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                                                             Summary 

 

Lattice theory is an important part of mathematics . Ideal lattice and n-ideal of a lattice have 

played many roles in development of lattice theory. Historically, lattice theory started with 

Boolean distributive lattices: as a result, the  theory of ideal lattice and n-ideal of a lattice is 

the most extensive and most satisfying chapter in the history of lattice theory. Ideal lattice 

have provided the motivation for many results, in general lattice theory. Many conditions on 

lattices and on element and ideals of lattices are weakened forms of distributivity is imposed 

on lattices arising in various areas of mathematics, especially algebra. 

In lattice theory there are different classes of lattices known as variety of lattices. Class of 

Boolean lattice is of course most powerful variety. Throughout this thesis we will be 

concerned with another large variety known as the class of ideal lattice and n-ideal of a lattice 

have been studied by several authors. 

The realization of special role of ideal lattices moved to break with the traditional approach to 

lattice theory, which proceeds from partially ordered sets to general lattices, semi modular 

lattices, modular lattices and finally ideal lattices. 

In this thesis we give several result on ideal and n-ideal which will certainly extend and 

generalize many results in lattice theory. In order to review, we include definations, examples, 

solved problems and proof of some theorems. The thesis contains four chapter. 

           Chapter 1 we have discussed the basic defination of relation, poset, lattice, complete 

lattice, convex sub lattice, complemented and relatively complemented lattice. We also proved 

that, Dual of a complete lattice is complete . 

          Chapter 2 have discussed basic concept of ideal and n-ideal of lattice. Here we study the 

defination and examples of ideal and n-ideal. Some imprtant theorem like   “If n is a neutral 

element of a lattice, then )(LIn  is modular if and only if  L is modular”. 

          Chapter 3 we have discussed Standard element and n-ideals. We also discussed in this 

chapter Congruence relation. 

          Chapter 4 deals with standard n-ideal and Principal n-ideal. This is the main part of this 

thesis work. In this chapter we have discussed some defination and some important theorems 

like “For a neutral element n and  a standard n-ideal S  and an n-ideal ISI ,  is also a 

standard n-ideal” .  

 

 



vii 
 

                                                    Contents 

 

PAGE 

Title page i 

Declaration ii 

Dedication iii 

Approval iv 

Acknowledgement v 

Summary vi 

Content vii 

CHAPTER 1: Preliminaries                                                                                           (1-13) 

 1.1 some related defination 1 

 1.2 Some related thorem of lattices   7-13

  

CHAPTER 2: Basic concept of ideal and n-ideal of a lattice                                     (14-23) 

  Introduction  14 

 2.1 Finitely generated n-ideals 15-21 

 2.2 Prime n-ideals 22-23 

  

CHAPTER 3: Standard element and n-ideals                                                            (24-31) 

             3.1 Some notions and notations 24 

             3.2    Congruence  relations  in lattices and related theorem                                25-31   

                                                                   

CHAPTER 4: Standard n-ideal and Principal n-ideal                                              (32-47) 

  Introduction (32-33) 

 4.1   Standard n-ideals                                                                        (34-45) 

             4.2   Principal  n-ideal                                                                                (45-47) 

Recommendation and Application 48 

Reference: (49-50) 

 

 



viii 
 

 



1 
 

                                                CHAPTER 1 

Preliminaries 

1.1 Some defination of lattices:  

1.1.1  Relation :   Let A and B be two non-empty set, any subset of BA  (Cartesian Product) is 

called relation from  A to B. The elements ),(, BbAaba   are in relation with respect 

to R if (a, b)  R. 

 For (a ,b)  R, we will also write “a R b” or “a ≡ b (R)” and read as “a is related to b by 

R”.  

Example :   Let  A={1, 2, 3};  B={4, 5} 

 Then A×B={(1, 4), (1, 5), (2, 4), (2, 5), (3, 4), (3, 5)} 

 1R ={(1, 4), (1, 5)},   2R ={(2, 5)},  3R ={(3,4), (1, 5)} are all relations from  A to B. 

1.1.2  Inverse relation:  Every relation R from A to B has an inverse relation 1R   from B to A 

which is defined by  }),(:),{(1 RbaabR 
  

 In other words, the inverse relation 1R  consists of those ordered pairs which when 

reversed, i.e. permutated, belongs to R . 

Example  :   Let A={1, 2, 3} and  B={a, b}.Then 

 R={(1, a), (1, b), (3, a)} is a relation from A to B. Then the inverse relation of R  is 

   )}3,(),1,(),1,{(1 abaR 
. 

1.1.3  Reflexive relation:  A relation R in a set A is called a reflexive relation if, for every  

.),(, RaaAa    

  In other words, R is reflexive if every element in A is related to itself. 

Example  :  Let  A={1, 2, 3}. Then 

  R={(1, 1), (2, 2), (2, 3), (3, 2), (3, 3)} 

  Here R is reflexive since (1, 1) , (2, 2) and (3, 3) belongs to the relation . 

1.1.4    Symmetric relation:   Let R be a subset of   AA , i.e. let R be a relation in A . Then R is 

called a symmetric relation  if  Rba ),(  implies Rab ),(   

  that is, if a is related to b then b is also related to a. 

Example :   Let A={1, 2, 3}. Then  

 R={(1, 1), (3, 2), (2,  3)} is symmetric relation. 
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1.1.5    Anti-symmetric relation:   Let  R be a subset of  AA , i.e. let R be a relation in A. 

Then  R is called a anti- symmetric relation if Rba ),( and Rab ),( implies a=b 

 In other words, if  a ≠ b then possibly a is related to b or possibly b is related to a, but 

never both. 

Remark: Let D denoted the diagonal line of AA , i.e. the set of all ordered pairs AAaa ),(  

Then a relation R in A is anti-symmetric if and only if DRR  1
.  

Example  1.1.5: Let   A={1, 2, 3} . Then  

  R1 ={(1, 1)} R2 ={(1, 2)} both are anti-symmetric relation. 

1.1.6    Transitive relation:   A relation R  in a set A is called a transitive relation if  

  (a, b) R and (b, c) R implies (a, c) R 

  In other words, if a is related to b and b is related to c then a is related to c. 

Example :   Let A={1, 2, 3}. Then 

 R1={(1, 2), (2, 2)} R2={(1, 3), (3,3)} both are transitive relation . 

1.1.7   Equivalence relation:   A relation R in a set A is an equivalence relation if  

(1) R  is  reflexive , that is for every aA, (a ,a)  R  

(2) R  is  symmetric, that is (a, b) R  (b, a) R 

(3)  R  is  transitive ,that is (a, b) R and (b, c) R  (a, c) R. 

Example :    Let A={1,  2, 3} be a set  and  

R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1), (1, 3), (3,1), (2, 3)}  be a relation of AA  then 

the relation is an equivalence relation, since  

 (1) R  is  reflexive , {(1, 1), (2, 2), (3, 3)} R ,       

 (2) R  is  symmetric, {(1, 2), (2, 1), (1, 3), (3, 1)}R and   

(3) R  is transitive,  {(2, 1), (1,3), (2,3)} R .  

1.1.8  Partial order relation :   A relation R is called a partial order relation if  

   1. R is reflexive i.e. aRa , Aa  

   2. R is anti symmetric if aRb  and AbababRa  ,   

   3. R is Transitive if aRb  and AcbaaRcbRc  ,,  
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Example :  Let  }3,2,1{A  

Then, R={(1, 1), (1, 2)} is Quasi order relation on A. 

1.1.9  Quasi order relation:   A relation R on a set A is called Quasi order relation if,  

  1. R is reflexive i.e. aRa , Aa  

  2. R is Transitive i.e. aRb  and AcbaaRcbRc  ,, . 

Example:   Let  }3,2,1{A  

Then, R={(1, 1), (2, 2), (3, 3), (1, 2)} is partial order relation. 

1.1.10  Supremum:  Suppose ),( P is a poset and ., PaPH  Then a is an upper bound of H, 

if ah   for all .Hh An upper bound a of H is the least upper bound of H or supremum of 

H . If for any upper bound b of H such that ba  . Written as a Sup H 

          for },,{ ba  Sup baba },{ . 

1.1.11  Infimum :  Let ),( P is a poset and ., PaPH  Then a is an lower bound of  H, if 

ah   for all .Hh  A lower bound a of  H is the greatest lower  bound of  H or infimum  

of  H . If for any lower bound b of H such that ab  .We shall write   a Inf H 

       for },,{ ba  Inf baba },{ . 

1.1.12  Partially order set  (Poset) :   A non-empty set P, together with a binary relation R is 

said to be a Partially Orderd set or a Poset if 

 (P1) aRa for every a P , i.e., R is reflexive. 

 (P2) aRb and bRa implies a b , i.e., R is anti-symmetric, for a, b P  

 (P3) aRb and bRc implies aRc, i.e. R is transitive, for a, b, cP. 

Remark:  For our convenience, we use the symbol “  ” in place of R. We read   as “less than 

or equal to”. Thus if  P  is a poset then we automatically assume that “  ” is the partial 

ordered relation in  P, unless other symbol is mentioned. 

1.1.13   Totally order set (Toset or Chain):  If  P  is a poset in which every two members of P 

are comparable it is called a totally ordered set or a toset or a chain. 

  Thus if P is a chain and Pyx ,  then either x y or y x . 

  Clearly also if x, y are distinct elements of a chain then either x y or y x . 

1.1.14   Well order set:  A poset ),( P is called well ordered set if it is a total ordering and 

every non-empty subset of  P  has a least element. 
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1.1.15   Greatest element:  Let  P be a poset. If  an element a P s.t. x a for all x P then a is 

called greatest or unit element of  P. Greatest element if exists, will be unique. 

1.1.16    Least element:  Let  P  be a poset. If   an element b P  s.t. b x  for all x P then b is 

called least or zero element of  P. Least element if exists, will be unique. 

Example:    Let }3,2,1{X . Then )),(( XP   is a poset. 

 Let A { ,{1,2},{2},{3}}   then (A, )  is a poset with  as least element. A has no greatest 

element. Let B {{1,2},{2},{3},{1,2,3}}  then B greatest element }3,2,1{   but no least 

elements. If C { ,{1},{2},{1,2}}   then C has both least and greatest elements namely,   and 

}.2,1{  

1.1.17   Maximal element:  An element a in a poset  P  is called maximal element of  P  if a x  

for no px . 

Example :   In the poset {2, 3, 4, 6, 7, 21} under divisibility 4, 6 and 21 are three maximal 

elements (none being the greatest). 

 

 

 

 

 

1.1.18   Minimal element:    An element  b in a poset P is called a minimal element of P if x b  

for no x P . 

1.1.19   Upper bound of a set:  Let S be a non empty subset of a poset P. An element a P  is 

called an upper bound of S if x a x S   . 

1.1.20   Lower bound of a set:  An element a P will be called lower bound of S if a x x S   . 

1.1.21   Lattice (Set theorical Defination):  A poset (L, ) is said to form a lattice if for every 

a,b L,Sup{a,b)  and Inf{a,b}exist in  L. 

  In that case, we write 

  Sup {a,b} a b   (read a join b) 

  Inf {a,b} a b   (read a meet b) 

  

  

  

    

  
2 

4 6 

3 

21 

7 

Fig-1 
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 Other notations like a b  and a b  or a b  and a b  are also used for Sup {a,b}and 

Inf{a,b} . 

 

1.1.22   Lattice (Algebrical Definition):  A set L together with two binary operation ' '  (meet) 

and ' ' (join) is called a lattice if it satisfies the following identities 

 (i)  idempotent law aaaaaaLa  ,,   

 (ii)  commutative law abbaabbaLba  ,,,  

 (iii)  associative law cbacbaLcba  )()(,,,  and cbacba  )()(  

 (iv)  absorption identities abaaLba  )(,,   and abaa  )(  

Example :   Let X  be a non empty set, then the poset ),(( XP  )  of all subset is a lattice. 

Here for A,B P(X)  

  A B A B    and A B A B    

  As particular case, when }3,2,1{X  

  }}3,2,1{},3,2{},3,1{},2,1{},3{},2{},1{,{)( XP  

  It represented by the following figure. 

 

 

 

 

 

 

 

1.1.22   Bounded lattice:   A lattice with smallest and largest element is called a bounded lattice. 

Smallest element is denoted by “0” and largest element denoted by “1” or “u”. 

Example 1.1.23:   The bounded subset of all real number under usual relation   is a bounded 

lattice. 

1.1.24  Complete lattice :   A lattice  L  is called a complete Lattice if every non empty subset of 

L  has its Sup and Inf in  L. 

Example 1.1.24:  Set of all sub space of a vector space V is a complete Lattice under set 

inclusion. 

 2  

 1,3  

 1,2,3  

 2,3  

 3  



 

 1  

 1,2  

Fig-2 

    

  

  

  
  

  

  
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1.1.25   Sub lattice : Let (L, , )   be a Lattice, A non empty subset S of  L is called a sublattice 

of  L  if  S  itself is a lattice under same operation  and   in L. 

 

Example :   Let }1,,,{ baoL   be a lattice. 

 

 

 

 

Sublattice of L are: }1,{},1,{},1,0{},,0{},,0{},1{},{},{},0{},1,,,{ babababao . 

1.1.25  Convex sublattice: A sublattice S of a lattice L is called a convex sublattice of L. If for 

all  SbabaSba  ],[,, . 

Example:    Let }1,,,,{ cbaoL   be a lattice. 

 

          

 

 

  

        Here },,,{ cbao  is convex sublattice. 

1.1.26   Semi lattice (Set theorical defination) : A poset  is called a meet-semi lattice if for all 

a, b P. 

 Inf {a,b}exist. 

 And a poset ),( P   is called a join-semi lattice if for all a, b P.  sup {a,b}  exists. 

 Both the meet and join semi lattice are called semi lattice. 

 1.1.27 Semi lattice (Algebrical Defination)  :  A non-empty set P together with a binary 

composition ' '  is called a meet-semi lattice and ' '  called a join semi lattice, if for all

Pcba ,, . 

 (i) aaaaaa  ,  

 (ii) abbaabba  ,  

 (iii) cbacbacbacba  )()(,)()(  

 Both meet and join semi lattice are called semi lattice.  

  

  

    a  b  

1  

o  

Fig-3 



 

  

    a

 
b

 

c

 

0

 

1
  

1 

Fig- 4 
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1.1.28    Complemented Lattice:  A bounded lattice in which every element has a complement 

is called complemented lattice. 

1.1.29  Sectionally Complemented Lattice: If L has 0,a and all intervals ],0[ a  are 

complemented , then  L is said Sectionally Complemented Lattice. 

1.1.30    Relatively  Complemented Lattice:  A relatively complemented lattice is a lattice in 

which every element has a relative complement in any interval containing it. 

1.2. Some related thorem of lattices 

Theorem 1.2.1:  Dual of a complete lattice is a complete lattice. 

Proof: Let ( , )L  be a complete lattice and let ( , )L   be its dual. Then ( , )L   is a lattice. 

 We have to show that ( , )L   is complete lattice. 

 Let S L    be any subset of L . 

 Since L  is complete, sup S  and inf S  exist in L . 

 Let, infa S  in L . 

 Then ,a x x L    

  ,x a x L     

  a  is an upper bound of S  in L . 

 Let b  be any other upper bound of S  in L  

 Then ,x a x L    

  Lxxb  ,  

  b a   as infa S   in L .  

  a b   or that ‘ a ’ is . .l u b  of S  in L   

 Similarly, we can show that sup S  in L  will be S  in, L . Hence ( , )L   is complete.   ■ 

Theorem 1.2.2:   Product of two lattice is a lattice. 

Proof: Let A and B be two lattices then we have already proved that  

},:),{( BbAabaBA   is a poset under the relation   defined by 

 (   212211 ,), aababa    in A  21 bb   in B. 

We show BA forms a lattice. 

Let  BAbaba ),(),( 221,1  be any elements.  
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Then  Aaa },{ 21
and Bbb },{ 21 . 

Since A and B are lattices, },{ 21 aa and { }, 21 bb have Sup and Inf in A and B respectively. 

Let  21 aa  =Inf  2121 },,{ bbaa Inf{ }, 21 bb  

then 21 aa  2211, aaaa       

21 bb  2211, bbbb   

 ( 21 aa  , 21 bb  ) ),( 11 ba   

( 21 aa  , 21 bb  ) ),( 22 ba  

 ( 21 aa  , 21 bb  ) is a lower bound of {  },),,( 2211 baba  

Suppose ( ),dc is any lower bound of  },),,{( 2211 baba  

Then ( ), dc  ),( 11 ba  

 ( ), dc  ),( 22 ba  

 1ac  , 2ac  , 1bd  , 2bd   

 c  is a lower bound of { }, 21 aa in A. 

 d  is a lower bound of { }, 21 bb in  B. 

 21 aac  =Inf{ }, 21 aa   

21 bbd  =Inf{ }, 21 aa  

 ),( dc ( 21 aa  , 21 bb  ) 

 So that ( 21 aa  , 21 bb  ) is g.l.b.  }),{( 2,21,1 baba  

Similarly(by duality) we can say that ( ,21 aa   21 bb  ) is l.u.b{  }),( 2,21,1 baba  

Hence BA is a lattice. 

Also   (,),( 2211  baba 21 aa  , 21 bb  ) 

  (,),( 2211  baba 21 aa  , 21 bb  ).   ■ 

Theorem 1.2.3: Show that a poset is a lattice iff it is algebraically a lattice. 

Proof: Clearly L is a non empty set. 

 So set a b inf{a,b}   and a b sup{a,b}   

 Then a a inf{a,a} a;a a sup{a,a} a       
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 So   and   are idempotent 

 a b inf{a,b} inf{b,a} b a      

 a b sup{a,b} sup{b,a} b a      

   and   are commutative. 

 Next, a (b c) inf{a,b c} inf{a,inf{b,c}}      

    inf{inf{a,b},c} inf{a b,c}    

    (a b) c    

 a (b c) sup{a,b c} sup{a,sup{b,c}}      

   sup{sup{a,b},c} sup{a b,c}    

    (a b) c    

 so   and   are associative. 

 Finally, a (a b) a sup{a,b} inf{a,sup{a,b}} a       

   a (a b) a inf{a,b} sup{a,inf{a,b}} a       

 Hence   and  satisfy two Absorption identity 

 So L (L;, , )    is a lattice. 

 (ii)  Since   is idempotent i.e.  a a a   a L   

    So       a a  

      is reflexive. 

    Since   is commutative 

    a b b a     

    ][ bbaandababa   

    So,   is anti symmetric. 

    Let a b  and b c  

    Then cbbbaa  ,   

    a (b c)    

    (a b) c    

    a c   

    a a c    

    ca   
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    So,   is transitive 

    ),(  L is a poset.   ■ 

Theorem 1.2.4 : A sub lattice S of a lattice L is a convex sublatice iff a,b S   with 

.],[; Sbaba   

Proof :   First suppose, S is a convex sublattice in L. 

 Then we have to show that .],[),(,, SbabaSba    

 Let Sba  ,   be any elements, then by definition of a convex sublattice, we have, 

   .],[ Sbaba  ……..(1) 

 But given that a b  

 bbaaba  ,  

 Therefore (i) becomes Sba ],[  

 Conversely suppose a,b S   with a b  

   Sba ],[ …..(2) 

 we have to show that S is convex sublattice in L. 

 Since S is a sublattice of L 

 So, by definition of a sublattice. 

 a b S   and a b S, a,b S     

 Again, Sba  , we know. 

 a b a b    

 So by given condition. [i.e. (2) become] 

 .],[ Sbaba   

 Therefore S  is convex sublattice.   ■ 

Theorem 1.2.5 : Two bounded lattice A and B are complemented if and only if A B  is 

complemented. 

Proof: Let A and B be complemented and suppose o, u and o ,u   are universal bounded of A and 

B respectively. 

 Then (o,o )  and (u,u )  will be least and greatest elements of A B  

 Let BAba ),(  be any element. 

 Then BbAa  ,  and as A, B are complemented, BbAa  ,  s.t, 
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  ubbbbuaaaa  ,0,,0  

 Now )0,0(),(),(),(  bbaababa  

   ),(),(),(),( uubbaababa   

 Shows that ),( ba  is complement of (a,b) in A B . 

 Hence A B  is complemented. 

 Conversely, let A B  be complemented. 

 Let a A,b B  be any elements. 

 Then (a,b) A B   and thus has a complement, say (a ,b )   

 Then ),(),(),(),0,0(),(),( uubabababa   

),(),(),0,0(),( uubbaabbaa   

uaaaa  ,0  

 ubbbb  ,0  

 i.e, a  and b  are complements of a   and b  respectively. Hence A and B are 

complemented.    ■  

 

Theorem 1.2.6 : Two lattice A and B are relatively complemented if and only if BA  is 

relatively complemented. 

Proof: Let BA,  be relatively complemented lattice. 

Let )],(),,[( 2211 baba  be any interval of BA and suppose (x, y) is any element of this 

interval. 

 Then BybbAxaabayxba  ,,;,,),(),(),( 21212211        

 2121 , bybaxa   

 ],[ 21 aax  an interval in A, ],[ 21 bby  an interval in B. 

Since A,B are relatively complemented, x,y have complements relative to ],[ 21 aa  and 

],[ 21 bb  respectively. 

 Let x  and y  be these complements. Then 

   11, byyaxx   

   22 , byyaxx   
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 Now 
1 1(x,y) (x ,y ) (x x ,y y ) (a ,b )         

   
2 2(x,y) (x ,y ) (x x ,y y ) (a ,b )         

 (x ,y )   is complement of (x,y)  related to 
1 1 2 2[(a ,b ),(a ,b )]  

 Thus any interval in A B  is complemented. 

 Hence A B  is relative complemented. 

 Conversely, let BA  be relatively complemented. 

 Let ],[ 21 aa  and ],[ 21 bb  be any intervals in A and B. 

 Let 
1 2 1 2x [a ,a ], y [b ,b ]   be any elements. 

 Then 1 2 1 2a x a ,b y b     

 
1 1 2 2(a ,b ) (x,y) (a ,b )    

 1 1 2 2(x,y) [(a ,b ),(a ,b )],   an interval in A B  

 (x,y)  has a complement, say (x , y )   relative to this interval 

 Thus    

                                      

),(),(

),(),(

),(),(),(

),(),(),(

22

11

22

11

bayyxx

bayyxx

bayxyx

bayxyx









 

     21, axxaxx    

    21, byybyy   

     x  is complement of x relative to ],[ 21 aa  

    y  is complement of y relative to ],[ 21 bb  

 Hence A, B are relatively complemented.   ■ 

Theorem 1.2.7:  Dual of a complemented lattice is complemented. 

Proof:  Let (L, )  be a complemented lattice with o, u as least and greatest elements. Let (L, )  

be  the dual of (L, ) . Then u, o are least and greatest elements of L . 

 Let LLa   be any element 

 Since aLa  ,  is complemented, La s.t., 

   uaaaa  ,0  in L 

 i.e., o inf{a,a } in L 
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 o a, o a    

 a o, a o    in L  

    o is an upper bound of {a,a }  in L  

 If k is any upper bound of {a,a }  in L  then a k, a k   

 k a,k a k o      as o is Inf. 

 o k   

 i.e., o is 1.u.b. {a,a }  in L  

 i.e., a a o   in L  

 Similarly, a a u   in L  

 or that a   is complement of a in L .Hence L  is complemented.   ■ 

 

 

 

 

 

 

    

 

 

 

 

 

 

 

 

 

 

 

     



14 
 

CHAPTER-2  

  Basic concept of ideal and n-ideal of a lattice  

Introduction: The idea of n-ideals in a lattice was first introduced by Cornish and Noor in 

several papers [1], [2], [3]. Let L be a lattice and Ln is a fixed element, a convex sublattice 

containing n is called an n-ideal. It is denoted by ).(LI n  If L  has a “0”, then replacing n by “0” 

an n-ideal becomes an ideal.  Moreover if  L  has 1, an n-ideal becomes a filter by replacing n by 

1. Thus, the idea of n-ideals is a kind of generalization of both ideals and filters of lattices. So 

any result involving n-ideals will give a generalization of the results on ideals and filters with 0 

and 1 respectively in a lattice. 

Clearly  nmaaaa  .........,, 321 =  ..........1 nmn aa    

The n-ideal generated by a finite number of elements is called a finitely generated n-ideal. The 

set of all finitely generated n-ideals is denoted by )(LFn . Of course )(LFn  is a lattice. The n-

ideal generated by a single element is called a principal n-ideal. The set of all principal n-ideals 

of  L  is denoted by )(LPn . We have   

}:{ naxnaLxa n      

 The median operation 

)()()(),,( xzzyyxzyxm   

is very well known in lattice theory. This has been used by several authors including Birkhoff 

and Kiss [4] for bounded distributive lattices, Jakubik and Kalibiar [5] for distributive lattices 

and Sholander [6] for median algebra. 

 A lattice  L  with 0 is called sectionally complemented for all Lx .  

A distributive lattice with 0, which is sectionally complemented is called a generalized boolean 

lattice. For the background material we refer the reader to the texts of G. Grätzer [7], Birkhoff 

[8] and Rutherford [9]. 

In section 1, we have given some fundamental results on finitely generated n-ideals. We have 

shown that for a neutral element  n  of a lattice  L, )(LPn  is a lattice if and only if  n  is central. 

We have also shown that for a neutral element  n, a lattice  L  is modular (distributive) if and 

only if )(LIn is modular (distributive). We proved that, in a distributive lattice  L, if both 

supremum and infimum of two n-ideals are principal, then each of them is principal. 
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In section 2, we have studied the prime n-ideals of a lattice. Here we have generalized the 

separation property for distributive lattices given by M. H. Stone in terms of prime n-ideals. 

Then we showed that in a distributive lattice, every n-ideal is the intersection of prime n-ideals 

containing it. 

 2. 1.  Finitely generated n-ideals. 

We start this section with the following proposition which gives some descriptions of ).(LFn  

2.1.1 Proposition: Let  L be a lattice and Ln . For  Laaaa m .........,, 321   

 (і) nmaaaa  .........,, 321                                                                                               

]}(](]........(](](](](.........](](:{ 2121 naaaynaaaLy mm    

(іі) nmaaaa  .........,, 321 }..............:{ 21321 naaaynaaaaLy mm   

(ііі)  nmaaaa .........,, 321  

)}.()(......)()(.......:{ 21321 nyayayayynaaaaLy mm   

when L is distributive. 

(іv) For any La  

na = )}()(:{ nyayynaLy   

= )}()()(:{ nanyayyLy    

whenever  n  is standard. 

 (v) Each finitely generated n-ideal is generated two n-ideal                                                                                              

. 

 Indeed nmaaaa  .........,, 321 = n n a … …a n,  a … …a a m1m21  . 

(vі) )(LFn  is a lattice and its members are simply the intervals [ ba, ] such that  bna   and for 

each intervals 

    ]b  b ,a  [a = ]b ,[a   b]  [a,                     1121     

and     ]b  b ,a [a = ]b ,[a   b]  [a,             1121  .  

Proof: (і) Right hand side is clearly an n-ideal containing maaaa .........,, 321 . 

(іі) This clearly follows from (і) and by the convexity of n-ideals. 
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(ііі) When  L  is distributive, then by (іі) n  a… …aay m21   implice that 

n), (y )a (y… …)a(y)a(y= n]a… …aa [y=y             m21m21    and                                    

(ііі) follows. 

(іv) By (іі) n}.ayna : L {y=a n    

Then n)(ya)(y=n)(ay=y  , when n is standard. This proves (іv)  

(v) This clearly follows from (іі) 

vі) First part is readily verifiable. For the second part, consider the intervals ],[ ba  and 

],[ 11 ba where  bna  , and  bna 21   

Then using  (іі)we have, n1111 bb,,aa,=]b,[ab][a,,   

= n]bb a an,bb a [a 1111   

= 11 b b ,a [a  ], while     

 ]b b,a [a= ]b,[a b][a, 1111   is trivial. 

In general, the set of principal n-ideals )(LPn  is not necessarily a lattice. The case is different 

when n is a central element. The following theorem also gives a characterization of central 

element of a lattice L.   ■ 

Theorem 2.1.2:  If )(LPn  is a lattice if and only if n is central,  where n be a neutral element of a 

lattice. 

Proof: Suppose  )(LPn  is a lattice and ynx  .Then nn yxyx ],[ . 

Since )(LPn  is a lattice , nnn cyx  for some Lc . 

This implies that c is the relative complement of n in [ ]., yx  Therefore n is central. 

Conversely, suppose n is central. 

Let  nn yx , )(LPn  

 Then using neutrality of n and proposition  2.1.1. 

],[],[ nynynxnxyx nn   

       = ])(,)[( nyxnyx   

and ],[ nyxnyxyx nn   
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Since n is central, there exist c and d such that  

nyxncnyxnc  )(,)(  

And nyxndnyxnd  ,   

Which implices that nnn cyx  and nnn dyx   

and so )(LPn  is a lattice.
   

■ 

Theorem 2.1.3:   If Lba , with bna  , the intervals ],[ na  and ],[ bn are complemented , 

then )(LFn  is  sectionally complemented when L  be a lattice. 

Proof: Let the interval [ na, ] and [ bn, ] are complemented for all Lba ,  with bna  .  

Consider ],[],[ badca n   

Then bdnca  .Since [ na, ] and [ bn, ] are complemented so there exist c and d   

Such that  a=cc n,=cc   

and b=dd n,=dd   

Thus  n=n][n,=]dd,c[c=]d,c[d][c,   

and b][a,=]dd,c[c=]d,c[d][c,     

which implies that ],[ dc  has a relative complement ],[ dc  . Hence )(LFn is sectionally 

complemented. 

Conversely, suppose )(LFn  
is sectionally complemented.  

Consider  

bdnandnca   

Then ],[],[ badcn    

 Since )(LFn is sectionally complemented,  so there exists ],[ dc  such that ],[ dc ],[ dc  = n  

],[ dc ],[ dc  = ],[ ba This implies  

a =cc n, =cc   

And b =  dd n, =  dd   That is  c  is the relative complement of c in ],[ na and d   is the 

relative complement of d in ],[ bn . Hence ],[ na  and ],[ bn are complemented for all Lba ,  

with bna  .   ■ 
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Lemma 2.1.4: An element n of a lattice L is neutral if and only if 

n)(yn)(xy)(x=y)n,m(x,     

                           n).(yn)(xy)(x     ■ 

 

Theorem 2.1.5: If n is a neutral element of a lattice L. Then )(LIn  is modular if and only if L is 

modular.  

Proof: Let )(,, LIKJI n where L is modular.  with  I.K    

By modularity  

K).(JIKJ)(I    

To prove the reverse inequality, let K).(JI x  Then K).(JI  xandx  Then 

2211 kjxkj    for some Kk,k J,j,j 2121  . Since KI   so  Ikx 1  and  I.kx 2   

Then  

)]j )k ((x)j (nn))k[((xk=k)jn,,km(x 11111111    

  )],j(k)k[(x)j(nn])k[(x= 11111   as L  is modular.  

xkj as x, 11   

On the other hand  

 )],j(k )k[(x)j(nn])k[(x= 

,k]}j)k[(x)j(nn])k{[(x 

=k)jn,,km(x

22222

22222

222







  

,22 xkjasx   as L is modular. 

So we have  

 222111 k)jn,, km(xxk)jn,,km(x   

 Hence kJ)(Ix  . 

Therefore, K J)(I=K)(JI   with  Ik   and so )(LIn  is modular. 

 Conversely, suppose that )(LIn is modular.  

Then for any L  cb,a,   with  a,  c  consider  the  n-ideals n na , n nb and n nc . 

Then of course 

 n nc  n na . Since )(LIn is modular, So  nna   nnb[  n nc   ] 
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=  [  nna   ]nb n  n nc   

Then by proposition 2.1.1 (vі)  and by neutrality of n, it is easy to show that  

n c]b)[(a =n c)](b[a   … …   (A) 

Again, consider the n-ideals   n na , n nb and n nc  ac   implies    

 nna  n nb . Then using modularity of )(LIn  , we have   

n na  ( n nb  n nc ) 

= n na  n nb ) n nc Then using proposition 2.1.1 (vі) again and the neutrality of n, 

it is easy to see that  

n c]b)[(a =n c)](b[a       … …  (B) 

From (A) & (B) we have cbacba  )()( , with ac  , as n is neutral. Therefore L is 

modular.   ■ 

From the proof of above theorem, it can be easily seen that the following corollary holds which 

is an improvement of the theorem. 

Corollary 2.1.6:  For a neutral element n of a lattice L, the following conditions are equivalent:- 

 (і) L  is modular, 

 (іі) )(LIn  is modular , 

 (ііі) )(LFn  is modular.   ■ 

Theorem 2.1.7:If L  is distributive if and only if )(LIn  is distributive,  where L  be a lattice with 

neutral element n . 

Proof: Suppose  L is distributive, Let )(,, LIKJI n . Then obviously, 

K)(JIK)(IJ)(I  .To prove the reverse inequality, let  K)(JI x   which implies 

Ix  and  K)(Jx . Then  kjxkj 2211  for some   Kk,k J,j,j 2121  . Since L is 

distributive,  

)]k(n )k (x)(x[)]j(n)(n)[(x=)kn,m(x,)jn,m(x, 111111  njx  

  )k(x)kjn(n)(x= 1111  j  

x   =)k(j x 11    
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)]k(n )k (x)(x[)]j(n)(n)[(x=)kn,m(x,)jn,m(x, 222222  njx  

  )),k((x)kj((n= 2222  jx  

 xxk  )](j[n = 22  

Then we have 

)kn,m(x,  )jn,m(x,  x  )kn,m(x,  )jn,m(x, 2211      

and so  K).(I  J)(I x   

Therefore )K (J)(I=K)(JI  I , and so )(LIn is distributive.    ■ 

Following corollary immediately follows from the above proof which is also an improvement of 

the above theorem. 

Corollary 2.1.8:  Let L  be a lattice with a neutral element n. Then the following conditions are 

equivalent: 

(і) L is distributive, 

(іі) )(LIn is distributive, 

(ііі) )(LFn  is distributive.   ■ 

To prove this we need the following lemma:  

Lemma 2.1.9:  Any finitely generated n-ideal )(LFn  which is contained in a principal n-ideal

)(LPn  is principal, where  L  be a distributive lattice . 

Proof:  Let ],[ cb  be a finitely generated n-ideal such that cnb    . Let na  be a principal n-

ideal such that ],[ cb  na  = [ nana  , ]. Then  nacnbna  . 

 Suppose  bcat  )( . 

Then 

),()(])[( bncannbcant    as L is distributive. 

= bnb   

)()(

)(])[(

ncna

ncanbcant




 

 as L is distributive cnc   

Hence ],[ cb  = ],[ ntnt  = nt  
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Therefore, ],[ cb  is a principal n-ideal.    ■ 

 

Theorem 2.1.10:  If JI  and JI  are principal n-ideals, then I and J are also principal,  where 

I and J  be n-ideals of a distributive lattice . 

Proof:Thus  JI  and JI  are principal n-ideals  

So Let, JI  = na and JI  = nb .  

Then for all n a  jJ,j I,i  and ., naji   

So there exist Jj,jand I,i,i 2121   such that      11 jina   and  22 jina  . 

Consider the n-ideal ],[ 21 nibnib  . Since naInibnib  ],[ 21 ,

],[ 21 nibnib   = nt ,   by lemma  2.1.9  for some Lt  . Then 

n] i  b n,  i  [b  J IJ= >a< 21n   

]i  bj,i bn  [j                2211  n   

  .>a< = n]a n,[a              n  

This implies that  

n21  t J= n]  i  b n, i  [b  J= J I   

Further,   ],[ 21 nibnibJIJb n   

nbnbnbJ  ],[   

Which implies that  

],[ 21 nibnibJIJ   

ntJ    

Since L  is distributive, )(LIn  is also distributive . 

we obtain that ntI  . Similarly we can show that J is also principal.   ■ 
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2.2 Prime n-ideals. 

Theorem 2.2.1:  If I is an n-ideal and D  is a convex sublattice of L  with DI . Then L  

contain a prime n-ideal P such that IP    and  DP .Where L  is a distributive lattice. 

Proof: Suppose  X  be the set of all n-ideals of L  that contains I  and that are disjoint from D . 

Since  XXI ,  is non-empty. Let C be a chain in X  and let CXXT  :{ }. If ,, Tba   

then  Yb X,a   for some  C.YX,   Since C is a chain, either  YX or XY . Suppose 

 YX . Then ,, Yba  and so TYbaba  , , as Y is an n-ideal. Thus, T is a sublattice.  

If Tba ,  and Lr b, r  a   then Yba , for some CY   and so TYr   as Y is convex. 

Moreover Tn . Therefore T is an n-ideal. Obviously IT   and  DT , which verifies 

that T is the maximum element of C. Hence by Zorn’s lemma, X   has a maximal element, say P. 

We claim that P is a prime n-ideal. 

Indeed, if P is not prime, then there exist Lba , such that Pba , but P b)n,m(a,  . Then by 

the maximality of  D)a(P P, n . Then there exist  Dyx,   such that 

n apxnap 21   and n bpynbp 43   for some Pp,p,p,p 4321  . Since 

Pb)(an)(bn)(a=b)n,m(a,  , taking infimum with npp 31  , we have 

Pnbpa  )(pn)p(p 3131 . 

Choosing n)bp(pn)ap((p=r 3131  , we have y xr   with Pr .  

Since yxyry y,xxrx   and D is a convex sublattice, so Dyrx,r  . 

Therefore Dy)(rx)(r  .  

Again, nappnapxr 422   and nbppnbpyr 424   implies

snbppnapp  )()(y)(rx)(r 4242 (say).  

Since Pb)(an)(bn)(a=b)n,m(a,  , taking supremum with npp 42  , we have 

Ps . Also,  s.y)(rx)(rr   Thus, again by convexity of P, Py)(rx)(r  . This 

implies  DP , which leads to a contradiction. Therefore, P is a prime n-ideal .    ■ 

We conclude this section with the following corollaries.  

Corollary 2.2.2: Let I be an n-ideal of a distributive lattice L  and let LaIa  , . Then there 

exists a prime n-ideal P of L such that  IP  and .Pa    ■ 
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Corollary 2.2.3: Every )(LIn  of a distributive lattice L is the intersection of all prime n-ideals 

containing it. 

Proof:Suppose P is a prime n-ideal. 

 Let PI,P :{P=I1   is a prime n-ideal of L}. 

 If 1II  , then there is an IIa  1 . Then by above corollary, there is a prime n-ideal P with 

PaIP  , . But 1IPa   gives a contradiction. 

So every )(LIn  of a distributive lattice L  is the intersection of all prime n-ideals containing it.    ■ 
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                           CHAPTER -3  

                 STANDARD ELEMENT AND n-IDEALS. 

3.1. Some notion and notations 

The partial ordering relation will be denoted by  , in case of  theoretical set lattice (that is the 

elements of which are certain subsets of a given set) by  . In lattices the meet and the join will 

be designated by   and  . And the complete meet and complete join by    and  . The least 

and greatest element of a partially ordered set (or of a lattice) we denote by 0 and 1. If   covers b 

(i.e.  b, but  xb for no x), then we write  b. 

If  a(x)  is a property defined on the set H, then we define )}(:{ xax as the set of all Hx  for 

which  a(x) is true. Hence in partially ordered sets }:{ axxaxxa n  is the principal 

n-ideal generated by a , while }:{ bxax   is the interval ],[ ba  provided that ba  . If  b  

covers   , then the interval ],[ ba  is a prime interval. The dual principal n-ideal is denoted by 

d

na  . 

If any two elements  a ,b  of  L, satisfying ba  , may be connected by a finite maximal chains of 

the lattice  L  are finite and bounded, then L is called finite length. If all intervals of the lattice L 

are of finite length, then  L is of locally finite length. If  L  has a “n` and is of locally finite 

length, furthermore for all La , in [n] any two maximal chains are of the same length, then we 

say that in  'L  the Jordan-Dedekind chain condition is satisfied. In this case the length of any 

maximal chain of the interval [n] will be denoted by )(aL , and   d(x) is called the dimension 

function. 

Let P and Q be partially ordered sets. The ordinal sum of P and Q is defined as the partially 

ordered set, which is the set union of P and Q, and the partial ordering remains unaltered in P 

and Q, while yx   holds for all Px  and Qy ; this  partially ordered set will be denoted by 

P Q. The set of all n-ideals of a lattice L, partially ordered under set inclusion, form a lattice, 

which will be denoted by )(LIn . 

Lemma  3.1.1: )(LIn is a conditionally complete lattice. The meet of a set of n-ideals (if it 

exists) is the set-theoretical meet. The join of the n-ideals )( AaIa   is the set of all x such that  

       )(.................
121 jjnn aaaaaaa Iiiixiii   for some elements ja  of A.    ■ 
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If A is a general algebra and   is a congruence relation of A, then the congruence classes of A 

modulo   form a general algebra )(A . This is a homomorphic image of A. According to [10], 

we have the following two general isomorphism theorems. 

3.2 The first general isomorphism theorem :  

  Let A  be a general algebra and 'A  a subalgebra of A , further let   be an equivalence relation 

of A  such that every equivalence class of A  may be represented by an element of 'A  . Let '  

denote the equivalence relation of 'A  induced by  . If   is a congruence relation, then so is '

and  )'(')(  AA . 

The natural isomorphism makes a congruence class of A  correspond to the contained 

congruence class of 'A . 

3.3 The second general isomorphism theorem :  

  Let 'A  be a homomorphic image of the general algebra A , let   be an equivalence relation of 

A , and denote '  the equivalence relation of 'A  under which the equivalence classes are the 

homomorphic images of those of A  modulo   and suppose that no two different equivalence 

classes of A  modulo   have the same homomorphic image. Then   is a congruence relation if 

and only if '  is one and in this case )'(')(  AA  

The natural isomorphism makes an equivalence class of A  correspond to its homomorphic 

image.  

3.4     Congruence relations in lattices : 

Let   be a congruence relation of the lattice  L  and denote by /L  be homomorphic image of 

L  induced by the congruence relation   that is the lattice of all congruence classes. If  /L  has 

a ][n , then the complete inverse image of the ][n  is an n-ideal of  L , called the kernel of the 

homomorphism  /LL . 

A simple criterion for a binary relation   to be a congruence relation is formulated in the 

following Lemma. 
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Lemma 3.4.1:  (G. Gratzer and Schmidt [18]) 

 Let     be a binary relation defined on the lattice L.   is a congruence relation if and only if the 

following conditions hold for all Lzyx ,,  

(a) )(xx   ; 

(b)  )y(xyx   if and only if )(yx  ; 

(c) )(),(,  zyyxzyx   imply )(zx  ; 

(d) yx   and )(yx   , then  )z(yzx   and  )z(yzx  . 

The congruence relations of L will be denoted by  ,Φ,… … The set of all congruence relations 

of L, partially ordered by  Φ if and only if xy( ) implies xy(Φ) , will be denoted by 

C(L).   ■ 

Lemma 3.4.2:   (Birikhoff [19] and Krisganan [20]) 

 )(LC  is a complete lattice ))(( Aayx    if and only if )(  yx  for all Aa ; 

))(( Aayx     if and only if there exists a sequence of elements in  L,ι. 

yx  = yxzzz n  .....10  such that  

(1 ii zz ai )(i=1, 2,……, n) for suitable  Aaa n .......,.........1 .   ■ 

Lemma 3.4.3 :
  

)(L  is a complete lattice, )(  yx if and only if )(  yx for all 

;A )(  yx  if and only if there exist in L a sequence of element 

yxzzzyx n  ..............10  such that )...........2,1()(1 nizz
iii    for sublattice 

..........., 21 Aaaa n    

The least and greatest elements of the lattice )(LC  will be denoted by   and  ι  respectively. 

 Proof:  Let H be a subset of L, [H] denote the least congruence relation under which any pair of 

elements of H is congruent. This we call the congruence relation induced by  H. If H has just two 

elements,  },{ baH   then ][H    will be written as ab . The congruence relation ab  is called 

minimal. First we describe the following minimal congruence relation ab . To do this, we have 

to make some preparations. Given two pairs of elements ba,  and dc, of  L, suppose that either 

b.adc   

And dc=b)(ad)(c   , or badc    and dcbadc  )()(  
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                                  dc                                       ba   

ba   

                               dc                                        

                                                                                                                      dc   

      ba                              Fig-1                   ba                                   dc                                      

 

Then we say that a, b is weakly projective in one step to  c, d  and write dcba ,,  . The 

situation is given in Fig.1. In other words dcba ,,    if and only if the intervals

d]cd,[cb],ad,cb)[(a    or d]cd,[cd],cb)(ab,[a   are transposes. If 

there exist two finite sequences of elements cxxxa n  .....,........., 10  and 

dyyyb n  .....,........., 10  in L such that  

)1(..............................,,.................,,, 1100 dcyxyxyxba nn 
 

Then we say that a ,b is weakly projective to  c,d  in notation: dcba ,,    or if we are also 

interested in the number n, then we write dcba ,,  . 

If dcba ,,  and badc ,,,   then ba,  and  dc,  are transposes, and we write  dcba ,,  . If 

the sequence (1) may be chosen in such a way that the neighbouring members are transpose, then 

ba,  and  dc, are called projective and we write dcba ,,  . 

The importance of this notion is shown by the fact that dcba ,,   and )( ba  imply )( dc  

(applying this to   , we get that  a=b implies  c=d, a fact which will be used several times). 

Now we are able to describe ab : 

According to [18], we have the following describtion: Let  a, b, c, d  be elements of the lattice  L 

. )( abdc   holds if and only if there exist  yiL  with  

dcyyydc k  .....10  and ii yyba ,, 1  (i=1, 2,……, k)………………………..(2) 
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It is easy to describe ][H , using Lemma  3.4.2 and above. We have the following trivial 

identity: 

),(][ HbaH ab  …………………………..(3) 

The symbol [H] will be used mostly in case H  is an n-ideal. Then one can prove the following 

important identity.  

 ))((][][ LIIII   ………………………(4) 

The following definition is more importance in this chapter. Let  L  be a lattice and  I  an ideal of 

L. By the quofactor lattice IL /  of the lattice  L  modulo the ideal I  is meant the homomorphic 

image of L induced by (I), i.e.  

])[(/ ILIL  . 

Finally, we mention the definition of permutability: the congruence relations   and   are 

called permutable if )( xa  and )( bx   imply the existence of  a, y  such that  )( ya

and )( by .   ■ 

We recall the definition of standard elements: 

The element s of the lattice L is standard if the equality 

......(A)..........y)........(xs)(x= y)(sx     holds for all Lyx , . 

First of all, let us see some examples for standard elements, in the lattice L.  p is a standard 

element. At the same time it is clear that P  is not neutral. (Furthermore, in the same lattice 

nr   is a homomorphism kernel but  r  is not standard.) 

Obviously, any element of a distributive lattice  L  is standard. Furthermore, in any lattice the 

element  n (if exist) are standard element. The simplest from for defining standard elements is 

the equality (A) however; it is not the most important property of a standard element. Some 

important characterizations of standard elements are given in the following theorem. 

We conclude this chapter with the following results. 

Theorem 3.4.4  : (The fundamental characterization theorem of standard elements) the 

following conditions upon an element s of the lattice L are equivalent:  

(α) s is a standard element; 

(β) the equality t)(us)(u=u    holds whenever tsu      L);t(u,    
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(γ) the relation s ,  defined by  )( syx   if and only if y x=sy)(x 1   for some ss 1   is                                  

a   congruence relation ; 

(δ) for all  Lyx,    

 (i) y)(sx)(s = y)(xs    

 (ii) y s=x s   and y s=x s  imply x = y. 

Proof: We have proved the equivalence of the four conditions cicely   

(ɑ) implies (β). Indeed if (ɑ) holds and tsu   , then  t)(su =u   Owing to (A) we get

t)(us)(u=u  , which was to be proved.  

(β) implies (γ). Using condition (β) and Lemma 3.4.1 we will prove that s is a congruence 

relation. 

(a) )( sxx  . Indeed for any Lx , the equality  x =s)(xx)(x    trivially holds, so if we 

put sxs 1 , we get the assertion. 

(b) y  xy x  ( s ). This is trivial from the definition of s . 

(c) zyx   , xy ( s ) and y z( s ). By hypothesis 1syx   and 2szy   for suitable        

elements sss 21,  Consequently  )s(sz = s)s(z= sy=x 21121   for s ss 21  , that 

means xz( s ).  

(d) In case y x   and xy ( s ) holds,  zyzx  ( s ) and  zyzx   ( s ) . In fact, by 

assumption )s(s sy=x 11  , and hence we get 1sz)(y= zx  , that is   zyzx   ( s ) 

. To prove the second assertion we start from the relations 1sy=x   and sysyzx 1  . 

Applying condition (β) to y = tz,x=u   and using y=yx  , we get  

             2sz)(y=y)z(xs)z(x=zx  ,  where  s,szx= s2   which means 

 zyzx  ( s )  

(γ) implies (δ). First we prove that (γ) implies (δ)(i). According to the definition of s , the 

congruence xsx  ( s ) and y sy  ( s ) hold for arbitrary Lyx,  . We get

 y)(sx)(s y x  ( s ). By monotonicity.  y)(sx)(s y x  , hence again by the 

definition of s . it follows that   sy)(x = y)(sx)(s 1  with suitable ss1  . Joining with 
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s and keeping the inequalities ss1   and y)(sx)(ss   in view, we derive 

y)(sx)(s = y)(xs  , which is nothing else than (δ)(i). 

Secondly, we prove that (γ) implies (δ)(ii). Let the elements x and y be chosen as in (δ)(ii). We 

know that  y ys  ( s ), so meeting with x and using  sy = sx   we get 

xy x s)(y =y s)(x=x  ( s ), consequently, using (γ),    x= sy)(x 1   with 

suitable  ss1  . From the last equality xs1  , accordingly yys =x ss1   (in the meantime 

we have used the sub-position  y s=xs    of (δ)(ii) thus y=y y)(x  sy)(x=x 1  . 

We may conclude similarly that xy  , and thus x=y, which was to be proved. 

(δ) implies (α). Let x and y be arbitrary elements of L and define y)(sx=a   and 

 y).(xs)(x=b   By (δ)(ii), it suffices to prove that  bs = as   and  bs = as  . 

To prove the equality we start from as  : 

s. x= y)](s[s x= y)](s[xs = as    

It follows from the monotonicity that a = y)](s[xy)](s[x  y)(xs)(x = bsx  . 

Meeting with s, we get asbsxs  . But we have already proved that  as =x s  , and 

so  bs = as  . To prove  bs = as  we start from as  and use (δ)(i) in several times: 

b,s=y)(xs)(xs = y)(xs = y)(sx)(s = y)](s[sx)(s = y)](s[xs=as 

Hence proved.    ■ 

Lemma 3.4.5  :  Let s  be a standard element of the lattice L . Then ns   is a homomorphism 

kernel, namely sns  ][ .  Conversely, if ]sy[x n  hold when and only when 

y x= sy)(x 1   with a suitable ss1  , then s is a standard element. 

Proof: The congruence relation s  obviously satisfies  → [<s>n]. Consequently  <s>n  is in 

the kernel of the homomorphism induced by s . We have to prove that <s>n is just the kernel. 

Otherwise there exists an s>x  with  sx   ( s ). By definition, it follows 1ss=x   ( ss1  ) 

which is obviously a contradiction. Conversely, if  [<s>n]= s , then s  is a congruence 

relation, since  [<s>n] is one and then from condition (γ) of Theorem 3.4.4 it follows that s is a 

standard element.    ■ 
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We have formulated Lemma  3.4.5 separately despite the fact that it is an almost trivial variant of 

condition (γ) of Theorem 3.4.4 because it points out that property of the standard elements which 

we think to be the most important one. It may be reformulated as follows: if (s] is a principal 

ideal of L, then xy   [<s>n] if and only if there exist a sequence of elements 

y x= z … …zzz =y x m210   of L, an ss1  , and a sequence of integers n1, n2, … … 

nm such that s1, s → zi-1, zi  (i=1, 2, 3……,m). Now the definition of standardness is as follows:      

s is standard if and only if ni=1 may be chosen for all i. It follows then we may suppose m=1 as 

well. 
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 CHAPTER-4 

Standard n-ideal and Principal n-ideal   

Introduction: We discuss some fundamental properties of n-ideals, which are basic to this 

thesis. Here we give an explicit description of )(LFn and )(LPn which are essential for the 

development of this thesis.  Though  )(LFn  is always a lattice , )(LPn  
is not even  a 

semilattice. But when  n  is a neutral element,  )(LPn  
becomes a meet semilattice.  

Moreover , we show that )(LPn  is a lattice if and only if n is a central element, and then in 

fact, )(LPn = )(LFn . Standard elements and ideals in a lattice were introduced by Gratzer 

and Schmidt [11]. Some additional work has done by Janowitz [12] while Fried and 

Schmidt [13] have extended the idea of standard ideals to convex sublattices. 

According to Gratzer and Schmidt [11],  if a is an element of a lattice L, then 

(i) If it is distributive then  

)()()( yaxayxa  , for all Lyx , . 

(ii) If it is standard then  

),()()( yxaxyax   for all Lyx , . 

(iii) If it is neutral if for all Lyx ,  then  

)()()( yxaxyax   

        Gratzer  [10] has shown that an element n in a lattice L is neutral if and only if  

)()()()()()( yxynxnyxynxn    for all ., Lyx   

An ideal S of a lattice L is called standard if it is a standard element of the lattice of ideals      

)(LI . 

 Fried and Schmidt [13] have extended the idea of standard ideals to convex sublattices. 

Moreover, Nieminen  (convex) sublattices. On the other hand, in a more recent paper Dixit 

and Paliwal [15], [16] have established some results on standard, neutral and distributive 

(convex) sublattices. But there technique is quite different from those of above authors. We 

denote the set of all convex sublattices of L by Csub (L). According to [13] and [17], we 

define two operation ⟑  and  ⩒  (these notations have been used by Nieminen in [17] on 

Csub (L) by    
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                      A  ⟑  B = < { a ⟑  >B}  b  A,  a : b    

         And    A  ⩒  B  = <{a⩒ >B}  b  A,  a : b   

             For all  )(, LCsubBA   where < H > denotes the convex sublattice generated by a                                    

subset  H  of  L .  

       If  A and B are both ideals then  A  ⩒  B  and  A  ⟑  B  are exactly the join and meet of A and 

B in the ideal lattice. 

 However, in general case neither A A  ⩒  B  and A  ⟑  B  A are valid. For example if A = {a} 

and B = {b}, then both inequalities imply A =B. 

 According to [15], a convex sublattics of a lattice  L is called a standard convex sublattice (or 

simply a “standard sublattice”) if 

                             I ⟑  <S, K> = <I ⟑  S, I ⟑  K> 

And  I ⩒<S, K> = <I ⩒  S, I ⩒  K> hold for any pair  K} {I,  of )(LCsub  whenever 

either K  S  nor I <S, K> are empty ,  where    denotes the set theoretical intersection. 

In this chapter, we have given a characterization of standard n-ideals using the concept of 

standard sublattice when n is a neutral element. For a neutral element n of a lattice  L,  we prove 

the following: 

(i) An n-ideal is standard if and only if it is a standard sublattice. 

(ii) The intersection of a standard n-ideal and n-ideal I of a lattice L is a standard n-ideal 

in  I. 

(iii) The principal n-ideal na   of a lattice L is a standard n-ideal if and only if na  is 

standard and  is dual standard. 

(iv) For an arbitrary n-ideal  I  and a standard n-ideal S of a lattice  L, if SI  and SI 

are principal n-ideals, then  I  itself is a principal n-ideal. 
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4.1. Standard n-ideal  

According to Fried and Schmidt [13, Th.-1], we have a fundamental characterization theorem for 

standard convex sublattices: 

Theorem 4.1.1: The following conditions are equivalent for each convex sublattice  S  of a 

lattice  L : 

(a) S is a standard sublattice,  

(b) Let K be any convex sublattice of  L  such that SK . Then to each  KSx ,  there  

exist  S s ,s 21   , K a ,a 21  such that 

)a(x  )s (x  = )a (x  )s (x  =x 2211   

(c) For any convex sublattice  K  of  L and for each S 's ,s 12  , there are elements S ', 21 ss , 

K a ,a 21  such that 

))s (a (x  )s (x  =x 211   

)'s (a (x  )'s (x  = 122   

(d) The relation Θ  [S]  on  L  defined by 

yx  (Θ [S]) if and only if 

y) (x  t) )y  ((x  =y   x   

and y) (x  s) )y  ((x  =y     x   with suitable  S s t,    is a congruence relation.    ■ 

Defination (standard n-ideal): An n-ideal S of a lattice L  is called a standard n-ideal if it is a 

standard element of the lattice )(LIn . Where S  is called standard if for all 

).()()(),(, JISIJSILIJI n   

 Proposition 4.1.2:  [13, Pro.2] An ideal S  of a lattice  L  is Standard if and only if it is a 

standard sublattice. Recall that an n-ideal  I  of a lattice  L  is called a standard n-ideal if it is a 

standard element of )(LIn the lattice of n-ideals.    ■ 

The following theorem gives an extension of proposition  4.1.1 above. 

Theorem 4.1.3: If a neutral element  n  of a lattice  L  and an n-ideal is standard if and only if it 

is  a standard  sublattice. 
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Proof:  First assume that an n-ideal S  of a lattice  L  is a standard sublattice. That is, for all 

convex sublattice  I  &  K  of  L with 

 KS and  KSI , ,  

We have I ⟑<S, K> = <I ⟑  S, I ⟑  K> 

And I ⩒<S, K> = <I ⩒  S, I ⩒  K>  

We are to show that S  is a standard n-ideal in )(LIn . 

That is for all n-ideal KI , )(LIn  

 K)  (I  S) (I = K)  (S I  . 

Clearly, ).()()( KSIKISI    

So let x K). S( I   Then Ix and KSx   

so we have 

),()()()( 2211 axsxaxsxx   

for some     S s ,s 21   and K a ,a 21  . 

Now 

),,(),,(

)]()()[()]()()[(

)()(

11

1111

11

anxmsnxm

nanxaxnsnxsx

axsxx







  

  that is ),,(),,( 11 anxmsnxmx   

again 

),,(),,(

),,(),,(

)]()()[()]()()[(

)()(

22

22

2222

22

anxmsnxm

anxmsnxm

nanxaxnsnxsx

axsxx

dd









 

as n is neutral. 

Hence ),,(),,( 22 anxmsnxm  ),,(),,( 11 anxmsnxmx   
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Which implies    . K) ( S) (Ix  I  

Thus, . K) ( S) (IK) S( I  I So  S is a standard n-ideal. 

Conversely, Suppose that n-ideal S of a Lattice L is standard. Consider any convex sublattice  K 

of L such that  KS . Since  S  is an n-ideal,  clearly, 

 nKSKS ,,  

Let 

),()(

),(

nnn

nn

KxSx

KSxx




 

as  S  is a standard n-ideal. This implies 

)1(..........).........()( nnnn KxSxx   

Since nx  is the largest element of  nx  . 

So we have ),,(),,( 1 tnnxmsnnxmnx   

for some ., nKtSs   

),)(()(

))(())(

1

1

ntxsx

ntnxsnx




 

as n is neutral 

Now  nKt   implies  ntt  1  for some Kt 1  

Then 

n  x n   ) t(x   n)) (s (x  

n  ) t(x   )s (x  =

n  n)) (t (x   )s(x  n  x 

11

11

11







 

Which implies that   n   ) t(x   n)) (s (x  n  x 11   
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Then 

n) (x   )}]t(x   n)) (s {(x  [x  = 

n] )t(x   n)) (s [(x   x =

 n) (x   x =x 

11

11







 

as  n  is neutral 

),())((

)()())((

11

11

txnsx

nxtxnsx




 

where   KtSns  11 ,  . 

Since nx  is the smallest element of  ,nX  using the relation  (1) a dual proof of above 

shows that  )  t(x  n)) ((x x 22  s for some S s 2    and K  t2   

Hence from Th. 4.1.1 (b)  we obtain that  S is a standard  sublattice. 

Now, we give characterizations for standard n-ideals when  n  is a neutral element. We prefer to 

call it the “Fundamental characterization Theorem” for standard n-ideals.     ■ 

 Theorem 4.1.4: For a neutral element n of a lattice L, Then the following conditions are 

equivalent:  

 (a) S is a standard n-ideal; 

 (b) K  be any n-ideal  

n)(x) 'k(x) 's(x=         

)k(x)s(x=K S

11

11




 

and 

n)(x)'k(x)'s(x =   

)k(x)s(x=x

22

22




  

For some  ',',k ,kS; ',',s ,s 21212121 Kkkss    

(c) The relation Θ(S) on L defined by yx  Θ(S) if and only if  y)(xt)y)((x=yx  and 

 y)(xs)y)((x=yx  , for some S s t,  , is a congruence relation. 
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Proof: (a) (b) . Suppose  S  is a standard n-ideal and  K  be any n-ideal. Let KSx  . Since  

K  is also a convex sublattice of  L, we have from the proof of theorem  4.1.3, 

)())((

)t(xn))(s(x=x

22

11

txnsx 


 

for some Kt  2121 ,tS; s,s . Since n is neutral, from above we also have  

 
).()()(

)n(x)t()s(x=x

22

11

nxtxsx

x




 

  Thus (b) holds. 

Now,  suppose (b)  (c).  Let (b) holds.  Let )(S  be defined as 

  yx  Θ(S) if and only if y) (x  t) )y  ((x  =y     x   

and  y). (x  s) )y  ((x  =y     x   

for yx   

xtyy  )(  and ysxx  )(  for some S s t,  with ts  . 

Obviously, )(S  is reflexive and symmetric. 

Moreover,    yx  Θ(S) if and only if yxyx   Θ(S) 

Now suppose zyx  with  yx  Θ(S) and  zy  Θ(S). 

Then xtyyysxx  )(,)( 11 and ytzzzsyy  )(,)( 22  for some 

S ,,s ,s 2121 aa . 

Then 

xzssx

zsxsx

zsysxysxx







)((

)()(

)()()(

21

21

211

 

which implies 

.))(( 21 zssxx   

This shows that 
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 zy  Θ(S). 

For the substitution property,suppose yx   and  yx  Θ(S).  Then ysxx  )(  and 

ytzzzsyy  )(,)( 22  for some S. ,,s ,s 2121 tt  

Then 

.)((

)()(

)()()(

21

21

211

xzssx

zsxsx

zsysxysxx







 

 which implies  

.))(( 21 zssxx   

Similarly,  we can show that  

 yx   Θ(S) 

For the substitution property, suppose y x   and  yx  Θ(S). Then ysxx  )(   and  

x t)(y  =y    for some Sts ,  . From these relations it is easy to find Sts , with  St 

satisfying the relations. Then for every zxzyLz  , and ).( zytzy    

Therefore, 

z.y =         

zx)y)((t =         

z)(xy)(t         

z)(xz))(y(t  zy









 

This implies that ).())(( zxzytzy   

Let  K  be the n-ideal , so 

., nyzyt    

Since KSzyts,  , so by the convexity of  

      s.  tas  s x s x  ty  t zy tK,S   

 This implies that K  S x s  Hence KS y x)(s =x   Also, by the convexity of 

x zxzyzyt K,S   implies  KS  zxz,y  . Then by  (b) 
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we have 

  n)z(x)kz(x)sz(x = zx 11  for some KkSs  11 , .   

  n)z(xn)z(x)sz(x = 1   as ny   is the largest element of  K. 

  n)z(xz)(y)sz(x = 1   as  n is neutral.  

)())()(( 1 zynszx   

where .1 Sns    Therefore  zyzx  Θ(S) dually we can prove  )(Szyzx  . 

Hence holds.    ■ 

Corollary 4.1.5:  Let  n is a neutral element in a lattice  L.  Then for a standard n-ideal  S  of  L , 

Θ(S) will be the smallest  congruence  relation  of  L,  which containing  S  as a class. 

Proof: Here any two element of  S  are related with  Θ(S). 

Now , Let  yx  Θ(S) with yx  . 

Then by theorem we have xtyy  )(  and  ysxx  )( for some Sts , . 

Suppose, Sy   then 

syysxxy  )( .  Then by the convexity of  S,  Sx . 

On the other hand, if  Sx ,  then xtxtyyx  )(  implies Sy . 

Hence  Θ(S) contains  S as a class. 

Let   be a congruence  relation  containing  S  as a class.  We have   yx  Θ(S) with ,yx     

xtyy  )(  and  ysxx  )(  for some Sts , . 

Now 

)()(

)()(

ynyx

ynxysxx





 

as  n is neutral. 

 ytyxynx )()( . 

 This implies  Θ(S)  .  Hence Θ(S) is the smallest congruence containing  S  as a class.     ■ 
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Corollay 4.1.6:   If  S  and T  are two standard n-ideals of a lattice  L  and n  is a neutral element, 

then TS  is standard n-ideal. 

Proof: Here ,  S  and T  are two standard n-ideals and clearly TS   is n-ideal. 

Let  x y (Θ(S) ∩ Θ(T)) with yx  . Since  yx  Θ(S), so 

we have  ysxx  )( 1  and  xsyy  )( 2 , for some  S s ,s 21  .  Here we can consider 

12 s n   s  .  Now  yx  Θ(S)  implies   sy  sx 11  Θ(T), and so there exists 

n 11 tT, t  such that   ).s(y)t)s(x = sx 1111   

Then  y.)]s(y)t)s[((x =y )sx(x 1111     

.))(()( 1111 ytsxytsx   

Again (T)  yx , implies   (T)sy  sx 22  . Then we can find Tt 2  with nt 2  such 

that  

  ).s(x)t)s((y = sy 2222  Then  

 x.)t((

x)s(x )t(

x.)]s(x)t)s[((y =x )s(yy

22

222

2222







sy

sy  

  Now, 111 stsn    and 111 ttsn    implies  

  T.S  ts 11  Also ntss  222  and ntst  222  implies TSts  22 . 

Hence    yx  Θ( TS ).  Therefore  

Θ( TS )= Θ(S)   Θ(T).  

Hence  TS   is also a standard n-ideal.     ■ 

Lemma  4.1.7:   For a neutral element  n  and a standard n-ideal  S  and an n-ideal  I ,  IS    is 

also a standard n-ideal . 

Proof: Suppose  S be a standard  n-ideal and I  be an n-ideal  of  L. We are to show that IS   is 

a standard n-ideal in I.  Consider an n-ideal  K of  I, which is also an n-ideal of  L. Now,  

KSKISx  )( ,  since S  is standard  
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so we have )()( kxsxx  , for some ., KkSs   By the monotionity,  we can choose 

both ., nkns   put  .)(' snxs   Then  ss '  

and  .')()( nxssnxnnxn   

Since Inx  ,  so by convexity of  S and I, 

.' ISs   Also sxsx  ' . Thus  

)()'( kxsxx  for some KkISs  ,'   

Also by duality we get )'()'( kxsxx   

for some .',' KkISs   

So  IS   is  standard  in  I.    ■ 
 

Lemma 4.1.8: If n is a neutral element of a lattice  L  and  is a homomorphism of  L onto a 

lattice 'L ,  where '.',')( Lnnn  Then for any standard n-ideal  I  for  L, )(I is a standard 

'n -ideal in 'L . 

Proof:  Clearly )(I  is a sublattice of 'L .  Let qtp  , where '),(, LtIqp  . Then 

)(xp   and    )(yq   for some   I.y x,   Since   is onto, )(rt    for some Lr  .  

Then )()()()( yryrr   

And 

)((

)()(

)()()(

yrx

yrx

xrr







 

Now, yxyrxx  )(   and so by convexity we have   

.)( Iyrx   Thus ).())(( Iyrxt   

Hence )(I is a convex sublattice of 'L . 

Moreover ')( nn  implies )(I is an 'n -ideal in 'L . 

For standardness,  we shall prove (b) of theorem  4.1.4 for )(I .  Let 'K  be any 'n -ideal in 'L

.Then )(KK   for some n-ideal  K  of  L.  
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Let ).()()( KIKIy    

Then )(xy  for some KIx  . Since  I  is a standard n-ideal of  L, using (b) of Theorem 

4.1.4 

we have  ),()()( 11 nxkxixx   for some  KkIi  11 ,  

= ),()()( 22 nxkxix   )()()( 22 nxkxix  ,  For some KkIi  22 , . 

Then 

].'[)]([)]([

)]()([)]()([

)()(

)(

11

1

1

nykyiy

nxix

nxix

xy









 

Also, 

'.][)]([)]([

)(

22 nykyiy

xy




 

From Grӓtzer and Schmidt [11], we know that ideal (s] is standard if and only if s is standard in 

L. This is true for principal n-ideal when n is a neutral element.  In fact this not even true when L 

is a complemented lattice, where n is neutral. There na   is standard in )(LIn  but  a  is not 

standard in  L. Moreover  b  is standard in  L  but nb  is not standard.  

So for any standard n-ideal  I  for  L, )(I is a standard 'n -ideal in 'L .    ■ 

 Theorem 4.1 .9:  Let n be neutral element of a lattice  L . Let  S  and  T  be two standard n-

ideals of  L . Then 

(i) Θ )( TS  = )()( TS   

(ii) Θ )( TS  = )()( TS    

Proof: (i) This has already been proved in corollary   4.1.6, 

(ii) Clearly, )()()( TSTS   Θ(S) . To prove the reverse inequality, 

let )( TSx   with yx  .  

Then xpyy  )(  and ypxx  )( ,  for some ., TSqp    

Then  
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)()( 11 tpspP    and )()( 22 tpspP    

)()( 33 tpsqq   and )()( 44 tpsqq    

 for some Sssss 4321 ,,,   and  Ttttt 4321 ,,,  

Now, 

.

)()()(

)()()(

)()(

1

11

np

Tnpnp

Stpnp

tpspP









  

Thus, ))()(( TSnpp   

Again 

 

.

)()()(

)()()(

)()(

2

22

np

Tnpnp

Stpnp

tpspp









   

Thus, ))()(( TSnpp  . This implies  

))()(( TSnpnp     

 and  so ))()(( TSnp  .  

Similarly, we have ))()(( TSnq  .  

Now,  

,)()(

)()(()(

)(

xnxy

TSxny

xpyy







  

  as  n is neutral.  

     x

TSqxy

nxy







))()(()(

)(
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This implies  )).()(( TSyx   

Therefore, )()()( TSTS    

which proves  (ii).   ■ 

 

4.2.     Principal n-ideal 

Recall that a distributive lattice  L  with 0 is called a normal lattice if  its every prime ideal 

contains a unique minimal prime ideal. Following result gives a characterization  of normal 

lattices.  

Theorem 4.2.1: For a distributive lattice  L with 0, the following conditions are equivalent : 

i) Any two distnict minimal prime ideals are co maximal. 

ii) L is normal. 

iii) For any .](](](,, *** yxyxLyx   

iv) For any Lyx , with 0 yx implies .](]( ** Lyx   

Moreover , when L has a largest element 1,  then each of the above conditions is equivalent to for 

any 0,,  yxLyx implies  ,, 11 Lyx   such that 11 0 yyxx  and 111  yx .    ■ 

Theorem 4.2.2:  For a distributive lattice  ,L  Ln with )(LFn  
is normal if and only if 

dn]( and 

)[n are normal.     ■ 

Generalized Stone lattice : A distributive lattice  L  with 0 is called generalized Stone lattice if 

for each LxxLx  *** ](](,  . 

we know that  L is generalized Stone if and only if  ],0[ x  is a Stone sub lattice for each Lx . 

Moreover, a distributive lattice  L  with  0 is generalized stone if and only if it is normal and 

pseudo complemented. 

Complement of a lattice:   For an element aLa  , is called  complement of  a lattice  if 

0aa  and .1aa  

Complemented lattice:   A Bounded lattice in which every element has a complement is called 

Complemented lattice. 
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Corollary 4.2.3: Suppose )(LFn  
is a sectionally  pseudo complemented  distributive lattice,  

then  )(LFn  is generalized stone if and only if  ](n  is dual generalized  stone and )[n  is 

generalized Stone.     ■ 

Lemma  4.2.4  : Suppose n be a neutral element of  a lattice  L. Then any finitely generated n-

ideal )(LFn  which is contained in a principal n-ideal )(LPn  is  principal .  

Proof : Let ],[ cb  be a finitely generated n-ideal such that cnb  . Let na   be a principal 

n-ideals which contains ],[ cb .  Then nacnbna  . Suppose cbat  )( .  Since  

n  is neutral, we have    

bbnbnan

bancbantn





)()(

)(])[(
 

and  

.)(

)()(

])[(

ccan

cnban

cbantn







  

Hence nttntncb  ],[],[ . 

Therefore ],[ cb   is a principal  n-ideal.      ■ 

Theorem 4.2.5: Let  I   be an arbitrary n-ideal and  S  be a standard n-ideal of a lattice  L, where  

n is neutral. If SI   and SI   are principal n-ideals,  then  I itself is a principal n-ideal. 

Proof:  Let ],[ nanaaSI n   and ],[ nbnbbSI n  . Since  S  is a 

standard n-ideal, then  

))((])[( xnasnana   for some IxSs  ,  

xs . 

Again, ISna    

If  there exist Ss 1  and Ix 1  such that .))(())(( 1111 xsxnasnana   

Now, consider the n-ideal ],[ 1 nxbnxb  . Obviously, naInxbnxb  ],[ 1 .  

So by above lemma, ],[ 1 nxbnxb   is a principal n-ideal say nt   for some Lt   . 
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Then 

.],[

],[

],[],[

],[

11

11

1

n

n

anana

nxbnsnxbns

nxbnxbnsns

nxbnxbSSIa









 

This implies 

).......(..........

],[ 1

AtS

nxbnxbSIS

n


  

 Further,  

n

n

bnbnbS

nxbnxbSISb





],[

],[ 1
 

 As .1 nxbnbnbnxb    

This implies  

)........(..........],[ 1 BtSnxbnxbSIS n
 

 Since S  is standard so we have from (A) & (B),  

ntI  . Therefore  I  is a principal n-ideal.    ■ 

In this section we shall deduce some important properties of standard elements and n-ideals from 

the fundamental characterization theorem.  If  S  is a standard n-ideal, then we call the 

congruence relation )(S , generated by  S, a standard n-congruence relation. If nsS  , then

)()( nSS   and so )( ns   is a standard n-congruence  relation  which we call 

principal standard  n-congruence .  Firstly, we prove some results on the connection between 

standard n-ideals and standard n-congruence relations.  
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                             Recommendation and Application 

 

Conclusion and Future recommendation: From the discussion of all previous 

chapter it can be concluded and recommended that the concept of standard  n-

ideals can be introduce in join semilattice. Then using these results, we can study 

those )(LFn  and )(LPn  which are normal, relatively normal, where L is a join-

semilattice with 0. In other words all the works of this thesis can be extended for 

join semilattice. 

 

Application: Lattice theory has a lot of application in different fields.Boolean 

lattice has applications in the field of hardware and software development of 

computer science.Also it has wide applications in networking.it can be applied to 

develop theories in other branches of algebra,such as group theory,Ring etc. 

 

One of the major application of Boolean lattices is the switching system, which are 

network of switches that involve two state device 0 and 1 for off and on 

respectively. 
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