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Summary

Lattice theory is an important part of mathematics . Ideal lattice and n-ideal of a lattice have
played many roles in development of lattice theory. Historically, lattice theory started with
Boolean distributive lattices: as a result, the theory of ideal lattice and n-ideal of a lattice is
the most extensive and most satisfying chapter in the history of lattice theory. Ideal lattice
have provided the motivation for many results, in general lattice theory. Many conditions on
lattices and on element and ideals of lattices are weakened forms of distributivity is imposed
on lattices arising in various areas of mathematics, especially algebra.

In lattice theory there are different classes of lattices known as variety of lattices. Class of
Boolean lattice is of course most powerful variety. Throughout this thesis we will be
concerned with another large variety known as the class of ideal lattice and n-ideal of a lattice
have been studied by several authors.

The realization of special role of ideal lattices moved to break with the traditional approach to
lattice theory, which proceeds from partially ordered sets to general lattices, semi modular
lattices, modular lattices and finally ideal lattices.

In this thesis we give several result on ideal and n-ideal which will certainly extend and
generalize many results in lattice theory. In order to review, we include definations, examples,
solved problems and proof of some theorems. The thesis contains four chapter.

Chapter 1 we have discussed the basic defination of relation, poset, lattice, complete
lattice, convex sub lattice, complemented and relatively complemented lattice. We also proved
that, Dual of a complete lattice is complete .

Chapter 2 have discussed basic concept of ideal and n-ideal of lattice. Here we study the
defination and examples of ideal and n-ideal. Some imprtant theorem like “If n is a neutral
element of a lattice, then I (L) is modular if and only if L is modular”.

Chapter 3 we have discussed Standard element and n-ideals. We also discussed in this
chapter Congruence relation.

Chapter 4 deals with standard n-ideal and Principal n-ideal. This is the main part of this
thesis work. In this chapter we have discussed some defination and some important theorems
like “For a neutral element n and a standard n-ideal S and an n-ideal I, SN is also a

standard n-ideal” .

Vi
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CHAPTER 1

Preliminaries

1.1 Some defination of lattices:

1.1.1 Relation: Let A and B be two non-empty set, any subset of AxB (Cartesian Product) is
called relation from A to B. The elements a,b (a< A, b e B) are in relation with respect
toRif (a, b) € R.

For (a ,b) € R, we will also write “a R b” or “a = b (R)” and read as “a is related to b by
R”.
Example : Let A={1, 2, 3}; B={4, 5}
Then AxB={(1, 4), (1, 5), (2, 4), (2, 5), (3, 4), (3, 5)}
R ={(1, 4), (1,5)}, R,={(2,5)}, R,;={(3,4), (1, 5)} are all relations from A to B.

1.1.2 Inverse relation: Every relation R from A to B has an inverse relation R from B to A
which is defined by R™ ={(b, a): (a, b) € R}

In other words, the inverse relation R™ consists of those ordered pairs which when
reversed, i.e. permutated, belongsto R.

Example : Let A={1, 2, 3} and B={a, b}.Then
R={(1, a), (1, b), (3, @)} is a relation from A to B. Then the inverse relation of R is
R™={(a 1, (b ), (a 3}

1.1.3 Reflexive relation: A relation R in a set A is called a reflexive relation if, for every
acAh (a aeR.
In other words, R is reflexive if every element in A is related to itself.

Example : Let A={1, 2, 3}. Then
R={(1,1), (2,2),(2,3),(3,2), (3, 3)}
Here R is reflexive since (1, 1) , (2, 2) and (3, 3) belongs to the relation .

1.1.4 Symmetric relation: Let R be asubset of AxA, i.e. let R bearelationin A. ThenR is
called a symmetric relation if (a, b) eR implies (b, a) eR
that is, if a is related to b then b is also related to a.

Example : Let A={1, 2, 3}. Then
R={(1, 1), (3, 2), (2, 3)} is symmetric relation.

1



1.1.5 Anti-symmetric relation: Let R be a subset of Ax A, i.e. let R be a relation in A.
Then R is called a anti- symmetric relation if (a, b) eRand (b, a) e Rimplies a=b
In other words, if a # b then possibly a is related to b or possibly b is related to a, but
never both.

Remark: Let D denoted the diagonal line of Ax A, i.e. the set of all ordered pairs (a,a)e Ax A

Then a relation R in A is anti-symmetric if and only if RAR™* < D.
Example 1.1.5: Let A={1, 2,3} . Then
R:={(1, 1)} R2={(1, 2)} both are anti-symmetric relation.
1.1.6 Transitive relation: Arelation R inaset A is called a transitive relation if
(a,b) eRand (b, ¢) eR implies (a, c) eR
In other words, if a is related to b and b is related to c then a is related to c.
Example : Let A={1, 2, 3}. Then
R1={(1, 2), (2, 2)} R={(1, 3), (3,3)} both are transitive relation .
1.1.7 Equivalence relation: A relation R in a set A is an equivalence relation if
(1) R is reflexive, that is for every acA, (a,a) e R
(2) R is symmetric, thatis (a, b) eR = (b, a) eR
(3) R is transitive ,thatis (a, b) eRand (b,c) eR = (a, ¢) eR.
Example : Let A={1, 2, 3} be aset and
R={(1,1), (2 2),(3,3),(1,2),(2,1),(1,3),(3,1), (2,3)} bearelation of Ax A then
the relation is an equivalence relation, since
()R is reflexive, {(1, 1), (2, 2), (3,3)}e R,
(2)R is symmetric, {(1, 2), (2, 1), (1, 3), (3, )}<R and
(3) R is transitive, {(2, 1), (1,3), (2,3)}<R.
1.1.8 Partial order relation : A-relation R is called a partial order relation if

1. R is reflexive i.e. aRa,Vae A
2. R is anti symmetric if aRb and bRa=>a=b VabeA

3. Ris Transitive if aRb and bRc=aRc Va, b, ce A



Example : Let A={L, 2, 3}
Then, R={(1, 1), (1, 2)} is Quasi order relation on A.
1.1.9 Quasi order relation: A relation R on a set A is called Quasi order relation if,
1. Ris reflexive i.e. aRa,Vae A
2. Ris Transitive i.e. aRb and bRc = aRc Va,b,c € A.
Example: Let A={l 2, 3}
Then, R={(1, 1), (2, 2), (3, 3), (1, 2)} is partial order relation.
1.1.10 Supremum: Suppose (P,<)is a poset and H — P,a e P.Then a is an upper bound of H,
if h<a forall he H.An upper bound a of H is the least upper bound of H or supremum of
H . If for any upper bound b of H such that a <b. Writtenas a=Sup H
for {a, b}, Sup{a, b}=avb.
1.1.11 Infimum: Let (P, <)isaposetand H < P, aeP.Thena is an lower bound of H, if

h>a forall he H. A lower bound a of H is the greatest lower bound of H or infimum
of H . If for any lower bound b of H such that b < a.We shall write a= InfH
for {a, b}, Inf {a, b}=aAb.

1.1.12 Partially order set (Poset) : A non-empty set P, together with a binary relation R is
said to be a Partially Orderd set or a Poset if
(P1) aRa for every aeP, i.e., Ris reflexive.

(P2) aRb and bRa implies a=b, i.e., R is anti-symmetric, fora, beP
(P3) aRb and bRc implies aRc, i.e. R is transitive, for a, b, ceP.

Remark: For our convenience, we use the symbol “<” in place of R. We read < as “less than
or equal to”. Thus if P is a poset then we automatically assume that “<” is the partial
ordered relation in P, unless other symbol is mentioned.

1.1.13 Totally order set (Toset or Chain): If P is a poset in which every two members of P
are comparable it is called a totally ordered set or a toset or a chain.

Thus if P is a chain and X,y € P then either x<yor y<x.
Clearly also if x, y are distinct elements of a chain then either x<yor y<x.
1.1.14 Well order set: A poset (P, <)is called well ordered set if it is a total ordering and

every non-empty subset of P has a least element.



1.1.15 Greatest element: Let P be a poset. If 3an element aePs.t. x<aforall xePthenais
called greatest or unit element of P. Greatest element if exists, will be unique.

1.1.16 Leastelement: Let P be aposet. If 3 anelement beP s.t. b<x forall xePthenb s
called least or zero element of P. Least element if exists, will be unique.

Example: Let X ={1, 2, 3}. Then(P(X), <) is a poset.
Let A={,{L, 2},{2}.{3}} then (A,2) is a poset with ¢as least element. A has no greatest
element. Let B={{L2}{2},{3}.{L,2,3}} then B greatest element {l, 2, 3} but no least
elements. If C={¢,{1},{2}.{L,2}} then C has both least and greatest elements namely, ¢ and
{1, 2}.

1.1.17 Maximal element: Anelement ain a poset P is called maximal element of P if a<x
forno xep.

Example : In the poset {2, 3, 4, 6, 7, 21} under divisibility 4, 6 and 21 are three maximal

elements (none being the greatest).

Fig-1

1.1.18 Minimal element: Anelement b in a poset P is called a minimal element of P if x<b

forno xeP.
1.1.19 Upper bound of aset: Let S be a non empty subset of a poset P. An element aeP is

called an upper bound of S if x<a VxeS.
1.1.20 Lower bound of a set: Anelement a e P will be called lower bound of S if a<x VxeS.
1.1.21 Lattice (Set theorical Defination): A poset (L,<)is said to form a lattice if for every
a,beL,Supfa,b) and Inf{a,b}exist in L.
In that case, we write
Sup {a,b}=avb (read a join b)
Inf {a,b}=anAb (read a meet b)



Other notations like a+b and a-b or aub and anb are also used for Sup {a,b}and

Inf{a,b}.

1.1.22 Lattice (Algebrical Definition): A set L together with two binary operation ‘A" (meet)
and 'v'(join) is called a lattice if it satisfies the following identities
(i) idempotentlawVvael, ana=a, ava=a
(i) commutative law Va,bel, anb=baa, avb=bva
(iii) associative law Va, b,ceL, an(bac)=(arb)ac andav (bvc)=(avb)vc
(iv) absorption identities Va,bel, an(avb)=a andav(aab)=a

Example : Let X be a non empty set, then the poset (P(X), < ) of all subset is a lattice.

Here for A,BeP(X)
AAB=AnBand AvB=AUB
As particular case, when X ={1, 2, 3}
P(X) ={¢.{3.{2}. {3} {12}, {1.3}.{2.3}.{1.2,3}}

It represented by the following figure.

1.1.22 Bounded lattice: A lattice with smallest and largest element is called a bounded lattice.

Smallest element is denoted by “0” and largest element denoted by “1” or “u”.

Example 1.1.23: The bounded subset of all real number under usual relation < is a bounded
lattice.

1.1.24 Complete lattice : A lattice L is called a complete Lattice if every non empty subset of
L has its Sup and Infin L.

Example 1.1.24: Set of all sub space of a vector space V is a complete Lattice under set

inclusion.



1.1.25 Sub lattice : Let (L,A,v) be a Lattice, A non empty subset S of L is called a sublattice

of L if S itself is a lattice under same operation Aand v in L.

Example : Let L=A{o, a, b, 1} be a lattice.

@]
Fig-3
Sublattice of L are: {o, a, b, 1}, {0}, {a}, {b}, {1}, {0, a}, {0, b}, {0.1}, {a, },{b,1}.
1.1.25 Convex sublattice: A sublattice S of a lattice L is called a convex sublattice of L. If for
all a,beS, [anb,avb]cS.

Example: Let L={o, a, b, c, 1} be a lattice.

e

Fig- 4
Here {o, a, b, ¢} is convex sublattice.

1.1.26 Semi lattice (Set theorical defination) : A poset is called a meet-semi lattice if for all
a, b eP.

Inf {a,b}exist.
And a poset (P, <) is called a join-semi lattice if for all a, b €P. sup {a,b} exists.
Both the meet and join semi lattice are called semi lattice.

1.1.27 Semi lattice (Algebrical Defination) : A non-empty set P together with a binary
composition ‘A" is called a meet-semi lattice and 'v' called a join semi lattice, if for all
a,b,ceP.

() ana=a,ava=a
(i) anb=baa,avb=bva
(ijan(bac)=(anb)ac, av(bvc)=(avb)vc

Both meet and join semi lattice are called semi lattice.
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1.1.28 Complemented Lattice: A bounded lattice in which every element has a complement
is called complemented lattice.

1.1.29 Sectionally Complemented Lattice: If L has a,Oand all intervals [0,a] are

complemented , then L is said Sectionally Complemented Lattice.
1.1.30 Relatively Complemented Lattice: A relatively complemented lattice is a lattice in

which every element has a relative complement in any interval containing it.

1.2. Some related thorem of lattices

Theorem 1.2.1: Dual of a complete lattice is a complete lattice.

Proof: Let (L,p) be a complete lattice and let (L,p) be its dual. Then (L,p) is a lattice.

We have to show that (L,p) is complete lattice.

Let =S <L be any subset of L.
Since L is complete, supS and inf S existin L.
Let, a=infS in L.
Then apx, vxelL
= xpa,Vxel
— a is an upper bound of S in L.
Let b be any other upper bound of S in L
Then xpa,vxel
=bpx,Vxel

—bpaasa=infS inL.
— apb orthat ‘a’is lub of S in L

Similarly, we can show that supS in L will be S in, L. Hence (L,p) is complete. m
Theorem 1.2.2: Product of two lattice is a lattice.
Proof: Let A and B be two lattices then we have already proved that
AxB={(a,b):ae AbeB} isaposet under the relation < defined by
(a,b)<(a,b)=a <a, inA b <h, inB.
We show Ax B forms a lattice.

Let (a,b,), (a,,b,) e AxB be any elements.



Then {a, a,} Aand {b,, b,}€B.
Since A and B are lattices, {a,, a,}and {b,, b,} have Sup and Inf in A and B respectively.
Let a, Aa,=Inf{a,a,}, b Ab, =Inf{b;,b,}
thena, na, <a,, a, Ad, <4,
b Ab,<b, b Ab, <b,
=(ara,, b ab)<(a,h)
(a, nd,, b Ab)< (a,, b))
= (&, A8,, b Ab,) isa lower bound of { (a,, 1), (a,, b, }}
Suppose (c,d) s any lower bound of {(a,, b,), (a,,b, }
Then (c,d) < (a;, b)
(c,d) < (a,,b,)
—c<a, c<a,, d<b, d<b,
= ¢ is a lower bound of {&,, &,}in A.
d is a lower bound of {b;, b,}in B.
= c<a Aa,=Inf{a,a,}
d<b Ab,=Inf{a, a,}
= (c,d) <(a, Ara,, b Ab,)
So that (8, Ad,,b, Ab,) isg.Lb. {(a,b,), (a,b,}}
Similarly(by duality) we can say that (a, v a,, b, vb,)is Lu.b{(a,b,), (aZ,bZB
Hence AxBiis a lattice.
Also (a,,b,) A(a,, b,)=(a, ra,, b Ab,)
(a,b)v(a,b,)=(ava, bvh) =

Theorem 1.2.3: Show that a poset is a lattice iff it is algebraically a lattice.
Proof: Clearly L is a non empty set.
So set aAab=inf{a,b} and avb=sup{a,b}

Then ana=inf{a,a}=a;ava=sup{a,a}=a



So A and v are idempotent
anb=inf{a,b}=inf{b,a}=bAa
avb=sup{a,b}=sup{b,a}=bva
. Aand v are commutative.

Next, a A (bac)=inf{a,b Ac}=inf{a,inf{b,c}}
=inf{inf{a, b},c}=inf{fa A b,c}
=(@nb)ac

av (bvc)=sup{a,bvc}t=sup{a,sup{b,c}}
=sup{sup{a, b},c}=sup{a v b,c}
=(avb)vc

S0 A and v are associative.

Finally, a A (avb)=aAsup{a,b}=inf{a,sup{a,b}}=a

av(aab)=avinf{a,b}=sup{a,inf{a,b}}=a

Hence A and v satisfy two Absorption identity

So L=(L;,A,V) is a lattice.

(i) Since A is idempotenti.e. ara=a Vael

So a<a

~.< is reflexive.

Since A is commutative
anb=bna
—a=b[..anb=a and avb=Db]
So, < is anti symmetric.
Let a<b and b<c

Then a=aAb, b=bac
=an(bac)

=(@ab)ac

=aAncC
—a=aACcC

—>as<cC



So, < is transitive
(L, <)isaposet. m
Theorem 1.2.4 : A sub lattice S of a lattice L is a convex sublatice iff va,beS with
a<b;[a,b]cS.
Proof : First suppose, S is a convex sublattice in L.
Then we have to show thatV a, be S, (a <b),[a, b]< S.
Letva, b eS be any elements, then by definition of a convex sublattice, we have,
[aAb, avb]cS........ (1)

But given that a<b

anb=a, avb=b

Therefore (i) becomes [a, b]< S

Conversely suppose Va,beS with a<b

[a, b]<S.....(2)

we have to show that S is convex sublattice in L.

Since S is a sublattice of L

So, by definition of a sublattice.

anbeS and avbeS VvabeS
Again, V a,b e S we know.

anb<avb
So by given condition. [i.e. (2) become]

[a Ab, avDb]cS.
Therefore S is convex sublattice. m

Theorem 1.2.5 : Two bounded lattice A and B are complemented if and only if AxB is

complemented.
Proof: Let A and B be complemented and suppose o, u and o’,u’ are universal bounded of A and
B respectively.

Then (0,0") and (u,u”) will be least and greatest elements of AxB

Let (a, b) e AxB be any element.

Then aeA, be B and as A, B are complemented, 3a’e A b’ € B s,

10



ana =0, ava =u,bab =0,bvb =u
Now (a,b)a(@,b)=(@na’,bab)=(0,0)
(a,b)v(@,b)=(ava’, bvb)=(u,u")
Shows that (a’, b") is complement of (a,b)in AxB.
Hence AxB is complemented.
Conversely, let AxB be complemented.
Let a € A,b € Bbe any elements.
Then (a,b) e AxB and thus has a complement, say (a’,b’)
Then(a, b) A (@', b") =(0, 0), (a, b) v (a’, b") = (u, u")
= (ara’,bab)=(0,0Y), (ava’, bvb)=(u,u’)
—=anad' =0, ava =u
=bAab'=0,bvb' =U’
ie, @' and b" are complements of a and b respectively. Hence A and B are

complemented. m

Theorem 1.2.6 : Two lattice A and B are relatively complemented if and only if AxB is
relatively complemented.

Proof: Let A, B be relatively complemented lattice.
Let [(a,,h,), (a,,b,)] be any interval of AxBand suppose (X, y) is any element of this
interval.
Then(a,b)<(x,y)<(a,,b,) a,a,, xeA b,b,,yeB
=a, <X<a, b <y<b,
= x €[a,,a,] an interval in A, y €[b,,b,] an interval in B.
Since A,B are relatively complemented, x,y have complements relative to [a,,a,] and
[b,,b,] respectively.
Let x" and y' be these complements. Then
XAX =a, YAy =b

xvx' =a,, yvy =hb,

11



Now XYAXY)=(xAXyay)=(a,b,)
Y v(X\y)=(xvX,yvy)=(a,b,)
= (x',y’) is complement of (x,y) related to [(a,,b,),(a,,b,)]
Thus any interval in AxB is complemented.
Hence AxB is relative complemented.
Conversely, let Ax B be relatively complemented.
Let [a,,a,] and [b,,b,] be any intervals in A and B.
Let x e[a,,a,], y €[b;,b,] be any elements.
Then a, <x<a,,b, <y<b,
= (a,b) <(x,y)<(a,,b,)
=(x,y)el(a,;,b,), (@,,b,)], an interval in AxB
= (X,y) has a complement, say (x',y’) relative to this interval
Thus

X, YA, y) =(a,b)
(X, y)v (X, y)=(a,b,)
= (xAX, yay)=(a,b)
(xv X, yvy)=(a,h,)

= XAX' =3, XvX =a,

yry'=b, yvy'=b,

= x' is complement of x relative to [a,, a,]
y' is complement of y relative to [b;, b, ]

Hence A, B are relatively complemented. =

Theorem 1.2.7: Dual of a complemented lattice is complemented.

Proof: Let (L,p) be a complemented lattice with o, u as least and greatest elements. Let (L,p)
be the dual of (L,p). Then u, o are least and greatest elements of L.

Let ae L =L beanyelement

Since aelL, a' iscomplemented, 3 aecLs.t,
ana'=0,ava =uinL

i.e.,, o=inf{a,a}inL

12



= opa, opa’

=apo,a po in L

— 0 is an upper bound of {a,a’} in L

If k is any upper bound of {a,a’} in L then apk,a’pk
= kpa,kpa' = kpo as o is Inf.

=opk

i.e,oisl.ub. {aa}inL

i.e, ava'=o inL

Similarly, ara’=u in L

or that a’ is complement of a in L.Hence L is complemented. m
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CHAPTER-2
Basic concept of ideal and n-ideal of a lattice

Introduction: The idea of n-ideals in a lattice was first introduced by Cornish and Noor in
several papers [1], [2], [3]. Let L be a lattice and ne Lis a fixed element, a convex sublattice
containing n is called an n-ideal. It is denoted by I (L). If L has a “0”, then replacing n by “0”

an n-ideal becomes an ideal. Moreover if L has 1, an n-ideal becomes a filter by replacing n by
1. Thus, the idea of n-ideals is a kind of generalization of both ideals and filters of lattices. So
any result involving n-ideals will give a generalization of the results on ideals and filters with 0
and 1 respectively in a lattice.

Clearly (a,a,,a,... ... ... An)n= Q) Vo e vi{(a,),

The n-ideal generated by a finite number of elements is called a finitely generated n-ideal. The
set of all finitely generated n-ideals is denoted by F (L). Of course F, (L) is a lattice. The n-

ideal generated by a single element is called a principal n-ideal. The set of all principal n-ideals
of L isdenoted by P,(L). We have

(ay, ={xeL:aann<x<avn}
The median operation
m(x,y,2) =(XAY)v(yAzZ)v(zAX)

is very well known in lattice theory. This has been used by several authors including Birkhoff
and Kiss [4] for bounded distributive lattices, Jakubik and Kalibiar [5] for distributive lattices
and Sholander [6] for median algebra.

A lattice L with O is called sectionally complemented for all x e L.

A distributive lattice with 0, which is sectionally complemented is called a generalized boolean
lattice. For the background material we refer the reader to the texts of G. Grétzer [7], Birkhoff
[8] and Rutherford [9].

In section 1, we have given some fundamental results on finitely generated n-ideals. We have
shown that for a neutral element n of a lattice L, P,(L) is a lattice if and only if n is central.

We have also shown that for a neutral element n, a lattice L is modular (distributive) if and
only if I (L)is modular (distributive). We proved that, in a distributive lattice L, if both

supremum and infimum of two n-ideals are principal, then each of them is principal.

14



In section 2, we have studied the prime n-ideals of a lattice. Here we have generalized the
separation property for distributive lattices given by M. H. Stone in terms of prime n-ideals.
Then we showed that in a distributive lattice, every n-ideal is the intersection of prime n-ideals
containing it.

2. 1. Finitely generated n-ideals.

We start this section with the following proposition which gives some descriptions of F_(L).

2.1.1 Proposition: Let L be a latticeand ne L. For a;,a,,a;... ... ... a, el
D) (@88 8y, S
{yel:(a]r@]A... ... A Al (YIS @]V (@,].....v (a,]v (n]}
(i1) (a,a,,a5... ... ... a,),={yelL:a ra, rna,....... Aa, AN<y<a va,Vv...a,Vvn}
(iii) (a8, 85 o a,), =

{yelL:a rna, ra,....... Ara, AnNSy=(yra)vyra,)v..... (yra,)v(yan)}
when L is distributive.
(iv) Forany ae L
(@,={yeL:ann<y=(yra)v(yan)}
={yeL:y=(yra)v(yan)v(ann}

whenever n is standard.

(v) Each finitely generated n-ideal is generated two n-ideal

Indeed (a,,a,,a,... ... ... A, ),= (@ Ad, AL, Al A Na V... va,vny, .

(vi) F,(L) is a lattice and its members are simply the intervals [a,b] such that a<n <b and for
each intervals

[a, b]v [a,,b,]=[an a;,bv b,]
and [a, b]A [a,,b,]=[ava,,bA b,]

Proof: (i) Right hand side is clearly an n-ideal containing a,,a,,a;... ... ..&,

m -

(i1) This clearly follows from (i) and by the convexity of n-ideals.
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(iii) When L is distributive, then by (if) y<a,va,Vv...... va, Vvn implice that
y=ynala,va,v...... va,vnl=(yra)vyra,)v..... v(yra,)v(yan), and
(iii) follows.
(iv) By (ii) (@), ={yeL:aan<y<awvn}.
Theny=yAa(avn)=(yaa)v(yan), whenn is standard. This proves (iv)

(v) This clearly follows from (ii)

vi) First part is readily verifiable. For the second part, consider the intervals [a,b] and

[a,,b,]where a<n<b ,and a, <n<b,

Then using (ii)we have,,[8,b] v[a,,b,]=(a,a;,b,b,),
=[ana, AbAb, Anava, vbvhb, vn]
=[ana,,bvb], while
[a,b]Afa;, b, ]=[ava,bADb,] istrivial.

In general, the set of principal n-ideals P, (L) is not necessarily a lattice. The case is different

when n is a central element. The following theorem also gives a characterization of central
element of a lattice L. m

Theorem 2.1.2: IfP,(L) is a lattice if and only if n is central, where n be a neutral element of a
lattice.
Proof: Suppose P, (L) isa lattice and Xx<n<y.Then [x, y]={(X), v{y),.
Since P, (L) isa lattice, (x), v(y), =(c),forsome ce L.
This implies that c is the relative complement of n in [ X, y]. Therefore n is central.
Conversely, suppose n is central.
Let (x),, (Y), € P,(L)
Then using neutrality of n and proposition-2.1.1.
Xy, ALY, =[XAnXvN]A[y AN yvn]
=[(xvy)An,(XAy)vn]

and (x), v{y), =[XAyAnxvyvn]

16



Since n is central, there exist ¢ and d such that
cAan=(Xvy)an, cvn=(XAy)vn
And dAn=xAyan dvn=xvywvn
Which implices that (x), A(y), =(c),and (x), v{y), =(d),
and so P, (L) is a lattice. m
Theorem 2.1.3: If a,beLwith a<n<b, the intervals [a,n] and [n,b]are complemented ,
then F (L) is sectionally complemented when L be a lattice.
Proof: Let the interval [a,n] and [n,b] are complemented for all a,belL with a<n<b.
Consider (a), c[c,d] < [a,b]
Then a<c<n<d<b.Since[a,n]and [n,b] are complemented so there exist ¢’and d’
Suchthat cvc'=n,cac'=a
and dad'=n, dvd' =b
Thus[c,d]A[c',d]=[cvc,dAd]=[nn]=(n)
and [c,d]v[c,d]=[cAac,dvd]=]ab]
which implies that [c,d] has a relative complement [c’,d']. Hence F (L)is sectionally

complemented.

Conversely, suppose F, (L) is sectionally complemented.

Consider

a<c<n and n<d<b

Then (n) c[c, d]c[a, b]

Since F, (L)is sectionally complemented, so there exists [c’,d"]such that[c,d] A [¢’,d']=(n)

[c, d]v [c', d']=[a,b] This implies

cvc'=n, cac' =a

And dad’'=n,dvd’=b Thatis c’ is the relative complement of ¢ in [a,n]and d’ is the
relative complement of d in [n, b]. Hence [a,n] and [n,b]are complemented for all a,beL

with a<n<b. =
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Lemma 2.1.4: An element n of a lattice L is neutral if and only if
mx,n,y)=(XAy)v(XAan)v(yan)

=(Xvy)AXvnAa(yvn). =

Theorem 2.1.5: If n is a neutral element of a lattice L. Then 1 _(L) is modular if and only if L is
modular.
Proof: Let 1,J,K el (L) where L is modular. withK c I.
By modularity

(IA)VvKcIA@VK).
To prove the reverse inequality, let xelA(JvK). Then xel and xe(JvK). Then
Ak £x<j, vk, for somej,j, €J,k;, Kk, eK. Since | oK so xak, el and xvk,el.
Then
mXAky,n, ) Ak, =k Al((xAk) vn)Aa(nv j) A((XAK) V)]
=[(xAk)vnla(nvj)Al(xak)v(k, Aj)], as L ismodular.
<xasj Ak <x
On the other hand

m(xvk,,n,j,) vk, =

{[xvk)Aan]v(naj,) vIxvk)AjI}vk,,
=[(xvky,)an]v(naj,) vIXvk,) Ak, v i),

>xas j,vk,>x, asL ismodular.
So we have
mXAk;,n j) Ak £x<m(xvk,,n,j,) vk,
Hence X e (IAJ)Vv K.
Therefore, IANUVK =(1AJ)vK with k<l andso I,(L) is modular.
Conversely, suppose that I, (L) is modular.
Then for any a,b,ceL with c<a, consider the n-ideals (awvn),, (bwvn) and {(cvn),.
Then of course

(cvn),c(avn),.Since I (L)is modular, So (avn), A [(bvn) v (cvn), ]
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= [(avn), A (bvn),]v (cvn),
Then by proposition 2.1.1 (vi) and by neutrality of n, it is easy to show that
[aan(bve)]lvn=[(@arb)vclvn ... .. (A)

Again, consider the n-ideals (avn),, (bvn), and (cvn), c<a implies
(avn), < (bwvn), . Thenusing modularity of 1 (L) , we have
@vny, v((bvny,v(cvny,)

= (avny,v{(bvn),)v(cvn) Then using proposition 2.1.1 (vi) again and the neutrality of n,
it is easy to see that

[ar(bve)]an=[(@arb)vclan ... .. (B)

From (A) & (B) we havean(bvc)=(aab)vc, with c<a,asnis neutral. Therefore L is
modular. =

From the proof of above theorem, it can be easily seen that the following corollary holds which
is an improvement of the theorem.

Corollary 2.1.6: For a neutral element n of a lattice L, the following conditions are equivalent:-

(i) L is modular,
(i) 1, (L) is modular ,
(iii) F, (L) is modular. m

Theorem 2.1.7:1f L is distributive if and only if I (L) is distributive, where L be a lattice with
neutral element n .

Proof: Suppose L is distributive, Let 1,J,K €1, (L) . Then obviously,

(IA)Vv(IAK) clAJVvK).To prove the reverse inequality, let Xel A (Jv K) which implies

xel and xe (JvK) . Then j Ak, <x<], vk, for some j, ], €J, K;,k, e K. Since L is
distributive,

m(x,n, j,)) Amx,n k) =[(xAn) v (XA j)vha)Ialxan)vxak)v(nak,)]
=(xAanvnajak)vXa k)

<Xv(jAk)=x
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MmN, j,) Amx,n,Kk,) = [XAn) v (XA j,) v (1A IALK ANV (XAK,) v (N AK,)]
=(nA(xvi, vk v(xXa(), ~Ak,)),
=[nA(, vK,)]Vv X=X
Then we have
m(x,n, j;) Am(x,n,K;) <x<m(x,n, j,) v m(x,n,kK,)
and so Xe(IAd)v (I AK).

Therefore IA(JVvK) =(AJ)v(I AK),andso I, (L)isdistributive. m

Following corollary immediately follows from the above proof which is also an improvement of
the above theorem.

Corollary 2.1.8: Let L be a lattice with a neutral element n. Then the following conditions are
equivalent:

(i) Lis distributive,
(ii) 1, (L) is distributive,

(iii) F,(L) is distributive. =
To prove this we need the following lemma:

Lemma 2.1.9: Any finitely generated n-ideal F,(L) which is contained in a principal n-ideal
P (L) is principal, where L be a distributive lattice .

Proof: Let [b, c] be a finitely generated n-ideal such that b<n<c . Let(a), be a principal n-
ideal such that [b, c] = (a), =[aAan,avn].Then aan<b<n<c<avn,

Suppose t=(aAc)vhb.

Then

tan=[(@anrc)vbjan=(naanc)v(nab), as L is distributive.
=bAn=Db

tvn=[(@anc)vblvn=(aanc)vn
=(@avn)a(cvn)

as L is distributive cv n=c

Hence [b,c] =[t An, tvn]=(t),
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Therefore, [b,c] is a principal n-ideal. m

Theorem 2.1.10: If 1 v Jand I A J are principal n-ideals, then | and J are also principal, where
I and J be n-ideals of a distributive lattice .

Proof:Thus 1 v Jand I AJ are principal n-ideals
SoLet, I vi=(a),and | A J=(b),.
Thenforall iel, jeJ, j<aanandi, j>anan.
So there existi,, i, €l, and j;, j, €J suchthat aAn=i,Aj and avn=i, A j,.
Consider the n-ideal [bAi AN, bvi,vn]. Since[bAi,an, bvi,vnlcl c(a),,
[bAl AN, bvi,vn] =<t),, bylemma 2.1.9 forsome te L. Then
<a> =JvioJvlbaian, bvi,vn]

=[L AnAbAal, j,vnvbvi,]

olaan, avn]=<a>, .
This implies that
IvI=Jvlbaian, bvi,vn]=Jv (b,
Further, (b), =J Al 2JA[bAi AN, bvi,vn]

2JAa[bAan, bvn]=(b),

Which implies that
JAl=3AlbAi AN bvi,vn]
=3I A,

Since L is distributive, I, (L) is also distributive .

we obtain that | = (t) . Similarly we can show that J is also principal. =
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2.2 Prime n-ideals.

Theorem 2.2.1: If | is an n-ideal and D is a convex sublattice of L withl nD=®. Then L
contain a prime n-ideal P such thatP o1 and P~ D =® .Where L is a distributive lattice.

Proof: Suppose X be the set of all n-ideals of L that contains | and that are disjoint from D.
Since | € X, X is non-empty. Let C be achainin X andlet T={X:X eC} If a,beT,

then ae X, beY forsome X, Y e€C. Since C is a chain, either X< Y or Y < X. Suppose
XcVY .Then a,beY,andso anb, avbeY cT,asYisann-ideal. Thus, T is a sublattice.

If a,beT and a<r<b,reL then a,beY for some YeC and soreY cT as Y is convex.

Moreover neT . Therefore T is an n-ideal. Obviously T o1 and T "D =®, which verifies
that T is the maximum element of C. Hence by Zorn’s lemma, X has a maximal element, say P.
We claim that P is a prime n-ideal.

Indeed, if P is not prime, then there exist a,b € Lsuch that a,b ¢ Pbut m(a,n,b) e P. Then by
the maximality of P, (Pv(a),)nD=#®. Then there exist XxX,yeD such that
p,Arann<x<p,vavn and paAban<y<p,vbvn for some p,,p,,p;,p, €P. Since
m(an,b)=(@An)v(ban)v(aab)eP, taking infimum with p, Ap;An, we have

(poApsrann)v(p,Ap;AbAN)eP.
Choosing r=((p, Ap; AaAn)v(p, Ap; AbAN), wehave r<xvy withreP.

Since X<rvx<xvy,y<rvy<xvy and D is a convex sublattice, so rvxrvyeD.
Therefore (rvx)A(rvy)eD.

Again, rvxs<p,vavn<p,vp,vavn andrvy<p,vbvn<p,vp,vbvn implies

(rvx)a(rvy)<(p,vp,vavna(p,vp,vbvn)=s(say).

Since m(a,n,b)=(@vn)A(bvn)a(avhb)eP, taking supremum with p,vp,vn, we have
seP. Also, r<(rvx)A(rvy)<s. Thus, again by convexity of P, (rvXx)A(rvy)eP. This
implies P D = @, which leads to a contradiction. Therefore, P is a prime n-ideal . m

We conclude this section with the following corollaries.

Corollary 2.2.2: Let | be an n-ideal of a distributive lattice L and let agl,aeL. Then there

exists a prime n-ideal P of L suchthat P>l and ag P. =
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Corollary 2.2.3: Everyl (L) of a distributive lattice L is the intersection of all prime n-ideals
containing it.

Proof:Suppose P is a prime n-ideal.
Let I, =n{P:P o1, P is a prime n-ideal of L}.
If | #1,, then there isan ael —1. Then by above corollary, there is a prime n-ideal P with

Pol,a¢P.But agP o, givesa contradiction.

Soeveryl (L) of adistributive lattice L is the intersection of all prime n-ideals containing it. m
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CHAPTER-3
STANDARD ELEMENT AND n-IDEALS.

3.1. Some notion and notations

The partial ordering relation will be denoted by <, in case of theoretical set lattice (that is the
elements of which are certain subsets of a given set) by <. In lattices the meet and the join will
be designated by ~ and . And the complete meet and complete join by A andv . The least
and greatest element of a partially ordered set (or of a lattice) we denote by 0 and 1. If a covers b
(i.e. a>Db, but a>x>b for no x), then we write a>b.

If a(x) is a property defined on the set H, then we define {x:a(x)}as the set of all xe H for
which a(x) is true. Hence in partially ordered sets <a > ={x:xAa < x < xv a}is the principal
n-ideal generated by a, while {x:a<x<b} is the interval [a,b] provided that a<b. If b
covers «, then the interval [a,b] is a prime interval. The dual principal n-ideal is denoted by
<a>".

If any two elements a ,b of L, satisfying a <b, may be connected by a finite maximal chains of
the lattice L are finite and bounded, then L is called finite length. If all intervals of the lattice L
are of finite length, then L is of locally finite length. If L has a “n" and is of locally finite
length, furthermore for all a € L, in [n] any two maximal chains are of the same length, then we
say that in L' the Jordan-Dedekind chain condition is satisfied. In this case the length of any
maximal chain of the interval [n] will be denoted by L(a), and d(x) is called the dimension
function.

Let P and Q be partially ordered sets. The ordinal sum of P and Q is defined as the partially
ordered set, which is the set union of P and Q, and the partial ordering remains unaltered in P
and Q, while x <y holds for all xe P and y €Q; this partially ordered set will be denoted by
P& Q. The set of all n-ideals of a lattice L, partially ordered under set inclusion, form a lattice,
which will be denoted by I, (L).

Lemma 3.1.1: I (L)is a conditionally complete lattice. The meet of a set of n-ideals (if it

exists) is the set-theoretical meet. The join of the n-ideals 1,(a € A) is the set of all x such that

I, Aly A Al <x<i, v...i, (i, €l,) forsome elements a; of A. =
n J ]
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If A is a general algebra and ® is a congruence relation of A, then the congruence classes of A
modulo ® form a general algebra A(®). This is a homomorphic image of A. According to [10],
we have the following two general isomorphism theorems.

3.2 The first general isomorphism theorem :

Let A be a general algebra and A" a subalgebra of A, further let ® be an equivalence relation
of A such that every equivalence class of A may be represented by an element of A' . Let ®'
denote the equivalence relation of A" induced by ® . If ® is a congruence relation, then so is ®'
and A(@) = A(@®").

The natural isomorphism makes a congruence class of A correspond to the contained
congruence class of A'.
3.3 The second general isomorphism theorem :

Let A" be a homomorphic image of the general algebra A, let ® be an equivalence relation of
A, and denote ®' the equivalence relation of A' under which the equivalence classes are the
homomorphic images of those of A modulo ® and suppose that no two different equivalence
classes of A modulo ® have the same homomorphic image. Then ® is a congruence relation if
and only if @' is one and in this case A(®) = A'(®')

The natural isomorphism makes an equivalence class of A correspond to its homomorphic
image.

3.4 Congruence relations in lattices :

Let ® be a congruence relation of the lattice L and denote by L/® be homomorphic image of
L induced by the congruence relation ® that is the lattice of all congruence classes. If L/® has

a [n], then the complete inverse image of the [Nn] is an n-ideal of L, called the kernel of the

homomorphism L > L/©.

A simple criterion for a binary relation n to be a congruence relation is formulated in the

following Lemma.
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Lemma 3.4.1: (G. Gratzer and Schmidt [18])

Let n be a binary relation defined on the lattice L. 5 is a congruence relation if and only if the
following conditions hold for all x,y,zeL

@x=x(n) ;

(b)xvy=xAay(n) ifandonly if x=y(#);

(©) x2y=1z, x=Yy(n),y=12(n) imply x=2(7);

(d) x>y andx=y(n) ,thenxvz=yvz(n) andXxAz=yAz(n) .
The congruence relations of L will be denoted by © ,.... ... The set of all congruence relations
of L, partially ordered by ® <® if and only if x=y(® ) implies x=y(®) , will be denoted by
CL). m

Lemma 3.4.2: (Birikhoff [19] and Krisganan [20])

C(L) is a complete lattice x=y(n®, )(@ae A) if and only if x=y(®,) for all acA;
x=y(v®, )(@ae A) ifand only if there exists a sequence of elements in L.
XVY=12y,>222...2Z,=XAY such that

2,=2,(0,)(=1,2,...... , n) for suitable a,.............. a, €A =

Lemma 3.4.3 : ©O(L) is a complete lattice, x=y(A®,)if and only if x=y(®,) for all

aecA; x=y(v®,) if and only if there exist in L a sequence of element

XUY=12,227 2. z,=XNYy such that z =z, (®,) (i=12.... n) for sublattice

The least and greatest elements of the lattice C(L) will be denoted by w and : respectively.

Proof: Let H be a subset of L, [H] denote the least congruence relation under which any pair of
elements of H is congruent. This we call the congruence relation induced by H. If H has just two
elements, H ={a,b} then®[H] will be written as ®,,. The congruence relation ®,, is called
minimal. First we describe the following minimal congruence relation ®,, . To do this, we have
to make some preparations. Given two pairs of elements a,b and ¢, d of L, suppose that either

cand=anb.

And (cnd)u(aub)=cud ,or cud <aub and (cud)n(amb)=cnd
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cvd avb
avb
cad
cvd
anb Fig-1 anb cad
I'd

Then we say that a, b is weakly projective in one step to ¢, d and write a,b—c,d. The
situation is given in Fig.1. In other words a,b—>c,d if and only if the intervals

[(@vb)Aacad,avb], [cad, cvd] or [aab, (aab)vcvd],Jcad,cvd] are transposes. If

there exist two finite sequences of elements a=X;, X, .......e... X,=C and
D =Yy, Virereerirennn y, =d in L such that
ab=X, Yoo X, Vi Xy Yy =CoQ i @

Then we say that a ,b is weakly projective to c¢,d in notation: a,b—c,d or if we are also
interested in the number n, then we write a,b —c,d.
If a,b—>c,dand c,d,—a,b then a,b and c, d are transposes, and we write a,b—c,d. If

the sequence (1) may be chosen in such a way that the neighbouring members are transpose, then

a,b and c, d are called projective and we write a,b —c,d.
The importance of this notion is shown by the fact that a,b —c¢,d and a=b(®) imply c=d(®)

(applying thisto® = @ , we get that a=b implies c=d, a fact which will be used several times).

Now we are able to describe ©,,:

According to [18], we have the following describtion: Let a, b, ¢, d be elements of the lattice L

. ¢=d(®,) holds if and only if there exist yieL with

cvd=y,2y,2....2y,=cad anda,b— vy, ,,y, (i=1,2,...... S K) e (2)
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It is easy to describe ®[H], using Lemma 3.4.2 and above. We have the following trivial
identity:

[Hl=vO,(@beH) ..o (3)

The symbol [H] will be used mostly in case H is an n-ideal. Then one can prove the following
important identity.

VI 1=V T, el(L) e 4)

The following definition is more importance in this chapter. Let L be a lattice and | an ideal of
L. By the quofactor lattice L/ of the lattice L modulo the ideal I is meant the homomorphic
image of L induced by (1), i.e.

L/1zL(®O[I]).

Finally, we mention the definition of permutability: the congruence relations ® and ®are
called permutable if a=x(®) and x=b(®d) imply the existence of a, y suchthat a=y(®)
and y=b(®). =

We recall the definition of standard elements:

The element s of the lattice L is standard if the equality

XAGSVY)=(XAS)V(XAY) e (A) holds forall x,yelL.

First of all, let us see some examples for standard elements, in the lattice L. p is a standard
element. At the same time it is clear that P is not neutral. (Furthermore, in the same lattice

<r >, isahomomorphism kernel but r is not standard.)

Obviously, any element of a distributive lattice L is standard. Furthermore, in any lattice the
element n (if exist) are standard element. The simplest from for defining standard elements is
the equality (A) however; it is not the most important property of a standard element. Some
important characterizations of standard elements are given in the following theorem.

We conclude this chapter with the following results.

Theorem 3.4.4 : (The fundamental characterization theorem of standard elements) the
following conditions upon an element s of the lattice L are equivalent:

(o) s is a standard element;

(B) the equalityu = (UAS) v (UAT) holds whenever u<svt (u,tel);
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() the relation ©, defined by x=y(@,) ifand only if (XAYy)vS, =xvy forsomes, <s is

a congruence relation ;
(®) forall X,y eL

sv(XAY)=(svX)A(SVY)

(i) sAX=sAy and svx=svy implyx=y.

Proof: We have proved the equivalence of the four conditions cicely

(a) implies (B). Indeed if (a) holds and u<swvt , then u=uAa(svt) Owing to (A) we get

u=(unas)v(uat), which was to be proved.

(B) implies (y). Using condition (B) and Lemma 3.4.1 we will prove that ®,is a congruence

relation.

(@) x=x(®,). Indeed for any x e L, the equality (XA X)Vv (XAS)=Xx trivially holds, so if we

put S, =XAS, we get the assertion.

(b) xAy=xvy (0,). This is trivial from the definition of ®,.

(c) xz2y=z ,x=y (0,) and y =z(0,). By hypothesis x=yvs, and y=1zvs, for suitable

elements s, s, <s Consequently Xx=yvs, =(zvs,)vs, =zv(s,vs,) for s, vs,<s, that

means x=z(0,).

(d) Incasex>y and x=y (©,) holds, Xxvz=yvz (O,)and XxAz=yAz (O,) . Infact, by

assumption x =y v's, (s, <s ), and hence we get Xvz=(yvz)vs,, thatis xvz=yvz (0,)

. To prove the second assertion we start from the relations X =y vS, andXAZ<yvSs <yvVs.

Applying condition (B) toU=XAZ t=Yy and usingx Ay =y, we get
XAZ=(XAZAS)V(XAZAY)=(YAZ)VS,, where S,=XAZASLS, which means

XAZ=YAZ (O)

(vy) implies (8). First we prove that (y) implies (8)(i). According to the definition of ®,, the

congruence x=svx(®,) and y=svy (®,) hold for arbitrary X,yelL. We get

XAY=(SVX)A(SVY) (©,). By monotonicity. XAY<(SVX)A(SVY), hence again by the

definition of ©.. it follows that (SvVX)A(SVY)=(XAYy)Vvs, with suitable s; <s. Joining with
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s and keeping the inequalities S, <s and S<(SVX)A(Svy) in view, we derive
sv(XAY)=(svX)A(SVvY), which is nothing else than (8)(i).

Secondly, we prove that (y) implies (8)(ii). Let the elements x and y be chosen as in (5)(ii). We
know that svy=Yy (©,), so meeting with x and using Xvs=yvs we get
X=(XVS)AY=(YVS)AX=YAX(O,), consequently, using (y), (XAy)vs, =x with
suitable s, <s. From the last equality s, <X, accordingly S, <SAX=SAY<Y (in the meantime
we have used the sub-position sAx=sAy of (§)(ii) thus X=(XAY)VvS, <(XAY)VY=Y.
We may conclude similarly that y <X, and thus x=y, which was to be proved.

() implies (o). Let x and y be arbitrary elements of L and define a=XA(Svy) and
b=(XAS)v(XAY). By (d)(ii), it suffices to prove that sha=sAb and sva=svb .

To prove the equality we start froms A a:

SAa=SA[XA(SVY)]=XA[SA(SVY)]=XAS.

It follows from the monotonicity that X AS< Db =(XAS)V (XAY)S[XA(SVY)]VIXA(SVY)]=a.
Meeting with s, we gets A x <s A b <saa. But we have already proved that sAx=sAa , and
so SAa=SADb .Toprove sva=svb we start from sva and use (5)(i) in several times:

sva=sv[XAGBVvY)]=GVX)A[SV(EVY)]=(VX)A(SVY)=SV(XAY)=SV(XAS)V(XAY)=SVD,
Hence proved. m

Lemma 3.4.5 : Let S be a standard element of the lattice L. Then <s>_ is a homomorphism
kernel, namely [<s>,]=0,. Conversely, if x=y[<s> ] hold when and only when
(XAy)vs, =xvYy with asuitable S, <s, then s is a standard element.

Proof: The congruence relation ®, obviously satisfies ® — [<s>;]. Consequently <s>, is in
the kernel of the homomorphism induced by ®,. We have to prove that <s>, is just the kernel.
Otherwise there exists an x >s with x=s (0©,). By definition, it follows X=Ssvs, (5, <S)
which is obviously a contradiction. Conversely, if ® [<s>)]= O, then ®, is a congruence

relation, since ® [<s>,] is one and then from condition (y) of Theorem 3.4.4 it follows that s is a

standard element. =
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We have formulated Lemma 3.4.5 separately despite the fact that it is an almost trivial variant of
condition (y) of Theorem 3.4.4 because it points out that property of the standard elements which
we think to be the most important one. It may be reformulated as follows: if (s] is a principal
ideal of L, then x=y ® [<s>] if and only if there exist a sequence of elements
Xvy=z,22,22,>....22, =XAY ofL, an s, <s, and a sequence of integers ny, ny, ... ...
nm such that s;, s — zi1 zi (i=1, 2, 3...... ,m). Now the definition of standardness is as follows:
s is standard if and only if nj=1 may be chosen for all i. It follows then we may suppose m=1 as

well.
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(i)

CHAPTER-4

Standard n-ideal and Principal n-ideal
Introduction: We discuss some fundamental properties of n-ideals, which are basic to this
thesis. Here we give an explicit description of F, (L)and P,(L) which are essential for the
development of this thesis. Though F (L) is always a lattice , P,(L) is not even a
semilattice. But when n is a neutral element, P,(L) becomes a meet semilattice.
Moreover , we show that P, (L) is a lattice if and only if n is a central element, and then in
fact, P,(L)=F,(L). Standard elements and ideals in a lattice were introduced by Gratzer

and Schmidt [11]. Some additional work has done by Janowitz [12] while Fried and
Schmidt [13] have extended the idea of standard ideals to convex sublattices.
According to Gratzer and Schmidt [11], if a is an element of a lattice L, then

If it is distributive then

av(xay)=(avx)a(avy),forall x,yelL.

(i) If it is standard then

xa(@avy)=(xnaa)v(xay), forall x,yelL.

(iii)  Ifitis neutral if for all X,y € L then

xan(@vy)=(xaa)v(xay)
Gratzer [10] has shown that an element n in a lattice L is neutral if and only if
(MAX)v(nAY)V(XAY)=(vX)A(NVY)A(XVvY) forallx, yel.

An ideal S of a lattice L is called standard if it is a standard element of the lattice of ideals
I(L).

Fried and Schmidt [13] have extended the idea of standard ideals to convex sublattices.
Moreover, Nieminen (convex) sublattices. On the other hand, in a more recent paper Dixit
and Paliwal [15], [16] have established some results on standard, neutral and distributive
(convex) sublattices. But there technique is quite different from those of above authors. We
denote the set of all convex sublattices of L by Csub (L). According to [13] and [17], we
define two operation A and V (these notations have been used by Nieminen in [17] on

Csub (L) by
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A 2 B=<{aa b: aeA beB}>
And A vB=<{av b: aecA beB}>

Forall A, BeCsub (L) where < H > denotes the convex sublattice generated by a
subset H of L.

If A and B are both idealsthen A v B and A 4 B are exactly the join and meet of A and
B in the ideal lattice.

However, in general case neither A cA v B and A 4 B <A are valid. For example if A = {a}
and B = {b}, then both inequalities imply A =B.

According to [15], a convex sublattics of a lattice L is called a standard convex sublattice (or
simply a “standard sublattice”) if

A <S5, K>=<l4S5,14K>

And | v<S,K>=<I v S, | v K> hold for any pair {I,K} of Csub (L) whenever
either SAK nor I n<S, K> are empty, where M denotes the set theoretical intersection.

In this chapter, we have given a characterization of standard n-ideals using the concept of
standard sublattice when n is a neutral element. For a neutral element n of a lattice L, we prove
the following:

Q) An n-ideal is standard if and only if it is a standard sublattice.

(i)  The intersection of a standard n-ideal and n-ideal I of a lattice L is a standard n-ideal
in I.

(iii)  The principal n-ideal < a >, of a lattice L is a standard n-ideal if and only if av n is
standard and is dual standard.

(iv)  For an arbitrary n-ideal | and a standard n-ideal S of a lattice L,if v Sand I AS
are principal n-ideals, then 1 itself is a principal n-ideal.
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4.1. Standard n-ideal

According to Fried and Schmidt [13, Th.-1], we have a fundamental characterization theorem for
standard convex sublattices:

Theorem 4.1.1: The following conditions are equivalent for each convex sublattice S ofa
lattice L :

(a) S is a standard sublattice,

(b) Let K be any convex sublattice of L suchthat KNS # ®. Then to each Xe< S, K > there
exist s,,s, €S, a;,a, € Ksuch that

X=(XAS)Vv(Xra)=(XAS,)Vv(XAaa,)

(c) For any convex sublattice K of L and for each s,,s,'eS, there are elements s, S,'eS,
a,,a, € Ksuch that

X=(XAS)v(XA(a,Vvs,))
=(XAS, )A(XA(a, AS;")
(d) The relation ®[S] on L defined by
X=Y (0O [S]) if and only if
XAY=((XAy)vha(xvy)
and Xvy=((Xvy)As)v(XAy) withsuitable t,seS isacongruence relation. m

Defination (standard n-ideal): An n-ideal S of a lattice L is called a standard n-ideal if it is a
standard element of the Ilattice 1, (L). Where S is called standard if for all

1,Jdel (L), 1n(SvI)=(1nS)v(InJ).

Proposition 4.1.2: [13, Pro.2] An ideal S of a lattice L is Standard if and only if it is a
standard sublattice. Recall that an n-ideal | of a lattice L is called a standard n-ideal if it is a
standard element of 1 (L) the lattice of n-ideals. m

The following theorem gives an extension of proposition 4.1.1 above.

Theorem 4.1.3: If a neutral element n of a lattice L and an n-ideal is standard if and only if it
is astandard sublattice.
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Proof: First assume that an n-ideal S of a lattice L is a standard sublattice. That is, for all
convex sublattice | & K of L with

SnK=dand | n<S, K>2®,
We have | A<S, K>=<l4S5,1 4 K>
And Vv<S§ K>=<lvS | vK>
We are to show that S is a standard n-ideal in I (L).
That is for all n-ideal 1,K € I (L)
IN(SvK) =(InS)v(InK).
Clearly, (I nS)v (I nK) c I n (S vK).
Solet xe IN(SvK). Then xel and xeSvK
so we have
X=(XAS)V (xAq)=(XxVvSs,)A(Xva,),
for some s;,s,€S and a;, a, K.
Now

X=(XAS)V (XAq)
<[xas)vxan)v(s, An)]vi(xaa)v(xan)v(a An)]
=m(x, n, s;)vm(x n, a)

thatis x<m(x, n, s;) vm(x, n, a,)
again

X=(XVvs,)A(xva,)

> [(xvs,)A(Xvn)a(s, v)]al(xva,)A(xvn)a(a, An)]
=m?(x, n, s,)Am(x, n, a,)

=m(X, n, s,)Am(x, n, a,)

as n is neutral.

Hence m(x, n, s,) Am(X, n, a,) <x<m(x, n, s;) vm(x, n, a,)
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Which implies Xe(INS)v (I nK).
Thus, IN(SvK)=(nS)v(l "K).So Sis a standard n-ideal.

Conversely, Suppose that n-ideal S of a Lattice L is standard. Consider any convex sublattice K
of L such that S~ K = ®. Since S is an n-ideal, clearly,

<S, K> =<S§, <K> >
Let

Xe< x> N<(S,<K>))
=(<Xx>NS)v(<cx> N<K>),

as S is astandard n-ideal. This implies

<X> =(x> NS)v(<Xx> N<K> )i @
Since xwvn is the largest element of < x>, .

So we have xvn=m(xvn,n,s;)vm(xvn,n,t)
forsome seS,te <K > .

=(xvn)Aas)v((xvn)at)vn
=(XAS)V((XAt)vn),

as n is neutral
Now te <K > implies t<t vn forsome t e K

Then

XvNZ(XAS)V(XA(t, vn)vn
=(XAs)v(XAat)vn
S(XA(S,vN)v(XAat)vnsxvn

Which impliesthat Xxvn=(XA(s,vn)v(Xat)vn
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Then

X=XA(XVvnN)
=XALXA (S, vN) v (XAt)vn]
=X A{(XA(S; vN) v (XAt)}V (XAN)

as n is neutral

=(XA(S,vN)v(XAat)v(xan)
=(XA(s;vN))Vv(XAt),

where s, vneS, teK .

Since x An is the smallest element of < X >_,using the relation (1) a dual proof of above
shows that X =(XVv (S, An))A(Xv t,) forsome s, €S and t, eK

Hence from Th. 4.1.1 (b) we obtain that S is a standard sublattice.

Now, we give characterizations for standard n-ideals when n is a neutral element. We prefer to
call it the “Fundamental characterization Theorem” for standard n-ideals. =

Theorem 4.1.4: For a neutral element n of a lattice L, Then the following conditions are
equivalent:

(a) S is a standard n-ideal,

(b) K be any n-ideal

SvK=(xXnas)v(xak,)
=(xas)vxak)v(xan)

and

X=(Xvs,)A(Xvk,)
=(Xvs, )AxXvk,)A(XAn)

Forsome s;, S,, S, S,'€S; ky, Ky, k', k,)'e K

(c) The relation O(S) on L defined by x =y @(S) if and only if XAY = (XA Y) Vi) A(XVY) and
Xvy=((Xvy)as)v(XAay), forsome t,seS, isacongruence relation.
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Proof: (a) = (b) . Suppose S is a standard n-ideal and K be any n-ideal. Let x € Sv K. Since
K is also a convex sublattice of L, we have from the proof of theorem 4.1.3,
X=(XA(svN))v(XAat,)

=(Xv (s, AN))A(XAL,)

for some s,,s, €S; t;,t, € K. Since n is neutral, from above we also have

X=(XAS)V(XAt)v(XAn)
=(XVvS,)A(Xvt,)A(XAN).

Thus (b) holds.
Now, suppose (b) = (c). Let (b) holds. Let ®(S) be defined as
x=y O(S)ifandonly if XAy=((XAYy)Vvi)A(Xvy)
and  Xvy=((Xvy)AsS)Vv(XAY).
for x>y
y=(yvt)axand x=(xAs)vy forsome t,seS with s>t.
Obviously, ©(S) is reflexive and symmetric.
Moreover, x=Yy O(S)ifandonly if xAy=xvy O(S)
Now suppose x>y >zwith x=y O(S)and y=z ©(S).

Then X=(XAs)VvY, y=(yvt)axand y=(yAs,)vz, z=(zvt,)Ay for some
S,,S,,a,a, €S,

Then

X=(XAS)VvYy=(XAS)V(YAS,)VvzZ
S(XAS)V(XAS,) vz
<(xA(svs,)vzsx

which implies
X=(XA(5VS,)) vz

This shows that
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y =1z O(S).

For the substitution property,suppose x>y and x=y ©O(S). Then X=(XAS)vYy and
y=(yns,)vz, z=(zvt,) Ay forsome s,, s,, t;, t, €S.

Then

X=(XAS)VY=(XAS)V(YAS,)VZ
S(XAs)V(XAS,) vz
S(XA(S,VvS,)VvZEX

which implies
X=(XA(SVS,)) vz
Similarly, we can show that
X=Yy 0O()

For the substitution property, suppose X >y and x=y ©O(S). Then X=(XAS)VvYy and
y=(yvt)ax forsome s, teS . From these relations it is easy to find s, t € Swith t<S
satisfying the relations. Then forevery zeL, yAaz<xazand YyAZ<tv(YAZ).

Therefore,

YAZS(tV(YAZ))A(XAZ)
<(tvy)A(XA2z)
=((tvy)ax)az
=ZYAL

This implies that yAzZ=(tVv(YAZ))A(XAZ).

Let K be the n-ideal , so

<tAYAZ Y>,.

Since S,tAyAzZeSvK, so by the convexity of

SVK tAYyAZStAYy<tAX<sAX<s as t<s.

This implies that s Ax eSv K Hence X=(SAX)vYyeSvK Also, by the convexity of

SVK tAYAZSYAZSXAZLSX implies YAZ, XAzeSv K. Thenby (b)
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we have

XAZ=(XAZAS)V(XAZAK)V(XAZAN) forsome s, €S,k e K.
=(XAzZAS)V(XAZAN)V(XAZAN) as yvn isthe largest element of K.
=(XAzZAS)V(YAZ)V(XAZAN) as nisneutral.

=((XAZ)A(s;vn)v(YyAaz)

where s, vneS. Therefore xAz=yAz O(S) dually we can prove Xvz=yvzO(S) .

Hence holds. =

Corollary 4.1.5: Let nisa neutral element in a lattice L. Then for a standard n-ideal S of L,
O(S) will be the smallest congruence relation of L, which containing S as a class.

Proof: Here any two element of S are related with @(S).

Now, Let x=Yy ©O(S) with X=> V.

Then by theorem we have y=(yvt)aXx and X=(XAS)vyforsome s, teS.
Suppose, y €S then

y<x=(XAS)vYy<yvs. Then by the convexity of S, xeS.

On the other hand, if xeS, then x> y=(yvt)AX>tAX implies yeS.

Hence ©(S) contains S as a class.

Let @ be a congruence relation containing S asaclass. We have x=y O(S)with X>,
y=(yvt)axand X=(xAs)vy forsome s,teS.
Now

X=(XAS)vy=(xan)vy o
=(xvy)a(vy)

as n is neutral.
=xA(Nvy)=xa(yvt)d=y O.

This implies O(S)c ® . Hence O(S) is the smallest congruence containing S asaclass. m

40



Corollay 4.1.6: If S and T are two standard n-ideals of a lattice L and n is a neutral element,
then ST is standard n-ideal.

Proof: Here, S and T are two standard n-ideals and clearly ST is n-ideal.

Let x =y (©(S) N O(T)) withx >y . Since x=y O(S), s0

we have X=(XAS)vy and y=(yvs,)AX, forsome s;,s,eS. Here we can consider
s,<n<s,. Now x=y ©(S) implies XAS, =yAs, O(T), and so there exists

t, eT, t;>n suchthat X AS, =(XAS;)At)V(YAS,).
Then X = (XAS) VY =[((XAS))At)V(YAS)]VY.

=(XAs AL) VY =(XA(S,AL)) VY.

Again x=yO(T), implies Xvs,=yvs,O(T) . Thenwe canfind t, eT with t, <n such
that

yvs, =((yvs,) vt,)A(Xvs,). Then

y=(vs) AX=[((yvs,)vt) A(Xvs,)]AX.
=(yvs,vt,)A(XVvS,)AX
=(yv(s,vt,)Ax

Now, n<s At <s and n<s At <t implies
s;At,eSNT. Also s,<s,vt,<nandt,<s,vt,<n impliess,vt,eSNT.
Hence x=Yy O(SNT). Therefore
O(SNT)=0(S) ~ O(T).
Hence S T isalso astandard n-ideal. m

Lemma 4.1.7: For a neutral element n and a standard n-ideal S and an n-ideal 1, S~I is
also a standard n-ideal .

Proof: Suppose S be a standard n-ideal and | be an n-ideal of L. We are to show that S~ 1 is
a standard n-ideal in I. Consider an n-ideal K of I, which is also an n-ideal of L. Now,

xe(SNI)vKcSvK, since S is standard
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so we have x=(XAS)v(xaKk), for some seS, keK. By the monotionity, we can choose
both s>n, k>n. put s'=(xvn)As. Then s'<s

and n=(Xvn)An<(xvn)As=s'<xvn.

Since xvnel, so by convexity of Sand I,

s'e SN 1. Also xAs'=xAas. Thus

X=(XAS)v(Xvk)forsome s'eSnI, keK

Also by duality we get x=(XAS") v (xvKk")

for some s'eS NI, k'eK.
So Sl is standard in I. m

Lemma 4.1.8: If n is a neutral element of a lattice L and @ is a homomorphism of L onto a
lattice L', where ®(n)=n', n'e L".Then for any standard n-ideal | for L, ®(l)is a standard
n'-ideal in L'.

Proof: Clearly ®(l) is a sublattice of L'. Let p<t<q, where p,qe®(l), tel'. Then
p=®(x) and q=d(y) forsome X, yel. Since ® isonto, t=d(r) forsome relL.

Then O(r) = O(r) AD(y) =D(r AY)
And

D(r) = d(r) v d(x)
=D(X)vD(ray)
=D(Xv(ray)

Now, X< XVv(rAy)<xwvy andso by convexity we have
Xv(ray)el. Thus t=®(xv (ray))ed(l).

Hence ®(l)is a convex sublattice of L'.

Moreover ®(n) =n' implies ®(1)is an n'-ideal in L'.

For standardness, we shall prove (b) of theorem 4.1.4 for ®(l). Let K' be any n'-ideal in L'
.Then K =®(K) for some n-ideal K of L.
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Let y e D(l) v D(K)c D(I v K).

Then y =®(x)for some x e 1 v K. Since | isa standard n-ideal of L, using (b) of Theorem
4.1.4

we have Xx=(XAl)v(XAk)v(xan), forsome i, el, k, eK
= (Xvip) A(Xvk,)A(xvn), (xXvi,) A(XvKk,)A(Xvn), Forsome i, el, k, eK.
Then

y =D(x)
=DO(XAl)VvD(XAN)
=[®(X) A D(ip)] v [DP(X) A D(N)]
=[yro@)]vlyrd(k)]v[IyAn]

Also,

y = d(x)
=[y v o)Ay v ok)IAlyvn']

From Gritzer and Schmidt [11], we know that ideal (s] is standard if and only if s is standard in
L. This is true for principal n-ideal when n is a neutral element. In fact this not even true when L
is a complemented lattice, where n is neutral. There < a >_ is standard in I (L) but a is not

standard in L. Moreover b isstandard in L but <b >_is not standard.

So for any standard n-ideal | for L, ®(l)is a standard n'-ideal in L'. m

Theorem 4.1 .9: Let n be neutral element of a lattice L. Let S and T be two standard n-
ideals of L. Then

(i) 0(SNT)=06(5)N6(T)
(i) ©(SuT)=0(S)uB(T)
Proof: (i) This has already been proved in corollary 4.1.6,
(i) Clearly, ®(S)vO(T) cO(SVvT) ©(S) . To prove the reverse inequality,
let x=0O(SvT) with x>vy.
Then y=(yv p)ax and X=(XAp)vy, forsomep, geSvT.
Then
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P=(pAas)v(pat) and P=(pAs,)v(pat,)
q=(aAs;)v(pAts) and q=(qAs,) v (pAt,)
for some s;, s,, S;, S, €S and t,t,, t,,t, T
Now,

P=(pAs)v(pat)
=(pAn)v(pat)O(S)
=(pAn)v(pAnO(T)
=paAn.

Thus, p=pAn(©(S)ve(T))
Again

p=(pvs,)A(pvt,)
=(pvn)A(pvt,)O(S)
=(pvn)A(pvno(T)
=pvn

Thus, p= pvn(©(S)v@O(T)). This implies
pAn=pvn(O(S)ve(r))

and so p=n(6©(S)vO(T)).

Similarly, we have g =n(®(S) v ©(T)).
Now,

y=(yvp)ax
=(yvn) Ax(O(S) v O(T)
=(yAax)v(nax),

as nis neutral.

=yv(Xan)
=yv(xAq) (©(S)ve())
=X
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This implies X = y(O(S) v O(T)).
Therefore, ®(S UT) =06(S) UO(T)

which proves (ii). =

4.2. Principal n-ideal

Recall that a distributive lattice L with O is called a normal lattice if its every prime ideal
contains a unique minimal prime ideal. Following result gives a characterization of normal
lattices.

Theorem 4.2.1: For a distributive lattice L with 0, the following conditions are equivalent :
i) Any two distnict minimal prime ideals are co maximal.

if) L is normal.

iii) Forany x,yelL, (xAy] =(x]"v(y]".

iv) For any x,y € L with XAy =0implies (x]" v (y] =L.

Moreover , when L has a largest element 1, then each of the above conditions is equivalent to for
any X,yelL, xAy=0implies x;, y, €L, suchthat xAx, =0=yAyand X, vy,=1. =

Theorem 4.2.2: For a distributive lattice L, neL with F (L) is normal if and only if (n]® and

[n)are normal. =

Generalized Stone lattice : A distributive lattice L with O is called generalized Stone lattice if
foreach xeL, (xX]'v(x]" =L .

we know that L is generalized Stone if and only if [0,X] is a Stone sub lattice for each xe L.

Moreover, a distributive lattice L with 0 is generalized stone if and only if it is normal and
pseudo complemented.

Complement of a lattice: For anelement ae L, a’is called complement of a lattice if
ara’'=0and ava =1

Complemented lattice: A Bounded lattice in which every element has a complement is called
Complemented lattice.
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Corollary 4.2.3: Suppose F,(L) is a sectionally pseudo complemented distributive lattice,
then F, (L) is generalized stone if and only if (n] is dual generalized stone and [n) is
generalized Stone. =

Lemma 4.2.4 : Suppose n be a neutral element of a lattice L. Then any finitely generated n-
ideal F, (L) which is contained in a principal n-ideal P (L) is principal .

Proof : Let [b, c] be a finitely generated n-ideal such that b<n<c. Let <a>, be a principal

n-ideals which contains [b, ¢]. Then aan<b<n<c<awvn.Suppose t=(avb)ac. Since
n is neutral, we have

nat=naf(@avb)acl=na(avhb)
=(nAra)v(nab)=nab=>b

and

nvt=nv[(@vh)ac]
=(nvavb)a(nvec)
=(nva)ac=c.

Hence [b, c]=[nAt,nvit]=<t> .
Therefore [b, c] isaprincipal n-ideal. m

Theorem 4.2.5: Let | be an arbitrary n-ideal and S be a standard n-ideal of a lattice L, where
nisneutral. If 1 vS and I S are principal n-ideals, then I itself is a principal n-ideal.

Proof: Let IvS=<a> =[aan,avn]andl nS=<b> =[bAan,bvn].Since S isa
standard n-ideal, then

avn=[@vn)as]v(@vn)ax) forsome seS, xel
=SVX.
Again, anneSv I
If thereexist s, €S and x, €| suchthat aan=(@an)vs)a((@an)vx)=s AX.

Now, consider the n-ideal [b A X, AN, bv Xxvn]. Obviously, [bAX Anbvxvn]lcl c<a>,.

So by above lemma, [b A X, An,bv xvn] isa principal n-ideal say <t >, forsome teL .
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Then

<a>=1vSoSv[bax An,bvxvn]
o[s,Aan,svn]lvbax An,bvxvn]
=[ssAnAbAax, An,svnvbvxvn]
=[aAan,avn]=<a>, .

This implies

SvIi=Sv[bax An,bvxvn]

Further,

<b>=SN12Sn[bax An,bvxvn]
>Snban,bvn]=<b>,

As baxAans<ban<bvn<bwvxwvn.
This implies

SNlI=Sn[bax An,bvxvn]=Sn<t>,

Since S is standard so we have from (A) & (B),

| =<t >_ . Therefore | isa principal n-ideal.

In this section we shall deduce some important properties of standard elements and n-ideals from
a standard n-ideal, then we call the

congruence relation ©(S), generated by S, a standard n-congruence relation. If S =<s>,_, then

the fundamental characterization theorem.

O(S)=0(<S>,) and so O(<s>,) is a standard n-congruence
principal standard n-congruence . Firstly, we prove some results on the connection between

standard n-ideals and standard n-congruence r

If S is

elations.
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Recommendation and Application

Conclusion and Future recommendation: From the discussion of all previous
chapter it can be concluded and recommended that the concept of standard n-
ideals can be introduce in join semilattice. Then using these results, we can study
those F, (L) and P, (L) which are normal, relatively normal, where Lis a join-

semilattice with 0. In other words all the works of this thesis can be extended for
join semilattice.

Application: Lattice theory has a lot of application in different fields.Boolean
lattice has applications in the field of hardware and software development of
computer science.Also it has wide applications in networking.it can be applied to
develop theories in other branches of algebra,such as group theory,Ring etc.

One of the major application of Boolean lattices is the switching system, which are
network of switches that involve two state device 0 and 1 for off and on
respectively.
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