (7) 

 

This equation involves calculating the inner products of a new input vector (x) with all 

support vectors in training data. The coefficients B0 and ai (for each input) must be estimated 

from the training data by the learning algorithm (Ghadimi, 2014). 

2.6.2.7.2 Quadratic Support Vector Machine  

A new quadratic kernel-free non-linear support vector machine (which is called SVM-Q) is 

introduced. The SVM optimization problem can be stated as follows: Maximize the 

geometrical margin subject to all the training data with a functional margin greater than a 

constant. The functional margin is equal to WTX + b, which is the equation of the hyper-

plane used for linear separation. The geometrical margin is equal to1||W||. In addition, the 

constant in this case is equal to one. To separate the data non-linearly, a dual optimization 

form and the Kernel trick must be used. In this paper, a quadratic decision function that is 
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capable of separating non-linearly the data is used. The geometrical margin is proved equal 

to the inverse of the norm of the gradient of the decision function. The functional margin is 

the equation of the quadratic function. SVM-Q is proved to be put in a quadratic optimization 

setting. This setting does not require the use of a dual form or the use of the Kernel trick 

(https://link.springer.com/article/10.100, 2018). 

2.6.2.7.3 Cubic Support Vector Machine 

The Cubic SVM is a kernel function commonly used with support vector machines (SVM) 

and other kernel zed models, that represents the similarity of vectors (training samples) in a 

feature space over cubic of the original variables, allowing learning of non-linear models.  

Cubic SVM looks not only at the given features of input samples to determine their 

similarity, but also combinations of these. In the context of regression analysis, such 

combinations are known as interaction features. The (implicit) feature space of a cubic kernel 

is equivalent to that of cubic regression, but without the combinatorial blow up in the number 

of parameters to be taught (Chang et al., 2010) 

2.6.2.7.4 Radial Basis Function of Support Vector Machine  

The RBF is by far the most popular choice of kernel types used in support vector machines. 

This is mainly because of their localized above equation is taken for each class variables and 

finite responses across the entire range of the real x-axis. A radial basis function is defined 

by the following Equation (8). 

𝑍(𝑥) = Φ(∥ 𝑥 − 𝜇 ∥) … … … … … … … . . … … … … … … (8) 

Where x is an n-dimensional vector, 𝜇 is an n-dimensional vector called the centre of the 

radial basis function, ∥. ∥ denotes Euclidean distance, and is a univariate function, defined 

for positive input values that would be referred to as the profile function. 

The model is built up as a linear combination of N radial basis functions with N distinct 

centers. By giving an input vector x, the output of the RBF network is the activity vector �̂� 

given by the following Equation (9). 

�̂�(𝑥) = 𝑧 ∑ 𝛽𝑗

𝑁

𝑗=1

𝑧𝑗(𝑥) … … … … … … … … … … … … . (9) 

https://en.wikipedia.org/wiki/Kernel_function
https://en.wikipedia.org/wiki/Support_vector_machine
https://en.wikipedia.org/wiki/Kernel_trick
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Polynomial_regression
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Where 𝛽𝑗  is the weight associated with the jth radial basis function, centered at 𝜇𝑗, and 𝑧𝑗 =

Φ(∥ 𝑥 − 𝜇𝑗 ∥). The output �̂� approximates a target set of values denoted by y. 

The different kernel functions of SVM with its characteristics are provided in Table 2.3.  

Table 2.3: Description of different kernel functions of SVM (After: https://in.mathworks. 

com/help/stats/choose-a-classifier.html, 2018) 

 

2.6.3 Artificial Neural Network  

Artificial neural networks (ANN) are one of the main tools used in machine learning systems 

vaguely inspired by the biological neural networks that constitute human brains. Neural 

networks consist of input and output layers, as well as (in most cases) a hidden layer 

consisting of units that transform the input into something that the output layer can use. They 

are excellent tools for finding patterns which are far too complex or numerous for a human 

programmer to extract and teach the machine to recognize. (https://www.digitaltrends.com 

/cool-tech/what-is-an-artificial-neural-network/). ANNs are also capable of classifying 

Classifier 

type 

Prediction 

speed 

Memory 

usage 
Interpretability Model flexibility 

Linear SVM 

 
Binary: Fast 

Multiclass: 

Medium 

Medium Easy 

Low 

Makes a simple linear 

separation between 

classes. 

Quadratic 

SVM 

 

Binary: Fast 

Multiclass: 

Slow 

Binary: 

Medium 

Multiclass: 

Large 

Hard Medium 

Cubic SVM 

 

Binary: Fast 

Multiclass: 

Slow 

Binary: 

Medium 

Multiclass: 

Large 

Hard Medium 

RBF SVM 

 

Binary: Fast 

Multiclass: 

Slow 

Binary: 

Medium 

Multiclass: 

Large 

Hard 

High Decreases with 

kernel scale setting. 

Makes finely detailed 

distinctions between 

classes, with kernel scale 

set to sqrt (P)/4. 
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patterns, clustering, approximating functions, forecasting, optimizing results and controlling 

inputs such that a system follows the desired trajectory of solving problems by using, 

modifying and extrapolating acquired knowledge.  

2.6.3.1 Historical Overview  

ANN is a type of Artificial Intelligence technique that mimics the behaviour of the human 

brain (Haykin, 2009). A study conducted by Choobbasti et al., (2015) and stated that over 

the last few years or so, the use of ANN  has increased in many areas of engineering. In 

particular, ANN has been applied to many geotechnical engineering problems and have 

demonstrated some degree of success. A review of the literature reveals that ANN has been 

used successfully in pile capacity prediction, modelling of soils behavior, site 

characterization, settlement of structures, liquefaction, soils permeability and hydraulic 

conductivity, soils compaction, soils swelling and classification of soils (Rooki et al., 2011). 

(Choobbasti et al., 2015) found that the Marquardt-Levenberg method, based on Gauss-

Newton’s equations could be used for training the network with a neuron in the output layer 

to minimize the square sum of the nonlinear objective function. It was found that training 

the NN models by using this algorithm to converge in several cases where training by using 

other algorithms are failed to do so (Hagan and Menhaj, 1994). (Rooki et al., 2011) made a 

research on prediction of heavy metal in acid mine drainage using ANN. (Alkaiem and 

Sternberg, 2016) used of artificial intelligence techniques to predict distribution of heavy 

metals in groundwater of Lakan lead-zinc mine in Iran. In that study, the ANN was 

developed to estimate the heavy metals concentrations in groundwater using SO4, Cl, and 

TDS as input parameters, and Fe, Mn, Pb, and Zn as output parameters and the performance 

of ANN was satisfactory. In the present study, ANN was used to predict values of indices of 

using its latitude and longitude only as well as the comparison of predicted values of indices 

are made to check the accuracy of the ANN model. 

2.6.3.2 Network Function 

Network Function – a functional building block within a network infrastructure, which has 

well-defined external interfaces and a well-defined functional behaviour. In practical terms, 

a Network Function is today often a network node or physical appliance. Mathematically, a 

neuron's network function (𝒙) 𝒈𝒊 is defined as a composition of other functions gi (x) which 
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can further be defined as a composition of other functions. This can be conveniently 

represented as a network structure, with arrows depicting the dependencies between 

variables. A widely used type of composition is the nonlinear weighted sum which 

represented by the following Equation (10).  

𝑓(𝑥) = 𝐾 ∑ 𝑤𝑖𝑔𝑖(𝑥) … … … … … … … … … … . . . (10)

𝑖

𝑖=0

 

Where K is some predefined function, such as the hyperbolic tangent. A typical Network 

function is shown in Figure 2.13. 

 

 

 

 

 

 

 

 

 

2.6.3.3 ANN Modelling     

ANNs can describe nonlinear and complex relationships using a part of the input and output 

training patterns from the dataset. These approaches establish a non-linear relationship 

between inputs and outputs (Hornik et al., 1990). An ANN can be demonstrated based on 

architecture that shows the connection pattern between nodes, connection weights method 

determination, and the activation function (Kişi, 2008). Because of their ability to learn a 

system’s dynamics from data, ANNs are able to solve large-scale complex problems. The 

most commonly used neural network architecture is the feed-forward neural network 

(FFNN). The structure of a three-layered FFNN is based on some neurons in each layer and 

Figure 2.13: A typical Network Function (Source: 

https://i.stack.imgur.com/iIcbq.gif). 
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elements, which link them (Markopoulos, 2008). The training of a network is based on the 

optimization process for weights to obtain the appropriate weights to minimize errors; this 

process continues until the values of the output layer are as close as possible to the actual 

outputs (Hornik et al., 1990). In this study, the LM, OSS and SCG training algorithms as 

well as transig, logsig and purelin transfer functions were utilized to tune the weights. Figure 

2.14 shows the feed-forward network for this study, having one hidden layer with several 

nodes between the input and output layers. 

 

 

 

  

 

 

 

 

  

 

a) Input layer - It contains those units (Artificial Neurons) which receive input from the 

outside world on which network will learn, recognize about or otherwise process. 

b) Output layer - It contains units that respond to the information about how it's learned 

any task. 

c) Hidden layer - These units are in between input and output layers. The job of hidden 

layer is to transform the input into something that output unit can use in some way. 

2.6.3.4 Training Functions of ANN Model 

Levenberg-Marquardt Neural Network (LMNN), One Step Secant Neural Network 

(OSSNN), and Scaled Conjugate Gradient Neural Network (SCGNN) algorithms are used 

Figure 2. 14: A typical Artificial Neural Network model (Source: Alizamir & 

Sobhanardakani, 2017). 
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in training processes for analysis of ANN model called as LMNN model, OSSNN model 

and SCGNN model respectively.  

2.6.3.4.1  Levenberg- Marquardt Neural Network  

The levenberg-marquardt (LMNN) algorithm adaptively varies the parameter updates 

between the gradient descent update and the Gauss-Newton update. The relationship is 

showing in Equation (11). 

[ 𝐽𝑇𝑊𝐽 + 𝜆𝐼]ℎ𝑙𝑚 = 𝐽𝑇𝑊(𝑦 − �̂�) … … … … … … . . (12) 

Where small values of the algorithmic parameter λ result in a Gauss-Newton update and 

large values of λ result in a gradient descent update. The parameter λ is initialized to be large 

so that first updates are small steps in the steepest-descent direction. If any iteration happens 

to result in a worse approximation(𝑋2(𝑝 + ℎ𝑙𝑚) > 𝑋2(𝑝)), then λ is increased. Otherwise, 

as the solution improves, λ is decreased, the Levenberg-Marquardt method approaches the 

Gauss-Newton method, and the solution typically accelerates to the local minimum (Suri, 

2017). In Marquardt’s update, relationship is showing in Equation (12).  

[ 𝐽𝑇𝑊𝐽 + 𝜆 𝑑𝑖𝑎𝑔( 𝐽𝑇𝑊𝐽)]ℎ𝑙𝑚 = 𝐽𝑇𝑊(𝑦 − �̂�) … … . (12) 

The values of λ are normalized to the values of 𝐽𝑇𝑊𝐽. The Levenberg-Marquardt algorithm 

implemented in the Matlab function lm.m. 

2.6.3.4.2 One Step Secant Neural Network 

The one-step secant (OSSNN) method can train any network as long as its weight, net input, 

and transfer functions have derivative functions. Backpropagation is used to calculate 

derivatives of performance perf with respect to the weight and bias variables X. Each 

variable is adjusted according to the following Equation (13). 

𝑋 = 𝑋 + 𝑎 ∗ 𝑑𝑋         … … … … … … … … … … . … (13) 

Where dX is the search direction. The parameter “a” is selected to minimize the performance 

along the search direction. The line search function searchFcn is used to locate the minimum 
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point. The first search direction is the negative of the gradient of performance. In succeeding 

iterations, the search direction is computed from the new gradient and the previous steps and 

gradients, according to the following Equation (14). 

𝑑𝑋 = −𝑔𝑋 + 𝐴𝑐∗𝑋𝑠𝑡𝑒𝑝 + 𝐵𝑐∗𝑑𝑔𝑋 … … … . … . . (14) 

Where gX is the gradient, Xstep is the change in the weights on the previous iteration, 

and dgX is the change in the gradient from the last iteration (Battiti and Tecchiolli, 1995). 

2.6.3.4.3 Scaled Conjugate Gradient Neural Network 

The scaled conjugate gradient (SCGNN) methods are also based on the above general 

optimization strategy, but chooses the search direction and the step size more carefully by 

using information from the second order approximation by the following Equation (15). 

𝐸(𝑤 + 𝑦) ≈ 𝐸(𝑤) + 𝐸′(𝑤)𝑇𝑦 +
1

2
𝑦𝑇𝐸"(𝑤)𝑦 … … … . . (15) 

Quadratic functions have some nice properties that general functions not necessarily have. 

Denoting the quadratic approximation to E in a neighbourhood of a point w by 𝐸𝑞𝑤(𝑦), so 

that 𝐸𝑞𝑤(𝑦) is given by the following Equation (16). 

𝐸(𝑤 + 𝑦) ≈ 𝐸(𝑤) + 𝐸′(𝑤)𝑇𝑦 +
1

2
𝑦𝑇𝐸"(𝑤)𝑦 … … … . (16) 

In order to determine minima to 𝐸𝑞𝑤(𝑦) the critical points for 𝐸𝑞𝑤(𝑦) must be found. 

The critical points are the solution to the linear system defined by the following Equation 

(17).  

𝐸′
𝑞𝑤(𝑦) =  E′′(w)y + E′(w) =  0 … … … … … … . . ….  (17) 

If a conjugate system is available, the solution can be simplified considerable. (Johansson, 

Dowla, and Goodman, 1991) shows in a very understandable way how.  

Let p1…. pN be a conjugate system. Because p1,…, pN form a basis for ℜN, the step from 

a starting point y1 to a critical point y* can be expressed in Equation (18) as a linear 

combination of p1,…, pN. 

 

  𝑦∗ − 𝑦1 = ∑ 𝛼𝑖
𝑁
𝑖=1 𝑝𝑖, 𝛼𝑖 ∈ ℜ … … … … … … … … . . … . . (18) 
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Multiplying (18) with 𝑝𝑗
𝑇𝐸"(𝑤) and substituting E'(w) for – E’’ (w) 𝑦∗ gives the following 

Equation (19). 

 

𝑝𝑗
𝑇(−E′(w) − E(w)y

1
)=αjpj

TE(𝑤)𝑝𝑗 

⇒   𝛼𝑗 =
𝑝𝑗

𝑇(−E′(w)−E"(w)𝑦1)

𝑝𝑗
𝑇𝐸"(𝑤)𝑝𝑗

 … … … … … … … … . . … . … . . (19) 

 

The critical point 𝑦∗ can be determined in N iterative steps using (18) and (19). Unfortunately 

𝑦∗ is not necessarily a minimum, but can be a saddle point or a maximum. Only if the Hessian 

matrix E’’ (w) is positive definite then 𝐸𝑞𝑤(𝑦) has a unique global minimum. This can be 

realized by the following Equation (20). 

𝐸𝑞𝑤(𝑦) = 𝐸𝑞𝑤(𝑦∗ + (𝑦 − 𝑦∗)) 

= 𝐸(𝑤) + 𝐸′(𝑤)𝑇(𝑦∗ + (𝑦 − 𝑦∗)) +
1

2
(𝑦∗ + (𝑦 − 𝑦∗))

𝑇
𝐸"(𝑤)(𝑦∗ + (𝑦 − 𝑦∗)) 

=  𝐸(𝑤) + 𝐸′(𝑤)𝑇𝑦∗ + 𝐸′(𝑤)𝑇(𝑦 − 𝑦∗) +
1

2
𝑦∗

𝑇𝐸”(w)y
*
+

1

2
y

*
TE”(𝑤)(𝑦 − 𝑦∗)

+                         
1

2
(𝑦 − 𝑦∗)𝑇𝐸"(w)y

*
+

1

2
(𝑦 − 𝑦∗)𝑇𝐸"(w)(𝑦 − 𝑦∗) 

= 3𝐸𝑞𝑤(𝑦∗) +  (𝑦 − 𝑦∗)𝑇(𝐸”(w)y
*

+ 𝐸′(𝑤)) +  
1

2
(𝑦 − 𝑦∗)𝑇𝐸”(w)(𝑦 − 𝑦∗) 

= 4𝐸𝑞𝑤(𝑦∗) +
1

2
(𝑦 − 𝑦∗)𝑇𝐸”(w)(𝑦 − 𝑦∗) … … … … … … . … … . . … (20) 

 

It follows from (20) that if 𝑦∗ is a minimum then 
1

2
(𝑦 − 𝑦∗)𝑇𝐸”(w)(𝑦 − 𝑦∗) > 0 for every y, 

hence E''(w) has to be positive definite. The Hessian E’’ (w) will in the following if not told 

otherwise be assumed to be positive definite. The intermediate points 𝑦𝑘+1 = 𝑦𝑘 + 𝛼𝑘𝑝𝑘 

given by the iterative determination of 𝑦∗ are in fact minima for 𝐸𝑞𝑤(𝑦) restricted to every 

k-plane in Equation (21). 

𝜋𝑘: 𝑦 =  𝑦1 +  𝛼1𝑝1 + ⋯ +  𝛼𝑘𝑝𝑘  … … … … … … … … . . (21) 

The description of various training functions such as LMNN, OSSNN and SCGNN of ANN 

is provided in Table 2.4. 
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Table 2.4: Description of various training functions of ANN (After: Matlab 

Documentation, 2017a) 

 

2.6.3.5 Transfer Functions of ANN Model 

Transfer functions are commonly used in the analysis of systems such as single-input single-

output filters in the fields of signal processing, communication theory, and control theory. 

That is usually the case for signal processing and communication theory. Transfer functions 

also calculate a layer's output from its net input. Three types of transfer functions are used 

in ANN model named hyperbolic tangent sigmoid transfer function (tansig), linear transfer 

function (purelin) and Log-sigmoid transfer function (logsig). These are briefly discussed in 

the following article.

Neural network 

algorithm 
Full meaning 

Required 

memory or time 
Stop of the training time 

LMNN 

 
Levenberg- 

Marquardt Neural 

Network 

More memory 

and less time 

Training automatically 

stops when generalization 

stops improving, as 

indicated by an increase in 

the mean square error of 

the validation samples 

OSSNN 
One Step Secant 

Neural Network 
More time 

Training stops according 

to adaptive weight 

minimization 

SCGNN 

Scaled Conjugate 

Gradient Neural 

Network 

Less memory 

Training automatically 

stops when  generalization 

stops improving, as  

indicated by an increase in 

the mean  square error of 

the validation samples 
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2.6.3.5.1 Tangent Sigmoid Transfer Function  

The tangent sigmoid (tansig) is a transfer algorithm which represented by the following 

Equation (22). 

𝑎 = 𝑡𝑎𝑛𝑠𝑖𝑔(𝑛) =
2

1 + 𝑒𝑥𝑝(−2 ∗ 𝑛)
− 1   … . . … . (22) 

This is mathematically equivalent to tanh (N). It differs in that it runs faster than the MATLAB 

implementation of tanh, but the results can have very small numerical differences. This function 

is a good trade-off for neural networks, where speed is important but not the exact shape of the 

transfer function (Vogl et al., 1988). 

2.6.3.5.2 Linear Transfer Function  

Linear transfer function (purelin) is typically used for function approximation or regression 

tasks. This is intuitive because step and logistic functions give binary results where the linear 

function gives continuous results. The algorithm of purelin is represented by the following 

Equation (23). 

𝑎 = 𝑝𝑢𝑟𝑒𝑙𝑖𝑛(𝑛) = 𝑛   … … … … … … … … … … … . . .  (23) 

2.6.3.5.3 Log-sigmoid Transfer Function 

Logarithm of sigmoid (logsig) states, it is a modified version. It produces outputs in scale of (-

∞, 0]. The algorithm of logsig is represented by the following Equation (24). 

 𝑙𝑜𝑔𝑠𝑖𝑔(𝑛) =
1

1 + exp(−𝑛)
   … … . … . … … … … … … … … . . (24)   
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2.7 Prediction parameters of AI Techniques 

The testing data (unknown 15 sampling points) was assessed with the following prediction 

parameters. 

2.7.1 Correlation Coefficient 

A correlation coefficient (R) is a statistical measure of the degree to which changes to the value 

of one variable predict change to the value of another. Simply, a correlation coefficient is the 

statistical measure of the linear relationship (https://whatis.techtarget.com/definition/correlation 

-coefficient) between a dependent variable and an independent variable. In positively correlated 

variables, the value increases or decreases in tandem. In negatively correlated variables, the 

value of one increases and the value of the other decreases. The “R” represents it that displays 

in the following Equation (25). 

𝑅 =
𝑛(∑ 𝑦. 𝑦𝑝) (∑ 𝑦)(∑ 𝑦𝑝)

√[𝑛 ∑ 𝑦2 (∑ 𝑦)2][𝑛 ∑ 𝑦𝑝
2 (∑ 𝑦𝑝)

2
] 

   … … … … . . . (25) 

Where y = observed value, yp = predicted value, n = number of observations. 

By (Rumsey, 2015) in statistics, the correlation coefficient R measures the strength and 

direction of a linear relationship between two variables on a scatterplot. The value of R is always 

between +1 and –1. To interpret its value, it is categorised in the following manner.   

1. Exactly –1. A perfect downhill (negative) linear relationship 

2. –0.70. A strong downhill (negative) linear relationship 

3. –0.50. A moderate downhill (negative) relationship 

4. –0.30. A weak downhill (negative) linear relationship 

5. 0. No linear relationship 

6. +0.30. A weak uphill (positive) linear relationship 

7. +0.50. A moderate uphill (positive) relationship 

8. +0.70. A strong uphill (positive) linear relationship 

9. Exactly +1. A perfect uphill (positive) linear relationship 

https://www.dummies.com/education/math/statistics/statistics-for-dummies-cheat-sheet/
https://www.dummies.com/education/math/statistics/how-to-interpret-a-scatterplot/
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A research conducted by Smith (1986) suggested that the value of R lies between 0 to 1. It is 

also suggested some guidelines for deciding the performance of the model.  If |R| ≥ 0.8: a strong 

correlation exists, 0.2 < |R| < 0.8: correlation exists and |R| ≤ 0.2: a weak correlation exists. 

When the value of |R| is greater than 0.9, then a very strong correlation exists between the 

variables.  

2.7.2 Root Mean Square Error 

The root mean square error (RMSE) is a frequently used measure of the differences between 

values (sample or population values) predicted by a model or an estimator and the values 

observed. In other words, it measures the quality of the fit between the actual and the predicted 

data of a model. It is represented by the following Equation (26). 

𝑅MSE = √
∑ (𝑦 − 𝑦𝑝)2𝑛

1

𝑛
  … … … … … … … … . . … … … . (26) 

Where y = observed value, yp = predicted value, n = number of observations. 

RMSE is one of the most frequently used measures of the goodness of fit of generalized 

regression models. According to Schweizer (2010), lower values of RMSE indicate better fit 

and zero means no error. RMSE is a good measure of how accurately the model predicts the 

response, and it is the most important criterion for fit if the main purpose of the model is 

prediction. 

2.7.3 Mean Absolute Percentage Error  

The mean absolute percent error (MAPE) measures the size of the error in percentage terms. It 

is calculated as the average of the unsigned percentage error, as shown in the following Equation 

(27): 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑

|𝑦 − 𝑦𝑝|

|𝑦|
× 100 % … … … . … … … . . (27) 

Where y = observed value, yp = predicted value, n = number of observations. 

https://en.wikipedia.org/wiki/Estimator
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For the MAPE, extreme values occur only at the high end because it is typically based on a 

right-skewed distribution of absolute percent errors (APE) bounded on the left by zero and 

unbounded on the right. In a comprehensive analysis of county-level projections, the MAPE 

was on average higher by about 30–40% than robust measures of central tendency for most 

methods and projection horizons (Rayer, 2007). 

2.7.4 Geometric Reliability Index  

A version of the geometric reliability index (GRI) was defined as the inverse of the coefficient 

of variation. The reliability index is the shortest distance from the origin of reduced variables 

(Hasofer and Lind, 1974). Using geometry, the reliability index can be measured by the 

following Equation (29).   

𝐺𝑅𝐼 =
1 + √

1
𝑛

∑ (
�̂�𝑡 − 𝑦𝑡

�̂�𝑡 + 𝑦𝑡
)2𝑛

𝑡=1

1 − √
1
𝑛

∑ (
�̂�𝑡 − 𝑦𝑡

�̂�𝑡 + 𝑦𝑡
)2𝑛

𝑡=1

  … … … … … . . … … . . (29) 

Where 𝒚𝒕 = observed value, �̂�𝒕 = predicted value, n = number of observations. 

According to Leggett and Williams (1981), GRI is a statistical method to determine the 

reliability of a model. The index is a number GRI ≥ 1. The formula of geometry index also 

expresses that when the error will be zero, then the index value will be 1. In contrary, the more 

error alienate the index value from 1. Therefore, it can be said that GRI value must be greater 

or equal 1 and GRI value 1 represents the perfectness and reliability of model. 

2.7.5 Percent Recovery 

The percentage recovery means what percentage of measured value is recovered by the 

predicted value. It is represented by the following Equation (28). 

𝑃𝑒𝑟𝑠𝑒𝑛𝑡 𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 =
𝑦𝑝

𝑦
× 100 … … … … … … … . … (28) 

Where y = observed value, yp = predicted value. 
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The importance of recovery can be found in the International Council for Harmonisation (ICH) 

guidelines as well as in the Good Laboratory Practice (GLP) guidelines for analytical method 

validation (Branch, 2005). According to Walfish (2006),  recoveries in the range of 20-200% 

for internal standard are considered 'acceptable' (depending on the jurisdiction). Food and Drug 

Administration (FDA), Investopedia declares that recovery should not need to be 100% but 

should be reproducible. FDA approved variability limit for Lower Limit of Qualification 

(LLOQ) is +/- 20%. Therefore, the ideal frame of recovery is 80-120% that represents the 

robustness of the model.  
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CHAPTER 3  

RESEARCH METHODOLOGY 

3.1 General  

This chapter deals with the overall research methodology in this study. This chapter includes 

the information about the study area and soils condition. In this study, total eighty-five disturbed 

soils samples were considered from distinct locations in and around the waste disposal site at 

old Rajbandh in Khulna. The method of soils sampling was also highlighted in this chapter. In 

the laboratory, the concentrations of relevant heavy metal in soils were measured and monitored 

through standard test methods and hence highlighted in this chapter. Then, the measured 

concentrations of heavy metals were used to perform the descriptive conventional statistics 

using MS Excel to assess the basic features of soils data in a simpler. The AI techniques such 

as ANFIS, SVM and ANN were performed to predict the heavy metal concentrations, which 

were also highlighted in this chapter. 

3.2  Description of the Study Site  

Khulna is the third largest established metropolitan city after Dhaka and Chittagong in 

Bangladesh. It is located in the Khulna Division. It has an area of 4394.45 km² and is bordered 

on the north by the Jashore and the Narail district, on the south by the Bay of Bengal, on the 

east by the Bagerhat District, and on the west by the district. The geological location of Khulna 

is 22.350N and 89.300E, surrounded by Rupsa, Arpangachhia, Shibsa, Pasur, and the Koyra. 

Urban development is dribbling into neighbouring zones to the North and West results a huge 

amount of municipal solid waste (MSW) generation. The areas of KCC and KCPA are 

45.65sq.km and 69.50sq.km, respectively (https://en.wikipedia.org/wiki/Khulna).The 

increasing population in Khulna city tends to dispose increasing amount of MSW as well as 

liquid waste termed as leachate. These MSW contain a large amount of metal elements, which 

get direct contact to the environment. This may result a great thread to the environment and 

human health. The selected waste disposal site, old Rajbandh is the only certified waste dumping 

site of Khulna shown in Figure 3.1. Based on above-mentioned authenticities, it has become 

https://en.wikipedia.org/wiki/Dhaka
https://en.wikipedia.org/wiki/Chittagong
https://en.wikipedia.org/wiki/Narail_District
https://en.wikipedia.org/wiki/Bay_of_Bengal
https://en.wikipedia.org/wiki/Bagerhat_District
https://en.wikipedia.org/wiki/Arpangachhia_River
https://en.wikipedia.org/wiki/Shibsa_River
https://en.wikipedia.org/wiki/Pasur_River
https://en.wikipedia.org/w/index.php?title=Koyra_River&action=edit&redlink=1
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inevitable of comprehensive study of distribution of heavy metals in soils ascends 

approximately the Rajbandh waste disposal site. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3  Location and Soils Conditions of Waste Disposal Site 

The waste disposal site located at old Rajbandh, Khulna with an area of 5 acres, is 8km far from 

the city centre i.e. Royal and Castle Salam Square of Khulna city and situated along the North-

Figure 3.1: Location map of Rajbandh at Khulna city of Bangladesh.  

(Source: Fahmida and Rafizul, 2017) 



 

43 

 

side of Khulna-Satkhira highway. The percolation and seepage capacity of leachate from MSW 

in disposal sites depends mainly on the basic characteristics of the soils (Daniel and Koerner, 

1995). It is therefore important to know the physical and mechanical properties of underlying 

soils as thoroughly as possible before assessing their physio-chemical or hydro-mechanical 

behavior. Based on these concepts, in the laboratory through standard ASTM (2004) methods, 

some relevant physical and mechanical properties of soils from this selected disposal site were 

determined by soils moisture content, plastic limit, liquid limit, plasticity index and shrinkage 

limit of clay soils used as CCL were found 22, 22, 43, 21 and 16 %, respectively. In addition, 

the percentages of soils constituents were found as sand, silt and clay of 10, 56.6 and 33.4%, 

respectively. Then the value of soils pH, optimum moisture content, maximum dry density and 

coefficient of permeability were found 6.7, 18 %, 16 kN/m3 and 1.90x10-7 cm/sec, respectively 

(Sanjida and Rafizul, 2018).  

3.4  Soils Sampling 

In this study, total eighty-five disturbed soils samples were considered from distinct locations 

in and around the waste disposal site at old Rajbandh in Khulna (Figure 3.2). Among the 

samples, some (twenty) were collected from secondary sources (Sanjida and Rafizul, 2018). 

These samples were collected at a depth of 0-30 cm from the existing ground surface of the 

selected waste disposal site. The latitude and departure of all the soils-sampling locations was 

recorded using GPS device, which were later imported into a geographic information system 

(ArcGIS 10.1). The sampling points were selected maintaining gradual addition of about 10 m 

distance from the 1st sampling point (SS-1) by the subsequent sampling points. The first 

sampling point, SS-1 is located at the centre of the selected waste disposal site. Proper care was 

taken to remove any loose material, debris, coarse aggregates from the bottom of the excavated 

pit. Samples were taken in large polythene bags and eventually transported to the laboratory. 

Figure 3.2 depicted the soils sampling locations in waste disposal site at old Rajbandh, Khulna. 

The overall research methodology of this study is illustrated in Figure 3.3. 
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Figure 3.2: Map showing soil-sampling points of the selected waste disposal site at 

old Rajbandh, Khulna 
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Figure 3.3: Overall research methodology of this study. 
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3.5 Laboratory Investigations  

The soils samples were carried in the laboratory to measure the heavy metal concentrations of 

lead (Pb), copper (Cu), nickel (Ni), zinc (Zn), cobalt (Co), cadmium (Cd), arsenic (As), 

scandium (Sc), mercury (Hg), manganese (Mn), chromium (Cr), titanium (Ti), antimony (Sb), 

strontium (Sr), vanadium (V) and barium (Ba) in soils samples. Moreover, the values of some 

heavy metal concentrations were collected from secondary sources (Sanjida and Rafizul, 2018). 

The procedure of acid digestion and atomic absorption spectrophotometer (AAS) analysis are 

described in the following articles. 

3.5.1 Acid Digestion 

To measure the heavy metal concentrations in soils, laboratory work was done following the 

standard test method. In laboratory investigation, at first 10 g of each soils sample was taken 

into a 100 mL conical flask. Already, the flask had been washed with deionized water prepared 

by adding 6 mL HNO3/HClO4 acid in ratio 2:1 and left overnight. Each sample was kept into 

the temperature of 150°C for about 90 minutes. Later, temperature was raised to 230°C for 30 

minutes. Subsequently, HCl solution was added in ratio 1:1 to the digested sample and re-

digested again for another 30 minutes. The digested sample was washed into 100 mL volumetric 

flask and mixture obtained was cooled down to room temperature.  

3.5.2 Analysis of Heavy Metals with AAS 

After performing digestion procedure, metal element concentrations in this digested solution 

were determined using atomic absorption spectroscopy (AAS) and the amount of each heavy 

metal was deduced from the calibration graph. The concentration of the heavy metals of Pb, Cu, 

Ni, Zn, Co, Cd, As, Sc, Hg, Mn, Cr, Ti, Sb, Sr, V and Ba in mg/kg were measured in the 

laboratory. 

3.6 Statistical Analysis 

The statistical analysis of all studied heavy metal concentrations was performed using MS Excel 

to know the relative state of the concentrations of heavy metals in soils. In this study, the 
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statistical analysis in terms of mean, median, maximum, minimum, standard deviation (SD), 

skewness and kurtosis was described. 

3.7 Assessment of Model Performance 

The model performance refers the accuracy of prediction. Prediction accuracy means how close 

predicted concentration to the measured heavy metal concentrations in soils. It can be measured 

by some prediction parameters like correlation coefficient (R), root mean square error (RMSE), 

mean absolute percentage error (MAPE), geometric reliability index (GRI) and percentage 

recovery.  

3.7.1 Correlation Coefficient 

A research conducted by Smith (1986) suggested that the value of correlation coefficient (R),  

lies between 0 to 1. It is also suggested some guidelines for deciding the performance of the 

model.  If |R| ≥ 0.8: a strong correlation exists, 0.2 < |R| < 0.8: correlation exists and |R| ≤ 0.2: a 

weak correlation exists. When the value of |R| is greater than 0.9, then a very strong correlation 

exists between the variables.  

3.7.2 Root Mean Square Error  

For the root mean square error (RMSE), lower values of RMSE indicate better fit of model and 

zero means no error (Schweizer, 2010). It is the most important criterion for fit, which indicates 

the goodness of prediction model. 

3.7.3 Mean Absolute Percentage Error  

For the mean absolute percentage error (MAPE), extreme values occur only at the high end 

because it is typically based on a right-skewed distribution of absolute percent errors (APE) 

bounded on the left by zero and unbounded on the right. In a comprehensive analysis of county-

level projections, the MAPE was on average higher by about 30–40% than robust measures of 

central tendency for most methods and projection horizons (Rayer, 2007). 
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3.7.4 Geometric Reliability Index  

According to Leggett and Williams (1981), geometric reliability index (GRI) is a statistical 

method to determine the reliability of a model. The index is a number GRI ≥ 1. 

 

3.7.5 Percentage recovery  

The importance of recovery can be found in the International Council for Harmonisation (ICH) 

guidelines as well as in the Good Laboratory Practice (GLP) guidelines for analytical method 

validation (Branch, 2005). According to Walfish (2006),  recoveries in the range of 20-200% 

for internal standard are considered 'acceptable' (depending on the jurisdiction). Food and Drug 

Administration (FDA), Investopedia declares that recovery should not need to be 100% but 

should be reproducible. FDA approved variability limit for Lower Limit of Qualification 

(LLOQ) is +/- 20%. Therefore, the ideal frame of recovery is 80-120% that represents the 

robustness of the model.  

3.8 Artificial Intelligence Techniques 

In this study, Artificial Intelligence (AI) techniques such as adaptive neuro-fuzzy inference 

system (ANFIS), support vector machine (SVM) and artificial neural network (ANN) were 

performed through MATLAB to analysis heavy metal concentrations in soils of waste disposal 

site. The procedure implemented for the analysis of AI techniques are discussed successively in 

the following articles.   

3.8.1 Adaptive Neuro-Fuzzy Inference System  

Various models for different heavy metal concentrations was analysed using “Fuzzy Logic 

Toolbox 2.2.25” named Neuro-Fuzzy Designer. For predicting the heavy metal concentrations 

in soils through ANFIS, the values of prediction parameters like root mean square error (RMSE) 

and regression coefficient (R) were considered to check the validity or accuracy of obtained 

results from laboratory. The operation of ANFIS in details through MATLAB are also discussed 

in the followings articles. 
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3.8.1.1 Data Processing  

To train ANFIS, a Training data set has been loaded that contained desired input/target data of 

the system to be modelled. In this study, latitude and longitude were considered as input which 

placed in first two columns as well as heavy metal concentrations as target which placed at last 

column for modelling a Training data set. Testing data set also be arranged similarly for the 

prediction of heavy metals for unknown soils sampling points from the selected waste disposal 

site. These data sets are saved in the MATLAB workspace that are ready for the ANFIS 

operation. The rearranged data sets in MATLAB workspace is shown in Figure 3.4. 

 

 

3.8.1.2 Neuro-Fuzzy Designer App 

The following both commands were  used to open Neuro-Fuzzy Designer App shown in Figure 

3.5 at the MATLAB® prompt: 

anfisedit or neuroFuzzyDesigner 

In addition, the Neuro-Fuzzy Designer includes four distinct areas to support a typical 

workflow. The app performs the following tasks: 

Figure 3.4: Arrangement of data sets in MATLAB workspace. 
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1. Loading, Plotting, and Clearing the Data 

2. Generating or Loading the Initial FIS Structure 

3. Training the FIS and 

4. Validating the Trained FIS or Testing the FIS 

 

 

 

 

 

 

 

 

 

 

 

3.8.1.3 Workspace Load Data Portion 

For loading training data set from the workspace, Load data portion of the designer was used to 

select the following options: 

Type: Training 

From: worksp. 

By clicking Load Data option, the Load from workspace dialog box was opened shown in 

Figure 3.6. 

 

Figure 3.5: Commands used to open neuro-fuzzy designer app. 

file:///H:/Matlab%20File%20Organiser/help/fuzzy/train-adaptive-neuro-fuzzy-inference-systems-gui.html%23bq960u6
file:///H:/Matlab%20File%20Organiser/help/fuzzy/train-adaptive-neuro-fuzzy-inference-systems-gui.html%23bq97_i_
file:///H:/Matlab%20File%20Organiser/help/fuzzy/train-adaptive-neuro-fuzzy-inference-systems-gui.html%23bq98id8
file:///H:/Matlab%20File%20Organiser/help/fuzzy/train-adaptive-neuro-fuzzy-inference-systems-gui.html%23bq98qpz
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3.8.1.4 Training Data 

‘TrainingData’ is typed in the dialog box and then OK was clicked. The training data set is ready 

to train a fuzzy system by adjusting the membership function parameters and appears in the plot 

in the centre of the app as a set of circles shown in Figure 3.7. In Figure 3.7, the horizontal axis 

was marked as data set index indicating the row from which input data value was obtained 

(whether or not the input is a vector or a scalar) as well as vertical axis marked as output. 

 

 

 

 

 

 

 

 

Figure 3.6: Dialog box of load data. 

Figure 3.7: Plot of training data. 
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3.8.1.5 Generation of FIS 

For initializing and generating FIS, two partition methods Grid Partitioning of ANFIS (ANFIS-

GP) and Subtractive Clustering Method of ANFIS (ANFIS-SCM) can be used. By choosing 

Grid partition and clicking Generate FIS a menu is displayed from which the number of 

membership functions (MFs), and the type of input and output membership functions can be 

chosen. There are several choices for input MF like trainmf, trapmf, gbellmf, gaussmf, 

gauss2mf, pimf, dsigmf and psigmf as well as only two choices for the output 

MF: constant and linear shown in Figure 3.8. 

 

 

 

 

 

 

 

 

 

 

In this study, all the input and output membership functions and the optimization methods were 

verified to create about twenty ANFIS-GP model and choose a best one in which input 

membership function was gaussmf, output membership function was linear and optimization 

method was hybrid. After verifying the ANFIS-GP, the ANFIS-SCM (in which including input 

MF gaussmf, output MF linear) was used. By selecting Sub. Clustering and clicking Generate 

FIS a new window was opened shown in Figure 3.9.  

 

Figure 3.8: FIS generate with ANFIS-GP. 
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The range of Influence, squash factor, accept ratio and reject ratio were assumed to fix for the 

model used in this study. By clicking Ok, the FIS is created. 

3.8.1.6 Train of Model  

For training FIS, the optimization method hybrid was chosen for the proposed model and the 

number of training Epochs was entered to 100 to set the stopping criteria for training. Then the 

Train Now option was clicked to train the FIS. This action adjusts the membership function 

parameters and displays the error plots, which shows the training error (RMSE value) in the 

bottom portion of the window shown in Figure 3.10. 

 

 

Figure 3.9: FIS generate with ANFIS-SCP. 
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3.8.1.7 FIS Output for Training 

A FIS output for training data was displayed by clicking Checking and Test Now option marked 

as yellow shown in Figure 3.11. In the centre of the app the plot was represented the output 

against training data (Figure 3.11).  

 

 

 

 

 

 

 

 

 

Figure 3.10: Error of ANFIS. 

Figure 3.11: FIS output for training data. 
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3.8.1.8 Load of Testing Data 

For validating the trained FIS, the testing data was loaded by typing the TestingData in the 

dialog box and then OK is clicked. TestingData was displayed in Figure 3.12 that was different 

from the TrainingData.  

 

 

 

 

 

 

 

 

 

 

 

3.8.1.9 FIS Output for Testing 

After loading testing data a FIS output was displayed by clicking Checking option in the Load 

data portion as well as Testing data and Test Now option in the Test FIS portion of the Neuro-

Fuzzy Designer, which was marked by the yellow colour in Figure 3.13. The following plot 

represents the predicted heavy metal concentration for 15 unknown points against the 

TestingData. The red star (*) mark represents the testing measured data whereas blue point (  ) 

mark represents ANFIS output with average testing error (RMSE value) which was displayed 

in the bottom of window of Neuro-Fuzzy Designer App. 

 

Figure 3.12: Plot of testing data. 
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3.8.1.10 ANFIS Structure 

The option Structure was clicked for presenting the ANFIS Structure shown in Figure 3.14. 

These structures were mapped with input characteristics to input membership functions, input 

membership functions to rules, rules to output membership functions, and the output 

membership functions to a single-valued output or a decision associated with the output. Such 

a system was used for the fixed membership functions that were chosen arbitrarily. The shape 

of the membership functions (must be equal to the no. of rules) depends on the type and intensity 

of the heavy metal concentrations in soils. 

 

 

Figure 3.13: FIS output for testing data. 
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3.8.1.11 ANFIS Rule Viewer 

The Rule Viewer is a sort of micro view of the fuzzy inference system, which shows one 

calculation at a time and in details. From the view menu, selecting Rules option rule viewer is 

opened shown in Figure 3.15. In this rule viewer, two inputs and one output were represented 

at the top of each column for a particular input value. Each row was indicated the rules for the 

certain membership functions influencing overall results. Two tasks can be performed in this 

section. For two inputs, by inserting input vector such as [22.8;89.5] was calculated the output 

which showing at the top of third column as well as several number of rules  was created row 

wise at randomly. Besides, the red index line was moved horizontally for showing the changes 

of input values. By clicking the options left, right, down and up, all the rules of ANFIS can be 

visible.    

 

Figure 3.14: ANFIS structure. 
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3.8.1.12 ANFIS Surface Viewer 

The following steps were performed in the surface viewer section. 

1. To open the Surface Viewer, Surface option is selected from the View menu.  

2. Opening the Surface Viewer, a three-dimensional curve is shown that represents the 

mapping from latitude and longitude quality to output heavy metal concentrations shown 

in Figure 3.16.  

3. The grid lines of x-axis and y-axis can be changed with drop-down menus X grids and Y 

grids.  

4. By writing a code “colorbar” at the MATLAB® prompt, which described the intensity 

of predicted heavy metal concentrations against the two inputs by the variation of color 

from blue to yellow (Figure 3.16).  

 

 

Figure 3.15: ANFIS rule viewer. 
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3.8.1.13 Output from Training and Testing in ANFIS 

There were several tasks for determining the output or predicted concentration of training data 

set. The successive steps were mentioned in the following. 

1. By clicking ‘File’ option of neuro fuzzy designer app menu, it was exported a dialog 

box. 

2. Then ‘tra’ was typed to create a train FIS model as well as ‘tes’ was typed to create a 

test FIS model and clicked OK to save the models to the workspace (Figure 3.17).  

3. Finally, the following code was typed to get the predicted concentration for training and 

testing, respectively. 

Prediction1= evalfis(inputTrainData,tra) 

Prediction2= evalfis(inputTestData,tes) 

 

Figure 3.16: ANFIS surface viewer. 
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3.8.2 Support Vector Machine 

The models were formed with different fold numbers and various kernel functions of SVM and 

using “Regression Learner App”. The selected model also performed for the prediction of heavy 

metal concentrations for unknown soils sampling points. The operation of SVM in details 

through MATLAB are hence discussed in the following articles. 

3.8.2.1 Data Processing for SVM Analysis 

To train SVM, a Training and Testing data set have been loaded that contained desired 

input/target data of the system to be modelled. In this study, latitude and longitude were 

considered as input or predictor, which placed in first two columns as well as heavy metal 

concentrations as target or response that placed at last column for modelling a Training and 

Testing data set. Among the 85 sampling points of soils from the selected waste disposal site, 

83% (70) for training and 17% (15) for testing was considered for the prediction analysis. These 

data sets are saved in the MATLAB workspace that are ready for the SVM operation. The 

rearranged data sets in MATLAB workspace. 

Figure 3.17: Saving of train and test FIS model. 
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3.8.2.2  Regression Learner App Opening  

The following command was used to open Regression Learner App shown in Figure 3.18 at 

MATLAB® prompt:  

regressionLearner 

 

 

 

 

 

 

 

 

 

 

 

 

3.8.2.3 Opening New Session in MATLAB  

By clicking “New Session” from the regression learner, a new window has been opened for 

selecting data sets from workspace shown in Figure 3.19.  

 

 

 

Figure 3.18: Commands used to open regression learner app. 
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3.8.2.4 Importing Data and Validation Method Selection 

In New Session window includes three distinct areas to support a typical workflow. The window 

performs the following tasks: 

1. A table of training data sets named “TrainingData” was selected for the next operation 

shown in Figure 3.20. 

2. Column 1 and column 2 which containing latitude and longitude, respectively, were 

selected as predictor as well as column 3 containing the measured heavy metal 

concentrations was selected as response. 

3. In this study, Cross-Validation method was selected for controlling the overfitting of 

data set by changing the different fold number of the cross-validation. 

 

 

Figure 3.19: New session window open from regression learner app. 
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3.8.2.5 Introduction of Response Plot  

The “Start Session” option was clicked to introduce the response plot which shown in Figure 

3.21. This plot shows the true or measured concentration (response) of heavy metals in soils 

against the 83 % (70) soils sampling points for training.  

3.8.2.6 Selection of Model  

By clicking the “Model Type” options, various types of model can be selected which shown in 

Figure 3.22. In this study, “All SVMs” option was selected for training all the kernel functions 

and then choosing best of them. 

 

 

 

Figure 3.20: Importing data and validation method selection. 
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Figure 3.21: Response plot of training data set. 

 

Figure 3.22: Model selection for SVM training. 
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3.8.2.7 Train of Model 

After selection of model type, the model was trained and then it provided RMSE (along with 

R2, MSE, MAE etc.) value for all the model of various kernel functions. Figure 3.23a shows the 

prediction model of SVM with fine gaussian kernel. This plot of prediction model represents 

true (measured) and predicted value of heavy metal concentrations against the soils sampling 

points of waste disposal site. It also shows the variation of predicted and measured values by 

selecting error option (Figure 3.23b). In addition, by clicking the “Predicted vs Actual Plot” 

option, it was provided the plot of predicted and measured heavy metal concentrations with 

perfect prediction line shown in Figure 3.24. In this figure, observations (measured values) close 

to the perfect prediction line represents the robustness of the model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) 

Figure 3.23: (a) Prediction model of SVM and (b) Error histogram of true and 

predicted data. 
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3.8.2.8 Export of Model 

By clicking option “Export Model”, a window of “Export Model” was opened that was shown 

in Figure 3.25. Then the trainedModel was saved by clicking Ok. 

 

 

 

 

 

 

 

 

 

Figure 3.24: Relationship of predicted and measured values for selected kernel 

function of SVM. 

Figure 3.25: Exporting of trained model. 
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3.8.2.9  Coding of SVM for Training and Testing Output 

Finally, the following code was typed to get the predicted concentration for training and testing, 

respectively. 

Prediction1= trainedModel.predictFcn(inputTrainData) 

Prediction2= trainedModel.predictFcn(inputTestData) 

3.8.2.10 Coding for Representing the Outputs of SVM-RBF 

The outputs of SVM-RBF model for all heavy metals were performed in “curve fitting tool” for 

the representation of the predicted concentration in terms of contour map, surface viewer and 

residuals. The following code was used in MATLAB for the representation of outputs of Pb 

(similarly others heavy metal). 

function [fitresult, gof] = createFit(Latitude, Longitude, Pb, 

Distance) 

%% Fit: 'untitled fit 1'. 

[xData, yData, zData, weights] = prepareSurfaceData( Latitude, 

Longitude, Pb, Distance );  

% Set up fittype and options. 

ft = 'biharmonicinterp'; 

opts = fitoptions( 'Method', 'BiharmonicInterpolant' ); 

opts.Normalize = 'on'; 

opts.Weights = weights; 

% Fit model to data. 

[fitresult, gof] = fit( [xData, yData], zData, ft, opts ); 

% Create a figure for the plots. 

figure( 'Name', 'untitled fit 1' );  
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% Plot fit with data. 

subplot( 2, 2, 2 ); 

plot( fitresult, [xData, yData], zData ); 

xlabel Latitude 

ylabel Longitude 

zlabel Pb 

grid on 

view( -38.5, 31.9 ); 

colorbar 

% Plot residuals. 

subplot( 2, 2, 4 ); 

plot( fitresult, [xData, yData], zData, 'Style', 'Residual' ); 

xlabel Latitude 

ylabel Longitude 

zlabel Pb 

grid on 

view( -38.5, 31.9 ); 

% Make contour plot. 

subplot( 1, 2, 1 ); 

plot( fitresult, [xData, yData], zData, 'Style', 'Contour' ); 

xlabel Latitude 

ylabel Longitude 

grid on 

colorbar 
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3.8.3 Artificial Neural Network 

The heavy metal concentrations were analysed by the various models for different neuron 

numbers, training functions and transfer functions using “nntool” through ANN. Prediction of 

heavy metal concentrations for unknown soils sampling points were also performed by the 

selected model. The operation of ANN in details through MATLAB are hence discussed in the 

following articles. 

3.8.3.1 Data Processing for ANN Analysis 

To train ANN, a data set has been loaded for Training that contained desired input and target 

data of the system to be modelled. In this study, latitude and longitude were considered as input 

as well as heavy metal concentrations considered as target data. Among the 85 sampling points 

of soils from the selected waste disposal site, 83% (70) for training and 17% (15) for testing was 

considered for the prediction analysis. These data sets are saved in the MATLAB workspace 

that are ready for the ANN operation. The rearranged data sets in MATLAB workspace is shown 

in Figure 3.26. 

 

 

 

 

 

 

 

 

 

 

Figure 3.26: Rearranged data for ANN. 
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3.8.3.2 Neural Network Opening  

The neural network or data manager window was opened by coding “nntool” at the 

MATLAB® prompt, which was shown in Figure 3.27.  

 

 

 

 

 

 

 

 

3.8.3.3 Importation of Data 

By clicking “import” option from the data manager, a new window has been opened for selecting 

data from workspace shown in Figure 3.28.  

 

 

 

 

 

 

 

 

Figure 3.27: Data Manager of ANN. 

Figure 3.28: Importing of training, testing and target data. 
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3.8.3.4 Selection of Neural Network Model 

The “Create Network or Data” window was opened by clicking “New” option that shown in 

Figure 3.29. From this window, various model of neural network was created by changing 

following categories.  

1. Network Type 

2. Training function 

3. Number of neurons and  

4. Transfer function 

 

The model of neural network was assessed by the prediction parameters for selecting a best 

model among them. Finally, a model with network type: feed forward back propagation, training 

function: TRAINLM (Levenberg-Marquardt), number of neuron: 10 and transfer function: 

TANSIG (hyperbolic tangent sigmoid) was selected for the prediction of concentration of all 

studied heavy metals in soils. 

 

 

 

 

 

 

 

 

 

 

Figure 3.29: Neural network model selection. 
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3.8.3.5 Opening Selected Neural Network 

By clicking “network1”, selected neural network was opened for the training, which was shown 

in Figure 3.30. 

 

 

 

 

 

 

 

 

3.8.3.6 Train of ANN Model 

Inserting input and target values, “Train Network” option (shown in Figure 3.31) was clicked 

for training the selected model. 

 

 

 

 

 

 

 

Figure 3.30: Opening of network window. 

Figure 3.31: Train of neural network. 



 

73 

 

3.8.3.7 Simulation of Test Data 

By inserting the inputs of 15 unknown sampling points, the network was simulated for getting 

the predicted concentration. Figure 3.32 shows the application of simulation.  

 

 

 

 

 

 

 

3.8.3.8 Export of All Outputs 

After training and simulation the model, outputs were exported to save in workspace, which 

shown in Figure 3.33. 

 

 

 

  

 

 

 

 

 

Figure 3.32: Simulation of test data. 

Figure 3.33: Exporting output data. 
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3.8.3.9 Regression and RMSE Value 

The correlation coefficient, R and RMSE were determined for training and test by following 

coding, which shown in Figure 3.34a and 3.34b, respectively. 

 

 

 

 

 

 

 

The correlation coefficient, R for training and testing were found from regression plot, which 

shown in Figure 3.35a and 3.35b, respectively. 

 

 

 

 

 

 

 

 

 

(a) 
 

(b) 

(b) (a) 

Figure 3.34: Coding of regression plot and RMSE for (a) training and (b) testing. 

Figure 3.35: Regression plot As for (a) training and (b) testing. 
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CHAPTER 4  

RESULTS AND DISCUSSION 

4.1 General 

This chapter deals with the selection of model from AI techniques like adaptive neuro-fuzzy 

inference system (ANFIS), support vector machine (SVM) and artificial neuron network (ANN) 

using MATLAB. The prediction techniques of heavy metal concentrations such as Pb, Cu, Ni, 

Zn, Co, Cd, As, Sc, Hg, Mn, Cr, Ti, Sb, Sr, V and Ba in soils of waste disposal site for the 

unknown sampling points are also highlighted in this chapter. This chapter also depicts the 

performance analysis of AI techniques based on correlation coefficient (R) and root mean square 

error (RMSE). In addition, for the performance of various AI techniques were assessed by 

ascertaining the error in the predictions based on mean absolute percentage error (MAPE). For 

checking the accuracy level of prediction as well as reliability of selected models from AI 

techniques, geometric reliability index (GRI) and percentage recovery were also used and hence 

discussed in this chapter. 

4.2 Basic Statistical Analysis 

Statistical analysis through XLSTAT was performed to assist the interpretation of heavy metals 

presence in soils of waste disposal site. The descriptive statistics were represented in terms of 

mean, median, maximum, minimum, standard deviation (SD), skewness and kurtosis. The SD 

is the measure that is used to quantify the amount of variation or dispersion of a set of data or 

in a distribution of data. Besides, the value of skewness indicated the degree to which the 

analysed data are not symmetrical and kurtosis specified exactly how the peak and tails of a 

distribution fluctuated from the normal distribution (George and Mallery, 2010). Hence, 

skewness and kurtosis supports by giving primarily recognition of overall characteristics about 

the distribution of the heavy metal concentrations in soils. According to George and Mallery 

(2010), the values for skewness and kurtosis between -2 and +2 are considered acceptable in 

order to prove normally distributed data. The descriptive statistical data of heavy metals in soils 

of waste disposal site is provided in Table 4.1. Table 4.1 illustrates the preponderance of heavy  
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Table 4.1: Descriptive statistical data of heavy metals in soils of waste disposal site 

  

metals in soils of disposal site very clearly. The SD for the heavy metal of Ti was found to be 

greater than that of other heavy metals which indicating the highest dispersion range of Ti within 

the soils sampling area. In addition, the values of skewness and kurtosis of the heavy metals in 

soils indicated that the data was distributed normally excepting for Pb and Cu.   

4.3 Soil Quality Parameters and Allowable Limit 

In this study, the arithmetic mean of heavy metal concentration in soils were compared with the 

maximum allowable limits for soils published by different countries available in literatures 

(Table 4.2). In this analysis, the mean was considered to avoid the uncertainty associated with 

estimating the true average concentration at a site stated in USEPA (1989). Different 

organizations and countries provide the maximum allowable limits of heavy metal 

concentrations in soil. Because, quality guidelines depend on this allowable limits for the 

protection of environment and human health from contaminated site.  In the present study, the 

soil samples showed the comparatively lower concentration of Cu, Ni, Zn, Co, As, Hg, Mn, Cr, 

Heavy 

metal 

elements 

Mean Median Maximum Minimum SD Skew Kurt 

Pb 27.367 23.386 90.550 10.880 13.739 1.863 5.103 

Cu 4.391 3.690 16.450 0.730 3.185 2.111 4.675 

Ni 3.728 3.450 8.060 1.080 1.709 0.628 -0.069 

Zn 25.932 23.075 50.760 11.820 10.003 0.783 -0.162 

Co 6.152 6.180 12.020 1.980 2.539 0.140 -0.796 

Cd 3.309 3.108 7.030 1.200 1.529 0.496 -0.580 

As 2.862 2.660 8.770 0.870 1.957 1.259 0.972 

Sc 10.013 9.712 20.411 3.020 3.534 0.418 0.207 

Hg 3.210 2.946 9.200 0.720 2.166 0.975 0.448 

Mn 10.700 11.760 30.760 1.020 6.536 0.428 0.453 

Cr 4.014 4.345 9.820 0.770 2.370 0.260 -0.834 

Ti 973.73 916.17 1937.36 243.88 419.50 0.517 -0.421 

Sb 4.790 4.710 12.549 0.980 2.257 0.678 0.961 

Sr 22.393 21.710 54.120 8.880 8.540 0.889 1.254 

V 32.563 30.855 83.351 6.920 15.803 0.785 0.724 

Ba 52.890 47.220 121.902 18.200 23.175 0.879 0.637 
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Sb, V and Ba than that of maximum allowable limits proposed by different countries (Table 

4.2). The average concentration of Pb exceed the WHO standard maximum allowable limits. 

Besides, the concentration of Cd exceeds the allowable limits stated by CCME, Poland, U.K. 

and U.S.A. except WHO standard, Austria and Canada (Table 4.2).         

Table 4. 2: Comparison of mean concentration of  heavy metals (mg/kg) in soils with 

maximum allowable limits in present study 

CCME=Canadian Council of Ministers of the Environment (Source: Fahmida and Rafizul, 

2017). 

The concentration of heavy metals can easily accumulate in the bodies of soil organisms. In fact, 

they are particularly very dangerous chemical, as they can accumulate in individual organisms 

but also in entire food chain (Shingh et al., 2010). Moreover, soil samples are disturbed by Pb 

and Cd intervention, where extreme concentrations are present. The main sources of Pb and Cd 

in municipal solid waste are lead-acid batteries, household batteries, consumer electronics, glass 

and ceramics, plastics, soldered cans, pigments etc. (Korzun and Heck, 1990). The concentration 

Heavy 

Metal 

WHO 

standard 
CCME Austria Canada Poland Japan UK Germany U.S.A 

Present 

study 

Pb 15-20 70 100 200 100 400 100 500 200 27.37 

Cu - 63 100 100 100 125 100 50 100 4.40 

Ni 0-100 45 100 100 100 100 50 100 500 3.73 

Zn  20-300 200 300 400 300 250 300 300 300 25.93 

Co - 40 50 25 50 50 - - 40 6.15 

Cd 0-30 1.4 5 8 3 - 3 - 0.7 3.31 

As - 12        2.86 

Hg - 6.6        3.21 

Mn 
200-

9000 
-        10.70 

Cr 0-85 64 100 75 100  50 200 1000 4.00 

Sb - 20        4.80 

V - 130        32.56 

Ba - 750        52.89 
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of heavy metals that have the most damaging effects on human health like anaemia, high blood 

pressure, kidney damage, brain damage, etc.   

4.4 Artificial Intelligence Techniques   

In this study, Artificial Intelligence (AI) techniques such as adaptive neuro-fuzzy inference 

system (ANFIS), support vector machine (SVM) and artificial neural network (ANN) were 

performed through MATLAB to analysis heavy metal concentrations in soils of waste disposal 

site. The latitude and longitude of soil sampling points of the selected waste disposal site were 

used as inputs, while, heavy metal concentrations were considered as outputs in AI techniques. 

In this study, total 85 sampling point’s data were considered among which training data 83% 

(70) and testing data 17% (15) were assigned in AI techniques. The adopted AI techniques are 

hence discussed in the following articles. 

4.4.1 Adaptive Neuro-Fuzzy Inference System 

In this study, for the validation of models from various functions of ANFIS, the performance of 

prediction model with acceptable limits of prediction parameters and FIS outputs were 

deliberated successively. The results for the heavy metals such as Pb, Hg, Sb and Sc in soils for 

ANFIS were discussed in details here. However, the results for other heavy metals such as Cu, 

Ni, Zn, Co, Cd, As, Mn, Cr, Sb, Sr, V and Ba in soils from ANFIS were reported in Appendix-

A (Figures) and Appendix-B (Tables).  

4.4.1.1 Validation of Models in ANFIS  

In this study, to validate the models of ANFIS, twenty models symbolized A to T were formed 

considering sub-clustering partitioning (SCP); different input membership function (MF) like 

gaussmf, trimf, trapmf, psigmf, gbellmf;  output MF like linear and constant; optimization 

method such as hybrid or back-propagation (BP) as well as number of epochs. The performance 

of different models (A to T) of ANFIS were examined based on the satisfactory limits of the 

prediction parameters such as R and RMSE. The results of twenty models (A to T) in ANFIS at 

different functions for Co with the values of R and RMSE provided in Table 4.3.  
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Table 4.3: Validation of different models in ANFIS for Co 

Model 

name 
GENFIS 

Input 

membership 

function  

Output 

membership 

function  

Optimization 

method 
Epochs 

Co 

R RMSE 

A 
Sub 

Clustering 
gaussmf linear Hybrid 100 0.80 1.52 

B 
Sub 

Clustering 
gaussmf Constant Hybrid 100 0.64 1.92 

C 
Sub 

Clustering 
gaussmf linear 

Back 

Propagation 
100 -0.28 2.53 

D 
Sub 

Clustering 
gaussmf Constant 

Back 

Propagation 
100 -0.13 4.98 

E 
Sub 

Clustering 
trimf linear Hybrid 100 0.79 1.53 

F 
Sub 

Clustering 
trimf Constant Hybrid 100 0.62 1.97 

G 
Sub 

Clustering 
trimf linear 

Back 

Propagation 
100 0.39 2.66 

H 
Sub 

Clustering 
trimf Constant 

Back 

Propagation 
100 0.03 6.71 

I 
Sub 

Clustering 
trapmf linear Hybrid 100 0.67 1.87 

J 
Sub 

Clustering 
trapmf Constant Hybrid 100 0.50 2.16 

K 
Sub 

Clustering 
trapmf linear 

Back 

Propagation 
100 0.32 2.40 

L 
Sub 

Clustering 
trapmf Constant 

Back 

Propagation 
100 0.04 5.30 

M 
Sub 

Clustering 
psigmf linear Hybrid 100 0.62 1.96 

N 
Sub 

Clustering 
psigmf Constant Hybrid 100 0.61 1.98 

O 
Sub 

Clustering 
psigmf linear 

Back 

Propagation 
100 0.17 2.45 

P 
Sub 

Clustering 
psigmf Constant 

Back 

Propagation 
100 0.19 4.98 

Q 
Sub 

Clustering 
gbellmf linear Hybrid 100 0.66 1.88 

R 
Sub 

Clustering 
gbellmf Constant Hybrid 100 0.53 2.13 

S 
Sub 

Clustering 
gbellmf linear 

Back 

Propagation 
100 0.47 2.35 

T 
Sub 

Clustering 
gbellmf Constant 

Back 

Propagation 
100 0.13 4.98 
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For model A (SCP, gaussmf, linear and hybrid) the value of |R| was found to be 0.80 indicating 

the strong correlation between input and output variables in ANFIS analysis. In this study, the 

models B, E, F, G, I, J, K, M, N, Q, R, and S provided the R-value within a range of 0.2 < |R| < 

0.8 indicating correlations between input and output variables. However, R-values for rest 

models (C, D, H, L, O, P and T) were found below 0.2 with weak correlations. Figure 4.1 shows 

the variation of R and RMSE in case of Co for different models performed in ANFIS analysis. 

The model H (SCP, trimf, constant and BP) shows comparatively the lower R-value (0.03) with 

higher RMSE value (6.71) than that of other models.  

 

 

 

 

 

 

 

 

 

In addition, two models such as C and D shows R and RMSE values of -0.28 and -0.13 as well 

as 2.53 and 4.98, respectively, these two models indicated the performance of weak downhill 

correlations between input and output variables. Besides, the model A shows the maximum 

value of R 0.80 and minimum value of RMSE 1.52 (Figure 4.1). Based on aforementioned 

results of R and RMSE, model A with SCP, gaussmf, linear and hybrid can be considered as 

fitted model of ANFIS for the prediction of all studied heavy metal concentrations in soils of 

waste disposal site.  

Figure 4.1: Variation of R and RMSE of Co for different ANFIS models. 
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4.4.1.2 Representation of ANFIS  

The results of ANFIS model in terms of model structure, rules viewer, outputs for training data, 

outputs of testing data and surface viewer were analysed and hence discussed in the following 

articles. 

4.4.1.2.1 Structures of ANFIS  

The model A with SCP of gaussmf (input MF), linear (output MF) and hybrid algorithm 

(optimisation method) were selected for the prediction of heavy metal concentrations in soils. 

The structures of ANFIS model for Pb and Hg were shown in Figure 4.2 (a) and Figure 4.2 (b), 

respectively, for training and testing. In this study, ANFIS structure of Pb contained 66 rules 

(Figure 4.2a) and Hg contained 11 rules (Figure 4.2b) with two inputs and one single output for 

the heavy metal concentrations in soils. ANFIS model structure for Pb shows comparatively 

more rules due to the higher intensity of the concentration of Pb (Figure 4.2a) than that of Hg 

(Figure 4.2b) in soils. Result reveals the shape of MF changes for the different number of rules 

of these two heavy metals in soils. 

 

  

 

 

 

 

 

 

 

 

(a) 

 

(b) 

 

Figure 4.2: ANFIS structure for (a) Pb and (b) Hg. 
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4.4.1.2.2 Rule Viewer of ANFIS 

In this analysis, the variables such as latitude, longitude and measured concentrations of heavy 

metal were considered to develop models for predicting heavy metal concentrations of unknown 

soil sampling points within the selected waste disposal site. At the top of each column from left 

to right of these rule viewer represents latitude, longitude and the predicted heavy metal 

concentrations for a particular input value (latitude and longitude) shown in Figure 4.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 66 Rules  

 

(b) 11 Rules  

 

(c) 38 Rules 

 

(d) 65 Rules 

 Figure 4.3: ANFIS rule viewer for (a) Pb (b) Hg (c) Sb and (d) Sc. 
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In this analysis, the developed each row represents the rules for a particular heavy metals in 

soils. The model for each heavy metal, different number of rules like (66 rules for Pb, 11 rules 

for Hg,  38 rules for Sb and 65 rules for Sc) were established shown in Figures 4.3 (a), 4.3 (b), 

4.3 (c) and 4.3 (d), respectively. From this analysis, it can be seen that when the values of latitude 

(22.796991) and longitude (89.500559) were considered as input in the developed model 

(Figure 4.3a) for Pb, the output/predicted value of Pb was obtained as 43.2. 

Similarly, Figure 4.3b, 4.3c and 4.3d were described respectively in such a manner of:  

If latitude = 22.794104 and longitude = 89.499353 then the output of Hg = 4.14. 

If latitude = 22.796991 and longitude = 89.500559 then the output of Sb = 5.55. 

If latitude = 22.794687 and longitude = 89.498253 then the output of Sc = 13.1. 

The range of the variables were shows in bottom of each column. In this study, the predicted 

concentrations were found 12.11 to 85.72 for Pb; 0.57 to 6.77 for Hg; 1.12 to 8.89 for Sb and 

3.75 to 20.22 for Sc; whereas the measured concentrations were 12.11 to 90.55 for Pb; 0.72 to 

9.2 for Hg; 1.01 to 12.55 for Sb and 3.75 to 20.41 for Sc. The higher intensity of concentration 

for Pb was shows the higher number of rules (Figure 4.3a) than that of others studied heavy 

metals in soils. On the contrary, Figure 4.3b illustrates only 11 rules due to lower intensity of 

concentration of Hg in soils. Furthermore, some unknown soil sampling points were considered 

as checking points (C) for the validation of predicted concentration with nearest soil sampling 

points (Table 4.4).   

Table 4.4: Validation of predicted concentration of checking points with nearest soil sampling 

points 
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The location of some checking points in selected waste disposal site were shown in Figure 4.4. 

In Table 4.4, the predicted concentration and measured concentration of Pb for checking point 

C1 (41.3, 40.76); C2 (21.8, 23.16); C3 (70.2, 70.87); C4 (23.4, 26.65) and C5 (42.9, 40.77), 

respectively, were showed comparatively less variation of predicted results. Similarly, rule 

viewer provided the predicted concentration of Sb and showed very close value of measured 

concentration for the checking points. Here, it can be noted that one can easily be computed the 

concentration of particular heavy metals in soils of the selected waste disposal site by inserting 

only GPS values (latitude and longitude) in this developed model. Moreover, the rule viewer for 

other heavy metals of Cu, Ni, Zn, Co, Cd, As, Mn, Cr, Ti, , Sr, V and Ba were reported in Figure 

A-1 to Figure A-12 in Appendix-A.     

4.4.1.2.3  FIS Outputs of ANFIS  

The Figures 4.5 (a), 4.5 (b), 4.5 (c) and 4.5 (d) represents the FIS output of training data set for 

the heavy metals of Pb, Hg, Sb and Sc in soils, respectively. The FIS result represents the 

closeness of predicted values with observed one with RMSE for the heavy metals of Pb, Hg, Sb 

and Sc in soils (Figure 4.5). In case of training data, RMSE values were found 1.38, 1.42, 0.91 

Figure 4.4: Location of some checking points in selected waste disposal site. 
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and 0.12 for Pb, Hg, Sb and Sc, respectively. The minimum value of RMSE was found 0.12 for 

Sc (Figure 4.5d) indicating the predicted value from model was very close to measured 

concentration of Sc in the laboratory. On the other hand, the maximum RMSE (1.42) indicated 

the more variation of predicted and measured concentrations of Hg in soils. Moreover, the FIS 

output of training data for other heavy metals of Cu, Ni, Zn, Co, Cd, As, Mn, Cr, Ti, Sr, V and 

Ba were reported in Figure A-13 to Figure A-24 in Appendix-A.     

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 4.6 (a), 4.6 (b), 4.6 (c) and 4.6 (d) represents the FIS output of testing data set for Pb, 

Hg, Sb and Sc, respectively. In case of testing data, RMSE values were found 15.25, 1.95, 2.29 

and 2.97 for Pb, Hg, Sb and Sc, respectively. In testing, the minimum value of RMSE was found 

 

(c) (d) 

(a) (b) 

Figure 4.5: FIS output of training data for (a) Pb, (b) Hg, (c) Sb and (d) Sc. 
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1.95 (Figure 4.6b) for Hg showing insignificant variation  of predicted values with measured 

one as well as maximum RMSE value was found 15.25 (Figure 4.6a)  for Pb showing more 

variation between the predicted and measured values. Moreover, the FIS output of testing data 

for other heavy metals of Cu, Ni, Zn, Co, Cd, As, Mn, Cr, Ti, Sr, V and Ba were reported in 

Figure A-25 to Figure A-36 in Appendix-A.     

 

 

          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c) (d) 

(b) (a) 

Figure 4.6: FIS output of testing data for (a) Pb, (b) Hg, (c) Sb and (d) Sc. 
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4.4.1.2.4  Surface Viewer of ANFIS 

In ANFIS model, surface viewers represent the predicted values of heavy metal in soils. In this 

study, the predicted concentrations of heavy metal such as Pb, Hg, Sb and Sc in soils was 

presented by surface viewer shown in Figure 4.7a to Figure 4.7d, respectively. In these figures, 

the intensity of heavy metal concentrations represents by different colours.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Figure 4.7a, the concentration of Pb varies from 12.11 to 85.72 mg/kg and the centre of the 

plot represents comparatively the higher values of Pb than that of the other soils sampling points. 

The yellow color in the colorbar represents comparatively the higher intensity of concentration 

than that of other colours (Figure 4.7). Figure 4.7b illustrates the concentration of Hg ranges 

from 0.57 to 6.77 mg/kg. Similarly, Figure 4.6c and Figure 4.6d represents the concentrations 

of Sb and Sc ranges 1.12 to 8.89 mg/kg and 3.75 to 20.22 mg/kg, respectively. Moreover, the 

(d) (c) 

(b) (a) 

Figure 4.7: Surface viewer of the outputs for (a) Pb, (b) Hg, (c) Sb and (d) Sc. 
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surface viewer of output for testing data of other heavy metals of Cu, Ni, Zn, Co, Cd, As, Mn, 

Cr, Ti, Sr, V and Ba were reported in Figure A-37 to Figure A-48 in Appendix-A.    

4.4.1.3 Assessment of Model Performance in ANFIS  

In this study, the model A with SCP of gaussmf (input MF), linear (output MF) and hybrid 

algorithm (optimisation method) was selected based on the acceptable limits of R and RMSE 

for the prediction of heavy metal concentrations in soils. Table 4.5 shows the values of R and 

RMSE for training and testing for all studied heavy metals in soils. 

Table 4.5: Results of R and RMSE for heavy metals in soils from ANFIS 

Heavy metals 
ANFIS (training)  ANFIS (testing) 

R value RMSE R value RMSE 

Pb  0.99 1.38 0.55 15.25 

Cu 0.98 0.63 0.86 2.45 

Ni 0.81 1.00 0.71 1.17 

Zn 0.998 0.67 0.63 9.18 

Co 0.97 0.60 0.58 2.35 

Cd 0.91 0.65 0.79 1.17 

As 0.98 0.36 0.88 1.44 

Sc 0.999 0.12 0.70 2.97 

Hg 0.76 1.42 0.53 1.95 

Mn 0.86 3.33 0.45 6.24 

Cr 0.998 0.15 0.72 2.02 

Ti 0.997 29.60 0.76 341.76 

Sb 0.92 0.91 0.40 2.30 

Sr 0.99 0.88 0.75 7.17 

V 0.999 0.69 0.72 12.40 

Ba 0.999 0.88 0.82 15.52 

In training, the value of |R| were found greater than 0.9 for Pb, Cu, Zn, Co, Cd, As, Sc, Cr, Ti, 

Sb, Sr, V and Ba in soils indicating very strong correlation between input and output variables. 

In addition, |R| ≥ 0.8 for Ni and Mn indicated strong correlation and R-value was found 0.76 in 

the ranges of 0.2 < |R| < 0.8 for Hg which specified the existing of correlation between input 

and output variables. A study conducted by Smith (1986) and stated that when the values of R 

is greater than 0.90 indicated the very strong correlations. Therefore, the findings for almost all 

the studied heavy metals of this study are agreed well in the postulation stated by Smith (1986). 
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Among all the heavy metals, the maximum R-value of Sc was found 0.999 with the minimum 

RMSE 0.12 indicating the best correlation in prediction of Sc in soils of the selected waste 

disposal site.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

On the other hand, the minimum R-value of Hg was found 0.76 with RMSE of 1.42 indicating 

the worst correlation for Hg than that of other studied heavy metals. For Ti, it was presented the 

maximum value of RMSE with 29.60 due to the higher intensity of concentrations than other 

(a) (b) 

(c) (d) 

Figure 4.8: Regression analysis of ANFIS (training) for (a) Pb, (b) As, (c) Sb and (d) Sc. 
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studied heavy metals in soils. The relationships of predicted and measured concentrations of Pb, 

Hg, Sb and Sc in soils in training is shown in Figures 4.8a, 4.8b, 4.8c and 4.8d, respectively. 

Figures reveal all the predicted concentrations were closed to the fitted line and Sc (Figure 4.8d) 

shows the best performance. Moreover, the ANFIS regression for training of Cu, Ni, Zn, Co, 

Cd, As, Mn, Cr, Ti, Sr, V and Ba were reported in Figure A-49 to Figure A-60 in Appendix-A. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(d) (c) 

(a) (b) 

Figure 4.9: Regression analysis of ANFIS (testing) for (a) Pb, (b) As, (c) Sb and (d) Sc.  
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In addition for testing, the value of |R| for Cu, Hg and Ba were found greater than 0.8 indicating 

strong correlation. The R-value for Pb, Ni, Zn, Co, Cd, As, Sc, Hg, Mn, Cr, Ti, Sb, Sr, and V 

was found between the ranges of 0.2 < |R| < 0.8 specifying the existence of correlation between 

inputs and outputs. Among all the heavy metals in testing, the maximum R-value (0.88) with 

minimum RMSE (1.44) for As indicating the best correlation in prediction whereas R=0.40 

(minimum) and RMSE=2.30 (maximum) for Sb indicating the worst correlation in prediction 

than that of other studied heavy metals. The relationships of predicted and measured 

concentrations of Pb, Hg, Sb and Sc in soils were represented in Figures 4.9a, 4.9b, 4.9c and 

4.9d, respectively. The plotted data for Sc was closed to the fitted line (Figure 4.9d) whereas for 

Sb data was scattered from the fitted line (Figure 4.9c). Moreover, ANFIS regression for testing 

data of other heavy metals of Cu, Ni, Zn, Co, Cd, As, Mn, Cr, Ti, , Sr, V and Ba were reported 

in Figure A-61 to Figure A-72 in Appendix-A.     

4.4.1.3.1  Assessment of Pb in ANFIS  

In this study, ANFIS model was conducted to predict heavy metal concentrations in soils of 15 

unknown sampling points of the selected waste disposal site. The aim of this section was to 

evaluate the closeness of the predicted and measured concentration of Pb in soils. Table 4.6 

represents the predicted and measured concentration of Pb in soils. The variation of predicted 

and measured concentration of Pb was clearly exposed in Figure 4.10. In this figure, most of the 

soil sampling points (10, 25, 30, 45, 50, 65, 70, 80 and 85) shows insignificant variation as well 

as others sampling points shows higher variation of concentrations of Pb in soils. Result reveals 

the measured values of 46.89 and 23.62, while, predicted values of 46.47 and 23.72 mg/kg, for 

soil sampling points 10 and 65, respectively, in case of Pb. 
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Table 4.6: Recovery level of Pb in ANFIS (testing) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Soils sampling  

points 

Recovery level of Pb for testing in ANFIS  

Measured 

concentration 

Predicted 

concentration 

% 

recovery 

5 50.66 60.78 119.98 

10 46.89 46.47 99.1 

20 37.62 32.12 85.38 

25 32.66 31.15 95.37 

30 27.72 30.77 111.01 

35 31.705 37.87 119.43 

45 24.09 24.75 102.75 

50 17.82 20.02 112.35 

55 18.77 24.14 128.6 

60 10.88 16.53 151.95 

65 23.62 23.72 100.42 

70 17.24 13.86 80.39 

75 17.39 21.56 123.98 

80 12.33 14.8 120.03 

85 22.93 23.72 103.45 

% mean recovery 110.28 

RMSE 15.25 

MAPE 15.58 

GRI 1.2 

Figure 4.10: Comparison of predicted and measured concentration of Pb 

from ANFIS (testing). 
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Table 4.6 also demonstrates RMSE, MAPE, GRI and percentage recovery. The percentage 

recovery means what percentage of measured value is recovered by the predicted value. 20-

200% recovery represents the acceptance of model, 100% recovery represents the fit level and 

80-120% recovery represents the robustness of the model. The variation of recovery level of Pb 

for testing in ANFIS model is shown in Figure 4.11. 

 

 

 

 

 

 

 

 

 

 

 

In this figure, all the soil sampling points were in the acceptable ranges 20-200%. Besides, about 

10 soil sampling points (5, 10, 25, 30, 35, 50, 65, 70, 80 and 85) were found very near and 

between the ranges 80-120% which indicating the robustness of model for Pb. Again, the MAPE 

value was found 15.58% for Pb that was in the acceptable ranges of 30-40% (Rayer, 2007). 

Furthermore, the value of GRI was found 1.2 (greater than 1) for Pb which representing the 

reliability of the model. Therefore, ANFIS model was considered as robust and reliable for 

predicting of Pb concentration in soils of the selected waste disposal site. 

 

Figure 4.11: Variation of recovery level of Pb for ANFIS (testing). 
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4.4.1.3.2 Assessment of Hg, Sb and Sc in ANFIS 

The measured, predicted concentration as well as percentage recovery of the results of Hg, Sb 

and Sc in soils depicted in Table 4.7. The values of MAPE were found 56.57, 28.89 and 19.74 

for Hg, Sb and Sc in soils, respectively. The value of error was minimum for Sc indicating 

closeness of predicted values with measured one of Sc in soils. The performance of Sb was 

better than Hg due to less error (28.89 < 56.57).  

Table 4.7: Recovery level for Hg, Sb and Sc in ANFIS (testing) 

 

The variation of predicted and measured concentration of Hg, Sb and Sc in soils were illustrated 

in Figures 4.12, 4.13 and 4.14, respectively. The perfect prediction was observed in case of Hg 

in soils for the soil sampling points of 5, 10, 20, 25, 30, 45, 60 and 85 (Figure 4.12). In contrast, 

35, 50, 55, 65, 70, 75 and 80 shows the less perfection for the prediction of the concentrations 

of Hg in soils.  

Soils 

sampling 

points 

Hg Sb Sc 

Measured Predicted 
% 

recovery 
Measured Predicted 

% 

recovery 
Measured Predicted 

% 

recovery 

5 7.22 6.56 90.92 8.87 7.87 88.72 16.83 16.99 100.94 

10 4.76 5.49 115.26 7.58 7.23 95.36 14.76 16.16 109.51 

20 5.03 4.88 96.96 5.91 4.50 76.24 11.77 10.83 92.03 

25 3.77 3.16 83.82 5.09 5.57 109.45 10.77 10.73 99.59 

30 1.98 1.58 79.74 4.65 4.12 88.59 9.58 10.96 114.43 

35 3.45 1.74 50.54 3.68 3.76 102.12 8.65 8.88 102.62 

45 1.92 2.56 133.38 4.92 4.81 97.68 9.94 12.39 124.69 

50 1.11 2.38 214.12 3.63 5.73 157.72 8.07 10.27 127.25 

55 1.26 2.02 160.37 2.05 2.50 121.76 5.72 8.07 141.12 

60 0.77 1.43 185.07 0.98 1.66 169.33 3.02 4.85 160.54 

65 2.12 3.43 161.58 5.13 5.55 108.26 10.02 9.71 96.90 

70 1.07 2.76 257.51 3.70 2.56 69.19 8.41 5.98 71.12 

75 1.68 2.86 170.34 2.28 4.63 203.04 6.14 7.23 117.75 

80 0.77 1.75 227.43 1.00 1.61 161.49 3.39 5.16 152.22 

85 2.95 3.70 125.44 5.32 4.47 84.07 10.19 9.71 95.29 

% mean recovery 143.50 % mean recovery 115.53 % mean recovery 113.73 

RMSE 1.95 RMSE 2.30 RMSE 2.97 

MAPE 56.57 MAPE 28.89 MAPE 19.74 

GRI 1.65 GRI 1.37 GRI 1.26 
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Similarly, the perfect prediction was observed for the soil sampling points 10, 25, 30, 35, 45, 

55, 60, 65 and 85 for Sb (Figure 4.13), whereas, the soil sampling points 5, 20, 25, 35, 65, 75 

and 85 were denoted the perfect prediction for Sc (Figure 4.14). 

 

 

 

 

 

 

 

 

 

 

Figure 4.12: Comparison of predicted and measured concentration of Hg 

from ANFIS (testing). 

Figure 4.13: Comparison of predicted and measured concentration of Sb from 

ANFIS (testing). 
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The values of percentage recovery were found 143.50, 115.53 and 113.73 for Hg, Sb and Sc, 

respectively (Table 4.7). Among which for Sc, it was very close to fit level 100 than others. The 

level of percentage recovery for Hg, Sb and Sc were expressed in Figure 4.15, 4.16 and 4.17, 

respectively.  

 

 

 

 

 

 

 

 

 

Figure 4.14: Comparison of predicted and measured concentration of Sc from 

ANFIS (testing). 

Figure 4.15: Variation of recovery level for Hg in ANFIS. 
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Figure 4.15 shows the percentage recovery ranges from 20-200% for all soil sampling points 

except 50, 70 and 80 in case Hg.  Based on this result, it was recommended that the prediction 

of Hg in soils was in acceptable range. Among the accepted soil sampling points; 5, 10, 20, 25, 

30 and 85 were in robust level (80-120%) (Figure 4.15). 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 4.16: Variation of recovery level for Sb in ANFIS. 

Figure 4.17: Variation of recovery level for Sc in ANFIS. 
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The percentage recovery of Sb were found in the acceptable range (Figure 4.16) for all soil 

sampling points except 75 as well as the percentage recovery for Sc were in the acceptable range 

(Figure 4.17) for all soil sampling points. Among of them, most of the soil sampling points were 

near to the fit level 100. In addition, GRI values were found 1.65, 1.37 and 1.26 (greater than 1) 

for Hg, Sb and Sc, respectively. Therefore, the prediction model for Hg, Sb and Sc were reliable. 

Moreover, relationships of predicted and measured concentrations of Cu, Ni, Zn, Co, Cd, As, 

Mn, Cr, Ti, Sr, V and Ba in soils were also reported in Figure A-73  to Figure A-84, respectively, 

in the Appendix-A. In addition, the graphical representations of percentage recovery of Cu, Ni, 

Zn, Co, Cd, As, Mn, Cr, Ti, Sr, V and Ba in soils were also reported in Figure A-85  to Figure 

A-96, respectively, in the Appendix-A. In contrast, the results of percentage recovery for Cu, 

Ni, Zn, Co, Cd, As, Mn, Cr, Ti, Sr, V and Ba in soils were also provided in Table B-1 to Table 

B-12, respectively, in Appendix-B. 

4.4.1.3.3 Summary of Results in ANFIS Model 

In this study, the genfis, sub-clustering partitioning (SCP) with different input membership 

function (MF) like gaussmf, trimf, trapmf, psigmf, gbellmf;  output MF like linear and constant; 

optimization method such as hybrid or back-propagation (BP) as well as number of epochs was 

considered to select the best model of ANFIS. The model (SCP, gaussmf, linear and hybrid) 

showed the highest |R| (0.80) and lowest RMSE (1.52) values indicating the strong correlations 

and so it was selected as a general model of ANFIS for the prediction of heavy metal 

concentrations in soils at waste disposal site.  

The concentration of various heavy metals with its sample location (latitude and longitude) were 

trained and tested to validate the selected model of ANFIS based on the acceptable limits of 

prediction parameters like R, RMSE, MAPE, GRI and percent recovery. In ANFIS analysis, the 

values of R for most of the heavy metals were found in the ranges of 0.81 to 0.999 indicating 

the best correlation in prediction. Among all the heavy metals, the maximum R-value was found 

0.999 with the minimum RMSE 0.12 for Sc. The values of MAPE were found 56.57, 28.89 and 

19.74 for Hg, Sb and Sc in soils, respectively. The value of error was minimum for Sc indicating 

closeness of predicted values with measured one of Sc in soils. The performance of Sb was 
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better than Hg due to less error (28.89 < 56.57). The values of percentage recovery were found 

143.50, 115.53 and 113.73 for Hg, Sb and Sc, respectively. Among which for Sc, it was very 

close to fit level 100 than others. The percentage recovery of Sb were found in the acceptable 

range for all soil sampling points except 75 as well as the percentage recovery for Sc were in 

the acceptable range for all soil sampling points. Among of them, most of the soil sampling 

points were near to the fit level 100. In addition, GRI values were found 1.65, 1.37 and 1.26 

(greater than 1) for Hg, Sb and Sc, respectively, which representing the reliability of prediction 

model. In ANFIS analysis, if the latitude and longitude of 22.798701 and 89.498029, 

respectively, were considered as input in the developed model for Sc, the output/ predicted value 

of Sc was obtained as 12.11, whereas measured value was 12.12. Here, it can be noted that one 

can easily be computed the concentration of particular heavy metals in soils of the selected waste 

disposal site by using latitude and longitude only in the developed model of ANFIS.  

4.4.2 Support Vector Machine  

In this study, the model validation for various kernel functions of support vector machine 

(SVM), performance of the model prediction with prediction parameters and the results of SVM 

were deliberated successively. The results of SVM for the heavy metals of Pb, Hg, Sb and Sc in 

soils were discussed in details here. Moreover, the results of other heavy metals in SVM of Cu, 

Ni, Zn, Co, Cd, Hg, Mn, Cr, Sb, Sr, V and Ba were reported in Appendix-C (Figures) and 

Appendix-D (Tables), respectively. 

4.4.2.1  Validation of Models in SVM  

In this study, total sixteen models (A to D with 5, 10, 15 and 20 fold numbers) for SVM analysis 

were formed with different kernel functions like linear-SVM (SVM-L), quadratic-SVM (SVM-

Q), cubic-SVM (SVM-C) and gaussian or radial basis function-SVM (SVM-RBF) for fold 

numbers 5, 10, 15 and 20. The selected model was then compared in terms of the best values of 

R and RMSE to assess the performance of each model. Table 4.8 illustrates the sixteen models 

of different kernel functions of SVM for As, Co and Cd. The R-values were observed within the 

range of 0.2 < |R| < 0.8 for most of the model in case of As and Co indicating correlation between 

the variables. The R-values of Cd were found negative for most of the models (B-5, B-10, A-
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15, B-15, C-15, B-20 and C-20) indicating downhill correlation between the variables. In this 

analysis, Arsenic (As) was considered in compare to other results of heavy metals for selecting 

the best model of SVM. 

Table 4.8: Validation of SVM model with different kernel functions 

 

The variation of R and RMSE for As were clearly expressed in Figure 4.18 and 4.19, 

respectively, for different kernel function and fold number. The SVM-RBF shows the higher 

value of R than that of other kernel functions of SVM-L, SVM-Q and SVM-C in SVM for fold 

numbers 5, 10, 15 and 20 (Figure 4.18). Among the entire folds considered in this analysis, the 

fold number 15 shows the maximum R-value (0.76) with minimum RMSE (1.27). 

 

 

Model 

No. 
Fold No. 

Kernel 

Function 

As Co Cd 

R RMSE R RMSE R RMSE 

A-5 

5 Fold 

SVM-L 0.20 1.92 0.41 2.29 0.10 1.52 

B-5 SVM-C 0.47 1.73 0.58 2.04 -0.63 1.81 

C-5 SVM-Q 0.45 1.76 0.61 2.00 0.17 1.50 

D-5 SVM- RBF 0.69 1.41 0.66 1.89 0.61 1.21 

A-10 

10 Fold 

SVM-L 0.24 1.91 0.40 2.30 0.10 1.52 

B-10 SVM-C 0.45 1.76 0.58 2.03 -0.54 1.74 

C-10 SVM-Q 0.44 1.77 0.62 1.97 0.14 1.51 

D-10 SVM- RBF 0.75 1.31 0.69 1.81 0.61 1.21 

A-15 

15 Fold 

SVM-L 0.24 1.91 0.41 2.28 -0.10 1.52 

B-15 SVM-C 0.51 1.69 0.62 1.97 -0.40 1.65 

C-15 SVM-Q 0.42 1.78 0.64 1.93 -0.14 1.54 

D-15 SVM- RBF 0.76 1.27 0.70 1.78 0.62 1.20 

A-20 

20 Fold 

SVM-L 0.24 1.9 0.40 2.29 0.10 1.52 

B-20 SVM-C 0.49 1.71 0.58 2.04 -0.47 1.69 

C-20 SVM-Q 0.45 1.76 0.62 1.96 -0.24 1.57 

D-20 SVM- RBF 0.75 1.3 0.69 1.80 0.60 1.22 
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Similarly, Figure 4.19 reveals the lower value of RMSE for SVM-RBF than that of other kernel 

functions of SVM-L, SVM-Q and SVM-C in case of fold numbers 5, 10, 15 and 20. It reveals 

the fold number 15 showing the minimum RMSE of 1.27 than that of other fold numbers. 
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Figure 4. 18: Variation of R with different fold numbers and kernel functions of 

SVM for As. 

Figure 4.19: Variation of  RMSE with different kernel function and fold number 

for As. 
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Figure 4.20 entirely shows that fold number 15 provides the maximum R-value (0.76) with 

minimum RMSE (1.27) for model D-15 (SVM-RBF with 15 folds). Based on aforementioned, 

R and RMSE, model D-15 (SVM-RBF with 15 folds) was selected for the modelling of heavy 

metal analysis in soils of selected waste disposal site in SVM.   

4.4.2.2 Graphical Representation of Results in SVM  

The outputs of SVM-RBF model were represented by contour map, surface viewer and residuals 

as the results of predicted concentrations for heavy metals in soils. The representation of outputs 

for Pb, Hg, Sb and Sc in soils were explained in Figure 4.21 to Figure 4.24, respectively. In 

Figure 4.21, the surface viewer shows the predicted concentration of Pb in soils. The intensity 

of predicted Pb was represented by the colorbar whereas yellow color shows the higher intensity 

of the concentration of Pb. In SVM analysis, the predicted concentration of Pb varies from 13.34 

to 49.75 mg/kg in soils (whereas measured value 12.11 to 90.55 mg/kg).  

 

 

Figure 4.20: Variation of R and RMSE with different kernel functions of SVM 

for selected fold number of As in soil. 
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Besides, contour map shows the individual color area of same concentration of Pb in soils. In 

addition, residuals represent the difference of predicted and measured heavy metal 

concentrations in soils. In Figure 4.22, surface viewer shows the better predicted concentration 

of Hg in the ranges of 0.96 to 8.68 mg/kg instead of measured concentration of 0.72 to 9.20 

mg/kg than that of other heavy metals in soils.  

 

 

 

 

 

 

 

 

Contour Map Surface Viewer 
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s  

Contour Map 

Residuals  

Surface Viewer 

Figure 4.21: Graphical representation of the outputs for Pb. 

Figure 4.22: Representation of the outputs for Hg. 
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Similarly, Figure 4.23 and Figure 4.24 represents the concentration of Sb and Sc in the range of 

1.41 to 9.70 mg/kg and 7.73 to 12.16 mg/kg, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Moreover, the representation of output for testing data with contour map, surface viewer and 

residuals of other heavy metals of Cu, Ni, Zn, Co, Cd, As, Mn, Cr, Ti, Sr, V and Ba were reported 

in Figure C-1 to Figure C-12 in Appendix-C.     

Contour Map Surface Viewer 

Residuals  

Contour Map Surface Viewer 

Residual  

Figure 4.23: Representation of the outputs for Sb. 

Figure 4.24: Representation of the outputs for Sc 



 

105 

 

4.4.2.3 Assesment of Model Performance in SVM  

The model SVM-RBF with 15-folds was selected based on the acceptable limits of R and RMSE 

for the prediction of heavy metal concentrations in soils. Table 4.9 shows the values of R and 

RMSE for training and testing data for all studied heavy metals in soils. In training, the value of 

|R| were found in the ranges of 0.2 < |R| < 0.8 for all heavy metals which specified the correlation 

between input and output variables. Among all the heavy metals, the maximum R-value was 

found 0.78 for Hg with the minimum RMSE 1.29 indicating the best correlation for predicting 

of Hg in soil. On the other hand, the minimum R-value was found 0.37 for Sc with the RMSE 

value 3.22 indicating the worst correlation in prediction for Sc than that of other studied heavy 

metals in soils. For Ti, it was found the maximum RMSE value 279.98 due to the higher intensity 

of concentrations than all other heavy metals. 

Table 4.9: Variation of R and RMSE of heavy metals for SVM 

 

 

 

 

 

 

 

 

 

 

The relationships of predicted and measured concentrations of Pb, Hg, Sb and Sc in soils in 

training is shown in Figures 4.25a to 4.25d, respectively. Figures reveal all the predicted 

concentrations were closed to the fitted line and Hg (Figure 4.25b) shows the best performance 

Heavy 

metals 

SVM(training) SVM(testing) 

R value RMSE R value RMSE 

Pb 0.66 10.64 0.43 10.73 

Cu 0.71 2.30 0.73 2.09 

Ni 0.65 1.31 0.60 1.53 

Zn 0.63 7.59 0.37 11.01 

Co 0.68 1.85 0.70 1.91 

Cd 0.60 1.22 0.51 1.40 

As 0.75 1.30 0.59 1.64 

Sc 0.37 3.22 0.14 3.85 

Hg 0.78 1.29 0.47 2.03 

Mn 0.53 5.52 0.06 7.24 

Cr 0.49 2.01 0.26 2.66 

Ti 0.74 279.98 0.50 422.11 

Sb 0.72 1.57 0.49 2.06 

Sr 0.73 5.79 0.47 8.25 

V 0.72 10.91 0.49 15.35 

Ba 0.75 15.36 0.65 18.90 
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with better R-value than others do. Moreover, the results of other heavy metals of Cu, Ni, Zn, 

Co, Cd, As, Mn, Cr, Ti, Sr, V and Ba in soils through SVM regression analysis (training) were 

reported in Figure C-13 to Figure C-24 in Appendix-C. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In testing, the R-value was found between the ranges of 0.2 < |R| < 0.8 for Pb, Cu, Ni, Zn, Co, 

Cd, As,  Hg, Cr, Ti, Sb, Sr, V and Ba in soils which specified the correlation between the inputs 

and outputs of SVM-RBF model. Among all the heavy metals in testing, maximum R-value was 

found 0.73 for Cu with RMSE 2.03; in addition, minimum R-value was found 0.06 with 

maximum RMSE 7.24 for Mn. The relationship of the predicted and measured concentration of 

(a) (b) 

(c) (d) 

Figure 4.25: Regression analysis of SVM (training) for (a) Pb, (b) As, (c) Sb and (d) Sc. 
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Pb, Hg, Sb and Sc in soils were presented in Figures 4.26a to 4.26d, respectively. The plotted 

concentrations were closed to the fitted line for Sb (Figure 4.26c) whereas for Sc, concentrations 

were scattered from the fitted line (Figure 4.26d). Therefore, the predicted concentrations of Sb 

from SVM-RBF (testing) was more accurate than that of Pb, Hg and Sc in soils (Figure 4.26). 

Moreover, the results from SVM regression analysis (testing) for other heavy metals of Cu, Ni, 

Zn, Co, Cd, As, Mn, Cr, Ti, Sr, V and Ba in soils were reported in Figure C-25 to Figure C-36 

in Appendix-C.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) 

(c) (d) 

Figure 4.26: Regression analysis of SVM (testing) for (a) Pb, (b) As, (c) Sb and (d) Sc. 
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4.4.2.3.1 Assessment of Pb of SVM  

In this study, SVM model was directed to predict heavy metal concentrations in soils of 15 

unknown sampling points of the selected waste disposal site. The aim of this section was to 

evaluate the closeness of the predicted and measured concentration of Pb in soils. Table 4.10 

represents the predicted and measured concentration of Pb in soils. The variation of predicted 

and measured concentration of Pb was clearly exposed in Figure 4.27. In this figure, only few 

soil sampling points (5, 35, 65 and 85) shows the minor variation as well as all other points’ 

shows the highest variation of concentrations of Pb in soils. Result reveals the measured values 

of 31.71 and 23.62 mg/kg, while predicted values of 31.54 and 23.86 mg/kg for soil sampling 

points 35 and 65, respectively in case of Pb.  

Table 4.10: Recovery level of Pb in SVM (testing) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Soils 

sampling 

points 

Recovery level of Pb for testing in SVM  

Measured 

concentration 

Predicted 

concentration 

% 

recovery 

5 50.66 49.63 97.97 

10 46.89 32.52 69.35 

20 37.62 17.44 46.36 

25 32.66 24.52 75.07 

30 27.72 19.56 70.56 

35 31.705 31.54 99.47 

45 24.09 32.47 134.79 

50 17.82 32.45 182.11 

55 18.77 26.32 140.21 

60 10.88 29.84 274.31 

65 23.62 23.86 101.01 

70 17.24 24.59 142.64 

75 17.39 24.93 143.35 

80 12.33 24.93 202.18 

85 22.93 19.89 86.74 

% mean recovery 124.41 

RMSE 10.73 

MAPE 45.01 

GRI 1.58 
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Table 4.10 also demonstrates the results of RMSE, MAPE, GRI and percentage recovery. The 

percentage recovery means what percentage of measured value is recovered by the predicted 

value. The variation of recovery level for Pb in ANFIS model (testing) is shown in Figure 4.28. 

In this figure, all soil sampling points were in the acceptable ranges 20-200%, except soil 

sampling point 60. Besides, some soil sampling points like 5, 35, 65 and 85 were found very 

near and between the ranges of 80-120% which indicating the robustness of model for Pb in 

SVM analysis. 

 

 

 

 

Figure 4.27: Comparison of predicted and measured concentration of Pb from 

SVM (testing). 



 

110 

 

 

 

 

 

 

 

 

 

 

 

 

In addition, the MAPE value was found 45.01% which was very close to the acceptable ranges 

of 30 to 40% for Pb. Furthermore, the value of GRI was found 1.58 (greater than 1) for Pb which 

representing the reliability of model. Therefore, SVM model was considered as robust and 

reliable for predicting the Pb concentration in soils of the selected waste disposal site.  

4.4.2.3.2  Assessment of Hg, Sb and Sc in SVM 

The results of measured, predicted concentration as well as percentage recovery of Hg, Sb and 

Sc in soils depicts in Table 4.11. The values of MAPE were found 113.45, 57.14 and 50.19 for 

Hg, Sb and Sc, respectively. Minimum error was found for Sc indicating the closeness of the 

predicted values with measured one of Sc in soils.  The performance of Sb was better than Hg 

due to less error (57.14 < 113.45).  

 

Figure 4.28: Variation of recovery level for Pb in SVM. 
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Table 4.11: Recovery level for Hg, Sb and Sc in SVM (testing) 

 

The variation of predicted and measured concentration of Hg, Sb and Sc were illustrated in 

Figures 4.28, 4.29 and 4.30, respectively. The perfect prediction was observed in case of Hg in 

soils for the soil sampling points of 5, 10, 30, 35 and 85 (Figure 4.29). In contrast, 20, 45, 50, 

55, 60, 65, 70, 75 and 80 were exposed comparatively worse prediction than that of others soil 

sampling points.  

 

Soils 

sampling 

points   

Hg Sb Sc 

Measured Predicted 

(%) 

recovery 

 

Measured Predicted 

(%) 

recovery 

 

Measured Predicted 

(%) 

recovery 

 

5 7.22 8.58 118.86 8.87 8.75 98.64 16.83 10.43 61.96 

10 4.76 4.80 100.83 7.58 6.60 87.07 14.76 10.64 72.09 

20 5.03 1.08 21.39 5.91 3.19 53.97 11.77 9.86 83.81 

25 3.77 3.64 96.54 5.09 5.47 107.43 10.77 11.57 107.40 

30 1.98 1.97 99.28 4.65 3.21 68.95 9.58 9.71 101.33 

35 3.45 3.19 92.35 3.68 3.79 102.89 8.65 8.12 93.88 

45 1.92 5.22 272.12 4.92 6.43 130.79 9.94 10.96 110.27 

50 1.11 3.72 334.86 3.63 4.95 136.40 8.07 9.20 114.02 

55 1.26 3.15 249.89 2.05 3.36 163.99 5.72 8.04 140.60 

60 0.77 3.08 400.47 0.98 2.52 256.92 3.02 8.52 282.04 

65 2.12 4.07 191.89 5.13 5.85 113.99 10.02 11.72 116.92 

70 1.07 3.46 323.02 3.70 5.56 150.37 8.41 11.85 140.93 

75 1.68 3.13 186.25 2.28 5.32 233.49 6.14 11.93 194.26 

80 0.77 3.13 406.36 1.00 3.32 332.36 3.39 11.93 351.85 

85 2.95 2.16 73.22 5.32 3.35 62.95 10.19 9.69 95.04 

% mean recovery 197.82 % mean recovery 140.01 % mean recovery 137.76 

RMSE 2.03 RMSE 2.06 RMSE 3.85 

MAPE 113.45 MAPE 57.14 MAPE 50.19 

GRI 2.30 GRI 1.68 GRI 1.60 
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Similarly, the perfect prediction was observed for the soil sampling points 5, 10, 25, 35 and 65 

for Sb (Figure 4.30), whereas the soil sampling points 25, 30, 35, 45, 50 and 85 were denoted 

the perfect prediction for Sc in soils (Figure 4.31).  

 

 

 

  

Figure 4. 29: Comparison of predicted and measured concentration of Hg 

from SVM (testing). 

Figure 4.30: Comparison of predicted and measured concentration of Sb from 

SVM (testing). 
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Besides, the values of percentage recovery were found 197.82, 140.01 and 137.76 for Hg, Sb 

and Sc, respectively (Table 4.11). Among which for Sc, it was very close to fit level 100 than 

that of other studied heavy metals in soils. The level of percent recovery for Hg, Sb and Sc were 

expressed in Figure 4.32, 4.33 and 4.34, respectively.  

 

 

 

 

 

 

 

 

 

Figure 4.31: Comparison of predicted and measured concentration of Sc from 

SVM (testing). 

Figure 4.32: Variation of recovery level for Hg in SVM. 
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The percentage recovery of all soil sampling points were in the ranges of 20-200% except 45, 

50, 55, 60, 70 and 80 in case of Hg (Figure 4.32). Based on this result, it was recommended that 

the prediction of Hg in soils was in acceptable range. Among the accepted soil sampling points; 

5, 10, 25, 30 and 35 were in robust level ranges 80-120% (Figure 4.32). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.33: Variation of recovery level for Sb in ANFIS. 

Figure 4.34: Variation of recovery level for Sc in ANFIS. 
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Similarly, the percentage recovery for Sb of soil sampling points 60, 75 and 80 were out of 

acceptable range (Figure 4.33) as well as the percentage recovery for Sc of soil sampling points 

60 and 80 was out of acceptable range (Figure 4.34). Without the aforementioned sampling 

points of Sb and Sc, all values of percentage recovery were acceptable, as well as most of them 

were recommended as the robustness of prediction for Sb and Sc. In addition, GRI values were 

2.30, 1.68 and 1.60 for Hg, Sb and Sc, respectively. All of this values were greater than 1. So, 

the prediction model for Hg, Sb and Sc were reliable. Moreover, relationships of predicted and 

measured concentrations of Cu, Ni, Zn, Co, Cd, As, Mn, Cr, Ti, Sr, V and Ba in soils were also 

reported in Figure C-37 to Figure C-48, respectively, in the Appendix-C. In addition, the 

graphical representations of percentage recovery of Cu, Ni, Zn, Co, Cd, As, Mn, Cr, Ti, Sr, V 

and Ba in soils were also reported in Figure C-49 to Figure C-60, respectively, in the Appendix-

C. In contrast, the results of percentage recovery for Cu, Ni, Zn, Co, Cd, As, Mn, Cr, Ti, Sr, V 

and Ba in soils were also provided in Table D-1 to Table D-12, respectively, in Appendix-D. 

4.4.2.3.3 Summary of Results in SVM Model 

In SVM analysis, various models with different kernel functions like SVM-L, SVM-Q, SVM-

C and SVM-RBF was formed to select best-fitted model of SVM. The cross-validation with 

different folds (5, 10, 15 and 20) was also performed to control overfitting of the data. The 

model with kernel function SVM-RBF shows the higher value of R than that of other kernel 

functions of SVM-L, SVM-Q and SVM-C in SVM analysis for fold numbers 15. The maximum 

R-value (0.76) with minimum RMSE (1.27) represents the correlation (ranges of 0.2 < |R| < 0.8) 

between the input and output variables for Cu in prediction. The values of MAPE were found 

113.45, 57.14 and 50.19 for Hg, Sb and Sc, respectively. Minimum error was found for Sc 

indicating the closeness of the predicted values with measured one of Sc in soils.  The 

performance of Sb was better than Hg due to less error (57.14 < 113.45). Besides, the values of 

percentage recovery were found 197.82, 140.01 and 137.76 for Hg, Sb and Sc, respectively. 

Among which for Sc, it was very close to fit level 100 than that of other studied heavy metals 

in soils. The percentage recovery of all soil sampling points were in the ranges of 20-200% 

except 45, 50, 55, 60, 70 and 80 in case of Hg. Based on this result, it was recommended that 

the prediction of Hg in soils was in acceptable range. Among the accepted soil sampling points; 
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5, 10, 25, 30 and 35 were in robust level ranges 80-120%. In addition, GRI values were 2.30, 

1.68 and 1.60 (>1) for Hg, Sb and Sc, respectively representing the reliability of prediction 

model for SVM. The outputs of SVM-RBF model were represented by contour map, surface 

viewer and residuals as the results of predicted concentrations for heavy metals in soils. The 

intensity of predicted Pb was represented by the colorbar whereas yellow color shows the higher 

intensity of the concentration of Pb. In SVM analysis, the predicted concentration of Pb varies 

from 13.34 to 49.75 mg/kg in soils whereas measured value varies from 12.11 to 90.55 mg/kg.  

4.4.3 Artificial Neuron Network  

 In this study, the model validation with changing of neuron number, various training and 

transfer functions, performance of the model prediction with prediction parameters and ANN 

results were deliberated successively. The results of ANN for the heavy metals of Pb, Hg, Sb 

and Sc were discussed in details in this section. Moreover, the outputs for the other heavy metals 

of Cu, Ni, Zn, Co, Cd, Hg, Mn, Cr, Sb, Sr, V and Ba in soils for ANN were reported in Appendix-

E (Figures) and Appendix-F (Tables), respectively. 

4.4.3.1 Validation of Models in ANN  

In this study, different models of ANN were performed by changing the number of neurons as 

well as various training and transfer functions of ANN through MATLAB and hence discussed 

in following articles. 

4.4.3.1.1 Selection of Neuron Number 

In ANN analysis, four neuron structures were formed with different neuron numbers of 5, 10, 

15 and 20 successively. In this analysis, the selection of neuron structure was performed based 

on the best values of R and RMSE. Table 4.12 illustrates the performance of four neuron 

structures for all heavy metals in soils with R and RMSE. R-values were found greater than 0.8 

for most of the heavy metals for the neuron structure 2-10-1 indicating the strong correlation 

between the variables.  

 



 

117 

 

 Table 4.12: Model validation performance for different neuron number 

 

The variation of R with different neuron structures represents in Figure 4.35 for all studied heavy 

metals in soils. In this figure, the R value was found higher for the neuron structure 2-10-1 for 

most of the heavy metals than that for the other neuron structures (like 2-5-1, 2-15-1 and 2-20-

1) as well as As shows the maximum value of R (0.88).  

 

 

 

 

 

 

SL. 

No. 

Heavy 

metals 

2--5--1 2--10--1 2--15--1 2--20--1 

R-

Value 
RMSE 

R-

Value 
RMSE 

R-

Value 
RMSE 

R-

Value 
RMSE 

1 Pb 0.75 9.52 0.80 8.47 0.61 11.35 0.76 9.30 

2 Cu 0.79 1.98 0.80 2.36 0.79 2.03 0.71 3.65 

3 Ni 0.67 1.29 0.72 1.19 0.73 1.20 0.78 1.15 

4 Zn 0.74 6.62 0.73 7.37 0.77 6.56 0.59 8.25 

5 Co 0.80 1.51 0.76 1.65 0.76 1.72 0.76 1.78 

6 Cd 0.36 1.45 0.80 0.94 0.69 1.14 0.74 1.05 

7 As 0.83 1.12 0.88 1.01 0.54 1.65 0.84 1.09 

8 Sc 0.71 2.45 0.82 2.00 0.62 2.79 0.82 2.02 

9 Hg 0.74 1.52 0.85 1.18 0.62 1.89 0.80 1.34 

10 Mn 0.61 5.20 0.68 4.79 0.55 5.46 0.57 5.42 

11 Cr 0.62 1.84 0.67 1.73 0.73 1.57 0.56 2.23 

12 Ti 0.65 330.02 0.81 243.33 0.75 314.14 0.81 265.90 

13 Sb 0.62 2.05 0.75 1.52 0.61 3.11 0.82 1.33 

14 Sr 0.60 6.83 0.83 5.06 0.79 5.34 0.81 5.10 

15 V 0.57 13.27 0.73 10.88 0.75 10.60 0.73 11.28 

16 Ba 0.80 14.04 0.82 13.55 0.57 33.66 0.67 18.46 
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Figure 4.36 also clearly expresses the variation of R and RMSE of As with different number of 

neurons. In this figure, for neuron number 10, As shows the maximum value of R (0.88) with 

minimum RMSE (1.01) whereas, neuron number 15 shows the minimum value of R (0.54) with 

maximum RMSE (1.65). Therefore, neuron structure 2-10-1 was selected for modelling of 

heavy metal analysis in soils of selected waste disposal site in ANN model. 
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Figure 4.35: Variation of R with different neuron structures for all heavy metals. 

Figure 4.36: Comparison of R and RMSE of As for different number of hidden neuron. 
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4.4.3.1.2 Selection of Training and Transfer Functions 

 In this study, for ANN analysis, nine models were formed by interchanging different training 

functions like levenberg-marquardt (TRAINLM), one-step secant (TRAINOSS) and scaled 

conjugate gradient (TRAINSCG) as well as transfer functions like  tangent sigmoid transfer 

function (TANSIG), linear transfer function (PURELIN) and log-sigmoid transfer function 

(LOGSIG). The models (combined with training and transfer functions) with neuron structure 

2-10-1 were compared in terms of the best R and RMSE to assess the performance of each 

model. Table 4.13 illustrates the performance of different training and transfer functions for As 

with R and RMSE.  

Table 4.13: Model validation performance for different training and transfer functions 

 

R-values of models LT and LL were greater than 0.8, which indicated the strong correlation 

between the variables. Excepting the models LT and LL, R-values of all other models (LP, OT, 

OL, OP, ST, SL and SP) were within the ranges of 0.2 < |R| < 0.8, indicating the correlation 

between variables. Figure 4.37 illustrates the performance of training and transfer function for 

Training 

function 

Transfer 

function 
Designation 

Train 
Neuron 

structure 

No. of 

iterations 
R RMSE 

TRAINLM TANSIG LT 0.88 1.01 2--10--1 36 

TRAINLM LOGSIG LL 0.86 1.03 2--10--1 17 

TRAINLM PURELIN LP 0.31 1.86 2--10--1 6 

TRAINOSS TANSIG OT 0.67 1.49 2--10--1 12 

TRAINOSS LOGSIG OL 0.72 1.38 2--10--1 17 

TRAINOSS PURELIN OP 0.29 1.88 2--10--1 9 

TRAINSCG TANSIG ST 0.76 1.33 2--10--1 14 

TRAINSCG LOGSIG SL 0.57 1.85 2--10--1 12 

TRAINSCG PURELIN SP 0.31 1.87 2--10--1 21 
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As. In this figure, model LT shows the higher value of R (0.88) than that of other models with 

minimum RMSE (1.01). On the contrary, model SP shows the lower value of R (0.31) than the 

other models with maximum RMSE (1.87). 

 

 

 

 

 

 

 

 

 

From the aforementioned discussion, the model LT with neuron structure 2-10-1 was selected 

for the prediction of heavy metal concentrations in soils of waste disposal site.  

4.4.3.2 Assessment of Model Performance in ANN  

The model LT with training function levenberg-marquardt (TRAINLM), transfer function 

tangent sigmoid (TANSIG) and neuron structure 2-10-1 was selected based on the acceptable 

limits of R and RMSE for the prediction of heavy metal concentrations. Table 4.14 provides the 

values of R and RMSE for training and testing for all studied heavy metals in soils. 

 

 

 

 

LT LL LP OT OL OP ST SL SP

R 0.88 0.86 0.31 0.67 0.72 0.29 0.76 0.57 0.31

RMSE 1.01 1.03 1.86 1.49 1.38 1.88 1.33 1.85 1.87

0.00

0.50

1.00

1.50

2.00

R RMSE

Figure 4.37: Performance of training and transfer function for As. 
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In training, the values were found in the ranges of |R| ≥ 0.8 for Pb, Cu, Cd, As, Sc, Hg, Ti, Sr 

and Ba indicating strong correlation between the inputs and outputs. In addition, R-value for Ni, 

Zn, Co, Mn, Cr, Sb and V was found in the ranges of 0.2 < |R| < 0.8 which specified the existing 

of correlation between the inputs and outputs. Among all the heavy metals, the maximum R-

value was found 0.88 for As with the minimum RMSE 1.01 indicating the best correlation in 

prediction for As. On the other hand, the minimum R-value was found 0.67 for Cr with the 

RMSE value 1.73 indicating the worst correlation in prediction for Cr than that of other studied 

heavy metals. For Ti, it was presented that the value of RMSE was maximum (243.33) due to 

the higher intensity of concentrations than all other heavy metals. The relationships of predicted 

and measured concentrations of Pb, Hg, Sb and Sc in soils in training is shown in Figure 4.38a, 

4.38b, 4.38c and 4.38d, respectively. Figures reveal all the predicted concentrations were closed 

to the fitted line and Hg (Figure 4.38b) shows the best performance with better R value than 

others. Moreover, the ANN regression for training of other heavy metals of Cu, Ni, Zn, Co, Cd, 

As, Mn, Cr, Ti, Sr, V and Ba were reported in Figure E-1 to Figure E-12 in Appendix-E. 

Heavy 

metals 

ANN (training) ANN (testing) 

R value RMSE R value RMSE 

Pb 0.80 8.47 0.62 10.47 

Cu 0.80 2.36 0.78 2.21 

Ni 0.72 1.19 0.48 1.59 

Zn 0.73 7.37 0.02 13.66 

Co 0.76 1.65 0.24 3.35 

Cd 0.80 0.94 0.26 2.22 

As 0.88 1.01 0.80 1.31 

Sc 0.82 2.00 0.52 3.45 

Hg 0.85 1.18 0.37 2.29 

Mn 0.68 4.79 0.42 6.44 

Cr 0.67 1.73 0.10 2.97 

Ti 0.81 243.33 0.34 531.52 

Sb 0.75 1.52 0.33 2.59 

Sr 0.83 5.06 0.53 8.36 

V 0.73 10.88 0.56 13.78 

Ba 0.82 13.55 0.71 16.03 

Table 4.14: Variation of R and RMSE of all heavy metals for ANN 
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In testing, the value of |R| for only As was found in the range |R| ≥ 0.8, which were indicated 

the existing of strong correlation. The R-value between the ranges of 0.2 < |R| < 0.8 was found 

for Pb, Cu, Ni, Zn, Co, Cd, As, Sc, Hg, Mn, Cr, Ti, Sb, Sr, V and Ba which specified the existing 

of correlation between the inputs and outputs. Among all the heavy metals in testing, the 

maximum R-value (0.80) with minimum RMSE (1.31) for As as well as R=0.02 (minimum) and 

RMSE=13.66 (maximum) for Zn. The relationships of predicted and measured concentrations 

of Pb, Hg, Sb and Sc in soils were represented in Figure 4.39a, 4.39b, 4.39c and 4.39d, 

respectively. In figure predicted concentration of Pb, Hg, Sb and Sc were plotted against the 

measured concentration respectively. The plotted data for Pb was close to the fitted line (Figure 

(a) (b) 

(c) (d) 

Figure 4.38: Regression analysis for ANN (training) of (a) Pb, (b) As, (c) Sb and (d) Sc. 
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4.39a) whereas for Sb data was scattered from the fitted line (Figure 4.39c). Moreover, ANN 

regression for testing data of other heavy metals of Cu, Ni, Zn, Co, Cd, As, Mn, Cr, Ti, Sr, V 

and Ba were reported in Figure E-13 to Figure E-24 in Appendix-E.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4.3.2.1 Assessment of Pb of ANN 

In this study, ANN model was directed to predict heavy metal concentrations in soils of 15 

unknown sampling points of the selected waste disposal site. The aim of this section was to 

evaluate the closeness of the predicted and measured concentration of Pb in soils for ANN 

(a) (b) 

(c) (d) 

Figure 4.39: Regression analysis for ANN (testing) of (a) Pb, (b) As, (c) Sb and (d) Sc. 
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model. Table 4.15 represents the predicted and measured concentration of Pb. The variation of 

measured and predicted concentration of Pb was clearly exposed in Figure 4.40.  

Table 4.15: Recovery level of Pb in ANN (testing) 

 

 

 

 

 

 

 

 

 

 

 

 

In this figure, only few soil sampling points (10, 60, 65 and 85) shows the minor variation as 

well as all others points shows the high variation. Considering soil sampling points 10 and 85, 

measured values were found  as 46.89 and 22.93 mg/kg for Pb whereas predicted values were 

47.96 and 23.86 mg/kg, respectively.  

 

 

 

 

Soils 

sampling  

points 

Recovery level of Pb for testing in ANN  

Measured 

concentration 

Predicted 

concentration 

% 

recovery 

5 50.66 56.53 111.59 

10 46.89 47.96 102.28 

20 37.62 13.71 36.44 

25 32.66 22.00 67.35 

30 27.72 16.88 60.88 

35 31.705 12.75 40.21 

45 24.09 29.85 123.93 

50 17.82 30.28 169.90 

55 18.77 12.77 68.04 

60 10.88 13.69 125.84 

65 23.62 20.41 86.40 

70 17.24 22.77 132.10 

75 17.39 23.71 136.36 

80 12.33 23.71 192.32 

85 22.93 21.38 93.24 

% mean recovery 103.13 

RMSE 10.47 

MAPE 36.12 

GRI 1.59 
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Table 4.15 also demonstrates the results of RMSE, MAPE, GRI and percentage recovery. The 

percentage recovery means what percentage of measured value is recovered by the predicted 

value. The variation of recovery level for Pb in ANN model (testing) is shown in Figure 4.41. 

In this figure, all sampling points are in the acceptable ranges 20-200%. Besides, some sampling 

points like 5, 10, 45, 60, 65 and 85 were found very near and between the ranges of 80-120% 

indicating the robustness of model for Pb in ANN analysis. 

 

 

 

 

 

 

 

 

Figure 4.40: Comparison of predicted and measured concentration of Pb from 

ANN (testing). 

Figure 4.41: Variation of recovery level for Pb in ANN. 
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Again, the MAPE value for Pb was found 36.12% signifying quite good results of MAPE. 

Furthermore, the value of GRI was found 1.59 (greater than 1) for Pb representing the reliability 

of model. Therefore, the model of ANN was considered as robust and reliable for predicting the 

Pb concentration in soils. 

4.4.3.2.2 Assessment of Hg, Sb and Sc in ANN 

The results of measured, predicted concentration as well as percentage recovery of Hg, Sb and 

Sc in soils depicts in Table 4.16. The values of MAPE were found 127.80, 100.22 and 45.92 for 

Hg, Sb and Sc, respectively. Minimum error was found for Sc indicating the closeness of the 

predicted values with measured one of Sc in soils. The performance of Sb was better than Hg 

due to less error (100.22 < 127.80). 

Table 4.16: Recovery level for Hg, Sb and Sc in ANN (testing) 

 

Soils 

sampling 

points 

Hg Sb Sc 

Measured Predicted 
(%) 

recovery  
Measured Predicted 

(%) 

recovery 
Measured Predicted 

(%) 

recovery 

5 7.22 7.91 109.51 8.87 7.62 85.85 16.83 15.55 92.41 

10 4.76 5.07 106.53 7.58 7.82 103.13 14.76 15.01 101.73 

20 5.03 0.80 15.97 5.91 3.45 58.35 11.77 5.93 50.41 

25 3.77 4.27 113.21 5.09 6.99 137.37 10.77 12.02 111.63 

30 1.98 0.92 46.71 4.65 2.93 62.94 9.58 5.33 55.65 

35 3.45 4.81 139.53 3.68 3.69 100.07 8.65 6.46 74.70 

45 1.92 5.44 283.33 4.92 7.96 161.73 9.94 13.54 136.18 

50 1.11 4.32 388.91 3.63 5.48 151.08 8.07 9.94 123.21 

55 1.26 4.00 317.80 2.05 3.07 149.65 5.72 5.83 101.93 

60 0.77 2.00 260.08 0.98 4.23 431.35 3.02 7.69 254.52 

65 2.12 3.52 166.01 5.13 6.55 127.72 10.02 11.13 111.12 

70 1.07 3.85 359.90 3.70 6.69 180.80 8.41 10.72 127.45 

75 1.68 3.49 207.81 2.28 6.48 284.11 6.14 10.68 173.86 

80 0.77 3.49 453.41 1.00 6.48 647.77 3.39 10.68 314.90 

85 2.95 0.78 26.30 5.32 3.42 64.29 10.19 9.64 94.57 

% mean recovery 199.67 % mean recovery 183.08 % mean recovery 128.29 

RMSE 2.29 RMSE 2.59 RMSE 3.45 

MAPE 127.80 MAPE 100.22 MAPE 45.92 

GRI 2.61 GRI 1.96 GRI 1.60 
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The variation of predicted and measured concentration of Hg, Sb and Sc were illustrated in 

Figures 4.42, 4.43 and 4.44, respectively. The perfect prediction was observed in case of Hg in 

soils for the soil sampling points of 5, 10, 25 and 30 (Figure 4.42). In contrast, 20, 45, 50, 55, 

60, 65, 70, 75 and 80 were exposed comparatively worse prediction than that of others soil 

sampling points in ANN analysis.  

 

 

 

 

 

 

 

 

Figure 4.42: Comparison of predicted and measured concentration of Hg from 

ANN (testing). 

Figure 4.43: Comparison of predicted and measured concentration of Sb 

from ANN (testing). 
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Similarly, the perfect prediction was observed for the soil sampling points 5, 10, 35 and 55 for 

Sb (Figure 4.43), whereas the soil sampling points 5, 10, 25, 50, 55, 65 and 85 were denoted the 

perfect prediction for Sc in soils (Figure 4.44).  

 

 

 

 

 

             

 

                                                                                                                                                                                                                                                                                                                                                                                                                                       

Besides, the values of percentage recovery were found 199.67, 183.08 and 128.29 for Hg, Sb 

and Sc, respectively (Table 4.16). Among which for Sc, it was very closed to fit level 100 than 

that of other studied heavy metals in soils. The level of recovery for Hg, Sb and Sc were 

Figure 4.44: Comparison of predicted and measured concentration of Sc from 

ANN (testing). 

Figure 4.45: Variation of recovery level for Hg in ANN. 
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expressed in Figure 4.45, 4.46 and 4.47 respectively. The percentage recovery were found in the 

ranges of 20-200% for all soil sampling points except 45, 50, 55, 60, 70, 75 and 80 in case of 

Hg (Figure 4.45). Based on this result, it was recommended that the prediction of Hg in soils 

was in acceptable range. Among the accepted soil sampling points; most of them were in robust 

level ranges 80-120% (Figure 4.45). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.46: Variation of recovery level for Sb in ANN. 

Figure 4.47: Variation of recovery level for Sc in ANN. 
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Similarly, the percentage recovery for Sb of soil sampling points 60, 75 and 80 were out of 

acceptable range (Figure 4.46) as well as the percentage recovery for Sc of soil sampling points 

60 and 80 was out of acceptable range (Figure 4.47). Without the aforementioned sampling 

points of Sb and Sc, all values of percentage recovery were acceptable, as well as most of them 

were recommended as the robustness of prediction for Sb and Sc. In addition, GRI values were 

found 2.61, 1.96 and 1.60 (>1) for Hg, Sb and Sc, respectively. Therefore, the prediction model 

for Hg, Sb and Sc were reliable. Moreover, the comparison graph, recovery graph and recovery 

table in ANN model for other heavy metals in ANN of Cu, Ni, Zn, Co, Cd, As, Mn, Cr, Ti, , Sr, 

V and Ba were reported in Figure E-25 to E-36 Figure E-37 to Figure E-48 as well as Table F-

1 to Table F-12 respectively, in the Appendix-E and Appendix-F. 

4.4.3.2.3 Summary of Results in ANN Model 

In ANN analysis, different neuron structures (like 2-5-1, 2-10-1, 2-15-1 and 2-20-1), different 

training functions like TRAINLM, TRAINOSS and TRAINSCG as well as transfer functions 

like  TANSIG, PURELIN and LOGSIG were implemented for the selection of best-fitted model. 

The model LT with training function TRAINLM, transfer function TANSIG and neuron 

structure 2-10-1 was selected based on the acceptable limits of R and RMSE for the prediction 

of heavy metal concentrations. The maximum R-value (0.88) for As with the minimum RMSE 

(1.01) represents the strong correlation (ranges of |R| ≥ 0.8) in prediction. The values of MAPE 

were found 56.57, 28.89 and 19.74 for Hg, Sb and Sc in soils, respectively. The values of 

percentage recovery were found 143.50, 115.53 and 113.73 for Hg, Sb and Sc, respectively. 

Among which for Sc, it was very close to fit level 100 than others. the percentage recovery 

ranges from 20-200% for all soil sampling points except 50, 70 and 80 in case Hg.  Based on 

this result, it was recommended that the prediction of Hg in soils was in acceptable range. 

Among the accepted soil sampling points; 5, 10, 20, 25, 30 and 85 were in robust level (80-

120%). The percentage recovery were found in the acceptable range for all soil sampling points 

except 75 in case of Sb. In addition, GRI values were found 1.65, 1.37 and 1.26 (greater than 1) 

for Hg, Sb and Sc, respectively. 
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4.5 Comparisons of Artificial Intelligence Techniques  

In this study, the best-fitted models of AI techniques (ANFIS, SVM and ANN) were selected 

for the prediction of heavy metals concentration in soils of unknown sampling points of the 

selected waste disposal site. The accuracy of the predicted results depend on the acceptable 

limits of prediction parameters like R-value, RMSE, MAPE, GRI and percentage recovery. In 

the literature, various researchers published the acceptable limits of these prediction parameters.   

In this study, to check the validity of predicted concentrations from AI techniques (ANFIS, 

SVM and ANN), the acceptable limits of these prediction parameters were considered and hence 

discussed briefly in the following articles. 

4.5.1 Prediction Parameters 

The values of the prediction parameters represents the higher accuracy of the selected model or 

not. The comparison of the results of R-value, RMSE, MAPE, GRI and mean percentage 

recovery of AI techniques were analysed and hence discussed in the following articles. 

4.5.1.1 R Value 

A research conducted by Smith (1986) suggested that the value of |R| ≥ 0.8: a strong correlation 

exists, 0.2 < |R| < 0.8: correlation exists and |R| ≤ 0.2: a weak correlation exists. When the value 

of |R| is greater than 0.9, then a very strong correlation exists /represents robustness between the 

variables. Table 4.17 represents the results of R for all studied heavy metals with various AI 

techniques in both training and testing. In addition, the results of R were orderly expressed in 

Figure 4.48 and Figure 4.49 for training and testing, respectively. 
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Table 4.17: Results of R of various AI techniques 

 

 

 

 

 

 

 

 

In Figure 4.48, ANFIS model shows the higher value of R (training) for all studied heavy metals 

than other models of AI techniques. The values of R for most of the heavy metals were found 

in the ranges of 0.81 to 0.999. According to Smith (1986), it indicated the robustness of ANFIS 

model. Moreover, ANN shows comparatively the better performance than that of SVM. 

Therefore, the performance of R (training) can be expressed as ANFIS > ANN > SVM (Figure 

4.48). 

 

 

 

 

Heavy 

metals 

R value (training) R value (testing) 

ANFIS SVM ANN ANFIS SVM ANN 

Pb 0.99 0.66 0.80 0.55 0.43 0.62 

Cu 0.98 0.71 0.80 0.86 0.73 0.78 

Ni 0.81 0.65 0.72 0.71 0.60 0.48 

Zn 0.998 0.63 0.73 0.63 0.37 0.02 

Co 0.97 0.68 0.76 0.58 0.70 0.24 

Cd 0.91 0.60 0.80 0.79 0.51 0.26 

As 0.98 0.75 0.88 0.88 0.59 0.80 

Sc 0.999 0.37 0.82 0.70 0.14 0.52 

Hg 0.86 0.78 0.83 0.53 0.47 0.37 

Mn 0.86 0.53 0.68 0.45 0.06 0.42 

Cr 0.998 0.49 0.67 0.72 0.26 0.10 

Ti 0.997 0.74 0.81 0.76 0.50 0.34 

Sb 0.92 0.72 0.75 0.40 0.49 0.33 

Sr 0.99 0.73 0.83 0.75 0.47 0.53 

V 0.999 0.72 0.73 0.72 0.49 0.56 

Ba 0.999 0.75 0.82 0.82 0.65 0.71 
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In addition, Figure 4.49 also shows the higher value of R (testing) for ANFIS model than that 

of other models of AI techniques for all studied heavy metals in soils. In ANN model, the R-

value of eight heavy metals (Pb, Cu, As, Sc, Mn, Sr, V and Ba) were found comparatively better 

than that of SVM. In addition, the R-value of other eight heavy metals were found better in 

SVM than that of ANN. Therefore, the performance of R in testing can be expressed as ANFIS 

> SVM ≥ ANN. 
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Figure 4.48: Variation of R values (training) with various AI techniques. 

Figure 4.49: Variation of R-values (testing) with various AI techniques. 



 

134 

 

4.5.1.2 RMSE Value 

A research conducted by Schweizer (2010) and stated that the lower value of RMSE indicates 

better fit of model and zero means no error.  Table 4.18 illustrates the results of RMSE for all 

studied heavy metals with various AI techniques in both training and testing. The results of 

RMSE were clearly expressed for training and testing in Figure 4.50 and Figure 4.51, 

respectively, for the judgement of various AI techniques 

Table 4.18: Results of RMSE of various AI techniques 

 

 

 

 

 

 

 

 

 

 

 

In Figure 4.50, ANFIS model shows the minimum value of RMSE in training for all studied 

heavy metals than that of other models of AI techniques. On the other hand, SVM shows the 

maximum RMSE indicating worse performance than ANN does. Therefore, the performance of 

RMSE in training can be expressed as ANFIS > ANN > SVM. 

 

 

Heavy 

metals 

RMSE (training) RMSE (testing) 

ANFIS SVM ANN ANFIS SVM ANN 

Pb 1.38 10.64 8.47 15.25 10.73 10.47 

Cu 0.63 2.30 2.36 2.45 2.09 2.21 

Ni 1.00 1.31 1.19 1.17 1.53 1.59 

Zn 0.67 7.59 7.37 9.18 11.01 13.66 

Co 0.60 1.85 1.65 2.35 1.91 3.35 

Cd 0.65 1.22 0.94 1.17 1.40 2.22 

As 0.36 1.30 1.01 1.44 1.64 1.31 

Sc 0.12 3.22 2.00 2.97 3.85 3.45 

Hg 1.42 1.37 1.18 1.95 2.03 2.29 

Mn 3.33 5.52 4.79 6.24 7.24 6.44 

Cr 0.15 2.01 1.73 2.02 2.66 2.97 

Ti 29.60 279.98 243.33 341.76 422.11 531.52 

Sb 0.91 1.57 1.52 2.30 2.06 2.59 

Sr 0.88 5.79 5.06 7.17 8.25 8.36 

V 0.69 10.91 10.88 12.40 15.35 13.78 

Ba 0.88 15.36 13.55 15.52 18.90 16.03 
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In Figure 4.51, RMSE value (testing) for most of the heavy metals in ANFIS model shows the 

less error than that of other models of AI techniques. The RMSE value of ten heavy metals (Pb, 

Ni, Zn, Co, Cd, Hg, Cr, Ti, Sb and Sr) in soils were found better in SVM than that of ANN.  
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Figure 4.50: Variation of RMSE (training) with various AI techniques. 

Figure 4.51: Variation of RMSE (testing) with various AI techniques. 
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In contrast, the RMSE value of other heavy metals (Cu, As, Sc, Mn, V and Ba) in soils were 

found better in ANN than that of SVM model. Therefore, the performance of RMSE in testing 

can be expressed as ANFIS > SVM > ANN.  

4.5.1.3  MAPE Value 

According to Rayer (2007), the MAPE value about 30–40% was acceptable and zero means no 

error. Table 4.19 illustrates the results of MAPE for all studied heavy metals with various AI 

techniques in both training and testing. The results of MAPE were clearly expressed in Figure 

4.52 and Figure 4.53 for training and testing, respectively for the judgement of various AI 

techniques. 

Table 4.19: Results of MAPE of various AI techniques 

Heavy 

metals 

MAPE (training) MAPE (testing) 

ANFIS SVM ANN ANFIS SVM ANN 

Pb 2.41 11.44 21.71 15.58 45.01 36.12 

Cu 6.90 17.41 40.27 64.12 80.48 69.09 

Ni 23.72 15.87 27.55 38.42 58.08 56.14 

Zn 0.32 9.93 25.17 38.22 52.45 58.93 

Co 6.46 26.65 21.26 50.51 47.16 76.42 

Cd 11.49 12.17 18.83 45.21 60.11 89.96 

As 9.93 17.03 21.06 59.90 99.32 55.15 

Sc 0.39 27.13 17.47 19.74 50.19 45.92 

Hg 20.03 18.51 47.02 56.57 113.45 127.80 

Mn 34.43 44.61 42.02 130.45 174.75 123.46 

Cr 0.60 19.12 38.17 70.13 150.75 146.56 

Ti 1.50 10.30 20.41 45.40 68.75 76.83 

Sb 10.76 12.92 25.73 28.89 57.14 100.22 

Sr 1.13 8.40 23.38 33.55 47.96 42.68 

V 0.31 12.81 30.44 53.38 86.98 63.64 

Ba 0.50 11.51 21.67 33.94 49.88 38.42 

 

In Figure 4.52, most of all heavy metals show MAPE value in the ranges of 30-40% in ANFIS 

model for training than other models of AI techniques. On the other hand, ANN shows the 

maximum MAPE, which indicating worse performance than SVM. Therefore, the performance 

of MAPE in training can be expressed as ANFIS > SVM > ANN. 

 



 

137 

 

 

 

 

 

 

 

 

 

 

In Figure 4.53, MAPE value  for most of all the heavy metals in ANFIS model shows the less 

error than other models of AI techniques in testing. The MAPE value of ten heavy metals (Pb, 

Cu, Ni, As, Sc, Mn, Cr, Sr, V and Ba) were found better in ANN than SVM as well as the MAPE 

value of other heavy metals were found better in SVM than ANN model. Therefore, the 

performance of MAPE in testing can be expressed as ANFIS > ANN > SVM.  
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Figure 4.52: Variation of MAPE (in training) with various AI techniques. 

Figure 4.53: Variation of MAPE (in testing) with various AI techniques. 
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4.5.1.4 GRI Value 

GRI is a statistical method to determine the reliability of a model. According to Leggett and 

Williams (1981), GRI value must be greater or equal 1 and GRI value 1 represents the 

perfectness and reliability of a model. Table 4.20 illustrates the results of GRI for all studied 

heavy metals with various AI techniques in both training and testing. Figure 4.54 and Figure 

4.55 represent the variation of GRI value of different AI techniques for training and testing, 

respectively. 

Table 4.20: Results of GRI of various AI techniques 

Heavy 

metals 

GRI (training) GRI (testing) 

ANFIS SVM ANN ANFIS SVM ANN 

Pb 1.08 1.19 1.32 1.20 1.58 1.59 

Cu 1.14 1.28 1.48 1.91 1.86 2.27 

Ni 1.35 1.25 1.49 1.46 1.64 1.69 

Zn 1.01 1.16 1.35 1.48 1.63 1.71 

Co 1.10 1.38 1.37 1.80 1.56 1.81 

Cd 1.20 1.19 1.32 1.55 1.70 2.03 

As 1.20 1.27 1.38 1.69 2.11 1.92 

Sc 1.01 1.38 1.26 1.26 1.60 1.60 

Hg 1.30 1.24 1.60 1.65 2.30 2.61 

Mn 4.20 1.56 1.85 2.40 2.65 2.47 

Cr 1.02 1.30 1.73 1.90 2.52 2.40 

Ti 1.03 1.17 1.34 1.57 1.75 1.84 

Sb 1.17 1.21 1.45 1.37 1.68 1.96 

Sr 1.03 1.14 1.32 1.42 1.57 1.56 

V 1.01 1.20 1.49 1.71 1.91 1.84 

Ba 1.01 1.19 1.34 1.47 1.58 1.48 

 

In Figure 4.54, the GRI value for most of all heavy metals were found very close to 1 in ANFIS 

model than that of other models of AI techniques for training. On the contrary, ANN shows 

more scattered values of GRI than that of SVM model. Therefore, the performance of GRI in 

training can be expressed as ANFIS > SVM > ANN. 
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In Figure 4.55, the GRI value for most of all heavy metals were found near about 1 in ANFIS 

model and it shows lower value of GRI than other models of AI techniques for testing. On the 

contrary, ANN shows more scattered values of GRI from 1 than SVM model. Therefore, the 

performance of GRI in testing can be expressed as ANFIS > SVM > ANN. 
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Figure 4.54: Variation of GRI (training) with various AI techniques. 

Figure 4.55: Variation of GRI (testing) with various AI techniques. 
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4.5.1.5 Percentage Recovery 

The results of mean percentage recovery for all studied heavy metals in soils with various AI 

techniques in both training and testing are provided in Table 4.21. The percentage recovery 

means what percentage of measured value is recovered by the predicted value.  

Table 4. 21: Mean percentage recovery of various AI techniques for training and testing 

 

According to Walfish (2006),  20-200% recovery represents the acceptance of model, 100% 

recovery represents the fit level and 80-120% recovery represents the robustness of the model. 

The results of mean percentage recovery were clearly expressed in Figure 4.56 and Figure 4.57 

for training and testing, respectively for the judgement of various AI techniques. 

In Figure 4.56, the mean percentage recovery values for most of all heavy metals were found 

very closer to the fit level (100%) in ANFIS model than that of other models of AI techniques 

for training. In SVM, the mean percentage recovery were found in the ranges of 80-120% and 

most of them were near to fit level (100%). On the contrary, ANN shows more scattered values 

Heavy 

metals 

Mean percentage recovery  

(training) 

Mean percentage recovery   

(testing) 

ANFIS SVM ANN ANFIS SVM ANN 

Pb 100.35 100.47 102.84 110.28 124.41 103.13 

Cu 100.85 104.57 80.23 143.23 162.35 114.60 

Ni 109.47 107.65 117.17 125.15 147.66 135.68 

Zn 100.02 102.78 96.93 124.59 137.16 135.69 

Co 100.80 115.05 113.17 114.86 134.12 158.96 

Cd 103.18 102.53 105.80 136.98 143.98 171.83 

As 101.76 106.24 106.29 151.14 178.60 116.94 

Sc 100.01 108.37 103.18 113.73 137.76 128.29 

Hg 109.73 107.67 105.14 143.50 197.82 199.67 

Mn 117.20 107.92 148.16 208.35 247.67 196.97 

Cr 100.11 105.71 140.81 151.14 221.40 221.65 

Ti 100.08 102.46 108.92 133.63 155.36 159.17 

Sb 102.77 103.81 117.99 115.53 140.01 183.08 

Sr 100.05 101.41 97.58 125.14 134.71 122.73 

V 100.01 105.16 114.04 137.61 170.52 139.00 

Ba 100.02 103.41 105.30 122.36 137.29 124.63 
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of mean percentage recovery from fit level than SVM model. Therefore, the performance of 

mean percentage recovery in training can be expressed as ANFIS > SVM > ANN. 

 

 

 

  

 

 

 

 

In Figure 4.57, the mean percentage recovery values were found in acceptable ranges 20-200% 

for most of all heavy metals in case of all AI techniques in testing. Among three AI techniques, 

ANFIS shows the mean percentage recovery values near in robust level (120%) and represents 

better performance than other models. 

 

 

 

 

 

 

 

 

Figure 4.56: Classify models of AI techniques for percentage recovery 

(training). 

Figure 4.57: Classify models of AI techniques for percentage recovery 

(testing). 
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On the contrary, SVM shows more scattered of mean percentage recovery from robust level 

(120%) than that of ANN model. Therefore, the performance of mean percentage recovery in 

testing can be expressed as ANFIS > ANN > SVM. 

4.5.2 Predicted Results from AI Techniques 

A comparative analysis between predicted and measured concentrations from various AI 

techniques such as ANFIS, SVM and ANN through MATLAB for both of training and testing 

were performed and hence discussed in the following sections.  

The predicted concentrations of Pb, Hg, Sb and Sc in soils was expressed in Figure 4.58 to 

Figure 4.61, respectively from various AI techniques for training. The predicted concentration 

of Pb (Figure 4.58) in ANFIS model was very closed to the measured concentration than other 

AI techniques, whereas, ANN model was shown less closer value of measured concentration 

than that of other AI techniques.  

 

 

 

 

 

 

 

 

 

Similarly, Figures 4.59, 4.60 and 4.61 represents very closer relationship between predicted and 

measured concentrations for Hg, Sb and Sc, respectively in ANFIS model than others model. 

ANN model shown less closer predicted concentrations with measured concentration than SVM 

Figure 4.58: Variation of predicted results of Pb for different AI techniques in 

training. 
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model. Therefore, the performance of the predicted results of various AI techniques for training 

can be expressed as ANFIS > SVM > ANN. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

Figure 4.59: Variation of predicted results of Hg for different AI techniques in training. 

Figure 4.60: Variation of predicted results of Sb for different AI techniques in training. 
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Moreover, the predicted results of various AI techniques in training for other heavy metals of 

Cu, Ni, Zn, Co, Cd, As, Mn, Cr, Ti, Sr, V and Ba were reported in Figure G-49 to G-60 in the 

Appendix-G.  

The predicted results of various AI techniques for testing was expressed in Figure 4.62 to Figure 

4.65 for Pb, Hg, Sb and Sc, respectively. Predicted concentration of Pb (Figure 4.62) in ANFIS 

model was closer to the measured concentration than other AI techniques whereas, ANN model 

was shown less closer predicted value with measured concentration than others model. 

 

 

 

 

 

 

 

 

Figure 4.61: Variation of predicted results of Sc for different AI techniques in training. 

Figure 4.62: Variation of predicted results of Pb for different AI techniques in testing. 
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Similarly, Figures 4.63 for Hg, 4.64 for Sb and 4.65 for Sc were shown very closer predicted 

concentration to measured concentration in ANFIS model than others model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.63: Variation of predicted results of Hg for different AI techniques in testing. 

Figure 4.64: Variation of predicted results of Sb for different AI techniques in testing. 
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ANN model was shown less closer value of measured concentration than SVM model. 

Therefore, the performance of the predicted results of various AI techniques for testing can be 

expressed as ANFIS > SVM > ANN. Moreover, the predicted results of various AI techniques 

in testing for other heavy metals of Cu, Ni, Zn, Co, Cd, As, Mn, Cr, Ti, Sr, V and Ba were 

reported in Figure H-61 to H-72 in the Appendix-H. 

4.6 Summary of Selected Functions and Algorithms of Models  

In this study, for the analysis of heavy metal concentrations in soils, best-fitted AI technique 

was selected. To these attempts, ANFIS, SVM and ANN with various functions and algorithms 

were running through MATLAB to fix the best functions and algorithms. An analysis was also 

ready for comparing the functions, algorithms, inputs and outputs of various AI techniques used 

by various researchers in different fields in the literatures provided in Table 4.22. In the present 

study for ANFIS, different input membership function (MF) like gaussmf, trimf, trapmf, psigmf, 

gbellmf;  output MF like linear and constant as well as optimization method such as hybrid or 

back-propagation (BP) through sub-clustering partitioning (SCP) were considered. Finally, SCP 

with gaussmf, linear and hybrid was proved as the best functions and algorithms to analyse the 

Figure 4.65: Variation of predicted results of Sc for different AI techniques in testing. 
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heavy metal concentrations in soils (Table 4.23) by using inputs as latitude and longitude of the 

soil sampling points. The researchers of Sadrossadat et al. (2016) conducted a study for the 

prediction of the resilient modulus of flexible pavement of subgrade soils and proved that FCM 

with gaussmf, linear was the best functions and algorithms to analyse the resilient modulus by 

using input as P#200, LL, PI, wopt. wc, Sr, qu, σ3, σd (Table 4.22).  

In addition, in the present study for SVM analysis, different kernel functions like SVM-L, SVM-

Q and SVM-RBF for fold numbers 5, 10, 15 and 20 were used.  The SVM-RBF with fold 

number 15 was selected as the best-fitted kernel function for the prediction of heavy metal 

concentrations in soils (Table 4.23). A study conducted by Gholami et al. (2011) for the 

prediction of the concentration of Ni and Fe and proved that SVM-RBF as the best-fitted kernel 

function in the field of surface water with input variables pH, SO4, HCO3, TDS, EC, Mg, and 

Ca (Table 4.22).  

Furthermore, in the present study, for ANN analysis, four neuron structures were formed with 

different neuron numbers of 5, 10, 15 and 20 successively. In addition, for ANN analysis, nine 

models were formed by interchanging different training functions like TRAINLM, TRAINOSS 

and TRAINSCG as well as transfer functions like TANSIG, PURELIN and LOGSIG. In present 

study, the model LT (including the functions levenberg-marquardt and TANSIG) with neuron 

structure 2-10-1 proved the best-fitted algorithm for the prediction of heavy metal 

concentrations in soils (Table 4.23). However, Gandhimathi et al. (2016) conducted a research 

for predicting the concentration of Pb, Cr, As, Fe, Hg, and Cd in soils and stated that FFNN with 

neuron structure 2-20-1 as the best combination of ANN model using input variables as latitude 

and longitude of soil sampling point (Table 4.22).  

Here, it can be concluded that one can easily be evaluated the heavy metal concentrations in 

soils using these selected functions and algorithms (described in Table 4.23) of AI techniques 

without further analysis.  
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Table 4.22: Various Functions and Algorithms of Models in Literatures 

  

  

  

Present study Literature Present study Literature

1
Prediction of the resilient modulus 

of flexible pavement subgrade soils

GENFIS: Fuzzy c-

means (FCM) 

clustering,              

Input (MF): 

Gaussianmf,        

Output MF: Linear 

Input: P#200, LL, PI, wopt. 

wc, Sr, qu, σ3, σd;                

Output: MR 

Sadrossadat et al., 2016

2

Prediction of water quality 

parameters (BOD, COD) of 

Karoon River

Input MF: Gaussmf, 

Output MF: Constant, 

Optimization method: 

Hybrid

Input: EC, pH, Ca, Mg, Na, 

Turbidity, PO4, NO3, NO2; 

Output: DO, BOD, COD

Emamgholizadeh et al., 

2014

3

Predict of Cadmium (Cd) 

Concentrations in the Filyos River, 

Turkey

Input MF: Gaussmf, 

Output MF: Linear, 

Optimization method: 

Hybrid

Input: Concentration of Fe, 

Cu, Mn, Zn, Ni, Cr;              

Output: Concentration of 

Cd

Sonmez et al., 2018

4

Prediction of the concentration of 

Ni and Fe using support vector 

machine (SVM).

Kernel function:  

SVM-RBF

Input: pH, SO4, HCO3, 

TDS, EC, Mg, and Ca;            

Output:  Fe and Ni

Gholami et al., 2011

5

Prediction of the heavy metals 

(Mn, Cu, Pb and Fe)   in 

Sarcheshmeh copper mine, Iran 

using support vector machine 

(SVM).

Kernel function:  

SVM-RBF

Input: pH, SO4 and Mg; 

Output: Cu, Fe, Mn and Zn
Aryafar et al., 2012

6

Prediction of soil cation exchange 

capacity  of an agricultural research 

station by SVM

Kernel function: SVM-

L, SVM-P, SVM-S 

and SVM-RBF

Input: Clay (%), Silt (%), 

Sand (%), Gypsum (%) 

and OM (%) 

Output: CEC

Jafarzadeh et al., 2016

7

Prediction of  As, Cu, Pb, and Zn 

concentration in the groundwater 

resources of Ghahavand Plain

FFNN with Levenberg-

marquardt (LM), 

Sigmoid and linear 

functions

Output: Concentration of 

As, Cu, Pb, and Zn

Alizamir, M., & 

Sobhanardakani, S. 2016

8

Forecasting the arsenic (As) lead 

(Pb), and zinc (Zn) concentration 

of groundwater resources of 

Asadabad plain

FFNN with Levenberg-

marquardt (LM) and 

Bayesian 

regularization (BR) 

algorithms

Output: Concentration of 

As, Pb, and Zn

Alizamir, M., & 

Sobhanardakani, S. 2017

9
Predicting the concentration of Pb, 

Cr, As, Fe, Hg, and Cd in soils

FFNN & 6 neuron 

structure (2-10-1, 2-12-

1, 2-14-1, 2-16-1, 2-18-

1 and 2-20-1)

Input: latitude and 

longitude               Output: 

Concentration of Pb, Cr, 

As, Fe, Hg, and Cd

Gandhimathi et al., 2016

Serial 

no.

SVM

Kernel function: SVM-L, 

SVM-C, SVM-Q and 

SVM-RBF

Fold number: 5, 10, 15 

and 20

Input: Latitude and 

longitude;             

Output: 

Concentration of 

heavy metals 

Objectives of literatures

ANN

Feed-forward back 

propagation neural 

network (FFBPNN);                 

Training functions: 

TRAINLM, TRAINOSS, 

TRAINSCG;              

Transfer functions: 

Tansig, purelin, logsig;                  

Neural structure: 2-5-1, 2-

10-1, 2-15-1 and 2-20-1

Input: Latitude and 

longitude;             

Output: 

Concentration of 

heavy metals 

Reference

ANFIS

GENFIS: Sub-clustering 

partitioning and grid 

partitioning;                      

Input MF: Gaussmf, 

trimf, trapmf, psigmf, 

gbellmf;    Output MF: 

Linear and constant;                        

Optimization method: 

Hybrid and back-

propagation;                                       

No. of epoach: 100 

Input: Latitude and 

longitude;             

Output: 

Concentration of 

heavy metals 

Model
Used functions and algorithms Input and output
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 Table 4.23: Results of various functions and algorithms of different models 

 

4.7 Final Evaluation of Results of AI Techniques 

The main focus of this section to select the best fitted model of AI techniques. For this reason, 

the detailed results where various researches used AI techniques in different field like soil, 

surface water (SW), ground water (GW) etc. were collected from literature. A comparative study 

was performed to select the best fitted model of AI techniques. A study conducted by 

Emamgholizadeh et al. (2014) and showed that the R values of DO, BOD and COD were found 

greater for ANFIS than that of ANN both for training and testing whereas RMSE was found 

lower for ANFIS than that of ANN. Among them, the results of COD revealed the best 

performance with R=0.959 and RMSE=4.21 for ANFIS as well as R=0.917 and RMSE=5.57 

for ANN. In addition, the performance of SVM and GRNN methods in the training and testing 

steps in Shur River, Sarcheshmeh copper mine, Iran for Cu, Mn, Zn and Fe (Rooki et al., 2011) 

was also highlighted in this section. In this literature, SVM shows the better performance of 

prediction of Cu, Mn, Zn and Fe with higher value of R and lower value of RMSE than that of 

ANN in both training and testing steps. The results of Cu were found R=0.990 and RMSE= 3.21 

AI techniques 
Selected functions and algorithms 

Present study Literature 

ANFIS 

Genfis: SCP 

Input MF: gaussmf 

Output MF: linear and 

Optimization method: hybrid 

Input MF: gaussmf 

Output MF: linear and 

Optimization method: hybrid 

SVM 
Kernel Function: SVM-RBF 

Fold Number: 15 

Kernel Function: SVM-RBF 

 

ANN 

Feed-forward back propagation 

neural network (FFNN) 

Training Function: Levenberg-

marquardt 

Transfer Function: Tangent 

Sigmoid (tansig) 

Neuron structure: 2-10-1 

Feed-forward back propagation 

neural network (FFNN) 

Training Function: Levenberg-

marquardt 

Feed-forward back propagation 

neural network  (FFNN) 

Neuron structure: 2-20-1 
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(training) in SVM whereas R=0.990 and RMSE= 5.47 (training) in ANN. In the present study, 

to evaluate the performance of various AI techniques, different prediction parameters like R, 

RMSE, MAPE, GRI and percentage recovery were considered.  The results of various AI 

techniques from present study and literature were summarised in Table 4.24. In the present 

study, ANFIS shows the best performance for all criteria of goodness like R, RMSE, MAPE, 

GRI and percentage recovery. In addition, SVM shows the comparatively better results for most 

of the prediction parameters than ANN.  

 Table 4.24: Summary of results of various AI techniques 
 

 

Based on results published by Emamgholizadeh et al. (2014) in the literature, it was observed 

the following order of AI techniques as ANFIS > ANN for both training and testing. In addition, 

the results also stated by Rooki et al. (2011) and proved SVM > ANN for both training and 

testing. Therefore, it can be finally expressed that the performance of AI techniques was 

considered by the sequence of ANFIS > SVM > ANN for best prediction of heavy metal 

concentrations in soils of waste disposal site (Table 4.24). 

Prediction parameters Present study Literature 
Final 

remarks 

R value 

Training ANFIS > ANN > SVM 
ANFIS > ANN 

A
N

F
IS

 >
 S

V
M

 >
 A

N
N

 

SVM > ANN 

Testing ANFIS >  SVM ≥  ANN 
ANFIS > ANN 

SVM > ANN 

RMSE 

Training ANFIS > ANN > SVM 
ANFIS > ANN 

SVM > ANN 

Testing ANFIS > SVM > ANN 
ANFIS > ANN 

SVM > ANN 

MAPE 
Training ANFIS > SVM > ANN ----- 

Testing ANFIS > ANN > SVM ----- 

Mean 

percentage 

recovery 

Training ANFIS > SVM > ANN ----- 

Testing ANFIS > ANN > SVM ----- 

GRI 
Training ANFIS > SVM > ANN ----- 

Testing ANFIS > SVM > ANN ----- 

Performance of  predicted 

results in training 
ANFIS > SVM > ANN ----- 

Performance of  predicted 

results in testing 
ANFIS > SVM > ANN ----- 
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CHAPTER 5  

CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

This study aims to fix the functions and algorithms of various AI techniques for the analysis of 

heavy metal concentrations in soils of a selected waste disposal site in old Rajbandh, Khulna. 

The AI techniques can be used to solve engineering problems without mathematical modelling. 

In this study, AI techniques such as ANFIS, SVM and ANN were implemented through 

MATLAB. The prediction of heavy metal concentrations in soils through AI techniques play an 

important role to minimize laboratory error, sampling time and testing budget. The performance 

for all criterion of goodness like R, RMSE, MAPE, GRI and percentage recovery available in 

the literatures were considered to validate the predicted results from AI techniques. The present 

study executed the following conclusions: 

1. ANFIS model was a reliable technique than that of other counterparts of SVM and ANN 

to analyse the heavy metal concentrations in soil with the acceptable degree of 

robustness and accuracy. 

2. A combination of best functions and algorithms in ANFIS model was selected for the 

prediction of heavy metal concentrations in soils. This combination of model was 

GENFIS: SCP, Input MF: Gaussmf, Output MF: Linear, Optimization Method: Hybrid 

and no. of epoch: 100. 

3. A rule viewer in ANFIS was developed to compute the concentration of a particular 

heavy metal in soils of the selected waste disposal site by inserting GPS values (latitude 

and longitude) only. 

4. Among all the heavy metals in ANFIS analysis, the maximum R-value was found 0.999 

with the minimum RMSE 0.12 indicating the best correlation in prediction of Sc in soils. 

The others value of prediction parameters (MAPE= 36.00, GRI=1.50, percentage 

recovery=123.43%) for Sc were found within the acceptable limits. 
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5. The predicted concentrations of Sc varies from 4.85 to 16.99, whereas, measured from 

3.02 to 16.83 mg/kg in ANFIS (testing) for unknown soil sampling points indicating the 

predicted and measured concentrations are close to each other.  

6. A combination of functions in SVM model was selected based on its best performance 

with kernel function: SVM-RBF and fold number: 15. 

7. Among all the heavy metals in testing for SVM analysis, maximum R-value was found 

0.73 for Cu with RMSE 2.03; in addition, minimum R-value was found 0.06 with 

maximum RMSE 7.24 for Mn. (MAPE= 80.48, GRI=1.86, percentage 

recovery=162.35% for Cu).  

8. The model of ANN with training function (Levenberg-Marquardt), transfer function 

(Tansig) and no. of neurons 10 was selected for the prediction of heavy metals.  

9. The performance of artificial intelligence techniques can be expressed in a sequence of 

ANFIS > SVM > ANN among the AI techniques used in this study.  

Finally, it can be concluded that these selected AI techniques with fixed functions and 

algorithms may be used of other researchers without further analysis of AI techniques to predict 

heavy metal concentrations in soils of a selected waste disposal site. 

5.2 Recommendations for Further Studies  

The following recommendations are required for further studies: 

1. The intensity of heavy metal concentration should be higher in the centre of waste 

disposal site; however, in this study, higher intensity of Hg was found at the outer edge 

of waste disposal site. This reason need to be addressed in further studies.  

2. The values of RMSE for most of the heavy metals were close to zero. But the values of 

RMSE for Mn and Ti were found 3.5 and 29.60, respectively. This sudden rise of error 

should be defined in further studies. 

3. The MAPE value of Mn was in out of range, the reason should be identified in further 

researches. 
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4. There are more AI techniques in literature among which only three techniques were used 

in present study. Other AI techniques can be included for comparing and selecting the 

best in further studies. 

5. Other membership functions (MF) can be used when this study will be performed in 

future. 

6. Time variation may be considered in future studies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

154 

 

 References 

Addae, E. 2013, "An assessment of heavy metal contamination in soils and vegetation: a case 

study of Korle Lagoon Reclamation site". Doctoral dissertation, University of Ghana. 

Alizamir, M., and Sobhanardakani, S. 2016, "Forecasting of heavy metals concentration in 

groundwater resources of Asadabad plain using artificial neural network approach". Journal 

of Advances in Environmental Health Research, Vol. 4(2), pp. 68-77. 

Alizamir, M., and Sobhanardakani, S. 2017, "Predicting arsenic and heavy metals contamination 

in groundwater resources of Ghahavand plain based on an artificial neural network optimized 

by imperialist competitive algorithm". Journal of Environmental Health Engineering and 

Management, Vol. 4(4), pp. 225-23.  

Alkaiem, L., and Sternberg, H. 2016, "Analysis of inclination measurement by means of 

artificial neural networks–A comparison of static and dynamic networks”. Paper presented 

at the 3rd Joint International Symposium on Deformation Monitoring. 

Alloway, B. J., Jackson, A. P., and Morgan, H. 1990, "The accumulation of cadmium by 

vegetables grown on soils contaminated from a variety of sources". Science of the total 

Environment, Vol. 91, pp. 223-236. 

Aryafar, A., Gholami, R., Rooki, R., and Ardejani, F.D. 2012, "Heavy metal pollution 

assessment using support vector machine in the Shur River, Sarcheshmeh copper mine, 

Iran". Environmental earth sciences, Vol. 67(4), pp. 1191-1199. 

Battiti, R., and Tecchiolli, G. 1995, "Training neural nets with the reactive tabu search. IEEE 

transactions on neural networks". Vol. 6(5), pp. 1185-1200. 

Behzad, M., Asghari, K., Eazi, M., and Palhang, M. 2009, "Generalization performance of 

support vector machines and neural networks in runoff modelling". Expert Systems with 

applications, Vol. 36(4), pp. 7624-7629. 

Branch, S.K. 2005, "Guidelines from the international conference on harmonisation". Journal 

of pharmaceutical and biomedical analysis, Vol. 38(5), pp. 798-805.  

Chang, K. Y., Chen, C. S., and Hung, Y. P. 2010, "A ranking approach for human age’s 

estimation based on face images". 20th International Conference on Pattern 

Recognition, IEEE, pp. 3396-3399.  



 

155 

 

Cherkassky, V., and Ma, Y. 2002, "Selection of meta-parameters for support vector regression". 

Paper presented at the International Conference on Artificial Neural Networks. 

Choobbasti, A.J., Farrokhzad, F., and Rahim Mashaie, S., and Azar, P. H. 2015, "Mapping of 

soils layers using artificial neural network (case study of Babol, northern Iran) ". Journal of 

the South African Institution of Civil Engineering, Vol. 57(1), pp. 59-66.  

Cortes, C., and Vapnik, V. 1995, "Support-vector networks". Machine learning, Vol. 20(3), pp. 

273-297. 

Daniel, D.E., and Koerner, R.M. 1995, "Waste containment facilities, Guidance for 

Construction Quality Assurance and Quality Control of Linear and Cover System". ASCE, 

Vol. 13, pp. 25-27.  

Das, S. K., Samui, P., and Sabat, A. K. 2011, "Application of artificial intelligence to maximum 

dry density and unconfined compressive strength of cement stabilized soil". Geotechnical 

and Geological Engineering, Vol. 29(3), pp. 329-342. 

Das, S. K., Samui, P., Sabat, A. K., and Sitharam, T. G. 2010, "Prediction of swelling pressure 

of soil using artificial intelligence techniques". Environmental Earth Sciences, Vol. 61(2), 

pp. 393-403. 

Emamgholizadeh, S., Kashi, H., Marofpoor, I., and Zalaghi, E. 2014, "Prediction of water 

quality parameters of Karoon River (Iran) by artificial intelligence-based models". 

International Journal of Environmental Science and Technology, Vol. 11(3), pp. 645-656.  

epa.gov/epawaste/nonhaz/municipal/web/html/, h. a. 

Fahmida, K., & Rafizul, I. M. 2017, "An Investigation on Soil Quality and Heavy Metal Levels 

in Soil of Rajbandh Waste Disposal Site at Khulna, Bangladesh". 

Gandhimathi, A., and Anbarasi, A. 2016, "Environmental Impact Assessments of Heavy Metal 

on Soil and Water for Coimbatore, India". Fifth World Conference on Applied Sciences, 

Engineering and Technology 02-04 June 2016, HCMUT, Vietnam.  

George, D., and Mallery, P. 2010, "SPSS for Windows step by step: A simple study guide and 

reference". 17.0 update (10a ed.) Boston: Pearson.  

Ghadimi, F. 2014, "Assessment of the sources of chemical elements in sediment from Arak 

Mighan Lake". International Journal of Sediment Research, Vol. 29(2), pp. 159-170. 



 

156 

 

Gholami, R., Kamkar-Rouhani, A., Ardejani, F. D., and Maleki, S. 2011, "Prediction of toxic 

metals concentration using artificial intelligence techniques". Applied Water Science, Vol. 

1(3-4), pp. 125-134. 

Gribble, G. W. 1994, "The natural production of chlorinated compounds". Environmental 

science and technology, Vol. 28(7), pp. A (310-319). 

Hagan, M. T., and Menhaj, M. B. 1994, "Training feedforward networks with the Marquardt 

algorithm". IEEE transactions on Neural Networks, Vol. 5(6), pp. 989-993. 

Hashim, M. A., and Chu, K. H. 2004, "Biosorption of cadmium by brown, green, and red 

seaweeds". Chemical Engineering Journal, Vol. 97(2-3), pp. 249-255. 

Hasofer, A. M., and Lind, N. C. 1974, "Exact and invariant second-moment code format". 

Journal of the Engineering Mechanics division, Vol. 100(1), pp. 111-121.  

Haykin, S. S. 2009, "Neural networks and learning machines/Simon Haykin". New York: 

Prentice Hall. 

Hornik, K., Stinchcombe, M., and White, H. 1990, "Universal approximation of an unknown 

mapping and its derivatives using multilayer feedforward networks". Neural networks, Vol. 

3(5), pp. 551-560. 

Hossein Pour, M., Lashkaripour, G. R., and Dehghan, P. 2014, "Environmental pollution 

evaluation of steel plants for achieving sustainable development; case study: khorasan steel 

complex of Iran". Journal of Biodiversity and Environmental Sciences, 4. 

https://cdn-images-1.medium.com/max/1600/0*ecA4Ls8kBYSM5nza.jpg.  

https://cdn-images-1.medium.com/max/2000/1*ZpkLQf2FNfzfH4HXeMw4MQ.png.  

https://cdn-images-1.medium.com/max/750/0*0o8xIA4k3gXUDCFU.png.  

https://en.wikipedia.org/wiki/Contaminated_land.  

https://en.wikipedia.org/wiki/Khulna.  

https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcR3lHQJMZL_CglzCp9-

rWhcFAo5AdPUmd-WMIUIyrIGS1qh4a9K.  

https://i.stack.imgur.com/iIcbq.gif.  

https://i0.wp.com/kashmirreader.com/wp-content/uploads/2017/02/Dumping-

site.jpg?fit=701%2C311andssl=1).  

https://link.springer.com/article/10.100. (2018).  



 

157 

 

https://pixfeeds.com/images/33/610239/1280-sanitary-landfill-vs-open-dump.png.  

https://whatis.techtarget.com/definition/correlation-coefficient.  

https://www.aarki.com/hsfs/hubfs/Blog/machine_learning.png?F.png.  

https://www.digitaltrends.com/cool-tech/what-is-an-artificial-neural-network/.  

https://www.epa.gov/report-environment/contaminated-land.  

https://www.mathworks.com/help/fuzzy/train-adaptive-neuro-fuzzy-inference-systems-

gui.html.  

https://www.saedsayad.com/support_vector_machine_reg.htm.  

Jafarzadeh, A. A., Pal, M., Servati, M., FazeliFard, M. H., and Ghorbani, M. A. 2016, 

"Comparative analysis of support vector machine and artificial neural network models for 

soil cation exchange capacity prediction". International journal of environmental science and 

technology, Vol. 13(1), pp. 87-96. 

Jang, J. S. 1993, "ANFIS: adaptive-network-based fuzzy inference system". IEEE transactions 

on systems, man, and cybernetics, Vol. 23(3), pp. 665-685. 

Jang, J. S. R., Sun, C. T., and Mizutani, E. 1997, "Neuro-fuzzy and soft computing 

computational approach to learning and machine intelligence". IEEE Transactions on 

automatic control, Vol. 42(10), pp. 1482-1484.  

Johansson, E. M., Dowla, F. U., and Goodman, D. M. 1991, "Backpropagation learning for 

multilayer feed-forward neural networks using the conjugate gradient method". International 

Journal of Neural Systems, Vol. 2(4), pp. 291-301.  

Kişi, Ö, and Öztürk, Ö. 2007, "Adaptive neurofuzzy computing technique for evapotranspiration 

estimation". Journal of Irrigation and Drainage Engineering, Vol. 133(4), pp. 368-379.  

Kişi, Ö. 2008, "River flow forecasting and estimation using different artificial neural network 

techniques". Hydrology Research, Vol. 39(1), pp. 27-40.  

Korzun, E. A., and Heck, H. H. 1990, "Sources and fates of lead and cadmium in municipal 

solid waste". Journal of the Air and Waste Management Association, Vol. 40(9), 1220-1226. 

Lee, C. Y., and Chern, S. G. 2013, "Application of a support vector machine for liquefaction 

assessment". Journal of Marine Science and Technology, Vol. 21(3), pp. 318-324. 

Leggett, R. W., and Williams, L. R. 1981, "A reliability index for models". Ecological 

Modelling, Vol. 13(4), pp. 303-312. 



 

158 

 

Ludwig, H., and Keller, A. 2003, "The WSLA framework: Specifying and monitoring service 

level agreements for web services". Journal of Network and Systems Management, Vol. 

11(1), pp. 57-81. 

Markopoulos, A. P., Manolakos, D. E., and Vaxevanidis, N. M. 2008, "Artificial neural network 

models for the prediction of surface roughness in electrical discharge machining". Journal of 

Intelligent Manufacturing, Vol. 19(3), pp. 283-292.  

Mayfield, D. B., and Fairbrother, A. 2013, "Efforts to standardize wildlife toxicity values remain 

unrealized". Integrated environmental assessment and management, Vol. 9(1), pp. 114-123. 

Morillo, J., Usero, J., and Gracia, I. 2002, "Partitioning of metals in sediments from the Odiel 

River (Spain) ". Environment international, Vol. 28(4), pp. 263-271. 

Nasrabadi. 2015, "An Index Approach to Metallic Pollution in River Waters". International 

Journal of Environmental Research, Vol. 9 (1), pp. 385-394.  

Oyeku, O. T., and Eludoyin, A. O. 2010, "Heavy metal contamination of groundwater resources 

in a Nigerian urban settlement". African Journal of Environmental Science and Technology, 

Vol. 4(4). 

Pugh, M. 1999, "Path to affordable landfills: landfill technology in the developing 

countries". Wastes Management, pp. 58-59. 

Quina, M. J., Santos, R. C., Bordado, J. C., and Quinta-Ferreira, R. M. 2008, "Characterization 

of air pollution control residues produced in a municipal solid waste incinerator in 

Portugal". Journal of Hazardous Materials, Vol. 152(2), pp. 853-869. 

Rafizul, I. M., Alamgir, M., and Islam, M. M. 2011, "Evaluation of contamination potential of 

sanitary landfill lysimeter using leachate pollution index".  In Proceedings Sardinia.  

Rayer, S. 2007, "Population forecast accuracy: does the choice of summary measure of error 

matter?" Population Research and Policy Review, Vol. 26(2), pp. 163.  

Rooki, R., Ardejani, F. D., Aryafar, A., and Asadi, A. B. 2011, “Prediction of heavy metals in 

acid mine drainage using artificial neural network from the Shur River of the Sarcheshmeh 

porphyry copper mine, Southeast Iran". Environmental earth sciences, Vol. 64(5), pp. 1303-

1316. 

Roy, S., and Dass, G. 2014, "Statistical models for the prediction of shear strength parameters 

at Sirsa, India". International Journal of Civil and Structural Engineering, Vol. 4(4), pp. 483. 



 

159 

 

Rumsey, D. J. 2015, "U Can: statistics for dummies". John Wiley and Sons. 

Sadrossadat, E., Heidaripanah, A., and Osouli, S. 2016, "Prediction of the resilient modulus of 

flexible pavement subgrade soils using adaptive neuro-fuzzy inference 

systems". Construction and Building Materials, Vol. 123, pp. 235-247. 

Samui, P. 2008, "Support vector machine applied to settlement of shallow foundations on 

cohesionless soils". Computers and Geotechnics, Vol. 35(3), pp. 419-427. 

Sanjida, K., and Rafizul, I. M. 2018, "Multivariate statistics and spatial distribution of heavy 

metals in soils of waste disposal site in south western region of Bangladesh". Paper presented 

at the 33rd Int. Conference on Solid Waste Technology and Management (ICSW 2018), 

Annapolis, Washington, DC, USA, (ISSN: 1091-8043)  

Schweizer, K. 2010, "Some guidelines concerning the modelling of traits and abilities in test 

construction".  

Singh, D. J., and Kalamdhad, A. 2011, "Effects of Heavy Metals on Soils, Plants, Human Health 

and Aquatic Life". Vol. 1. 

Singh, R., Gautam, N., Mishra, A., and Gupta, R. 2011, "Heavy metals and living systems: An 

overview". Indian journal of pharmacology, Vol. 43(3), pp. 246. 

Smith, S. L., and Mosier, J. N. 1986, "Guidelines for designing user interface software (No. 

MTR-10090) ". Bedford, MA: Mitre Corporation 

Smola, A. J., and Schölkopf, B. 2004, "A tutorial on support vector regression". Statistics and 

computing, Vol. 14(3), pp. 199-222. 

Sonmez, A. Y., Kale, S., Ozdemir, R. C., and Kadak, A. E. 2018, "An Adaptive Neuro-Fuzzy 

Inference System (ANFIS) to Predict of Cadmium (Cd) Concentrations in the Filyos River, 

Turkey". Turkish Journal of Fisheries and Aquatic Sciences, Vol. 18(12), pp. 1333-1343. 

Soyupak, S., Karaer, F., Gürbüz, H., Kivrak, E., Sentürk, E., and Yazici, A. 2003, "A neural 

network-based approach for calculating dissolved oxygen profiles in reservoirs". Neural 

Computing and Applications, Vol. 12(3-4), pp. 166-172. 

Suri, F. M. 2017, "Signal classification using Bayesian regularization and Levenberg-Marquardt 

algorithm". In 2017 IEEE International Conference on Signal Processing, Informatics, 

Communication and Energy Systems (SPICES), pp. 1-6. 

Tahir, N. M., Chee, P. S., and Jaafar, M. 2007, "Determination of heavy metals content in soils 



 

160 

 

and indoor dusts from nurseries in Dungun, Terengganu". The Malaysian Journal of 

Analytical Sciences, Vol. 11(1), pp. 280-286. 

Talib, H. A., Ali, K. M., and Jamaludin, K. R. 2008, "Quality assurance in halal food 

manufacturing in Malaysia: A preliminary study". In Proceedings of International 

Conference on Mechanical and Manufacturing Engineering (ICME2008), pp. 21-23. 

Thurgood, M. 1999, "Solid Waste Landfills: Decision-Makers Guide Summary".  

Vaalgamaa, S., and Conley, D. J. 2008, "Detecting environmental change in estuaries: Nutrient 

and heavy metal distributions in sediment cores in estuaries from the Gulf of Finland, Baltic 

Sea". Estuarine, Coastal and Shelf Science, Vol. 76(1), pp. 45-56. 

Vogl, T. P., Mangis, J. K., Rigler, A. K., Zink, W. T., and Alkon, D. L. 1988, "Accelerating the 

convergence of the back-propagation method". Biological cybernetics, Vol. 59(4-5), pp. 257-

263. 

Walfish, S. 2006, "Analytical methods: a statistical perspective on the ICH Q2A and Q2B 

guidelines for validation of analytical methods". Bio Pharm International, Vol. 19(12), pp. 

1-6. 

Walker, D. J., Clemente, R., Roig, A., and Bernal, M. P. 2003, "The effects of soil amendments 

on heavy metal bioavailability in two contaminated Mediterranean soils". Environmental 

Pollution, Vol. 122(2), pp. 303-312. 

Wang, L. 2005, "Support vector machines: theory and applications". Springer Science and 

Business Media, Vol. 177. 

Wei, B., and Yang, L. 2010, "A review of heavy metal contaminations in urban soils, urban road 

dusts and agricultural soils from China". Micro chemical journal, Vol. 94(2), pp. 99-107. 

Xiao, R., Bai, J., Huang, L., Zhang, H., Cui, B., and Liu, X. 2013, "Distribution and pollution, 

toxicity and risk assessment of heavy metals in sediments from urban and rural rivers of the 

Pearl River delta in southern China". Ecotoxicology, Vol. 22(10), pp. 1564-1575. 

Zhang, J., Tang, M., and Viikari, L. 2012, "Xylans inhibit enzymatic hydrolysis of 

lignocellulosic materials by cellulases". Bio resource technology, Vol. 121, pp. 8-12.  

 

 

 



 

161 

 

Appendix-A  

Results of Heavy Metal Analysis and Assessment of ANFIS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A-1: ANFIS rule viewer for Cu (number of fuzzy rules: 59). 

Figure A-2: ANFIS rule viewer for Ni (number of fuzzy rules: 29). 
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Figure A-3: ANFIS rule viewer for Zn (number of fuzzy rules: 68). 

Figure A-4: ANFIS rule viewer for Co (number of fuzzy rules: 38). 
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Figure A-5: ANFIS rule viewer for Cd (number of fuzzy rules: 48). 

Figure A-6: ANFIS rule viewer for As (number of fuzzy rules: 56). 



 

164 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A-7: ANFIS rule viewer for Mn (number of fuzzy rules: 37). 

Figure A-8: ANFIS rule viewer for Cr (number of fuzzy rules: 66). 
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Figure A-9: ANFIS rule viewer for Ti (number of fuzzy rules: 61). 

Figure A-10: ANFIS rule viewer for Sr (number of fuzzy rules: 64). 
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Figure A-12: ANFIS rule viewer for Ba (Number of fuzzy rules: 66). 

Figure A-11: ANFIS rule viewer for V (number of fuzzy rules: 66). 
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Figure A-13: FIS output of training data for Cu. 

Figure A-14: FIS output of training data for Ni. 
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Figure A-16: FIS output of training data for Co. 

Figure A-15: FIS output of training data for Zn.  
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Figure A-17: FIS output of training data for Cd. 

Figure A-18: FIS output of training data for As. 
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Figure A-19: FIS output of training data for Mn. 

Figure A-20: FIS output of training data for Cr. 
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Figure A-21: FIS output of training data for Ti. 

Figure A-22: FIS output of training data for Sr. 
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Figure A-23: FIS output of training data for V. 

Figure A-24: FIS output of training data for Ba. 
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Figure A-25: FIS output of testing data for Cu. 

Figure A-26: FIS output of testing data for Ni. 
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Figure A-27: FIS output of testing data for Zn. 

Figure A-28: FIS output of testing data for Co. 
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Figure A-29: FIS output of testing data for Cd. 

Figure A-30: FIS output of testing data for As. 
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Figure A-31: FIS output of testing data for Mn. 

Figure A-32: FIS output of testing data for Cr. 
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Figure A-33: FIS output of testing data for Ti. 

Figure A-34: FIS output of testing data for Sr. 
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Figure A-35: FIS output of testing data for V. 

Figure A-36: FIS output of testing data for Ba. 
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Figure A-37: Surface viewer of the outputs for Cu. 

Figure A-38: Surface viewer of the outputs for Ni. 
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Figure A-39: Surface viewer of the outputs for Zn. 

Figure A-40: Surface viewer of the outputs for Co. 
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Figure A-41: Surface viewer of the outputs for Cd. 

Figure A-42: Surface viewer of the outputs for As. 



 

182 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A-43: Surface viewer of the outputs for Mn. 

Figure A-44: Surface viewer of the outputs for Cr. 
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Figure A-45: Surface viewer of the outputs for Ti. 

Figure A-46: Surface viewer of the outputs for Sr. 
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Figure A-47: Surface viewer of the outputs for V. 

Figure A-48: Surface viewer of the outputs for Ba. 
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Figure A-49: Regression analysis for Cu 

in ANFIS (training). 

 

Figure A-50: Regression analysis for Ni 

in ANFIS (training). 

 

Figure A-51: Regression analysis for Zn 

in ANFIS (training). 

 

Figure A-52: Regression analysis for Co 

in ANFIS (training). 
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Figure A-53: Regression analysis for Cd 

in ANFIS (training). 

 

Figure A-54: Regression analysis for As 

in ANFIS (training). 

 

Figure A-55: Regression analysis for Mn 

in ANFIS (training). 

 

Figure A-56: Regression analysis for Cr 

in ANFIS (training). 
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Figure A-57: Regression analysis for Ti 

in ANFIS (training). 

 

Figure A-58: Regression analysis for Sr 

in ANFIS (training). 

Figure A-69: Regression analysis for V 

in ANFIS (training). 

 

Figure A-60: Regression analysis for Ba 

in ANFIS (training). 
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Figure A-63: Regression analysis for Zn 

in ANFIS (testing). 
Figure A-64: Regression analysis for Co 

in ANFIS (testing). 

 

Figure A-61: Regression analysis for Cu 

in ANFIS (testing). 

 

Figure A-62: Regression analysis for Ni 

in ANFIS (testing). 
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Figure A-65: Regression analysis for Cd 

in ANFIS (testing). 

 

Figure A-66: Regression analysis for As 

in ANFIS (testing). 

 

Figure A-67: Regression analysis for Mn 

in ANFIS (testing). 

 

Figure A-68: Regression analysis for Cr 

in ANFIS (testing). 
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Figure A-69: Regression analysis for Ti 

in ANFIS (testing). 

 

Figure A-70: Regression analysis for Sr 

in ANFIS (testing). 

 

Figure A-71: Regression analysis for V 

in ANFIS (testing). 

 

Figure A-72: Regression analysis for Ba 

in ANFIS (testing). 
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Figure A-73: Comparison of predicted and measured concentration of Cu from 

ANFIS (testing). 

 

Figure A-74: Comparison of predicted and measured concentration of Ni from 

ANFIS (testing). 
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Figure A-75: Comparison of predicted and measured concentration of Zn from 

ANFIS (testing). 

 

Figure A-76: Comparison of predicted and measured concentration of Co from 

ANFIS (testing). 
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Figure A-77: Comparison of predicted and measured concentration of Cd from 

ANFIS (testing). 

 

Figure A-78: Comparison of predicted and measured concentration of As from 

ANFIS (testing). 
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Figure A-80: Comparison of predicted and measured concentration of Cr from 

ANFIS (testing). 

 

Figure A-79: Comparison of predicted and measured concentration of Mn from 

ANFIS (testing). 
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Figure A-81: Comparison of predicted and measured concentration of Ti from 

ANFIS (testing). 

 

Figure A-82: Comparison of predicted and measured concentration of Sr from 

ANFIS (testing). 
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Figure A-84: Comparison of predicted and measured concentration of Ba from 

ANFIS model (testing). 

 

Figure A-83: Comparison of predicted and measured concentration of V from 

ANFIS model (testing). 
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Figure A-86: Variation of recovery level for Ni in ANFIS. 

Figure A-85: Variation of recovery level for Cu in ANFIS. 
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Figure A-88: Variation of recovery level for Co in ANFIS. 

Figure A-87: Variation of recovery level for Zn in ANFIS. 
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Figure A-90: Variation of recovery level for As in ANFIS. 

Figure A-89: Variation of recovery level for Cd in ANFIS. 
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Figure A-92: Variation of recovery level for Cr in ANFIS. 

Figure A-91: Variation of recovery level for Mn in ANFIS. 
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Figure A-94: Variation of recovery level for Sr in ANFIS. 

Figure A-93: Variation of recovery level for Ti in ANFIS. 
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Figure A-96: Variation of recovery level for Ba in ANFIS. 

Figure A-95: Variation of recovery level for V in ANFIS. 
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Appendix-B 

  Recovery Level for Various Heavy Metals of ANFIS 

 

Soils 

sampling 

points  

Cu 

Measured  Predicted % recovery 

5 12.88 17.59 136.57 

10 7.11 8.90 125.22 

20 4.86 0.72 14.86 

25 3.44 4.60 133.79 

30 3.71 5.36 144.40 

35 3.77 3.05 80.88 

45 3.07 8.14 265.21 

50 2.66 3.98 149.71 

55 1.68 2.86 169.99 

60 1.3 2.68 205.98 

65 3.32 4.95 149.09 

70 2.88 1.37 47.58 

75 1.83 3.92 214.38 

80 1.02 1.71 168.09 

85 3.47 4.95 142.65 

% mean recovery 143.23 

RMSE 2.45 

MAPE 64.12 

GRI 1.91 

Soils 

sampling 

points 

Ni 

Measured  Predicted 
% 

recovery 

5 7.11 6.38 89.69 

10 6.11 5.14 84.19 

20 4.09 3.43 83.88 

25 3.05 4.99 163.74 

30 3.45 2.71 78.56 

35 3.01 3.39 112.56 

45 3.19 5.39 169.01 

50 2.88 3.45 119.83 

55 1.66 3.17 191.10 

60 1.72 3.15 183.11 

65 3.4 3.68 108.25 

70 2.95 2.56 86.92 

75 1.72 3.74 217.61 

80 1.53 1.18 77.24 

85 3.47 3.87 111.58 

% mean recovery 125.15 

RMSE 1.17 

MAPE 38.42 

GRI 1.46 

Table B-1: Recovery level of Cu in ANFIS (testing) 

 

Table B-2: Recovery level of Ni in ANFIS (testing) 
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Soils 

sampling 

points 

Zn 

Measured  Predicted % recovery 

5 48.87 49.96 102.23 

10 36.5 35.84 98.20 

20 33.83 17.27 51.04 

25 28.87 35.45 122.78 

30 34.72 26.55 76.46 

35 26.82 28.67 106.90 

45 17.45 31.78 182.13 

50 17.55 36.91 210.29 

55 15.8 26.69 168.95 

60 11.82 17.22 145.66 

65 18.67 24.99 133.85 

70 17.89 12.89 72.07 

75 15.68 21.24 135.46 

80 12.27 16.22 132.19 

85 19.13 24.99 130.63 

% mean recovery 124.59 

RMSE 9.18 

MAPE 38.22 

GRI 1.48 

Soils 

sampling 

points 

Co 

Measured  Predicted % recovery 

5 10.72 9.53 88.88 

10 9.82 8.32 84.72 

20 6.77 4.22 62.39 

25 5.97 6.58 110.15 

30 5.03 3.90 77.61 

35 4.67 4.23 90.61 

45 6.42 9.78 152.27 

50 5.12 4.19 81.79 

55 2.3 3.25 141.35 

60 1.98 5.66 285.74 

65 6.64 6.21 93.47 

70 5.21 2.26 43.34 

75 2.81 8.45 300.76 

80 2.05 0.43 21.15 

85 7.07 6.27 88.67 

% mean recovery 114.86 

RMSE 2.35 

MAPE 50.51 

GRI 1.80 

Table B-3: Recovery level of Zn in ANFIS (testing) 

 

Table B-4: Recovery level of Co in ANFIS (testing) 
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     Soils 

sampling 

points 

Cd 

Measured  Predicted % recovery 

5 6.13 6.27 102.23 

10 5.62 5.10 90.75 

20 4.20 4.04 96.11 

25 3.9 3.83 98.22 

30 3.02 5.09 168.49 

35 3.08 3.34 108.34 

45 2.95 4.55 154.14 

50 1.88 3.94 209.69 

55 1.66 3.03 182.55 

60 1.20 2.79 232.65 

65 2.75 3.89 141.45 

70 1.8 0.96 53.21 

75 1.83 3.01 164.69 

80 1.22 1.38 112.80 

85 2.79 3.89 139.41 

% mean recovery 136.98 

RMSE 1.17 

MAPE 45.21 

GRI 1.55 

Soils 

sampling 

points 

As 

Measured  Predicted % recovery 

5 6.95 8.55 123.06 

10 6.45 9.77 151.50 

20 3.33 1.95 58.70 

25 3.09 2.69 87.11 

30 2.88 2.98 103.47 

35 2.09 1.85 88.49 

45 1.88 4.15 220.65 

50 0.88 3.06 347.49 

55 1.12 1.93 172.74 

60 0.87 1.74 200.19 

65 2.32 2.61 112.50 

70 0.95 1.04 109.39 

75 1.12 3.11 277.93 

80 0.99 1.12 113.43 

85 2.6 2.61 100.39 

% mean recovery 151.14 

RMSE 1.44 

MAPE 59.90 

GRI 1.69 

Table B-5: Recovery level of Cd in ANFIS (testing) Table B-6: Recovery level of As in ANFIS (testing) 
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Soils 

sampling 

points 

Mn 

Measured  Predicted % recovery 

5 22.84 19.47 85.24 

10 14.09 14.47 102.71 

20 16.83 2.61 15.51 

25 13.54 16.83 124.33 

30 11.76 9.24 78.60 

35 11.815 10.39 87.94 

45 8.91 15.38 172.66 

50 3.72 14.58 391.84 

55 1.88 7.94 422.56 

60 1.11 6.57 591.81 

65 11.17 12.31 110.22 

70 4.62 3.09 66.97 

75 1.99 10.75 540.12 

80 1.17 2.68 229.37 

85 11.68 12.31 105.40 

% mean recovery 208.35 

RMSE 6.24 

MAPE 130.45 

GRI 2.40 

Soils 

sampling 

points 

Cr 

Measured  Predicted % recovery 

5 9.82 8.96 91.27 

10 6.65 7.66 115.24 

20 4.77 1.19 24.91 

25 5.84 5.44 93.12 

30 5.15 5.44 105.60 

35 4.22 5.89 139.46 

45 2.53 7.34 290.19 

50 1.43 1.18 82.82 

55 1.1 4.83 439.12 

60 0.77 1.43 186.14 

65 4.04 4.35 107.67 

70 1.44 0.96 66.42 

75 1.11 3.43 309.01 

80 0.82 0.96 117.08 

85 4.39 4.35 99.09 

% mean recovery 151.14 

RMSE 2.02 

MAPE 70.13 

GRI 1.90 

Table B-8: Recovery level of Cr in ANFIS (testing) 

.. 

Table B-7: Recovery level of Mn in ANFIS (testing) 
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Soils 

sampling 

points 

Ti 

Measured  Predicted 
% 

recovery 

5 1765.91 1910.06 108.16 

10 1566.169 1877.04 119.85 

20 1234.98 772.68 62.57 

25 1020.28 1086.96 106.54 

30 876.93 906.49 103.37 

35 700.83 743.63 106.11 

45 898.11 1575.55 175.43 

50 702.3 1182.59 168.39 

55 516.89 697.98 135.04 

60 243.88 700.78 287.35 

65 916.17 1044.41 114.00 

70 718.54 353.38 49.18 

75 553.55 1094.22 197.67 

80 286.55 457.14 159.53 

85 938.02 1044.46 111.35 

% mean recovery 133.63 

RMSE 341.76 

MAPE 45.40 

GRI 1.57 

Soils 

sampling 

points 

Sr 

Measured  Predicted % recovery 

5 37.75 41.57 110.12 

10 33.66 38.87 115.49 

20 26.65 20.87 78.32 

25 23.65 23.81 100.68 

30 21.61 24.07 111.41 

35 18.10 20.82 115.03 

45 20.77 39.02 187.88 

50 16.9 25.31 149.78 

55 12.9 17.92 138.90 

60 8.88 15.97 179.88 

65 21.71 22.94 105.66 

70 16.97 9.95 58.61 

75 13.31 25.21 189.41 

80 9.1 12.20 134.07 

85 22.51 22.94 101.91 

%  mean recovery 125.14 

RMSE 7.17 

MAPE 33.55 

GRI 1.42 

  

Table B-10: Recovery level of Sr in ANFIS (testing) 

 

Table B-9: Recovery level of Ti in ANFIS (testing) 
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Soils 

sampling 

points 

V 

Measured  Predicted % recovery 

5 65.88 67.43 102.35 

10 50.55 55.16 109.12 

20 40.88 18.37 44.95 

25 38.77 36.82 94.98 

30 33.92 38.51 113.54 

35 28.13 34.16 121.47 

45 26.1 51.05 195.60 

50 21.21 35.62 167.93 

55 13.98 24.66 176.36 

60 6.92 19.83 286.53 

65 28.23 30.86 109.31 

70 22.15 9.26 41.80 

75 14.78 34.96 236.54 

80 7.88 12.67 160.79 

85 29.97 30.86 102.97 

% mean recovery 137.61 

RMSE 12.40 

MAPE 53.38 

GRI 1.71 

Soils 

sampling 

points 

Ba 

Measured  Predicted % recovery 

5 100.82 111.64 110.73 

10 85.76 99.12 115.58 

20 60.73 39.35 64.79 

25 47.22 50.54 107.02 

30 43.88 49.37 112.52 

35 40.88 40.39 98.81 

45 51.22 76.05 148.48 

50 40.82 52.25 127.99 

55 25.04 40.43 161.45 

60 18.9 40.71 215.42 

65 54.01 55.94 103.57 

70 41.91 20.77 49.57 

75 28.34 58.35 205.89 

80 19.48 21.95 112.68 

85 55.46 55.94 100.87 

% mean recovery 122.36 

RMSE 15.52 

MAPE 33.94 

GRI 1.47 

Table B-11: Recovery level of V in ANFIS (testing) Table B-12: Recovery level of Ba in ANFIS (testing) 
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Appendix-C 

Results of Heavy Metal Analysis and Assessment of SVM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Contour Map Surface Viewer 
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Figure C-1: Graphical representation of outputs for Cu. 

Figure C-2: Graphical representation of outputs for Ni. 

Contour Map Surface Viewer 
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Figure C-3: Graphical representation of outputs for Zn. 

Contour Map Surface Viewer 

Residuals 

Figure C-4: Graphical representation of outputs for Co. 

Contour Map Surface Viewer 

Residuals 
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Figure C-5: Graphical representation of outputs for Cd. 

Contour Map Surface Viewer 

Residuals 

Figure C-6: Graphical representation of outputs for As. 

Contour Map Surface Viewer 

Residuals 
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Figure C-7: Graphical representation of outputs for Mn. 

Contour Map Surface Viewer 

Residuals 

Figure C-8: Graphical representation of outputs for Cr. 

Contour Map Surface Viewer 

Residuals 
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Contour Map Surface Viewer 

Residuals 

Figure C-9: Graphical representation of outputs for Ti. 

Figure C-10: Graphical representation of outputs for Sr. 

Contour Map Surface Viewer 

Residuals 
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Figure C-11: Graphical representation of outputs for V. 

Contour Map Surface Viewer 

Residuals 

Figure C-12: Graphical representation of outputs for Ba. 

Contour Map 
Surface Viewer 

Residuals 
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Figure C-13: Regression analysis for Cu 

in SVM (training). 

 

Figure C-14: Regression analysis for Ni 

in SVM (training). 

 

Figure C-15: Regression analysis for Zn 

in SVM (training). 

 

Figure C-16: Regression analysis for Co 

in SVM (training). 
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Figure C-17: Regression analysis for Cd 

in SVM (training). 

 

Figure C-18: Regression analysis for As 

in SVM (training). 

Figure C-19: Regression analysis for 

Mn in SVM (training). 
Figure C-20: Regression analysis for Cr 

in SVM (training). 
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Figure C-21: Regression analysis for Ti 

in SVM (training). 

 

Figure C-22: Regression analysis for Sr 

in SVM (training). 

 

Figure C-23: Regression analysis for V 

in SVM (training). 

 

Figure C-24: Regression analysis for Ba 

in SVM (training). 
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Figure C-25: Regression analysis for Cu 

in SVM (testing). 

 

Figure C-26: Regression analysis for Ni 

in SVM (testing). 

 

Figure C-27: Regression analysis for Zn 

in SVM (testing). 

 

Figure C-28: Regression analysis for Co 

in SVM (testing). 
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Figure C-29: Regression analysis for 

Cd in SVM (testing). 
Figure C-30: Regression analysis for As 

in SVM (testing). 

 

Figure C-31: Regression analysis for Mn 

in SVM (testing). 

 

Figure C-32: Regression analysis for Cr 

in SVM (testing). 
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Figure C-33: Regression analysis for Ti 

in SVM (testing). 

 

Figure C-34: Regression analysis for Sr 

in SVM (testing). 

 

Figure C-35: Regression analysis for V 

in SVM (testing). 

 

Figure C-36: Regression analysis for Ba 

in SVM (testing). 
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Figure C-37: Comparison of predicted and measured concentration of Cu from 

SVM (testing). 

 

Figure C-38: Comparison of predicted and measured concentration of Ni from 

SVM (testing). 
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Figure A-39: Comparison of predicted and measured concentration of Zn from 

SVM (testing). 

 

Figure C-40: Comparison of predicted and measured concentration of Co from 

SVM (testing). 
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Figure C-41: Comparison of predicted and measured concentration of Cd from 

SVM (testing). 

 

Figure C-42: Comparison of predicted and measured concentration of As from 

SVM (testing). 
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Figure C-43: Comparison of predicted and measured concentration of Mn from 

SVM (testing). 

 

Figure C-44: Comparison of predicted and measured concentration of Cr from 

SVM (testing). 
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Figure C-45: Comparison of predicted and measured concentration of Ti from 

SVM (testing). 

 

Figure C-46: Comparison of predicted and measured concentration of Sr from 

SVM (testing). 
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Figure C-47: Comparison of predicted and measured concentration of V from 

SVM (testing). 

 

Figure C-48: Comparison of predicted and measured concentration of Ba from 

SVM (testing). 
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Figure C-49: Variation of recovery level for Cu in SVM. 

Figure C-50: Variation of recovery level for Ni in SVM. 
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Figure C-51: Variation of recovery level for Zn in SVM. 

Figure C-52: Variation of recovery level for Co in SVM. 
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Figure C-53: Variation of recovery level for Cd in SVM. 

Figure C-54: Variation of recovery level for As in SVM. 



 

230 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C-55: Variation of recovery level for Mn in SVM. 

Figure C-56: Variation of recovery level for Cr in SVM. 
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Figure C-57: Variation of recovery level for Ti in SVM. 

Figure C-58: Variation of recovery level for Sr in SVM. 
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Figure C-59: Variation of recovery level for V in SVM. 

Figure C-60: Variation of recovery level for Ba in SVM. 
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Appendix-D 

 Recovery Level for Various Heavy Metals of SVM 

 

 

 

Soils 

sampling 

points 

Cu 

Measured  Predicted % recovery 

5 12.88 9.95 77.27 

10 7.11 5.58 78.42 

20 4.86 2.36 48.49 

25 3.44 4.77 138.61 

30 3.71 2.78 74.94 

35 3.765 3.51 93.19 

45 3.07 6.21 202.12 

50 2.66 4.20 158.07 

55 1.68 3.06 182.31 

60 1.3 3.73 287.13 

65 3.32 4.64 139.69 

70 2.88 4.80 166.66 

75 1.83 4.56 249.34 

80 1.02 4.56 447.34 

85 3.47 3.18 91.72 

% mean recovery 162.35 

RMSE 2.09 

MAPE 80.48 

GRI 1.86 

Soils 

sampling 

points 

Ni 

Measured Predicted 
% 

recovery 

5 7.11 7.37 103.71 

10 6.11 5.20 85.16 

20 4.09 3.05 74.51 

25 3.05 4.41 144.70 

30 3.45 2.75 79.64 

35 3.01 3.35 111.28 

45 3.19 5.41 169.64 

50 2.88 4.12 143.01 

55 1.66 3.40 204.96 

60 1.72 3.50 203.29 

65 3.4 4.47 131.58 

70 2.95 4.48 151.72 

75 1.72 4.28 249.12 

80 1.53 4.28 280.06 

85 3.47 2.87 82.58 

% mean recovery 147.66 

RMSE 1.53 

MAPE 58.08 

GRI 1.64 

Table D-1: Recovery level of Cu in SVM (testing) 

 

Table D-2: Recovery level of Ni in SVM (testing) 
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Soils 

sampling 

points 

Zn 

Measured  Predicted % recovery 

5 48.87 47.81 97.82 

10 36.5 35.68 97.77 

20 33.83 17.84 52.74 

25 28.87 23.78 82.38 

30 34.72 20.21 58.21 

35 26.815 25.85 96.41 

45 17.45 33.39 191.37 

50 17.55 29.56 168.41 

55 15.8 24.67 156.14 

60 11.82 25.28 213.89 

65 18.67 24.50 131.23 

70 17.89 27.52 153.85 

75 15.68 30.08 191.85 

80 12.27 30.08 245.17 

85 19.13 22.99 120.15 

% mean recovery 137.16 

RMSE 11.01 

MAPE 52.45 

GRI 1.63 

Soils 

sampling 

points 

Co 

Measured  Predicted % recovery 

5 10.72 9.78 91.28 

10 9.82 8.44 85.94 

20 6.77 5.23 77.33 

25 5.97 6.08 101.91 

30 5.03 4.15 82.60 

35 4.67 4.15 88.91 

45 6.42 9.06 141.20 

50 5.12 6.60 128.83 

55 2.3 3.83 166.33 

60 1.98 5.11 258.07 

65 6.64 6.43 96.90 

70 5.21 5.96 114.46 

75 2.81 5.91 210.43 

80 2.05 5.91 288.44 

85 7.07 5.60 79.24 

% mean recovery 134.12 

RMSE 1.91 

MAPE 47.16 

GRI 1.56 

Table D-3: Recovery level for Zn in SVM (testing) 

 
Table D-4: Recovery level of Co in SVM (testing) 
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Soils 

sampling 

points 

Cd 

Measured  Predicted % recovery 

5 6.13 5.92 96.52 

10 5.62 4.95 88.09 

20 4.20 2.00 47.57 

25 3.90 3.27 83.83 

30 3.02 2.33 77.27 

35 3.08 3.46 112.30 

45 2.95 5.27 178.63 

50 1.88 3.50 186.29 

55 1.66 2.95 177.44 

60 1.20 3.32 276.32 

65 2.75 3.42 124.48 

70 1.80 3.26 181.30 

75 1.83 3.25 177.55 

80 1.22 3.25 266.32 

85 2.79 2.39 85.75 

% mean recovery 143.98 

RMSE 1.40 

MAPE 60.11 

GRI 1.70 

Soils 

sampling 

points 

As 

Measured  Predicted % recovery 

5 6.95 7.43 106.98 

10 6.45 4.18 64.78 

20 3.33 1.25 37.56 

25 3.09 3.06 99.00 

30 2.88 1.93 67.07 

35 2.09 2.27 108.50 

45 1.88 4.58 243.68 

50 0.88 3.03 344.84 

55 1.12 2.03 181.40 

60 0.87 2.53 290.39 

65 2.32 3.38 145.56 

70 0.95 3.15 331.92 

75 1.12 3.05 272.67 

80 0.99 3.05 308.48 

85 2.6 1.98 76.23 

% mean recovery 178.60 

RMSE 1.64 

MAPE 99.32 

GRI 2.11 

Table D-5: Recovery level of Cd in SVM (testing) 

 

Table D-6: Recovery level of As in SVM (testing) 
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Soils 

sampling 

points 

Mn 

Measured  Predicted % recovery 

5 22.84 17.79 77.88 

10 14.09 14.27 101.25 

20 16.83 4.66 27.71 

25 13.54 10.63 78.54 

30 11.76 7.07 60.09 

35 11.815 11.81 99.99 

45 8.91 14.48 162.50 

50 3.72 13.84 372.01 

55 1.88 10.31 548.25 

60 1.11 5.93 533.96 

65 11.17 11.97 107.15 

70 4.62 11.33 245.16 

75 1.99 11.71 588.61 

80 1.17 7.71 659.26 

85 11.68 6.16 52.75 

% mean recovery 247.67 

RMSE 7.24 

MAPE 174.75 

GRI 2.65 

Soils 

sampling 

points 

Cr 

Measured  Predicted % recovery 

5 9.82 7.42 75.52 

10 6.65 6.08 91.37 

20 4.77 1.78 37.33 

25 5.84 3.76 64.32 

30 5.15 2.46 47.80 

35 4.22 4.38 103.85 

45 2.53 6.15 242.93 

50 1.43 4.46 311.93 

55 1.1 4.14 376.70 

60 0.77 3.99 518.30 

65 4.04 4.21 104.13 

70 1.44 4.33 300.61 

75 1.11 4.63 417.52 

80 0.82 4.63 565.18 

85 4.39 2.79 63.58 

% mean recovery 221.40 

RMSE 2.66 

MAPE 150.75 

GRI 2.52 

Table D-7: Recovery level of Mn in SVM (testing) 

 
Table D-8: Recovery level of Cr in SVM (testing) 
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Soils 

sampling 

points 

Ti 

Measured  Predicted % recovery 

5 1765.91 1802.17 102.05 

10 1566.17 1371.30 87.56 

20 1234.98 690.94 55.95 

25 1020.28 1191.20 116.75 

30 876.93 683.18 77.91 

35 700.83 762.06 108.74 

45 898.11 1439.77 160.31 

50 702.30 1017.62 144.90 

55 516.89 711.30 137.61 

60 243.88 865.29 354.80 

65 916.17 1204.97 131.52 

70 718.54 1210.05 168.40 

75 553.55 1143.68 206.61 

80 286.55 1143.68 399.12 

85 938.02 732.69 78.11 

% mean recovery 155.36 

RMSE 422.11 

MAPE 68.75 

GRI 1.75 

Soils 

sampling 

points 

Sr 

Measured  Predicted % recovery 

5 37.75 39.04 103.42 

10 33.66 29.21 86.79 

20 26.65 16.04 60.17 

25 23.65 26.03 110.07 

30 21.61 16.91 78.26 

35 18.10 18.80 103.87 

45 20.77 31.06 149.53 

50 16.90 23.78 140.68 

55 12.90 17.27 133.91 

60 8.88 20.80 234.26 

65 21.71 26.52 122.17 

70 16.97 26.39 155.50 

75 13.31 25.22 189.48 

80 9.10 25.22 277.14 

85 22.51 16.96 75.35 

% mean recovery 134.71 

RMSE 8.25 

MAPE 47.96 

GRI 1.57 

Table D-9: Recovery level of Ti in SVM (testing) Table D-10: Recovery level of Sr in SVM (testing) 
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Soils 

sampling 

points 

V 

Measured  Predicted 
% 

recovery 

5 65.88 65.08 98.79 

10 50.55 46.03 91.06 

20 40.88 20.30 49.66 

25 38.77 35.41 91.34 

30 33.92 22.71 66.95 

35 28.13 28.33 100.74 

45 26.10 46.84 179.48 

50 21.21 35.10 165.51 

55 13.98 24.53 175.49 

60 6.92 31.32 452.54 

65 28.23 37.40 132.48 

70 22.15 36.91 166.62 

75 14.78 36.41 246.33 

80 7.88 36.41 462.03 

85 29.97 23.59 78.71 

% mean recovery 170.52 

RMSE 15.35 

MAPE 86.98 

GRI 1.91 

Soils 

sampling 

points 

Ba 

Measured  Predicted 
%  

recovery 

5 100.82 102.87 102.03 

10 85.76 71.13 82.94 

20 60.73 39.17 64.50 

25 47.22 61.71 130.69 

30 43.88 39.69 90.45 

35 40.88 41.81 102.27 

45 51.22 75.45 147.31 

50 40.82 53.07 130.00 

55 25.04 39.83 159.05 

60 18.90 46.44 245.71 

65 54.01 60.88 112.72 

70 41.91 59.96 143.08 

75 28.34 55.52 195.91 

80 19.48 55.52 285.01 

85 55.46 37.51 67.64 

% mean recovery 137.29 

RMSE 18.90 

MAPE 49.88 

GRI 1.58 

Table D-11: Recovery level of V in SVM (testing) Table D-12: Recovery level of Ba in SVM (testing) 
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Appendix-E 

Results of Heavy Metal Analysis and Assessment of ANN 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure E-1: Regression analysis for Cu 

in ANN (training). 

 

Figure E-2: Regression analysis for Ni 

in ANN (training). 

 

Figure E-3: Regression analysis for Zn 

in ANN (training). 

 

Figure E-4: Regression analysis for Co 

in ANN (training). 
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Figure E-5: Regression analysis for Cd 

in ANN (training). 

 

Figure E-6: Regression analysis for As 

in ANN (training). 

 

Figure E-7: Regression analysis for Mn 

in ANN (training). 

 

Figure E-8: Regression analysis for Cr 

in ANN (training). 
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Figure E-9: Regression analysis for Ti 

in ANN (training). 

 

Figure E-10: Regression analysis for Sr 

in ANN (training). 

 

Figure E-11: Regression analysis for V 

in ANN (training). 

 

Figure E-12: Regression analysis for Ba 

in ANN (training). 
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Figure E-13: Regression analysis for Cu 

in ANN (testing). 

 

Figure E-14: Regression analysis for Ni 

in ANN (testing). 

 

Figure E-15: Regression analysis for Zn 

in ANN (testing). 

 

Figure E-16: Regression analysis for Co 

in ANN (testing). 

 



 

243 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Figure E-17: Regression analysis for Cd 

in ANN (testing). 

 

Figure E-18: Regression analysis for As 

in ANN (testing). 

 

Figure E-19: Regression analysis for Mn 

in ANN (testing). 

 

Figure E-20: Regression analysis for Cr 

in ANN (testing). 
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Figure E-21: Regression analysis for Ti 

in ANN (testing). 

 

Figure E-22: Regression analysis for Sr 

in ANN (testing). 

 

Figure E-23: Regression analysis for V 

in ANN (testing). 

 

Figure E-24: Regression analysis for Ba 

in ANN (testing). 
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Figure E-25: Comparison of predicted and measured concentration of Cu from 

ANN (testing). 

 

Figure E-26: Comparison of predicted and measured concentration of Ni from 

ANN (testing). 
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Figure E-27: Comparison of predicted and measured concentration of Zn from 

ANN (testing). 

 

Figure E-28: Comparison of predicted and measured concentration of Co from 

ANN (testing). 
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Figure E-29: Comparison of predicted and measured concentration of Cd from 

ANN (testing). 

 

Figure E-30: Comparison of predicted and measured concentration of As from 

ANN (testing). 
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Figure E-31: Comparison of predicted and measured concentration of Mn from 

ANN (testing). 

 

Figure E-32: Comparison of predicted and measured concentration of Cr from 

ANN (testing). 
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Figure E-33: Comparison of predicted and measured concentration of Ti from 

ANN (testing). 

 

Figure E-34: Comparison of predicted and measured concentration of Sr from 

ANN (testing). 

 



 

250 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure E-35: Comparison of predicted and measured concentration of V from 

ANN (testing). 

 

Figure E-36: Comparison of predicted and measured concentration of Ba from 

ANN (testing). 
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Figure E-37: Variation of recovery level for Cu in ANN. 

Figure E-38: Variation of recovery level for Ni in ANN. 
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Figure E-39: Variation of recovery level for Zn in ANN. 

Figure E-40: Variation of recovery level for Co in ANN. 
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Figure E-41: Variation of recovery level for Cd in ANN. 

Figure E-42: Variation of recovery level for As in ANN. 
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Figure E-43: Variation of recovery level for Mn in ANN. 

Figure E-44: Variation of recovery level for Cr in ANN. 
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Figure E-45: Variation of recovery level for Ti in ANN. 

Figure E-46: Variation of recovery level for Sr in ANN. 



 

256 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure E-47: Variation of recovery level for V in ANN. 

Figure E-48: Variation of recovery level for Ba in ANN. 
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Appendix-F 

Recovery Level for Various Heavy Metals of ANN  

 

  

Soils 

sampling 

points 

Cu 

Measured  Predicted % recovery 

5 12.88 12.83 99.60 

10 7.11 9.57 134.65 

20 4.86 2.54 52.18 

25 3.44 3.80 110.58 

30 3.71 2.67 72.07 

35 3.77 0.73 19.39 

45 3.07 8.28 269.64 

50 2.66 0.73 27.44 

55 1.68 0.73 43.45 

60 1.30 0.73 56.15 

65 3.32 3.79 114.01 

70 2.88 3.74 129.73 

75 1.83 3.73 203.68 

80 1.02 3.73 365.43 

85 3.47 0.73 21.04 

% mean recovery 114.60 

RMSE 2.21 

MAPE 69.09 

GRI 2.27 

Soils 

sampling 

points 

Ni 

Measured  Predicted % recovery 

5 7.11 6.64 93.42 

10 6.11 5.54 90.61 

20 4.09 1.89 46.18 

25 3.05 4.97 163.09 

30 3.45 2.49 72.23 

35 3.01 2.74 90.89 

45 3.19 5.65 177.05 

50 2.88 3.69 128.14 

55 1.66 2.44 146.90 

60 1.72 3.44 199.74 

65 3.4 4.06 119.40 

70 2.95 4.43 150.27 

75 1.72 4.08 237.31 

80 1.53 4.08 266.78 

85 3.47 1.85 53.25 

% mean recovery 135.68 

RMSE 1.59 

MAPE 56.14 

GRI 1.69 

Table F-1: Recovery level of Cu in ANN (testing) 

 

Table F-2: Recovery level of Ni in ANN (testing) 
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Soils 

sampling 

points 

Zn 

Measured  Predicted % recovery 

5 48.87 33.93 69.44 

10 36.50 30.27 82.93 

20 33.83 18.37 54.30 

25 28.87 28.84 99.91 

30 34.72 18.03 51.92 

35 26.82 28.84 107.56 

45 17.45 41.60 238.39 

50 17.55 40.73 232.10 

55 15.80 28.47 180.18 

60 11.82 13.14 111.20 

65 18.67 29.09 155.81 

70 17.89 29.03 162.28 

75 15.68 29.06 185.34 

80 12.27 29.06 236.85 

85 19.13 12.86 67.20 

% mean recovery 135.69 

RMSE 13.66 

MAPE 58.93 

GRI 1.71 

Soils 

sampling 

points 

Co 

Measured  Predicted % recovery 

5 10.72 9.11 84.98 

10 9.82 8.83 89.93 

20 6.77 4.12 60.90 

25 5.97 9.45 158.33 

30 5.03 3.57 71.02 

35 4.67 4.27 91.47 

45 6.42 8.86 138.08 

50 5.12 5.29 103.32 

55 2.3 4.22 183.65 

60 1.98 4.38 221.03 

65 6.64 7.83 117.85 

70 5.21 9.66 185.51 

75 2.81 9.57 340.67 

80 2.05 9.57 466.96 

85 7.07 5.00 70.72 

% mean recovery 158.96 

RMSE 3.35 

MAPE 76.42 

GRI 1.81 

Table F-3: Recovery level of in ANN (testing) 

 

Table F-4: Recovery level of Co in ANN (testing) 
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Soils 

sampling 

points 

Cd 

Measured  Predicted % recovery 

5 6.13 5.94 96.91 

10 5.62 6.04 107.54 

20 4.20 1.37 32.68 

25 3.90 4.43 113.53 

30 3.02 2.94 97.47 

35 3.08 6.72 218.17 

45 2.95 6.18 209.52 

50 1.88 3.49 185.50 

55 1.66 5.35 322.39 

60 1.20 5.14 427.98 

65 2.75 1.95 70.82 

70 1.80 3.54 196.60 

75 1.83 3.16 172.88 

80 1.22 3.16 259.32 

85 2.79 1.84 66.08 

% mean recovery 171.83 

RMSE 2.22 

MAPE 89.96 

GRI 2.03 

Soils 

sampling 

points 

As 

Measured  Predicted % recovery 

5 6.95 7.96 114.49 

10 6.45 7.24 112.25 

20 3.33 0.95 28.53 

25 3.09 0.96 30.97 

30 2.88 0.96 33.20 

35 2.09 1.04 49.56 

45 1.88 3.64 193.71 

50 0.88 2.95 334.79 

55 1.12 1.03 91.81 

60 0.87 1.14 130.75 

65 2.32 3.24 139.53 

70 0.95 1.14 119.72 

75 1.12 1.55 138.63 

80 0.99 1.55 156.84 

85 2.6 2.06 79.39 

% mean recovery 116.94 

RMSE 1.31 

MAPE 55.15 

GRI 1.92 

Table F-5: Recovery level of Cd in ANN (testing) Table F-6: Recovery level of As in ANN (testing) 
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Soils 

sampling 

points 

Mn 

Measured  Predicted % recovery 

5 22.84 22.41 98.13 

10 14.09 19.66 139.55 

20 16.83 2.27 13.48 

25 13.54 8.13 60.03 

30 11.76 12.38 105.26 

35 11.815 4.96 42.01 

45 8.91 13.63 153.00 

50 3.72 11.25 302.29 

55 1.88 5.00 265.99 

60 1.11 5.08 457.72 

65 11.17 12.41 111.13 

70 4.62 9.58 207.30 

75 1.99 8.91 447.74 

80 1.17 5.42 463.25 

85 11.68 10.24 87.63 

% mean recovery 196.97 

RMSE 4.79 

MAPE 123.46 

GRI 2.47 

Soils 

sampling 

points 

Cr 

Measured  Predicted % recovery 

5 9.82 7.34 74.73 

10 6.65 3.87 58.13 

20 4.77 3.78 79.16 

25 5.84 3.79 64.85 

30 5.15 3.78 73.48 

35 4.22 6.24 147.82 

45 2.53 6.02 237.80 

50 1.43 7.14 498.97 

55 1.1 5.11 464.91 

60 0.77 3.12 404.92 

65 4.04 3.76 93.10 

70 1.44 3.79 262.92 

75 1.11 3.75 337.44 

80 0.82 3.75 456.77 

85 4.39 3.06 69.71 

% mean recovery 221.65 

RMSE 2.97 

MAPE 146.56 

GRI 2.40 

Table F-8: Recovery level of Cr in ANN (testing) 

 
Table F-7: Recovery level of Mn in ANN (testing) 
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Soils 

sampling 

points 

Ti 

Measured  Predicted % recovery 

5 1765.91 1737.60 98.40 

10 1566.17 1570.64 100.29 

20 1234.98 551.40 44.65 

25 1020.28 1407.71 137.97 

30 876.93 563.68 64.28 

35 700.83 583.35 83.24 

45 898.11 1322.45 147.25 

50 702.30 965.14 137.43 

55 516.89 584.66 113.11 

60 243.88 600.12 246.07 

65 916.17 1194.61 130.39 

70 718.54 1470.54 204.66 

  75 553.55 1515.86 273.84 

80 286.55 1515.86 529.00 

85 938.02 721.83 76.95 

% mean recovery 159.17 

RMSE 531.52 

MAPE 76.83 

GRI 1.84 

Soils 

sampling 

points 

Sr 

Measured  Predicted % recovery 

5 37.75 32.50 86.09 

10 33.66 40.12 119.21 

20 26.65 15.42 57.86 

25 23.65 34.71 146.76 

30 21.61 13.85 64.08 

35 18.10 23.10 127.64 

45 20.77 27.16 130.78 

50 16.90 26.03 154.01 

55 12.90 17.79 137.87 

60 8.88 9.38 105.58 

65 21.71 23.11 106.43 

70 16.97 23.45 138.19 

75 13.31 22.92 172.22 

80 9.10 22.92 251.89 

85 22.51 9.53 42.32 

% mean recovery 122.73 

RMSE 8.36 

MAPE 42.68 

GRI 1.56 

Table F-9: Recovery level of Ti in ANN (testing) 

 
Table F-10: Recovery level of Sr in ANN (testing) 
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Soils 

sampling 

points  

Ba 

Measured  Predicted % recovery 

5 100.82 90.85 90.11 

10 85.76 78.81 91.89 

20 60.73 34.87 57.41 

25 47.22 52.12 110.37 

30 43.88 34.92 79.59 

35 40.88 39.69 97.08 

45 51.22 80.51 157.19 

50 40.82 45.58 111.66 

55 25.04 41.25 164.72 

60 18.90 32.43 171.56 

65 54.01 52.38 96.97 

70 41.91 50.60 120.74 

75 28.34 50.41 177.88 

80 19.48 50.41 258.78 

85 55.46 46.31 83.49 

% mean recovery 124.63 

RMSE 16.03 

MAPE 38.42 

GRI 1.48 

Soils 

sampling 

points 

V 

Measured  Predicted % recovery 

5 65.88 65.14 98.88 

10 50.55 45.99 90.98 

20 40.88 18.94 46.32 

25 38.77 28.03 72.30 

30 33.92 10.72 31.61 

35 28.13 25.15 89.41 

45 26.10 53.61 205.39 

50 21.21 32.24 151.99 

55 13.98 24.59 175.88 

60 6.92 27.02 390.46 

65 28.23 28.41 100.64 

70 22.15 24.60 111.04 

75 14.78 22.33 151.06 

80 7.88 22.33 283.33 

85 29.97 25.67 85.64 

% mean recovery 139.00 

RMSE 13.78 

MAPE 63.64 

GRI 1.84 

Table F-12: Recovery level of Ba in ANN (testing) 

 

Table F-11: Recovery level of V in ANN (testing) 
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Appendix-G 

Variation of Predicted Results of Heavy Metals with Different AI Techniques for 

Training 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure G-1: Variation of predicted results of Cu in soil from various AI 

techniques in training. 

 

Figure G-2: Variation of predicted results of Ni in soil from various AI 

techniques in training. 
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Figure G-3: Variation of predicted results of Zn in soil from various AI 

techniques in training. 

 

Figure G-4: Variation of predicted results of Co in soil from various AI 

techniques in training. 
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Figure G-5: Variation of predicted results of Cd in soil from various AI 

techniques in training. 

 

Figure G-6: Variation of predicted results of As in soil from various AI 

techniques in training. 
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Figure G-7: Variation of predicted results of Mn in soil from various AI 

techniques in training. 

 

Figure G-8: Variation of predicted results of Cr in soil from various AI 

techniques in training. 
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Figure G-9: Variation of predicted results of Ti in soil from various AI 

techniques in training. 

 

Figure G-10: Variation of predicted results of Sr in soil from various AI 

techniques in training. 
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Figure G-11: Variation of predicted results of V in soil from various AI 

techniques in training. 

 

Figure G-12: Variation of predicted results of Ba in soil from various AI 

techniques in training. 
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Appendix-H 

Variation of predicted results of heavy metals with different AI techniques for testing 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure H-1: Variation of predicted results of Cu in soil from various AI 

techniques in testing. 

 

Figure H-2: Variation of predicted results of Ni in soil from various AI 

techniques in testing. 

 



 

270 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure H-3: Variation of predicted results of Zn in soil from various AI 

techniques in testing. 

 

Figure H-4: Variation of predicted results of Co in soil from various AI 

techniques in testing. 
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Figure H-5: Variation of predicted results of Cd in soil from various AI 

techniques in testing. 

 

Figure H-6: Variation of predicted results of As in soil from various AI 

techniques in testing. 
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Figure H-7: Variation of predicted results of Mn in soil from various AI 

techniques in testing. 

 

Figure H-8: Variation of predicted results of Cr in soil from various AI 

techniques in testing. 
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Figure H-9: Variation of predicted results of Ti in soil from various AI 

techniques in testing. 

 

Figure H-10: Variation of predicted results of Sr in soil from various AI 

techniques in testing. 

 



 

274 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure H-11: Variation of predicted results of V in soil from various AI 

techniques in testing. 

 

Figure H-12: Variation of predicted results of Ba in soil from various AI 

techniques in testing. 

 


