

Declaration

This is to certify that the thesis work entitled uAn Efficient Representation of Higher

l)imensional Arrays and Its Evaluation" has been carried out by Md Abu Hanif Shaikh in

the E)epartment of Computer Science and Engineering, Khulna University of Engineering

& Technology, Khulna, Bangladesh. The above thesis work or any part of this work has

not been submitted anywhere for the award of any degree or diploma.

I , '

Signature of Supervisor Siature of Candidate

Approval

I—
This is to certify that the thesis work submitted by Md Abu I lanit' Sliaikli entitled 'tiicient

Representation of 1-ligher Dimensional i-\rrays and It's Evaluation' has been appm ed by the

board of examiners For the partial flit Ill Imeni of the requirements For the dcree ol %Iast,21 kd

Science in Computer Science and Engineering in the Department nt ('oniputer SCiCIICC and

Engineering (CSE), Khulna University of Engineering & Technology, Khulna. Bangladesh in

July 2016.

BOARD OF EXAMINERS

1. OD

Dr. K.M: Azharul Hasan Chairman

Professor, Dept. of CSE (Supervisor)

Khulna University of Engineering & Technology. Khulna

Head of the Department Member

Department of CSE

Khulna University of Engineering & Technology, Khulna

Dr. M.' M. A. Hashem Member

Professor, Dept. of CSE

Khulna University of Engineering & technology. Khulna

Dr. Muhammad Arninul Haque Akhand Member

Professor. Dept. of CSE

Khulna University of Engineering & 'l'cchnology. Khutna

Dr. Abu Sayed Md. Latiful Hoque Member

Professor, Dept. of CSE (External)

Bangladesh University of Engineering & technology

iv

Acknowledgment

All the praise to the almighty Allah, whose blessing and mercy succeeded me to complete

this thesis work ftiirly. I gratefully acknowledge the valuable suggestions, advice and

SiflCel co-operation of Dr. K. M. Azharul Hasan, Professor, Department of Computer

Science and Engineering. Khulna University of Engineering & Technology, under whose

supervision this work was carried out. His open-minded way of thinking, encouragement

and trust makes me feel confident to go through different research ideas. From him, I have

learned that scientilic endeavor means much more than conceiving nice algorithms and to

have a much broader view at problems from different perspectives. I would like to convey

my heartily ovation to all the faculty members. officials and staffs of the Department of

('otuputer Science and Engineering as they have always extended their co-operation to

complete this work. I am extremely indebted to the members of my examination

committee br their constructive comments on this manuscript. Last but not least, I wish to

thank my l'riends and my !imi1y for their constant support.

Author

V

Abstract

,),-)-dimensional sparse data. Traditionally, the compression ratio is

inversely proportional to the number of dimensions but it is independent of number of

dimensions in our scheme. l'he operation on stored sparse data is measured with matrix-

matrix addition/subtraction and multiplication which show up to 70% improvement.

4,

Scientilic and engineering computing requires storing and operating on flooded amount of

data having very high number of dimensions. Traditional multidimensional array is widely

popular for implementing higher dimensional data but its performance diminishes with

increased number o! dimensions. On the other side, traditional row-column view of two-

dimensional data is thci Ic for implementation, imagination and visualization. This thesis

represents a scheme for higher dimensional array implementation and operation with row-

column abstraction which can lit an n-dimensional array into a single 2-dimensional array.

A mathematical function fits odd dimensions along row-direction and even dimensions

along column direction which gives lower index computation cost, higher data locality and

better sequential access of memory. Performance of the proposed matricization is

measured with matrix-matrix addition/subtraction and multiplication operation which give

701!/0 and 72% improvement respectively lbr dense data. But most real world data is sparse

and degree of data sparsity increases with increased number of dimensions. A loop

transformation technique which access odd dimensions fast and then even dimensions is

proposed to store any dimensional sparse arrays. In traditional scheme, n numbers of one-

dimensional auxiliary arrays are necessary to store n-dimensional array but our scheme

requires t\\o one-dimensional auxiliary arrays only which gives 16 times space

improvement br -

-Y

A

Contents

Page

No.

Title Pane

Declaration

1\l)Pr0\al

AcLnowlcdgment iv

\bstraci v

('ontents Vi

List of Fiuures Viii

list ollables ix

list of Abbreviations X

CIIAP1'ER I lntioductio

• I Introduction 1

1.2 Problem Statement 2

1.3 Objectives 3

1.4 Scope 4

1 .5 Contributions 4
1.5 Organization of the Thesis 5

C'IIAPFER 11 Literature Review 6

2.1 Introduction 6

2.2 Multidimensional Access Methods 6

2.3 Storage Scheme for Higher Dimensional Arrays 12

2.4 Discussion 17

vi

'4

CIIAP1'ER 111 Generalized 2-Dimensional Array 18

3.1 Introduction 18

3.2 Realization of 2-Dimensional Representation 18

3.2.1 2-Dimensional Representation of TMA(3) 19

3.2.2 2-Dimensional Representation of TMA(4) 19

3.2.3 2-Dimensional Representation of TMA(6) 20

3.2.4 2-Dimensional Representation of TMA(n) 21

3.3 Comparision of TMA and G2A for Matrix Operations 23

3.3.1 Matrix-Matrix Addition/Subtraction Algorithms 24

3.3.2 Matrix-Matrix Multiplication í\lgorithrns 25

3.4 Theoretical Analysis 28

3.4.1 Cost of Index Computation 29

3.4.2 Cache Eflèct Analysis 33

3.5 Conclusion 35

If

CHAPTER IV Generalized Compressed Row/Column Storage 36

4.1 Introduction 36

4.2 Realization of GCRS/GCCS Scheme 36

4.2.1 Generating of GCRS/GCCS File 38

4.3 Operation on GCRS/GCCS 42

4.3.1 Matrix-Matrix Addition 42

4.3.2 Matrix-Matrix Multiplication 44

4.4 Theoritical Analysis 46

4.4.1 Space Requirement of CRS/CCS and GCRS/GCCS 47

4.5 Conclusion 49

CI1AlTER V Experimental Results 50

5.1 Introduction 50

5.2 Experimental Setup 50

5.3 Experimental Results for G2A Operations 50

5.4 Experimental Results for generation of CRS/CCS and 52

GCRS/GCCS

5.4. 1 Ti me Requirement 52

5.4.2 Space Requirement 53

5.5 Experimental Result for GCRS/GCCS Operations 56
5.6 L)iscussion 57

('I lAll'ER \'I Conclusions 58

6.1 Concluding Remarks 58

6.2 Future Scope 58

Ret'erences 60

VII

-'V

'4.

LIST OF FIGURES

Figure Description Page

No. No.

2.1 Vector! one-dimensional Array 6

2.2 Matrix or Two-dimensional Array 7

2.3 l'hree-di mensional Array 7

2.4 \Iisualization of Four-dimensional Array 8

2.5 Sparse Matrix or Iwo-dimensional Sparse Array 9

2.6 a) TNIA(3) of size 3x4x5 b) EKMR(3) of TMA having size 3x4x5 11

2.7 CRS!CCS for 2-D sparse Array 13

2.8 CRS!CCS for sparse 3-D Array 13

2.9 CRS/CCS fbr sparse 4-D Array 14

2. 10 FCRS for sparse 6-D Array 15

2.11 Query to retrieve chunks 15

2. 1 2 ArravStore for 3-D data 16

3. 1 TMA(3) and its equivalent G2A 19

3.2 G2A representation of TMA(4) 20

3.3 G2A representation o fT MA(6) 21

3.4 Addition and Multiplication of Matricized TMA(4) of size 2x2x2x2 24

4.1 G2A representation of IMA(6) having size 2x2x2x3x3x2 37

4.2 CRS and GCRS of TMA(6) having size 2x2x2x3x3x2 37

4.3 (iCRS/GCCS from TMA(3) of size 2x3x3 39

4.4 (iCRS!GCCS ot!MA(4) 41

4.5 Addition of two GCRS!GCCS 43

4.6 Multiplication of two GCRSIGCCS 45

5. I Experimental Results for Matrix-matrix Addition 51

5.2 Experimental Performance for Matrix-matrix Multiplication 52

5.3 Time Requirement for CRS and (iCRS 53

VIII

5.4 Space Requirement for CRS and GCRS 54

5.5 Compression Ratio for CRS and GCRS 55

5.6 Improvement of GCRS over CRS 55

5.7 Experimental Results for GCRS/GCCS Addition 56

5.8 Experimental Results for GCRSIGCCS Multiplication 57

ix

LIST OF TABLES

I'abIe No. Description Page No.

2.1 LoopCost for Matrix Multiplication 10

3.1 Multiplication of Matricized TMA 28

3.2 Parameters for Theoritical Analysis 29

4.1 Generation of GCRS from TMA(3) 39

4.2 Generation of GCCS from TMA(3) 40

4.3 Generation of GCRS from TMA(4) 41

4.4 Different Parameters for Theoretical Evaluation 46

5.1 Experimental Setup 50

x

_10-

LIST OF ABREVIATIONS

TMA Traditional Multidimensional Array

H PC High Performance Computing

EKMR Extended Karnaugh Map Representation

G2A Generalized 2-dimensional Array

CRS Compressed Row Storage

CCS Compressed Column Storage

ECRS CRS based on EKMR

ECCS CCS based on EKMR

EaCRS Extendible Array based CRS

xCRS Extended CRS

MOLAP Multidimensional On-Line Analytical Processing

GCRS Generalized Compressed Row Storage

GCCS Generalized Compressed Column Storage

xi

I

p.'

CHAPTER 1
I

Introduction

1.1 Introduction

h)clav's advanced scientific and engineering problems require a vast amount of computing

power. Compute intensive tasks in various fields. including quantum mechanics, weather

lotecasling. climate research. cryptanalysis. molecular modeling and physical simulations

like simulations of the early moments of the universe, airplane and spacecraft

aerodynamics. the detonation of nuclear weapons, and nuclear fusion etc. [1][2] entail

special aUention of computer scientists. 1-ligh-perlormance computing (HPC) incorporates

all these computational tasks with exceptionally high requirements for computing power

and memory capacity. Traditionally, these requirements were satisfied by introducing

special computing techniques namely C(JDA. Xl 0. Julia etc.

\rra\ is the most corninon and widely used data structure. Generally, most real world data

has wide number of dimensions and often modeled with multidimensional array.

Traditional Multidimensional Array (TMA) is extensively popular for its simple

addressing lunction. memory layout, implementation procedure and random access

capahi I itvl 31-1 141. But it has some limitation to handle and operation on higher

diiiieiisional data.

• Cost of index computations increases with increase the number of dimension.[2]

• The number of cache line accessed increases for higher dimensional data.[15][16]

• Most compilers] 171 have limitation for implementing multidimensional array of

very large num fber o dimensions.

I hits the special computing techniques through comprehensive research to handle large

scale higher dimensional data efficiently and effectively are cramming needs to data

scientists. It emphasizes the organization and implementation schemes on parallel and

Likiributed computing platform. Experts suggest linearization of dimensions for

2

implementing higher dimensional array[18][191. In fact, multidimensional arrays are just a

logical abstraction above a linear storage system. it is good enough to implement in

secondary memory as compilers allocate memory linearly. But operation cost and

accessing time br secondary memory data is too high as well as parallelization is seldom

possible lbr linearized data. It is well known that the compilers replicate secondary storage

data to main memory for any type of computing either it is sequential or parallel machine.

NI ulti-di mensional array operation like matrix-matrix addition/subtraction, matrix-matrix

multiplication, sparse array storage. etc. require multiple access of same element and use

of cache memory reduce the access time of the element. So, the pragmatic computing

techniques which support parallelism, lower index computation cost, the lower operation

cost and higher data locality is an important research issue.

1.2 Probleii Stateiicnt

Many techniques have been proposed in the literature for improving multidimensional data

computation such as TMA[20 I. Extended Karnaugh Map Representation (EKMR).

LKMR! 21 proposed by Liii el. al. can convert three and four dimensional array into two-

dimensional array. The FKMR representation of higher (n>4) dimensions is a hierarchical

structure that contains array of pointers. For large values of ii (n>4) there are (nt) number

of pointer arrays required and there is no generalization for higher dimensions like three or

four dimensions. A technique based on loop trans!brmation to improve the data locality for

multi dimensional arrays is proposed in [15][16]. They demonstrated that this

transformation is useful for array operations. The chunking[2 1] [22]. reordcring[15] [16],

rcdundancv[23] and partitioning of the large array are proposed to make efficient access on

secondary and tertiary memory devices. Caching by chunk by chunk for improving

pertomiance is proposed by [2]I4][20]. In this scheme the large multidimensional arrays are

broken into smaller parts called chunks for storage and processing. All the chunks are n

dimensional with smaller length than the original array. A new programming language has

been proposed to serve the computational power[22]. [23.1 shows a technique for storing

and analyzing multidimensional array by chunking but there is no generalization from

higher dimensions.

\ lost sparse array storage schemes are based on spare matrix i.e. 2-dimensional

-iri-a\12211241-1281. Some of them are time effective and some are space effective. Many

3

prouramnlinn langLiages and compilers (Xl O[29]. Julia[3OJ, CUDA[3 1]) provide supports

for sparse array but limited to only two dimensions. N4atlab sparse toolbox supports for n-

\\ av sparse tensor 1 331 and have promising results for n-way tensor operation but its space

complexity is very high. CRS/CCS scheme for higher dimensional array is based on the

idea that a multidimensional array can be viewed as a collection of two-dimensional arrays

12 1. But it requires (n+ I) one dimensional arrays to store an array of n dimensions.

l:CRS'FCCS scheme [34] works well but only for four dimensions. When the number of

dimensions is greater than four then it requires an abstract pointer array to support higher

dimensions. i'hats why it will be difficult to apply in practical situation when number of

dimension becomes very high. The EaCRS scheme[35][36] which has a nice characteristic

of d\ mimic extendihilityl37j-[40] and supports well for higher dimensions. But it requires 17

one dimensional arrays to store an array of dimension ii. Gundersen et al.[41] proposed a

methodology to store like PATRICIA Trie Compression Storage (PTCS), Extended

Compressed Row Storage (xCRS). Bit Encoded Extended Compressed Row Storage

It
BxCRS) and l-lvbrid Approach. But all of them require (n±1) one dimensional arrays.

I lence the schemes are not el'fective enough for storing and operation on higher

dimensional arrays.

This thesis is going to describe a scheme to represent higher dimensional array (both dense 1-1

and sparse) \\ ith a single two dimensional array which is facile for implementation.

imagination ai'id visualization, The generalized addressing function returns row-column

abstractions which ensure lower index computation cost and higher data locality. Thus the

si iiiple algorithms for higher dimensional array operations like matrix-matrix addition,

subtraction and multiplication would be introduce l'or both sparse and dense array. The

proposed scheme can be applied to wide area including data mining[9] [13] [1 4]. numerical

analvsis(1311261. G PU computing[2] [42]. MOLAP[1 8] [38] and multi way data

ana lvsis[I 0) [1 2].

1.3 Objectives

II igh Pei1'01'111ance Computing. \'IOLAP or various scientific applications use

multidimensional array as a basic data structure to represent high dimensional data. This is

because multidimensional array has an inherent facility to compute indexes and

aggregation operation. Supporting for very high dimensional data is an important

4

requirement of' those applications since data widely vary in today's computing. 1-lence, a

generalized array model or realization scheme is strong requirement of current era.

[he main objective of this research topic can be summarized as -

Overview of multi-dimensional array representation. its index computation, data

locality and limitations ol computing for multi-dimensional data.

• Proposed generalized two-dimensional representation of higher dimensional data,

its lbrmal flotation and implementation. Different operation on generalized two-

dimensional data and its evaluation with traditional representation.

• Sparse array overview and evaluation of different sparse array storage scheme and

hence propose an array of storage scheme for higher dimensional sparse

• Comparing theoretical evaluation of proposed algorithms with equivalent

traditional algorithms.

• Fxperimcntal results analysis to prove the soundness of theoretical evaluation.

1.4 Scope

[he important Scopes under this thesis are as follows:

• Computation can be done independently in each converted two-dimensional sub-

arra block which is very significant for parallel and distributed computing and

U)) Ii cation s.

Fvaluate the proposed algorithms time requirement with existing traditional array

computation technique and EKJ\1R[2].

l)i [f'rcnt techniques of sparse data storage and evaluate the new storage scheme

with existing schemes.

• l'heorctical evaluation of space and time requirement for sparse data storage,

depending on compression ratio, range of usability etc.

• ()perations on stored data based on generalized row/column storage scheme.

1.5 Contribution

[lie contribution ol' this thesis can be summarized as follows:

0 Generalization of, higher dimensional array representation with row-column view.

4

5

• Algorithms I'or operations on stored data like matrix-matrix addition!subtraction

and multiplication. iheoretical analysis is verified with experimental results.

• Generalization of higher dimensional sparse array storage with loop

translormation. Details of theoretical analysis for compression ratio, range of

usabi liv with operations On stored data.

1.6 Organization of the Thesis

• Chapter II presents Literature Review that describes some of the traditional and

prominent array organization and realization scheme that are already exists. Some

of these high dimensional data representation and compression methods will be

described.

• Chapter III proposes a new multidimensional array representation scheme called

(ieneralized kvo-dimensional Array (G2A). It also explains the basic two-

dimensional array/ matrix operations like addition. subtraction. multiplication.

retrieval etc. over the proposed G2A scheme.

• Chapter IV illustrates the details of a generalized sparse array storage scheme

called GCRS/GCCS based on Chapter III. Traditional addition, subtraction and

multiplication operation on store sparse data are also described in this section.

• The experimental outcomes of proposed scheme and its evaluation are discussed in

Chapter V which shows the technical soundness compelling with theoretical

analysis.

• [he future direction of work on the proposed model and the conclusive words

about the model are outlined in Chapter VI.

CHAPTER II

Literature Review

2.1 Introduction

.\rruy is the most common and widely used data structure. Most real world compute

incentive data of weather forecasting, climate research, medical image processing. etc

have wide number of dimensions and often modeled with multidimensional array. The

location 01 each element can be computed with a single mathematical formula called

addressing lunclion. Array is also used to implement other data structures, such as lists,

strines. heaps, hash tables, queues, stacks and VLists. But very few of them support for

higher dimensional data. I here are some other data structure or technique to increase the

perlormance of higher dimensional data computation like loop trans formation, optimal

chunking. ArrayStore. SciDB, tensor decomposition, EKMR, CRSICCS and ECRS/ECCS

2.2 M ultidiniensional Access Methods 111-1 14J [2611331-1351

Arravl 2 1[5 II341I31 is a cotlection of similar elements which is identified by at least one

arra\ index or key. The simplest form of array is a linear array called one-dimensional

arra\ or vector. For example an array of 20 32-bit integer variables, with indices 0 though

19. may be stored as 20 words at memory address 1000. 1004. 1008......1076, so that the

clement v ith index / has the address I 000--4xi as shown in figure 2.1.

1000 1004 1008 1068 1072 1076

0 1 2 17 18 19

Figure 2.1 Vector/one-dimensional array

['he mathematical concept of a matrix can be represented as a two-dimensional array

having two index or keys where first key represent row number and second key represent

cot umn tiuiiiher. lypical graphical view/image on a plane is just a matrix or row-column

\ C\\ ol a two-dimensional data. Figure 2.2 illustrates a matrix or two dimensional array,

7

A[1111/21 ol size 5 x 5 where Ij and /2 are length of dimensions. An element. A[xi][x2] can

be identified either row major or column major order in linearized memory by below

addrt.ssi 1111 luncuon.

• Ii 1 .(xi. x) = Xl / l + x2 and •tcolunin mnor(Xi, X2) = Xl I2 + X2

x=0 I 2 3 5

v 1 0 0 1 2 3 4

156789

2 10 II 12 13 14

3 15 16 17 18 19

4 1 20 1 21 I 22 1 23 1 24

Figure 2.2 Matrix or Two-dimensional array

I ets us consider a three dimensional array. A{/][12}{13] having three key where length of

dimensions are I. 12 and R. The set of continuous memory location into which the array

maps is denoted by A[0:/] where / = 11 X 12 X 13 - 1. A three dimensional coordinate system

or cube having X. Y and Z axis can be represent as three dimensional data as shown in

ure 2.3.

1 2 3

Figure 2.3 'l'hrce-dimensional Array

I aeh element ol' this TN'IA can be addressed in row major order as below

.t(x.x2.x3) xixl2X13 +X2X/3 +X3 (2.1)

Similarly a Ibur dimensional array. A[/1][/2][/3][/41 having four key to inclentify, each

element. The continuous memory location to map with four keys is A[0:/] where / = I x /2

R /1 -. 1 . A lour dimensional array can be view as a 11 number of three dimensional

array. B [/3II/. l[/] as shown in Figure 2.4. The element, of this four dimensional array can

imp into continuous memory location with below addressing function.

f(x1 . .\7. .V3, .V.i) = Xi x/,x/3 x/4 + x24344 + x344 ± x4 (2.2)

2

x =0

N
Fi2ure 2.4 Visualization of Four-dimensional Array

1 We consider a six dimensional array, A[/1][12] [/31 [l4 }[l][/o] having six key to indentify

each element. The continuous memory location to map is A[0:I] where / = 11 X /2 X /3 X /4 X

I - 1 . Further we can say that above six dimensional array can be view as a ij number

ol live dimensional array namely BI /211/31 [/4] [l][lo]. The row major addressing function

br six dimensional array is mentioned below.

I x j x/,xRx/4 xIXlo±x2 X13 X1,i XlXlo+x3)<14 XIs Xlo+X4 xIXl6+ X16+X6 (2.3)

IhercIore a multidimensional array A[/1][/2]....[I] is an association between n-tuples of

inteuer indices <xi. x2. > and the elements of a set of E such that, to each n-tuples

given by die ranges 0 <x1 < /i. 0 <x < I 0 < X11 < / correspond to an element of E.

The domain from which the elements are chosen is immaterial and the assumption is made

that only one memory location need be assigned to each n-tuples. Each array may be

visualized as the lattice points in a rectangular region of n-space. The set of continuous

memory locations into which the array maps is denoted by A[0:/] where

I = fl,"li) - 1

Any element in the multidimensional array is determined by addressing function as

l'l lo s.

In ± X7/3/4 ... / -F± x1/ + x(2.4)

An array is sparse [5] [2711341135] when most of its elements have default value (usually 0

or null). Sparse array may be any dimensional data. The sparsity problem becomes serious

hen the number of dimensions increases. This is because the number of all possible

conihiliations of dimension values exponentially increases, whereas the number of actual

daia values \\ ould not increase at such a rate. In the case of sparse arrays, one can ask for a

PP

Nr

x-0 I 2 3 5

x = 0 01002

4

30040

00500

06700

00080

value Irom an "empty' array position. If one does this. then for an array of numbers, a

If value of' zero should he returned, and for an array of objects, a value of null should be

returned. A naive implementation of an array may allocate space for the entire array, but in

the case where there are lw non-default values, this implementation is inefficient. Figure

2.5 illustrates a sparse matrix or two-dimensional array where only eight locations have

non-zero value among total 25 locations.

Fiiii•e 2.5 Sparse matrix or Two-dimensional sparse array

1 .00p transformation I 2 11 1511 1 61 is a compiler optimization technique to increase the

performance. [here are dif1rent types of loop transformation but this thesis only consider

about loop permutation or re-organization to improve the memory performance. The

tiscinatinu characteristic of loop transformation is data locality. References to the same

memory locution or adjacent locations are reused within a short period of time. As of

Steve Carr[15 IL 16]. data locality is measured with the algorithm called LoopCosi'(I). The

L()oJ)(o,vl(/) aluorithms compute the costs of various loop orders of an array operation.

[he I.aop(usi(I) finds the number of cache line accessed by a loop 1. The value of

Luv/)(o.I(/) indicates the cache miss rate for a loop I and hence smaller the LoopCosi(I)

indicates the smaller the cache miss rate. Therefore the LoopCosii,.J determines the best

loop orders for nested loops with a specific innermost loop 1. If the consideration is of loop

cost for below matrix multiplication algorithm then the loop cost is listed at Table 2.1 with

di licrcm loop order for cache line length r.

lKJ I ordering

1)o K-l. N

Do .1=1. N 4-

i)o l=l.N

C(U) = C(U) + A(1,K) * B(K.J)

10

Table1 LoopCost for Matrix Multiplication

Rets J K I

C(IJ) 17 x j/p x

A(l.K) I x 17
2

17 x 11 2 fl/p x

13(K.J) 2 X 17 fl/p x 17 2 I x 172

total 2n3±n2
]

(r I)n3/r± fl2 2n32

Multidimensional array has an inherent facility of random accessing - the reason of

becoming the most popular. There are many data structures already exist to represent

multidimensional data. Some of the well-known and prominent data structures are

discussed below.

l'he EKMR scheme[2][5][35] is based on the Karnaugh map[45] representation for

minimizing Boolean expression. It can represent a three and four dimensional array with

l\\ 0 dimensional arrays. Representation of higher dimensional (greater than 4) is abstract

pointer array of EKMR of four dimensional data. Let a three dimensional TMA,

Aj/1 lflI] of size 3x4x5 shown in Figure 2.6.a). The EKMR(3) of this TMA is a two-

dimensional array, A'[11][/] where 1 = / = 4 and 12 / X 13 = 3 x 5 = 15 as shown in

Fiure 2.6.b). The representation (A[x1 , Xi. x3; l. /, /31 A'[xi, x2; Li, /21) is a

permutation ol elements where index tuple <x1 ', x7'> can be derived by x1 = X2 and X2

.v i EKMR can also returns to its original TMA (A'[xi, x2; /, 121 ' A[x1 . X2.

.v: /. /. /) according to below backward mapping equation X2 = x1 , X = x2 / I t and X3 =

.v % i. Similarly. a Ibur-dimensional TMA. A[11][/2] [13] [14] can also be represented as a

two-dimensional array, A111 1[/2] where Li = Li X /3 and 12 = /2 X /4 in EKMR(4) scheme.

I 0 20 1)) I 21 41
I5 25 45 6 26 46

0 30 5)) II 31 51
X 15 35 55 tO 36 56

Fi.ure 2.6 a) TMA(3) ol size 3x4x5

.. xI

17 I 2 3 1 20 21 22 23 24 40 41 42 43 44
5 6 7 S 9 25 26 27 28 29 45 46 47 48 49

IF I)) II 12 13 14 30 31 32 33 34 50 51 52 53 54
.v 5 to 17 18 19 35 36 37 38 39 55 56 57 58 59

(a)

11

. x2

2 22 42 3 23 43 4 24 441
7 27 47 8 28 48 9 29 49 I
12 32 52 13 33 53 14 34 541
7 37 57 18 38 58 19 39 591

(b) -

b) EKMR(3) of TMA having size 3x4x5

ftc representation of n-dimensional TMA to EKMR(n) is based on EKMR(4) when n>4

i.e. set ol 1-.KMR(4) construct FKM R(n). If' the length of each dimension is I then

FK\'lR(n) is represented by I' EKMR(4) which introduce a structure to link all

ftc new structure is a one-dimensional array X of size -) for one-to-one

mapping with each EKMR(4). Consider a six-dimensional TMA. A[I1][I2][I3 j[I4J [I][I] of

517.0 3x2x2x3<4x5. [quivalent FKMR(6) is represented by six (3x2) EKMR(4) where

each lKMR(4) is a (2x4) x (3x5) two dimensional array.

:\ lensoll I IF 13 R26R321[331 is a multidimensional array. More formally, an N-way or

tensor is an element of the tensor product of N vector spaces, each of which has

is own coordinate system. This notion of tensors is not to be confused with tensors in

physics and engineering (such as stress tensors), which are generally referred to as tensor

lields in mathematics. A third-ot-der tensor has three indices, as shown in Figure 2.3. A

first-order tensor is a vector, a second-order tensor is a matrix and tensors of order three or

hh.iier are called hiLther-order tensors.

'vlairicization. also known as unfolding or flattening, is the process of reordering the

elements of an N-way array into a matrix. For instance, a 2x3 x4 tensor can be arranged as a

64 matrix or a 3 x8 matrix, and SO on. The mode-n matricization of a tensor X E R II 17

N is denoted by X and arranges the mode-n fibers to be the columns of the resulting

matrix. Ihough C011CCIML1,111y simple. the formal notation is clunky. Tensor element (ii. /2,

I) maps to matrix element (ia. j). where

12

= 1 +
Y,
 - l)Jl(with Jk

=
 fl IM

kn mn

The concept is easier to understand using an example. Let the frontal slices of X E R3X4X2

1 4 7 101 13 16 19 22
X1 = 2 5 811 , X2 14 17 2023

3 6 9 12 15 18 21 24

Then the three mode-n unfolding are

J 4 7 10 13 16 19 22
X(1) = 2 5 8 11 14 17 20 23

3 6 9 12 15 18 21 24

1 2 3 13 14 15
- 4 5 6 16 17 18

7 8 9 19 20 21
10 11 12 22 23 24

_ll 2 3 4 5 ... 9 10 11 12
X(3)

 - [13 14 15 16 17 ... 21 22 23 24

It is also possible to vectorize a tensor. Once again the ordering of the elements is not

important so long as it is consistent. In the example above, the vectorized version is

1
2
3

vec(X)=

23
24

2.3 Storage Scheme for Higher Dimensional Arrays 1 511 71 1181-E2411271E3211331

Niultidimensional array are the basic data structure used in many applications such as

NIOl .AP and compute intensive task. But in many cases, they are found to be sparse in

nature i.e. many of' the array cells contain null values and consume unnecessary space.

So it is important to design a technique, The Storage/Compression', to store such arrays.

Some common storage schemes are reviewed below.

('RS/CCS15J[27][341135] scheme is based on sparse matrix storage where three vectors

I1amcl\ RO. CO and VI, are needed. Let us consider a matrix. where in is the number

I ro\\ and ii is the number ol' column. in CRS scheme, the length of RO is ,n+l which is

ROCRS I 0 I
5 I COc-s 1 2 0 I I I 3 0
o_j VL 15 1 2 31415 6 10

x i =0 1
x3-0 1 2 0 1 2

x-,=0 [o 0 1 5 0 6
ilo 20007
2 L 0 4 0 8 0

13

ii 1 in CCS. First element of RO is zero and later elements store cumulati\'e sum of total

number of non-Zero elements in each row (each column in CCS). VL stores none-zero

elements itself' and CO store respective column index (row index for CCS) of non-zero

values. Ihus. the CCS is the CRS on transpose of targeted matrix. Figure 2.7 illustrates a

t\vo-dimensioflal array/matrix of 44 and equivalent CRS/CCS. 'l'here are seven (7) non-

zero element out of total sixteen (16) elements. To store this matrix in CRS/CCS scheme, it

requires to store a total of (4±1)+2x719 elements. First element of RO is initialized with 0

and rests are the cumulative sum of total number of non-zero elements in each row (column

for CCS). lhe number of non-zero element(s) in j'tli Row (Column for CCS) can be found

by ROIj±1 I-RO[iI.

x0 1 2
x1 =0 0 1 2

300
2 040
3 6 0 7

I 0 1 214 6 7
-
 -

1°CCS
V Ls

Figure 2.7 CRS/CCS for 2-D sparse array

II!IEI1tIHB
II1IIIEIIUII

15 8 ROcsl0 4 5 8
-

CO(Rs 2 0 2 1 2 0 2 I COCCS
0 1 1 0 1 0 0 1 KO5

Li iL2L 3 4 I 8 VL-5

1'igiii'e 2.8 CRS/CCS for sparse 3-D array

4 Figure 2.8 shows the storage ol'a three dimensional array or cube of size 2x3x3. This cube

can he viewed as two two-dimensional arrays having size 3x3 for each. An additional

arra\ IIZIIIICCI KO is introduced which stores indices of first dimension x1 along with RO.

(0 and VI -. 1 he number of non-zero elements is eight (8) out of eighteen (18) elements

1—t-uhjilJuil
MMMEMONE
IF1IJflh1U11

COcks

1/ \ I rj t.'RS
VL, 5

IIUIIUIIIIrn uitunuiiiuiiu
MOMMUMMMMMM

-u-mEEIIfl.

14

and it requires to store (1 r3)-I--3 4=28 elements. Similarly it needs two KO to store a four-

dimensional array of Figure 2.9 of size 2x2x3x3 where 1(00 and KO' store indices of x1

and .v respectively. In this case it requires storing total of (1±3) ± 4 x 12 = 52 elements.

Thus. it needs ii number of auxiliary one-dimensional arrays to store a n-dimensional

1L.n'Y,

x1 =0

x--0 1 0

x40 1 2 0 1 2 0 1 2 0 1 2

x0 0 0 1 4 0 0 7 0 0 0 10

1 0 2 o 0 0 5 0 8 0 :11 0 0

23 0 0'() 6 000 9:120 oJ

ROCRS Lo 1 481 11
- -

0 1 5j 9 L1
V - ---'-=_---------__

C()('('5
KO()
KO (US

Lccs

UBAIUtUEJII unrniiiuuEiIIi
MMOMMMMMMMOM

an I'll."—
Figure 2.9 CRS/CCS for sparse 4-D array

he [CRS/[CCS scheme [5][27][34] use one one-dimensional floating-point array V

and two one-dimensional integer arrays R and CK to compress a multidimensional sparse

U ITU\ based on the EKMR scheme. Given a sparse array based on the EKMR(3), the IECRS

[('CS) scheme compresses all 01 nonzero array elements along the rows (columns for

[CCS) of the sparse array. Array R stores information of nonzero array elements of each

ro (column for ECCS). The number of nonzero array elements in the row (ithi column

br [CC'S) can be obtained by subtracting the value of R[i] from R[i+l]. Array CK stores

the column (row 1'or [CCS) indices of nonzero array elements of each row (column for

[('(-'S). Array V stores the values of nonzero array elements. Similarly. It can be used

arrays R. ('K. and V to compress a sparse array based on the EKMR(4) in the

l.('RS [('('S schemes. Since EKMR(k) can be represented by 111"4 EKMR(4), in the

E

K
R1s o14

ICRS ol'4

CRS o14

ECRS

FEKMR(4)

RLC'IS of 5

CKECRS 01'S

VECIS of 5

ECRS

FEKMR(4)

15

FCRS/ECCS schemes, each EKMR(4) is first compressed by using arrays R, CK, and V.

Then. an abstract pointer array with a size of in 4 is used to link arrays R, CK, and V in

each [KMR(4). For example. assume that there is a 3x2x2x3x4x5 sparse array A based

on the 1MR(6). The sparse array A based on the EKMR(6) can be represented by six

1--KN'IR(4) with a size of 8 x l5. The ECRS/ECCS scheme compress each EKMR(4) to

arrays R. CK. and V. 'then. use an abstract pointer array with a size of 6 to link arrays R.

('K. and V o!'each FKMR(4) shown in Figure 2.10.

An abstract pointer array

0 1 1 2 131 4 IS

\

R LURS olO Riuis of I 1 R1:5 of 2 RI: RS of 3

C K1 URS (I U CKFURS I CKICI(S o12 of 3

VIVWS of, 0 Vl:(RS oF VlRs VLCRS 013

l;cRs

i
ECRS I ECRS

''

ECRS

FKNlR(4) [_EKMR(4)
1

EKMR(4) EKMR(4)

Iigurc 2.10 ECRS for sparse 6-D array

The optinial chunLing technique [23] partitions multidimensional array into coarse

w'ained hvper-rectangular blocks called chunks. A chunk is defined by the index range of

'. ZIIILCS alonu each diiiiension. A query over the dataset retrieves either the entire array or

sub-array based on overlapping the query result. An optimal chunking is characterized as

chunk size and chunk shape. Suppose a n-dimensional array A[11][I2]....[1)]. consists of

I 1 I i elements. The storage of A is done by partitioning A into equal shape rectangular

chunks such that cacti chunk fits on a disk block, i.e., if each chunk has dimensions <ci, C2,

c > then JI'= Ci < C.

Al

:r
Figure 2. I I Query to retrieve chunks

16

the systeni supports queries that retrieve rectangular sub-arrays of A. A query q = <[i,

I'l). Li. : v). 1113 1'%). {u1 11,1)> specifies a lower bound iii and upper bound vi on

each of the n dimensions. The query retrieves all elements x1 . x2, x3,x> of A such

that a < xi < i , j for l< i < n. Figure 2.11 illustrates a 2-dimensional query of shape <A1 ,

A2> operating on a chunked array where each chunk has the shape <ci, c2>.

ArrayStore! 71 is a storage manager which supports range query as well as binary

operations Like join and complex user defined function. ArrayStore takes the approach of

breaking an array into &agments called chunks and storing these chunks on disk. Figure

2.12 shows array Al of size 4x4x4 which is divided into eight 2x2x2 chunks. Each chunk

is a unit ot' I/O (a disk block or larger). Each X-Y, X-Z, or Y-Z slice needs to load 4 I/O

units. the array A2 is laid out linearly through nested traversal of its axes without

cliunking. X-Y needs to load only one I/O unit, while X-Z and Y-/. need to load the entire

arra.

Al: (4X4x4) A2:(4X4x4)

j' 1

fti

bA

Z X-Y:(4X4)
X

/ .. .

X.Z:(4X4)

I:igtlrc 2.12 ArrayStrore for 3-D data

.\rravStoi-e use two types Of chunking scheme namely Regular Chunks (REG) and

Irregular (hunks (I Rl(j). kach array in ArrayStore is represented with one data file and

one metadata file. The data file contains the actual array values. The metadata file contains

array meta information such as number of dimensions, total number of chunks, and in the

ease ol i'eular chunkina the number ol chunks.

Sei I)B[24] is a multidimensional array data model which supports both functional and

SQl-like query language. It as pretty obvious that SciDB had to run on a grid (or cloud)

01 computers. It should chunk arrays to storage bLocks using some (or even all) of the

ditiiciisioiis. Seil)B should chunk arrays across the nodes of a grid, as well as locally in

17

storage. I lence, it distributes chunks to nodes using hashing, range partitioning, or a block-

cyclic algorithm.

2.4 Discussion

Fvery array models described in this chapter have some pros and cons. TMA is still the

standard to implement higher dimensional data and good for random accessing but the

per!'rmane of TMA drastically decrease with the increase of number of dimensions.

l'KMR is a promi1ent technique to represent higher dimensional data with two-

dimensional data. But when the number of dimension is greater than four then it uses an

abstract pointer array to point each EKMR(4) which make EKMR clunky to handle data

with very high dimensions. lensor decomposition slices the tensor into vector which is

prominent br operation but very costly to Store.

Most storage technique ol' higher dimensional sparse data is based on CRS/CCS scheme

hich is excellent to store sparse matrix. But using CRS/CCS for higher dimensional

sparse data is hardly possible for its storage size. ECRS/ECCS is better than CRS/CCS

which works well until four dimensional arrays. When the dimensional is greater than four

then it stores as a collection of ECRS/ECCS(4). Generating the collection of

l;cRS:I-:ccS(4) is inefficient when the data dimension is very high. Optimal chunking,

Art'a Store and SciDB based on the splitting the whole array into smaller size. But

defining the size is widely aflct the performance for higher dimensional data

lhough. there are a lot of' research has been done on array model, but only a few

researches have been made on the generalization the scheme to any number of dimensions.

I lence the proposed generalized representation scheme will outperform over TMA and

FKMR scheme. The detail of the proposed scheme is presented in the next chapter.

-4

CHAPTER 111

Generalized 2-Dimensional Array

3.1 tllti()dUC(LOfl

traditional multidimensional array is widely popular for implementing higher

dimensional data but its performance diminishes with the increase of the number of

dimensions. On the other side, traditional row-column view is facile for implementation,

iniacination and visualization. It is well known that the multidimensional array is the

logical abstraction and linearized when stored on the memory. Compilers/ programming

languages map the array index into the linearized memory address. So, it needs to compute
Ir

the speeiled dimensional indices. If we consider a TMA(3) array. A[/1][/21[/31 then a tuple

<x. x. x > can be linearized and identifled by array linearization function as follows

/(XI.X2. x) x 1 1213 +x213 +x3

this chapter represents an implementation procedure for n-dimensional array with row-

column abstraction which iiamed Generalized Two-dimensional Array (C2A). Odd

dimensions contribute along row-direction and even dimensions along column direction

which gives lower cost of index computation and higher data locality. it is not related with

dimension reduction depending upon eigen value. It is a permutation on higher dimensional

data to I t into a new two-dimensional array. Thus the length and indices of new 2-

Dimensional array is determined based on n-Dimensional arrays' length and indices. To do

this. (J2A ills T 11/2 1 number of dimensions along row direction and the rest n12 number of

dimensions along column direction. Odd dimensions contribute for rows and even

dimensions contribute br column.

3.2 Realization of 2-Dimensional Representation

62\ is the way ob representing an n-dimensional array (n>2) with a two-dimensional array.

I ct. •\II I I/ I.. I! I be a lMA(n) ol size I/i. 17...../d and <X1. X7,. . be the subscripts of

19

an element of' A: where I. /2, . I is the length of each dimension d1 , d2 ., d and x =

Ir 0.1.2.3. (1-I) (0 :~ I !~ 1). The representation of the TMA(n). A into a G2A A[I' 1][1'2] of

sue 1'. I' I and subscripts < x'. x' > where 1' and "2 are the length of each dimension d'1

and d' : x' C: 0. 1. 2. (/i-I) and X'2 = 0. 1. 2......(l'2-1). In the following the conversion

of TMA(3). TMA(4) and TMA(6) to G2A are shown and then the generalization for

TMA(n) is described.

3.2.1 2-l)inicnsional Representation of TMA(3)

('onsider a three dimensional TMA. A[11][12][131 of length [l i , /2, 131 z [2, 3. 4]. It can be

represented as a two-dimensional array. A'[/ i '][/2] having length [l i ', /2'1 [8, 3] as

Il' = Il X 13 and /2 = 12

and the G2A elements index tuple <xi, X2> can be derived from TMA tuple xL,x2.x3> by

XI — X1 x/3+X3 and x2x

x2

X3

X1
xi

0 1 2

3 3

23 2 6
X3 3 1 : 1

7
1 2

Figure 3.1 TMA(3) and its equivalent G2A

1 hus a l'MA index tuple <I. 1. 2> is equivalent to G2A tuple <6, 1>. In reverse, it is also

possible to reconStfllCt a TMA from its corresponding G2A. This is done by finding

ing TMi\ tuple which is called backward mapping. Backward mapping to correspond

construct a TMA(3) from G2A can be as follows

Xi = Xi / 13 , x3= x1 % 13 and X2 = X7

1 Icie % indicates the 'modulLis' operation and / indicates 'division' operation. Thus, a G2A

index tuple <6. 1> is equivalent to TMA tuple <1, 1, 2>.

3.2.2 2-Dimensional Representation of TMA(4)

let. a loui'-dimensional TMA. A of length [/. /2, /3, /4] [2. 3. 3, 2]. Its corresponding

(i2\ (l:igii.e 5). A'[/i'J[/2I where / ' i and / 2 can be found as follows:

Ce

LI = 11 x /3=2 x 3 = 6 & '2 = /2 >< /43 x 2 = 6

and any G2A index <X'I. x'2> can be found with corresponding TMA index <x1 , X2, x3,

X.> as

= .V1 X / + X3 & X2 = X2 >< 14 + X4

As example if a TMA index is < 1. 1, 2. 0 >. then its equivalent G2A index will be <

I x3+2, I x2+0> = <5, 2>. In reverse. ifa G2A index <5, 2> is known then its

equivalent l'MA index can be found by

x 3 = x' i % h = 5%3 = 2. Xj = x' //3 = 5 / 3 =1 and

X4 — X7 %/4 = 2%2 0, x =X2/I4 = 2/21

0 1 2

o-xi

1 1

2

ii 3

11 4

45

1 ii.ure 3.2 G2A representation of TMA(4)

3.2.3 2-Dimensional Representation of TMA(6)

(.unsidcr a SIX diinensional TMA. A[/1][/2][/s]{L1J[lc][16] of length [/, /2, /3, /4 /, I61 z [2,

It can be represented as a two-dimensional array, A'[11][I2] having length

I/i'. hi [12. 121 as

/ = 11 x /, x 15 and 12 = 12 < /4 X /6

and the G2A elements index tuple <x1 , x2 > can be derived from TMA tuple xi, x2, x3, X4,

.v. .V(> by

x1 x I X /3 x h X3 x Is +x and x2'x2 x /4 X /6+X4 X

Ihus a TMA index tuple <1. 1. 1, 0, 0, 1> is equivalent to G2A tuple <9, 7>. In reverse, it

is also possible to reconstruct TMA from its corresponding G2A by backward mapping as

.Vs .Vi% Is. X3 = x1 % (/3x 15), XI = x1 % (/ 1 x / 3 x /)

and .v .v% 4. x4 -- X2% (/4x /) X2 = X2% (/2 x /Ix 16)

- -

0 1 2 0 1 2

It
___•-. -----. ------.--

0 1 0 1 01 0 1 01 0

/1) 1

if 0

/ 0

I 0.

0

'I

1 2 3 - 5 6 ' S 9 10 11

Figure 3.3 G2A representation of'FMA(6)

3.2.4 2-I)imensional Representation of TMA(n)

Similarly it is possible to represent any dimensional array (n>2) with a single 2-

dimensional array. The length of generalized 2-dimensional array, A'[11][121] from n-

dimensional TMA. A[/1][12] ... [i] length can have two cases as below

(ase I: if n is even

/i ' / x 13X / x XIn 3 In-I and 12 = 12 /4 X 16 X xj11 _2 x In

(u.sc 2: il/7 is odd

Il' = I I x x / xx/, x I and 12 = 12 X /4 X /6xx/ 3 x In-I

Above two cases can he generalized as

= lj+2J [i = 1,2 and] = 0,1,2,3......n]

j = ()

To generate a 02i-\ from n-dimensional TMA it is necessary to generalized the TMA

index tuple <.v1 . .v2...... > into G2A's index tuple <Xl42>. Again two cases may occur

based on the value of n.

21

ii:

H Lj::

4

'S

6

S

9

10

ii

22

Case 1: ii ii is even

XI = X11315'n-3'n-I + X3I17.....1n-31-I ++ 4_31n.! + X11_1

and X2' = X2/416..... /n-21n + X41618.....lii-2111 ++ Xn_2111 + X11

Case 2: if ii is odd

xl' X11315 iii-2'n + x31c17 'n-2'n ++ X12111 + x1 and

X' = X71416.....1n-3'ii-1 + X41618.....1n-31-I ++ XF_3111_I + X11_I

Above two cases and equations may be generalized to generate G2A tuples from TMA

tuples as

fl-i
fl-i --

=

fj
 1

i+2k
k=j+1

j=O

[i = 1,2 and j,k = 0,1 1 2,3 n]

The ahzorithm to implement above notation is shown in Algorithm 3.1 and Algorithm 3.2.

u/guru/un 3.1: finding G2A indexes from TMA indexes:

G2A-f6rward_mapping(x i ', X2 ', XI- x,, 1- i)

Initializex j ' :0, x2' : =0

Repeat i := I to n

Repeatj:= i +2 ton
x :=xx/1

j:j+2

X2j'2 :=x21%2 +X

For backward mapping, if a G2A tuple X2> is known then its equivalent TMA tuple

<.VI. .v > can be derived. To do this, two derivations can be considered based on

the value oiii.

Case I: if ,i is even

Xn = x % I
II

x (... (x' / i) ... / 'j+2) % ii [i = 4, 6, ..., n-2]

X2((...((X7'//n)//2) ...)//)/i4

-.4

x_i = x' %

x1 (...(x 1 /i t) ... /1+2) [i=3,5,.,.,n-3]

x ((... ((xi' Ii-i) / ln-3) ...) I is) /13

(a.,e 2: 1117 IS odd

xfl = x1 ' % i

x=(... (x I 'I1) ... I1I+2) %/ [i=3,5,...,n-2]

x1=((... ((xI'/l)/I2) ...)I15)/15

XnI = x %

(x2'//1 .J) ... /1j+2) % IJ [i=4,6,...,n-3]

X2 = ((... ((x2'//1t)/l3) ...)/16)/14

I'lic generalization of above mentioned backward mapping can be done as below

Xi x vherei=nto1

•1 II
•\ 2 °2 / /i

Ir Algorithm 3.2 shows the reverse mapping which described above.

Algorithm 3.2: finding 1MA(n) indexes from G2A indexes:

G2A-backward mapping(x1 X2 x 1 - x, It- i)

Repeat i : iito I

X :--x

X7j2 := (x 2 j2 - x)II

3.3 Comparison of TMA and G2A for Matrix Operations

lhe TMA and G2A are both higher dimension arrays with different data layouts. In G2A,

the array cells are organized into chunks according to the number of dimensions. For a

i'MA(n) '\Ii,l [12 1 ... I/,,]its equivalent G2A A' [1] [1'] has the chunk size I x I_l and

there are such Ill x 12 x ... x ii-2 I chunks exists. Each chunk is a two dimensional array

of size [I fl, 1] Figure 3.4 shows the data layout separated into chunks for matrix- matrix

addition/subtraction and multiplication for 4 dimensional matrices.

23

4 5

7

1(1 ii 14 IS

1 12 13

1) 1
/

4 5

3 (P 7

K ') 12 13

IC' II 14 Ii

24

0

CIILII)k

T -7T>--

k
C)

/1)

/
(I

-P

/
I)

C

PS

(P I)

PP

I (U

/
I)

.5

2 3

-

1 S

4 U II 14

22 1K

I 7 3

SIsIt.Orn

h 0 4 I 1) I

C)

I (U

/
(1

I
2 3

2 3 4U

(H 06 79

154 171 326 351

'fl) 211

375 407

I:igui.c 3.4 Addition and Multiplication olmatricized TMA(4) of size 2x2x2x2

Ihe (i2A is organized as chunks according to d4 and d3 (i.e. X4 and x3). The chunk size is

'3 x I,j i.e 2,22 and there are such 2x2 = 4 chunks exists. Fig. 3.4 shows the data layout

br matrix-matrix addition and multiplication fi.r C ddI1 I 5 =A±B and xB where

\ and B are two matrices. The additionlsubtraction and multiplication are performed by

lixilig 0\\5 br Varying columns as done for a 2 dimensional matrix. This increases the

cache hit rate of' the processor because of the data locality [15] [16]. In the following at

!rst the algorithms for three dimensional matrixes are presented and then extend it to

higher dimensional matrix representation.

3.3.1 Matrix-Matrix Addition/Subtraction Algoritlirns2J

Let t\\o three dimensional TMA A and B of size [11. /2, /31. The resultant matrix, C =A ± B

is down by lxing flrst dimensions br pointing the row and column (second dimension as

25

row and third dimension as column). Algorithm 3.3, 3.4 and 3.5 show the matrix-matrix

Ir addition/subtraction for TMA(3), TMA(n) and G2A respectively.

Ahiorithi,, 3.3:
matrix-matrix addition TIVIA3

begin

1orx1 = 0 to (/-l) do

br .v- = Oto (/7-I) do

for X3 =0 to (/3-1) do

C'Ix11[x211x3i = AIxI][x2][x3] + B[x1][x21[x3]:

[nd.

/1l.Oflt/lIfl 3.4:
iiatrix-natrixa(lditioiiTlVI An

begin

tory1 Oo (I j -1) do

-Ir 10FX2 :0(0 (/7-1) do

br .V =0 to (i-i) do

C'I.vI[x21 ... [x] = A[x t j[x2]. . . + B[X l][X2]... [x1];

md.

,lh.'orit/ziii 3.5:

natrix-natrix addition (i2A

begin

for xj = 010 (1-l) do

for x 0 to (1- I) do

C'IxIj[x J = A'[x][x] + B'[x][xi];

Fnd.

3.3.2 Matrix-Matrix Multiplication Algorithms

Let two three dimensional 1'MA A and B of size [11, 12, 131. The resultant matrix, C = A X

B is done by fixing first dimensions for pointing each 2-dimensional grid of row and

column (second dimension as row and third dimension as column) where length of row

and column are same i.e /i1 = I. Algorithm 3.6, 3.7 and 3.8 show the matrix-matrix

multiplication tor !'MA(3). l'MA(n) and G2A respectively.

AI'ori1Iznz 3.6:

Ir matrix-matrix multiplication_TMA_3

begin

1'orx1 = 0 to (l-l) do

for X2 = 0 to (/2- 1) do

for x =0 to (/3-I) do

!br 1=0 to (/3-1) do

C[x][x21[x3] = C[xi][x2][x3] + Axi Jx2 [i] x Bxp][i1[x31;

End.

Aluioritlirn 3.7:

malrix-rnatrix_ multiplicationjMA_n

begin

forx1 = 0 to (/-1) do

101' X2 = 0 to (/2-1) do

Ibr x1l =0 to (1- 1) do

for i =0 to (l,- 1) do

Clxi j[x2]. [x11] = C[xi][x21. . x1] + Ax1]x2] ... [x,_][i] x Bxi][x2]..

End.

/lluiorilh,n 3.8:

matrix-matrix multiplication_G2A_naive

begin

forx1 0 to (1'-1) do

begin

u = X1, - x' %
jI

forx2' = 0 to(/21-I)do

begin

V = X2 - X2 % /2

for 1 =0 to (/- 1) do

C'[x j'][x2 1 = C'[xi'][x2'1 + A[x'][i'+i] x B'[u+i]1x211;

end
end

i

26

x,=0

o H 45
2 3 67

8 9 I2I3

tO II 14 15

x',O 1 2 3

27

However, the perlormance of the naive algorithm (Algorithm 3.8) for C'=A' x B' will be

low because of the modulus operation for the calculation of u and v. The algorithm is

revised for avoiding modulo operation as shown in Algorithm 3.9.

A IioritI,n: 3.9:

niatri x-matrix_ multipi ication_G2A

begin

it = 0

for X'= 0 to (l'-l) do

begin

/) = X ' - U

ii' j-, = I then

U= it ± l

V = 0

0 to (/2-1) do
1-

begin

q = X2 - q

if' q/then

1' = V + /

for 1=0 to (1-1) do

C'[xj'][x2'] = C'[x['][x21] + A'[x i '][v±i] x B'[u±i][x2'1

end
end

end.

The correctness of algorithm 3.9 is shown in Table 3.1 by showing the operation and

values of' different variables where A' and B' are two G2A of four-dimensional TMA

having length 2 for each of' four dimensions as shown in Figure 3.4.

FIT

.V1 -0 (.v0 0 1 4
-

5
]
x0 x1 0 (x=0

23 6 7 I I

I / 0 8 9 12 13 2 I (0

I 10 II 14 LJ 3 I

.v'-() 1 2 3

28

Fable 3.1 Multiplication of matricized TMA(4) of size 2x2x2x2 as of Algorithm 3.9

'I
2 U N,

AtI.vj'Ilv+i x B'Iu+iI.v2'I
o 0 0 0 0x0-1x2

o i o 0 0x1-,-1x3

o 2 0 2 4x4±5x6

o 3 0 2 4x5-.-5x7

0 0 0 2x0-3x2

I I 0 0 2x1-3x3

2 0 --2—T 6x4--7x6

3 0 2 6x5--7x7

2 0 2 0 8x8+9x10

2 I 2 0 8x9+9x11

2 2 2 2 12x12-r13x14
2 3 2 2 12x14±13x15

3 0 2 0 10x8+11x10

3 I 2 0 10x9+llxll

3 2 2 2 14x12+15x14

3 3 2 2 14x13+15x15

3.4 Theoretical Analysis

lucre are two aspects for performance improvement on matrix operation of proposed G2A

(shown in Section 3.3) namely I) Cost of index computation and 2) Cost of cache line

accessed. INc cost of index coml)utation comprise of the cost of total number of addition

and multiplication operations. Another aspect, the cost of cache line accessed is analyzed

ith the alc.orithm called Loop(us! (1) proposed by Can' ci al. [15] [16]. The parameters

are grouped as shown in Table 4.2. Some of these parameters are provided as input, while

others are derived from the input parameters. All lengths or sizes are in bytes.

Table 3.2 Parameters for theoretical analysis

er Description

Number of dimension for both TMA & G2A

I Length of dimension i (2:5 i !~ n)for TMA. Consider /1= /2= 13=... =

1 = / for all i. l-lence size of the array or total array elements
becomes 1".
Leneth of row for G2A; i. 1 = /C where k = [n/2]

k / 2 Length of column for G2A: i.e. 12 = I
r Size of cache line
it Cost of a multiplication operation
11 Cost ofan Addition/Subthictioii operation

(
1 1 Improvement: 11 = i 1 -

Cost of G2 A \%

I X l00%
\ Cost of 'IMAJ

KA

29

3.4.1 Cost of index Computation

According to our algorithms described at section 3.3, the total cost of index computation

for matrix-matrix addition and multiplication for different number of dimensions can be

presented as

Fotal Cost = Cost of Index Calculation + Cost of Array operation

The analysis is per!'ornied on three TMA A. B and C as well as three G2A A', B' and C'.

Ihe index computation is generalized with /1 number of dimensions though 3, 4 and 6

dir leilsions.

11atrix-I\'1atrix j%.ddition/Subtraction:

For inatrix-matrix addition/subtraction operation, each element is accessed only once. An

n-l)imensional TMA ol' length I for each dimension needs to compute I' number of index

fOr each of' three matrixes as well as 1" number of additionlsubtraction operations.

Consider C=A 13 and C'=A' ± 13' fOr three dimensional data having 13 elements for each.

The index computation function lOr TMA and G2A are land!' respectively as below

V7. xl) = x1 x/x/ 1- x 2 x1 + X3 and /"(x'1 , x'2) = X'i X/'2 + 42

The fOnction 1 requires two additions and three multiplications while f ' requires one

addition and one multiplication to compute each index. The G2A also requires another one

multiplication to calculate 1' 1 xf 'l'hus the index computation costs 3(3a+213) 1
3 and

() L' u. fOr TMA and G2A respectively. But the total cost is the sum of index

computation cost and cost of' array operation. So.

'l'otal cost for Operation on TMA = 3(3a+2(3) j+ /3= (9(.+7f3) 13 and

lotal cost fOr operation of' G2A = 3(a+(3) Ii+ U + / 1 = a + (3(x+4) 13

the improvement. r over schemes for three dimensional arrays can be calculated as
follows.

/ a + (3a+4j3)I 3'\

(9a+713)I3)x100

As we know that the cost of' multiplication is very high than that of addition (a>>13). If we

iwore the (1. with respect to 13 then

7]
= (.-) x 100

30

II' the above analysis is considered for four dimensional array with below TMA index

computation lunction

J(x 1 ,xxs.x.)=xi xlxlx/±x2 xlXl+x3 X1+x4

There are ,.4 elements and each element requires three addition and six multiplication

operations. The index computation function for any dimensional array is same as shown

for three dimensional data. For four dimensional data equivalent G2A needs another

multiplication operation to compute 12=' xl. So. the index computation cost for total three

arra ol TN'lA and G2A are 3(6a-r3f3) 1
4 and 3(a±3) l ±2c respectively. The total cost will

be the above cost plus 14 for each case as shown below

Iotal cost for operation on TMA = 3(6a±3(3) i± T'f3 = (I 8u+10f3) 1 and

Total cost for O1)etItiO11 of G2A = 3(a+f3) i+ 2(x + Pf3 = 2ct + (3a+43) f'

So. the improvement rate over scheme for addition operation on four dimensional data,

2a + (3a + 4[3)14

(18a+1O)14)x100

=(

5 1
—)x1OO [for a>>]

Similarly, below TMA index computation function for six dimensional arrays have five

additions and lilleen multiplications operation for each of total 16 elements.

I (xi. X2. x. x 1. X. x6) .v x/x/x/x/x/ + x2 xlxlxlxl + x3 xlxlxl + x4 xlxl + xc xl + x6

Equivalent G2A needs four multiplications to determine the lengths /t1/xfx/ and

/r/ / x/, So. the total cost for matrix-matrix addition for six dimensional data would be

as below

Total cost for operation on TMA = 3(1 5a+53) = (45a+1 613) 16 and

Total cost for operation of G2A 3(a±13)
16+ 4a + /613 = 4a + (3a+4[3) 16

So, the improvement rate for six dimensional data operation.

4ct + (3a+413)/6

(45ci + 16)1) x 100

31

'14 4\

=L54516)x100 [for a>>]

Now the cenera117.ation of above analysis for n-dimensional array with below TMA index

computation function which has (n-I) addition and n(n-1)/2 multiplication.

/(xi. X2 ...,x, x) = x x/" 1 4- X2X 1n-2,
••• x x/ + x,,

G2A index computation function is same for any number of dimensions as shown before

except calculation of/ i and "2 which require (ii-2) multiplication. The total cost for n-

dimensional data computation for both cases are below

oial cost of TMA 31" + (n — 1)p) + pIn and
2

lotal cost of (i2A =3(a+(3) /11+ (n-2)ct + / 13 = (n-2)a + (3a+413) /1)

I lence. the improvement for addition operation considering a>>(3.

/ 2 2(n-2) 77 =

(-) - 3(- 1)171)
x 100(3.1)

N1atrix-1Iatrix \lultiplication:

Matrix-matrix multiplication described in section 3.3.2 requires multiple accesses for same

element. 1he index computation function for TMA and G2A are same as described for

matrix-matrix addition for di ffrent number of dimensions. The multiplication operation

for three dimensional array having length / of each dimension needs to access 4 elements.

The array operation needs another one addition and one multiplication of j4 elements. So

the total cost to compute C = A x B for three dimensional TMA are the sum of index

computation cost and cost of array operation as

loud cost of TMA = 3(3u+213)
(±13)/4

= (10u+713) 14 and

Total cost of G2A 3((i+13) a ± (+13) / = ± 4(cx+13) 4

Ihus the improvement, i over schemes can be calculated as below

U + 4(a + 13)/4
(lOu + 7f3)/4 x 100

'3 1
=(_Th-)x 100 [a>>/fl

Similarly, the total cost of IMA(4) and equivalent G2A, can be calculate as follows

loud cost of IMA 3(6u 313) r± (+13)r = (19a+1 013) 1 and

32

Total cost of G2A

II ve neglect the cost of addition with comparing the cost of multiplication then the

improvement for four dimensional array computation,

is 2
77

=
,) x 100

Again the consideration of six dimensional arrays for matrix multiplication then total cost

of INIA and equivalent (i2A would be as below

Total cost of TMA = 3(1 5"51) ((X±)/7 (46a+ I 6) 17 and

Iotal cost o!G2A 3((x+[) 4u ± (a±)/7 = 4a + 4(a+) 1
7

Ihus the improvement rate for six dimensional data considering a>>13 is

11=
 (

21 2
— — x 100
23 2317)

Now the generalization of above analysis for n-dimensional data needs to access

clement for each arra. Ihus the total cost l'or both TMA and G2A are as below

Iota l cost of TMA 3 (L~
1)
u + (n - i)i) 171 + (a +)11 and

2

Total cost of (i2A 3+1) /
4-1 ± (n-2)a ±(a+) /h1H

= (n-2)a + 4((x+1) I"'

I lence the generalized improvement rate by ignoring cost of addition for matrix-matrix

n1LI!tip11cation of n-dimensional data can be represent as below

8 2(n-2)
1 3n(n - 1) + 2 - (3n(n - 1) +

2)171+1) x 100(3.2)

Remarks 3.1: For large values ofii and I the improvement rate ij will increase. Hence the

overall improvement will increase for higher dimensional array of large size for matrix-

matrix addition or multiplication operation.

3.4.2 Cache Effect Analysis

It is ell known that the compilers allocate memory sequentially. For a n-dimensional

array, it is possible to access into üictorial of /1 possible loop order. Among them, !n-1

number of loop order access memory randomly. We all know that random access of

nieniury increase the cache miss rate. Bitt this thesis desires lowest cache miss rate to

33

ensure hieher efficiency and thus considering sequential access of memory. Hence, the

loop order </i, /2...... /> is considered i.e outer loop is managed by 11 then 12 and

l'inal lv

Nlatrix\'Iatrix Addition/Subtraction:

there are 3 (three) dif!rent loop orders are possible for a TMA(3). We assume the loop

order <Ii. /. /3 > to ensure the most sequential access of the memory. As the Cache is

partitioned into lines and, during data transfer, a whole line is read or written. If the cache

line size is r then the number of cache line access using LoopCost('l)[2]{3] for matrix-

matrix addition' subtraction. j2 I!] (see algorithm 3.3.1) is same for both TMA(3) and its

equivalent G2A i.e. no improve for G2A over TMA(3) for matrix-matrix

addition/subtraction. For IN'lA(4). 4 diflèrent loop orders are possible. We assume the

loop order </j. /2. /3. /4 > to ensure the most sequential access of the memory. The number

of' cache line access using Loop('os!(I) for matrix-matrix addition/ subtraction for TMA(4)

and equivalent G2A are j3 H & 1 2 respectively (See algorithm 3.3.2). So, the improve

rate I'or G1\ over l'MA(4) is

F1x12
)xlOO

h1 ><

For 1MA(n), n! different loop orders are possible. We assume the loop order <L i , l, 13,

I. I > to ensure most sequential access of the memory. The number of cache line

access br matrix-matrix addition/ subtraction for TMA(n) and equivalent G2A are

I J & l n/21 respectively. So. the improvement for G2A over TMA(n) is

Il

X 12

1 x 100(3.3)
x 1'

When / is divisible by i, the improvement is 0, that is. the number of cache line accessed

tr the (i2i\ is the same as that of the TMA. When / is not divisible by i, the improvement

is positive. If/is much larger than r. then i 0.

34

Matrix-Matrix Multiplication:

II we consider most sequential access of memory i.e. X3 is the innermost indices of

lMA(3) then the LoopCosi(/) of A[xi][X21[x31, B[xi][x2][X3] and C[xi][x2][x3] are I

I1/rlx/3 and [1/r]x13 respectively. So the total ioop cost of TMA(3), 211/ri i+i is same

for equivalent G2A i.e. no improve for G2A over TMA(3). The number of cache line

accessed for A[xil[x21[x31 [.V.ij. B[xi][x2][x31 [x4] and C{xij[X2][X31 [x41 of TMA(4) are

I x/4, 11/7-1 x/4 and 1/7- xf1 respectively. I x/3, x/3 and [L] x13 are the number of cache

line accessed for A'. B' and C' respectively of equivalent G2A. The improvement for G2A

over IMA(4) is

I 121
((2 1 _I + 1) x 1 3)
\ Il

11=1—
((2 + 1) x14)

When 1 is divisible by r, the improvement is 0. and when / is not divisible by r, the

i m provenient is

G4fl+i)
'I +

Or
i) I

S imi larlv. The number of cache l ine accessed for A. B and C of TMA(n) are I x/, [1/

I /' and I 1/v x/' respectively. Equivalent G2A has cache line accessed for A', B' and C'

are 1 x jn/2+ 1 x and X 1fI respectively. So, the improvement for

(12.\ over l\'lA(n) is
r fl

I

-

I 2
I

—I + 1) x 1f12 +1 I
1I
TI I

(2 1) x 1) x 1 4)

Once again, if! is divisible by i' then the improved rate is 0, that is, the number of cache

line accessed for the G2A is the same as that of the TMA. When / is not divisible by r. the

illiprovemeut is

/ i F!1
2 + 1)

/1= 1— (3.4)
(2 [j + 1) x

35

Remarks 3.2: II' I is divisible by r then there is no improvement for G2A based

aluorithms over TMA based algorithms i.e, the number of cache line accessed for the G2A

is the same as that of the TMA. When I is not divisible by r, the improvement is positive

for G2A based algorithms.

3.5 Conclusion

This chapter explains proposed G2A scheme as the realization of the scheme based on

three. four and six dimensional data. Finally the generalization scheme for n-dimensional

data is described. The derivation of equations to calculate the parameter for generating

G2A from its equivalent TMA are called forward mapping. Similarly, returning to its

original i'M\ ftom G2A namely backward mapping is generalized. For both of mapping

algorithms are provided. The performance improvement due to G2A structure is shown by

matrix-matrix addition and multiplication operation. Algorithms for 3. 4 and 6

diniensional array are shown for both operations. Finally the generalized algorithms to

support n dimensional data are analyzed. Lower cost of index computation and higher data

local itv show the improvement performance though details analysis. The matrix-matrix

addition and multiplication operation described in this chapter works well for dense array.

Rut when there are huge of' empty cells in a multidimensional array then the schemes

needs some revision. In this regards. generalized array storage scheme for sparse

multidimensional data based on G2A is described in chapter IV.

36

CHAPTER IV

Generalized Corn pressed Row/Column Storage

4.1 lnlro(lnctiofl

Nlultidimensional arrays are good storage for dense data but it shows bad performance for

sparse datasets which wastes huge memory because of the empty cells in the array. 1-lence

it is very hard to use in actual implementation. The sparsity problem becomes serious

when the number of dimensions increases. This is because the number of' all possible

combinations of dimension values exponentially increases, whereas the number of actual

data values would not increase at such a rate. Efficient storage schemes are required to

store such sparse data for multidimensional array[2][5][35][40][42j. That's why most data

scientists suggest el'fleient storage scheme on higher dimensional sparse array where the

operations on stored data can be performed without returning to the original structure. But

existing storage schemes are inefficient and clunk)' when the number of dimension

becomes higher specially greater than Ibur, The traditional CRS/CCS[5][27][34] or n-way

tensor decomposition scheme requires /1 number of' auxiliary one dimensional array/vector

to store the indexes. The length of each vector is the number of non-zero element that

exists in entire ai'ray. For example. to stoi'e a 4-dimensional array in CRS/CCS or 4-way

tensor decomposition requires 4 vectors, When the number of' dimension increases, those

schemes become unusable due to low data sparsity and high space and time complexity.

1 lence the schemes are not effective enough fbi' storing higher dimensional sparse array.

lhis chapter proposes a storage scheme namely Generalized Compressed Row/Colunm

Storage (G(RS/(CCS) based on the G2A representation described in chapter III.

4.2 Realization of GCRS/GCCS Scheme

(('RS/GC'CS is a storage scheme to store n-dimensional sparse array. It is independent of

tuuber of array dimensions and requires only three vectors namely RO, CO and VL. VL

is one-dimensional floating point array. R() and CO are two one-dimensional integer array.

37

The length ol' R() and VL are same and equal to the total number of non-zero value. Array

VL stores the values 0! nonzero array elements. Array RU stores information of nonzero

array elements of each (i2A row (columns for CCS).

.v

1X4

X6

\
I

/O(() (2

\ 1

/

1 (()

/0(0
/ I

2

l(0
\ I
\2

YTh 0 1 00 0 0 00 00
0 0 0 00 0 0 0 02 00
000003000000
4 0 000 0 0 0 00 5 0
0 0 0 0 6 0 0 0 0 0 0 0
0 0 0 C) 0 0 0 0 70 0 0
0 0 8 00 0 0 0 0 0 00
0 0 0 0 0 0 9 0 0 0 0 10
011 0 00 0 00 00 0 0
0 0 0 0 0 0 0 12 0 0 0 0
0 0 13 0 0 0 0 0 014 0 ' 0
00 0 001500 00 00

0

7

-

4
5

6
7
8
9
10
11

0 1 2 3 4 5 6 7 8 9 10 11 —V
X2

I:iu ttrc 4.1 (i2A representation of i'MA(6) having size 2x2x2x3x3x2

ROCKS I 0 1 51 11 1 1 5

('()I 1 0 0 0 1 I 1 0 10 1 1 1 0 I 1 I 0 1 1 1 1
KO° 15

K02('Rs

0 0 0

1

1 1 0 0 1 1 1 1 0 0 1 1
KO'(sO1010I1J 0110T0100

0 1 0 1 0 1 0 0 1 1 0 1 0 1
KO'(J5 1 0 2 1 0 1 2 0 1 1 1 2 1 1 0 2
Vl 1(s 145

C'RS of TMA(6) shown in Figure 4.1

ROucis I0I1I23I5I6I7I8Il0I11l12Il4Il5

('ORs 3]9f Ci 10148 2 6 11 1 7 2 9
VL((• 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

GCRS of TMA(6) shown in Figure 4.1

I'iUI'e .1.2 URS atal GCRS oiTMA(6) having size 2x2x2x3x3x2

03

If the number of G2A rows is P I for a n-dimensional TMA then RO contains /11±1 elements.

R01 U J contains 0. R01 1] contains the summation of the number non zero elements in row

0. In general. RO[i] contains the number of nonzero elements in (i-I)1 row of the array plus

the contents of RO[i- I]. The number of non zero array elements in the i row of G2A can

be obtained by subtracting the value of RO[i] from RO[i+] j. Array CO stores the G2A

column (row for CCS) indices of nonzero array element of each. row (columns for CCS).

[igltl•e 4.1 illustrate a I'MA(6) of size 2x2x2x3x3x2 and its equivalent G2A

representation. The CRS of this TMA(6) is shown in Figure 4.2-a) which requires to store

total oF 79(seventy nine) indexes and 15(11!leen) value itself. The GCRS of same TMA(6)

is shown in ligure 4.2-b) which requires to store total of only 28(twenty eight) indexes.

4.2.1 Generating of GCRSIGCCS File

The generation of GCRS/GCCS can be done from G2A which is a row-column

representation of 1MA(n) with only three one-dimensional array RO. CO and VL. But we

cannot neglect the cost of mai.ricization of higher dimensional array. So an alternate

solution can be the generation of GCRS/GCCS from TMA(n) directly. In this case G2A is

logical/abstraction and there is no need to convert the TMA(n) into G2A. To do this, it

needs to transform the loop order. The loop order is such that odd dimensions are accessed

first then access the even dimensions i.e. loop order <us /3. Ic....... /, I. i.. >. So, the

generation ol GCRS/GCCS can be done in two ways:

First, convert the TMA(n) into G2A. Then store the converted G2A according

existing CRS/CC'S scheme described in chapter If.

Generate GC'RS/G('CS directly from TMA(n) though loop transformation.

[he rest of , the storage scheme is described based on loop transformation technique.

Consider a three-dimensional array of Figure 4.3 having length [/1. /2, 13] [2. 3. 3]. In

(i2A. odd dimensions contribute [or row-direction and even dimensions contribute for

column direction. ihus. the length of' RO for GCRS. / = I + 1 x 13 = I + 2 x 3 = 7 and for

GUCS. / I I /2 = I 1 3 4. First element 0! RO is always zero and all elements are

initialized with 0 at the beginning. Table 4.1 shows the generation of GCRS where loop

order to read l'MA(3) is </. /3. 12>. If a non-zero element is found then its corresponding

(?\ index K v'1. .V'3> is calculated which is described in Chapter 3.

xt=0
x-=0 1 2 0 1 2

X20 1'0 0 1 5 0 6

lID 20007

2L3 04080 r12
x3 10

39

RO(;('js rolfl2 I 4 1 5 1 6]j] ROGCCS I 0 I 3 J 5 I

VI
JUUHUUU

UHUUEflhi
CO(;çcs
VLGCCS IIrJFIuIIuu

01234567 01 234567

Figure 4.3 GCRS/GCCS from TMA(3) of size 2x3x3

Table 4. 1 GENERATION OF GCRS FROM TMA(3)

zero

Value

TMA

Index

cv1, X2,x>

G2A

Index
Generation of GCRS (loop order <11 , 13, 12>)

x' 1, xt,> VL CO RO

3 0. 2. 0 0,2 Insert 3 Insert 2 [0] ±+

2 0. 1. 1 1. 1 Insert 2 Insert I ++

0. 0. 2 10 Insert I Insert 0 ++

4 02. 2 12 Insert 4 Insert 2 [2] ++

5 1.0.0 3. 0
--

Insert 5 Insert 0 [3] ±+

$ 1.2.1 4. 2 Insert 8 Insert 2 [4] ++

6

7

1. 0, 2 5,0

1. 1.2 5. 1

Insert 6 Insert 0 [5] ±+

Insert 7 Insert 1 [5] ++

[lien insert the iion-zero value into VL(cRs. X2 into COGCRS and the value of ROGcRs[x')] is

incremented by 1 . Here, insert means adding the value at the end of the array. Finally, the

cumulated sonic of RO 15 values are calculated (i.e. RO[i+ I] = R[i] + RO[i+1] where I

/ < 1). To store this I'MA according CRS/CCS scheme, it require to store total 28 elements

(Iiure 2.8) while GCCS scheme needs only 20 elements to store as of Figure 4.1.

Sinillarly. 1ahle 4.2 shows the generation of GCCS where loop order to read TMA(3) is

</. /. I>. lor a non-zero element, corresponding G2A index < x'1 , x'2> is calculated. Then

iush the non-zero value into VL(Kes, x'1 into C0 5 and the value of ROGCCS [x'] is

incrcncntcd by 1

table .1.2 (JNNERATIO\ OF GCCS FROM TMA(3)

40

Non- T
zero

Value

TMA

index

0.0.2

5 1.0,0

6 1.0,2

2 0.1,1

7 1,1.2

T 0,2.0

4

$

0,2.2

1.2,1

(;2 A

Index
Generation of GCRS

VL CO RO

2, 0 Insert 1 Insert 2 [0] ±±

3, 0 Insert 5 Insert 3 [0] ±+

5, 0 Insert 6 Insert 5 [0] ±+

1. 1 Insert 2 Insert 1 [1] ±±

5, 1 Insert 7 InsertS +±

0,2 Insert 3 Insert 0 ++

2, 2 Insert 4 Insert 2 [2] ++

4.2 Insert 8 Insert 4 [2] +±

1 array dimension is n is even for GCRS scheme, then the length. I of RO can be found as

lol lo\\ s:

n +• 1

= i + ...(4.1)

-4

The number ol non-zero element(s) in jib Row/Column can be Ibuild by RO[il]-RO[i-1].

Its not necessary to convert the whole n-dimensional array into two-dimensional array, but

(32A's index computation function returns two-dimensional equivalent row and column

indices. For each non-zero element, its TN'IA equivalent G2A row and column index is

calculated. Then push the non-zero value into VL, push the column/row index into CO and

increment the R() pointed by row/column index. It is noted that tile GCRS/GCCS affects

by odd/even number of dimensions which may be described as

• If ii IS 0(1(1 and scheme is GCRS then CO stores row index and increment RO value

pointed b colunin index

If ii is odd and scheme is GCCS then CO store column index and increment RO

\al iie pointed by row index

If ii is even and scheme is GCRS then CO stores column index and increment RO

value pointed by row index

II' ii is even and scheme is GCCS then CO store row index and increment RO value

pointed by column index

x1 =O

7 X20 0 1

41

2012

0 : 0 10

0 H 0

9 :12 0 O

x40 1 2 0 1 2 0

0 1:4 0 0 7 0

10 2 00 0 5 0 8

23 0 0 :o 6 0 0 0

ROOCRS I 0J14 6 8 10 12

RF J4 2 5 3 6 7 10 8
3 2 3

1 1 19 12

RO(((5 6 19 11i2

CO(((S

VI (j((S

410 I 0 14 IS {2 13 1 I

E2

3 7 t

Figure 4.4 GCRS/GCCS of TMA(4)

Fable 4.3 GINFRATION oF GCRS FROM TMA(4)

r Non- TMAlndex
zero

G2A
 Index

Generation of GCRS

ValUe <Xj,X-,,.V3.X4> Xj,X7> VL CO RU
I 0.0. 0.2 0,2 Insert I Insert 2 [0] ++

4

2

0. 1. 0, 0

0. 0, 1 , 1

0. 3 Insert 4 Insert 3 [0] +±

1, 1 Insert 2 Insert 1 [1] ++

5 0.1. 1.2 1,5 InsertS InsertS [1] ++

3 0. 0. 2, 0 2,0 Insert 3 Insert 0 [2] ++

6 0,1,2, 1 2,4 Insert 6 Insert 4 [2] ++

—_7 1. 0. 0, 0 33, 0 Insert 7 Insert 0 [3] ++

10

8

1. 1.0,_1 3.4

4, 1

4,3

Insert 10

Insert 8

Insert 11

Insert 4

Insert 1

Insert 3

++

++

[4] ++

1. 0, 1 , 1

11 1. 1, 1,0

9 1.0,2,2 5,2 Insert9 Insert2 [5]++

12 1.1,2, 0 5, 3 Insert 12 Insert 3 1 [5] ++

Figure 4.4 show a jour-dimensional array having length [Ii. /2. 13, 141 z [2, 2, 3, 3]. In

(j('RS scheme. the length ol RU.! = I ± 11 X 13 = 1 + 2 x 3 = 7 and for GCRS. 1 = 1 + /2 X 14

7. The generation ol (iCRS/GCCS is shown in Table 4.3 where RU is finally re-

calculated as earlier. It needs to store only (1+6) + 2 x 12 = 31 elements in GCRSIGCCS

42

hich is 52 in CRS/CCS scheme. From the above discussion, it is clearly visible that the

7 storage in GCRS/GCCS is improved than CRS/CCS. The improvement will be superior

with the increase of number of dimensions.

4.3 Operations on GCRS/GCCS

Matrix-matrix additionsubtraction and multiplication is the basic operation for most of the

computing techniques and it is shown that the efficiency GCRS/GCCS scheme with

matrix-matrix addition/subtraction and multiplication operation on stored data. It is well

known that the operation on two similar arrays is possible. G2A is a two-dimensional

representation ol' higher dimensional array. So, two-dimensional array/matrix operation is

possible on G2A. Similarly. GCRS/GCCS is the storage scheme for higher-dimensional

sparse array and matrix operations are also possible on stored data. To do this, it is not

necessary to he same length CO and VL for both GCRS but same length of RO is

essential. For the simpli tcation of algorithms and representation, let us consider equal

- length for each dimensions in both matrixes (i.e. length of each dimension in array A is

same with respective dimension of array, B).

4.3.1 Matrix-Matrix Addition

Let t\\o ii dimensional array. A and B having same length [/i. 12..... I, /]. If A and B are

stored according GCRS or GCCS. then six vectors RO,\. COA, VLA. ROE. C013 and VLB

would be generated. The length of vector RO, and R013, 'R() would be same. The number of

non-zero elements in array A is /, and equal to the length of vectors CO,\ and VL,. The

length of vector CO13 and V1,13 is I. It is not necessary to be I, = /n and CO1 = C013. If the

resultant GCRS/GCCS is U then it would be, C = A + B. The algorithm to calculate the

addition can be clone as below algorithm.

.11oriihiii: Addition ol' Iwo n-dimensional arrays stored as GCRS/GCCS scheme

GURS('jU('S-addiiion (I). RO, ('t:). VL,. R013 , C013. VL13)

Initialize k 0. ROt 01

IL
2. Repeat i 0 to (I < -2)

RI R(1)Ii I]- RO \ I RL11 =R013 [/+1]- RO13[il

-I. Rl ROIiJ, Rl 11 ROis Ii1.

5. Repeat j 0 to (/)-2

RO(s F6T27T-6-ECFi0 121

23 1 5 0 14 10 14 1 1 13 12 3
14 12 15 1 3 16 17 1 10 18 111 19 12

--e
A CO(;Is

V 'UURS

43

SUM :0

if(CO,\ IRP,\] = CO1 [RP] and CO1 [RP1] = j and RLA>0 and RL13>0)

SUM = VL,\[RP,\ I + VL[RP13], RP1\++, RP13++. RL,--, RLB--

else if (CO,\[RP\] = j and RL,>0)

to. SUM = VL,\[RP,\ J. RP,++, RL,\--

else if(COi[RPid = j and RL13>0)

SUM: VL13 [RPtt j. RPL3++, RL13-

if(SUM ! 0

RO[i+lI+±, CO[k] =j. VL[k] = SUM. k++

ROi 1] RO[if 1] - RO[i]

Figure 4.5 il]ustrates the addition of two GCRS where associated pointer and length are

511&)\\11

I

RO cRs 1013 517 101 12l14
-

F

1 !3 1 1 4 12 5 10 17 3 Ii E4 17 4

H5t3I64H8H12h0L13HH4

RO(;(Rs L0_L4II71 11 I I

C CO(;('Rs 0 r12 3 1 4 5 0 2 4 5

VLu(II1I2H 95 1 6 1 5 13 4 6 7

Figure 4.5 Addition of Two GCRS/GCCS

The (iC'RS/G(CS-addilion algorithm picks the elements row/collumn-wise from array A

and B. The number of element to he picked for i'th row addition is calculated as:

A: RL \ = ROA[i+1
-

RO4ij and B: RL13 = ROL3[i±l]- R013[i]

I'he \ alue ol RO,\[lI and R013[ij points the i'th row first element of A and B respectively

i\ller pointing and lixing the number of total elements in row-wise (column-wise in

(ICCS). there are three conditions to he checked br defining result for j'th column as

hclo\\

CO((15
V L RS

44

is the column value same as pointed element of CO1 AND is pointed CO,\ and

('013 same

- addition is done for VLA and VL1

- both pointers are incremented

is the column value same as pointed element ol' CO,\

- add new non-zero element of VL1\ in result

- pointer of A is incremented

is the column value same as pointed element of CO13

- add new non-zero element of VL13 in result

- pointer of His incremented

4.3.2 Matrix-Matrix Multiplication

For the multiplication of' two matrixes, it should be similar (i.e. the number of dimensions

and the lenuth of each dimensions should be same). Let two /1 dimensional array, A and B

havine. same length 1/1. l. Ia]. We know the elements of A and B are accessed row-

ise and column-wise respectively. So, it needs to generate GCRS of array A and GCCS of

arra\ B for niultiplication !r improving the data locality. If the resultant multidimensional

arra is C then

C = A < B > C(;1 = A(;'1(5)< B 15 or C(JCv'S = AGCC'S X Bs

The only condition 1'or multiplication is the same length of vector ROA and ROL3. The

algorithm to calculate the multiplication is shown below.

i/oi'iih,n. Multiplication ol two n-dimensional arrays stored as GCRSIGCCS scheme

(iCRS/GCCS-multj (1. II). RO \. (.'O,. VL,\. R013. COn, VL13)

I . Initialize k :-0. ROI 01 :0

Repeat 0 to (I RO-2)

RI •A RO,I/-I I J- RO,[Il. RP,, :RO,\ Ijj

.4. iii 1

:;• Repeat j 0 to (IR r2

0. \'lUl. :0. ii -j

-V

45

CL j,=ROi3[i±1J- RO1 4/J. CP13 =RO[i]

Repeatp = 010 (RL1 -1)

i/(CO.\[RP,+p] >= n AND CO,\[RPA+p] <ii+1)

Repeat c = 0 to (CL13-1)

11 . if(COB[CPn+q] >= m AND COBE CPu+q] < ifl+1)

?f(COA[RPA+p] = CO8[CP13+ql OR COA[RPA+p]%/COB [CP13+q}%/)

MUL += VLA[RP,\+p] * VLB[CPL3+ql

i/(MUL != 0)

RO[i+1J±+. CO[k] =j, VL[k] = MUL. k±+

RO[i±] ji ROIi i 1 1+ R..OiJ

GCRS/GCCS-multi algorithm takes GCRS of A and GCCS of B as input as shown in

Figure 4.6.

RO(;cIs l0t2 1 4 1 6 8 101121
V -

I

A
x

B

C 2 4
81 120

WOCRS
V1.c;cjs

URIIIUIFI

RO 5 [o 12 I6 9 111
I
12

 1

CO((xs
VLc;cc's UUIIEtP1FIDI

RO 15 LU 12 I 4 I 6 18 1 101 12

C'06URS

VL(;('15

Figure 4.6 Multiplication of Iwo GCRS/GCCS

lo 3 1 4 2 5 0 3 1 4

L 16 4 30 3 30 49 110 64 110

To determine result !br element (Lj). /th row from A and j'th column from B is chosen. A

partition for specific nwnber of element for a specific chunk is generated with variable in

and ii when scanning the elements. After defining the partition, checking is done for

equi\-aleflt C'O and COB. If the result is non-zero then it is used for constructing resultant

(iCRS.

46

4.4 Ilicoretical Analysis

'V
I he cost model for the compression scheme is developed in this section. Theoretical

evaluation is compared iih the experimental implementation of Chapter V. Some

defiiiition is important to proceed !'or detail of analysis.

l)ensitv of array. p determines the degree of data sparsity of an array. It is the ratio of

number of non-empty elements with total number of array elements. The maximum value

of data deilsit\ is one. We can right data density as below

-
Total number of non-zero elements

- Total number of elements

The compression ratio. II is the ratio of the total memory required after compress an array

and the actual size of the array is defined as compression ratio. It can represented as follows

-

Memory required to store after compression

- 'Total size of uncompressed array

Range of usability of a compression scheme is defined as the maximum range of data

density up to which the compression ratio is less than 1.

Improvement over scheme. /: It is the ratio of memory required to store after compression

in C'RS scheme and GCRS scheme. It is desired to he greater than I. Formally it can be

expressed as

-

Compression Ratio for CRS/CCS scheme
=

7cRs/ccs
- Compression Ratio for GCRS/GCCS scheme 77 GCRSIGCCS

This section shows the space requirement and hence the compression ratio for

(iCRSGC'('S scheme based on (i2A. The cost model for the range of usability and

improvement over schemes for CRS and GCRS is shown in section 4.2 and 4.3. Some

parameters are provided as input and some are derived which is grouped as shown in table

4.3. All the lengths and size are in bytes.

Fable 4.1 DIFFERI:N'r P.\R\iIm:Rs FOR IHEORITICAL EVALUATION OF GCRS/GCCS

Pa ra
1)escription meter

ii N uniber of dimensions

1 1 ength 01' dimension i

/ Length of each dimension (for simplification 11=12=13= ... /)

/ '

L' - - - - -- -
lotal number ol' elements

47

p Data density or sparse ratio of array

p /
" lotal number of Non-zero elements

It Length of (i2A Row where I 1 (n+t)/

12 Length of G2A Column where /2=' 1/2

y Size of elements for storing index

6 Size of array element

S1 Memory required to store in CRS/CCS scheme

S((ls Memory required to store in GCRS/GCCS scheme

4.4.1 Space Requirement of CRS/CCS and GCRSIGCCS

Consider a TMA of ii dimension having sparse ratio p and the length of each dimension is 1.

The slorauc requirement is the sum of' storage of indexes and the storage of value itself

('oinprcssion Ratio:

(051 of storine indexes in CRS/CCS scheme is the sum o 1 one vector RO having length

/ 1 1. one \eclor CO having length p!" and ,i-2 number of KO vector having length p!'1 for

each. The non-zei'o values needs storage of p11 6. So, total storage required for CRS/CCS,

S(1 , (5 can he shown as below:

SCRSucs Space for RO ± Space for CO + Space for VL + Space for (n-2) number of KO

(1+1) ± p/" y ± p/" 6 + (n-2) p1'1 y

/+1 p1
11 (n-2) p/" y + p/I' 6

/±1 + (n-I) p!' y + p!" 6 ...(4.2)

So. the compreSSiOn ratio lot CRS/CCS,

-
Memory required to store after compression

- Total size of uncompressed array

-
(I I 1-f(u-1)pl") y+ pi"S

(SI"

14
=

1
+(n-1)p+p [ify=öIn

= + lip

lfbr large value of'! and , L H 1)

48

In GCRS/GCCS scheme. there is no riced to store any KO index but increased amount of

r index at RO vector which is equivalent to l+/b0)/2 Thus the total storage required for

(i('RS!GCCS. S(;(1(5/(('(s can be shown as below:

S(;CRs!(;((s -= Space for RO ± Space for CO + Space for VL

uiI)i2 + p/'1?+ p/fl ö

= l+/!2+p/1 J
, y+pIll ö(4.3)

So. the cOmpreSsion ratio.

Memory required to store after compression
11 =

Total size of uncompressed array

Jt 1-1

= {

14 1 ?.+p1} y+p111 5

5 I

it

 fl+ 1

= 1+12+2 {ify]

lt+1

1+
= 2 p [!br large value of/ and ii. üj In

So. the storage improvement in GCRS/GCCS is linear and independent of data sparsity.

Ilic improvement will be fOur times for eight-dimensional array and nineteen times for

thirty-eight dimensional array storage. Now, the ratio of improvement over schemes can be

defined as the ratio of compression. The improvement over scheme, I can be as follows

/ Compression Ratio of CRS/CCS Compression Ratio of GCRS/GCCS

= up

17/2 ..(4.4)

Range of Usability:

The range ol usability of a compression scheme is defined as the maximum range of sparse

ratio up to which the size of the compressed array is less than that of the size of the original

array. So, the range ol usability for CRS/CCS scheme can be defined as follows:

1±1 + (11-1)pf1

=> f) < / O (1+1) y I (ii
/fl

 y -
± /fl

ö)

(n-l)'y-*ö

p < 1/n i!y-): for worst case

49

It sllo\\s that the range of usability of CRS/CCS is inversely proportional with the number

of data dimensions (i.e. range of usability decrease with the increase of data dimensions).

Similarly, the range of usability for GCRSIGCCS scheme can be defined as follows:

•
)I4I 1)/2 F I) y 4- P111 ô< 111 6

=> p<
 ft i 6— (1 (fl 41)/2 + I) y } I I (y +6)

=> f) <6/(y +6) [/fl 6— (/Iil2 +1) / 6]

> p < ¶i [if y=6, for worst case]

lience range of usability o! GCRS/GCCS is minimum 50% and independent of number of

data dimensions. So, the scheme can also be usable for a wide range of dense data.

4.5 Conclusion

[his chapter described G('RSIGCCS scheme to store an n-dimensional sparse array. Total

11)C11101'V required to store an array depends on data density and independent of number of

data dimensions. The operations on stored data are also shown by matrix operation.

Algorithms enswe the matrix-matrix addition and multiplication operation on stored data.

[he experimental result complying with the theoretical analysis shown in this chapter is

described in Chapter V.

If

-1

50

CHAPTER V

Experimental Results

5.1 Introduction

This chapter simulates the algorithms for matrix-matrix addition and multiplication

operation br both 1\4A and G2A as described in chapter III. This chapter also shows the

experimental results to store sparse array of different dimensions in CRSICCS and

GCRS/GCCS schemes of chapter IV.

5.2 Experimental Setup

[he construction of prototype system for G2A operations. GCRS/GCCS conversion and

(iCRS/GCCS operations are done on a machine having the following specification.

Table 5.1 ExII•:RmN1JNm\i. SFItil'

Paranicter Specification

Processor lntel(R) Xeon(R) E5620

No. of Processor 8

Clock Spced 2.4 Gl-lz

Cache Meniory 1406 MB

R A M 32GB

111)1) 2.0 TB

Operating System Linux (Debian 8.2)

('oiiipi Icr GCC

('onpiler Optiniization None

5.3 Experimental Results for G2A Operations

1 he array size is set from 10 to 120. 6 to 24 and 4 to 11 for each length of dimension and

number of dimension 4. 6 and 8 respectively in both matrix-matrix addition/subtraction

and matrix-matrix multiplication. The experimental result considered at traditional row

niajor order looping lr both addition and multiplication. Figure 5.1 shows the execution

I

51

time in milliseconds of algorithms for the matrix-matrix addition on the TMA and G2A

based algoritlims(see chapter 111). Experimental results show that execution time is less for

(i2j\ based algorithms than TMA based algorithms. This is because the lower index

computation cost and higher data locality. The improvement due to index computation for

matrix-matrix addition of]'MA(n) and G2A as shown in equation 3.1 which shows that if

ii and I increase then the improvement ii will increase which supports remarks 3.1.

The improvement due to data locality of TMA(n) and G2A for matrix-matrix addition

algorithm as derived in equation 3.3. Hence TMA based algorithm has higher cache miss

rate than that of G2A based algorithms. The cache misses has direct influence to the

perlormalice because the processor needs to wait for the next data to be fetched from the

next cache level or froill the main memory. Even a single cache miss can degrade the

performance as processor speed outperlorms the memory speed. On the other hand G2A

based algorithm improves the data locality that minimizes the cache miss rates. Caches

take advantage of data locality in programs.

3323

- e TMA(4) A0th).0fl

3302

[• - T.1A(6) Addooni
• G2A Ad<J.lofl 2323 S G2A Adcj,I0n

• 7023

1 .002
.4

500. • .9
320

:
••_•.

• •

.500
6 8 0 12 1 4 '6 tS 20 22 24 26 3 26 4.. 33 53 00 4

L6n90 6, 0monssc.s

(a) Addition TMA(4) and G2A (h) Addition TMA(6) and G2A

__
• IMA(8) Addi] /
• G2A A000,on /

2010
/

/

4 5 6 2 6 9 0 51

lfll.3)6 01 0Ii,fl)flS

(c)Add ition TN4A(8) and G2A

l'igure 5. 1 Experimental results for matrix-matrix addition

I

• T.'A4) II06.,I.0r'
G2A .tnpnnon

• 6

0 45 60 45 'OSLO

(a) VI ultipi ication TMA(4) and G2A

'030062

• TMA(i 5)MoIat,07
653003 -. G2A MoILp66000n

60000.

.03002

• . 6

6 6 6 2 4 6 6 20 22 24 26

18040106 Oronssons

b) Multiplication TMA(6) and G2A

52

5430°

•- TPiA(6) IlOItlp1lCO1l0fl /
- • G2A MuIt,pbcahon

/•
/

60030

-V

5 0 5 6

on

9 0 II 2

c) rV1 U Itiplication i'MA(8) and G2A

Figure 5.2 Fxperiniental performance for matrix-matrix multiplication

Figure 5.2 shows the improved perlrmance for matrix-matrix multiplication of TMA and

equivalent G2A. As of our analysis the improvement is for lower index computation cost

ShO\\ n iii equation 3.2 and higher data locality shown in equation 3.4.

5.4 Experimental Results for generation of CRS/CCS and GCRS/GCCS

The input is taken Iiom secondary memory and the output is also written into secondary

memory. The number of dimensions is set 4. 8, 16 and 32. The length of each dimension

as set such that the input Ile is less than or equal to I TB. The sparse ratio is set 0.01 to

0. 1 5 and u 13
:4 for all cases.

5.4.1 Time Requirement

Fiuure 5.3 show the test results for time requirement for constructing of CRS and GCRS

scheme for n:. 4. 8. 16 and 32. This section only shows the experimental result for CRS

and G('RS (row major order). It is clear that storing time increases for both CRS and

(i('RS when number of 11011-iCR) elements increase.

T
• 2300

0733

16730

'COO T .)n4. I=720)
-

T)n8. =26)

j 60co 0063

I— 3
=

(rr=4. 1720) I;
60CC 2 dccc

10CC • /••_
.1 4000

30cc-

.1 A
200 20cc I

U '1 4 6 9 IC '2 4 10 0 2 4 6 8 tO 12 14 '6

Sparse Ralto)%) Sparse Rats)%)

a) CRS and GCRS for n4 and /=720 b) CRS and GCRS for n=8 and 1=26

53

'2000
I)n10, 15, •

.i3 2303

E --

0- 1320. 1 (n=16 15)

J t:Z0,

C 2 4 6 8 3 1 4 IC

Sparse Ralto)%)

c) CRS and GCRS for n= 16 and 15

650

ccc
060

100

450

403

 650

00c .• /_

,1An=

321=2)

-
3,)n32. 12).

a
L 257 / •/

233

: : 53-

11211a1

Sparse Ratio (%)

d) CRS and GCRS for n=32 and /2

Figure 5.3 Time requirement for creating CRS and GCRS of different number of dimensions

Most of the required time is the scanning time or conversion time and index computation

time is negligible to scanning time. Index computation cost increases with increase

number of dimension(eq uation 2.4). That is why it shows very slow improvement of time

requirement with increased dimensions. It is well known that. for TMA(n), it can be

possible it! 1001) order for scanning array and ordering of loops highly affect the

performance. But in this experiment. for both case, our loop order was such that most

sequential memory access is ensured i.e (Xt. X2..... x)1) order which ensure most outmost

loop is .v1 and most innermost loop is x11.

IF
5.4.2 Space Requirement

l:igji.e 5.4 shows the total sii.e of stored arrays for 4-D, 8-D. 16-D and 32-D arrays (left to

riht). ('ompressed storage increases with the increase in sparse ratio for each specified

54

length and dimension shown in Figure 5.4- a), b), c) and d). From experimental result it is

clear that the GCRSIGCCS outperform over CRS/CCS which comply with the equation

4.2 and equatiOn 4.3 analyzed in section 4.4.1

:00

S)n'4. 720) 1COO

1000

•
S,(n8126)

800 7<
020

<0

'•O S. .(n8,

S (n4.I-720)
400

0.) • • S)n8, =26)
200 __-

- S. (n4 5720) •
0

4 lo I 4 le 2 4 6 8 10 12 4 16

Sparse flata (0.,) Sparse Ratio (%)

a) CRS and GCRS f(j 11=4 and /=720 b) CRS and GCRS for n=8 and /26

22

20 /7

000- S (nl& = • •
S.. (n32. (=2)

ii

0' •) •) 2
<(5

,

S ,(n32. (=2)

<5 . J <5 4
--

S(1(15) 0 - S(03212)

0 4 0 8 0 0 2 4 6 8 0 12 14 15

Sparse Ratio % I Sparse Ratio (%)

c) CRS and GCRS for n=I6 and 1=5 d) CRS and GCRS for n=32 and /2

Figure 5.4 Space re(Juirement for CRS and GCRS of different number ofdimensions

It is clearly visible that the requirement of total storage in CRS increases drastically with

the increase in number of' dimensions. Sparse ratio of CRS shown in Figure 5.5- a). b), c)

and (1) are 25.0%. 12.5%. 6.25% and 3,13% respectively (decrease with increase in data-

dimensions). Storage iniprovement in GCRS over CRS is 2, 4, 8 and 16 times in Figure

5.4- a). h). c) and d) respectively. It is also observed that the usable sparse ratio 50% is

same for uiiv dimensional array i.e independent of number of array dimension.

CRS(n16, 1=4)
.6

In

CRSs32 1=2)

2 / •CRS1n=8. =16)
-

08

0
Of

Range of Usabify 06

. -.

o OS

'06- ' 504

CI4S)14 1=720) 1
04 • •

02

02- a.

00 00

0 5 10 IS 20 25 00

Sparse RaIIo(%)

55

Sparse Rabo)%)

a) CRS b) GCRS

Figure 5.5 Compression Ratio for CRS & GCRS

Advantages of applying GCRS scheme over CRS scheme are the improvement of about 2,

4.8 and 16 1or4-D. 84). 16-D and 32-1) arrays respectively. Finally. Figure 5.6 shows the

improvement over schemes and which is a straight line increases sharply with increase of

the number of dimensions. It is clear that space complexity is very much prominent for

GCRS than CRS when number of dimensions is very high.

S IC 15 20 25 00 05 40

Number of omonsons

I:igiire 5.6 Iniprovenient oiGCRS over CRS

Experimental result of Figure 5.5 comprises that when number of dimensions increase for

TN/IA then CRSICSS schemes become unusable soon. But in case of our proposed

(iCRS/GCCS scheme, there is no relation between degree of data sparsity or range of

usability and number of array dimensions. 1-lence it verified the theoretical analysis in

Section 4.4.

(0 is
6

'4

12

(2'

f_ 5

94

0
- 2

oo
T (s4 9Qj

coo

900

see

.. .-

Sparse R.rlr

rep

T,(n.6. 20)

I2S)
-- -

Sp3rse RoSa 1%)

5.5 Experimental Result for GCRS/GCCS Operations

The sparse ratio is set 0.01w 4 percent for 4. 6 and 8 dimensional array operations in both

matrix-matrix addition and matrix-matrix multiplication. Figure 5.7 shows the execution

time in milliseconds of algorithms for the matrix-matrix addition on the sparse TMA and

GCRS/GCCS. Experimental results show that execution time is less for GCRS/GCCS

until data density is less than or equal to 2%. It seems that matrix-matrix addition

algorithm for GCRS/GCCS is superior to TMA for wider range of data density. But

matrix-matrix multiplication algorithm is superior for highly sparse data.

56

(a) Addition TMA(4) and CRS/GCCS (b) Addition TMA(6) and GCRS/GCCS

cc

T,(n.8 .9)

550

$30

733

I

Spr,e Ra10 1%)

(c)Additioii TMA(8) and GCRS/GCCS

Figure 5.7 Experimental results for GCRS/GCCS addition

57

4CCr3C3

S

323)

00200

to

Sparse ISaIjO tV)

(a) rvlultipl cation TMA(4) and GCRS/GCCS

3)003

00200

30000

.3)00

eooce

000O3

202.3) T,,,n6,1=20)

t002co

803)0

60230

a0300

20200 to . T,,n.6. .20)

0 -

0 1 2 3 0

Sparse Rtoro (V.)

b) Multiplication TMA(6) and GCRS/GCCS

- 3

Sparse Ratto (¼)

c) Multiplication TMA(8) and GCRS/GCCS

Figure 5.8 Fxperimental performance for GCRS/GCCS multiplication

5.6 1)iscussion

This chapter shows the experimental result is described in chapter 3 and chapter4. The

experimental results comply with the theoretical analysis described in individual cases.

For matrix-matrix addition of G2A and TMA, the experimental results are shown only for

equal length of each dimension. It is also experimented by varying length of each

dimension from 2 to 120 and every case. G2A show better performance. The performance

improvement in GCRS/GCCS scheme over CRS/CCS scheme to store an n-dimensional

sparse array is a bit low than TMA and G2A operation. This is because the sparse storage

scheme is implemented in secondary memory and accessing the secondary storage takes

most o!thc time.

58

CHAPTER VI

r

Conclusions

6.1 Concluding Remarks

Most of the scientific and engineering computing requires operation on flooded amount of

data having very high number of dimensions. This thesis represented a higher dimensional

array implementation as row-column view or matricizatioii. The main idea of the row-

coluivin view or G2A is litting the odd dimensions allow row direction and even

dimensions along column direction. The performance of matricized representation was

shown and analyzed with matrix-matrix addition, subtractioii and multiplication operation.

q But \\ hen most of the elements of multidimensional array are empty or null then above

representation needs special treatment. Our proposed generalized row/column storage

scheme for compressing higher dimensional sparse array was described. The algorithms

for matrix operation on (iCRS/(IC'CS data were elaborated with interactive figure. It is

shown that the GCRS/GCCS scheme is independent with data dimensions and range of

usability fo r it is higher than that of CRS/CCS scheme which comply with the theoretical

analysis with simulated results. The per!'ormance improvement of GCRS/GCCS is directly

proportional with degree of data sparsity while CRS/CCS performance inversely

propoitiorial witll number of data dimensions. For worst case. GCRS/GCCS worked well

for at least 50% dense data. l'herefre. the scheme can be applied to the implementation of

higher dimensional array computation, storage and analysis applications.

6.2 Future Scope

The fiture direction of this research may be summarized as bellow

The parallel implementation of G2A scheme would be possible as G2A generates a

set of 2-I) blocks and each 2-D block is independent of each other to perform the

operation on G2A. For the same independency of 2-f) blocks it may be possible to

louiid the parallel algorithms to store like GCRS/GCCS scheme.

59

The G2A is a static structure. It is possible to make the G2A as a dynamic one i.e

extension and reduction of the length of G2A can be made dynamic. This is an

important property of big data technology.

• The parallel algorithms can be found for operation of matrix-matrix addition,

subtraction and multiplication on compressed data according GCRS/GCCS scheme.

• The scheme can be applied to implement the compressed form of MOLAP server

and schemes are based on G2A.

Ell

REFERENCES

II] Tamara C. Kolda, Brett W. Bader, "Tensor Decompositions and Applications",

SIAM Review 51(3). pp. 455-500. 2009

121 Chun-Yuan Lin. Jen-Shiuh Liu. and Yeh-Ching Cliung "Efficient Representation

Scheme 6ar Multidimensional Array Operations", IEEE Transactions on Computers.

51(3). pp.327-345. 2002

1 3] S. Sarawagi. M. Stonebraker. "Efficient organization of large multidimensional

arras" In Proc. of 10th International Confirence on Data Engineering (ICDE). pp.

328-386. Houston, Texas, 1994

1 41 Yihong 7hao. Prasad Deshpande, Jeliiey F. Naughton. "An Array-Based

Algorithm for Simultaneous Multidimensional Aggregates", In Proc. of SIGMOI)

Conlerence. pp. 159-I 70. 1997

151 Sheikh Mohamniad Masudul Ahsan. "An efficient implementation scheme for
multi(1imensional index array operations and its evaluation", A Masters Thesis

subiiiittecl to l)epartment ol Computer Science and Engineering, Khulna University
of Engineering & lechnology. Khulna. Bangladesh. Thesis No. CSER-M-1201,

.Jaiivary 201 2

61 Mackale .ioyner. Loran l3udimli' c. Vivek Sarkar. Rui Zhang "Array Optimizations

for Parallel implementations of 1-ugh Productivity Languages" In Proc. of PPOPP,

pp. 1-8. 2008

171 l;nd Soroush. vlagdalena Balazinska "ArrayStore: A Storage Manager for

Complex Parallel Array Processing" in Proc. of ACM SIGMOD International
Con lrence on Management of data. PP 253-264. 2011

81 Francisco I leron de ('arvalho Junior. Cenez Ara6jo Rezende. Jefferson de Carvalho
Silva. Francisco .los Lins Magallf aes. and Renato Caminha Jua,caba-Neto "On
the Performance of Multidimensional Array Representations in Programming
Languages Based on Virtual Execution Machines" In Proc. of SBLP-2013.
LNC'S(8 129). pp. 3 1-45. 2013

Il Jun Yan. Ning Liu. Shuicheng Yan, Qiang Yang. Weiguo Fan, Wej Wei. Zheng
Chen _'TI_ace-Oriented Feature Analysis for Large-Scale Text Data Dimension
Reduction". IFFIF Trans. Knowl. Data Eng. 23(7). pp.1103-1117, 2011

I 101 I. .\cur. B Yeiier. "I. asupervised muliiwav data analysis: A literature survey", IEEE
Irunsactions on Knowledge and Data Engineering 21 (1), pp. 6-20, 2009

61

(llj G. 13ev1kin. M. J. N'lohlenkamp. "Algorithms for numerical analysis in high

dimensions". SIAM J. Sci. Coinput.. 26 (2005). pp. 2133-2159. 2005

II 2] P. M. Kroonenherg. "Applied Multiway Data Analysis", Wiley, New York. 2008

1 131 .Jimeng Sun. I)acheng Tao. Spiros Papadimitriou, Philip S. Yu, Christos 'Fa1outsos:

Incremental tensor analysis: Theory and applications" ACM Transactions on

Knowledge Discovery from Data. 2(3), 2008

1141 B. Christian. M. I.Jrs. "Multidimensional Index Structures in Relational Databases".

lntelliuent Information Systems, 15. pp. 51-70, 2000

151 Steve Carr. Kathryn S. McKinley, Chau-Wen Tseng Compiler optimizations for

improving data locality". In Proc. of the sixth international conference on
Architectural support For programming languages and operating systems. p.252-
262. 1994

1161 Kathryn S. McKinley. Sieve Carr . C'hau-Wen Tseng . 'Improving data locality
with ioop transbwmations". ACM Transactions on Programming Languages and
Systems (lOPLAS). 18(4), p.424-453. 1996

4

II 7J l-lolger Arndt. Markus Bundscluis: Andreas Nacgele, "Towards a Next-Generation
Matrix 1.ibrai-v f or .tava". 33rd Annual IEEE International Computer Software and
Applications Con lerence pp: 460-467, 2009

1 81 K. M. Azharul 1-lasan, Masavuki Kuroda, Naoki Azuma, Tatsuo Tsuji. and Ken
I liguchi. "An extendible array based implementation of relational tables for multi
dimensional databases." In Data Warehousing and Knowledge Discovery, LNCS,
Springer Berlin I leidelherg. pp. 233-242. 2005

II 9J Ekow .1. Otoo. T. II. Merrett. "A storage scheme for extendible arrays." Computing
3 1 , no. 1 (1 983): 1-9

1201 Arie Shoshani "OI.AP and statistical databases" Proceeding of the 16 ACM

SIGAC 1-SIGMOD-SIGARI' symposium on Principles of databases systems, PP•
185-196.1997

1211 Prasad l)eshpande. Karthikeyan Ramasamy, Amit Shukia. Jeffrey F. Naughton,
"Caching Multidimensional Queries Using Chunks" In Proceedings of the ACM
SIGMOD Conl.nence on Management of Data. pp. 259-270, 1998

- 1221 Michael Steinbach. I event Ertoz. Vipin Kumar. "The Challenges of Clustering
I ligh Dimensional Data" New Directions in Statistical Physics, pp. 273-309,

Springer Berlin Ileidelherg. 2004

62

123 I Ekow J. Otoo. l)oron Rotem. and Sridhar Seshadri "Optimal Chunking of Large

Multidimensional Arrays for Data Warehousing' In Proc. of DOLAP. pp. 25-

32. 2007

124] Michael Stonebraker, Paul Brown, Alex Poliakov, Suchi Raman "The Architecture

of SciDB" In Proc. of the 23rd international conference on Scientific and statistical

database management. pp. 1 -1 6. 2011

1 2-51 Naser Sedauhati. 'l'e Mu. Louis-Noel Pouchet. Srinivasan Parthasarathy, P.

Sadayappan "Automatic Selection of Sparse Matrix Representation on GPUs",

!CSl5.June8-11,2015

261 lamara G. Kolda, Brett W. Bader, J. P. Kenny, "Iligher-order web link analysis

using multilinear algebra", in ICDM 2005: Proceedings of the 5th IEEE

International Conference on Data Mining. IEEE Computer Society Press, pp. 242-

249. 2005

1271 /Jiaojun Bai. .lames l)emmel. .Jack I)ongarra. Axe! Ruhe, and Henk van der Vorst.

"1emplates for the Solution of Algebraic Eigenvalue Problems: a Practical Guide ".

SIAM. ISBN: 978-0-89871-471-5 (pp. 315-336). 2000

I 8] Nathan Bell. Michael Garland. "Efficient Sparse Matrix-Vector Multiplication on

CJ Dz\ N V 11)1 A l'echnical Report. 2008

29] The Xl 0 Programming Language. "http://x I 0-Iang.org/" retrieved at May 11, 2016

1301 The Julia Language. "http://julialang.org/" retrieved at May 11, 2016

13 11 Parallel Programming and Computing Platfbrm. "http://www.nvidia.com/objectl

cuda home new.html" retrived at May II. 2016

1321 Ekow .1. Otoo. II Wang. G Nimako. "New Approaches to Storing and Manipulating

Multi-Dimensional Sparse Arrays". Proc. of SSDBM' 14. 2014

13I Brett \V. Bader. lamara G. Kolcla "Efficient MATLAB computations with sparse
and factored tensors" SIAM Journal on Scientific Computing, 2007

341 ('hun-Yuan Lin. Yeh-Ching Chung,.lcn-Shiuh Liu. "Efficient Data Storage Methods
lbr Multidimensional Sparse Array Operations Based on the EKMR Scheme". IEEE
1 ransactions on ('olnputers, Vol. 52, No. 12. pp. 1640-1646. 2003

[35] N1 d. Rakibul Islam. K. M. Azharul Hasan. Fatsuo Tsuji, "EaCRS: An Extendible

Array Based Storage Scheme Iir I ugh [)imensional Data". Proc. of SoICT '11, pp.
92-99. 2011

63

1361 Md. Rakibul Islam. "Compression schemes for high dimensional data based on

extendible multidimensional arrays', A Masters' Thesis submitted to Department of

Computer Science and Engineering, Khulna University of Engineering &

lechnology. Khulna. BanzIadesh. Thesis No. CSER-M-1502, March 2015

I 37] latsu() Tsuji. Akihiro 1-lara and Ken 1-liguc11i, "An Extendible Multidimensional

Array System for MOLAP". Proc. of SAC'06, pp. 503-510. 2006

13$J K. M. Azharul 1-lasan. Masayuki Kuroda, Naoki Azuma, Tatsuo Tsuji. Ken

II igLichi (2005) "An Extendible Array Based Implementation of Relational Tables

for Multi dimensional Data bases". In: Proceedings of 7th International Conference

on Data Warehousing and Knowledge Discovery (DaWak'OS), Copenhagen,

Denmark. LNCS 3580. Springer-Verleg. pp. 233-242. 2005

II K M /\zharul I lasan. Iatsuo 1'suj i. Ken Higuchi "An Efficient MOLAP Basic Data

structure and Its [valuation". Proc. of DASFAA. LNCS 4443, Springer-Verleg, pp.

288-299. 2011

401 Sk. Md. \'lasudul Ahsan and K.M. Azharul Hasan "An Implementation Scheme for

4
Multidimensional Extendable Array Operations and Its Evaluation" In Proc. of

EC![IS. Part Ill. ('('IS 253. pp. 136-150. Springer-Verleg, 2011

4 1 I (Jei r Gundersen. i'rond Steihaug. "Sparsity in higher order methods for

Linconstrained optimization", Optimization Methods and Software. Volu111e.27,

lssue.2. PP•27. 2012

1421 Zbigniew Koza. Maciej Matvka, Sebastian Szkoda, Lukasz Miroslaw.

"Compressed multi-row storage format for sparse matrices on graphics processing

units". SIAM .J. Sci. ('omput. 36-2. pp. 219-239. 2014

1 43 1 NI ichaci McC'ourt. Barry Smith. 1-long Zhang. "Sparse Matrix-Matrix Products

Executed l'hrough Coloring". SIAM Journal on Matrix Analysis and App., 36:1. pp.

90- I 09. 201 5

144] ('hun-Yuan 1.in. I luang 'l'ing Y. Che-Lun I-lung. "Efficient Strategies of

Compressing lhree-1)imensional Sparse Arrays based on Intel XEON and Intel
XFON Phi Environments" IEEE International ConiCrence on Computer and
In formation lechnology. 2015

1 451 M. M. Mano. "Digitial Logic and Computer Design", Prentice 1-lall, 2005

