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Abstract

At present, cloud computing has become the most prominent field for the clients which make them
relax to outsource their expensive computations. Based on a pay-per-use model, a client without enough
computational power can easily outsource large scale computational tasks to a cloud. But this relaxation
also brings some anxious like as data confidentiality, storage overhead and trustworthiness of cloud and
so on. To relief from these threats, a perfect cloud outsourcing protocol is needed. A cloud outsourcing
system is perfect if it can minimize the client’s overhead as well as it has trust. So, the problem is
how a client can send his overload task to cloud by privacy preserving and verifiable way. Since
mathematical computations always have contribution on various scientific and engineering tasks, we
are motivated to design a secure, efficient and verifiable cloud outsourcing protocol for some large-scale
mathematical computations such as lyapunov equation, linear regression. Lyapunov equation needs
for stability analysis. It is applied to the power system analysis also. To solve it by cloud, we use
affine transformation that actually transfers the problem linearly. These transformation computes in a
such way that from transferred result original result can be found. Linear regression is studied for with
constrained and without constrained. Unconstrained linear regression that is studied here in two ways.
First of all, it is studied by hiding its dimension and then transferred the problem by random permutation.
Because of increasing dimension, efficiency of this method is decreasing but increased security. It is the
trade off between efficiency and security. Second, for transforming it, we use the idea of chaotic map
and frobenius matrix. Chaotic map is one of the most used random number generation algorithms and it
has some advantages using frobenius matrix over diagonal matrix. At last, constrained linear regression
outsourcing is done by affine mapping like as lyapunov equation. Actually, We proposed protocols for
outsourcing these problems and studied these protocols in a privacy preserving, efficient and verifiable
way. Real cloud is also invoked and a comparison between real and simulation cloud is also showed.

Theoretical and experimental results confirm the effectiveness and efficiency of our protocols.
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Chapter 1

Introduction

1.1 Background

Because of rapid growing communication, data is increasing day by day and also drawing serious
attention too. It is approximated that the amount of usable data created will be over 15 zettabytes by
2020, compared to 0.9 zettabytes in 2013 [1]. Because of large data, these computations are very time
consuming and need advance technology to reduce the burden for a resource constraint client. Data
owners and analysts have to fight to find an efficient way to solve this problem. So, a possible solution
is to host supercomputer. Many governments or large companies are derived to host supercomputer
for solving this problem. But, in general people can’t do it because of high cost and maintenance.
So, the above problems are the motivation to develop the cloud outsourcing model. Because in cloud,
scalable and flexible IT functionalities are delivered as a service to external customers using Internet
technologies.

The reasons why cloud computational outsourcing becomes important from the client’s perspective
are low computational power, lacking special software, high cost, low infrastructure. If there is
no computational outsourcing, it may take huge time, memory etc and also high maintenance cost.
Therefore, outsourcing the computation to a third party, e.g. a cloud, is a better choice. These reasons

also serve as the motivation for cloud computing [2],[3].

1.2 Motivation

Data comes from various source with large variety and volume. The meaning of big data is also
changing. Additionally, it adds also two important features, shown in fig 1.1. Veracity is one of the
most prominent new features of big data. It is difficult to maintain big data in the time of cloud adoption
[4]. So, it needs to put some concentration to smooth this way and finds the problems with this adoption
or outsourcing and corrects these problems. For this reason, we are motivated to design some protocols
of cloud outsourcing system for mathematical problems.

Cloud outsourcing is actually used for large scale computation. In various real life problems actu-
ally we need mathematical various computations to solve them. So, we are motivated to design some
practical cloud outsourcing model of mathematical computations that have huge applications on real
life like as lyapunov equation(LE), linear regression(LR).

Lyapunov equation(LE) is actually used for bio-mathematics, mechanics, robotics and control theory.
It is also needed to signal processing, filtering, reduction model, to restore image, for ordinary differen-
tial equation implementation of implicit numerical methods for solution and block-diagonalization of
matrices [6],[7].

Linear Regression is basic task of statistics and data analysis. From the previous data, we can predict
future data by linear regression. Prediction is very important for future direction. It can be used in

business, image processing(face recognition, facial image quality estimation and so on), software cost
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Figure 1.1: Big Data Characteristics [5]

prediction, software effort prediction, software quality assurance, predicting the crime rate of a states
based on drug usage, number of gangs, human trafficking and Killings [8].
So from the above discussion, we are motivated to design two protocols that enable clients to securely,

verifiably and efficiently outsource lyapunov equation and linear regression to cloud.

1.3 Problem Statement

Outsourcing computational also brings in new security concerns and challenges. First challenge is the
privacy of client’s input/output. Because data is very important and can contain sensitive information.
To hide the data from the cloud, the client needs to encrypt their data before outsourcing and decrypt the
returned result from the cloud after outsourcing. The second challenge is the verification of the result.
Because cloud is third party and can’t be trusted fully. Third challenge is efficiency. For to protect data,
we use various encryption and decryption method. But, it needs to design effectively so that the cost
of encryption and decryption are low than problem solving. For these reasons, our goal is to design
two cloud outsourcing protocols for LE and LR problem that fulfill the goal of correctness, security,

verifiability with high efficiency.

1.4 Specific Objective

Among the various mathematical problems, lyapunov equation and linear regression are very popular
method. The aim of the study is to design secure, efficient verifiable based cloud outsourcing model
for LE and LR. Also, recently developed protocols are investigated in order to compare with proposed
method. To reach the goal this study will be carried out with the following specific objectives:

e Study of LE outsourcing problem and a way to solve it.

Investigate LR with constraints and without constraints.

Study of ULR with existing methods and find a better way in terms of efficiency or security.

Investigate CLR outsourcing problem and a way to solve it.

Compare performance between existing methods.
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1.5 Methodology

Figure 1.2 illustrates the cloud outsourcing model for large-scale computation. As it can be observed,
there are two parties involved. On one side, there is the client who has a large scale mathematical
computational problem, either LE or LR, but has computationally weak devices. Thus, the client
intends to outsource the problem to the cloud. On the other side, there is the cloud with powerful
resources, huge storage facilities. But the cloud, not being fully secured, cannot be trusted with the
original information. So, the client encrypts the original problem into an encrypted problem in order
to protect the privacy of input data. Then the encrypted problem is outsourced from the client side to
the cloud side. The cloud performs necessary calculations to solve the encrypted problem. Then the
cloud provides the solution to the client which is in an encrypted form. In this way, the output privacy
is maintained. Along with this, the cloud also sends a proof of verification of the solution. On the client
side, the client verifies the obtained result. After result verification, if the client gets to understand that
the result is correct, he accepts it. Otherwise if the returned result is perceived to be wrong, then the
client rejects it and asks the cloud to recompute it. Ultimately on getting the correct result, the client

decrypts it and thus can obtain the solution to the original problem.

Client J

Resu,rr — | Veifyand |z w;,\;ioo\
Decrypt

Figure 1.2: Methodology for Large Scale Computational Outsourcing

1.6 Scope of the Thesis

Cloud Computing is a large field and the most growing field of research. From this scope, we choose
cloud outsourcing field that is becoming popular day by day because of its effectiveness behavior
from the client’s view. There are huge applications that depend on cloud outsourcing. From these
huge applications, we select some mathematical computational outsourcing as our thesis. Because, in
industry or financial companies there are huge data and there very large scale mathematical computations
are needed. So, our thesis scope is defined as some mathematical computational outsourcing like as:

lyapnuov equation, linear regression problem to cloud.



Chapter 1. Introduction 4

1.7 Contribution

Our contributions are summarized below:

1. We propose a new encryption schema for lyapunov equation outsourcing model that is secure,
efficient and verifiable.

2. We propose two methods for unconstrained linear regression outsourcing of privacy preserving
and misbehaviour detection that cloud server can’t find out any important information from
encrypted inputs.

3. In key generation time the idea of chaotic map and frobenius matrix are studied.

4. We present constrained linear regression outsourcing model that is also secure, verifiable and

efficient.

1.8 Organization of the Thesis

The rest of this thesis is organized in five chapters, which are as follows:

Chapter 2 provides literature review related to outsourcing large scale computation to cloud, dis-
cussed in this thesis. This chapter provides the previous works over which the improvement is made.

Chapter 3 specifies problem formulation that are essential to model the proposed system.

Chapter 4 introduces the methodology of proposed method. It contains all algorithms that are used
to implement proposed protocol.

Chapter 5 contains performance analysis of proposed methods from different angle.

Chapter 6 describes the results with discussion and conclude the thesis work with recommendation

of future work.



Chapter 2

Literature Review

2.1 Introduction

Cloud outsourcing is a perfect way to reduce the burden of computation. To keep the advantage of
computing ability on the server side, cloud server has to have the ability to compute correctly on
encrypted problem and return the correct result to the client. In the age of smartphone, IoT, sensors, it
is necessary to outsource and also needs to know how outsourcing protocols are designed previously.

This chapter describes the most popular works on cloud outsourcing field.

2.2 Outsourcing of Matrix Operation

Matrix algebra operations are mostly used in scientific computing algorithms and has huge applica-
tions. These operations are actually combination of several vector operations. There have been already
many studies about secure outsourcing of matrix operations such as: matrix multiplication, inversion,
determinant and factorization. Matrix multiplication is used in graph processing, signal processing. At
first matrix multiplication with check ability has been studied by Benjamin and Atallah [9]. This paper
applied homomorphic encryption(HE) [A.4] system. Here, client computing gain decreases monoton-
ically with the increase in the correctness verification parameter. It has more computational overload.
Then Atallah and Frikken [10] proposed a protocol that eliminates the possibility of server collision.
This technique used secret sharing idea. To enhance security some fake shares are also introduced as
extension. But because of using HE, there downs the performance issue. After, Lei etal. [11] proposed
another secure, robust cheating resistance and efficient matrix multiplication outsourcing. It used the
idea of monte carlo verification method. But, it suffers that the number of zero elements are the same in
both original and encrypted matrix. At2015, Jia et al. presented another method that is efficient in terms
of computation but it suffers from communication and storage overhead [12]. That method has no any
verification method by client can check about the computational correctness of cloud. Zhang [13] solved
the problem using blind divisors with bilinear pairing. Here, an unique ID is given in every matrix. But,
here storage overhead depends on the number of matrix. After that, Shaojing [14] designed random
matrix carefully in key generation phase. It also removes the leakage of the number of zero item problem
that is the limitation of previous. Another mechanism of MM outsourcing is proposed by Malay. His
proposed algorithm is capable of multiplying any valid dimension. It linearly transforms the problem.
At 2018, an another method is proposed that used the idea of random permutation [15]. This algorithm

used fisher yates suffle method that is already optimized. But, it doesn’t consider communication latency.

Following the matrix multiplication [16], Lei et al. [17] proposed a protocol for outsourcing matrix
inversion operations that used a similar transformation technique. It used random permuted diagonal
matrices. But, the protocol fails over the infinite field R. For the field R, the computational error

should be considered seriously. Then, Mohassel [18] also proposed an algorithm for outsourcing matrix
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inversion that directly used matrix multiplication idea. So, it can be said that matrix inversion operations
borrow the idea of matrix multiplication.

Matrix factorization has huge applications on singular value decomposition, eigen value decomposition
and so on. At first, Duan et al. [19] proposed an outsourcing schema that used multiplication of
permuted matrices. It uses the iterative idea for result verification. Then, Zhou et al. [20] designed
another protocol that used the idea of permutation based data masking technique. It also showed an
application that used the idea of eigen and singular value decomposition. But the protocol suffers from
the zero item leakage. Another, QR factorization of matrix is proposed by Luo [21]. This algorithm
requires lower computational complexity and small communication overhead. Permutation and matrix
1-norm technique based idea is used in non negative matrix factorization outsourcing [22]. After that,
Pan et al. [23] proposed another non negative matrix factorization that used lightweight encryption
technique.

Determinant computation (DC) is known as another fundamental computation task widely used in
scientific and engineering applications, specially in statistics. Lei et al. [24] first proposed DC cloud
computation to cloud by dividing the matrix lower and upper part. It verification allows monte carlo

simulation. But it also takes iterative rounds to complete its operation.

2.3 Outsourcing of Equation

Wang et al. [25] first proposed an outsourcing solution for a large scale linear equation. But it is
an iterative approach. So, it takes many rounds to complete the task. Following this first work, an
improved version is proposed by F. Chen et al. [26]. Here, the limitation of previous technique is stated.
Using a similar method, X. Chen et al. [27] also another protocol has been proposed that is used sparse
matrices to protect the original dense coefficient matrix. Most of the strategies for securely solving
linear equation in the literature are transformation-based. The techniques are similar to those used for

matrix operations.

2.4 Outsourcing of Optimization

Wang et al. [29] was the first to provide practical mechanism for secure outsourcing of large-scale
linear programming computation. It applies affine transform of the problem. Using a similar setup,
Nie et al. [28] provided a new secure outsourcing algorithm to lower the client’s work. Compared to
the solution given in reference [29], this work replaces random dense matrices to sparse matrices. The
design follows a similar method to previous. The client outsources two transformed tasks to the cloud
and holds two separate keys associated with the transformations. Chen et al. [26] reformulate the LP
problem and claims that some transformations used in reference [29] are not necessary. For quadratic
programming a secure outsourcing protocol has been proposed by Zhou and Li [30] designed a protocol.
This protocol is very close to the protocol of reference [29]. But it also describes the feasible region

solution of quadratic programming.
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2.5 Outsourcing of Regression

Chen et al. designed two protocols of linear regression outsourcing [31]. One is suitable for efficiency
and other is suitable for security. First protocol transforms based on orthogonal matrix and next
invertible matrix. But the cost of building orthogonal matrix is huge. Second protocol describes on
diagonal matrix. But, it breaks the security of protocol. Then Zhou presented a new method for LR and
also described the limitations of previous method [32] at section 3. Here, data is encrypted based on
dense matrix. Lots of calculations and performance is not satisfaction level. At last, Malay proposed
an regression outsourcing model that utilizes the idea of inverse matrix and random permutation [33].

That is both secure and efficient.



Chapter 3

Problem Formulation

3.1 Introduction

For to the journey of computational outsourcing to cloud, there is huge fear of privacy of data, trust-
worthiness of cloud. There are the treat of outsourcing computation and to defend these threat, system

model is designed. This chapter describes the total problem formulation of cloud outsourcing model.

3.2 Threat Model

Cloud outsourcing has two parts: decreases the computation but increases the concern of data to
client. But new challenges are introduced because data is not now on local storage. In case of cloud
outsourcing, security threat can be defined by concerning of data security and computational integrity.
The security threat in outsourcing system model originated from the suspicious behavior of the cloud
server. The previous work for the secure outsourcing computation defines three threat model that are
“Trusted Model”, “Semi-Trusted Model” and “Untrusted Model” [17], [24].

3.2.1 Trusted Model

The cloud server follows the all instructions of clients correctly. It has no intention about the access of

client’s information. So, no need of security of data and verifiability of result.

3.2.2 Semitrusted Model

In this model, the cloud acts like as “honest but curious” or “lazy but honest” or even both. It follows all
algorithm instructions correctly and gives the correct result. But, it has intention about access client’s
information and tries to find out important information that hides in data. However, the proposed
algorithm has been design to handle these things.The lazy but honest model behaves honestly. It has
no intention about data but it is honest. It doesn’t correctly computes on data. It sends random result
to client without computation. So, the algorithm has been designed so that its misbehaviour can be
detected.

3.2.3 Untrusted Model

The third is "Untrusted Model". Here, the server could be “lazy”, “curious”, and “dishonest”. The
cloud server doesn’t follow instructions correctly. Also, it may return incorrect result. So, here both

privacy of data and verifiability of result both are equally important.

3.3 System Model

The previous model uses a system model that describes the whole task in cloud outsourcing. Figure

3.1 is actually reflected from their model [29], [17], [30]. It describes the system model for securely
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outsourcing large scale computation (LSC) problems. We can denote the problem is 0. We already
know that there are two parties involved here. Client tasks are: key generation, encryption, verification
and decryption. So, at first, he generates key, K and uses this key k to transfer original problem, ¢
to encrypted problem, 0. Then, he sends ¢ to cloud. Cloud solves the ¢; problem and generates
encrypted result, Rg and proof, Vp. Client checks Vp correct or not. If correct then he decrypts Rx to

find original result R.

‘-(f
fof, LSC

| |
(‘

Client L

— __.--“%_\(_ﬂ )
Resm’rk- T Verify and Qﬁ%ﬁqwo\
Decrypt

Figure 3.1: System Model of LSC to Cloud

3.4 Framework

 Secure key generation protocol(K): This algorithm generates key, K. This key is used to encrypt
the original problem ¢.

* Problem encryption protocol(c, K — 0y): The input tuple for LSC is ¢. The problem is to encrypt
this tuple and find 0.

* Problem solving protocol(cy — Rk, Vp): Solves encrypted LSC problem by any solving method
in cloud. This algorithm solves encrypted problem ¢} and sends encrypted result Ry = Y and Vp
to client.

* Result Verification Protocol(Vp — B): This algorithm, checks Vp is successfully verified or not.
If Vp is verified then it returns B = 1 or otherwise 0.

* Result Decryption Protocol(Rx — R): This algorithm decrypts Rx and gets original result R.

3.5 Design Goals

To enable secure and verifiable outsourcing protocol of LSC model, our design protocol must satisfy
the following design goals:
* Correctness: Cloud server must correctly solve the LSC. Cloud server must produce an output
which can be successfully verified and decrypted by customer.
* Input/Output security: Client data is very sensitive and always important. So, cloud may want to
derive the data by the cloud server during performing LSC computation.

* Verifiability: Client doesn’t trust cloud. So, he must verify the returned result from cloud.



Chapter 3. Problem Formulation 10

* Efficiency: Client’s computational burden must be less than cloud computation time. Also the
computation burden of the cloud server must be comparable with the time complexity of solving
LSC problems.

3.6 Problems

Already, many problems are outsourced to cloud. Most of them are mathematical problems that have
huge applications on engineering and scientific task. Inspiring from them, following problems are to
be outsourced as per system model.

3.6.1 Lyapnuov Equation

Lyapunov Equation is actually a matrix equation. The format of this equation is :
AX+XAT4+0=0 (3.1)
The more general format of this equation is :

AXET + EXAT +0=0 (3.2)
A, E, Q matrices are given, the problem is to find matrices X which satisfy the equation 3.2. We
assume that A, Q and E are all square matrices of size m. Q matrices is also symmetric. So the problem
can be defined by 0=(A,E, Q) as input and X as output .
3.6.2 Unconstrained Linear Regression(ULR)

Unconstrained Linear Regression is a linear method to find out the linear relationship between variables.

It can be written as:

Y = XB (3.3)

Where Y is dependent variable of size m x 1 and X is independent variable of size m X n. B is coefficient
of size n X 1. Problem is to find B which satisfy minimum error to fit data. The solution for can be

written as:

B=X"x)"'x"y (3.4)

So the LR problem can be marked ¢ = (X, Y) as input and B as output.
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3.6.3 Constrained Linear Regression(CLR)

Constrained linear regression expresses the linear relationship with variables with some constrained.

1
min E(Cx —D)?

Ax<b (3.5)
such that .
Aeq.x = beq

Where Y is dependent variable of size m x 1 and X is independent variable of size n X n. B is coeflicient
of size. Problem is to find B which satisfy minimum error and constraints to fit data .
So the CLR problem can be marked o = (A,b,Aeq,beq) as input and x as output.
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Chapter 4
Proposed Method

4.1 Introduction

This chapter describes the whole procedure of proposed method based on the reference of chapter 3.
We focused on two popular mathematical functions lyapunov equation and linear regression. Lyapunov
equation actually originates from stability analysis of control theory and linear regression comes from
to fit data in linear model. In this chapter, a detail discussion about methodology of lyapunov equation

and linear regression outsourcing model are described.

4.2 Proposed Method for Lyapunov Equation(LE)

Lyapunov equation is one of the matrix equations. When it has large problem size, it is difficult to
solve with low computational resource. Then, it is wise decision outsourcing it to cloud. In this
section, general format of lyapunov equation and further how the cloud outsourcing framework can be

implemented for it are described.

4.2.1 Framework for lyapunov Equation

Actually refer to chapter 3, laypnuov equation(LE) cloud outsourcing framework can be divided by five
protocols: "Key Generation Protocol", "Problem Encryption Protocol", "Problem Solving Protocol",
"Result Verification Protocol" and "Result Decryption Protocol". "Key Generation Protocol" describes
how client generates secret key, k for LE. It depends on the parameters of LE such as A, E and Q.
Next, "Problem Encryption Protocol" represents how the parameters of LE are encrypted so that after
encryption it will be another LE problem. Then by using any algorithm of LE solver, cloud solves
the encrypted problem. It is discussed on "Problem Solving Protocol". Then cloud sends LE result
with proof. By this proof client checks that cloud solves LE correctly or intentionally gives wrong
result. After successful verification that cloud returns correct result of LE, client decrypts it. These two
methods are discussed on "Result Verification Protocol" and "Result Decryption Protocol". Suppose,

the original inputs for m = 2 are

[8 9] [3 1] [18 16]
20 0 10 16 0

e secure key generation protocol(k): For to encrypt LE, client generates four random matrices N, M, x
and r as a part of key K = (N,M,K,r). Here, all matrices are square matrices of size
m. Here, at first a vector V of size m are generated from a specific range that is given by
client. Then, four zero matrices of size m are generated. These matrices are called Ny,
My, x1 and ri. The specific range are described by [P1,P;| and must be P; < Pp. Af-
ter that, the diagonal elements of M,N,x,r are selected from V. Then by four random row
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permutations, these four parameters Ni,Mq,x1 and r; are randomized to get new N1, M1,k

and rq respectively. The detailed algorithm of key generation are shown in Algorithm 1.

Algorithm 1: Key Generation for LE

Input: Size m
Output: Four random square matrices A, E, ¥ and r of size m
1 Client selects randomly two value P and P5.
2 Then client generates four square zero matrices N1, M1, k1 and ry of m size.
3 Randomly generated a vector V = {V1,V5,...,V,, } where Py < V; < P;.
4 fori<—0Otom—1do
5 Ny(i,i) =V;

Ml(i,i) =V
Ki(i,i) = Vi
rl(i,i) == Vi

6 Four random permutation function 711 to 774 are generated to permute N, M1, K1 and rq
respectively.

7 for i <— 0 tomdo

8 | N(ii) = permute(Ny, 1)

M(i,i) = permute(M, 115)

K(i,i) = permute(K1, 73)

r(i,i) = permute(ry, 13)

After key generation algorithm, following keys are generated:

N [o 17] — [o 12] o [o 10] . [0 16]
16 0 13 0 12 0 17 0
e Problem Encryption Protocol LE encryption consists of three parts. Such as: "Hiding Square

Matrices", "Hiding Symmetric Matrix" and "Enhancing Security by Affine Mapping". In LE,
there are three matrices A, E and Q. All of these matrices are square matrix. Q has also a
special property that it is symmetric matrix that means it equals to it’s transpose matrix. In
"Hiding Square Matrices’ shows how A and E are encrypted and then "Hiding Symmetric Matrix’
describes how Q are encrypted. After that, how affine mapping can be enhanced security are
explained in ’Enhancing Security by Affine Mapping’. Also, how M, N, x and r are generated
that are completely known by client and also it is different for different clients because the range
from where the values of matrices come that is given by client.
e Hiding Square Matrices: The term A and E from tuple are encrypted by A’ = NMA and

E' = NME. So, without knowing M and N, it is impossible to know the value of A and E.
e Hiding Symmetric Matrix: By the previous generated M and N, the Q matrix can be encrypted

via: Q' = NMQ(NM)T Where Q' is also a symmetric matrix.
e Enhancing Security by Affine Mapping: To enhance the security, output matrix X is hidden
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by mapping X = kY« 4 r! and Y is the solution of encrypted problem. Thus the affine
mapping of our protocol is defined by transforms X into ¥ = x 1 (X — r#7) (7)1 Then we

get,

NMA(kYx" + ") ETMTNT +
NME (kYT 4+ rT)ATMTNT +- NMQMN =0
NMAxYxTETMTNT + NMArTETMTNT +-
NMExYx ATMTNT +
NMErrTATM'NT + NMOMN = 0
NMAxYxTETMTNT + NMExYxTATMTNT +
(NMErr" ATMTNT + NMQMN+
NMArr"TETM™NT) =0 (4.1)

So we can write as follows: A’ = NMAx, E' = NMEx,
Q' = NMErrTATMTNT + NMOMN + NMArr"ETMTNT (4.2)

So rewrite Q as: Q' = NMEr(NMAr)" + NMAr(NMEr)T + NMQMN.

It shows that NMEr(NMAr)T and NMAr(NMEr)T are transpose each other. So the summa-
tion of these two term is a symmetric matrix. NMQOMN represents also a symmetric matrix.
So the encrypted Q' matrix is symmetric matrix like Q. Then the new encrypted problem
can be denoted via 03 = (A’,E’,Q’). Then the problem is defined by to find Y to satisfy the
equation A’YE'T + E'YA'T + Q' = 0. Detail procedure is shown in Algorithm 2.

Algorithm 2: Problem Encryption for LE
Input: Four keys N, M, K, r and inputs A, E, Q
Output: Encrypted inputs (A’,E’,Q")
1 Perform A’ = MNA E' = NME
Q' = NMEr(NMAr)T + NMAr(NMEr)" + NMQMN

After problem encryption, following encrypted inputs are generated:

4 1768 1989 o 663 221 0 —10° —0.8551 01.1695
384 0 0o 1920 N 1.1695 0

e lyapunov Equation solving protocol This algorithm solves encrypted ¢ problem by cloud and re-
turned R; = Y and proof parameter Pp to client. Here, there is no extra Pp. Y represents both

encrypted result and also proof parameter. The detail algorithm of it is shown in Algorithm 3.
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Algorithm 3: Problem Solving for LE
Input: A’, E' and Q'
Output: Encrypted result Y
1 Cloud invokes any existing lyapunov equation solver can be called lyapsolver to solve it.
Y = lyapsolver(A’,E', Q")
2 Cloud then sends Y back to client.

After solving the problem, encrypted result is generated by the following algorithm:

,_ | 2563162 0
N 0 —289.1567

e Result Verification Protocol This algorithm checks the Verifiability of return result Y by proof
parameter Pp. Previously stated that in case of LE the encrypted result is itself a proof parameter.
By this proof parameter, clients calculates P, = A’YE'T 4+ E'YA'T. 1t will be must equal to Q'
without considering sign. When it equals then client generates verify parameter, V), = 1 otherwise

0. The detail algorithm is shown in Algorithm 4

Algorithm 4: Verification for LE

Input: Y

Output: V),
1 Client calculates P, = A’YE'T + E'YA'T
if P,==Q’ then

[ ]

3 Lszl
4 else
5 LVP:O

Then calculated P, is
0.8551 1.1595
P, =10’ [ ]

T 1.1695 0

e Result Decryption Protocol If V, =1 then client decrypts the original result by X = KYK' + rr’.
Because, it the mapping between input and output that is previously described. If verification
proof, V,, == 1 then result is decrypted otherwise problem is re-transmitted. The detail algorithm
is shown in Algorithm 5.

Then calculated X is

—0.3162 0
0 —0.1567

4.3 Proposed Method for Linear Regression

Linear Regression(LR) is one of the basic tasks of data prediction. Normally, It can be solved by

least square method. It is two types, such as: Unconstrained Linear Regression(ULR) and Constrained
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Algorithm 5: Decryption
Input: key K,r, encrypted result Y and V),
Output: X

1 if V, ==1 then

2 | X=KYK" +nr'"

3 else

4 L retransmits the problem.

Linear Regression(CLR). It is quite difficult to solve when it works on huge value. Then, it is better to
outsource with cloud. In this section, how ULR and CLR utsourcing framework work that are shown.
Here, two frameworks for ULR and one framework for CLR are implemented reference to chapter 3. For
ULR, one of the framework is based on "Dimension Hiding" and other is "Chaotic Map and Frobenius
Matrix [A.1,A.2]". This section shows complete process of ULR outsourcing by hiding the dimension
of original problem. Dimension refers the size of its parameter. The parameter for the problem is X and
Y. Dimension hiding means to hide the size of this two parameters.

4.3.1 Framework for ULR By Dimension Hiding

This section shows complete process of ULR outsourcing by hiding the dimension of original problem.
Dimension refers the size of its parameter. The parameter for the problem is X and Y. Dimension
hiding means to hide the size of this two parameters. ULR outsourcing framework can be divided by
also Secure Key Generation Protocol, Problem Encryption Protocol, Problem Solving Protocol, Result
Verification Protocol and Result Decryption Protocol refer to chapter 3. "Key Generation Protocol"”
describes how client generates secret key, k for ULR. It depends on the parameters of ULR such as
X, Y and a value that is generated by client G. Next, "Problem Encryption Protocol" represents how
the parameters of ULR are encrypted so that after encryption it will be another ULR problem. Here,
the main part of Problem encryption actually dimension hiding. From my known, It is completely
new idea for constrained linear regression outsourcing. Then by using any algorithm of ULR solver,
cloud solves the encrypted problem. It is discussed on "Problem Solving Protocol". Then cloud sends
ULR result with proof. By this proof client checks that cloud solves LE correctly or intentionally gives
wrong result. After successful verification that cloud returns correct result of LE then client decrypts it.
These two methods are discussed on "Result Verification Protocol" and "Result Decryption Protocol".

Suppose the inputs of ULR are:

(11 18 9] [121]
9 6 5 65
X;=|3 5 19| Y= |149
10 12 2 58
18 13 3| | 83 |
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e Secure Key Generation Protocol: : For linear regression outsourcing, the key K = (D, k) where
D = (R1,R2,0,R3) and k = (T1,T,). How this K = (D,K). Detail algorithm is shown in
Algorithm 6. Here, Ry is (G —m) X (m —n), Ry is (G—m) X n, Oism x (m —n) and Rz is a
vector (G —m) x 1. Here, O is completely a zero matrix. 7y is square matrix of size G and T

is square matrix of size m. After key generation algorithm, following keys are generated:

.
10 9 00 00
1:[0 9] 2:[002 R3:[1 o} o= 10 0
00
_00_
(4 0000 0 O]
0300000
0040000
11 18
T,=|0005000 Tzzlg 6]
0000700
0000O0T10
000000 9]

e Problem Encryption Protocol : The inputs tuple for CLR is ¢ = (X, Y). The problem is to encrypt
this tuple and find o = (X’,Y’). It has three parts: "Hiding the dimension", "Encrypted by
Diagonal Matrix" and "Enhancing Security by Random Permutation". After encryption, X and Y
is sent to cloud.

1. Hiding the Dimension of (X,Y): For to hide X and Y, we use the idea from [34]. From
previously generated random diagonal keys, D = (R1,R,R3,0) are used for hiding the
dimension of X and Y. At first X1 and X, are transferred by the following method:

[

Then the dimension of X7 is now Gxm and Y is Gx1. Then the problem ¢ (X, Y) can be now
called 0y4(X1,Y7).

2. Encrypting by Diagonal Matrix: Two random diagonal matrices are generated 77 and 73

R1 R

X1 =
0O X

are generated of G size. Then, Xj is encrypted by X, = T1X17> and Y, = T1Yq. This idea
is taken from [31]. The dimension of X, and Y, are same as X7 and Y7 respectively.

3. Enhancing Security by Random Permutation: One random permutation function 71y are
used to randomly permuted row of X, and corresponding row of Y>. Another random
permutation function 77, are used to randomly permuted column of X; after row permuted
to find X3. After this stage Y» is changed to Y3. Total procedure is shown in Algorithm 7.
After encryption, the inputs are changed to:
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Algorithm 6: Key Generation for ULR by Dimension Hiding
Input: Size m and n
Output: Six random matrices Ry, R», R3, O, T1 and T,
1 Select randomly a value G where m < G.
Client generates six zero matrices such as: R} of size (G —m) x (m — n), R}, is of size
(G —m) x n, R} is of size (G —m) x 1, Oissizem X (m —n), Ty is of size G x G and T is of
size m X m Client generates random vector V7. Here, V7 is G x 1 size.
Calculate 11 = (G — m) * (m — n)
for i < 1t (G —m) do

[

s W

5 randomly select # where 1 <m<t;
calculate ey = ¢ = (m — n)
6 | calculate e =1+ (G —m)

7 R/1(61,62) = Vl(i)

Ry(e1,e2) = Vi (i)

R3(e1,€2) = V1 (i)

TZ(i/ i) = Vl(i)

8 fori< 11t Gdo

9 | Ti(ii) = Va(i)

10 Three random permutation functions 7 to 773 are generated to permute R/, R} and R’3.

u fori<1t03do

12 Ry = permute(R}, 1)
Ry = permute(R), 715)
R3 = permute(R}, 713)

(24 0 144 0 0 | 4
0 243 0 0 6 0
0 0 176 360 36 484
X3=|0 0 180 150 25| VY3=|325
0 0 84 175 133 1043
0 0 40 60 2 58
|0 0 648 585 27 | | 747 |

e Problem Solving Protocol: Cloud Solves encrypted linear regression problem by any solving method
in cloud. This algorithm solves encrypted problem ¢} and sends encrypted result Ry = B4 with
proof parameter. Here, result By is itself proof parameter P,. Cloud sends encrypted result to
client. Detail algorithm is shown in Algorithm 8.

After solving the problem, encrypted result is generated by the following algorithm:

[—2.8333]
—0.1728
Br = | 0.5000
0.4000
| 7.0000 |
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Algorithm 7: Problem Encryption for LR by Dimension Hiding
Input: Six keys Rq, Ry, Ry, R3, T1 and 75 and inputs X, Y
Output: Encrypted inputs (X', Y’)

1 Perform X' = [R; Ry;0 X]

Y =[R3 Y]
2 Perform X, = T1X1T>»
Yo =TV

3 Generate random permutation 771 and 77, to permute X, and Y. 771 is used for row permutation
and 717 is used for column permutation of both X; and Y. Now, the permuted outputs are
named X3 and Y3.

4 Client sends X3 and Y3 to cloud.

Algorithm 8: Problem Solving for ULR by Dimension Hiding
Input: X3, V3
Output: Encrypted result By

1 Cloud computes By = (X1 X3)~1X1Y3

2 Cloud then Sends By back to client.

¢ Result Verification Protocol: From proof parameter, P, client calculates verification proof Vp. If
cloud honestly calculates B then Y3 = B; X3 relation exists. Then V), = 1 and otherwise 0. Detail
algorithm is shown in Algorithm 9.

Algorithm 9: Verification for ULR by Dimension Hiding
Input: ﬁk,X3,Y3
Output: V),

1 Client calculates P, = X3

2 if P,.==Y; then

3 Lszl
4 else
5 LVPZO

After solving the problem, for result verification P, equals to Y3.

e Result Decryption Protocol: After successfully verified client decrypts result by this protocol and
here decrypted result R = 8 and lower n portion is result. If V,, = 1 then client decrypts the result
by Br =T, 1B,. The lower n part is our result 8. Detail algorithm is shown in Algorithm 10.

Then result is decrypted:
[—2.8333]

—0.1728

B=| 05000
0.4000

| 7.0000 |

The lower n part is our result.
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Algorithm 10: Decryption for ULR by Dimension Hiding
Input: key B;,71 and V),

Output: B
1 if V,, ==1 then
—1
2 | Br=Ty i

(]

Perform inverse permutation of 711 on fy.
B = inversepermute(Bs, 711) The lower part of B, is desired result and it is called B.

else
L retransmits the problem.

[ B N

4.3.2 Framework for ULR By Chaotic Map and Frobenius Matrix:

This section shows complete process of ULR outsourcing by chaotic map and frobenius matrix. Chaotic

is well known function of randomize and frobenius a popular random matrix. They are used here for

to generate secret key, k. Here complete framework is shown for ULR cloud outsourcing by chaotic
map and frobenius matrix. ULR outsourcing framework by chaotic map and frobenius matrix can be
divided by also "Secure Key Generation Protocol", "Problem Encryption Protocol", "Problem Solving

Protocol”, "Result Verification Protocol", "Result Decryption Protocol". It is different from the previous

method by key generation and problem encryption protocol.

e Secure Key Generation Protocol: For linear regression outsourcing, the key K = (A,B) where A
and B are two diagonal frobenius matrices of size m and n respectively. Here, the entries of
frobenius matrices come from chaotic sequence. Two different chaotic map with different initial
values are generated to increase the randomness of key generation and after it permutes too. The
detail algorithm is shown in Algorithm 11.

The following keys are generated:

30000
0000 2 30 2

A=]007 00/ B=|000
0500 2 050
000 3 0

eProblem Encryption Protocol: The inputs tuple for linear regression o = (X,Y). The problem is to
encrypt this tuple and find o, = (X', Y’,X",Y"). Here, X' = AXB, Y’ = AY and then permute X’
and Y’ to get X" and Y”. and X" = AX"B, Y"" = AY". Detail algorithm is shown in Algorithm
12.

After encryption following encrypted parameters are generated:

%! 11 18 ¥ — 11 18 X — 11 18 v — 11 18
19 6 19 6 19 6 19 6
e Problem Solving Protocol: Cloud solves encrypted linear regression problem by any solving method.

This algorithm solves encrypted problem 0y = (0%1,0%2) and sends encrypted result R, = (B1, B2)
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Algorithm 11: Key Generation of ULR by Chaotic Map and Frobineus Matrix
Input: Size m and n
Output: Two diagonal frobenius matrices permuted version A and B, The size of A is mXxXm and
otherisn X n
1 Select a random value r where 1 <r <n
2 Two chaotic sequence {s1,52,......... Som—r} and {f1,12, ..c...... fon—,} are generated from two
chaotic map. G, 11 =r1G,(1 — G,) and H,11 = r,G,(1 — G,,) Where, 3.599 < ry,rp, < 4 for
random behaviour and Gy#Hj
for i < O fomdo

L&@QZ&

fori < Orondo

L&@D:n

g=m+1
fori<r—+1tomdo
o | A(ir)=s(g)
g=g+1

B W

S W

® 3

10 g=m+1lfori<—r+1rondo
u | B(i,r) =1(g)
g=g+1

12 Clients generates two random permutation function 777 and 77> to permute A, and B; .
13 A = permute(711,A;)
14 B = permute (71, B;)

to client. B3 is sent to client as a proof parameter P,. Total procedure is shown in Algorithm 13.

After problem solving, encrypted result is:

0.2141 0.2141
B’ = 10.9349 "'=10.9349
0 0

e Result Verication Protocol: The proof parameter P, is now p”.Result is successfully verified if

B’ = B"” . Then V, =1 otherwise it will be zero. Detail algorithm is shown in Algorithm 14.

Algorithm 14: Verification

Input: $ and B
Output: V),
1 if p’=p" then

2 Lszl

3 else

4 t Vp, = 0 retransmit the problem

Result verification returns 1 because ' and p” are equal.
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Algorithm 12: Problem Encryption for ULR by Chaotic Map and Frobenius Matrix
Input: Two key A, B and inputs X, Y
Output: Encrypted pairs (X’,Y’) and (X", Y")
1 X' = AXB
Y =AY
2 Permute X’ and Y’ to get X" and Y”'.
3 Client sends 031 (X', Y’") and 0y32(X”,y") to cloud.

Algorithm 13: Problem Solving for LR by Chaotic Map and Frobenius Matrix
Input: Two pair (X, Y’) and (X", Y")
Output: Output p'andp”
1 ‘B/ — (X’TX’)_lX’TY’
,5” — (X//TX//) —1X//T Y

2 Cloud sends B’ and B” to client.

e Result Decryption Protocol: After successfully veried client decrypts result by this protocol and
here decrypted result R = X and here X = 8 and B is calculated by B~!B;. Detail algorithm is
generated by Algorithm 15.

Algorithm 15: Decryption of ULR by Chaotic Map and Frobenius Matrix

Input: g’
Output: S
1 Client calculates f = B! B

After decryption, original result is:

2
p=|3
10

4.3.3 Framework for Constrained Linear Regression(CLR)

Refer to chapter 3 the detail framework for CLR are described below. Here are mainly five parts.
Such as: "Key Generation Protocol", "Problem Encryption Protocol", "Problem Solving Protocol",
"Result Verification Protocol" and "Result Decryption Protocol". CLR problem is very close to linear
programming [29]. But the objective functions of these two problem are different.

Suppose, the parameters of CLR are:

616 4 6

2595 4 5677 10
c=12112 D=|7] A=|10 8 3 3| b=|5

2535 7 6 3 6 3 6

6 2 3 7] 2,
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e Secure Key Generation Protocol: : For constrained least square problem outsourcing, the key k =
(v, B,m,r) Here, 7y is a square matrix of size k, 8 is square matrix of size o, m is square matrix of
size n and r is a vector n X 1. For this three random vectors are created to initialize the diagonal
value of matrices and one random vector is created to initialize ». Then permutation functions

are used to permute these values. The detail algorithm is shown in Algorithm 16.

Algorithm 16: Key Generation of CLR
Input: Size k,0,n
Output: Four random matrices 7y, B, m and r
1 Randomly created three vectors V; to V3. V7 is size k, V> is size o, V3 is size n.
2 Generates three zero matrices -y, B, m of size k X k, 0 X 0 and n X n respectively. A zero vector r
of size n X 1 is also generated.

3 fori<1tokdo

s [0 =v()

s fori< 1t o0do

6 | B'(ii) =Va(i)

7 fori<1tondo

s | m'(ii) = Vs(i)
r'(i) = V(i)

9 Generates three random permutation 771 to 773.77; to randomly permute row of -y, B and m

respectively. Here 713 is also used to permute r.

10 fori<1t04do

1 v = permute(7y’, 1)
B = permute(p’, 115)
m = permute(m’, 713)
r = permute(r', 7t4)

After key generation, following keys are generated:

00 0 7 2
200
7 0 6 0 0 0 1
0 2 0 0 10 O 8
040
00 0 9 6

eProblem Encryption Protocol: Problem encryption transfer ¢ to ¢;. The inputs tuple for CLR
problem is ¢ = (X,Y,A,b,Aequ,bequ) .The problem is to encrypt this tuple and find o} =
(X', Y',A",b ,A’equ, b’ equ). Tt has four parts: "Hiding Equality Constraints", "Hiding Inequality
Constraints", "Hiding Objective Function" and "Enhancing Security by Affine Mapping [A.3]".
The detail algorithm is shown in Algorithm 17.
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¢ Hiding Equality Constraints(Aequ,Bequ): For the first time, a randomly generated k x k ma-

trix <y is a part of the secret key K. Now, the customer can do following transform,
Aeq.x = beq = Aeq' x = beq

where Aeq' = yAeq and beq' = ybeq .
e Hiding Inequality Constraints(A,b): For the inequality constraints, a randomly generated
oxo matrix § is used as a part of the secret key K. So the inequality constraints can be

expressed as follow,

Ax<b=Ax<Vb

Where b’ = b, A’ = BA.
e Hiding Objective Function: We have to encrypt the objective function. So the encryption

process is done in this segment as follow,

1 1
min E(CX — D)% = min E(C’y —D')? (4.3)

The in above Eq.(2), Where C' = Cm and D' = D — Cr for the equation x = my + r. Beside
it is not possible to drive the original objective function min %(Cx — D)2 without knowing
the term C,r,y.

e Enhance Security by Affine Mapping: To enhance the security strength of CLLS outsourc-
ing, we have to change the original CLLS and at the same time, it is neccesary to change
the output vector x. In this paper, we proposed the encryption scheme ® to ®. In our
proposed scheme, m is a randomly generated nxn non-singular matrix and r be an nx 1
vector. The affine mapping transforms x into y = m ™! (x — r). So the CLLS problem & can

be represented as follow, For the objective function
1 )
min E(Cmy —(D—Cr)) 4.4)

Such that Amy < b — Ar and Aeq.my = beq — Aeq.r. Next by using the basic techniques to
pick a random 7y for equality constraints, then § for inequality constraints. Both are random

square matrix of k size. Now the problem can be written as follow,
1 )
min E(Cmy — (D —cr))
BAmy < Bb — BAr (4.5)

such that
YAeq.my = ybeq — yAeq.r
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The above Eq.(4) is the encrypted form of constraints linear least problem (CLLS).

So, it can denote the constraints of above CLLS as maintaining the rule Al = BA.m, b =
B(b—A.r), Aeq’ = yAeq.m, beq' = v(beq — Aeq.r), C' = C.m, D' =D — Cr.

So from the above discussion, the CLLS problem o} = (C',D’,A’,b’,Aeq’,beq’) which is

equivalent to ¢ . Total encryption process is shown in Algorithm 17.

Algorithm 17: Problem Encryption of CLR
Input: Four keys -y, B, m, r and inputs C, D, A, b, Aeq and beq
Output: Encrypted inputs (C’,D’,A’,b’,Aeq’,beq’)

1 Client calculates

A" = BA.m
b'=pB(b—A.r)

Aeq' = yAeq.m

beq' = y(beq — Aeq.r)
C'=Cm

D' =D —Cr.

2 Client sends oy, = (C',D’,A’,b’,Aeq’,beq") to cloud.

Then encrypted inputs are:

6 0 60 78] [ —79 ]
30 0 90 59 —101 10 12 14 14 20
cC=|6 0 10 32 D=|-18| A'=1[42 21 42 21| bV = |42
30 0 30 59 —56 40 32 12 16 20
12 0 30 105 | —78 |
49 35 49 28 63
Aeq’= beq’=
14 4 20 14 10

e Problem Solving Protocol: Solves encrypted linear regression problem by any solving method in
cloud. This algorithm solves encrypted problem ¢} and sends encrypted result R, = Y to client.

It is itself proof parameter, P,,. The algorithm is shown in Algorithm 18.

Algorithm 18: Problem Solving of CLR
Input: Encrypted inputs C', D', A’, b’, Aeq’, beq’
Output: Output Y

1 Y=clrsolver(C’, D’,A’, b’, Aeq’, beq’)

2 Cloud then Sends Y back to client.
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Then encrypted result is:
—1.2407

1.8580
2.0987
—1.5740

e Result Verification Protocol: Here verification proof Vp checks if cloud honestly calculates B then
Aeq'Y = beq' relation exists. If exists then V,, = 1 otherwise 0. Detail algorithm is shown in

Algorithm 19.

Algorithm 19: Verification of CLR
Input: Y, Aeq ,beq’
Output: V),
1 Calculate F= Aeq’ * Y if F=beg then
2 L Vy,=1
3 else if then

4 V,=0
retransmit the problem

Then calculated F is
11 18
F =
9 6
So, here Vp = 1.

e Result Decryption Protocol: After successfully veried client decrypts result by this protocol and
here decrypted result R = X and here X is calculated by X = my + r. This procedure is shown by

Algorithm 20.

Algorithm 20: Decryption of CLR
Input: Y, m, r
Output: X

1 Calculate X =mY +r

Then calculated X is
—0.8939

1.7424
1.6364
—1.2273



27

Chapter 5

Performance Evaluation

5.1 Introduction

The chapter describes the detail study of results and discussions for Lyapnuov Equation(LE) and
Linear Regression(LR). From refer to chapter 4, we know that LR is classified by unconstrained linear
regression(ULR) and constrained linear regression(CLR). In this chapter, theoretical analysis of all

problems are shown.

5.1.1 Theoretical Analysis for Lyapnuov Equation

Theoretical analysis of LE consists of security analysis, verifiability analysis and efficiency analysis.

Security analysis describes ’Input Privacy Analysis’ and *Output Privacy Analysis’. ’Input Privacy

Analysis’ describes the privacy of (A, E,Q) and output privacy analysis describes the privacy of Y.

eInput Privacy Analysis: At first, the relationship between the original Lyapnuov equation ¢ and o}
are considered. So we consider the process how ¢ is converted to 0. It is also issue for security
concern. The data which is available for cloud is 0, = (A’,E’,Q"). The semi honest cloud always
tries to discover the original input value from encrypted input value. The A is multiplied by a
random square matrices N, M, K of dimension m. Here firstly N and M matrices are multiplied
and then result matrix is multiplied by original A and at last NMA matrix is multiplied by K. For
to know A, cloud must know N, M, K but it is so difficult. So the structure pattern of A can not
be exposed any more and this analysis as same for E. So input privacy is preserved.

eOutput Privacy Analysis: For to check output privacy needs to know that we let X = KYK” + rrl.
So for knowing X, cloud needs to know K and r. Both are square matrices of size m. If the K and
r domain size is denoted by # then cloud needs to guess m!7>™ times to recover X from Y. So
output privacy is also preserved.

e Verifiability Analysis: The encrypted problem is to find ¥ such that A’YE'T + E'YA'" + Q' = 0. So
if Y is the exact solution of A’YE'T 4+ E'YA'T 4+ Q' = 0 then Y must satisfy it. Our protocol checks
it and verifies the result of LE returned from cloud.

eEfficiency Analysis: For to key generation, encryption problem and decryption needs O (n), O(n?)
and O (n) respectively. So but in cloud, for solving LE problem needs almost O (n%). So customer

efficiency or speedup is increased with size of problem.

5.1.2 Theoretical Analysis for ULR by Dimension Hiding

Theoretical analysis describes the privacy of input and output privacy, verifiability and efficiency analysis
of of ULR by dimension hiding. In the dimension hiding model, it has three stage of encryption. So, it
is difficult to break.

e Input Privacy Analysis If we want to analyze the inputs security of LR problem then how Y is

changed to Y; need to be considered. Here, inputs of LR X and Y are gone by three stage to
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nd the nal encrypted form X3 and Y3. This X3 and Y3 are available to cloud for computation.
At rst stage the dimension of X and Y are hidden by total two random matrix, a zero matrix
and a random vector. So, cloud is now blind about an important pattern of data. To nd out the
original dimension and data these matrix and vector must be discovered. It is difcult to nd out
in reasonable time. Then encryption is done by diagonal matrix of size G and m. But after that,
some security concerns come. So, two random permutations are used. For this, the data and its
structure are totally unknown by cloud or others except client. So, the inputs privacy is preserved.

e Output Privacy Analysis From the decryption equation it is clear that cloud operates only on nal
encrypted data and so after calculation it nds encrypted result. For this decryption, it has followed
two stages. T should be known which is only known by client. Moreover, it is one time key. That
means one key for one problem. So, known plaintext or known ciphertext attack are not possible.
So, output privacy is preserved also.

e Verifiability Analysis: The encrypted problem is to find B such that Y3 = B4X3. So if By is the exact
solution of the encrypted problem then B; must satisfy it. Our protocol checks it and verifies the
result of ULR returned from cloud.

eEfficiency Analysis: ULR actually takes O(n%) to solve. For to key generation, encryption problem
and decryption needs O(n), O(n?) + On and O(n) respectively. Here, dimension is increased

by encryption. So customer efficiency or speedup is decreased here.

5.1.3 Theoretical Analysis for ULR by Chaotic Map and Frobenius Matrix

It describes the privacy of both input parameter and output result, verifiability and efficiency analysis.
Here data of keys come from chaotic and from the idea of using random diagonal matrix, it is deviated

to use the idea of frobenius matrix.

eInput Privacy Analysis: In this method, X can be transmitted by AXB and Y is transmitted to AY
where A and B are frobenius matrix and their elements come from chaotic sequence. So, they are
invertible matrix and can’t be predicted. Further, they are permuted by permuted function and for
every new problem a new initial value is selected like as one time pad. So, the inputs are secured
from outside world..

e Output Privacy Analysis For to check output privacy needs to know that we let 8 = B~!’ So, also
we need to know B that is frobenius chaotic matrix in permuted form. So, it is difficult to find
out.

e Verifiability Analysis: Here, cloud solves two encrypted version of same problem and their results
are B and B”. So, they must be equal.

eEfficiency Analysis: Here, for solving ULR problem needs almost O(n3). For to key generation
by chaotic and frobenius,encrypting problem and decryption needs O(n), O(n?) and O(n)

respectively. So customer efficiency or speedup is increased with size of problem.
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5.1.4 Theoretical Analysis for Constrained Linear Regression

The theoretical analysis of CLS is covered both input and output privacy, verifiability and efficiency
analysis. The structure of secret key is known by client only and output is mapped to original output by
affine mapping. So, both input, output privacy are preserved.

eInput Privacy Analysis: Every time a new key is sent to cloud for a new problem like one time pad.
So, this scheme is free from chosen cipertext attack. The matrix multiplications are the most time
consuming operations that is happened in customer side. To insure input privacy, we implement a
algorithm. This algorithm encrypts the input tuple ® into & with the secret key K. The encrypted
problem ®; has the same form as &. Input privacy is preserved because we used y for hiding
equality constraint, B for hiding inequality constraint and m and r for objective function. its not
possible for cloud to know the original data without knowing the 7y, B, m and r. Also, these key
generation algorithm is run on client side. So, the structure is difficult to find out. So from the
above analysis it can be said, its maintain input privacy.

e Output Privacy Analysis: Cloud server need to solve the encrypted CLR problem ®; and generating
the result proof. For preserving output privacy, cloud needs to know that x = my 4 r and for
finding x and also cloud needs to know m and r that is a randomly generated nxn matrix and nx 1
vector from client side.. So it takes too many times to recover x from y. So here output privacy
is preserved.

e Verifiability Analysis: The encrypted problem is to find Y such that Aeq'Y = Beq’. So if Y is the
exact solution then Y must satisfy it. Our protocol checks it and verifies the result of CLR returned
from cloud.

eEfficiency Analysis: CLR is highly efcient for key denition, data encryption and decryption. CLR
reduces the computational complexity for the customer side. Cloud needs more than O(n?)
time for solving the CLR problem. But, in customer sides it only takes O(n?). So overall the
proposed system allow the customer to solve their CLR problem to the cloud and achieve massive

computational savings
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Chapter 6

Results and Discussions
6.1 Introduction

This chapter shows the comparison between real and simulation cloud environment for the problem
of laupunov equation and linear regression problem. Linear regression is studied here both with
constrained and without constrained. The comparison works actually on encrypted problem solving
time. Encrypted problem is run both cloud and simulation environment and the run time is selected for

comparison.

6.2 Simulation Environment

simulation Both client and cloud server computations conducted on a same workstation. If we implement
the protocol for both client side and cloud side on a same workstation and measure their running time,
then the ratio of time means the asymmetric amount of computation performed in both sides. The
implementation is done using matlab 2016 in an identical computer with an Intel(R) Core(TM)i7-7500
CPU 2.70 GHz processor and 16GB RAM. The cloud side is run on matlab online cloud platform
’MathWorks Cloud’[35].

6.3 Evaluation Criteria

For evaluation criteria, three terms are needed. T,iginq that describes the time to solve original problem,

T liens tells the summation time of key generation, problem encryption, Verification and result decryption

time. Tyyiging mainly very small compared to T, Otherwise, outsourcing has no value. T4 tells

the solving time of encrypted problem time. In simulation environment, it closes to T,;giny but in real
Loriginal

environment, it is very small compared to T}ginq;- Client Speedup denotes by ===, which represents

Lelient
the speedup in the customer side when SE problem is outsourced. Efficiency of our protocol denotes by

Loriginal represents the speedup of outsourcing protocol. It is desirable that both speedup and efficiency

Lelou

is greater than 1.

6.3.1 Lyapunov Equation

In Table 6.1 shows the experimental result of LE outsourcing in simulation environment. Here problem
size increased from 1000 to 5000. From this, it is clear that #,,;gnq time is close to Zejpuq and ejiens is
less than #,;gina1-

The fig 6.1 shows the comparison between real and simulation cloud for LE. Real cloud normally
has better resource facility than local cloud. Encrypted LE actually changes the domain of its parameter.
So, encrypted LE is just the transformed version of original LE. On the other hand, cloud is a place where

clients take the facility of on demand computation, pay as you go model. It works on virtualization
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Table 6.1: Experimental Result of Outsourcing of Lyapunov Equation

Size

loriginal Leloud Lelient to,rig.mal [(;rigmal
m client cloud
1000 | 13.4370 15.2324 3.4453 | 0.2564 | 0.8821
2000 | 119.8130 | 121.2310 | 18.3023 | 6.6111 | 0.98823
3000 | 396.2478 | 395.3423 | 48.7209 | 8.2523 | 1.0023
4000 | 670.4534 | 678.5678 | 78.1201 | 8.5823 | 0.9909
5000 | 1100.5465 | 1200.3487 | 101.1234 | 10.8911 | 0.9169

technique. So, when LE encrypted problem is run both on cloud and local computer, then cloud takes

less time than local or simulation environment.

Time (sec)

Size.m
Simulation Cloud

*— Real Cloud

Figure 6.1: Comparison Between Real and Simulation Cloud Time for LE

6.3.2 Linear Regression by Dimension Hiding

Table 6.2 shows linear regression outsourcing result by dimension hiding. Here, experimental result
for CLR by dimension hiding is shown. The encrypted problem is here the transformed of original
problem respect to both dimension and domain. By this proposed method, dimension of problem is
increasing after encryption. It is secure but encrypted problem time 7¢jy,q is high than 7,,;gine time. It
is drawback of this system.

Figure 6.2 shows the comparison between real and simulation cloud for CLR by dimension hiding.
Dimensionality is a curse and in this method dimension is increasing. So, it has shown in fig 6.2 that
simulation time takes less time than cloud. So, it breaks the efficiency which is the one of our design
goals. Our another design goal is security and it meets it. So, when we don’t want to take the burden
of computation in locally and also we compromise our efficiency than it is the best option. It is also the

trade off between efficiency and security.



Chapter 6. Results and Discussions

32

Table 6.2: Experimental Result for ULR by Dimension Hiding

size

toriginal toriginal
mxn XG Z‘original Lclient Lcloud Ttetient | Teloud
600x50 x1200 | 0.0106 | 0.0112 | 0.0697 | 0.964 | 0.152
700x100 x140 | 0.0112 | 0.0169 | 0.1000 | 0.657 | 0.112
800x200 x1600 | 0.0168 | 0.0193 | 0.1529 | 0.870 | .109
900x400 x1800 | 0.0374 | 0.2339 | 0.1816 | 0.159 | 0.216
1000x500 %2000 | 0.0456 | 0.0444 | 0.2569 | 1.027 | 0.185
3
2.5
2
o 15
@
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b ]
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H
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Figure 6.2: Comparison Between Real and Simulation Cloud Time of LR by Dimension Hiding

—— Simulation Cloud

—+— Real Cloud

In, literature review, it is studied that there are also some method on unconstrained linear regression.

The fig 6.3 shows the comparison of ?.,,; between among them. It is clear that our proposed method

is not efficient like as other. Because, dimension is increasing and so problem encryption time is also

increasing with respect to other.

6.3.3 Linear Regression by Chaotic and Frobenius Matrix

Table 6.3 shows the experimental data for LR outsourcing by chaotic map and frobenius matrix in

simulation environment. Here, also #yigina and fcjouq are close and fejie,, is less than other. So, here

also shows the customer speedup is greater than 1 and efficiency is very close to 1.

Figure 6.4 shows the comparison between real and simulation cloud for CLR by chaotic and

frobenius matrix. Simulation cloud takes more time than real cloud as usual.
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Figure 6.3: Comparison Between Previous Methods and proposed Dimension Hiding Method

Table 6.3: Experimental Result for ULR by Chaotic Map and Frobenius Matrix

nilien toriginal Lclient Leloud ta{fﬁ %
100x 50 0.0100 | 0.0066 | 0.0111 | 1.515 | 0.900
200x 100 0.0104 | 0.0078 | 0.0122 | 1.333 | 0.852
400200 0.0132 | 0.0146 | 0.0159 | 0.904 | .830
800x400 0.0340 | 0.0388 | 0.0490 | 0.876 | 0.694
1600x800 | 0.3348 | 0.2669 | 0.4927 | 1.254 | 0.679
32001600 | 2.7275 | 1.7404 | 6.4130 | 1.567 | 0.917
6400x3200 | 27.0871 | 12.9309 | 38.4005 | 2.095 | 0.705

6.3.4 Constrained Linear Regression

In Table 6.4 shows the experimental result of CLR outsourcing in simulation environment. From this, it

is clear that 7,¢jnq/time is close to Z;jouq and cjien; is less than 7,,;ginq. SO, here also shows the customer

speedup is always greater than 1 and efficiency is very close to 1.

Figure 6.5 shows the comparison between real and simulation cloud for constrained linear regression.

Like as previous, simulation time takes less than cloud time.
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Figure 6.4: Comparison Between Real and Simulation Cloud Time of LR by Chaotic and Frobenius
Matrix

Table 6.4: Experimental Result for Constrained Linear Regression

size oricinal toi teloud Toriginal Toriginal
mxn Xo Xk origina client clou

100x50 x25 %20 0.199 |0.005| 0.173 | 39.800 | 1.15
200x 10050 x40 0.255 | 0.006 | 0.226 | 42.500 | 1.128
400x 100 x50 x 80 0416 | 0.009 | 0.468 | 46.220 | .889
800200 x 100 x 160 1.846 | 1.001 | 1.907 1.844 | 1.001
1600x400 x200 x320 | 17.261 | 1.085 | 17.457 | 15.909 | 0.989
3200x 800 x400 x640 | 123.231 | 2.435 | 134.424 | 50.608 | 0.917
640x1600 x800 x 1280 | 1059.31 | 3.368 | 1112.41 | 314.519 | 0.953

Lelient Teloud
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Figure 6.5: Comparison Between Real and Simulation Cloud Time of CLR
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6.4 Conclusion

We investigated the problem of securely outsourcing large-scale LE and LR problem and designed a
protocol for outsourcing of LE and LR value problem to public cloud. We have shown that the proposed
protocol simultaneously fulfills the goals of correctness, security (input/output privacy), robust cheating

resistance, and high-efficiency. It requires only one-time encryption phase.

6.4.1 Recommendation for Future Work

Cloud outsourcing is growing field. So, there is huge scope to work with this field. Different research

fields can be created based on client and cloud side, Some, directions for further research include:

e Identifying new meaningful scientific and engineering computational tasks and then designing pro-
tocols to solve them.

e Adding result verification for some early protocols, which do not handle result verification, as a
counter offensive to malicious cloud.

e How further reduction stage can be included in client side by fog computing can be a strong research
direction.

e Normally, every outsourcing schema follows same system model and so it is the demand of time to
think a different angle about cloud outsourcing basic model.
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Appendix A

A.1 Chaotic Map

Chaotic function is a function that produces signal with chaotic behaviour. Actually it is noise signal
which can be reproduced if initial condition and function are known. It has following properties:

e It is sensitive to primary conditions. By this advantage, we mean that a minor change in the primary
amount will cause a significant difference in subsequent measures. If we have a small change in
the signal amount, the final signal will be completely different [37],[38].
e If we have the primary quantities and the drawn function, then we can reproduce the numbers.
One of the most popular chaotic function is logistic map that describes by:

Xrg1 = — 1) (A1)

It is the polynomial mapping of degree 2. Where x, is a number between zero and one. r is called
the value of interest that lies in [0, 4].
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Figure A.1: Chaotic Behaviour with Different r [39]

e If r € [0,3], then the signal feature in the first 10 repetitions shows chaos, and after 10 repetitions the
signal is fixed

e IF r € [3,3.57], then the signal feature in the first 20 repetition shows chaos, and after 20 repetitions
the signal is fixed.

e If r € [3.57,4], then the signal feature is completely chaotic.

These behaviour are shown in figure A.1.
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A.2 Frobenius Matrix

It is special type of square matrix. A matrix is said to be frobenius if it has following criteria:

e Its main diagonal entry should be one.

e Any arbitrary column elements below diagonal should be non zero.

e Other entry should be zero.

Frobenius matrix is always invertible. That means if A is frobenius matrix then AA~! = I,,. If the all
diagonal elements of frobenius matrix are changed to greater than one, it is also invertible. So, if A is
diagonal frobenius matrix then AA~! =1, is also true [40]. For example:

30000 10000
07000 0 2 000
A=10 39 0 0jland A '=1]0 -3 1%L 00
06040 0 -60 10
02006 0_200%
So,

10000

01000

AATI=10 0100

00010

00001

A.3 Affine Mapping

Affine mapping idea comes from computer graphics. Affine transformation or affine map or an affinity is
a function between that preserves points, straight lines and planes in affine spaces.Here, sets of parallel
lines remain parallel after an affine transformation. An affine transformation does not necessarily
preserve angles between lines or distances between points, though it does preserve ratios of distances
between points lying on a straight line [41].

Examples of affine transformations include translation, scaling, similarity transformation, reflection,
rotation, shear mapping and compositions of them in any combination and sequence.

If X and Y are affine spaces, then every affine transformation f: X — Y is of the form x — Mx + b,
where M is a linear transformation on the space X , x is a vector in x , and b is a vector in Y.

Li=-K el

{ - f -OnTk_- 2 i0eCn )

Figure A.2: Affine Transformation
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Figure A.2 shows affine transformation of a triangle. Unlike a purely linear transformation, an affine
map need not preserve the zero point in a linear space. Thus, every linear transformation is affine, but
not every affine transformation is linear.

A.4 Homomorphic Encryption

Homomorphic encryption [42] applies where plain texts and cipher texts both are treated with an
equivalent algebraic function. Homomorphic Encryption applies operation on encrypted data without
knowing the original plaintext.

In cloud outsourcing, homomorphic encryption is popularly used without knowing sensitive original
data. For example, services from different companies can calculate 1) the tax, 2) the currency exchange
rate, and 3) shipping on a transaction without exposing the unencrypted data to each of those services.
It can be used other secure systems such as secure voting systems, collision-resistant hash functions,
private set intersection and private information retrieval schemes.



