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Abstract 

,),-)-dimensional sparse data. Traditionally, the compression ratio is 

inversely proportional to the number of dimensions but it is independent of number of 

dimensions in our scheme. l'he operation on stored sparse data is measured with matrix-

matrix addition/subtraction and multiplication which show up to 70% improvement. 

4, 

Scientilic and engineering computing requires storing and operating on flooded amount of 

data having very high number of dimensions. Traditional multidimensional array is widely 

popular for implementing higher dimensional data but its performance diminishes with 

increased number o! dimensions. On the other side, traditional row-column view of two-

dimensional data is thci Ic for implementation, imagination and visualization. This thesis 

represents a scheme for higher dimensional array implementation and operation with row-

column abstraction which can lit an n-dimensional array into a single 2-dimensional array. 

A mathematical function fits odd dimensions along row-direction and even dimensions 

along column direction which gives lower index computation cost, higher data locality and 

better sequential access of memory. Performance of the proposed matricization is 

measured with matrix-matrix addition/subtraction and multiplication operation which give 

701!/0 and 72% improvement respectively lbr dense data. But most real world data is sparse 

and degree of data sparsity increases with increased number of dimensions. A loop 

transformation technique which access odd dimensions fast and then even dimensions is 

proposed to store any dimensional sparse arrays. In traditional scheme, n numbers of one-

dimensional auxiliary arrays are necessary to store n-dimensional array but our scheme 

requires t\\o one-dimensional auxiliary arrays only which gives 16 times space 

improvement br -
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CHAPTER 1 
I 

Introduction 

1.1 Introduction 

h)clav's advanced scientific and engineering problems require a vast amount of computing 

power. Compute intensive tasks in various fields. including quantum mechanics, weather 

lotecasling. climate research. cryptanalysis. molecular modeling and physical simulations 

like simulations of the early moments of the universe, airplane and spacecraft 

aerodynamics. the detonation of nuclear weapons, and nuclear fusion etc. [1 ][2] entail 

special aUention of computer scientists. 1-ligh-perlormance computing (HPC) incorporates 

all these computational tasks with exceptionally high requirements for computing power 

and memory capacity. Traditionally, these requirements were satisfied by introducing 

special computing techniques namely C(JDA. Xl 0. Julia etc. 

\rra\ is the most corninon and widely used data structure. Generally, most real world data 

has wide number of dimensions and often modeled with multidimensional array. 

Traditional Multidimensional Array (TMA) is extensively popular for its simple 

addressing lunction. memory layout, implementation procedure and random access 

capahi I itvl 31-1 141. But it has some limitation to handle and operation on higher 

diiiieiisional data. 

• Cost of index computations increases with increase the number of dimension.[2] 

• The number of cache line accessed increases for higher dimensional data.[15][16] 

• Most compilers] 171 have limitation for implementing multidimensional array of 

very large num fber o dimensions. 

I hits the special computing techniques through comprehensive research to handle large 

scale higher dimensional data efficiently and effectively are cramming needs to data 

scientists. It emphasizes the organization and implementation schemes on parallel and 

Likiributed computing platform. Experts suggest linearization of dimensions for 
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implementing higher dimensional array[18][191. In fact, multidimensional arrays are just a 

logical abstraction above a linear storage system. it is good enough to implement in 

secondary memory as compilers allocate memory linearly. But operation cost and 

accessing time br secondary memory data is too high as well as parallelization is seldom 

possible lbr linearized data. It is well known that the compilers replicate secondary storage 

data to main memory for any type of computing either it is sequential or parallel machine. 

NI ulti-di mensional array operation like matrix-matrix addition/subtraction, matrix-matrix 

multiplication, sparse array storage. etc. require multiple access of same element and use 

of cache memory reduce the access time of the element. So, the pragmatic computing 

techniques which support parallelism, lower index computation cost, the lower operation 

cost and higher data locality is an important research issue. 

1.2 Probleii Stateiicnt 

Many techniques have been proposed in the literature for improving multidimensional data 

computation such as TMA[20 I. Extended Karnaugh Map Representation (EKMR). 

LKMR! 21 proposed by Liii el. al. can convert three and four dimensional array into two-

dimensional array. The FKMR representation of higher (n>4) dimensions is a hierarchical 

structure that contains array of pointers. For large values of ii (n>4) there are (nt) number 

of pointer arrays required and there is no generalization for higher dimensions like three or 

four dimensions. A technique based on loop trans!brmation to improve the data locality for 

multi dimensional arrays is proposed in [15][ 16]. They demonstrated that this 

transformation is useful for array operations. The chunking[2 1] [22]. reordcring[ 15] [16], 

rcdundancv[23] and partitioning of the large array are proposed to make efficient access on 

secondary and tertiary memory devices. Caching by chunk by chunk for improving 

pertomiance is proposed by [2]I4][20]. In this scheme the large multidimensional arrays are 

broken into smaller parts called chunks for storage and processing. All the chunks are n 

dimensional with smaller length than the original array. A new programming language has 

been proposed to serve the computational power[22]. [23.1 shows a technique for storing 

and analyzing multidimensional array by chunking but there is no generalization from 

higher dimensions. 

\ lost sparse array storage schemes are based on spare matrix i.e. 2-dimensional 

-iri-a\12211241-1281. Some of them are time effective and some are space effective. Many 
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prouramnlinn langLiages and compilers (Xl O[29]. Julia[3OJ, CUDA[3 1]) provide supports 

for sparse array but limited to only two dimensions. N4atlab sparse toolbox supports for n-

\\ av  sparse tensor 1 331 and have promising results for n-way tensor operation but its space 

complexity is very high. CRS/CCS scheme for higher dimensional array is based on the 

idea that a multidimensional array can be viewed as a collection of two-dimensional arrays 

12 1. But it requires (n+ I) one dimensional arrays to store an array of n dimensions. 

l:CRS'FCCS scheme [34] works well but only for four dimensions. When the number of 

dimensions is greater than four then it requires an abstract pointer array to support higher 

dimensions. i'hats why it will be difficult to apply in practical situation when number of 

dimension becomes very high. The EaCRS scheme[35][36] which has a nice characteristic 

of d\ mimic extendihilityl37j-[40] and supports well for higher dimensions. But it requires 17 

one dimensional arrays to store an array of dimension ii. Gundersen et al.[41] proposed a 

methodology to store like PATRICIA Trie Compression Storage (PTCS), Extended 

Compressed Row Storage (xCRS). Bit Encoded Extended Compressed Row Storage 

It 
BxCRS) and l-lvbrid Approach. But all of them require (n±1) one dimensional arrays. 

I lence the schemes are not el'fective enough for storing and operation on higher 

dimensional arrays. 

This thesis is going to describe a scheme to represent higher dimensional array (both dense 1-1  

and sparse) \\ ith  a single two dimensional array which is facile for implementation. 

imagination ai'id visualization, The generalized addressing function returns row-column 

abstractions which ensure lower index computation cost and higher data locality. Thus the 

si iiiple algorithms for higher dimensional array operations like matrix-matrix addition, 

subtraction and multiplication would be introduce l'or both sparse and dense array. The 

proposed scheme can be applied to wide area including data mining[9] [13] [1 4]. numerical 

analvsis( 1311261. G PU computing[2] [42]. MOLAP[ 1 8] [38] and multi way data 

ana lvsis[ I 0) [1 2]. 

1.3 Objectives 

II igh Pei1'01'111ance Computing. \'IOLAP or various scientific applications use 

multidimensional array as a basic data structure to represent high dimensional data. This is 

because multidimensional array has an inherent facility to compute indexes and 

aggregation operation. Supporting for very high dimensional data is an important 
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requirement of' those applications since data widely vary in today's computing. 1-lence, a 

generalized array model or realization scheme is strong requirement of current era. 

[he main objective of this research topic can be summarized as - 

Overview of multi-dimensional array representation. its index computation, data 

locality and limitations ol computing for multi-dimensional data. 

• Proposed generalized two-dimensional representation of higher dimensional data, 

its lbrmal flotation and implementation. Different operation on generalized two-

dimensional data and its evaluation with traditional representation. 

• Sparse array overview and evaluation of different sparse array storage scheme and 

hence propose an array of storage scheme for higher dimensional sparse 

• Comparing theoretical evaluation of proposed algorithms with equivalent 

traditional algorithms. 

• Fxperimcntal results analysis to prove the soundness of theoretical evaluation. 

1.4 Scope 

[he important Scopes under this thesis are as follows: 

• Computation can be done independently in each converted two-dimensional sub-

arra block which is very significant for parallel and distributed computing and 

U)) Ii cation s. 

Fvaluate the proposed algorithms time requirement with existing traditional array 

computation technique and EKJ\1R[2]. 

l)i [f'rcnt techniques of sparse data storage and evaluate the new storage scheme 

with existing schemes. 

• l'heorctical evaluation of space and time requirement for sparse data storage, 

depending on compression ratio, range of usability etc. 

• ()perations on stored data based on generalized row/column storage scheme. 

1.5 Contribution 

[lie contribution ol' this thesis can be summarized as follows: 

0 Generalization of,  higher dimensional array representation with row-column view. 

4 
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• Algorithms I'or operations on stored data like matrix-matrix addition!subtraction 

and multiplication. iheoretical analysis is verified with experimental results. 

• Generalization of higher dimensional sparse array storage with loop 

translormation. Details of theoretical analysis for compression ratio, range of 

usabi liv with operations On stored data. 

1.6 Organization of the Thesis 

• Chapter II presents Literature Review that describes some of the traditional and 

prominent array organization and realization scheme that are already exists. Some 

of these high dimensional data representation and compression methods will be 

described. 

• Chapter III proposes a new multidimensional array representation scheme called 

(ieneralized kvo-dimensional Array (G2A). It also explains the basic two-

dimensional array/ matrix operations like addition. subtraction. multiplication. 

retrieval etc. over the proposed G2A scheme. 

• Chapter IV illustrates the details of a generalized sparse array storage scheme 

called GCRS/GCCS based on Chapter III. Traditional addition, subtraction and 

multiplication operation on store sparse data are also described in this section. 

• The experimental outcomes of proposed scheme and its evaluation are discussed in 

Chapter V which shows the technical soundness compelling with theoretical 

analysis. 

• [he future direction of work on the proposed model and the conclusive words 

about the model are outlined in Chapter VI. 



CHAPTER II 

Literature Review 

2.1 Introduction 

.\rruy is the most common and widely used data structure. Most real world compute 

incentive data of weather forecasting, climate research, medical image processing. etc 

have wide number of dimensions and often modeled with multidimensional array. The 

location 01 each element can be computed with a single mathematical formula called 

addressing lunclion. Array is also used to implement other data structures, such as lists, 

strines. heaps, hash tables, queues, stacks and VLists. But very few of them support for 

higher dimensional data. I here are some other data structure or technique to increase the 

perlormance of higher dimensional data computation like loop trans formation, optimal 

chunking. ArrayStore. SciDB, tensor decomposition, EKMR, CRSICCS and ECRS/ECCS 

2.2 M ultidiniensional Access Methods 111-1 14J [2611331-1351 

Arravl 2 1[5 II341I31 is a cotlection of similar elements which is identified by at least one 

arra\ index or key. The simplest form of array is a linear array called one-dimensional 

arra\ or vector. For example an array of 20 32-bit integer variables, with indices 0 though 

19. may be stored as 20 words at memory address 1000. 1004. 1008......1076, so that the 

clement v ith index / has the address I 000--4xi as shown in figure 2.1. 

1000 1004 1008 1068 1072 1076 

0 1 2 17 18 19 

Figure 2.1 Vector/one-dimensional array 

['he mathematical concept of a matrix can be represented as a two-dimensional array 

having two index or keys where first key represent row number and second key represent 

cot umn tiuiiiher. lypical graphical view/image on a plane is just a matrix or row-column 

\ C\\ ol  a two-dimensional data. Figure 2.2 illustrates a matrix or two dimensional array, 
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A[ 1111/21  ol size 5 x  5 where Ij and /2 are length of dimensions. An element. A[xi][x2] can 

be identified either row major or column major order in linearized memory by below 

addrt.ssi 1111 luncuon. 

• Ii 1 .(xi. x) = Xl / l  + x2 and •tcolunin mnor(Xi, X2) = Xl I2  + X2 

x=0 I 2 3 5 

v 1 0 0 1 2 3 4 

156789 

2 10 II 12 13 14 

3 15 16 17 18 19 

4 1 20 1 21 I 22 1 23 1 24 

Figure 2.2 Matrix or Two-dimensional array 

I ets us consider a three dimensional array. A{/][12}{13] having three key where length of 

dimensions are I. 12 and R. The set of continuous memory location into which the array 

maps is denoted by A[0:/] where / = 11 X 12 X 13  - 1. A three dimensional coordinate system 

or cube having X. Y and Z axis can be represent as three dimensional data as shown in 

ure 2.3. 

1 2 3 

Figure 2.3 'l'hrce-dimensional Array 

I aeh element ol' this TN'IA can be addressed in row major order as below 

.t(x.x2.x3) xixl2X13 +X2X/3 +X3 ................................... (2.1) 

Similarly a Ibur dimensional array. A[/1][/2][/3][/41  having four key to inclentify,  each 

element. The continuous memory location to map with four keys is A[0:/] where / = I x /2 

R /1 -. 1 . A lour dimensional array can be view as a 11  number of three dimensional 

array. B [/3II/. l[/] as shown in Figure 2.4. The element, of this four dimensional array can 

imp into continuous memory location with below addressing function. 

f(x1 . .\7. .V3, .V.i) = Xi x/,x/3 x/4  + x24344 + x344  ± x4 ............... (2.2) 
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x =0 

N 
Fi2ure 2.4 Visualization of Four-dimensional Array 

1 We consider a six dimensional array, A[/1  ][12] [/31 [l4 }[l][/o ] having six key to indentify 

each element. The continuous memory location to map is A[0:I] where / = 11 X /2 X /3 X  /4  X 

I - 1 . Further we can say that above six dimensional array can be view as a ij number 

ol live dimensional array namely BI /211/31 [/4] [l][lo]. The row major addressing function 

br six dimensional array is mentioned below. 

I x j x/,xRx/4 xIXlo±x2 X13 X1,i XlXlo+x3 )<14 XIs Xlo+X4 xIXl6+ X16+X6 (2.3) 

IhercIore a multidimensional array A[/1][/2]....[I] is an association between n-tuples of 

inteuer indices <xi. x2. ..... . > and the elements of a set of E such that, to each n-tuples 

given by die ranges 0 <x1  < /i. 0 <x < I ..... 0 < X11 < / correspond to an element of E. 

The domain from which the elements are chosen is immaterial and the assumption is made 

that only one memory location need be assigned to each n-tuples. Each array may be 

visualized as the lattice points in a rectangular region of n-space. The set of continuous 

memory locations into which the array maps is denoted by A[0:/] where 

I = fl,"li) - 1 

Any element in the multidimensional array is determined by addressing function as 

l'l lo s. 

In ± X7/3/4 ... / -F ......± x1/  + x .................(2.4) 

An array is sparse [5] [2711341135] when most of its elements have default value (usually 0 

or null). Sparse array may be any dimensional data. The sparsity problem becomes serious 

hen the number of dimensions increases. This is because the number of all possible 

conihiliations of dimension values exponentially increases, whereas the number of actual 

daia values \\ ould  not increase at such a rate. In the case of sparse arrays, one can ask for a 

PP 

Nr 



x-0 I 2 3 5 

x = 0 01002 

4 

30040 

00500 

06700 

00080 

value Irom an "empty' array position. If one does this. then for an array of numbers, a 

If value of' zero should he returned, and for an array of objects, a value of null should be 

returned. A naive implementation of an array may allocate space for the entire array, but in 

the case where there are lw non-default values, this implementation is inefficient. Figure 

2.5 illustrates a sparse matrix or two-dimensional array where only eight locations have 

non-zero value among total 25 locations. 

Fiiii•e 2.5 Sparse matrix or Two-dimensional sparse array 

1 .00p transformation I 2 11 1511 1  61 is a compiler optimization technique to increase the 

performance. [here are dif1rent types of loop transformation but this thesis only consider 

about loop permutation or re-organization to improve the memory performance. The 

tiscinatinu characteristic of loop transformation is data locality. References to the same 

memory locution or adjacent locations are reused within a short period of time. As of 

Steve Carr[ 15 IL 16]. data locality is measured with the algorithm called LoopCosi'(I). The 

L()oJ)( o,vl(/) aluorithms compute the costs of various loop orders of an array operation. 

[he I.aop( usi(I) finds the number of cache line accessed by a loop 1. The value of 

Luv/)( o.I(/) indicates the cache miss rate for a loop I and hence smaller the LoopCosi(I) 

indicates the smaller the cache miss rate. Therefore the LoopCosii,.J determines the best 

loop orders for nested loops with a specific innermost loop 1. If the consideration is of loop 

cost for below matrix multiplication algorithm then the loop cost is listed at Table 2.1 with 

di licrcm loop order for cache line length r. 

lKJ I ordering 

1)o K-l. N 

Do .1=1. N 4- 

i)o l=l.N 

C(U) = C(U) + A(1,K) * B(K.J) 
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Table ....1 LoopCost for Matrix Multiplication 

Rets J K I 

C(IJ) 17 x j/p x 

A(l.K) I x 17 
2 

17 x 11 2 fl/p x 

13(K.J) 2 X 17 fl/p x 17 2  I x 172  

total 2n3±n2 
] 

(r I )n3/r± fl2  2n32  

Multidimensional array has an inherent facility of random accessing - the reason of 

becoming the most popular. There are many data structures already exist to represent 

multidimensional data. Some of the well-known and prominent data structures are 

discussed below. 

l'he EKMR scheme[2][5][35] is based on the Karnaugh map[45] representation for 

minimizing Boolean expression. It can represent a three and four dimensional array with 

l\\ 0 dimensional  arrays. Representation of higher dimensional (greater than 4) is abstract 

pointer array of EKMR of four dimensional data. Let a three dimensional TMA, 

Aj/1  lflI] of size 3x4x5  shown in Figure 2.6.a). The EKMR(3) of this TMA is a two- 

dimensional array, A'[11 ][/] where 1 = / = 4 and 12 / X 13  = 3 x  5 = 15 as shown in 

Fiure 2.6.b). The representation ( A[x1 , Xi. x3; l. /, /31 A'[xi, x2; Li, /21 ) is a 

permutation ol elements where index tuple <x1 ', x7'> can be derived by x1 = X2 and X2 

.v i  EKMR can also returns to its original TMA ( A'[xi, x2;  /, 121 ' A[x1 . X2. 

.v: /. /. / ) according to below backward mapping equation X2 = x1 , X = x2 / I t  and X3 = 

.v % i. Similarly. a Ibur-dimensional TMA. A[11 ][/2 ] [13 ] [14 ] can also be represented as a 

two-dimensional array, A111 1[/2] where Li = Li X /3 and 12 = /2 X /4 in EKMR(4) scheme. 



I 0 20 1)) I 21 41 
I5 25 45 6 26 46 

0 30 5)) II 31 51 
X 15 35 55 tO 36 56 

Fi.ure 2.6 a) TMA(3) ol size 3x4x5 

.. xI 

17 I 2 3 1 20 21 22 23 24 40 41 42 43 44 
5 6 7 S 9 25 26 27 28 29 45 46 47 48 49 

IF I)) II 12 13 14 30 31 32 33 34 50 51 52 53 54 
.v 5 to 17 18 19 35 36 37 38 39 55 56 57 58 59 

(a) 

11 

. x2 

2 22 42 3 23 43 4 24 441 
7 27 47 8 28 48 9 29 49 I 
12 32 52 13 33 53 14 34 541 
7 37 57 18 38 58 19 39 591 

(b) - 

b) EKMR(3) of TMA having size 3x4x5 

ftc representation of n-dimensional TMA to EKMR(n) is based on EKMR(4) when n>4 

i.e. set ol 1-.KMR(4) construct FKM R(n). If' the length of each dimension is I then 

FK\'lR(n) is represented by I' EKMR(4) which introduce a structure to link all 

ftc new structure is a one-dimensional array X of size -) for one-to-one 

mapping with each EKMR(4). Consider a six-dimensional TMA. A[I1 ][I2 ][I3 j[I4J [I][I] of 

517.0 3x2x2x3<4x5. [quivalent FKMR(6) is represented by six (3x2) EKMR(4) where 

each lKMR(4) is a (2x4) x (3x5) two dimensional array. 

:\ lensoll I IF 13 R26R321[331 is a multidimensional array. More formally, an N-way or 

tensor is an element of the tensor product of N vector spaces, each of which has 

is own coordinate system. This notion of tensors is not to be confused with tensors in 

physics and engineering (such as stress tensors), which are generally referred to as tensor 

lields in mathematics. A third-ot-der tensor has three indices, as shown in Figure 2.3. A 

first-order tensor is a vector, a second-order tensor is a matrix and tensors of order three or 

hh.iier are called hiLther-order tensors. 

'vlairicization. also known as unfolding or flattening, is the process of reordering the 

elements of an N-way array into a matrix. For instance, a 2x3 x4 tensor can be arranged as a 

64 matrix or a 3 x8 matrix, and SO on. The mode-n matricization of a tensor X E R II 17 

N is denoted by X and arranges the mode-n fibers to be the columns of the resulting 

matrix. Ihough C011CCIML1,111y simple. the formal notation is clunky. Tensor element (ii. /2, 

I ) maps to matrix element (ia. j ). where 
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= 1 +
Y,  
 - l)Jl( with Jk 

= 
 fl IM 

kn mn 

The concept is easier to understand using an example. Let the frontal slices of X E R3X4X2 

1 4 7 101 13 16 19 22 
X1 = 2 5 811 , X2 14 17 2023 

3 6 9 12 15 18 21 24 

Then the three mode-n unfolding are 

J 4 7 10 13 16 19 22 
X(1)  = 2 5 8 11 14 17 20 23 

3 6 9 12 15 18 21 24 

1 2 3 13 14 15 
- 4 5 6 16 17 18 

7 8 9 19 20 21 
10 11 12 22 23 24 

_ll 2 3 4 5 ... 9 10 11 12 
X(3) 

 - [13 14 15 16 17 ... 21 22 23 24 

It is also possible to vectorize a tensor. Once again the ordering of the elements is not 

important so long as it is consistent. In the example above, the vectorized version is 

1 
2 
3 

vec(X)= 

23 
24 

2.3 Storage Scheme for Higher Dimensional Arrays 1 511 71 1181-E2411271E3211331 

Niultidimensional array are the basic data structure used in many applications such as 

NIOl .AP and compute intensive task. But in many cases, they are found to be sparse in 

nature i.e. many of' the array cells contain null values and consume unnecessary space. 

So it is important to design a technique, The Storage/Compression', to store such arrays. 

Some common storage schemes are reviewed below. 

('RS/CCS15J[27][341135] scheme is based on sparse matrix storage where three vectors 

I1amcl\ RO. CO and VI, are needed. Let us consider a matrix. where in is the number 

I ro\\ and  ii is the number ol' column. in CRS scheme, the length of RO is ,n+l which is 



ROCRS  I 0  I 
5 I COc-s 1 2 0 I I I 3 0 
o_j VL 15  1 2 31415 6 10  

x i =0 1 
x3-0 1 2 0 1 2 

x-,=0 [o 0 1 5 0 6 
ilo 20007 
2 L 0 4 0 8 0 

13 

ii 1 in CCS. First element of RO is zero and later elements store cumulati\'e sum of total 

number of non-Zero elements in each row (each column in CCS). VL stores none-zero 

elements itself' and CO store respective column index (row index for CCS) of non-zero 

values. Ihus. the CCS is the CRS on transpose of targeted matrix. Figure 2.7 illustrates a 

t\vo-dimensioflal array/matrix of 44 and equivalent CRS/CCS. 'l'here are seven (7) non-

zero element out of total sixteen (16) elements. To store this matrix in CRS/CCS scheme, it 

requires to store a total of (4±1 )+2x719 elements. First element of RO is initialized with 0 

and rests are the cumulative sum of total number of non-zero elements in each row (column 

for CCS). lhe number of non-zero element(s) in j'tli Row (Column for CCS) can be found 

by ROIj±1 I-RO[iI. 

x0 1 2 
x1 =0 0 1 2 

300 
2 040 
3 6 0 7 

I 0 1 214 6 7
- 
 - 

1°CCS  
V Ls  

Figure 2.7 CRS/CCS for 2-D sparse array 

II!IEI1tIHB 
II1IIIEIIUII 

15 8 ROcsl0 4 5 8 
- 

CO(Rs  2 0 2 1 2 0 2 I COCCS 
0 1 1 0 1 0 0 1 KO5 

Li iL2L 3 4 I 8 VL-5  

1'igiii'e 2.8 CRS/CCS for sparse 3-D array 

4 Figure 2.8 shows the storage ol'a three dimensional array or cube of size 2x3x3. This cube 

can he viewed as two two-dimensional arrays having size 3x3  for each. An additional 

arra\ IIZIIIICCI KO is introduced which stores indices of first dimension x1  along with RO. 

( 0  and VI -. 1 he number of non-zero elements is eight (8) out of eighteen (18) elements 

1—t-uhjilJuil 
MMMEMONE 
IF1IJflh1U11 
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and it requires to store (1 r3)-I--3 4=28 elements. Similarly it needs two KO to store a four-

dimensional array of Figure 2.9 of size 2x2x3x3 where 1(00  and KO' store indices of x1 

and .v respectively. In this case it requires storing total of (1±3) ± 4 x 12 = 52 elements. 

Thus. it needs ii number of auxiliary one-dimensional arrays to store a n-dimensional 

1L.n'Y, 

x1 =0 

x--0 1 0 

x40 1 2 0 1 2 0 1 2 0 1 2 

x0 0 0 1 4 0 0 7 0 0 0 10 

1 0 2 o 0 0 5 0 8 0 :11 0 0 

23 0 0'() 6 000 9:120  oJ 

ROCRS Lo 1 481 11 
- - 

0 1 5j 9 L1 
V - ---'-=_---------__ 

C()('('5  
KO()  
KO (US 

Lccs  

UBAIUtUEJII unrniiiuuEiIIi 
MMOMMMMMMMOM 

an I'll."— 
Figure 2.9 CRS/CCS for sparse 4-D array 

he [CRS/[CCS scheme [5][27][34] use one one-dimensional floating-point array V 

and two one-dimensional integer arrays R and CK to compress a multidimensional sparse 

U ITU\ based on the EKMR scheme. Given a sparse array based on the EKMR(3), the IECRS 

[('CS) scheme compresses all 01 nonzero array elements along the rows (columns for 

[CCS) of the sparse array. Array R stores information of nonzero array elements of each 

ro (column for ECCS). The number of nonzero array elements in the row (ithi  column 

br [CC'S) can be obtained by subtracting the value of R[i] from R[i+l]. Array CK stores 

the column (row 1'or [CCS) indices of nonzero array elements of each row (column for 

[('(-'S). Array V stores the values of nonzero array elements. Similarly. It can be used 

arrays R. ('K. and V to compress a sparse array based on the EKMR(4) in the 

l.('RS [('('S schemes. Since EKMR(k) can be represented by 111"4  EKMR(4), in the 
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FCRS/ECCS schemes, each EKMR(4) is first compressed by using arrays R, CK, and V. 

Then. an abstract pointer array with a size of in 4  is used to link arrays R, CK, and V in 

each [KMR(4). For example. assume that there is a 3x2x2x3x4x5 sparse array A based 

on the 1MR(6). The sparse array A based on the EKMR(6) can be represented by six 

1--KN'IR(4) with a size of 8 x l5. The ECRS/ECCS scheme compress each EKMR(4) to 

arrays R. CK. and V. 'then. use an abstract pointer array with a size of 6 to link arrays R. 

('K. and V o!'each FKMR(4) shown in Figure 2.10. 

An abstract pointer array 

0 1 1 2 131 4 IS 

\ 

R LURS olO Riuis of I 1 R1:5 of 2 RI: RS  of 3 

C K1  URS (I U CKFURS  I CKICI(S  o12 of 3 

VIVWS of,  0 Vl:( RS oF VlRs VLCRS 013 

l;cRs 

i 
ECRS I ECRS 

'' 

ECRS 

FKNlR(4) [_EKMR(4) 
1 

EKMR(4) EKMR(4) 

Iigurc 2.10 ECRS for sparse 6-D array 

The optinial chunLing technique [23] partitions multidimensional array into coarse 

w'ained hvper-rectangular blocks called chunks. A chunk is defined by the index range of 

'. ZIIILCS alonu each diiiiension. A query over the dataset retrieves either the entire array or 

sub-array based on overlapping the query result. An optimal chunking is characterized as 

chunk size and chunk shape. Suppose a n-dimensional array A[11 ][I2]....[1) ]. consists of 

I 1 I i  elements. The storage of A is done by partitioning A into equal shape rectangular 

chunks such that cacti chunk fits on a disk block, i.e., if each chunk has dimensions <ci, C2, 

c > then JI'= Ci  < C. 

Al  

:r 
Figure 2. I I Query to retrieve chunks 
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the systeni supports queries that retrieve rectangular sub-arrays of A. A query q = <[i, 

I'l ). Li. : v). 1113 1'%). .......  {u1 11,1)>  specifies a lower bound iii and upper bound vi on 

each of the n dimensions. The query retrieves all elements x1 . x2,  x3, ......x> of A such 

that a < xi  < i , j  for l< i < n. Figure 2.11 illustrates a 2-dimensional query of shape <A1 , 

A2> operating on a chunked array where each chunk has the shape <ci, c2>. 

ArrayStore! 71 is a storage manager which supports range query as well as binary 

operations Like join and complex user defined function. ArrayStore takes the approach of 

breaking an array into &agments called chunks and storing these chunks on disk. Figure 

2.12 shows array Al of size 4x4x4  which is divided into eight 2x2x2 chunks. Each chunk 

is a unit ot' I/O (a disk block or larger). Each X-Y, X-Z, or Y-Z slice needs to load 4 I/O 

units. the array A2 is laid out linearly through nested traversal of its axes without 

cliunking. X-Y needs to load only one I/O unit, while X-Z and Y-/. need to load the entire 

arra. 

Al: (4X4x4) A2:(4X4x4) 

j'  1 

fti 

bA 

Z X-Y:(4X4) 
X 

/ .. . 

X.Z:(4X4) 

I:igtlrc  2.12 ArrayStrore for 3-D data 

.\rravStoi-e use two types Of chunking scheme namely Regular Chunks (REG) and 

Irregular (hunks (I Rl(j). kach array in ArrayStore is represented with one data file and 

one metadata file. The data file contains the actual array values. The metadata file contains 

array meta information such as number of dimensions, total number of chunks, and in the 

ease ol i'eular chunkina the number ol chunks. 

Sei I )B[24] is a multidimensional array data model which supports both functional and 

SQl-like query language. It as pretty obvious that SciDB had to run on a grid (or cloud) 

01 computers. It should chunk arrays to storage bLocks using some (or even all) of the 

ditiiciisioiis. Seil)B should chunk arrays across the nodes of a grid, as well as locally in 
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storage. I lence, it distributes chunks to nodes using hashing, range partitioning, or a block-

cyclic algorithm. 

2.4 Discussion 

Fvery array models described in this chapter have some pros and cons. TMA is still the 

standard to implement higher dimensional data and good for random accessing but the 

per!'rmane of TMA drastically decrease with the increase of number of dimensions. 

l'KMR is a promi1ent technique to represent higher dimensional data with two-

dimensional data. But when the number of dimension is greater than four then it uses an 

abstract pointer array to point each EKMR(4) which make EKMR clunky to handle data 

with very high dimensions. lensor decomposition slices the tensor into vector which is 

prominent br operation but very costly to Store. 

Most storage technique ol' higher dimensional sparse data is based on CRS/CCS scheme 

hich is excellent to store sparse matrix. But using CRS/CCS for higher dimensional 

sparse data is hardly possible for its storage size. ECRS/ECCS is better than CRS/CCS 

which works well until four dimensional arrays. When the dimensional is greater than four 

then it stores as a collection of ECRS/ECCS(4). Generating the collection of 

l;cRS:I-:ccS(4) is inefficient when the data dimension is very high. Optimal chunking, 

Art'a Store and SciDB based on the splitting the whole array into smaller size. But 

defining the size is widely aflct the performance for higher dimensional data 

lhough. there are a lot of' research has been done on array model, but only a few 

researches have been made on the generalization the scheme to any number of dimensions. 

I lence the proposed generalized representation scheme will outperform over TMA and 

FKMR scheme. The detail of the proposed scheme is presented in the next chapter. 

-4 



CHAPTER 111 

Generalized 2-Dimensional Array 

3.1 tllti()dUC(LOfl 

traditional multidimensional array is widely popular for implementing higher 

dimensional data but its performance diminishes with the increase of the number of 

dimensions. On the other side, traditional row-column view is facile for implementation, 

iniacination and visualization. It is well known that the multidimensional array is the 

logical abstraction and linearized when stored on the memory. Compilers/ programming 

languages map the array index into the linearized memory address. So, it needs to compute 
Ir 

the speeiled dimensional indices. If we consider a TMA(3) array. A[/1][/21[/31  then a tuple 

<x. x. x > can be linearized and identifled by array linearization function as follows 

/(XI.X2. x) x 1 1213 +x213 +x3  

this chapter represents an implementation procedure for n-dimensional array with row-

column abstraction which iiamed Generalized Two-dimensional Array (C2A). Odd 

dimensions contribute along row-direction and even dimensions along column direction 

which gives lower cost of index computation and higher data locality. it is not related with 

dimension reduction depending upon eigen value. It is a permutation on higher dimensional 

data to I t into a new two-dimensional array. Thus the length and indices of new 2-

Dimensional array is determined based on n-Dimensional arrays' length and indices. To do 

this. (J2A ills T 11/2 1 number of dimensions along row direction and the rest n12 number of 

dimensions along column direction. Odd dimensions contribute for rows and even 

dimensions contribute br column. 

3.2 Realization of 2-Dimensional Representation 

62\ is the way ob representing an n-dimensional array (n>2) with a two-dimensional array. 

I ct. •\II I I/ I.. I! I be a lMA(n) ol size I/i.  17...../d and <X1. X7,. . be the subscripts of 
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an element of' A: where I. /2, . I is the length of each dimension d1 , d2 ., d and x = 

Ir 0.1.2.3. .... (1-I) (0 :~ I !~ 1). The representation of the TMA(n). A into a G2A A[I' 1 ][1'2] of 

sue 1'. I' I and subscripts < x'. x' > where 1' and "2  are the length of each dimension d'1  

and d' : x' C: 0. 1. 2. ..... (/i-I) and X'2 = 0. 1. 2......(l'2-1). In the following the conversion 

of TMA(3). TMA(4) and TMA(6) to G2A are shown and then the generalization for 

TMA(n) is described. 

3.2.1 2-l)inicnsional Representation of TMA(3) 

('onsider a three dimensional TMA. A[11][12][131 of length [l i , /2,  131 z [2, 3. 4]. It can be 

represented as a two-dimensional array. A'[/ i '][/2 ] having length [l i ', /2'1 [8, 3] as 

Il' = Il X 13  and /2 = 12 

and the G2A elements index tuple <xi, X2> can be derived from TMA tuple xL,x2.x3> by 

XI — X1 x/3+X3 and x2x 

x2 

X3 

X1 
xi 

0 1 2 

3 3 

23 2 6 
X3 3 1 : 1

7 
1 2 

Figure 3.1 TMA(3) and its equivalent G2A 

1 hus a l'MA index tuple <I. 1. 2> is equivalent to G2A tuple <6, 1>.  In reverse, it is also 

possible to reconStfllCt a TMA from its corresponding G2A. This is done by finding 

ing TMi\ tuple which is called backward mapping. Backward mapping to correspond  

construct a TMA(3) from G2A can be as follows 

Xi = Xi / 13  , x3= x1 % 13  and X2 = X7 

1 Icie % indicates the 'modulLis' operation and / indicates 'division' operation. Thus, a G2A 

index tuple <6. 1> is equivalent to TMA tuple <1, 1, 2>. 

3.2.2 2-Dimensional Representation of TMA(4) 

let. a loui'-dimensional TMA. A of length [/. /2,  /3, /4] [2. 3. 3, 2]. Its corresponding 

(i2\ ( l:igii.e  5). A'[/i'J[/2I where / ' i and / 2 can be found as follows: 
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LI = 11 x /3=2 x  3 = 6 & '2 = /2 ><  /43 x 2 = 6 

and any G2A index <X'I. x'2> can be found with corresponding TMA index <x1 , X2,  x3, 

X.> as 

= .V1 X / + X3 & X2 = X2 ><  14  + X4 

As example if a TMA index is < 1. 1, 2. 0 >. then its equivalent G2A index will be < 

I x3+2, I x2+0> = <5, 2>. In reverse. ifa G2A index <5, 2> is known then its 

equivalent l'MA index can be found by 

x 3  = x' i  % h = 5%3 = 2. Xj = x' //3 = 5 / 3 =1 and 

X4 — X7 %/4 = 2%2 0, x =X2/I4 = 2/21 

0 1 2 

o .................  .-xi 

1 1 

2 

ii 3 

11 4 

45 

1 ii.ure 3.2 G2A representation of TMA(4) 

3.2.3 2-Dimensional Representation of TMA(6) 

(.unsidcr a SIX diinensional TMA. A[/1  ][/2][/s]{L1J[lc][16] of length [/, /2,  /3, /4 /, I61 z [2, 

It can be represented as a two-dimensional array, A'[11 ][I2 ] having length 

I/i'. hi [12. 121 as 

/ = 11 x /, x 15  and 12 = 12 < /4 X  /6 

and the G2A elements index tuple <x1 , x2 > can be derived from TMA tuple xi, x2, x3, X4, 

.v. .V(> by 

x1 x I  X /3 x h X3 x Is +x and x2'x2  x /4 X /6+X4 X 

Ihus a TMA index tuple <1. 1. 1, 0, 0, 1> is equivalent to G2A tuple <9, 7>. In reverse, it 

is also possible to reconstruct TMA from its corresponding G2A by backward mapping as 

.Vs .Vi% Is. X3 = x1 % (/3x  15), XI = x1 % (/ 1 x / 3 x /) 

and .v .v% 4. x4 -- X2% (/4x /) X2 = X2% (/2 x /Ix  16) 
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Figure 3.3 G2A representation of'FMA(6) 

3.2.4 2-I)imensional Representation of TMA(n) 

Similarly it is possible to represent any dimensional array (n>2) with a single 2-

dimensional array. The length of generalized 2-dimensional array, A'[11 ][121 ] from n-

dimensional TMA. A[/1 ][12] ... [i] length can have two cases as below 

(ase I: if n is even 

/i ' / x 13X / x XIn 3 In-I and 12 = 12 /4 X 16 X xj11 _2  x  In 

( u.sc 2: il/7 is odd 

Il' = I  I x x / xx/, x I and 12 = 12 X  /4 X /6xx/ 3  x In-I 

Above two cases can he generalized as 

= lj+2J [i = 1,2 and] = 0,1,2,3......n] 

j = () 

To generate a 02i-\ from n-dimensional TMA it is necessary to generalized the TMA 

index tuple <.v1 . .v2...... > into G2A's index tuple <Xl42>. Again two cases may occur 

based on the value of n. 
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Case 1: ii ii is even 

XI = X11315 .....'n-3'n-I + X3I17.....1n-31-I + .......+ 4_31n.!  + X11_1 

and X2'  = X2/416..... /n-21n + X41618.....lii-2111 + .......+ Xn_2111 + X11  

Case 2: if ii is odd 

xl' X11315  .....iii-2'n + x31c17 .....  'n-2'n + .......+ X12111 + x1  and 

X' = X71416.....1n-3'ii-1 + X41618.....1n-31-I + .......+ XF_3111_I  + X11_I 

Above two cases and equations may be generalized to generate G2A tuples from TMA 

tuples as 

fl-i 
fl-i -- 

= 

fj 
 1

i+2k 
k=j+1 

j=O 

[i = 1,2 and j,k = 0,1 1 2,3 . ... ...  n] 

The ahzorithm to implement above notation is shown in Algorithm 3.1 and Algorithm 3.2. 

u/guru/un 3.1: finding G2A indexes from TMA indexes: 

G2A-f6rward_mapping(x i  ', X2 ', XI- x,, 1- i) 

Initializex j ' :0, x2' : =0 

Repeat i := I to n 

Repeatj:= i +2 ton 
x :=xx/1  

j:j+2 

X2j'2 :=x21%2 +X 

For backward mapping, if a G2A tuple X2> is known then its equivalent TMA tuple 

<.VI. .v ............ > can be derived. To do this, two derivations can be considered based on 

the value oiii. 

Case I: if ,i is even 

Xn  = x % I
II  

x ( ... (x' / i) ... / 'j+2 ) % ii [ i = 4, 6, ..., n-2 ] 

X2(( ...( (X7'//n )//2) ... )//)/i4  

-.4 

x_i = x' % 

x1 (...(x 1 /i t ) ... /1+2) [i=3,5,.,.,n-3] 

x ((... ( (xi' Ii-i ) / ln-3) ... ) I is ) /13 



( a.,e 2: 1117 IS odd 

xfl  = x1 ' % i 

x=(  ... (x I 'I1) ... I1I+2) %/ [i=3,5,...,n-2] 

x1=(( ... ((xI'/l)/I2) ...)I15 )/15  

XnI = x % 

(x2'//1 .J) ... /1j+2) % IJ [i=4,6,...,n-3] 

X2 =  ( ( ... ((x2'//1t)/l3) ...)/16)/14 

I'lic generalization of above mentioned backward mapping can be done as below 

Xi x vherei=nto1 

•1 II 
•\ 2 °2 / /i 

Ir Algorithm 3.2 shows the reverse mapping which described above. 

Algorithm 3.2: finding 1MA(n) indexes from G2A indexes: 

G2A-backward mapping(x1  X2 x 1 - x, It- i) 

Repeat i : iito I 

X :--x 

X7j2 := (x 2 j2 - x)II 

3.3 Comparison of TMA and G2A for Matrix Operations 

lhe TMA and G2A are both higher dimension arrays with different data layouts. In G2A, 

the array cells are organized into chunks according to the number of dimensions. For a 

i'MA(n) '\Ii,l [12 1 ... I/,,]its equivalent G2A A' [1] [ 1'] has the chunk size I x I_l and 

there are such Ill  x 12  x ... x ii-2 I chunks exists. Each chunk is a two dimensional array 

of size [I fl, 1] Figure 3.4 shows the data layout separated into chunks for matrix- matrix 

addition/subtraction and multiplication for 4 dimensional matrices. 
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I:igui.c 3.4 Addition and Multiplication olmatricized TMA(4) of size 2x2x2x2 

Ihe (i2A is organized as chunks according to d4  and d3  (i.e. X4 and x3). The chunk size is 

'3 x I,j i.e 2,22  and there are such 2x2 = 4 chunks exists. Fig. 3.4 shows the data layout 

br matrix-matrix addition and multiplication fi.r C ddI1 I 5 =A±B and xB where 

\ and B are two matrices. The additionlsubtraction and multiplication are performed by 

lixilig 0\\5 br Varying columns as done for a 2 dimensional matrix. This increases the 

cache hit rate of' the processor because of the data locality [15] [16]. In the following at 

!rst the algorithms for three dimensional matrixes are presented and then extend it to 

higher dimensional matrix representation. 

3.3.1 Matrix-Matrix Addition/Subtraction Algoritlirns2J 

Let t\\o three dimensional TMA A and B of size [11. /2, /31. The resultant matrix, C =A ± B 

is down by lxing flrst dimensions br pointing the row and column (second dimension as 
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row and third dimension as column). Algorithm 3.3, 3.4 and 3.5 show the matrix-matrix 

Ir addition/subtraction for TMA(3), TMA(n) and G2A respectively. 

Ahiorithi,, 3.3: 
matrix-matrix addition TIVIA3 

begin 

1orx1  = 0 to (/-l) do 

br .v- = Oto (/7-I) do 

for X3  =0 to (/3-1 ) do 

C'Ix11[x211x3i = AIxI][x2][x3] + B[x1 ][x21[x3]: 

[nd. 

/1l.Oflt/lIfl 3.4: 
iiatrix-natrixa(lditioiiTlVI An 

begin 

tory1 Oo (I j -1 ) do 

-Ir 10FX2 :0(0  (/7-1) do 

br .V =0 to (i-i) do 

C'I.vI[x21 ... [x] = A[x t  j[x2]. . . + B[X l ][X2]... [x1]; 

md. 

,lh.'orit/ziii 3.5: 

natrix-natrix addition (i2A 

begin 

for xj = 010 (1-l) do 

for x 0 to (1- I ) do 

C'IxIj[ x  J = A'[x][ x] + B'[x][ xi]; 

Fnd. 

3.3.2 Matrix-Matrix Multiplication Algorithms 

Let two three dimensional 1'MA A and B of size [11, 12, 131. The resultant matrix, C = A X 

B is done by fixing first dimensions for pointing each 2-dimensional grid of row and 

column (second dimension as row and third dimension as column) where length of row 

and column are same i.e /i1 = I. Algorithm 3.6, 3.7 and 3.8 show the matrix-matrix 

multiplication tor !'MA(3 ). l'MA(n) and G2A respectively. 



AI'ori1Iznz 3.6: 

Ir matrix-matrix multiplication_TMA_3 

begin 

1'orx1  = 0 to (l-l) do 

for X2 = 0 to (/2-  1  ) do 

for x =0 to (/3-I) do 

!br 1=0 to (/3-1) do 

C[x][x21[x3] = C[xi][x2][x3] + Axi Jx2 [i] x  Bxp][i1[x31; 

End. 

Aluioritlirn 3.7: 

malrix-rnatrix_ multiplicationjMA_n 

begin 

forx1  = 0 to (/-1) do 

101' X2 = 0 to (/2-1) do 

Ibr x1l =0 to (1- 1) do 

for i =0 to (l,- 1) do 

Clxi j[x2].  [x11] = C[xi][x21. . x1 ] + Ax1 ]x2] ... [x,_][i] x Bxi][x2].. 

End. 

/lluiorilh,n 3.8: 

matrix-matrix multiplication_G2A_naive 

begin 

forx1  0 to (1'-1) do 

begin 

u = X1, -  x' % 
jI 

forx2' = 0 to(/21-I)do 

begin 

V = X2 - X2 % /2 

for 1 =0 to (/-  1) do 

C'[x j'][x2 1 = C'[xi'][x2'1 + A[x'][i'+i] x  B'[u+i]1x211; 

end 
end 

i 
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However, the perlormance of the naive algorithm (Algorithm 3.8) for C'=A' x  B' will be 

low because of the modulus operation for the calculation of u and v. The algorithm is 

revised for avoiding modulo operation as shown in Algorithm 3.9. 

A IioritI,n:  3.9: 

niatri x-matrix_ multipi ication_G2A 

begin 

it = 0 

for X'= 0 to (l'-l) do 

begin 

/) = X '  - U 

ii' j-, = I then 

U= it ± l 

V = 0 

0 to (/2-1)  do 
1- 

begin 

q = X2 - q 

if' q/then 

1' = V + / 

for 1=0 to (1-1) do 

C'[xj'][x2'] = C'[x['][x21 ] + A'[x i '][v±i] x  B'[u±i][x2'1 

end 
end 

end. 

The correctness of algorithm 3.9 is shown in Table 3.1 by showing the operation and 

values of' different variables where A' and B' are two G2A of four-dimensional TMA 

having length 2 for each of' four dimensions as shown in Figure 3.4. 

FIT 

.V1 -0 (.v0 0 1 4 
- 

5 
] 
x0 x1 0 (x=0 

23 6 7 I I 

I / 0 8 9 12 13 2 I  ( 0 

I 10 II 14 LJ 3 I 

.v'-() 1 2 3 
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Fable 3.1 Multiplication of matricized TMA(4) of size 2x2x2x2 as of Algorithm 3.9 

'I 
2 U N, 

AtI.vj'Ilv+i x B'Iu+iI.v2'I 
o 0 0 0 0x0-1x2 

o i o 0 0x1-,-1x3 

o 2 0 2 4x4±5x6 

o 3 0 2 4x5-.-5x7 

0 0 0 2x0-3x2 

I I 0 0 2x1-3x3 

2 0 --2—T 6x4--7x6 

3 0 2 6x5--7x7 

2 0 2 0 8x8+9x10 

2 I 2 0 8x9+9x11 

2 2 2 2 12x12-r13x14 
2 3 2 2 12x14±13x15 

3 0 2 0 10x8+11x10 

3 I 2 0 10x9+llxll 

3 2 2 2 14x12+15x14 

3 3 2 2 14x13+15x15 

3.4 Theoretical Analysis 

lucre are two aspects for performance improvement on matrix operation of proposed G2A 

(shown in Section 3.3) namely I ) Cost of index computation and 2) Cost of cache line 

accessed. INc cost of index coml)utation  comprise of the cost of total number of addition 

and multiplication operations. Another aspect, the cost of cache line accessed is analyzed 

ith the alc.orithm called Loop( us! (1) proposed by Can' ci al. [15] [16]. The parameters 

are grouped as shown in Table 4.2. Some of these parameters are provided as input, while 

others are derived from the input parameters. All lengths or sizes are in bytes. 

Table 3.2 Parameters for theoretical analysis 

er Description 

Number of dimension for both TMA & G2A 

I Length of dimension i (2:5 i !~ n)for TMA. Consider /1= /2= 13=... = 

1 = / for all i. l-lence size of the array or total array elements 
becomes 1". 
Leneth of row for G2A; i. 1 = /C where k = [n/2] 

k / 2 Length of column for G2A: i.e. 12  = I 
r Size of cache line 
it Cost of a multiplication operation 
11 Cost ofan Addition/Subthictioii operation 

(  
1 1 Improvement: 11 = i 1 - 

Cost of G2 A \% 

I X l00% 
\ Cost of 'IMAJ 

KA 
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3.4.1 Cost of index Computation 

According to our algorithms described at section 3.3, the total cost of index computation 

for matrix-matrix addition and multiplication for different number of dimensions can be 

presented as 

Fotal Cost = Cost of Index Calculation + Cost of Array operation 

The analysis is per!'ornied on three TMA A. B and C as well as three G2A A', B' and C'. 

Ihe index computation is generalized with /1 number of dimensions though 3, 4 and 6 

dir leilsions. 

11atrix-I\'1atrix j%.ddition/Subtraction: 

For inatrix-matrix addition/subtraction operation, each element is accessed only once. An 

n-l)imensional TMA ol' length I for each dimension needs to compute I' number of index 

fOr each of' three matrixes as well as 1" number of additionlsubtraction operations. 

Consider C=A 13 and C'=A' ± 13' fOr three dimensional data having 13  elements for each. 

The index computation function lOr TMA and G2A are land!' respectively as below 

V7. xl) = x1  x/x/ 1- x 2 x1 + X3 and /"(x'1 , x'2) = X'i X/'2 + 42 

The fOnction 1 requires two additions and three multiplications while f ' requires one 

addition and one multiplication to compute each index. The G2A also requires another one 

multiplication to calculate 1' 1 xf  'l'hus the index computation costs 3(3a+213) 1
3 and 

() L' u. fOr TMA and G2A respectively. But the total cost is the sum of index 

computation cost and cost of' array operation. So. 

'l'otal cost for Operation on TMA = 3(3a+2(3) j+ /3= (9(.+7f3) 13  and 

lotal cost fOr operation of' G2A = 3(a+(3) Ii+ U + / 1 = a + (3(x+4) 13 

the improvement. r over schemes for three dimensional arrays can be calculated as 
follows. 

/ a + (3a+4j3)I 3'\ 

(9a+713)I3 )x100 

As we know that the cost of' multiplication is very high than that of addition (a>>13). If we 

iwore the (1. with respect to 13 then 

7] 
= (.-) x 100 
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II' the above analysis is considered for four dimensional array with below TMA index 

computation lunction 

J(x 1 ,xxs.x.)=xi xlxlx/±x2 xlXl+x3 X1+x4  

There are ,.4  elements and each element requires three addition and six multiplication 

operations. The index computation function for any dimensional array is same as shown 

for three dimensional data. For four dimensional data equivalent G2A needs another 

multiplication operation to compute 12=' xl. So. the index computation cost for total three 

arra ol TN'lA and G2A are 3(6a-r3f3) 1 
4 and 3(a±3) l ±2c respectively. The total cost will 

be the above cost plus 14 for each case as shown below 

Iotal cost for operation on TMA = 3(6a±3(3) i± T'f3 = (I 8u+10f3) 1  and 

Total cost for O1)etItiO11 of G2A = 3(a+f3) i+ 2(x + Pf3 = 2ct + (3a+43) f' 

So. the improvement rate over scheme for addition operation on four dimensional data, 

2a + (3a + 4[3)14 

(18a+1O)14 )x100 

=(

5 1  
—)x1OO [ for a>>] 

Similarly, below TMA index computation function for six dimensional arrays have five 

additions and lilleen multiplications operation for each of total 16  elements. 

I (xi. X2. x. x 1. X. x6) .v x/x/x/x/x/ + x2 xlxlxlxl + x3 xlxlxl + x4 xlxl + xc xl + x6 

Equivalent G2A needs four multiplications to determine the lengths /t1/xfx/  and 

/r/ / x/, So. the total cost for matrix-matrix addition for six dimensional data would be 

as below 

Total cost for operation on TMA = 3(1 5a+53) = (45a+1 613) 16 and 

Total cost for operation of G2A 3(a±13) 
16+ 4a + /613 = 4a + (3a+4[3) 16 

So, the improvement rate for six dimensional data operation. 

4ct + (3a+413)/6  

(45ci + 16)1 ) x 100 
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'14 4\ 

=L54516)x100 [ for a>>] 

Now the cenera117.ation of above analysis for n-dimensional array with below TMA index 

computation function which has (n-I) addition and n(n-1)/2 multiplication. 

/(xi. X2 ...,x, x) = x x/" 1  4- X2X 1n-2, 
••• x x/ + x,, 

G2A index computation function is same for any number of dimensions as shown before 

except calculation of/ i  and "2  which require (ii-2) multiplication. The total cost for n- 

dimensional data computation for both cases are below 

oial cost of TMA 31" + (n — 1)p) + pIn and 
2 

lotal cost of (i2A =3(a+(3) /11+  (n-2)ct + / 13 = (n-2)a + (3a+413) /1) 

I lence. the improvement for addition operation considering a>>(3. 

/ 2 2(n-2) 77 = 

( - ) - 3( - 1)171) 
x 100 .................................(3.1) 

N1atrix-1Iatrix \lultiplication: 

Matrix-matrix multiplication described in section 3.3.2 requires multiple accesses for same 

element. 1he index computation function for TMA and G2A are same as described for 

matrix-matrix addition for di ffrent number of dimensions. The multiplication operation 

for three dimensional array having length / of each dimension needs to access 4  elements. 

The array operation needs another one addition and one multiplication of j4  elements. So 

the total cost to compute C = A x  B for three dimensional TMA are the sum of index 

computation cost and cost of array operation as 

loud cost of TMA = 3(3u+213) 
(±13)/4 

= (10u+713) 14  and 

Total cost of G2A 3((i+13) a ± (+13) / = ± 4(cx+13) 4  

Ihus the improvement, i over schemes can be calculated as below 

U + 4(a + 13)/4 
(lOu + 7f3)/4 x 100 

'3 1 
=(_Th-)x 100 [a>>/fl 

Similarly, the total cost of IMA(4) and equivalent G2A, can be calculate as follows 

loud cost of IMA 3(6u 313) r± (+13)r = (19a+1 013)  1 and 
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Total cost of G2A  

II ve neglect the cost of addition with comparing the cost of multiplication then the 

improvement for four dimensional array computation, 

is 2 
77 

= 
,) x 100 

Again the consideration of six dimensional arrays for matrix multiplication then total cost 

of INIA and equivalent (i2A would be as below 

Total cost of TMA = 3(1 5"51) ((X±)/7  (46a+ I 6) 17  and 

Iotal cost o!G2A 3((x+[) 4u ± (a±)/7  = 4a + 4(a+) 1
7 

Ihus the improvement rate for six dimensional data considering a>>13  is 

11= 
 (

21 2 
— — x 100 
23 2317) 

Now the generalization of above analysis for n-dimensional data needs to access 

clement for each arra. Ihus the total cost l'or both TMA and G2A are as below 

Iota l  cost of TMA 3 (L~
1)
u + (n - i)i) 171  + (a + )11  and 

2 

Total cost of (i2A 3+1) / 
4-1 ± (n-2)a ±(a+) /h1H 

= (n-2)a + 4((x+1) I"' 

I lence the generalized improvement rate by ignoring cost of addition for matrix-matrix 

n1LI!tip11cation of n-dimensional data can be represent as below 

8 2(n-2) 
1 3n(n - 1) + 2 - (3n(n - 1) + 

2)171+1) x 100 ..................(3.2) 

Remarks 3.1: For large values ofii and I the improvement rate ij will increase. Hence the 

overall improvement will increase for higher dimensional array of large size for matrix-

matrix addition or multiplication operation. 

3.4.2 Cache Effect Analysis 

It is ell known that the compilers allocate memory sequentially. For a n-dimensional 

array, it is possible to access into üictorial of /1 possible loop order. Among them, !n-1 

number of loop order access memory randomly. We all know that random access of 

nieniury increase the cache miss rate. Bitt this thesis desires lowest cache miss rate to 
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ensure hieher efficiency and thus considering sequential access of memory. Hence, the 

loop order </i, /2...... /> is considered i.e outer loop is managed by 11  then 12  and 

l'inal lv 

Nlatrix\'Iatrix Addition/Subtraction: 

there are 3 (three) dif!rent loop orders are possible for a TMA(3). We assume the loop 

order <Ii. /. /3 > to ensure the most sequential access of the memory. As the Cache is 

partitioned into lines and, during data transfer, a whole line is read or written. If the cache 

line size is r then the number of cache line access using LoopCost('l)[2]{3] for matrix- 

matrix addition' subtraction. j2 I!] (see algorithm 3.3.1) is same for both TMA(3) and its 

equivalent G2A i.e. no improve for G2A over TMA(3) for matrix-matrix 

addition/subtraction. For IN'lA(4). 4 diflèrent loop orders are possible. We assume the 

loop order </j. /2. /3. /4 > to ensure the most sequential access of the memory. The number 

of' cache line access using Loop( 'os!(I) for matrix-matrix addition/ subtraction for TMA(4) 

and equivalent G2A are j3 H & 1 2 respectively (See algorithm 3.3.2). So, the improve 

rate I'or G1\ over l'MA(4) is 

F1x12  
)xlOO 

h1 >< 

For 1MA(n), n! different loop orders are possible. We assume the loop order <L i , l, 13, 

I. I > to ensure most sequential access of the memory. The number of cache line 

access br matrix-matrix addition/ subtraction for TMA(n) and equivalent G2A are 

I  J & l n/21 respectively. So. the improvement for G2A over TMA(n) is 

Il 

X 12 

1 x 100 ....................................(3.3) 
x 1' 

When / is divisible by i, the improvement is 0, that is. the number of cache line accessed 

tr the (i2i\ is the same as that of the TMA. When / is not divisible by i, the improvement 

is positive. If/is much larger than r. then i 0. 
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Matrix-Matrix Multiplication: 

II we consider most sequential access of memory i.e. X3 is the innermost indices of 

lMA(3) then the LoopCosi(/) of A[xi][ X21[  x31, B[xi][ x2][ X3] and C[xi][ x2][ x3] are I 

I1/rlx/3  and [1/r ]x13  respectively. So the total ioop cost of TMA(3), 211/ri i+i is same 

for equivalent G2A i.e. no improve for G2A over TMA(3). The number of cache line 

accessed for A[xil[ x21[ x31 [ .V.ij. B[xi][ x2][ x31 [x4] and C{xij[ X2][ X31  [ x41 of TMA(4) are 

I x/4,  11/7-1 x/4  and 1/7-  xf1  respectively. I x/3, x/3  and [L] x13  are the number of cache 

line accessed for A'. B' and C' respectively of equivalent G2A. The improvement for G2A 

over IMA(4) is 

I 121 
((2 1 _I + 1) x 1 3 ) 
\ Il 

11=1— 
((2 + 1) x14 ) 

When 1 is divisible by r, the improvement is 0. and when / is not divisible by r, the 

i m provenient is 

G4fl+i) 
'I  +

Or 
i) I 

S imi larlv. The number of cache l ine accessed for A. B and C of TMA(n) are I x/,  [1/ 

I /' and I 1/v x/' respectively. Equivalent G2A has cache line accessed for A', B' and C' 

are 1 x jn/2+ 1 x and X 1fI respectively. So, the improvement for 

(12.\ over l\'lA(n) is 
r fl

I

- 

I 2 
I

—I + 1) x 1f12 +1  I 
1I 
TI I 

(2 1) x 1 ) x 1 4 ) 

Once again, if! is divisible by i' then the improved rate is 0, that is, the number of cache 

line accessed for the G2A is the same as that of the TMA. When / is not divisible by r. the 

illiprovemeut is 

/ i F!1 
2 + 1) 

/1= 1— (3.4) 
(2 [j + 1) x 
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Remarks 3.2: II' I is divisible by r then there is no improvement for G2A based 

aluorithms over TMA based algorithms i.e, the number of cache line accessed for the G2A 

is the same as that of the TMA. When I is not divisible by r, the improvement is positive 

for G2A based algorithms. 

3.5 Conclusion 

This chapter explains proposed G2A scheme as the realization of the scheme based on 

three. four and six dimensional data. Finally the generalization scheme for n-dimensional 

data is described. The derivation of equations to calculate the parameter for generating 

G2A from its equivalent TMA are called forward mapping. Similarly, returning to its 

original i'M\ ftom G2A namely backward mapping is generalized. For both of mapping 

algorithms are provided. The performance improvement due to G2A structure is shown by 

matrix-matrix addition and multiplication operation. Algorithms for 3. 4 and 6 

diniensional array are shown for both operations. Finally the generalized algorithms to 

support n dimensional data are analyzed. Lower cost of index computation and higher data 

local itv show the improvement performance though details analysis. The matrix-matrix 

addition and multiplication operation described in this chapter works well for dense array. 

Rut when there are huge of' empty cells in a multidimensional array then the schemes 

needs some revision. In this regards. generalized array storage scheme for sparse 

multidimensional data based on G2A is described in chapter IV. 
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CHAPTER IV 

Generalized Corn pressed Row/Column Storage 

4.1 lnlro(lnctiofl 

Nlultidimensional arrays are good storage for dense data but it shows bad performance for 

sparse datasets which wastes huge memory because of the empty cells in the array. 1-lence 

it is very hard to use in actual implementation. The sparsity problem becomes serious 

when the number of dimensions increases. This is because the number of' all possible 

combinations of dimension values exponentially increases, whereas the number of actual 

data values would not increase at such a rate. Efficient storage schemes are required to 

store such sparse data for multidimensional array[2][5][35][40][42j. That's why most data 

scientists suggest el'fleient storage scheme on higher dimensional sparse array where the 

operations on stored data can be performed without returning to the original structure. But 

existing storage schemes are inefficient and clunk)' when the number of dimension 

becomes higher specially greater than Ibur, The traditional CRS/CCS[5][27][34] or n-way 

tensor decomposition scheme requires /1 number of' auxiliary one dimensional array/vector 

to store the indexes. The length of each vector is the number of non-zero element that 

exists in entire ai'ray. For example. to stoi'e a 4-dimensional array in CRS/CCS or 4-way 

tensor decomposition requires 4 vectors, When the number of' dimension increases, those 

schemes become unusable due to low data sparsity and high space and time complexity. 

1 lence the schemes are not effective enough fbi' storing higher dimensional sparse array. 

lhis chapter proposes a storage scheme namely Generalized Compressed Row/Colunm 

Storage (G(RS/(CCS) based on the G2A representation described in chapter III. 

4.2 Realization of GCRS/GCCS Scheme 

(('RS/GC'CS is a storage scheme to store n-dimensional sparse array. It is independent of 

tuuber of array dimensions and requires only three vectors namely RO, CO and VL. VL 

is one-dimensional floating point array. R() and CO are two one-dimensional integer array. 
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The length ol' R() and VL are same and equal to the total number of non-zero value. Array 

VL stores the values 0! nonzero array elements. Array RU stores information of nonzero 

array elements of each (i2A row (columns for CCS). 

.v 

1X4 

X6 

\ 
I 

/O(()  (2 

\ 1 

/ 

1 (()  

/0( 0 
/ I 
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l(0  
\ I 
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YTh 0 1 00 0 0 00 00 
0 0 0 00 0 0 0 02 00 
000003000000 
4 0 000 0 0 0 00 5 0 
0 0 0 0 6 0 0 0 0 0 0 0 
0 0 0 C) 0 0 0 0 70 0 0 
0 0 8 00 0 0 0 0 0 00 
0 0 0 0 0 0 9 0 0 0 0 10 
011 0 00 0 00 00 0 0 
0 0 0 0 0 0 0 12 0 0 0 0 
0 0 13 0 0 0 0 0 014 0 ' 0 
00 0 001500 00 00 

0 

7 

- 
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10 
11 

0 1 2 3 4 5 6 7 8 9 10 11 —V 
X2 

I:iu ttrc  4.1 (i2A representation of i'MA(6) having size 2x2x2x3x3x2 

ROCKS  I 0 1 51 11 1 1 5 

( '()I 1 0 0 0 1 I 1 0 10 1 1 1 0 I 1 I 0 1 1 1 1 
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K02('Rs  
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1 1 0 0 1 1 1 1 0 0 1 1 
KO'(sO1010I1J 0110T0100  
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C'RS of TMA(6) shown in Figure 4.1 

ROucis I0I1I23I5I6I7I8Il0I11l12Il4Il5 

('ORs 3]9f Ci 10148  2 6 11 1 7 2 9 
VL((• 1  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

GCRS of TMA(6) shown in Figure 4.1 

I'iUI'e .1.2 URS atal GCRS oiTMA(6) having size 2x2x2x3x3x2 
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If the number of G2A rows is P I  for a n-dimensional TMA then RO contains /11±1  elements. 

R01 U J contains 0. R01 1] contains the summation of the number non zero elements in row 

0. In general. RO[i] contains the number of nonzero elements in (i-I )1  row of the array plus 

the contents of RO[i- I]. The number of non zero array elements in the i row of G2A can 

be obtained by subtracting the value of RO[i] from RO[i+] j.  Array CO stores the G2A 

column (row for CCS) indices of nonzero array element of each. row (columns for CCS). 

[igltl•e 4.1 illustrate a I'MA(6) of size 2x2x2x3x3x2 and its equivalent G2A 

representation. The CRS of this TMA(6) is shown in Figure 4.2-a) which requires to store 

total oF 79(seventy nine) indexes and 15(11!leen) value itself. The GCRS of same TMA(6) 

is shown in ligure 4.2-b) which requires to store total of only 28(twenty eight) indexes. 

4.2.1 Generating of GCRSIGCCS File 

The generation of GCRS/GCCS can be done from G2A which is a row-column 

representation of 1MA(n) with only three one-dimensional array RO. CO and VL. But we 

cannot neglect the cost of mai.ricization of higher dimensional array. So an alternate 

solution can be the generation of GCRS/GCCS from TMA(n) directly. In this case G2A is 

logical/abstraction and there is no need to convert the TMA(n) into G2A. To do this, it 

needs to transform the loop order. The loop order is such that odd dimensions are accessed 

first then access the even dimensions i.e. loop order <us /3. Ic....... /, I. i.. ... ...  >. So, the 

generation ol GCRS/GCCS can be done in two ways: 

First, convert the TMA(n) into G2A. Then store the converted G2A according 

existing CRS/CC'S scheme described in chapter If. 

Generate GC'RS/G('CS directly from TMA(n) though loop transformation. 

[he rest of ,  the storage scheme is described based on loop transformation technique. 

Consider a three-dimensional array of Figure 4.3 having length [/1. /2, 13 ] [2. 3. 3]. In 

( i2A. odd dimensions contribute [or row-direction and even dimensions contribute for 

column direction. ihus. the length of' RO for GCRS. / = I + 1 x  13  = I + 2 x  3 = 7 and for 

GUCS. / I I /2 = I 1 3 4. First element 0! RO is always zero and all elements are 

initialized with 0 at the beginning. Table 4.1 shows the generation of GCRS where loop 

order to read l'MA(3) is </. /3. 12>. If a non-zero element is found then its corresponding 

(?\ index K  v'1. .V'3> is calculated which is described in Chapter 3. 
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Figure 4.3 GCRS/GCCS from TMA(3) of size 2x3x3 

Table 4. 1 GENERATION OF GCRS FROM TMA(3) 

zero 

Value 

TMA 

Index 

cv1, X2,x> 

G2A 

Index 
Generation of GCRS (loop order <11 , 13, 12>) 

x' 1, xt,> VL CO RO 

3 0. 2. 0 0,2 Insert 3 Insert 2 [0] ±+ 

2 0. 1. 1 1. 1 Insert 2 Insert I ++ 

0. 0. 2 10 Insert I Insert 0 ++ 

4 02. 2 12 Insert 4 Insert 2 [2] ++ 

5 1.0.0 3. 0 
-- 

Insert 5 Insert 0 [3] ±+ 

$ 1.2.1 4. 2 Insert 8 Insert 2 [4] ++ 

6 

7 

1. 0, 2 5,0 

1. 1.2 5. 1 

Insert 6 Insert 0 [5] ±+ 

Insert 7 Insert 1 [5]  ++ 

[lien insert the iion-zero value into VL(cRs. X2 into COGCRS and the value of ROGcRs[x')] is 

incremented by 1 . Here, insert means adding the value at the end of the array. Finally, the 

cumulated sonic of RO 15  values are calculated (i.e. RO[i+ I] = R[i] + RO[i+1 ] where I 

/ < 1). To store this I'MA according CRS/CCS scheme, it require to store total 28 elements 

(Iiure 2.8) while GCCS scheme needs only 20 elements to store as of Figure 4.1. 

Sinillarly. 1ahle 4.2 shows the generation of GCCS where loop order to read TMA(3) is 

</. /. I>.  lor a non-zero element, corresponding G2A index < x'1 , x'2> is calculated. Then 

iush the non-zero value into VL(Kes, x'1  into C0 5  and the value of ROGCCS [x'] is 

incrcncntcd by 1 



table .1.2 (JNNERATIO\ OF GCCS FROM TMA(3) 

40 

Non- T  
zero 

Value 

TMA 

index 

0.0.2 

5 1.0,0 

6 1.0,2 

2 0.1,1 

7 1,1.2 

T 0,2.0 

4 

$ 

0,2.2 

1.2,1 

(;2 A 

Index 
Generation of GCRS 

VL CO RO 

2, 0 Insert 1 Insert 2 [0] ±± 

3, 0 Insert 5 Insert 3 [0] ±+ 

5, 0 Insert 6 Insert 5 [0] ±+ 

1. 1 Insert 2 Insert 1 [1] ±± 

5, 1 Insert 7 InsertS +± 

0,2 Insert 3 Insert 0 ++ 

2, 2 Insert 4 Insert 2 [2] ++ 

4.2 Insert 8 Insert 4 [2] +± 

1 array dimension is n is even for GCRS scheme, then the length. I of RO can be found as 

lol lo\\ s: 

n +• 1 

= i + ...............................................(4.1) 

-4 

The number ol non-zero element(s) in jib Row/Column can be Ibuild by RO[il]-RO[i-1]. 

Its not necessary to convert the whole n-dimensional array into two-dimensional array, but 

(32A's index computation function returns two-dimensional equivalent row and column 

indices. For each non-zero element, its TN'IA equivalent G2A row and column index is 

calculated. Then push the non-zero value into VL, push the column/row index into CO and 

increment the R() pointed by row/column index. It is noted that tile GCRS/GCCS affects 

by odd/even number of dimensions which may be described as 

• If ii IS 0(1(1 and scheme is GCRS then CO stores row index and increment RO value 

pointed b colunin index 

If ii is odd and scheme is GCCS then CO store column index and increment RO 

\al iie pointed by row index 

If ii is even and scheme is GCRS then CO stores column index and increment RO 

value pointed by row index 

II' ii is even and scheme is GCCS then CO store row index and increment RO value 

pointed by column index 
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Figure 4.4 GCRS/GCCS of TMA(4) 

Fable 4.3 GINFRATION oF GCRS FROM TMA(4) 

r Non- TMAlndex 
zero  

G2A 
 Index  

Generation of GCRS 

ValUe <Xj,X-,,.V3.X4> Xj,X7> VL CO RU 
I 0.0. 0.2 0,2 Insert I Insert 2 [0] ++ 

4 

2 

0. 1. 0, 0 

0. 0, 1 , 1 

0. 3 Insert 4 Insert 3 [0] +± 

1, 1 Insert 2 Insert 1 [1] ++ 

5 0.1. 1.2 1,5 InsertS InsertS [1] ++ 

3 0. 0. 2, 0 2,0 Insert 3 Insert 0 [2] ++ 

6 0,1,2, 1 2,4 Insert 6 Insert 4 [2] ++ 

—_7 1. 0. 0, 0 33, 0 Insert 7 Insert 0 [3] ++ 

10 

8 

1. 1.0,_1 3.4 

4, 1 

4,3 

Insert 10 

Insert 8 

Insert 11 

Insert 4 

Insert 1 

Insert 3 

++ 

++ 

[4] ++ 

1. 0, 1 , 1 

11 1. 1, 1,0 

9 1.0,2,2 5,2 Insert9 Insert2 [5]++ 

12 1.1,2, 0 5, 3 Insert 12 Insert 3 1 [5] ++ 

Figure 4.4 show a jour-dimensional array having length [Ii. /2. 13, 141 z [2, 2, 3, 3]. In 

(j('RS scheme. the length ol RU.! = I ± 11 X  13 = 1 + 2 x  3 = 7 and for GCRS. 1 = 1 + /2 X 14 

7. The generation ol (iCRS/GCCS is shown in Table 4.3 where RU is finally re-

calculated as earlier. It needs to store only (1+6) + 2 x  12 = 31 elements in GCRSIGCCS 
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hich is 52 in CRS/CCS scheme. From the above discussion, it is clearly visible that the 

7 storage in GCRS/GCCS is improved than CRS/CCS. The improvement will be superior 

with the increase of number of dimensions. 

4.3 Operations on GCRS/GCCS 

Matrix-matrix additionsubtraction and multiplication is the basic operation for most of the 

computing techniques and it is shown that the efficiency GCRS/GCCS scheme with 

matrix-matrix addition/subtraction and multiplication operation on stored data. It is well 

known that the operation on two similar arrays is possible. G2A is a two-dimensional 

representation ol' higher dimensional array. So, two-dimensional array/matrix operation is 

possible on G2A. Similarly. GCRS/GCCS is the storage scheme for higher-dimensional 

sparse array and matrix operations are also possible on stored data. To do this, it is not 

necessary to he same length CO and VL for both GCRS but same length of RO is 

essential. For the simpli tcation of algorithms and representation, let us consider equal 

- length for each dimensions in both matrixes (i.e. length of each dimension in array A is 

same with respective dimension of array,  B). 

4.3.1 Matrix-Matrix Addition 

Let t\\o ii dimensional array. A and B having same length [/i. 12..... I, /]. If A and B are 

stored according GCRS or GCCS. then six vectors RO,\. COA, VLA. ROE. C013  and VLB 

would be generated. The length of vector RO, and R013, 'R()  would be same. The number of 

non-zero elements in array A is /, and equal to the length of vectors CO,\  and VL,. The 

length of vector CO13  and V1,13  is I. It is not necessary to be I, = /n and CO1  = C013. If the 

resultant GCRS/GCCS is U then it would be, C = A + B. The algorithm to calculate the 

addition can be clone as below algorithm. 

.11oriihiii: Addition ol' Iwo n-dimensional arrays stored as GCRS/GCCS scheme 

GURS('jU('S-addiiion (I ). RO, ('t:). VL,. R013 , C013. VL13 ) 

Initialize k 0. ROt 01 

IL 
2. Repeat i 0 to (I < -2) 

RI R(1)Ii I]- RO \ I RL11  =R013 [ /+1]- RO13[il 

-I. Rl ROIiJ, Rl 11  ROis Ii1. 

5. Repeat j 0 to (/ )-2 



RO(s  F6T27T-6-ECFi0 121 

23 1 5 0 14 10 14 1 1 13 12 3 
14 12 15 1 3 16 17 1 10 18 111 19 12 

--e 
A CO(;Is 

V 'UURS 

43 

SUM :0 

if( CO,\ IRP,\ ] = CO1 [RP] and CO1 [RP1 ] = j and RLA>0 and RL13>0 ) 

SUM = VL,\[RP,\ I + VL[RP13], RP1\++, RP13++. RL,--, RLB-- 

else if ( CO,\[RP\] = j and RL,>0 ) 

to. SUM = VL,\[RP,\ J. RP,++, RL,\-- 

else if( COi[RPid = j and RL13>0 ) 

SUM: VL13 [RPtt j. RPL3++, RL13- 

if( SUM ! 0 

RO[i+lI+±, CO[k] =j. VL[k] = SUM. k++ 

ROi 1] RO[if 1] - RO[i] 

Figure 4.5 il]ustrates the addition of two GCRS where associated pointer and length are 

511&)\\11  

I 

RO cRs 1013 517 101 12l14 
- 

F 

1 !3 1 1 4 12  5 10 17 3 Ii E4 17 4 

H5t3I64H8H12h0L13HH4 

RO(;(Rs L0_L4II71 11  I I 

C CO(;('Rs  0 r12  3 1 4 5 0 2 4 5  

VLu(II1I2H 95 1 6 1 5 13 4 6 7 

Figure 4.5 Addition of Two GCRS/GCCS 

The (iC'RS/G(CS-addilion algorithm picks the elements row/collumn-wise from array A 

and B. The number of element to he picked for i'th row addition is calculated as: 

A: RL \  = ROA[i+1 
- 

RO4ij and B: RL13  = ROL3[i±l]- R013[i] 

I'he \ alue ol RO,\[lI and R013[ij points the i'th row first element of A and B respectively 

i\ller pointing and lixing the number of total elements in row-wise (column-wise in 

(ICCS). there are three conditions to he checked br defining result for j'th column as 

hclo\\ 

CO((15  
V L RS 
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is the column value same as pointed element of CO1  AND is pointed CO,\  and 

('013  same 

- addition is done for VLA  and VL1  

- both pointers are incremented 

is the column value same as pointed element ol' CO,\  

- add new non-zero element of VL1\  in result 

- pointer of A is incremented 

is the column value same as pointed element of CO13  

- add new non-zero element of VL13  in result 

- pointer of His incremented 

4.3.2 Matrix-Matrix Multiplication 

For the multiplication of' two matrixes, it should be similar (i.e. the number of dimensions 

and the lenuth of each dimensions should be same). Let two /1 dimensional array, A and B 

havine. same length 1/1. ....... l. Ia ]. We know the elements of A and B are accessed row- 

ise and column-wise respectively. So, it needs to generate GCRS of array A and GCCS of 

arra\ B for niultiplication !r improving the data locality. If the resultant multidimensional 

arra is C then 

C = A < B > C(;1  = A(;'1(5 )< B 15  or C(JCv'S = AGCC'S X  Bs 

The only condition 1'or multiplication is the same length of vector ROA  and ROL3. The 

algorithm to calculate the multiplication is shown below. 

i/oi'iih,n. Multiplication ol two n-dimensional arrays stored as GCRSIGCCS scheme 

(iCRS/GCCS-multj (1. II). RO \. (.'O,. VL,\. R013. COn, VL13 ) 

I . Initialize k :-0. ROI 01 :0 

Repeat 0 to (I RO-2) 

RI •A RO,I/-I I J- RO,[  Il.  RP,, :RO,\ Ijj 

.4. iii 1 

:;• Repeat j 0 to (IR r2 

0. \'lUl. :0. ii -j 
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CL j,=ROi3[i±1J- RO1 4/J. CP13 =RO[i] 

Repeatp = 010 (RL1 -1) 

i/( CO.\[ RP,+p] >= n AND CO,\[ RPA+p] <ii+1) 

Repeat c = 0 to (CL13-1) 

11 . if( COB[ CPn+q ] >= m AND COBE CPu+q ] < ifl+1 ) 

?f( COA[RPA+p] = CO8[CP13+ql OR COA[RPA+p]%/COB [ CP13+q}%/) 

MUL += VLA[RP,\+p] * VLB[CPL3+ql 

i/(MUL != 0) 

RO[i+1J±+. CO[k] =j, VL[k] = MUL. k±+ 

RO[i±] ji ROIi i 1 1+ R..OiJ 

GCRS/GCCS-multi algorithm takes GCRS of A and GCCS of B as input as shown in 

Figure 4.6. 

RO(;cIs l0t2 1 4 1 6  8 101121 
V - 

I 

A 
x 

B 

C 2 4 
81 120 

WOCRS  
V1.c;cjs 

URIIIUIFI 

RO 5  [o 12 I6 9 111 
I
12 

 1 

CO((xs  
VLc;cc's UUIIEtP1FIDI 

RO 15  LU 12 I 4 I 6 18 1 101 12 

C'06URS  

VL(;('15  

Figure 4.6 Multiplication of Iwo GCRS/GCCS 

lo 3 1 4 2 5 0 3 1 4 

L 16 4 30 3 30 49 110 64 110 

To determine result !br element (Lj). /th row from A and j'th column from B is chosen. A 

partition for specific nwnber of element for a specific chunk is generated with variable in 

and ii when scanning the elements. After defining the partition, checking is done for 

equi\-aleflt C'O and COB. If the result is non-zero then it is used for constructing resultant 

(iCRS. 
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4.4 Ilicoretical Analysis 

'V 
I he cost model for the compression scheme is developed in this section. Theoretical 

evaluation is compared iih the experimental implementation of Chapter V. Some 

defiiiition is important to proceed !'or detail of analysis. 

l)ensitv of array. p determines the degree of data sparsity of an array. It is the ratio of 

number of non-empty elements with total number of array elements. The maximum value 

of data deilsit\ is one. We can right data density as below 

- 
Total number of non-zero elements 

- Total number of elements 

The compression ratio. II is the ratio of the total memory required after compress an array 

and the actual size of the array is defined as compression ratio. It can represented as follows 

- 

Memory required to store after compression 

- 'Total size of uncompressed array 

Range of usability of a compression scheme is defined as the maximum range of data 

density up to which the compression ratio is less than 1. 

Improvement over scheme. /: It is the ratio of memory required to store after compression 

in C'RS scheme and GCRS scheme. It is desired to he greater than I. Formally it can be 

expressed as 

- 

Compression Ratio for CRS/CCS scheme 
= 

7cRs/ccs 
- Compression Ratio for GCRS/GCCS scheme 77 GCRSIGCCS 

This section shows the space requirement and hence the compression ratio for 

(iCRSGC'('S scheme based on (i2A. The cost model for the range of usability and 

improvement over schemes for CRS and GCRS is shown in section 4.2 and 4.3. Some 

parameters are provided as input and some are derived which is grouped as shown in table 

4.3. All the lengths and size are in bytes. 

Fable 4.1 DIFFERI:N'r P.\R\iIm:Rs FOR IHEORITICAL EVALUATION OF GCRS/GCCS 

Pa ra  
1)escription meter 

ii N uniber of dimensions 

1 1 ength 01' dimension i 

/ Length of each dimension (for simplification 11=12=13= ... / ) 

/ ' 

L'  - - - - -- - 
lotal number ol' elements 



47 

p Data density or sparse ratio of array 

p / 
" lotal number of Non-zero elements 

It Length of (i2A Row where I 1 (n+t)/ 

12 Length of G2A Column where /2=' 1/2 

y Size of elements for storing index 

6 Size of array element 

S1 Memory required to store in CRS/CCS scheme 

S((ls  Memory required to store in GCRS/GCCS scheme 

4.4.1 Space Requirement of CRS/CCS and GCRSIGCCS 

Consider a TMA of ii dimension having sparse ratio p and the length of each dimension is 1. 

The slorauc requirement is the sum of' storage of indexes and the storage of value itself 

('oinprcssion Ratio: 

(051 of storine indexes in CRS/CCS scheme is the sum o 1  one vector RO having length 

/ 1 1. one \eclor CO having length p!" and ,i-2 number of KO vector having length p!'1  for 

each. The non-zei'o values needs storage of p11  6. So, total storage required for CRS/CCS, 

S(1 , (5  can he shown as below: 

SCRSucs Space for RO ± Space for CO + Space for VL + Space for (n-2) number of KO 

(1+1) ± p/" y ± p/" 6 + (n-2) p1'1  y 

/+1 p1
11 (n-2) p/"  y + p/I' 6 

/±1 + (n-I) p!' y + p!"  6 .......................................................(4.2) 

So. the compreSSiOn ratio lot CRS/CCS, 

- 
Memory required to store after compression 

- Total size of uncompressed array 

- 
(I I 1-f(u-1)pl") y+ pi"S 

(SI" 

14  
=

1
+(n-1)p+p [ify=öIn  

= + lip 

lfbr large value of'! and , L H 1)  
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In GCRS/GCCS scheme. there is no riced to store any KO index but increased amount of 

r index at RO vector which is equivalent to l+/b0 )/2 Thus the total storage required for 

(i('RS!GCCS. S(;(1(5/(('(s  can be shown as below: 

S(;CRs!(;((s -= Space for RO ± Space for CO + Space for VL 

uiI)i2 + p/'1?+ p/fl ö 

= l+/!2+p/1 J
, y+pIll  ö ....................................(4.3) 

So. the cOmpreSsion ratio. 

Memory required to store after compression 
11  = 

Total size of uncompressed array 

Jt 1-1 

= { 

14 1 ?.+p1} y+p111 5 

5 I 

it 

 fl+ 1 

= 1+12+2 {ify] 

lt+1 

1+ 
= 2 p [!br large value of/ and ii. üj In 

So. the storage improvement in GCRS/GCCS is linear and independent of data sparsity. 

Ilic improvement will be fOur times for eight-dimensional array and nineteen times for 

thirty-eight dimensional array storage. Now, the ratio of improvement over schemes can be 

defined as the ratio of compression. The improvement over scheme, I can be as follows 

/ Compression Ratio of CRS/CCS Compression Ratio of GCRS/GCCS 

= up 

17/2 ..................................................(4.4) 

Range of Usability: 

The range ol usability of a compression scheme is defined as the maximum range of sparse 

ratio up to which the size of the compressed array is less than that of the size of the original 

array. So, the range ol usability for CRS/CCS scheme can be defined as follows: 

1±1 + (11-1)pf1  

=> f) < / O (1+1) y I (ii
/fl 

 y - 
± /fl 

ö) 

(n-l)'y-*ö 

p < 1/n i!y- ): for worst case 
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It sllo\\s that the range of usability of CRS/CCS is inversely proportional with the number 

of data dimensions (i.e. range of usability decrease with the increase of data dimensions). 

Similarly, the range of usability for GCRSIGCCS scheme can be defined as follows: 

• 
)I4I 1)/2 F I) y 4- P111  ô< 111  6 

=> p< 
 ft i 6— (1 (fl 41)/2 + I) y } I I (y +6) 

=> f) <6/(y +6) [/fl 6— (/Iil2  +1) / 6] 

> p < ¶i [if y=6, for worst case] 

lience range of usability o! GCRS/GCCS is minimum 50% and independent of number of 

data dimensions. So, the scheme can also be usable for a wide range of dense data. 

4.5 Conclusion 

[his chapter described G('RSIGCCS scheme to store an n-dimensional sparse array. Total 

11)C11101'V required to store an array depends on data density and independent of number of 

data dimensions. The operations on stored data are also shown by matrix operation. 

Algorithms enswe the matrix-matrix addition and multiplication operation on stored data. 

[he experimental result complying with the theoretical analysis shown in this chapter is 

described in Chapter V. 

If 
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CHAPTER V 

Experimental Results 

5.1 Introduction 

This chapter simulates the algorithms for matrix-matrix addition and multiplication 

operation br both 1\4A and G2A as described in chapter III. This chapter also shows the 

experimental results to store sparse array of different dimensions in CRSICCS and 

GCRS/GCCS schemes of chapter IV. 

5.2 Experimental Setup 

[he construction of prototype system for G2A operations. GCRS/GCCS conversion and 

(iCRS/GCCS operations are done on a machine having the following specification. 

Table 5.1 ExII•:RmN1JNm\i. SFItil' 

Paranicter Specification 

Processor lntel(R) Xeon(R) E5620 

No. of Processor 8 

Clock Spced 2.4 Gl-lz 

Cache Meniory 1406 MB 

R A M 32GB 

111)1) 2.0 TB 

Operating System Linux (Debian 8.2) 

('oiiipi Icr GCC 

('onpiler Optiniization None 

5.3 Experimental Results for G2A Operations 

1 he array size is set from 10 to 120. 6 to 24 and 4 to 11 for each length of dimension and 

number of dimension 4. 6 and 8 respectively in both matrix-matrix addition/subtraction 

and matrix-matrix multiplication. The experimental result considered at traditional row 

niajor order looping lr both addition and multiplication. Figure 5.1 shows the execution 

I 
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time in milliseconds of algorithms for the matrix-matrix addition on the TMA and G2A 

based algoritlims(see chapter 111). Experimental results show that execution time is less for 

(i2j\ based algorithms than TMA based algorithms. This is because the lower index 

computation cost and higher data locality. The improvement due to index computation for 

matrix-matrix addition of ]'MA(n) and G2A as shown in equation 3.1 which shows that if 

ii and I increase then the improvement ii will increase which supports remarks 3.1. 

The improvement due to data locality of TMA(n) and G2A for matrix-matrix addition 

algorithm as derived in equation 3.3. Hence TMA based algorithm has higher cache miss 

rate than that of G2A based algorithms. The cache misses has direct influence to the 

perlormalice because the processor needs to wait for the next data to be fetched from the 

next cache level or froill the main memory. Even a single cache miss can degrade the 

performance as processor speed outperlorms the memory speed. On the other hand G2A 

based algorithm improves the data locality that minimizes the cache miss rates. Caches 

take advantage of data locality in programs. 

3323 

- e TMA(4) A0th).0fl 

3302 

[ • - T.1A(6) Addooni 
• G2A Ad<J.lofl 2323 S G2A Adcj,I0n 

• 7023 

1 .002  
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500. • .9 
320 
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••_•. 

• • 

.500 
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l'igure 5. 1 Experimental results for matrix-matrix addition 
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Figure 5.2 Fxperiniental performance for matrix-matrix multiplication 

Figure 5.2 shows the improved perlrmance for matrix-matrix multiplication of TMA and 

equivalent G2A. As of our analysis the improvement is for lower index computation cost 

ShO\\ n iii  equation 3.2 and higher data locality shown in equation 3.4. 

5.4 Experimental Results for generation of CRS/CCS and GCRS/GCCS 

The input is taken Iiom secondary memory and the output is also written into secondary 

memory. The number of dimensions is set 4. 8, 16 and 32. The length of each dimension 

as set such that the input Ile is less than or equal to I TB. The sparse ratio is set 0.01 to 

0. 1 5 and u 13 
:4 for all cases. 

5.4.1 Time Requirement 

Fiuure 5.3 show the test results for time requirement for constructing of CRS and GCRS 

scheme for n:.  4. 8. 16 and 32. This section only shows the experimental result for CRS 

and G('RS (row major order). It is clear that storing time increases for both CRS and 

( i( 'RS when number of 11011-iCR) elements increase. 
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Figure 5.3 Time requirement for creating CRS and GCRS of different number of dimensions 

Most of the required time is the scanning time or conversion time and index computation 

time is negligible to scanning time. Index computation cost increases with increase 

number of dimension(eq uation 2.4). That is why it shows very slow improvement of time 

requirement with increased dimensions. It is well known that. for TMA(n), it can be 

possible it! 1001) order for scanning array and ordering of loops highly affect the 

performance. But in this experiment. for both case, our loop order was such that most 

sequential memory access is ensured i.e (Xt. X2..... x)1) order which ensure most outmost 

loop is .v1  and most innermost loop is x11. 

IF 
5.4.2 Space Requirement 

l:igji.e  5.4 shows the total sii.e of stored arrays for 4-D, 8-D. 16-D and 32-D arrays (left to 

riht). ('ompressed storage increases with the increase in sparse ratio for each specified 
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length and dimension shown in Figure 5.4- a), b), c) and d). From experimental result it is 

clear that the GCRSIGCCS outperform over CRS/CCS which comply with the equation 

4.2 and equatiOn 4.3 analyzed in section 4.4.1 
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Figure 5.4 Space re(Juirement for CRS and GCRS of different number ofdimensions 

It is clearly visible that the requirement of total storage in CRS increases drastically with 

the increase in number of' dimensions. Sparse ratio of CRS shown in Figure 5.5- a). b), c) 

and (1) are 25.0%. 12.5%. 6.25% and 3,13% respectively (decrease with increase in data-

dimensions). Storage iniprovement in GCRS over CRS is 2, 4, 8 and 16 times in Figure 

5.4- a). h). c) and d) respectively. It is also observed that the usable sparse ratio 50% is 

same for uiiv dimensional array i.e independent of number of array dimension. 
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Figure 5.5 Compression Ratio for CRS & GCRS 

Advantages of applying GCRS scheme over CRS scheme are the improvement of about 2, 

4.8 and 16 1or4-D. 84). 16-D and 32-1) arrays respectively. Finally. Figure 5.6 shows the 

improvement over schemes and which is a straight line increases sharply with increase of 

the number of dimensions. It is clear that space complexity is very much prominent for 

GCRS than CRS when number of dimensions is very high. 

S IC 15 20 25 00 05 40 

Number of omonsons 

I:igiire  5.6 Iniprovenient oiGCRS over CRS 

Experimental result of Figure 5.5 comprises that when number of dimensions increase for 

TN/IA then CRSICSS schemes become unusable soon. But in case of our proposed 

(iCRS/GCCS scheme, there is no relation between degree of data sparsity or range of 

usability and number of array dimensions. 1-lence it verified the theoretical analysis in 

Section 4.4. 
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5.5 Experimental Result for GCRS/GCCS Operations 

The sparse ratio is set 0.01w 4 percent for 4. 6 and 8 dimensional array operations in both 

matrix-matrix addition and matrix-matrix multiplication. Figure 5.7 shows the execution 

time in milliseconds of algorithms for the matrix-matrix addition on the sparse TMA and 

GCRS/GCCS. Experimental results show that execution time is less for GCRS/GCCS 

until data density is less than or equal to 2%. It seems that matrix-matrix addition 

algorithm for GCRS/GCCS is superior to TMA for wider range of data density. But 

matrix-matrix multiplication algorithm is superior for highly sparse data. 
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Figure 5.7 Experimental results for GCRS/GCCS addition 



57 

4CCr3C3 

S 

323) 

00200 

to 

Sparse ISaIjO tV) 

(a) rvlultipl cation TMA(4) and GCRS/GCCS 

3)003 

00200 

30000 

.3)00 

eooce 

000O3 

202.3) T,,,n6,1=20) 

t002co 

803)0 

60230 

a0300 

20200 to . T,,n.6. .20) 

0 - 

0 1 2 3 0 

Sparse Rtoro (V.) 

b) Multiplication TMA(6) and GCRS/GCCS 

- 3 

Sparse Ratto (¼) 

c) Multiplication TMA(8) and GCRS/GCCS 

Figure 5.8 Fxperimental performance for GCRS/GCCS multiplication 

5.6 1)iscussion 

This chapter shows the experimental result is described in chapter 3 and chapter4. The 

experimental results comply with the theoretical analysis described in individual cases. 

For matrix-matrix addition of G2A and TMA, the experimental results are shown only for 

equal length of each dimension. It is also experimented by varying length of each 

dimension from 2 to 120 and every case. G2A show better performance. The performance 

improvement in GCRS/GCCS scheme over CRS/CCS scheme to store an n-dimensional 

sparse array is a bit low than TMA and G2A operation. This is because the sparse storage 

scheme is implemented in secondary memory and accessing the secondary storage takes 

most o!thc time. 
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CHAPTER VI 

r 

Conclusions 

6.1 Concluding  Remarks 

Most of the scientific and engineering computing requires operation on flooded amount of 

data having very high number of dimensions. This thesis represented a higher dimensional 

array implementation as row-column view or matricizatioii. The main idea of the row-

coluivin view or G2A is litting the odd dimensions allow row direction and even 

dimensions along column direction. The performance of matricized representation was 

shown and analyzed with matrix-matrix addition, subtractioii and multiplication operation. 

q But \\ hen  most of the elements of multidimensional array are empty or null then above 

representation needs special treatment. Our proposed generalized row/column storage 

scheme for compressing higher dimensional sparse array was described. The algorithms 

for matrix operation on (iCRS/(IC'CS data were elaborated with interactive figure. It is 

shown that the GCRS/GCCS scheme is independent with data dimensions and range of 

usability fo r it is higher than that of CRS/CCS scheme which comply with the theoretical 

analysis with simulated results. The per!'ormance improvement of GCRS/GCCS is directly 

proportional with degree of data sparsity while CRS/CCS performance inversely 

propoitiorial witll number of data dimensions. For worst case. GCRS/GCCS worked well 

for at least 50% dense data. l'herefre. the scheme can be applied to the implementation of 

higher dimensional array computation, storage and analysis applications. 

6.2 Future Scope 

The fiture direction of this research may be summarized as bellow 

The parallel implementation of G2A scheme would be possible as G2A generates a 

set of 2-I) blocks and each 2-D block is independent of each other to perform the 

operation on G2A. For the same independency of 2-f) blocks it may be possible to 

louiid the parallel algorithms to store like GCRS/GCCS scheme. 
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The G2A is a static structure. It is possible to make the G2A as a dynamic one i.e 

extension and reduction of the length of G2A can be made dynamic. This is an 

important property of big data technology. 

• The parallel algorithms can be found for operation of matrix-matrix addition, 

subtraction and multiplication on compressed data according GCRS/GCCS scheme. 

• The scheme can be applied to implement the compressed form of MOLAP server 

and schemes are based on G2A. 
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