
Thesis No: CSER-M-12-01

AN EFFICIENT IMPLEMENTATION SCHEME FOR MULTIDIMENSIONAL

INDEX ARRAY OPERATIONS AND ITS EVALUATION

By

Sheikh Mohammad Masudul Ahsan

Department of Computer Science and Engineering

Khulna University of Engineering & Technology

Khulna 9203, Bangladesh

January, 2012

An Efficient Implementation Scheme for Multidimensional

Index Array Operations and Its Evaluation

By

Sheikh Mohammad Masudul Ahsan

Roll No: 0907501

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science & Engineering

Department of Computer Science and Engineering

Khulna University of Engineering & Technology

Khulna 9203, Bangladesh

January, 2012

ii

Declaration

This is to certify that the thesis work entitled “An Efficient Implementation Scheme for

Multidimensional Index Array Operations and Its Evaluation” has been carried out by

Sheikh Mohammad Masudul Ahsan in the Department of Computer Science and

Engineering, Khulna University of Engineering & Technology, Khulna, Bangladesh. The

above thesis work or any part of this work has not been submitted anywhere for the award

of any degree or diploma.

Signature of Supervisor Signature of Candidate

iii

Approval

This is to certify that the thesis work submitted by Sheikh Mohammad Masudul Ahsan

entitled “An Efficient Implementation Scheme for Multidimensional Index Array

Operations and Its Evaluation” has been approved by the board of examiners for the

partial fulfillment of the requirements for the degree of Master of Science in Computer

Science & Engineering in the Department of Computer Science and Engineering, Khulna

University of Engineering & Technology, Khulna, Bangladesh in January, 2012.

BOARD OF EXAMINERS

1.

Dr. K. M. Azharul Hasan

Professor, Dept. of CSE

Khulna University of Engineering & Technology, Khulna

Chairman

(Supervisor)

2.

Head of the Department

Department of Computer Science and Engineering

Khulna University of Engineering & Technology, Khulna

Member

3.

Dr. Muhammad Sheikh Sadi

Associate Professor, Dept. of CSE

Khulna University of Engineering & Technology, Khulna

Member

4.

Dr. Kazi Md. Rokibul Alam

Associate Professor, Dept. of CSE

Khulna University of Engineering & Technology, Khulna

Member

5.

Dr. Rameswar Debnath

Professor, Dept. of CSE

Khulna University, Khulna

Member

(External)

iv

Acknowledgment

All the praise to the almighty Allah, whose blessing and mercy succeeded me to complete

this thesis work fairly. I gratefully acknowledge the valuable suggestions, advice and

sincere co-operation of Dr. K. M. Azharul Hasan, Professor, Department of Computer

Science and Engineering, Khulna University of Engineering & Technology, under whose

supervision this work was carried out. His open-minded way of thinking, encouragement

and trust makes me feel confident to go through different research ideas. From him, I have

learned that scientific endeavor means much more than conceiving nice algorithms and to

have a much broader view at problems from different perspectives. I would like to convey

my heartily ovation to all the faculty members, officials and staffs of the Department of

Computer Science and Engineering as they have always extended their co-operation to

complete this work. I am extremely indebted to the members of my examination

committee for their constructive comments on this manuscript. Last but not least, I wish to

thank my friends and my family for their constant support.

Author

v

Abstract

Multidimensional arrays are greatly used for handling large amount of data in scientific or

engineering, and Database applications. Most of the on hand data structures are static in

nature. We describe a novel implementation idea of multidimensional array for handling

such large scale datasets. The scheme implements a dynamic multidimensional extendible

array employing a set of two dimensional extendible arrays. The Traditional

Multidimensional Array (TMA) or Extended Karnaugh Map Represented (EKMR) array

is an efficient structure in terms of accessing the element of the array by straight

computation of the addressing function, but they are not extendible during run time. But

real world data grows in incremental fashion. So, there is strong demand of data structure

that is dynamically extendible during run time. Three are some extendible array models,

most of which uses a concept of extension subarray. For n-dimensional array the subarrays

are n-1 dimensional. But, if the length of dimension and/or number of dimension of a

multidimensional array is large then the address space, even for the subarray, overflows

the machine limit very soon. Another issue for representing the real life data by

multidimensional arrays is that it creates a problem of high degree of sparsity and need to

be compressed. It is therefore desirable to develop techniques that can access the data in

their compressed form and can perform logical operations directly on the compressed data.

In this research work we propose a data structure using the idea of EKMR and Traditional

Extendible Array, namely Extendible Karnaugh Array (EKA) to represent the

multidimensional data. The scheme has the intuitive propensity against the essential

problem of address space overflow as well as it can be extended in any direction during

run time. Moreover, we present a compression scheme for EKA to facilitate data access in

compressed form. We evaluate our proposed scheme by comparing for different retrieval

and extension operations with the Traditional Multidimensional Array (TMA). Our

experimental result shows that the EKA scheme has a significant delay on the occurrence

of address space overflow without any performance penalty. Furthermore, we find that

range of usability of the compression scheme is independent of length or number of

dimension. And it is better to use compressed EKA rather than uncompressed EKA for

representing sparse data sets which needs range retrieval frequently.

vi

Contents

 PAGE

Title Page

Declaration

Approval

Acknowledgment

Abstract

Contents

List of Tables

List of Figures

i

ii

iii

iv

v

vi

viii

ix

CHAPTER I Introduction 1

 1.1 Introduction

1.2 Problem Statement

1.3 Scope

1.4 Objectives

1.5 Organization of the Thesis

1

2

3

4

4

CHAPTER II Literature Review 6

 2.1 Introduction

2.2 Basic Terms and Notations

2.3 The Realization of Multidimensional Array

2.3.1 Traditional Multidimensional Array (TMA)

2.3.2 Extended Karnaugh Map Representation (EKMR)

2.3.3 Traditional Extendible Array (TEA)

2.3.4 Axial Vector Array

2.3.5 Chunking of Array

2.3.6 Flexible Resizable Array

2.3.7 Index Tree Extendible Array

2.4 Compression Schemes for High Dimensional Data

2.4.1 CRS/CCS Schemes

2.4.2 Chunk Offset Compression

2.4.3 History Offset Compression

2.4.4 Some Other Compression Schemes

2.5 Discussion

6

6

7

7

8

10

11

12

14

16

18

18

19

20

20

22

CHAPTER III The Extendible Array Representation using Karnaugh Map 23

3.1 Introduction

3.2 The Realization of Extendible Karnaugh Array

23

23

vii

 PAGE

 3.3 The 4-Dimensional EKA Scheme

3.3.1 Illustrative Example of EKA(4)

3.4 Generalization of EKA to Higher Dimensions

3.5 Basic Operations on EKA

3.5.1 Point Query

3.5.2 Range Query

3.5.3 Increment Operation

3.5.4 Reduction Operation

3.6 Theoretical Analysis

3.6.1 Parameters

3.6.2 Retrieval Cost

3.6.3 Extension Cost

3.6.4 Overflow Cost

3.7 Conclusion

24

26

28

29

29

31

33

33

34

34

35

38

42

42

CHAPTER IV A Compression Scheme Based on Extendible Karnaugh

Array

44

 4.1 Introduction

4.2 The History Segment-Offset Compression

4.2.1 Realization of HSOC on EKA(4)

4.2.2 Realization of HSOC on EKA(n)

4.3 Theoretical Analysis

4.3.1 Basic Terms

4.3.2 Assumptions

4.3.3 Range of Usability Analysis

4.4.4 Retrieval Time Analysis

4.4 Discussion

44

45

45

47

49

49

49

50

53

53

CHAPTER V Experimental Analysis 54

 5.1 Experimental Setup

5.2 Experimental Results

5.2.1 Retrieval Cost

5.2.2 Extension Cost

5.2.3 Overflow Analysis

5.2.4 Compression Results

5.3 Discussion

54

54

54

57

59

61

67

CHAPTER VI Conclusion 68

 6.1 Summary

6.2 Future Scope of Work

68

68

References 70

viii

LIST OF TABLES

Table No. Description Page

2.1

3.1

4.1

5.1

Summary of insertion key and associated record of B-tree

Parameters for cost function for TMA and EKA

Parameters for compressed EKA

Assumed parameters for constructed prototypes

17

34

50

54

ix

LIST OF FIGURES

Figure No. Description Page

2.1 A three dimensional TMA with length of dimension 3×4×5. 8

2.2 EKMR representation of a 3 dimensional array, EKMR(3). 9

2.3 EKMR representation of a 4 dimensional array, EKMR(4). 9

2.4 A Three dimensional Traditional Extendible Array. 10

2.5 A 3-dimensional extendible array along with axial vectors. 12

2.6 A 3-dimensional array partitioned into chunks. 13

2.7 Arrays X and Y are stored using interleaved chunks. 14

2.8 Insertion of a subarray in the midst of a 2-dimensional TEA. 14

2.9 A 2-dimensional Flexible Array with revised subscript and bitmap table. 15

2.10 Realization of 3-dimensional Index Tree extendible array. 17

2.11 The CRS/CCS schemes for a two-dimensional sparse TMA. 19

2.12 A 3-dimensional array stored as chunk-offset compression. 20

3.1 Realization of Boolean function using K-map. 24

3.2 Logical extension of 4-dimensional EKA. 25

3.3 Extension realization of EKA(4). 27

3.4 Realization of 5-dimensional EKA. 28

3.5 Realization of 6-dimensional EKA. 29

3.6 Range query on EKA(4). 32

3.7 Range query on EKA(6). 33

3.8 A 3-dimensional TMA and its retrieval candidates. 37

3.9 Extension of EKA of cost analysis. 38

3.10 A 2D TMA and its extension. 41

4.1 History Segment-Offset representation of EKA(4). 46

4.2 Arrangement of HSOC EKA(n) for backward mapping. 48

x

Figure No. Description Page

5.1 Retrieval cost analysis for EKA and TMA. 56

5.2 Extension cost comparison for EKA and TMA. 59

5.3 Maximum length reached before the occurrence of overflow. 60

5.4 Storage allocation of EKA and TMA. 61

5.5 Compression Ratio of HSOC EKA. 62

5.6 Average extension time of compressed EKA. 62

5.7 Extension Time of Compressed and Uncompressed EKA(4). 63

5.8 Comparison between compressed and uncompressed extension times. 64

5.9 Average range key retrieval on compressed and uncompressed EKA(4). 65

5.10 Change of retrieval time with density in compressed EKA(5). 66

5.11 Average retrieval time comparison between compressed and

uncompressed EKA.

66

1

CHAPTER I

Introduction

1.1 Introduction

There are few classes of data structures which are as well understood or as extensively

used as arrays. It is quite often for scientific, statistical and engineering applications to

have computation on large multidimensional arrays for modeling and analyzing scientific

phenomena [1,2]. The strong need to handle large scale data proficiently has been

promoting comprehensive research themes on organization or implementation schemes for

multidimensional arrays on computer memory or secondary storage.

The fast random accessing capability of multidimensional arrays is a fascinating

characteristic that enables various statistical computations including aggregation to be

performed efficiently [3,4,5]. But this capability depends on the fact that the size of each

dimension should be fixed so that a simple addressing function can be used to access an

arbitrary element of the array. However, in many of the Multidimensional Online

Analytical Processing (MOLAP) application data size grows incrementally. To represent

those data, such kind of multidimensional arrays go through a serious problem namely

extendibility; when a new data value is added, size extension along the corresponding

dimension is necessary and this implies reorganization of the entire array elements. An

array includes the necessity of dynamic extension of -

• Adding a new value to an existing dimension, for example a new product or a new

city. This corresponds to adding a row/column in the corresponding dimension in

the hierarchy.

• Giving a new level of aggregation for MOLAP, for example adding the

aggregation on quarters to the time hierarchy.

• Addition of a totally fresh dimension such as age of customers.

• Modification of the definition of particular elements in the hierarchy. This usually

happens when a different classification method is applied. For example age groups

are defined in intervals of 5 years instead of 10 years.

2

The problem suffered by conventional array can be solved using extendible array model.

An extendible array can be extended in any dimension without any repositioning of

formerly stored data [6,7]. Such advantage makes it possible for an extendible array to be

applied into wide application area where required array size cannot be predicted before

and / or can vary dynamically during operating time of the system. The range in which the

linearized array elements map is called address space – which depends on the length or

number of dimension of array. When both the parameters are large, the address space

becomes so large that it overflows conventional data types [8,9]. In this research work, we

are going to propose a basic extendible data structure for handling large multidimensional

data sets having the facility of managing the address space overflow.

1.2 Problem Statement

There are many existing array systems to represent multidimensional data such as

Traditional Multidimensional Array (TMA) [10,11,12], Extended Karnaugh Map

Representation (EKMR) [11,13], Traditional Extendible multidimensional Array (TEA)

[7,14,15], Axial Vector Extendible array[16,17]. Besides these, there are some other

extendible arrays such as Flexible Resizable Array [18,19] or Index Tree Extendible

Array[20].

TMA or EKMR is a good storage for storing multidimensional data but one serious

drawback is that they are not dynamically extendible. To insert a new column value in the

TMA or in EKMR the total reorganization of the data in array is necessary. The idea of

extendible array solves the problem of extendibility. However, extendible arrays use a

concept of subarray. Extendible arrays, in fact, are combination of subarrays. If the array

is n dimensional then the subarray is n-1 dimensional in many of the extendible array like

TEA, Axial Vector array or Flexible resizable array. Even the subarray is n-dimensional in

Index Tree array.

An n dimensional Array],..,,[21 n
lllA is an association between n-tuples of integer indices

and the elements of a set of E, whatever the domain of E. The set of continuous memory

locations into which the array maps is denoted by A[0 : D], where D = (∏ ��
�
���) − 1 and

the size of the array is denoted by S = D×k, where k is the size of each cell. One more

problem that suffered by all these above mentioned multidimensional array models is

address space requirement. To allocate memory, consecutive memory location is required

3

for multidimensional array. But when the length of dimension li and number of dimension

n of a multidimensional array is large then the address space overflows soon of the

existing data types even for large configuration machines such as 64 bit machines. Hence

it is impossible to allocate such a large size multidimensional array

Multidimensional arrays are good to store dense data, but most datasets are sparse which

wastes huge memory because a large number of array cells are empty and thus are very

hard to use in actual implementation. In particular, the sparsity problem increases when

the number of dimensions increases. This is because the number of all possible

combinations of dimension values exponentially increases, whereas the number of actual

data values would not increase at such a rate. Many of the compression schemes like

Compressed Row/Column Storage [21,22] or Chunk-offset Compression [23,24] already

exist, but they are not suitable for extendible array models. So, efficient compression

schemes are a strong requirement to store such sparse, incremental data for

multidimensional data sets [25,26].

In brief, we are going to propose and evaluate a new and efficient implementation scheme

of multidimensional extendible array model based on Karnaugh map [27], namely,

Extendible Karnaugh Array (EKA), to manage the problem of extendibility without

reorganization of data, overcome the address space overflow problem, and apply a suitable

compression scheme on the model to have good compression ratio.

1.3 Scope

The basic operations of a standard data structure such as insertion, deletion, update and

different categories of retrieval operations like existence check of record or item or entity,

single key query, range key query are important and evaluated for traditional system

implementations. Other important recent operations associated with multi-dimensional

model of data under these domains are [17]:

• The data can incrementally grow over time by appending new data elements

causing the length of dimension to be incremented dynamically.

• The datasets are mainly read-only for large amount of data. However, they may be

subject to expansions in the bounds of the dimensions.

• The number of dimensions of the array may be increased or decreased. The array

may grow (or shrink) by appending data for new time-steps.

4

The above scenarios are implemented in incremental update operation [3]. The increment

operation, what we call extension, is efficient in the model because it increments without

reorganizing the previous data. The increment operation will be analyzed along with the

basic operations.

1.4 Objectives

MOLAP or various scientific applications use multidimensional array as a basic data

structure to represent high dimensional data. This is because multidimensional array has

an inherent facility to compute aggregation operation. Extendibility is an important

requirement of those applications since data grows over time. Hence, an array model or

realization scheme which can be extended over time is strong requirement of current era.

Therefore main objective of this research topic can be summarized as –

• Devise an implementation scheme for basic multidimensional array operations and

to support incremental update operations.

• The TMA, TEA and EKMR suffer from the address space overflow problem. That

is if the length of dimension and number of dimension become large then the

coefficient values reaches the machine limits very quickly and overflows. Design

will ensure the delay of overflow situation because of the division of subarrays.

• Provide the quick random accessing capability for different element search queries.

• Maintain the superiority of various array operations like point key, single key or

range key query over TMA or other extendible array.

• Analyze performance of the proposed scheme on sparse array.

• Devise a suitable compression technique based on the proposed implementation

model for representing a sparse array. And also analyze the performance and

usability of the compression method.

1.5 Organization of the Thesis

• Chapter II presents Literature Review that describes some of the prominent array

organization and realization scheme that are already exists. Here some of the on

hand high dimensional data compression methods will be described.

5

• Chapter III proposes a new extendible array model based on Karnaugh map

called as Extendible Karnaugh Array (EKA). It also explains the basic array

operations like insertion, deletion, retrieval, extension etc. over the proposed EKA

model.

• Chapter IV illustrates the details of compression method applied over proposed

scheme.

• The experimental outcomes of different array operations over the EKA are

discussed in Chapter V. It also presents the compression performance applied

over EKA.

• The future direction of work on the proposed model and the conclusive words

about the model are outlined in Chapter VI.

6

CHAPTER II

Literature Review

2.1 Introduction

Recently, multidimensional arrays are becoming important data structures for storing large

scale multidimensional data; e.g., in statistical databases or MOLAP databases [20,28].

For analyzing purpose, scientific applications very often use multidimensional arrays to

model high dimensional data. The solid demand of those applications leads novel

researches on organization or implementation schemes for multidimensional arrays on

computer memory or secondary storage.

2.2 Basic Terms and Notations

Multidimensional Array

An Array A[l1,l2,…,ln] is an association between n-tuples of integer indices

〈��, ��, … , ��〉	and the elements of a set of E such that, to each n-tuples given by the ranges

110 lj <≤ , 220 lj <≤ ,…, nn lj <≤0 there corresponds an element of E. The domain from

which the elements are chosen is immaterial and we make the assumption that only one

memory location need be assigned to each n-tuples. Each array may be visualized as the

lattice points in a rectangular region of n-space. The set of continuous memory locations

into which the array maps is denoted by A[0:D] where � =
∏ �
�
�� � − 1.

Addressing Function

Any element in the multidimensional array is determined by an addressing function as

follows,

 12112211211221),,...,,,(xxlxlllxlllxxxxxf nnnnnnn ++++=
−−−−− ……… (2.1)

Conventional storage of multidimensional arrays is done by linearization. In the two

dimensional case, the linearization may be done by rows or by columns. But in general,

7

for n-dimensional array there are n! possible linearization orders according to the possible

ordering of the dimensions.

Coefficient Vector

The coefficients of the addressing function namely (1221121 ..., ,... ,... lllllll nn −−) is referred to

as coefficient vector and stored during the construction time. Hence the addressing

function can be computed very fast at the element access time.

Length of Dimension

Each of li (1 ni ≤≤) is determined as length of dimension i of a multidimensional array.

Subarray

A subarray SA[l1,l2,…,ln−1] is an association between n−1 tuples of integer indices

〈��, ��, … , ����〉	 and the elements of a set of E such that, to each n-1 tuples given by the

ranges 110 lj <≤ , 220 lj <≤ ,…, 110
−−

<≤ nn lj there corresponds an element of E. The set

of continuous memory locations into which the array maps is denoted by]:0[DSA where

� =
∏ �
���
�� � − 1.

Segment

For an n−1 dimensional subarray, segment is a part of subarray of dimension n−2. That is

a subarray SA[l1,l2,…,ln−1] can have ln−1 segments each which size is l1×l2×…×ln−2.

2.3 The Realization of Multidimensional Array

Multidimensional array has an inherent facility of random accessing – the reason of

becoming the most popular. But capability demands the length, and number of dimension

to be fixed – which leads problem of dynamic extension. There are many data structures

already exist to represent multidimensional data. Some of them are static in nature and

some are dynamic – i.e. resizable without reorganizing the already allocated data. Some of

the well-known and prominent data structures are discussed in this section.

2.3.1 Traditional Multidimensional Array (TMA) [10,11,12]

Traditional Multidimensional Array (TMA) is a scheme for representing multidimensional

data. The TMA represents n dimensional data by an n dimensional array. The key to the

structure of arrays resides in the familiar coordinate system, which pictures an n-

8

dimensional array as being imbedded in the positive orthant of n-dimensional space, with

array positions lay on the lattice points. An illustration of 3 dimensional TMA of

dimension length 3×4×5 is given in Figure 2.1.

Figure 2.1: A three dimensional TMA with length of dimension 3×4×5.

In the TMA scheme, a three dimensional array of size 3×4×5 can be viewed as three 4×5

two-dimensional arrays. An element (xn, xn−1, …, x1) in an n dimensional Traditional

Multidimensional Array of size [ln ,ln-1, …, l1] is allocated on memory using an addressing

function like eq. (2.1)

We already know from the definition of addressing function that there are n! possible

linearization orders for an n-dimensional array. Storage by linearization allows extension

without any movement of existing elements only in one of the dimensions. For example

we can readily extend the 3D TMA of Figure 2.1 only in third dimension, but in other case

reorganization is necessary for already allocated cell.

2.3.2 Extended Karnaugh Map Representation (EKMR)

A basic array representation scheme named Extended Karnaugh Map Representation

(EKMR) is proposed in [11,13]. In this scheme, an n-dimensional array is represented by

a set of 2 dimensional arrays. The idea of the EKMR scheme is based on the Karnaugh

map (K-map). Consider a 3 input K-map and its corresponding EKMR(3) in Figure 2.2.

The analogy between the EKMR(3) and the 3-input Karnaugh map is that the index

variables i, j, and k correspond to the variables X, Y, and Z respectively. Here, index

variable i is used to indicate the row direction and the index variable j is used to indicate

the column direction. When n = 1 and 2, the TMA and the EKMR schemes are the same.

d2

 0 1 2 3 4

0

1

2

3

0

1

d1

d3

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

29

34

39

49

54

59

40 41 42 43 44
2

9

Figure 2.2: EKMR representation of a 3 dimensional array, EKMR(3).

Let A[s][r][p][q] be a 4-dimensional array based on TMA with size s×r×p×q. A′[u][v] be

the corresponding EKMR(4) of size (s×p)×(r×q). Let A and A′ are presented as row major

order, so location of a cell for given subscripts in A and A′ can be calculated as

LA(l, k, i, j) = p×q×r×l + p×q×k + q×i + j

LA′(i′, j′) = r×q×i′ + j′

And the mapping function from LA to LA′ can be defined as follows:

LA(l, k, i, j) → LA′(i′, j′),

+×=′

+×=′

krjj

lsii
 where

Figure 2.3: EKMR representation of a 4 dimensional array, EKMR(4).

Consider an array A[2][3][4][5] represented as a TMA(4). The corresponding EKMR(4)

of array A is shown in Figure 2.3. The EKMR(4) is represented by a (2×4) ×(3×5) = 8 ×

15 two-dimensional array. The basic difference between TMA(4) and the EKMR(4) is the

placement of elements along the direction indexed by k, and l. The relative position makes

the fundamental difference when using EKMR as array representations.

i = 0

1

2

3

 j = 0 1 2 3 4

l = 0
1

0

1

0

1

0

1

k = 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

i′′′′

j′′′′

i = 0

1

2

3

 j = 0 1 2 3 4

k = 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

10

Based on the EKMR(4), the EKMR(n) can be represented by m
n−4

 EKMR(4) and a one-

dimensional array X with a size of m
n−4

 are used to link these EKMR(4).

2.3.3 Traditional Extendible Array (TEA) [7,14,15]

The Traditional Extendible Array (TEA) is another representation of multidimensional

array. It has the property that the indices of the respective dimensions can be arbitrarily

extended without reorganizing previously allocated elements. Following is a short

description of TEA.

Extendible arrays are combination of subarrays. If the array is n dimensional then the

subarray is n-1 dimensional. It has three types of auxiliary tables namely history table,

coefficient table and address table. For each dimension these tables exist. There is a

history counter that counts the construction history of the sub arrays. Address table

contains the first address of the subarray, history table contains the construction history of

the subarrays. Coefficient table holds the coefficient of the n-1 dimensional subarrays. The

coefficient vector is n-2 dimensional. The extendible array can be extended in any

direction in any dimension only by the cost of these three auxiliary tables.

Figure 2.4: A Three dimensional Traditional Extendible Array.

0 1

2 3

 8 10

12

14

16

 36 39 42 45

27

30

33

48

51

54

57

60

63

66

69

 72 75 78 81 84 87

0 1 5 7 9 10

0 1 12 27 48 60

1 1 2 3 3 3

0 1 2 3 4 5

0

1

2

3

4

0

1
2

3

1

2

3

0 0 1

2 2 1

4 8 2

8 36 3

11 72 3

 1 2 3

0
0

1

3
4

2

6
18

3

12
90

6

1

2

3

1

2

3

History Table

Address Table

Coefficient Vector

Dimension 2

D
im

en
si

o
n

 1

Dimension 3

11

The accessing of the elements of an extendible array is completely different from the

conventional multidimensional array. Using these three kinds of auxiliary tables, the

address of an array element can be computed as follows. Consider the element 〈4, 2, 0〉 in

Figure 2.4. Compare H1[4] = 11, H2[2] = 5 and H3[0] = 0. Since H1[4] > H2[2], H1[4] >

H3[0], it can be proved that the element 〈4, 2, 0〉 is involved in the extended subarray S

beginning from the address L1[4] = 72. From the coefficient vector of C1[4] = 3, the offset

of element 〈4, 2, 0〉 from the first address of S is computed by 3×2 + 0 = 6, the address of

the element is determined as 72 + 6 = 78.

Storage costs of the history tables and the address tables of an n dimensional extendible

array are both O(n). On the other hand, the storage cost of the coefficient tables is O(n
2
),

because a coefficient vector consists of n−2 constants and the total size of the coefficient

tables is proportional to n(n−2). In an environment where both of n and the dimension

sizes are large, to suppress the size of these auxiliary tables is very important in order to

place them on main memory and make them work as an index for the array elements

placed on secondary storage.

2.3.4 Axial Vector Array [16,17]

In axial vector method there is record for each dimension called axis vector. Each element

of the vector stores necessary information (starting index of the dimension, starting

address of the subarray, multiplicative coefficients, and memory pointers) to retrieve an

element correctly.

In this approach the sequence of the two consecutive extensions along the same

dimension, although occurring at two different instances, is considered as an uninterrupted

extension of that dimension and handled by only one expansion record entry in the axial-

vector. Therefore number of element in an axial vector is always less than or equal to the

number of indices of the corresponding dimension.

Figure 2.5 shows the extension of a three dimensional array A of initial size 4×3×1, and

corresponding axial vectors. At the very first, the array extended twice in third dimension

d3, then extended in d2, d1, and finally in d3 again.

To correctly compute the linear address of k-dimensional index 〈i1, i2, . . . , ik〉, determine

which of the records in axial vector Γ1(z1), Γ2(z2). . . Γk(zk), has the maximum starting

12

address. Here, the index zj is the highest index of the axial-vector where the expansion

record has a starting index less than or equal to ij .

Figure 2.5: A 3-dimensional extendible array along with axial vectors.

For example, suppose we desire the linear address of the element A[5,2,1], we first note

that z1 = 1, z2 = 0, and, z3 = 1. Now max(Γ1(1), Γ2(0), Γ3(1)) = max(48, 0, 12) = 48,

maximum dimension is d1, and starting index of d1 is 4. So linear address is = 48 + (5-

4)*12 + 2*3 + 1*1 = 67 (encircled), where 12, 3, and 1 are multiplicative coefficients.

2.3.5 Chunking of Array [1,29]

To address the problems faced by applications that do not perform well with traditionally

ordered arrays on disk, The data management libraries that support storage of

multidimensional arrays on disk with the elements arranged in subarray chunks rather

than in the traditional ordering is important. Figure 2.6 shows a 3D array having

multidimensional chunks. This allows efficient assembly of subarrays in multiple

dimensions.

72
73

74
76

77
78

75

79 80
81

82
84

85
86

83

87 88
89

90
92

93
94

91

95

d3 24
25

26
27

28
29

30
31

32
33

34
35

38

41

44

47
50

53
56

62
65

68

59

71

12
13

14
15

16
17

18
19

20
21

22
23

37

40

43

46
49

52
55

61
64

67

58

70

d2

d1

0
1

2
3

4
5

6
7

8
9

10
11

36

39

42

45
48

51
54

60
63

66

57

69

0; 0; S0
3 1 1

4; 48; S3
12 3 1

0; 0; S0
0 0 0

3; 36; S2
3 12 1

0; 0; S0
0 0 0

1; 12; S1 3; 72; S4
3 1 1

d1

d2

d3

Axial Vectors

3 1 12

Memory pointer of hyperslab

 Coefficient vector

Starting index of dimension

Starting address of hyperslab

13

A single array that can be divided into chunk is known as chunking that can be stored

contiguously on disk by storing the chunks of the array according to a predefined ordering

on the chunks. The chunk number can be used to compute the correct offset of the chunk

from the beginning of the array at run time. A single array may have chunks of different

sizes, since real-world problems come in a variety of sizes that do not guarantee an even

distribution of the processor. The chunks can be stored on disk in a packed or unpacked

fashion. In the unpacked case we can assume all array chunks on disk occupy the same

number of bytes as the largest chunk, to simplify the calculation of the offset of a chunk.

With this approach, the smaller chunks result in unused space on disk. Chunks can be

stored on disk packed together with no waste space if additional computations at run time

are performed to calculate precise offsets to packed chunks, or by using a directory

structure of points that can be persistent or created on demand.

Figure 2.6: A 3-dimensional array partitioned into chunks.

When an application has multiple arrays that are logically related to each other and are

accessed together, it is common to assign corresponding chunks the same area. The

equivalent concept from the database community is that of clustering data that is used

together should be placed together on disk. This is referring to as physical schema as

interleaving chunks. Figure 2.7 shows how the 16 chunks of each array X and Y are

ordered on disk using an interleaved strategy. Note that it is not necessary that this array

all be of the same data type or even the same size.

C0 C1 C2

C3 C4 C5

C11

C17

 C8 C7 C6

 C14 C13 C12

14

Figure 2.7: Arrays X and Y are stored using interleaved chunks.

2.3.6 Flexible Resizable Array [18,19]

This is a variant of TEA. Unlike a TEA, in this organization it is possible to insert in the

midst of the array. However such insertion would influence the logical location of other

array elements; for example the location of the element (A) in Figure 2.8 changes from 〈1,

1〉 to 〈2, 1〉. Note that the logical locations of the array elements would be changed by

these insertions, but their physical locations would not be changed. Therefore the offset

computation described in Section 2.3.3 cannot be applied as it is. Here, the errors in offset

calculation are compensated to get the correct physical location by an efficient mapping

mechanism.

Figure 2.8: Insertion of a subarray in the midst of a 2-dimensional TEA.

A

0

1

3

0 2 4

0 1 2

0

1

2

History

Table

Dimension 2

D
im

en
si

o
n

 1

 0

1

3

0 2 4

0 1 2

0

1

2

3

History

Table

Dimension 2

D
im

en
si

o
n

 1

5

A

(a) Before insertion (b) After insertion

0 1 2

3 4 5

6 7 8

0 1 2

3 4 5

6 7 8

Array X

Array Y

X0

Y0

X1

Y1

…

X8

Y8

…

X15

Y15

File

15

Along with auxiliary tables of TEA, this scheme uses bitmap table for each dimension that

consists of a set of pairs (history value, bit sequence). Each history value in this set is used

for selecting the bit sequence to be used in calculating the extension compensation. The bit

sequence holds information of insertion positions of the dimension and is used for

determining the number of positions to be taken into account for compensation. And bit 1

denotes that the position should be compensated.

Figure 2.9: A 2-dimensional Flexible Array with revised subscript and bitmap table.

Figure 2.9 shows the bitmap of the second dimension. For the element A(3, 5) in Figure

2.9, the process to obtain the extension compensation value of the second dimension is

presented here. The principal subarray of the element A has the history value 6 of the

dimension 1. Compensations for the other dimensions, in this case dimension 2, are

necessary. So the specified subscript 5 of the dimension 2 should be compensated and this

is done as follows:

• Find the least value in bitmap table that exceeds the history of principal subarray,

namely 6. In this case, the history value 8 would be found. Hence the bit sequence

0010100 will be used.

• Since the revised subscript of the subordinate subarray of A in the dimension 2 is

5, the total number of set bits is counted up to the bit 5 of the bit sequence

0010100; the right most bit being the bit 0. The total number is 2, so the extension

compensation value of the second dimension is concluded to be 2.

0

2

4

0 1 11

 0 1 2 3 4 5 6 7

0

1

2

3

4

History

Table

Dimension 2

D
im

en
si

o
n

 1

Inserted area

0

1

2

3 8 5

0 1 2 3 4 5

6

10

3

4

A

7 9

6 7

Revised subscript table

Bitmap table of dimension 2

History of midst insertion

` Bit sequence

8 0010100

11 0000100

16

In this way, for n-dimensional array compensation value δk is calculated, and the

compensated coordinate niii ′′′ ,...,, 21 of an element e will be computed as ki′ = ik − δk for

each dimension k (1 ≤ k ≤ n). The user-specified coordinate of subscripts before

compensation is used to determine the maximum history value, hence the principal

subarray of e, and the compensated coordinate is used to determine the correct offset in the

principal subarray.

2.3.7 Index Tree Extendible Array [20]

In this approach a tree-based index is used to keep track of the growth of the array

in any dimension and even allow adding of new dimensions. An extension of a k-

dimensional array A along dimension i is viewed as appending a k-dimensional

subarray A
S
 to it along the ith dimension. The ranges of A

S
 are identical to those

of A along each dimension except for dimension i whose range depends on the

size of the extension. The length li, of dimension i is called as the range of dimension i.

The index is a search tree (can be implemented as a B-tree) based on a compound

key (D, L) where D represents the dimension number and L the new range that

this dimension achieves after extension. Each key points to an associated record

containing some information about the extension as described below.

Each time the array is extended, a new key will be inserted into the search tree

indicating the dimension that has grown and the new range value for that

dimension. The general structure of the associated record is R = (r0, r1, r2, .., rk-1)

where r0 is the starting address of the extension subarray, and the other ri-s indicate

the maximum lengths along the non-extended (other k-1) dimensions at the time of

extension. When an extension along dimension i is performed, the value of rj for

j<i indicates the maximum range along dimension j, and for j ≥ i it indicates the

range for dimension j + 1.

In general, for a k-dimensional array, an extension along dimension j with extension

size s causes an insertion of a key K, and associated record R can be summarized as

below shown in Table 2.1.

17

Table 2.1. Summary of insertion key and associated record of B-tree.

 Key, K Associated Record, R

If j ≤ k, i.e. extension on any existing

dimension
(j, lj + s) (∑ =

k
i il1 , l1, l2, ..lj-1, lj+1 ,.., lk)

If j > k, i.e. a new dimension is

introduced
(k+1, s) (∑ =

k
i il1 , l1, l2, ..,lk)

Figure 2.10: Realization of 3-dimensional Index Tree extendible array.

Consider a two dimensional array of 3 rows and 1 column, starting at address 0.

Assume the rows are dimension 1 and the columns dimension 2. The initial insertion

includes the key K = (1,3) and associated record R = (0, l). The first extension is on

dimension 2 to 5 columns, key inserted is K = (2,5) and the record is R = (3,3)

(1)

 0

(2)

 3

(3)

 15

(4)

 24

(5)

 40

(6)

 60

1 2 3 4 5 6 7 8 9 10 11 12

9

8

7

6

5

4

3

2

1
1

2

3

4

(1) (2)

(1,3) (2,5)

(0,1) (3,3)

(7)

108

(1) (4)

(1,3) (1,5)

(0,1) (24,8)

(3) (5)

(2,8) (2,12)

(15,3) (40,5)

(2)

(2,5)

(3,3)

(3)

(2,8)

(15,3)

(4)

(1,5)

(24,8)

(1)

(1,3)

(0,1)

(6)

(1,9)

(60,12)

(5)

(2,12)

(40,5)

(2)

(2,5)

(3,3)

(7)

(3,4)

(108,9,12)

(3) (5)

(2,8) (2,12)

(15,3) (40,5)

(1)

(1,3)

(0,1)

(6)

(1,9)

(60,12)

(4) (2)

(1,5) (2,5)

(24,8) ((3,3)

(a)

(b)

(c)

(d) (e)

18

indicating the starting address of the extension subarray is 3 and the non-extending

dimension range is also 3. After that the array is extended to 8 columns, so the

tree will have a key K = (2,8) and record R = (15,3). Next extension is to 5 rows

with K = (1,5) and R = (24,8). Then extension is made to 12 columns causes the

insertion of K = (2,12) and R = (40,5). Extension to 9 rows causes insertion of K

= (1,9) and R = (60,12). Suppose, now a new dimension to the array added so it

becomes a three dimensional array and extend this new dimension to a range value

of 4, the key inserted in this case will be K = (3,4) and R = (108,9,12). The K

and R entries for the extendible array are illustrated in Figure 2.10. The B-tree in

that example can hold a maximum of 2 keys per node.

To find an element e of index (4, 9, 3) iteratively search the B-tree of Figure 2.10 until

desired information is found. Start with a search for the key (1,4), the first key found

in the B-tree larger or equal to it is (1,5) having associated record (24, 8) - means

the range of dimension 2 is only 8, smaller than the required 9. The search

continues along dimension 2, the key searched for is (2, 9) and the key found is

(2,12) with associated record of (40, 5) is corrected to (40, 5, 1) due to a missing

component for 3
rd

 dimension. The range for dimension 3 is still too small than the

required 3. Finally, for dimension 3, the key searched for is (3, 3) and the key

found is (3,4) with an associated record (108,9,12). All components are larger than

the corresponding ones, so we conclude that the element e is found in the extension

subarray represented by (3, 4).

2.4 Compression Schemes for High Dimensional Data

Multidimensional array are the basic data structure used in many applications such as

MOLAP. But in many cases, they are found to be sparse in nature – i.e. many of the array

cells contain null values and consume unnecessary space. So it is important to design a

technique, “The Compression”, to store such arrays. Some common compression methods

are reviewed here.

2.4.1 CRS/CCS Schemes [21,22]

Let, a two-dimensional sparse array is given. The Compressed Row/Column Storage (CRS

/ CCS) scheme using one one-dimensional floating point array VL and two one-

19

dimensional integer arrays RO and CO to compress all of the nonzero array elements

along the rows (columns for CCS) of the sparse array. Array RO stores information about

the nonzero array elements of each row (column for CCS). The number of nonzero array

elements in the ith row (jth column for CCS) can be obtained by subtracting the value of

RO[i] from RO[i+1]. Array CO stores the column (row for CCS) indices of nonzero array

elements of each row (column for CCS). Array VL stores the values of nonzero array

elements. The base of these three arrays is 0.

An example of the CRS/CCS schemes for a two-dimensional sparse array is given in

Figure 2.11(a) that shows a 3×4 two-dimensional sparse array. Figure 2.11(b) and Figure

2.11(c) show the CRS/CCS schemes, respectively. For four or higher dimensional sparse

arrays based on the TMR scheme, more one-dimensional integer arrays are needed.

Figure 2.11: The CRS/CCS schemes for a two-dimensional sparse TMA.

2.4.2 Chunk Offset Compression [23,24]

In this scheme the large multidimensional arrays are broken into chunks for storage and

processing. Consider an n-dimensional array A, whose size is l1×l2×l3× ... ×ln, the chunks

can be formed by breaking each li into several ranges. Within A, two positions are in the

same chunk if and only if, in every dimension, they fall within the same range. In memory

or disk, values within a chunk are stored consecutively. Elements in a chunk are arranged

according to the pre-specified order of dimensions. In this compression technique, the

pairs of (offset value in the chunk, fact data value) are physically stored in secondary

storage only on nonempty elements in a chunk. This set of pairs is sorted in the order of

the offset values. Figure 2.12(a) shows a 3 dimensional array partitioned into 36 chunks

each of which is 3×3×3 (Figure 2.12(b)). The details of a chunk with 8 data values and

offset within the chunk are shown in Figure 2.12(c), and Figure 2.12(d) displays memory

0650

0403

2010

COCRS

VLCRS

1 3 0 2 1 2

1 2 3 4 5 6

ROCRS 1 3 5 7

COCCS

VLCCS

1 0 2 1 2 0

3 1 5 4 6 2

ROCCS 1 2 4 6 7

(b) The CRS Scheme (c) The CCS Scheme (a) A sparse array

20

or disk arrangement of that chunk. Note that the chunks which have no nonempty elements

are not physically allocated in the secondary storage.

Figure 2.12: A 3-dimensional array stored as chunk-offset compression.

2.4.3 History Offset Compression [6,10]

The history offset compression scheme is based on extendible array. In this technique, an

element is specified using the pair of history value and offset value of the extendible array.

Since a history value is unique in extendible array and has one to one correspondence with

the corresponding subarray, the subarray including the specified element of an extendible

array can be referred to uniquely by its corresponding history value h. Moreover, the offset

value (i.e., logical location) of the element in the subarray can be computed by using the

addressing function and this is also unique in the subarray. Therefore, each element of an

n-dimensional extendible array can be referenced by specifying the pair (history value,

offset value). Like Chunk-offset compression, the extended sparse subarray elements are

stored in memory in sorted fashion.

2.4.4 Some Other Compression Schemes

In memory or secondary storage, array elements are stored in linear fashion. Some of the

compression schemes described below are applicable only after the linearization of the

array.

8 9 10 11

4 5 6 7

0 1 2 3

19

31

15

27

23 22 21 20

35 34 33 32

0

d1
 1 2

 3 4 5

d2
 6 7

d3
 8

9 10 11

 12 13

d4
 14

d5
 15 16 17

18

d6
 19 20

 21

d7
 22 23

 24 25 26

d8

8

0 d1

5 d2

7 d3

13 d4

14 d5

18 d6

21 d7

26 d8

(a)

(b)

(c)

(d)

21

Bit Map Compression [30,31]

A bit map compression scheme consists of a bit map and a physical database which

stores the non-constant values. The bit map is employed to indicate the presence or

absence of non-constant data. The following example shows how the bit map

compression scheme can be employed to implement a version of constant

suppression.

Original data string

d1, c, c, d2, c, c, c, d3

Compressed data string

Bit map: 10010001.

Physical database: dl, d2, d3.

For the bit map compression method, the mapping mechanism must search the

whole bit map for both forward and backward mapping. And thus, the access time

for both forward and backward mapping is O(N), where N is the number of bits in

the bit map or equivalently the number of elements in the database.

Header Compression [32]

The header compression scheme is shown below. The vector L, represents the

uncompressed form of a database, in which the 0’s are the constant to be

suppressed and the V’s are the unsuppressed values. Beneath the vector L is the

list of counts which comprise the compression header, H. The odd-positioned counts

hold accumulations of unsuppressed values; and the even-positioned counts hold the

accumulations of zeros. The physical, compressed form of the data is represented by P.

L: V1V2000000000V3V4V5V6V700V8V9V10000

H: 2, 9, 7,11,10,14

P: V1 V2 V3 V4 V5 V6 V7 V8 V9 V1O

For the header compression method, the forward and backward mapping can be

processed by binary searching on the header, H. Both of them require O(log s) time

where s is the size of the header.

22

2.5 Discussion

All the array models presented in this chapter have some pros and cons. Since TMA and

EKMR have pre-specified length and dimension, they are good for random accessing. But

they suffer in case of dynamic extension. The TEA, Axial Vector array, and Flexible

resizable array are good for dynamic extension. TEA and Axial Vector array provides

extension at the boundary where as Flexible array allows even in the middle of the array.

But they all have a concept of subarray which is always n−1 dimensional. For large value

of length for each dimension or for large number of dimension value of offset grows

exponentially and overflows the address space. In case of Chunking of Array or Index

Tree array the subarray is n dimensional, so they also suffer from address space problem.

Classical compression schemes have some limitations in compressing data. Like Bitmap

and its derivatives such as Header compression provide good performance in terms of

removing long runs of constants, but they have a poor forward and backward mapping

capability. Also, these methods can’t be used on dynamic database environment where

additions and deletions may be required. The scheme Compressed Row Storage (CRS) or

Chunk Offset compression are effective for compressing large sparse arrays. But still they

cannot be applied on extendible databases. So, it is important to design a compression

technique that will be better than these classical compression techniques. The scheme

should be efficient enough so that operation can be done over the compressed data.

Though, there are a lot of research has been done on array model, but only a few

researches have been made on dynamic array organization even hardly any on overflow

situation. Hence we propose a dynamic array model which will outperform over TMA as

well as overcome the overflow scenario. The detail of the proposed scheme is presented in

the next chapter.

23

CHAPTER III

The Extendible Array Representation using Karnaugh Map

3.1 Introduction

Conventional schemes for storing arrays do not support easy dynamic extension of an

array. The conventional storage allocation scheme for arrays is either row major or column

major ordering. Though the allocation technique provides optimal storage utilization but

the extension of the dimensions lacks in all except single dimension. Such asymmetry in

extendibility is not inevitable. However, such kind of multidimensional arrays go through

following two important problems:

(i) The size of the multidimensional array is not dynamically extendible; when a new

data value is added, size extension along the corresponding dimension is necessary

and this implies reorganization of the entire array elements.

(ii) Another problem with the multidimensional array is address space requirement. To

allocate memory, consecutive memory location is required for multidimensional

array. But when the length and number of dimension of a multidimensional array is

large then the address space overflows soon.

It is devised schemes for multi dimensional storing arrays, which are readily extendible in

all directions. An extendible array, however, does not store an individual array; rather, it is

storing an array and all its potential extensions. The scheme is an n dimensional

rectangular array that grows by adjoining blocks, which are subarrays of dimension n-1.

Within which each subarray storage allocation is in row-major or Lexicographic order.

3.2 The Realization of Extendible Karnaugh Array

The idea of the proposed scheme, what is named is Extendible Karnaugh Array (EKA), is

based on Karnaugh Map (K-map) [27]. Karnaugh maps are used to facilitate the

simplification of Boolean algebra functions usually aided by mapping values for all

possible combinations. Input values are arranged in Grey Code. Figure 3.1 (a) shows a 4

24

variable K-map to represent possible 2
4
 combinations of a Boolean function. The variables

(w, x) represent the row and the variables (y, z) represent the column to indicate the

possible combinations in a two dimensional array.

Figure 3.1: Realization of Boolean function using K-map.

The 4 variable K-map can be easily drawn plane as a two dimensional array which is

shown in Fig. 1(b). Here each of the boundary line directs a dimension. The length of each

of the dimensions is 2 for both Figure 3.1(a) and (b). This is because the Boolean variables

are binary that causes the length to be 2.

Definition 3.1 (Adjacent Dimension): In array representation, the dimensions (or index

variables) that are placed together in the Boolean function representation of K-map are

termed as adjacent dimensions (written as adj(i) = j). The dimensions (w, x) are the

adjacent dimensions in Fig. 1, i.e. adj(w) = x or vice versa.

3.3 The 4-Dimensional EKA Scheme

EKA represents the array as the combination of subarrays. Besides, it has three types of

auxiliary tables namely history table, coefficient table, and address table. For each of the

four dimensions these tables exist. These tables store the extension information and help

the elements of the EKA to be accessed very fast.

The extension subarrays are further sub divided into number of segments. The number of

segments determines the number of entries in the address table and is calculated from the

length of adjacent dimension. When extension along a dimension is in progress, the

extension subarrays are three dimensional, therefore segmented subarrays are always two

dimensional for an EKA(4). We write EKA(n) to mean an n dimensional EKA.

00 01 11 10

00

01

11

10

yz

wx
0

 0 1 1 0

0

1

1

0

0

1

w

z

x

1
y

(a) 4 variable K-map (b) Array representation

25

There is a history counter that counts the construction history of the subarrays. History

table contains the construction history of the subarrays. For each history, the address table

contains the first address of the extended subarrays for the corresponding dimension. Since

for each extension the subarrays are broken into segments, the address table, in fact, stores

the first addresses of each segments of the subarray. Hence for a single subarray (or

history value) the address table entry can be more than one.

Since EKA is a dynamic array, the coefficient vectors for different subarrays are distinct.

So, to retrieve the array elements accurately these coefficient vectors are stored in

Coefficient table. As each segment of the subarray is 2 dimensional hence in our model the

coefficient vector becomes 〈l1〉 only. The EKA can be extended along any dimension

dynamically during runtime only by the cost of these three auxiliary tables.

Figure 3.2: Logical extension of 4-dimensional EKA.

Figure 3.2 represents a four dimensional EKA, EKA(4). The dimensions are d1, d2, d3 and

d4 and the size of the array is [l1, l2, l3, l4] where li indicates the length of dimension di and

subscripts varies from 0 to li −1. In the current example li = 2. The dimension (d1, d3) and

(d2, d4) are adjacent dimensions respectively. The logical extension in d1 is shown in

(b)

0 1 0 1

0

1

0

1

0

1

d2

d3

d4

0 1 2 0 1 2

Extend d2

Extend d4

Extend d3

Extend d1

(a)
(c)

(e)

0 1

0 1

0 1 0 1 0 1

0

1

0

1

0

1

0 1 2

d1

0 1

0

1

2

0 1 0 1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0 1

0

1

2

0

1

2

0 1 0 1

(d)

26

Figure 3.2(b). The size of the extended subarray which is allocated dynamically is

determined by l2×l3×l4 (i.e. other 3 dimensions). The number of segments is the length of

the adjacent dimension, adj(d1) = d3 ; In this case it is l3 = 2. The size of each segmented

subarray extended along dimension d1 is determined by l2×l4. After extending along

dimension d1, the length of that dimension is incremented by 1. For each extension the

corresponding auxiliary tables are maintained accordingly. Figure 3.2(c), 3.2(d) and 3.2(e)

shows the extension realization along dimension d2, d3 and d4 respectively.

3.3.1 Illustrative Example of EKA(4)

We have taken an EKA(4) as an example that is shown in Figure 3.3. We are going to

extend it in different dimensions in the following way.

Figure 3.3(a) illustrates the initial setup of the scheme. The history counter is zero and the

history tables contain one entry namely 0. The address tables contain first address which

zero here. Each of the coefficient table entry is 1 since length of each dimension is 1.

During the extension of d1 and d3 dimension size of the segment is l2×l4 which is a two

dimensional array, and so coefficient vector is one dimensional. Hence, for our example

we use l2 as coefficient vector for d1 and d3 dimensions. Similarly, l3 is used as coefficient

vector for d2 and d4 dimension and coefficient table is maintained. When an extension

along d2 direction is done as shown in Figure 3.3(b), the history counter is increased by 1.

The value of history counter is stored in the history table Hd2. The subarray size [l1, l3, l4]

is calculated and dynamically allocated; the values of first address are stored in address

table Ad2; since l3=1, Cd2 stores this value. Figure 3.3(c) shows an extension along d3

direction. Here the history counter incremented by 1 and this is stored in history table Hd3.

The size of the subarray [l1, l2, l4] is calculated and the first address for this subarray is

stored in the address table Ad3. In Figure 3.3(d) an extension along dimension d4 is done.

As a result of the extension history counter becomes 3, segmented subarray size becomes

l1×l3 = 1×2 = 2, and number of segments are l2 = 2; since number of segments depends on

the length of adjacent dimension. Therefore, Hd4 memorizes the history value 3, and Ad4

has two entries. And Cd4[2]= 2, since current length of dimension 3, l3=2. Similarly, the

extension along direction d1 is shown Figure 3.3(e) and finally Figure 3.3(f) shows one

more extension along dimension d3.

27

Figure 3.3 : Extension realization of EKA(4).

 0 1

H
d

1

C
d

1

A
d

1

 1 1

 0 1

 0 1 0 1

0 1 0
0

0 1 4 6 0 0 1 0

4 2
8 2 3 5 7 1 2 2 2

12
1

8 9 10 11 0

 12 13 14 15 1

 0 1

 0 4 6

 1 2

 0 3

(e) Extension Along d1 dimension

 0 1

 1 1

 0 1

 0 1 0 1

0 1 0
0

0 1 4 6 0 0 1 0 0

4 2
8 2 3 5 7 1 2 2 2 1

12
1

8 9 10 11 0 16
2 5

2

 12 13 14 15 1 20

 0 16 17 18 19
2

A
d

3

C
d

3

H
d

3

 1 20 21 22 23

 0 1

 0 4 6

 1 2

 0 3

(f) Extension Along d3 dimension

 0 1

 1 1

 0 1

 0 1

0 1 0
0

0 1 0 0 1 0

 2 3 1 2 2 2

 0 A
d

3

C
d

3

H
d

3 0

 1

 0

 0 1

 1 1

 0 1

 0 1 0 1

0 1 0
0

0 1 4 6 0 0 1 0

 2 3 5 7 1 2 2 2

 0 1

 Ad4 0 4 6

 Cd4 1 2

 Hd4 0 3

(c) Extension Along d3 dimension (d) Extension Along d4 dimension

 0 Hd2 d2

H
d

1

C
d

1

A
d

1

 1 Cd2

 0 Ad2

 0

0 1 0 0 0 0 0 1 0

 0

A
d

3

C
d

3

H
d

3

 Ad4 0

d1 Cd4 1 d3

 Hd4 0 d4

 0 1 Hd2

 1 1 Cd2

 0 1 Ad2

 0 1

0 1 0 0 0 1 0 0 1 0

 0

 0

 1

 0

(b) Extension Along d2 dimension (a) Initial setup

28

3.4 Generalization of EKA to Higher Dimensions

The EKA scheme can be generalized to n dimensions using a set of EKA(4)s – that is an

EKA(n) is a collection of EKA(4) which is represented a hierarchical tree like structure.

The highest or nth dimension will be the root of the tree, the subsequent dimensions up to

dimension 5 are the internal node of the tree, and the lowest 4 dimensions presented as

EKA(4) and act as leaf in the tree. Figure 3.4(a) shows the logical structure and Figure

3.4(b) shows the physical implementation of a EKA(5) where the length of dimension d5 is

2. Figure 3.5 shows an EKA(6) represented by a set of EKA(4) in two level. If the current

length of dimension d5, and d6 is 3 and 2 respectively, then the EKA(6) is represented by

the two level structure as shown in Figure 3.5. Each higher dimensions (d5 and d6) are

represented as one dimensional array of pointers that points to the next lower dimension

and each cell of d5 points to each of the EKA(4). So each EKA(4) can be accessed simply

by using the subscripts of higher dimensions. For the case of EKA(n), similar hierarchical

structure will be needed. The set of EKA(4)s stores the actual data values and the

hierarchical arrays are indexes to EKA(4)s and used to locate the appropriate EKA(4).

Hence the EKA(n) is a set of EKA(4)s and a set of pointer is used for indexing purpose

only. At this stage (Figure 3.5), if dimension d1 (or d2, d3, d4) is extended dynamically, all

the EKA(4)s will be extended along that dimension and the auxiliary tables are

maintained.

Figure 3.4: Realization of 5-dimensional EKA

d4

d5

d1

d2

d3

 …

d5

0 1

EKA(4) EKA(4)

(a) Logical view of EKA(5) (b) Physical implementation of EKA(5)

29

Figure 3.5: Realization of 6-dimensional EKA

3.5 Basic Operations on EKA

The basic operations on any data structure are insertion or update of an array cell, extend

the length of any dimension, reduction of length for any dimension, and more importantly

retrieval of array element from a particular cell, or from a range of cells [33]. For insertion

or update, and retrieval of an element from a cell, some subscript for all dimension are

given – and we have to locate the exact array cell to do the required operation. When

subscripts for all known dimension are given to locate the cell, this type of query is called

point key query. When subscript of only one dimension is given with a single value - the

query is called single key query, or given a range of values - the query is called range key

query. First we describe how to perform these types of query which is given beneath. Later

length extension or reduction is described.

3.5.1 Point Query

In an n-dimensional array, point key query can be defined as – there should be given

subscripts for all n dimensions, e.g. 〈x1, x2, ..., xn−1, xn〉. How this type of query can be

performed on EKA is described here in two stage, firstly on EKA(4), then on EKA(n) with

n > 4.

Point Query on EKA(4)

Let the value to be retrieved is indicated by the subscript 〈x1, x2, x3, x4〉. The maximum

history value among the subscripts hmax= max(Hd1[x1], Hd2[x2], Hd3[x3], Hd4[x4]) and the

dimension (say dmax) that corresponds to history value hmax is determined. hmax is the

 …

 …

d5

d6

 0 1 …

 0 1 2 …

EKA(4)

 …

 0 1 2 …

EKA(4) EKA(4) EKA(4) EKA(4) EKA(4)

30

subarray that contains the desired element. This is because; the history values are linear

numbers, therefore subarray having maximum history value was constructed at last.

Hence the desired element remains in the segment that makes the subarray having history

value hmax. Now the first address and offset from the first address is to be found out. The

adjacent dimension adj(dmax) = dadj (say) and its subscript xadj is found. Now the first

address of the segment is found from Admax[xmax][xadj]. The offset from the first address is

computed using the addressing function (described in Section 3.1); the coefficient vectors

are stored in Cdmax. Then adding the offset with the first address, the desired array cell (x1,

x2, x3, x4) is found. More concretely we can write it as follows:

hmax= max(Hd1[x1], Hd2[x2], Hd3[x3], Hd4[x4])

dmax = dimension corresponding to hmax

xmax = given subscript corresponding to dmax

dadj = adj(dmax)

xadj = given subscript corresponding to dadj

xoth = given subscripts of dimensions other than xmax and xadj

firstAddress = Admax[xmax][xadj]

offset = Cdmax[xmax]*xoth1 + xoth2

cellPos = firstAddress + offset

Example 3.1: Let four subscripts 〈1, 0, 2, 1〉 for dimension d1, d2, d3, and d4 is given (see

Figure 3.3(f)). Here hmax = max(Hd1[1], Hd2[0], Hd3[2], Hd4[1])= max(4, 0, 5, 3) =5, and

dimension corresponding to hmax i.e. dmax = d3 whose subscript xmax = 2 and adj(dmax) =

adj(d3) = d1 = dadj and xadj = 1. So the firstAddress = Ad3[2][1] = 20, and offset is

calculated using the coefficient vector stored in coefficient table Cd3 which is 2. Here,

offset = Cd3[2]*x4 + x2 = 2*1 + 0 = 2. Finally adding the offset with the first address the

desired location 20 + 2 = 22 is found (encircled in Figure 3.3(f)).

Point Query on EKA(n), n > 4

Let the value to be retrieved is indicated by the subscript 〈xn, xn−1, …, x2, x1〉. Each of the

higher dimensions (n > 4) is the set of one dimensional pointer arrays that points to next

lower dimensions (see Figure 3.5). Hence using subscripts xk (k > 4) the pointer arrays are

31

searched to locate the appropriate EKA(4). Then using the computation technique

described in section 3.6.1 for lower four subscripts the exact cell location in EKA(4) can

be found.

3.5.2 Range Query

A range key query [34,35] has a single predicate of the form (column subscript < value) or

(column subscript > value) or (column subscript between value1 and value2). On the other

hand, for a single key query predicate has the form column subscript = value. So we can

say that single key query is a special case of range key query with only a single range

subscript.

Range Query on EKA(4)

Let the specified range involve in the known column has subscripts xk1, xk2, …, xkNRQ of

dimension dk (k = 1, 2, 3, 4). Let h1, h2, … hNRQ
 be the history values that correspond to

the subscripts and the minimum history value be hmin = min(h1, h2, … hNRQ).

Definition 3.2 (Major and Minor subarray) All the elements of the subarrays

corresponding to the history values h1, h2, … hNRQ are called Major subarray. The

subarrays that have history values greater than hmin and belong to the adjacent dimension

adj(dk) are called Minor subarray. The candidate subarrays are those which are sufficient

to be searched and these subarrays have history values greater than or equal to hmin.

For Range key query all the major subarrays and one or more segments of the minor

subarrays are candidate subarrays. The subarrays do not belong to the known dimension dk

or adj(dk) and have history values greater than hmin are also candidate subarray, but from

here the desired element is extracted by point key query.

For single key query only one major subarray and exactly one segment of minor subarrays

are candidate subarrays and the rest are same as range key query.

Example 3.2: Figure 3.6, which is obtained by extending the Figure 3.3(f) in d2

dimension, shows the candidate range (bold dotted line) of a range key query for a

EKA(4). Assume that the candidate range of the subscripts of the corresponding

dimension d1 has NRQ subscripts from 1 to 2.

In Figure 3.6, since known subscripts are x11 = 1 and x12 = 2 of dimension d1, i.e. the query

is 〈1-2, *, *, *〉, the subarray having history values 4 and 7 (as Hd1[1] = 4, and Hd1[2] = 7)

32

are the major subarray. On the other hand, the subarray having history values 5 is the

minor subarray. Hence all the elements of subarray 4 and 7 are candidate for retrieval and

one segment of subarray 5 are candidate for retrieval. Here, subarray 6 is the only

remaining candidate subarray, since it has history value greater than 4 (definition 3.2) and

the elements inside the subarray are found by calculating the offsets and adding the first

address as described in section 3.5.1

Figure 3.6: Range query on EKA(4).

Range Query on EKA(n), n > 4

Let the specified range involve in the known dimension has subscripts xk1, xk2, …, xkNRQ of

dimension dk (k > 4). In this case the, using the other dimensional subscripts xj (j > 4) (xj

= 0 to lj −1) along with known dimension NRQ subscripts simply search the higher

dimensional index pointers arrays to find the appropriate EKA(4). In this case, all the

elements of the searched EKA(4) are candidate for retrieval, so simply retrieve them.

Again if known subscripts xk1, xk2, …, xkNRQ of dimension dk (k = 1, 2, 3, 4), then all the

EKA(4)s are candidate to be accessed. So iteratively apply the technique described above

for that NRQ subscripts to each of the EKA(4).

 0 1 6 d2

 1 1 3

 0 1 24 30

 0 1 0 1 2

0 1 0 0 0 1 4 6 24 30 0 0 1 0 0

4 2
8 0 2 3 5 7 25 31 1 2 2 2 1

12 1 8 9 10 11 27 33 0 16
2 5 2

 36 1 12 13 14 15 28 34 1 20

7 3 42 0 16 17 18 19 26 32 2

 48 1 20 21 22 23 29 35 2

 2 36 37

4
39 40 38 41 0 d3

d1 2 42 43 45 46 44 47 1

 2 48 49 51 52 50 53 2

 0 1 0 1

 0 4 6

 1 2

 0 3 d4

Major Subarray

Segment of a Minor

Subarray

33

Example 3.3: Let we have NRQ subscripts 1 – 2 of dimension d5, then all the elements of

the desired EKA to be retrieved are shown in rectangle in Figure 3.7. Again, if those NRQ

subscripts were for dimension d3, elements to be retrieved from all the EKA(4)s shown in

Figure 3.7 as left-upward shading.

Figure 3.7: Range query on EKA(6).

3.5.3 Increment Operation

The increment operation can be defined as extending the size of the array by extending

any length of arbitrary dimension or introducing a new dimension. We call this operation

as extension. The presented EKA is an extendible array, where the length of each

dimension can be extended to any length with the condition that extension is made on the

boundary of that dimension. That is there is no facility to insert a subarray midst of any

dimension. This seems problematic, but most of the real world applications need

incremental extension only. So we allowed dynamic extension only at the boundary of

each dimension in proposed EKA. The detail of extension process, how the auxiliary

tables are maintained are explained is section 3.4 for EKA(4) and in section 3.5 for

EKA(n).

3.5.4 Reduction Operation

The reduction of size of the array EKA is possible with the prerequisite that the deletion or

reduction of length is made only at the perimeter of the array. Moreover, it is not possible

to reduce the length of any arbitrary dimension, whereas we can only reduce the most

recently extended dimension. That is for deletion one has to go through the reverse way of

 …

 …

d5

d6

 0 1 …

 0 1 2 …

 0 1

 0

0 1

 2

 0

1 1

 2

 0 1 2 0 1 2

 0 1

 0

0 1

 2

 0

1 1

 2

 0 1 2 0 1 2

 0 1

 0

0 1

 2

 0

1 1

 2

 0 1 2 0 1 2

 …

d5
 0 1 2 …

 0 1

 0

0 1

 2

 0

1 1

 2

 0 1 2 0 1 2

 0 1

 0

0 1

 2

 0

1 1

 2

 0 1 2 0 1 2

 0 1

 0

0 1

 2

 0

1 1

 2

 0 1 2 0 1 2

34

how the extension is made. For this purpose we can maintain a stack which is populated

during each extension and points to the extended subarray. So when deletion is necessary,

simply pop the link from stack, free the storage and update necessary parameters in

auxiliary table.

3.6 Theoretical Analysis

In this section, we model the processes of retrievals and extensions for multidimensional

array under two different implementation strategies namely Traditional Multidimensional

Arrays (TMA) and our proposed Extendible Karnaugh Arrays (EKA). The TMA

reorganizes the array whenever there is an extension to it. That is, the whole array will be

relinearized on disk to accommodate the new data due to the extension of length of

dimension. Here, we show that the EKA strategy can reduce the cost of array extensions

significantly. We will derive the cost functions for both extensions and retrievals in the

following. All the array schemes are assumed to be stored in secondary storage and

performed the operations.

3.6.1 Parameters

The cost functions are represented as the number of array cells required to access. The

parameters that are assumed are described in Table 3.1. All the lengths are in bytes. Some

parameters are provided as input while others are derived from input parameters.

Table 3.1: Parameters for cost function for TMA and EKA

Parameter Description

n Number of dimension both for TMA and EKA

EKA(n) An n dimensional Extendible Karnaugh Array

TMA(n) An n dimensional Traditional Multidimensional Array

di Dimension i, 1 ≤ i ≤ n

li Length of dimension di

V Initial volume of both TMA and EKA,� = ∏ ��
�
���

s Number of segments in a subarray for EKA

λ Length of extension

SEdi Size of extension along dimension di

35

EKA(n)
λ

EC
Extension cost of n dimensional EKA with extension length

λ in each dimension

TMA(n)
λ

EC
Extension cost of n dimensional TMA with extension length

λ in each dimension

FCTMA Read (Face) cost of TMA

RCTMA Relocation cost of TMA

EGn,λ
Extension gain of EKA(n) over TMA(n) for λ extension in

each dimension

Assumptions:

To simplify the cost model we make a number of assumptions.

(i) The length of dimensions extends in round robin manner of the dimensions for

both TMA and EKA.

(ii) The length of each dimension is equal and when extension occurs each of the

dimensions are extended by equal length. We denote the length of dimension after

ith extension as li.

(iii) All the basic CPU operations are executed in constant time.

3.6.2 Retrieval Cost

In TMA, the array is linearized in a single data stream using the addressing function

described in section 2.2 and all offset values of the array elements are consecutive. Hence

the range of candidate offset values for a query can be determined uniquely. But for EKA,

the same data stream is distributed over different subarrays (See Figure 3.6).

Cost for TMA

The retrieval on TMA is dependent on the known dimension (i.e. the specified dimension)

of query dimension. We use the term known dimension (or known subscript) to indicate

the specified dimension of the query operation. For example dimension 2 is the known or

specified (i.e. subscript x2 is known) dimension in Figure 3.6.

In an n dimensional TMA, if the query is along dimension n (i.e. subscript in is known)

then all the candidate offsets are consecutive and the volume of the range of the query is

��
�	�. This is explained with an example in the following. For a 4-dimensional array with

36

length of each dimension �� = � the addressing function can be written from equation 2.1

as follows.

f(x4, x3, x2, x1)= l
3
x4 + l

2
x3+ lx2 + x1

If l=6 and x4 is known (say, x4 = 0, and xj =0,…,l-1 for j=1,…,3) then the candidate offset

values in the query are consecutive in the range 0 to 215 (total 216 offsets) out of 1296

offsets which is l
3
 (i.e. 6

3
). If x1 is known (say, x1=0) then the candidate offset values in

the query are in the range 0 to 1290 (total 1291 offsets) out of 1296 offsets. Hence the

volume of the candidate range of target elements are determined by �
 − (� − 1). If the

subscript x2 is known then the volume of the candidate range of offsets is �
 − �(� − 1). In

general, if the subscript xk (nk ≤≤1) is known then the volume of the target elements are

determined by �� − ��	�(� − 1). For the range key query in the range of known subscripts

NRQ along the dimension k, the volume of the target elements are determined by ��� ×

(�� − ��	�(� − 1)).

From the above discussion, we can conclude that the retrieval in TMA is largely depends

on the known dimension k and when k = n then the retrieval time will be minimum and

when k = 1 then the retrieval time will be maximum.

Example: Consider a 3D array of size 3×3×4 stored as row major order shown in Figure

3.8(a). If we consider the known dimension is 1, and the known subscript x1 = 0 then, the

candidate values to be retrieved are shown in Figure 3.8(b), or if x1 = 1 then, the candidate

values can be as in Figure 3.8(c), and so on. So for a retrieval considering the first

dimension as known dimension, each of the candidate values are totally discrete and

spread over the entire range. If the known dimension is 2, and x2 = 0 or 1, then the

candidate values can be in Figure 3.8(d) and 3.8(e) respectively, and so on. Here some of

the candidate values are grouped together, though it can cover the entire range. If the

known dimension is 3, and x3 = 0, then the candidate values can be in Figure 3.8 (f), and

so on. Here many of the candidate values are contiguous in nature and needs only single

read since it is the highest dimension.

Cost for EKA

In EKA scheme, the target elements are distributed in different subarrays which are further

divided into segments. So for retrieval operations, EKA will take more CPU operation to

be performed for accessing different streams in secondary memory. But on the other hand

37

each of the segments of the subarray is two dimensional and candidate and non candidate

items can be separated in EKA. And thus retrieval cost will be lower. As the segments are

2 dimensional then the maximum volume of the target elements for a query in a segment is

determined by ��� × (�� − (� − 1)). If the number of segment is s then the maximum

volume of the target elements are determined by � × ��� × (�� − ��	�(� − 1)), where s

depends on the size of the subarray.

(a)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

(b)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

(c)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

(d)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

(e)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

(f)

Figure 3.8: A 3-dimensional TMA and its retrieval candidates.

32
33

34
35

24
25

26
27 28

29
30

31

0
1

2
3 4

5
6

7 8
9

10
11

16
17

18
19 20

21
22

23

12
13

14
15

d2

d1

d3

38

3.6.3 Extension Cost

Cost for EKA

Figure 3.9 shows the pictorial view of λ unit extension of EKA(4), EKA(5), and EKA(6).

By λ unit extension we mean that all dimensions of each EKA are extended a value λ.

Each pair in Figure 3.9 shows the before and after view of extension.

Figure 3.9: Extension cost analysis of EKA.

Let us consider EKA(4) with length of each dimension li = l. So, initial volume of the

array before extension V= l1× l2× l3× l4 = l
4

If we extend one unit along each dimension di, the size of extension SEi is

SE1=l2×l3×l4

= l

3
 , and due to extension l1 = l + 1

SE2= l1×l3×l4

=(l + 1)l

2
, and due to extension l2 = l + 1

SE3= l1×l2×l4

= (l + 1)

2
l, and due to extension l3 = l + 1

SE4= l1×l2×l3

= (l + 1)

3
, and due to extension l4 = l + 1

….

(a) EKA(4)

SE2

S

E
1

S
E

3

SE4

EKA(4)

…

…

…

…

…

…

…

…

Before

…

…

(b) EKA(5)

After

Before

Before After

After

(c) EKA(6)

…

39

Now in general, extending a λ unit along dimension di, the size of extension SEi can be

written as

SE1= λ×l2×l3×l4

= λl

3
 , and due to extension l1 = l + λ

SE2= λ×l1×l3×l4

= λ(l + λ)l

2
, and due to extension l2 = l + λ

SE3= λ×l1×l2×l4

= λ(l + λ)

2
l, and due to extension l3 = l + λ

SE4= λ×l1×l2×l3

= λ(l + λ)

3
, and due to extension l4 = l + λ

So, Total Extension Cost for EKA(4), λ unit extension in each dimension, becomes

EKA(4)
λ

EC = SE1 + SE2 + SE3 + SE4

= i
k

i

ik ll)(
0

λλ∑
=

−
+ ,where k = 3

Now Consider EKA(5), with initial volume of the array before extension V = l
5

(considering length of each dimension li = l)

Extending a λ unit along dimension di, the size of extension SEi is

SE1= λ×l2×l3×l4×l5

= λl

4
 , and due to extension l1 = l + λ

SE2= λ×l1×l3×l4×l5= λ(l + λ)l
3
, and due to extension l2 = l + λ

SE3= λ×l1×l2×l4×l5= λ(l + λ)
2
l
2
, and due to extension l3 = l + λ

SE4= λ×l1×l2×l3×l5= λ(l + λ)
3
l, and due to extension l4 = l + λ

SE5= λ×l1×l2×l3×l4= λ(l + λ)
4
, and due to extension l5 = l + λ

Total Extension Cost for EKA(5), λ unit extension in each dimension, becomes

EKA(5)
λ

EC = SE1 + SE2 + SE3 + SE4 + SE5

 = i
k

i

ik ll)(
0

λλ∑
=

−
+ ,where k = 4

Similarly for EKA(n) Total Extension Cost, for λ unit extension in each dimension, can be

written as

EKA(n)
λ

EC = SE1 + SE2 + SE3 + ….+ SEn−1 + SEn

= i
k

i

ik ll)(
0

λλ∑
=

−
+ ,where k = n−1

…………………………… (3.1)

40

If we expand the summation, then

+++++

++++

+++

++

+=

++++++++++=+

−

−

−

−

−−−

=

−∑

)(

)(

)(

)(

)()(....)()()()(

4
4

43
3

422
2

43
1

44
0

44

3
3

32
2

32
1

33
0

33

2
2

2
1

22
0

22

1
1

0
11

01122110

0

λλλλ

λλλ

λλ

λ

λλλλλλ

ClClClClCl

ClClClCl

ClClCl

ClCl

l

llllllllllll

k

k

k

k

k

kkkkki
k

i

ik

)......(

:

1
1

22
2

1
10

0 k
k

kk
k

kkkkkkk
ClClClClCl λλλλ +++++

+

−

−

−−

After multiplying and collecting the coefficients of l
p
, p = 0, 1, …, k, we get

∑∑∑∑∑∑
=−=

−

−

=

−

=

−

==

−
+++++=+

k

ki
k

ik
k

ki
k

ik
k

i

ik
k

i

ik
k

i

iki
k

i

ik CClClClClll λλλλλ
1

1
1

2
2

22

1
1

1

0
0

0

....)(

=

+++++=

+

+

=

+

+−+−+−++

∑ 1r
1p

p

0j
r

j

1
11122

3
11

2
1

1
1

CC Since

....
k

k
kk

k
kkkkkkk

ClClClClC λλλλ

1 ,
1

1
+==∑

=

−− knwherelC
n

i

iin
i

n
λ

Putting the above value in equation (3.1), we get

 EKA(n)
λ

EC =
i

k

i

ik ll)(
0

λλ∑
=

−
+ ,where k = n−1

∑

∑

=

−

=

−−

=

=

n

i

iin
i

n

n

i

iin
i

n

lC

lC

1

1

1

λ

λλ

Cost for TMA

Consider the Figure 3.10(a), which shows a 2D TMA of size 3×4. Let its cell values

represent the location of each cell after linearization. From Figure 3.10(a) we find that the

location of cell 〈1,2〉 is 6. Now let we want to extend the array one unit in d2. Figure 3.10(b)

shows the array after extension, from where we see that location of cell 〈1,2〉 is now 7.

………………………………………………… (3.2)

41

That is if we simply append the extension subarray at the end, we will get wrong value of

cell 〈1,2〉. To get the correct one we first need to read the previously allocated data and

then reorganize the array.

Figure 3.10: A 2D TMA and its extension.

Let us now consider a TMA(n), with each dimension length li = l

So initial volume V = l1× l2× l3×…× ln = l
n

We already seen that for extending TMA, it requires to reorganize the array and rewrite

both existing and new data elements. The existing elements of the initial array need to be

faced and recalculate the new offsets due to the extension for TMA.

Hence the cost of facing (FC) the existing array elements becomes

FCTMA = V = l
n

If a TMA is extended by λ then a new TMA of length l + λ is to be reallocated, Hence

reallocation cost RCTMA = (l1+ λ) × (l2+ λ) × (l3+ λ) ×…× (ln+ λ) = (l + λ)
n

So, Total extension cost for TMA(n)

TMA(n)
λ

EC

= FCTMA + RCTMA

 = l
n
 + (l + λ)

n
 = l

n
 +∑

=

−
n

i

iin
i

n
lC

0

λ = l
n
 + nn

lC0 +∑
=

−
n

i

iin
i

n lC
1

λ

 = 2l
n
 +∑

=

−
n

i

iin
i

n lC
1

λ

Extension Gain

The difference of extension cost between the TMA and EKA schemes is referred to as

Extension Gain (EG)

EGn,λ =
TMA(n)
λ

EC

−

EKA(n)
λ

EC = eq. (3.3) − eq. (3.2) = 2l
n

= 2V.

 0 1 2 3

0 0 1 2 3

1 4 5 6 7

2 8 9 10 11

 0 1 2 3 4

0 0 1 2 3 4

1 5 6 7 8 9

2 10 11 12 13 14

d2 d2

d1 d1

(a) (b)

…………… (3.3)

42

That is the extension gain is constant (twice of the initial volume) for any values of λ with

a fixed initial volume. But it is worth mentioning that this gain is in theoretical aspect.

Practically, EG would be little less, because there will some cost increase due to

populating those auxiliary tables we have used.

3.6.4 Overflow Cost

In multidimensional array, the location of an element is calculated using the addressing

function described in Section 2.2.1. For an n dimensional array with each dimension

length = l, maximum value of the coefficient vector can be l
n-1

 which is again multiplied

by subscript value (maximum l-1). So the resulted value can be written approximately as

l
n
. This value quickly reaches the machine limit for TMA (e.g. for 32 bit machine

maximum value can be 2
32

) and thus overflows. But in EKA since each of the segments

are two dimensional, this maximum value will be l
2
, which greatly delays the overflow.

For example, theoretically for a 32bit address space with TMA(4) the maximum length of

each dimension can be 256 but for EKA(4) it can be 65536 which is far greater then

TMA’s length. For TMA(5) and TMA(6) this maximum length will be much less, but for

EKA it remains same. The exact calculation is shown below considering that the length of

each dimension is l.

l
4
 = 2

32

=> 4log2l=log2(2
32

) = 32

=> log2l = 8

=> l = 2
8
 =256

For TMA(4)

l
2

= 2
32

=> 2log2l = log2(2
32

) = 32

=> log2l = 16

=> l = 65536

For EKA

One more practical reason is that TMA requires consecutive memory locations up to l
n

during implementation and hence it overflows soon when l and n is large. On the other

hand, in EKA the segments of the subarrays are always two dimensional and distributed.

Hence consecutive memory location requirement is less in EKA than TMA. Therefore

EKA delays the overflow situation even for large values of l.

3.7 Conclusion

In this chapter we present our proposed model in detail, that is, how the model can be

realized or implemented with the facility of dynamic extension but excluding the already

43

stored data reorganization. We present a concept of segment to limit the address space

overflow. The EKA doesn’t prevent overflow to occur, rather it holds up the occurrence of

address space overflow. How the most basic array operations can be performed on EKA

are also manifested here. In the next chapter we are going to present a compression

scheme which is based over EKA.

44

CHAPTER IV

A Compression Scheme Based on Extendible Karnaugh Array

4.1 Introduction

Many statistical applications use set of multidimensional arrays to allow the efficient and

convenient storage and retrieval of large volumes of data that is closely related, viewed

and analyzed from different perspectives. For these applications, data compression is

important because performance strongly depends on the amount of available memory. The

most obvious outcome of data compression is that it reduces storage cost by storing more

logical data per unit of physical capacity [36,37]. Performance is improved because there

is less physical data to retrieve during scan-oriented queries. Performance is further

enhanced since data remains compressed in memory. More importantly, however, the

application of data compression in reducing the cost of data communication in distributed

networks. In some other applications like some index structures, it is possible through

compression to pack more keys into each index block [38,39,40]. When the database is

searched for a given key value, the key is first compressed and the search over the index

blocks. The ultimate effect is that fewer blocks have to be retrieved and thus the average

search cost is improved.

The compression techniques usually provide two mappings [32,41]. One is forward

mapping, computing the location in the compressed dataset given a position in the original

dataset. The other one is backward mapping, computing the position in the original dataset

given a location in the compressed dataset. A compression method is called mapping-

complete if it provides forward mapping and backward mapping. The term logical

database and physical database is used to refer to the uncompressed and compressed

database respectively. The multidimensional arrays that are linearized to store

multidimensional datasets normally have high degree of sparsity and need to be

compressed [42,43]. It is therefore desirable to develop techniques that can access the data

in their compressed form and can perform logical operations directly on the compressed

data. In Chapter II we have already presented some existing and well understood data

45

compression methods, most of which are not suitable for extendible array. Here we are

presenting a compression scheme suitable for our proposed EKA.

4.2 The History Segment-Offset Compression

The History Offset Compression scheme is essentially suitable for Traditional Extendible

Array[6,44,45]. The basic scheme is presented in chapter II. Though EKA has different

logical structure from Traditional Extendible Array, History Offset Compression can

easily be incorporated over EKA with some modification. Since EKA has already a

history counter that points an extended subarray which is further divided into segments, if

the segments are sparse we can store the value as well as the offset from the starting of the

segment in the physical array. As because the offsets are within a segment, we call the

scheme as History Segment-Offset Compression (HSOC).

4.2.1 Realization of HSOC on EKA(4)

In addition to the auxiliary tables of EKA mentioned in chapter III, there is also an

auxiliary array named Element needed for all dimension to store the number of elements in

the segment. Though there may be several segments in an extended subarray, only one

entry in Element array for each subarray is sufficient to retrieve the value accurately.

Element will store the number of elements in the last segment or the one and only segment

of the extended subarray. All these auxiliary tables are sufficient for EKA(4) to be

mapping complete, but for higher dimensional EKA we need some other auxiliary tables

that is explained in next section.

Consider the following logical structure of EKA(4) in Figure 4.1(a) which is actually the

real array of Figure 3.6. Here the cell values represent the value as well as the offset of

that cell in physical array. Now let us consider that only shaded squares represent that

there is a valid value on the cell and other cells are empty. The history offset compressed

representation of the array is shown in Figure 4.1 (b). Here, the History tables, and

Coefficient tables are as before, Address table points to the starting physical address of the

segment if there is some elements in the segment otherwise it is null. Element table

maintain the number of elements in a subarray. For example Ed1[2] = 3, because subarray

7 has three segments, one of which is empty and the last segment has 3 elements. In the

centre of Figure 4.1(c), the physical array is placed. Here we will see that, each of the non-

46

empty array value is placed along with its offset - i.e. displacement of that value in the

segment. For example array value 13, 14 have offset 1, 2 respectively which are stored in

the physical array. Here, the values are stored in sorted fashion according to their offsets

for efficient retrieval.

Forward Mapping on Compressed EKA(4)

Let the value to be retrieved is indicated by the subscript 〈x1, x2, x3, x4〉. We have to

calculate hmax, offset, and firstAddress in similar way described in section 4.3.1. Now if the

firstAddress is null, the element doesn’t exist at all. Otherwise determine the number of

elements in the segment, which may be found in Element table if it is the only segment or

the last segment, else number can be calculated from the difference of firstAddresses of

the current and next available segment. If each of the array cells consumes k bytes in

memory or disk, then for exact calculation of number of elements, we have to divide the

difference by k. And then load the segment from disk to memory and do a binary search to

find the offset. If offset is found the corresponding value is the desired one, otherwise

there is no such value for those subscripts.

Figure 4.1: History Segment-Offset representation of EKA(4).

0 1 1 3 0 4 1 7 1 13 2 14

0 1 2 3 4 5 6 7 8 9 10 11

1 17 2 18 0 20 2 22 3 23 1 25

12 13 14 15 16 17 18 19 20 21 22 23

3 27 4 28 2 32 4 34 5 35 1 37

24 25 26 27 28 29 30 31 32 33 34 35

2 38 3 39 5 41 0 48 2 50 4 52

36 37 38 39 40 41 42 43 44 45 46 47

0 1 0 1 2

0 0 1 4 6 24 30 0

0 2 3 5 7 25 31 1

1 8 9 10 11 27 33 0

1 12 13 14 15 28 34 1

0 16 17 18 19 26 32 2

1 20 21 22 23 29 35 2

2 36 37 39 40 38 41 0

2 42 43 45 46 44 47 1

2 48 49 51 52 50 53 2

 0 0 1 1 0 1

(a)

1 2 3 5

37 38 39 41

0 1 2 3

(b) (c)

 0 1 6 Hd2

 0 1 4 Ed2

 1 1 3 Cd2

 × 0 22 28 Ad2

0 1 2

Ad4 × 4 6

Cd4 1 2

Ed4 0 1

Hd4 0 3

 0 1

0 0 1 ×

4 2 2 ×

8

 34

7 3 3 ×

 42

H
d

1

E
d

1

C
d

1

A
d

1

0

1

2

× 1 0 0

2 2 1 2

12 2 3 5

16

A
d

3

C
d

3

E
d

3

H
d

3

0

1

2

47

Example: Let four subscripts 〈2, 2, 0, 1〉 for dimension d1, d2, d3, and d4 is given (see

Figure 5.1). Here hmax = max(Hd1[2], Hd2[2], Hd3[0], Hd4[1])= max(7, 6, 0, 3) =7, and

dimension corresponding to hmax ie. dmax = d1 whose subscript xmax = 2 and adj(dmax) =

adj(d1) = d3 = dadj and xadj = 0. So the firstAddress = Ad1[2][0] = 36, and offset is

calculated using the coefficient vector stored in coefficient table Cd1 which is 3. Here,

offset = Cd1[2] * x4 + x2 = 3*1 + 2 = 5. Now the segment is loaded into memory (Figure

4.1(b)), and binary search finds the offset 5, therefore the desired value is 41 (encircled in

Figure. 4.1 (b), (c)).

Backward Mapping on Compressed EKA(4)

Let we are given 〈h, s, o〉 that represents history value, the segment number, and an offset

position respectively in a Compressed EKA(4). We have to determine the subscripts of

each dimension. The history values are monotonically increasing and placed sequentially

in history table, so we can apply binary search to each of the history table to find the given

h. Let we found the value in history table of dimension i (Hdi) at position x, then subscript

of dimension i is xi. Let adj(di) = dj, then xj equals to the provided segment number s. Let

the coefficient table entry in dimension i at x is c ie. Cdi[x] = c, then two other dimensional

subscripts xu, xv (say) can be found by following formula

 xu = offset % c

 xv = offset \ c

where % is a modulus or remainder operator, and \ is a integer division operator.

Example: let the given values are 〈6, 1, 4〉 that is history = 6, segment number = 1, offset

= 4. Now applying binary search on each history table, we found that Hd2 [2] = 6, so x2 =

2. Here adj(d2) = d4, so x4 = 1 (the segment number). Again, we see that Cd2 [2] = 3 = c,

which was the length of dimension 3 during extension. So x3 = offset % 3 = 4 % 3 = 1, and

x1 = offset \ 3 = 4 \ 3 = 1. Hence the subscripts are 〈1, 2, 1, 1〉 (encircled in Figure. 4.1 (a)).

4.2.2 Realization of HSOC on EKA(n)

We only compress each EKA(4) and upper pointer arrays remains as usual. Since an n-

dimensional EKA is collection of EKA(4)s, so we can individually apply the HSOC over

each EKA(4)s on a iterative manner. Forward mapping described above (section 4.2.1) can

be applied on each of those EKA(4) after reaching there by using the higher dimensional

48

pointer arrays. But for backward mapping we need some additional tables, since the EKA

scheme loses the higher dimensional subscripts. So, each EKA(4) and higher dimensional

pointer arrays will maintain a tiny (length = 2) Uppersubscripts array. It will contain the

index of immediate next higher dimension and a pointer back to that higher n−4

dimensions pointer array. Again, each EKA(4) have their own history tables, so to find the

desired EKA(4) where the given history value lies we need to apply binary search all of

them. For an EKA(n) with each dimensions’ length l, binary search is needed to be applied

on l
n-4

 arrays. And in worst case it will demand 4l
n-4

 log2l comparison. So, we can make

the search faster by giving a memory penalty for a bitmap array of length 4l
n-3

. The

bitmap array will be a two dimensional array, whose index will represent the history

counter value, and one of its entry j (j=1, 2, 3, 4), that will mean dimension of extension

and another is a pointer to the EKA(4).

Figure 4.2: Arrangement of HSOC EKA(n) for backward mapping.

Backward Mapping on Compressed EKA(n)

Let, given values are 〈h,s,o〉. So, we first look at the bitmap array at index h and found the

entry j and the exact EKA(4) where the h resides. Now apply binary search only over the

history table of dimension j Hdj to locate the position of h. Now we can determine the

lowest 4 dimensions’ subscripts by applying the process described in section 4.2.1. Since

each EKA(4) maintains a uppersubscripts table, the higher dimensional subscripts can be

 …

d5

d6

EKA(4)

 …

0

EKA(4)

0

1

0 ×

1

EKA(4) EKA(4)

0

1

Uppersubscripts

Array

1 1 2 4 3 2 1 3 1 2

 0 1 2 3 4 5 6 7 56 57

Bitmap array

 …

49

found from there by going back to root and by collecting uppersubscripts array entry.

Figure 4.2 shows the logical arrangement of an HSOC EKA(n) along with necessary

auxiliary tables required for backward mapping.

4.3 Theoretical Analysis

Now we measure the proposed compression scheme on EKA. Before that we present some

definitions of basic terms used here as well as some assumptions.

4.3.1 Basic Terms

Density of Array (ρρρρ): it is a parameter to measure the sparsity of an array. It is the ratio

of non-empty array cells with total number of cells. Maximum value the density can be

one. Formally we can write,

cellsarray ofnumber Total

 valuesnullnon having cell ofnumber Total
=ρ

Compression Ratio (ηηηη): it is defined as the proportionate size of the compressed array

with that of uncompressed one, formally

Compression ratio, η =
Array of size edUncompress

Array of size Compressed

Compression ratio value less than one is preferable.

Range of Usability (υυυυ): Range of usability of a compression scheme is defined as the

maximum range of data density up to which the compression ratio is less than 1.

4.3.2 Assumptions

All the parameters used in the analysis are given in Table 4.1. in each case, we first

present the analysis for EKA(4) and then for EKA(n). To make the theoretical analysis

simple and tractable, let us consider

• The compressed EKA is extended by a length of one unit in each dimension in

round robin manner.

• The length of each dimension is equal i.e. li = l, for all i.

• All lengths and sizes are in bytes.

50

Table 4.1: Parameters for compressed EKA.

Hi History table of dimension i

Ci Coefficient table of dimension i

Ei Element table of dimension i

Ai Address table of dimension i

N(.) Function that returns number elements in an array

S(.) Function that returns size of an array

li Length of each dimension i

α Size of each offset or auxiliary table cell

β Size of each cell of the EKA

ρ Density of the array, 0 ≤ ρ ≤ 1

υ Range of Usability of the array

nEcell Non empty array cell

Aux All the auxiliary tables of EKA

P Higher dimensional pointer arrays

4.3.3 Range of Usability Analysis

For EKA(4)

Number of cell in a History table of dimension i (i = 1, 2, 3, 4), N(Hi) = l,

Similarly, N(Ci) = l, and

 N(Ei) = l,

Since we consider round robin extension, it can be found that number of cell in a Address

table,

N(A1 or A2) = 1 + 1 + 2 + 3 + … + l -1 = 1
2

)1(
+

−ll

N(A3 or A4) = 1 + 2 + 3 + … + l =
2

)1(+ll

Size of History table, S(H) = α Σ���
� ��H�� = 4�α

Similarly, S(C) =α Σ���
� ��C�� = 4�α

 S(E) = α Σ���
� ��E�� = 4�α

51

 S(A) = α Σ���
� ��A�� = α(l(l -1) + 2 + l (l +1)) = α(2l

 2
 + 2)

Therefore, size of auxiliary tables, S(Aux) = S(H) + S(C) + S(E) + S(A)

 = α (2l
 2

 + 12l + 2)

So, total number of non empty cells in the EKA(4) are, N(nEcell) = density × array size

 = ρl
 4

And total number of offset are, N(Off) = ρ l
 4

 .

Then, S(nEcell) = β N(nEcell) = βρ l
 4

 S(Off) = α N(Off) =αρ l
 4

Physical size of the compressed EKA(4),

HSOCEKA(4) = S(Aux) + S(Val) + S(Off) = α(2 l
 2

 + 12l + 2) + (α + β) ρ l
 4

If we would represent the array as traditional representation like TMA, the total number of

array cell would be l
4
, since array is 4 dimensional and each dimension has a length l.

Therefore, physical size of uncompressed Array as TMA, UCTMA(4) = l
 4β

Compression ratio η =
β

αα
4

42

)4(

)4(2122(

l

β)ρl()l + + l

UC

HSOC

TMA

EKA ++
=

 …………. (4.1)

To determine Range of Usability, from its definition we can write:

[]

β

lllβ
l

β
ρor,

lllββ
ρor

lβ

l + + l

lβ

l
ρor

lρlβl + + Lor

l

ρlβ + l + l
or

+
≤

≅

++

++
≤

++

+
−

+
=

+
−

+
=

=++

=
++

=

α

β
υ

α

β

α

β

α

β

α

β

α

α

α

β

βαα

β

αα

η

 say,can weSo,

0
2122

 , largefor Since

2122
 ,

)(

)2122(

)(
 ,

)()2122(,

 (4.1) eq.by 1
)()2122(

 ,

1

432

432

4

2

4

4

442

4

42

52

Rather than length of dimension, the range of usability depends on the data type used for

the array cell and that of auxiliary tables and offset.

For EKA(n)

In EKA(n), we have some higher dimensional pointer arrays whose number of cell,

N(P) = nllO
l

l
l n

nn

i

i and , largefor),(1
1

1 4
34

1

−
−−

=

≅−
−

−
=∑ .

Each of these pointer points to an EKA(4).

So, S(Aux) = α (2l
2
 + 12l + 2) l

n−4
+ αl

n−4
= α (2l

n−2
 + 12l

n−3
 + 3l

n−4
)

Physical size of the compressed EKA(n),

HSOCEKA(n) = α(2l
n-2

 + 12l
n-3

 + 3l
n-4

) +(α + β) ρl
n

Physical size of uncompressed Array as TMA, UCTMA(n) = l
nβ

Compression ratio η =
βl

ρlβ αl + l + l α

UC

HSOC

n

nnnn

nTMA

nEKA)()3122(432

)(

)(++
=

−−−

…. (4.2)

For EKA(n), we can again find that
βα +

≤
β

υ , calculation shown below, which is same as

EKA(4). So we can conclude that range of usability is independent of length as well as

number of dimension.

[]

β
ρ

lOβ

lO
nl

lOβ

lO

β

lβ

l + l + l

lβ

l
ρor

n

n

n

n

n

nnn

n

n

+
≤

≅
×+

×

×+

×
−

+
=

+
−

+
=

=

−

−

−−−

α

β

α

α

α

α

α

β

α

α

α

β

η

 So,

0
)()(

)(
 ,or largefor

)()(

)(

)(

 (4.2) eq.by
)(

)3122(

)(
 ,

 1

2

2

432

It is worth to mention that, above computation excludes the size of auxiliary tables needed

for backward mapping. If we consider them then

 S(bitmap) = α(2×4×l × l
n−4

) = 8α l
n-3

53

[Since bitmap array is 2 dimensional, each EKA(4) can have maximum 4l

history values, and there can be l
n−4

 EKA(4)s.]

 S(uppersubscripts) = nlll n
n

i

i , largefor ,22 4
4

1

−
−

=

≅∑ αα

So we can determine that these sizes do not contribute much on auxiliary tables and hence

range of usability remains same.

4.3.4 Retrieval Time Analysis

In uncompress EKA the forward mapping time is almost constant, but for a point query in

compressed EKA needs O(log2l
2
) = O(2log2l) additional time for binary search in a 2-

dimensional segment of length l. However, overall range query performance will be better

if a sparse array is represented as HSOC EKA rather than straight or uncompressed EKA.

This is because in uncompressed form after loading a segment from disk to memory we

have to make a linear search to determine the non empty cells. On the other hand in HSOC

EKA, we can simply put the segment to display or to any process.

4.4 Conclusion

In this chapter we have presented a compression scheme suitable for EKA. We have also

shown that, if we use α = β, i.e. same data type for the auxiliary tables and the physical

array, the scheme can store an array having 50% approximate density. Here it is also

presented that usability of the compression scheme doesn’t depend on length or number of

dimension of the sparse array represented as EKA. In the next chapter we will show the

details experimental results that confirm the theoretical analysis presented here as well as

in chapter 3.

54

CHAPTER V

Experimental Analysis

5.1 Experimental Setup

In this chapter, we simulate the retrieval operation for range key query for both TMA and

EKA. All lengths or sizes of storage areas are in bytes. Some parameters are provided as

input while others are derived from input parameters. We have constructed the TMA and

EKA systems having the parameter values shown in Table 5.1 placing the TMA and EKA

in secondary storage. The auxiliary tables of EKA are placed in main memory since the

sizes of the auxiliary tables are negligible comparing to the main array. The test results for

retrieval and extension operations are analyzed in this Section. All the tests are run on a

machine (Dell Optiplex 380) of 2.93 GHz processor and 2 GB of main memory having

disk page size of 4KByte. We will show that the overall retrieval time has advantages for

EKA than TMA. We also show that without any retrieval penalty we can extend the length

of dimension of a multidimensional array effectively if implemented using EKA.

Table 5.1. Assumed parameters for constructed prototypes

n λ max(li) Initial V = l
n
 NRQ Subscripts

4 10 100 (30)
4

(l−λ)/2 to (l+λ)/2 5 5 45 (20)
5

6 2 22 (10)
6

5.2 Experimental Results

5.2.1 Retrieval Cost

In TMA, the array is linearized in a single data stream using the addressing function;

therefore all the offset values of the array elements are consecutive. Hence the range of

candidate offset values for a query can be determined uniquely. But for EKA; the same

data stream is distributed over different subarrays.

55

20 40 60 80 100 120

-200

0

200

400

600

800

1000

1200

1400

1600

1800

EKA(4)

R
e

tr
ie

v
a

l
ti
m

e
 (

m
S

e
c
)

Length of dimension

 known dimension D1

 known dimension D2

 known dimension D3

 known dimension D4

20 30 40 50 60 70 80 90 100 110

0

500

1000

1500

2000

2500

TMA(4)

R
e

tr
ie

v
a

l
ti
m

e
 (

m
S

e
c
)

Length of dimension

 known dimension D1

 known dimension D2

 known dimension D3

 known dimension D4

20 25 30 35 40 45

0

1000

2000

3000

4000

5000

6000

7000

EKA(5)

R
e

tr
ie

v
a

l
ti
m

e
 (

m
S

e
c
)

Length of dimension

 known dimension D1

 known dimension D2

 known dimension D3

 known dimension D4

 known dimension D5

20 25 30 35 40 45

0

2000

4000

6000

8000

10000

12000

14000

TMA(5)

R
e

tr
ie

v
a

l
T

im
e

 (
m

S
e

c
)

Length of dimension

 known dimension D1

 known dimension D2

 known dimension D3

 known dimension D4

 known dimension D5

20 40 60 80 100 120

0

100

200

300

400

500

600

700

800 Comparison of average retrieval time

for EKA(4) and TMA(4)

R
e

tr
ie

v
a

l
T

im
e

 (
m

S
e

c
)

Length of dimension

 EKA(4)

 TMA(4)

20 25 30 35 40 45 50

0

500

1000

1500

2000

2500

3000

3500

4000
Comparison of average retrieval time

for EKA(5) and TMA(5)

R
e

tr
ie

v
a

l
T

im
e

 (
m

S
e

c
)

Length of dimension

 EKA(5)

 TMA(5)

(a) Retrieval Time for EKA(4) (b) Retrieval Time for TMA(4)

(c) Retrieval Time for EKA(5) (d) Retrieval Time for TMA(5)

(e) Average retrieval time for EKA(4) and TMA(4) (f) Average retrieval time for EKA(5) and TMA(5)

56

10 12 14 16 18 20 22

0

1000

2000

3000

4000

5000

6000

7000

EKA(6)

R
e
tr

ie
v
a
l
ti
m

e
 (

m
S

e
c
)

Length of dimension

 known dimension D1

 known dimension D2

 known dimension D3

 known dimension D4

 known dimension D5

 known dimension D6

10 12 14 16 18 20 22

0

2000

4000

6000

8000

10000

12000

14000

TMA(6)

R
e

tr
ie

v
a

l
T

im
e

 (
m

S
e

c
)

Length of dimension

 known dimension D1

 known dimension D2

 known dimension D3

 known dimension D4

 known dimension D5

 known dimension D6

10 12 14 16 18 20 22

0

500

1000

1500

2000

2500

R
e

tr
ie

v
a

l
T

im
e

(m
S

e
c
)

Length of dimension

 Average retrieval time EKA(6)

 Average retrieval time TMA(6)

Figure 5.1: Retrieval cost analysis for EKA and TMA.

The retrieval performance depends on the known dimension (i.e. the specified dimension)

of query dimension. We use the term known dimension (or known subscript) to indicate

the specified dimension of the query operation. For example if dimension 2 is the known

or specified then we write subscript x2 is known.

Figure 5.1 shows the retrieval performance for range key query of TMA and EKA for the

parameter values shown in Table 5.1. In Figure 5.1(a) the retrieval performance for

EKA(4) for different known dimension is shown. It shows that, the retrieval time is higher

when x2 and x4 are known. The retrieval time is lower when the x1 and x3 is known. This is

(g) Retrieval Time for EKA(6) (h) Retrieval Time for TMA(6)

(i) Average retrieval time for EKA(6) and TMA(6)

57

because the segments of the subarrays of EKA(4) are two dimensional hence the element

inside the subarrays can be organized as row major order or column major order. If the

elements are organized in one order (say row major) then it is searched in column order;

the target elements for the query are not consecutively organized. Therefore that known

subscript takes longer time. Hence two known subscripts will take higher time than other

two known subscripts. Please be noted a two dimension array is used as four dimensional

(see Figure 3.1) array. When number of dimension n increases for EKA then it (see Figure

5.1(c) and 5.1(g)) shows that retrieval from EKA takes higher time for the known

subscripts of only two values. Figure 5.1 (b) shows the retrieval time for TMA for n = 4. It

shows that for the known dimension of x1 takes higher time than other known dimensions.

This is because when known dimension is x1 then the entire array needs to be scanned as

explained in section 3.6.2.

When n = 5, 6 for TMA, the same situation i.e. for one known subscript TMA takes higher

time than others as shown in Figure 5.1(d) and 5.1(h). Figure 5.1(e) and 5.3(f) shows the

average retrieval cost for EKA and TMA for n = 4 and 5. It shows that EKA has better

performance than TMA and the average retrieval cost is almost same for both EKA and

TMA when n = 6 (Figure 5.1(i)). It can be concluded that, on average, the retrieval

performance for EKA is better and there is no retrieval penalty for EKA over TMA. This

conclusion is valid up to n = 6, up to which experiment is conducted. For n > 6 the

performance may or may not deteriorate. We’ve carried out the experiment up to n = 6,

since we found it sufficient enough for many practical systems, like MOLAP.

5.2.2 Extension Cost

Figure 5.2 shows the extension cost for TMA and EKA .The TMA reorganizes the array

whenever there is an extension to it. That is, the whole array will be relinearized on disk to

accommodate the new data due to the extension of length of dimension. The TMA scheme

needs to face the existing elements then reorganize for the extension. On the other hand,

the EKA extends the initial array with segment of subarrays containing the new data as

described in Section 3. Hence the EKA strategy can reduce the cost of array extensions

significantly.

In Figure 5.2(a), 5.2(b), and 5.2(c) the extension times are shown with n = 4, 5, 6, where

we find that the extension times for TMA are much higher than EKA. Extension gain is

58

the difference between the extension time of TMA and EKA which is shown in Figure

5.2(d) and 5.2(e). From the theoretical aspects described in section 3.6.3 that the extension

is constant with a fixed initial volume for any value of λ. But from Figure 5.2(e) we find

that this is almost true for n = 4, but not for others. This is because we made some

assumption to make theoretical analysis simple. But in practice we need to populate the

auxiliary tables that took some time what we excluded in theory. And populating time

increases with large n which affects the extension gain. One other reason is, since λ is

variable here, therefore the length of dimension is variable which also affects the lengths

of the auxiliary tables as well as the populating time.

20 40 60 80 100 120 140 160 180

-10000

0

10000

20000

30000

40000

50000

60000

70000

E
x
te

n
s
io

n
 T

im
e
 (

m
S

e
c
)

Length of Dimension

 EKA(4)

 TMA(4)

 (a) 4-dimensional extension Time

20 30 40 50 60 70

-5000

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

60000

65000

E
x
te

n
s
io

n
 T

im
e
 (

m
S

e
c
)

Length of Dimension

 EKA(5)

 TMA(5)

(b) 5-dimensional extension Time

10 15 20 25 30 35

-5000

0

5000

10000

15000

20000

25000

30000

35000

40000

E
x
te

n
s
io

n
 T

im
e
 (

m
S

e
c
)

Length of Dimension

 EKA(6)

 TMA(6)

(c) 6-dimensional extension Time

0 20 40 60 80 100 120

-10000

0

10000

20000

30000

40000

50000

60000

70000

T
im

e
 (

m
S

e
c
)

Length of Dimension

 Dim4 lambda = 5

 Dim5 lambda = 4

 Dim6 lambda = 2

 (d) Extension gain with constant λ

59

(e) Extension gain with constant v

Figure 5.2: Extension cost comparison for EKA and TMA.

The extension cost as well as extension gain depends on the initial volume of the array i.e.

the values of n and l before the array is extended. Hence, if n and l increase, then EKA

needs less data to store than TMA without any reorganization of data. So TMA needs

higher times than EKA and thus gain increases. We can conclude that if the initial volume

is large then the extension cost for TMA is higher. It will be expensive to extend a large

array even for small values of λ.

5.2.3 Overflow Analysis

Figure 5.3 shows the maximum length of dimension that causes the EKA and TMA to

overflow the address space for varying number of dimensions. From Figure 5.3, it is found

that, EKA and TMA reaches a length of 180 and 120 respectively in each dimension

where for n = 4. Actually EKA doesn’t overflow due to memory allocation, it stops

allocating secondary storage since the maximum allowable file size is around 4GB for a

32 bit compiler.

Figure 5.4 (a) shows the total storage requirement for EKA and TMA on different number

of dimensions varying the length of dimension. From Figure 5.4 (a), it is found that both

EKA and TMA need almost same amount of storage up to a particular length of

dimension. In practice EKA needs slightly higher amount of storage due to its auxiliary

tables, but this is very negligible compared to the total requirement. So we can conclude

0 10 20 30 40 50 60 70 80 90

0

10000

20000

30000

40000

50000

T
im

e
 (

m
S

e
c
)

Lambda

 EG(4) with V = 30
4

 EG(5) with V = 20
5

 EG(6) with V = 10
6

60

that the nature of storage requirement is almost same for EKA and TMA. Figure 5.4 (b)

shows the maximum storage allocated for EKA and TMA on different number of

dimension before reaching to overflow situation. From Figure 5.4 (b), we find that in all

cases EKA allocates storage around 4GB where as TMA allocates around 850 MB. This is

because EKA stops on maximum allowable file size, but TMA stops on consecutive

memory requirement and/or address space overflow. Though we have 2GB memory TMA

can grow only a size of 850MB, this is because - during extension TMA needs almost

twice memory space, one space to store the old TMA after reading the data, and another

space to allocate for the new TMA after extension.

4 5 6
0

20

40

60

80

100

120

140

160

180

200

L
e
n
g
th

 o
f

D
im

e
n
s
io

n

Num ber of D im ension

 EKA

 TM A

Figure 5.3. Maximum length reached before the occurrence of overflow.

0 20 40 60 80 100 120 140 160 180 200

0

1000

2000

3000

4000

5000

S
to

ra
g
e
 (

M
B

)

Length of Dimension

 EKA(4)

 TMA(4)

 EKA(5)

 TMA(5)

 EKA(6)

 TMA(6)

(a) Total storage requirement

61

4 5 6
0

1000

2000

3000

4000

S
to

ra
g
e

 (
M

B
)

No. of Dimension

 EKA

 TMA

Figure 5.4: Storage allocation of EKA and TMA.

5.2.4 Compression Results

The experimental outcome of compressed EKA is presented in this section. All the

simulation is made considering the parameter α = 4 bytes, and β = 8 bytes.

Compression Ratio

It is an important metric to determine the usability of the compression scheme. Figure 5.5

show the compression ratio found by experimental result of the compression scheme

applied on EKA. Figure 5.5(a) shows that compression ratio is almost constant for

different length of dimension and density over EKA(4). From Figure 5.5(b) we found the

same thing that is compression ratio is independent of different number of dimension,

length of dimension and density. In Figure 5.5(b) the line connecting the top of the bars

are average compression ratio for different density and it crosses the value one at an

approximate density 0.66. Hence range of usability is approximately 0.66 and thus the

experimental results proves the theory in section 4.3 (since α = 4, and β = 8).

Extension Time for Compressed EKA

It is another important metric to measure how much time it takes to be extended. Figure

5.6 shows the average extension time measured for ρ = 0.4, 0.5, and 0.6 for EKA(4, 5, 6).

It shows that extension time exponentially grows with length of dimension, and the growth

rate is high for higher number of dimension. This is because for a n-dimensional array, we

know the subarray size is l
n-1

, where l is the length of dimension.

(b) Maximum storage allocated before the occurrence of overflow

62

20 40 60 80 100 120 140

0.2

0.4

0.6

0.8

1.0

Compression Ratio of EKA(4) with different density

C
o
m

p
re

s
s
io

n
 R

a
ti
o

Lenght of dimension

 ρ = 0.3

 ρ = 0.4

 ρ = 0.5

 ρ = 0.6

 ρ = 0.7

0.3 0.4 0.5 0.6 0.7 0.8

0.0

0.2

0.4

0.6

0.8

1.0

C
o
m

p
re

s
s
io

n
 R

a
ti
o

Density

 EKA(4), Max(L) = 135

 EKA(5), Max(L) = 70

 EKA(6), Max(L) = 35

 Average

Figure 5.5: Compression Ratio for EKA.

0 20 40 60 80 100 120

-10000

0

10000

20000

30000

40000

50000

60000

70000

80000

E
x
te

n
s
io

n
 T

im
e
 (
m

S
e
c
)

Length of Dimension

 EKA(4)

 EKA(5)

 EKA(6)

(a)

(b)

Figure 5.6: Average extension time of compressed EKA.

63

Figure 5.7 shows the extension time of compressed and uncompressed EKA(4) for

different density. For compressed version (Figure 5.7(a)) the extension time varies on

density. On the other hand uncompressed EKA(4) always takes almost same amount of

time shown in Figure 5.7(b). This is because, in uncompressed version density of real data

does not affect the total size of the extension subarray, hence disk I/O is almost constant.

In both case the time increases exponentially because the size extension subarray is l
n-1

which is exponential.

20 30 40 50 60 70 80 90 100 110 120 130

0

1000

2000

3000

4000

5000

T
im

e
 (

m
S

e
c
)

Length of Dimension

 ρ = 0.4

 ρ = 0.5

 ρ = 0.6

 Average

Extension Time of Compressed EKA(4)

40 60 80 100 120

0

1000

2000

3000

4000

5000

6000

7000

8000

E
x
te

n
s
io

n
 T

im
e
 (

m
S

e
c
)

Extension Time of Uncompressed EKA(4)

 ρ = 0.4

 ρ = 0.5

 ρ = 0.6

Length of Dimension

Figure 5.7: Extension Time of Compressed and Uncompressed EKA(4).

(a)

(b)

64

20 30 40 50 60 70 80 90 100 110 120 130

0

1000

2000

3000

4000

5000

20 40 60 80 100 120

0

2000

4000

6000

8000

20 30 40 50 60

0

5000

10000

15000

20000

25000

10 15 20 25 30 35

0

20000

40000

60000

80000

 ρ = 0.4

 ρ = 0.5

 ρ = 0.6

 Average

Extension Time of Compressed EKA(4)

 Uncompressed

 Compressed

Average Extension Time of EKA(4)

 Uncompressed

 Compressed

 Uncompressed

 Compressed

Average Extension Time of EKA(5)

E
x
te

n
s
io

n
 T

im
e
 (
m

S
e
c
)

Average Extension Time of EKA(6)

Length of Dimension

Figure 5.8 shows the average extension time for compressed and uncompressed

EKA(4,5,6). From figure we find that in every case compressed version of the array takes

less time then uncompressed array. The reason is subtle, compressed array needs less data

to write hence fewer disks I/O is required and therefore time is less.

Retrieval Time for Compressed EKA

Figure 5.9 shows the average range key retrieval time of NRQ subscripts on both

compressed and uncompressed EKA(4) with different density. Retrieval is made

considering each dimension as known dimension and then averaged. From 5.9(a), we find

that retrieval time varies with density in compressed EKA(4). However there is no effect

of density in uncompressed one, the retrieval time is almost constant for a particular length

of dimension (see Figure 5.9(b)). This is because in uncompressed EKA(4) whatever the

density, the segment or subarray sizes remain same, hence retrieval time is constant.

Though we have presented only EKA(4), we found same phenomena for EKA(5) and

EKA(6) also.

Figure 5.8: Comparison between compressed and uncompressed extension times.

65

20 40 60 80 100 120

0

100

200

300

400

500

600

T
im

e
 (

m
S

e
c
)

Length of Dimension

 ρ = 0.4

 ρ = 0.5

 ρ = 0.6

 Average

4 dimensional Average Retrieval Time

of Compressed EKA(4)

20 40 60 80 100 120

0

200

400

600

800

1000

T
im

e
 (
m

S
e
c
)

Length of Dimension

 ρ = 0.4

 ρ = 0.5

 ρ = 0.6

4 dimensional Average Retrieval Time

of Uncompressed EKA(4)

Figure 5.9: Average range key retrieval on compressed and uncompressed EKA(4).

The retrieval time linearly increases with the change of density considering a constant

length of EKA. Figure 5.10 exhibits this feature on EKA(5) with different length. The

reason is, for an n-dimensional array with a particular length l and density ρ the number of

non empty cell is ρl
n
. So if ρ changes the total number changes linearly and hence the

retrieval time.

(a)

(b)

66

0.40 0.45 0.50 0.55 0.60

0

200

400

600

800

1000

1200

Average Retrival Time of EKA(5)

with various volume V=l
5

T
im

e
 (

m
S

e
c
)

Density

 l = 20

 l = 30

 l = 40

 l = 50

Figure 5.10: Change of retrieval time with density in compressed EKA(5).

20 30 40 50 60 70 80 90 100 110 120

0

200

400

600

800

1000
Average Retrieval Time of EKA(4)

T
im

e
 (

m
S

e
c

)

Length of Dimension

 Compressed

 Uncompressed

20 30 40 50

0

500

1000

1500

2000

2500

3000

3500

T
im

e
 (

m
S

e
c
)

Length of Dimension

Average Retrieval Time of EKA(5)

 Compressed

 Uncompressed

10 15 20 25

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

T
im

e
 (

m
S

e
c
)

Length of Dimension

 Compressed

 Uncompressed

Average Retrieval Time of EKA(6)

(b)

(c)

(a)

Figure 5.11: Average retrieval time comparison between compressed and uncompressed EKA.

67

Figure 5.11(a), 5.11(b), and 5.11(c) show the comparison of range key retrieval time of

NRQ subscripts in compressed and uncompressed EKA(4), EKA(5), and EKA(6)

respectively. Here given retrieval time is the average of retrieval time with density ρ = 0.4,

0.5, and 0.6. However the retrieval time with a density is, in fact, an average retrieval time

considering each dimension as known dimension. In every case the compressed EKA

needs much less time than uncompressed one, which is depicted in Figure 5.11. The

reason is, for a range key query we have to determine major and minor subarray and then

load the subarray or segment from disk to memory. In uncompressed EKA whatever the

density segment size is always same and maximum. Furthermore if density is less than 1,

we need a linear search to be made for determining the non empty cells. But in

compressed EKA the segments are compact and their size varies with density. Since the

segments contain only the non empty cells of the logical array there is no need of any

search. Simply read the segment from disk and present them, which require much less

time. The same thing is true for segments other than major or minor subarray. Therefore

overall retrieval time in compressed EKA is better than uncompressed EKA.

5.3 Discussion

In this chapter we present the experimental outcomes of the proposed scheme. We

compare the various operations on proposed scheme with that of TMA. We also make

comparison between compressed and uncompressed version of the proposed model. In

each case we found relevancy with the theoretical analysis what we made in Chapter III

and IV. We find that EKA outperform TMA for retrieval and extension operation, and

furthermore compressed EKA is better than that of uncompressed EKA.

68

CHAPTER VI

Conclusion

6.1 Summary

Many scientific applications extensively use multidimensional array to represent their data for

efficient processing purpose. However in many cases the total number of data or dimension

cannot be predicted beforehand. Besides this, representing the real world data in

multidimensional array creates a very sparse array. In this research work, we managed three

practical problem of multidimensional data representation namely (i) extending the length or size

of the array dynamically, (ii) address space overflow, and (iii) sparsity of array.

We proposed a new scheme namely Extendible Karnaugh Array (EKA) for multidimensional

array representation. The main idea of the proposed model is to represent multidimensional array

by a set of two dimensional extendible arrays. To extend the TMA re-linearization is necessary

but this is very costly when the array is large. Therefore we need an array system to extend in all

dimensions without costly shuffling of the existing data. Our proposed EKA model serves this

purpose efficiently. Most of array systems do not consider the address space overflow problem,

but proposed scheme manages the problem effectively. Sparsity creates a new direction of data

representation, so to handle it we also presented a suitable compression scheme for the proposed

model.

We evaluated the proposed EKA and its variant i.e. the compressed EKA by theory and

experiment. The experimental results confirm the theory for various array operations. Again we

compared the EKA with traditional array representation and found better results for the proposed

model.

6.2 Future Scope of Work

Though the overall effect will very little, but there is still a scope to minimize the auxiliary tables

maintained in proposed EKA. Since the proposed model is a multidimensional array

69

representation scheme, any application or system that uses multidimensional array to represent

data can use the scheme. More specifically –

• This scheme can be successfully applied to database applications especially for

multidimensional database or multidimensional data warehousing system.

• One important future direction of the work is that, the scheme can be easily implemented

in parallel platform.

• Because most of the operations described here is independent to each other. Hence it will

be very efficient to apply this scheme in parallel and multiprocessor environment.

70

REFERENCES

1. Seamons, K.E. and Winslett, M., 1994, “Physical Schemas for Large

Multidimensional Arrays in Scientific Computing Applications”, Proc. of 7th

International Conference on Scientific and Statistical Database Management

(SSDBM), pp. 218−227, IEEE CS, Washington, DC, USA.

2. Sarawagi, S. and Stonebraker, M.,1994, “Efficient Organization of Large

multidimensional Arrays”, Proc. of 10th International Conference on Data

Engineering, pp. 328−336, Houston, TX , USA.

3. Li, J. and Srivastava, J., 2002, “Efficient Aggregation Algorithms for Compressed

Data Warehouses”, IEEE Transaction on Knowledge and Data Engineering, Vol.

14, No. 3, pp. 515−529.

4. Zhao, Y., Deshpande, P.M. and Naughton, J. F., 1997, “An Array Based Algorithm

for Simultaneous Multidimensional Aggregates”, ACM SIGMOD, pp. 159−170.

5. Acker, R., Pieringer, R. and Bayer, R., 2005, “Towards Truly Extensible Database

Systems”, Proc. of DEXA conference, LNCS, Vol. 3588, pp. 596–605.

6. Hasan, K.M.A., Azuma, M.N., Tsuji, T., and Higuchi, K., 2005, “An Extendible

Array Based Implementation of Relational Tables for Multidimensional Databases”,

Proc. of DaWak, LNCS, Vol. 3580, pp. 233−242.

7. Otoo, E. J. and Merrett, T.H., 1983, “A Storage Scheme for Extendible Arrays”,

Computing, Vol. 31, pp. 1−9.

8. Sidiroglou, S., Giovanidis, G. and Keromytis, A. D., 2005, “A Dynamic

Mechanism for Recovering from Buffer Overflow Attacks”, Information Security

Conference/Information Security Workshop - ISC(ISW), pp. 1−15.

9. Chiueh, T. and Hsu, F., 2001, “RAD: A Compile-Time Solution to Buffer Overflow

Attacks,” Proc. of ICDCS, pp. 409−417.

10. Hasan, K.M.A., Tsuji, T. and Higuchi, K., 2006, “A Parallel Implementation

Scheme of Relational Tables Based on Multidimensional Extendible Array”,

Journal of Data Warehousing and Mining, Vol. 2, No. 4, pp. 66−85.

11. Chun, Y. L., Jen, S.L. and Yeh, C.C., 2002, “Efficient Representation Scheme for

Multidimensional Array Operations,” IEEE Transactions on Computers, Vol. 51,

No. 3, pp. 327−354.

71

12. Kumakiri, M., Bei, L., Tsuji, T. and Higuchi, K., 2006, “Flexibly Resizable

Multidimensional Arrays”, Proc. of 22nd International Conference on Data

Engineering Workshops, pp. 83−88, Atlanta, GA, USA.

13. Chun, Y. L., Yeh, C.C. and Jen, S.L., 2003, “Efficient Data Compression Methods

for Multidimensional Sparse Array Operations Based on the EKMR Scheme,” IEEE

Transactions on Computers, Vol. 52, No. 12, pp. 1640−1646.

14. Rosenberg, A.L., 1974, “Allocating Storage for Extendible Arrays”. Journal of the

ACM (JACM), Vol. 21, pp. 652−670.

15. Rosenberg, L. and Stockmeyer, L. J., 1977, “Hashing Schemes for Extendible

Arrays”, JACM, Vol. 24, pp.199−221.

16. Otoo, E. J. and Rotem, D., 2006, “A Storage Scheme for Multi-dimensional

Databases Using Extendible Array Files”, Proc. of 3rd Workshop on STDBM, pp.

67−76, Seoul, Korea.

17. Otoo, E. J. and Rotem, D., 2006, “Efficient Storage Allocation of Large-Scale

Extendible Multi-dimensional Scientific Datasets”, Proc. of 18th International

Conference on SSDBM, pp. 179−183, Vienna, Austria.

18. Kumakiri, M., Li, B., Tsuji, T. and Higuchi, K., 2006, “Flexibly Resizable

Multidimensional Arrays”, Proc. of 22nd International Conference on Data

Engineering Workshops, pp. 83−88, Atlanta, GA, USA.

19. Li, B., Tsuji, T. and Higuchi, K., 2007, “Sharing Flexibly Resizable

Multidimensional Arrays in Client/Server Environment” Proc. of the International

Workshop on Databases for Next Generation Researchers, pp. 19−24, Istanbul.

20. Rotem, D. and Zhao, J.L., 1996, “Extendible Arrays for Statistical Databases and

OLAP Applications”, Proc. of 8th International Conference on SSDBM, pp.

108−117, Stockholm, Sweden.

21. Barret R., Berry M., Chan T.F., Dongara J., Eljkhhout V., Pozo R., Romine C. and

Van H., 1994, “Templates for the Solution of Linear Systems: Building Blocks for

the Iterative Methods”, SIAM, 2nd. ed.

22. White J. B. and Sadayappan P., 1997, “On Improving the Performance of Sparse

Matrixvector Multiplication”, Proc. of International Conference on High

Performance Computing, pp. 711−725.

23. Shao, Y., Deshpande, P.M. and Naughton, J.f., 1997, “An Array Based Algorithm

for Simultaneous Multidimensional Aggregate”, Proc. of SIGMOD’97, pp.

159−170.

72

24. Tsuji, T., Hara, A. and Higuchi, K., 2006, “An Extendible Multidimensional Array

System for MOLAP”, SAC’06 April pp. 23−27, Dijon, France.

25. Shimada, T., Fang, T., Tsuji, T. and Higuchi, K., 2006, “Containerization

Algorithms for Multidimensional Arrays”, Asia Simulation Conference, pp.

228−232, Heidelberg: Springer-Verlag.

26. Tsuji, T., Jin, D. and Higuchi, K., 2008, “Data Compression for Incremental Data

Cube Maintenance”, DASFAA, LNCS, Vol. 4947, pp. 682−685.

27. Mano, M.M., 2005, “Digital Logic and Computer Design”, Prentice Hall.

28. Pedersen, T. B. and Jensen, C. S., 2001, “Multidimensional Database Technology”,

IEEE Computer, Vol. 34, No.12, pp. 40−46.

29. Rotem, D., Otoo, E. J. and Seshadri, S., 2007, “Optimal Chunking of Large

Multidimensional Arrays for Data Warehousing”, Lawrence Berkeley National

Laboratory, University of California, LBNL-63230.

30. Stabno, M. and Wrembel, R., 2007, “RLH: bitmap compression technique based on

run-length and huffman encoding”, Proc. of the 10th International Workshop on

Data Warehousing and OLAP (DOLAP ’07), pp. 41−48.

31. Stockinger, K. and Wu, K., 2007, “Bitmap indices for data warehouses”, In

Wrembel, R. and Koncilia, C. (eds), DataWarehouses and OLAP: Concepts,

Architectures and Solutions, Idea Group Inc. ’07, ISBN 1-59904-364

32. Eggers, S. and Shohani, A., 1980, “Efficient Access of Compressed Data”, Proc. of

6th International Conference on Very large Databases, pp. 205−211.

33. Kornacker, M., 1999, “High-Performance Extensible Indexing”, Proc. of VLDB,

pp. 499−508.

34. D. Knuth, 1973, “The Art of Computer Programming”, Vol. 3: Sorting and

Searching, Addison-Wesley Publ. Co, Reading, Mass.

35. Bertino, E. and Kim, W., 1989, “Indexing Techniques for Queries on Nested

Objects”, IEEE Transactions on Knowledge and Data Engineering, Vol. 1, No. 2,

pp. 196−214.

36. Jin, D., Tsuji, T., Tsuchida, T. and Higuchi, K., 2008, “An Incremental Maintenance

Scheme of Data Cubes”, Proc. of DASFAA, pp. 172−187.

37. Apaydin, T., Canahuate, G., Ferhatosmanoglu, H. and Tosun A. S., 2006,

“Approximate Encoding for Direct Access and Query Processing over Compressed

Bitmaps”, Proc. of Conference on Very Large DataBases (VLDB), pp. 846–857.

73

38. Bassiouni, M. A., 1985, “Data Compression in Scientific and Statistical Databases”,

IEEE Transaction on Software Engineering, Vol. 11, No.10, pp. 1047−1057.

39. Datta, A. and Thomas, H., 2002, “Querying Compressed Data in Data Warehouses”,

Journal of Information Technology and Management, Vol. 3, No. 4, pp. 353−386.

40. Li, J., Rotem, D. and Wong, H. K., 1987, “A New Compression Method with Fast

Searching on Large Databases”, Proc. of 13th International Conference on Very

Large Databases, pp. 311−318, Morgan Kaufman.

41. Kim, M. H. and Lee, K. Y., 2006, “Efficient Incremental Maintenance of Data

Cubes”, Proc. of 32nd International Conference on Very Large Databases, pp. 823–

833, Morgan Kaufman.

42. Ng, W. and Chinya, V. R., 1997, “Block-Oriented Compression Techniques for

Large Statistical Databases”, IEEE Transaction on Knowledge and Data

Engineering, Vol. 9, No. 2, pp. 314–328.

43. Owen, K., 2002, “Compressing MOLAP Arrays by Attribute-Value Reordering: An

Experimental Analysis”, UNBSJ ASCS Technical Report TR-02-001.

44. Hasan, K.M. A., Tsuji, T., and Higuchi, K., 2007, “An Efficient Implementation for

MOLAP Basic Data Structure and Its Evaluation”, Proc. of DASFAA, LNCS, Vol.

4443, pp. 288–299.

45. Tsuji, T., Kuroda, M. and Higuchi, K., 2008, “History Offset Implementation

Scheme for Large Scale Multidimensional Data Sets,” Proc. of ACM Symposium

on Applied computing, pp. 1021−1028.

	TOP.pdf (p.1)
	Table of Contents.pdf (p.2-11)
	chapter 1 Introduction.pdf (p.12-16)
	chapter 2 - Lit review.pdf (p.17-33)
	chapter 3 - The EKA.pdf (p.34-54)
	Chapter 4 Compression Scm.pdf (p.55-64)
	Chapter 5 Results.pdf (p.65-78)
	Chapter 6 Conclusion.pdf (p.79-80)
	References.pdf (p.81-84)

