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Abstract

Scientific and engineering computing requires storing and operating on flooded amount of
data having very high number of dimensions. Traditional multidimensional array is widely
popular for implementing higher dimensional data but its performance diminishes with
increased number of dimensions. On the other side, traditional row-column view of two-
dimensional data is facile for implementation, imagination and visualization. This thesis
represents a scheme for higher dimensional array implementation and operation with row-
column abstraction which can fit an n-dimensional array into a single 2-dimensional array.
A mathematical function fits odd dimensions along row-direction and even dimensions
along column direction which gives lower index computation cost, higher data locality and
better sequential access of memory. Performance of the proposed matricization is
measured with matrix-matrix addition/subtraction and multiplication operation which give
70% and 72% improvement respectively for dense data. But most real world data is sparse
and degree of data sparsity increases with increased number of dimensions. A loop
transformation technique which access odd dimensions fast and then even dimensions is
proposed to store any dimensional sparse arrays. In traditional scheme, n numbers of one-
dimensional auxiliary arrays are necessary to store n-dimensional array but our scheme
requires two one-dimensional auxiliary arrays only which gives 16 times space
improvement for 32-dimensional sparse data. Traditionally, the compression ratio is
inversely proportional to the number of dimensions but it is independent of number of
dimensions in our scheme. The operation on stored sparse data is measured with matrix-

matrix addition/subtraction and multiplication which show up to 70% improvement.
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CHAPTER 1

Introduction

1.1 Introduction

Today's advanced scientific and engineering problems require a vast amount of computing
power. Compute intensive tasks in various fields, including quantum mechanics, weather
forecasting. climate research. cryptanalysis, molecular modeling and physical simulations
like simulations of the early moments of the universe, airplane and spacecraft
acrodynamics. the detonation of nuclear weapons, and nuclear fusion etc.[1][2] entail
special attention of computer scientists. High-performance computing (HPC) incorporates
all these computational tasks with exceptionally high requirements for computing power
and memory capacity. Traditionally, these requirements were satisfied by introducing

special computing techniques namely CUDA, X10, Julia etc.

Array is the most common and widely used data structure. Generally, most real world data
has wide number of dimensions and often modeled with multidimensional array.
Traditional Multidimensional Array (TMA) is extensively popular for its simple
addressing function. memory layout, implementation procedure and random access
capability[3]-[14]. But it has some limitation to handle and operation on higher

dimensional data.

= (ost of index computations increases with increase the number of dimension.[2]
* The number of cache line accessed increases for higher dimensional data.[15][16]
*  Most compilers[17] have limitation for implementing multidimensional array of

very large number of dimensions.

Thus the special computing techniques through comprehensive research to handle large
scale higher dimensional data efficiently and effectively are cramming needs to data
scientists. It emphasizes the organization and implementation schemes on parallel and

distributed  computing  platform. Experts suggest linearization of dimensions for



implementing higher dimensional array[18][19]. In fact, multidimensional arrays are just a
logical abstraction above a linear storage system. It is good enough to implement in
secondary memory as compilers allocate memory linearly. But operation cost and
accessing time for secondary memory data is too high as well as parallelization is seldom
possible for linearized data. It is well known that the compilers replicate secondary storage
data to main memory for any type of computing either it is sequential or parallel machine.
Multi-dimensional array operation like matrix-matrix addition/subtraction, matrix-matrix
multiplication, sparse array storage. etc. require multiple access of same element and use
of cache memory reduce the access time of the element. So, the pragmatic computing
techniques which support parallelism, lower index computation cost, the lower operation

cost and higher data locality is an important research issue.

112 Problem Statement

Many techniques have been proposed in the literature for improving multidimensional data
computation such as TMA[20]. Extended Karnaugh Map Representation (EKMR).
EKMR[2] proposed by Lin er. al. can convert three and four dimensional array into two-
dimensional array. The EKMR representation of higher (n>4) dimensions is a hierarchical
structure that contains array of pointers. For large values of n (n>4) there are (n—4) number
of pointer arrays required and there is no generalization for higher dimensions like three or
four dimensions. A technique based on loop transformation to improve the data locality for
multi dimensional arrays is proposed in [15][16]. They demonstrated that this
transformation is useful for array operations. The chunking[21][22], reordering[15][16],
redundancy[23] and partitioning of the large array are proposed to make efficient access on
secondary and tertiary memory devices. Caching by chunk by chunk for improving
performance is proposed by [2][4][20]. In this scheme the large multidimensional arrays are
broken into smaller parts called chunks for storage and processing. All the chunks are n
dimensional with smaller length than the original array. A new programming language has
been proposed to serve the computational power[22]. [23] shows a technique for storing
and analyzing multidimensional array by chunking but there is no generalization from

higher dimensions.

Most sparse array storage schemes are based on spare matrix i.e. 2-dimensional

array|22]]24]-[28]. Some of them are time effective and some are space effective. Many



programming languages and compilers (X10[29], Julia[30], CUDA[31]) provide supports
for sparse array but limited to only two dimensions. Matlab sparse toolbox supports for n-
way sparse tensor [33] and have promising results for n-way tensor operation but its space
complexity is very high. CRS/CCS scheme for higher dimensional array is based on the
idea that a multidimensional array can be viewed as a collection of two-dimensional arrays
[2]. But it requires (n+1) one dimensional arrays to store an array of n dimensions.
ECRS/ECCS scheme [34] works well but only for four dimensions. When the number of
dimensions is greater than four then it requires an abstract pointer array to support higher
dimensions. That's why it will be difficult to apply in practical situation when number of
dimension becomes very high. The EaCRS scheme[35][36] which has a nice characteristic
of dynamic extendibility[37]-[40] and supports well for higher dimensions. But it requires »
one dimensional arrays to store an array of dimension ». Gundersen et al.[41] proposed a
methodology to store like PATRICIA Trie Compression Storage (PTCS), Extended
Compressed Row Storage (xCRS), Bit Encoded Extended Compressed Row Storage
(BXxCRS) and Hybrid Approach. But all of them require (n+1) one dimensional arrays.
Hence the schemes are not effective enough for storing and operation on higher

dimensional arrays.

This thesis is going to describe a scheme to represent higher dimensional array (both dense
and sparse) with a single two dimensional array which is facile for implementation,
imagination and visualization. The generalized addressing function returns row-column
abstractions which ensure lower index computation cost and higher data locality. Thus the
simple algorithms for higher dimensional array operations like matrix-matrix addition,
subtraction and multiplication would be introduce for both sparse and dense array. The
proposed scheme can be applied to wide area including data mining[9][13][14], numerical
analysis[13][26], GPU computing[2][42], MOLAP[18][38] and multi way data
analysis[10][12].

1.3 Objectives

High Performance Computing, MOLAP or various scientific applications use
multidimensional array as a basic data structure to represent high dimensional data. This is
because multidimensional array has an inherent facility to compute indexes and

aggregation operation. Supporting for very high dimensional data is an important



requirement of those applications since data widely vary in today’s computing. Hence, a

Y veneralized array model or realization scheme is strong requirement of current era.

The main objective of this research topic can be summarized as —

1.4

Overview of multi-dimensional array representation, its index computation, data
locality and limitations of computing for multi-dimensional data.

Proposed generalized two-dimensional representation of higher dimensional data,
its formal notation and implementation. Different operation on generalized two-
dimensional data and its evaluation with traditional representation.

Sparse array overview and evaluation of different sparse array storage scheme and
hence propose an array of storage scheme for higher dimensional sparse
Comparing theoretical evaluation of proposed algorithms with equivalent
traditional algorithms.

Experimental results analysis to prove the soundness of theoretical evaluation.

Scope

The important scopes under this thesis are as follows:

1.5

Computation can be done independently in each converted two-dimensional sub-
array block which is very significant for parallel and distributed computing and
applications.

Evaluate the proposed algorithms time requirement with existing traditional array
computation technique and EKMR[2].

Different techniques of sparse data storage and evaluate the new storage scheme
with existing schemes.

Theoretical evaluation of space and time requirement for sparse data storage,
depending on compression ratio, range of usability etc.

Operations on stored data based on generalized row/column storage scheme.

Contribution

The contribution of this thesis can be summarized as follows:

Generalization of higher dimensional array representation with row-column view.



1.6

Algorithms for operations on stored data like matrix-matrix addition/subtraction
and multiplication. Theoretical analysis is verified with experimental results.

Generalization of higher dimensional sparse array storage with loop
transformation. Details of theoretical analysis for compression ratio, range of

usability with operations on stored data.

Organization of the Thesis

Chapter II presents Literature Review that describes some of the traditional and
prominent array organization and realization scheme that are already exists. Some
of these high dimensional data representation and compression methods will be
described.

Chapter III proposes a new multidimensional array representation scheme called
Generalized Two-dimensional Array (G2A). It also explains the basic two-
dimensional array/ matrix operations like addition, subtraction, multiplication,
retrieval etc. over the proposed G2A scheme.

Chapter 1V illustrates the details of a generalized sparse array storage scheme
called GCRS/GCCS based on Chapter Ill. Traditional addition, subtraction and
multiplication operation on store sparse data are also described in this section.

The experimental outcomes of proposed scheme and its evaluation are discussed in
Chapter V which shows the technical soundness compelling with theoretical
analysis.

The future direction of work on the proposed model and the conclusive words

about the model are outlined in Chapter VI



CHAPTER 11

Literature Review

2.1 Introduction

Array is the most common and widely used data structure. Most real world compute
incentive data of weather forecasting, climate research, medical image processing, etc
have wide number of dimensions and often modeled with multidimensional array. The
location of each element can be computed with a single mathematical formula called
addressing function. Array is also used to implement other data structures, such as lists,
strings. heaps, hash tables, queues, stacks and VLists. But very few of them support for
higher dimensional data. There are some other data structure or technique to increase the
performance of higher dimensional data computation like loop transformation, optimal

chunking. ArrayStore, SciDB, tensor decomposition, EKMR, CRS/CCS and ECRS/ECCS

2.2 Multidimensional Access Methods [1]-[14][26][33]-[35]

Array|2][5][34][35] is a collection of similar elements which is identified by at least one
array index or key. The simplest form of array is a linear array called one-dimensional
array or vector, For example an array of 20 32-bit integer variables, with indices 0 though
19, may be stored as 20 words at memory address 1000, 1004, 1008, ...., 1076, so that the

clement with index 7 has the address 1000+4 %/ as shown in figure 2.1.

1000 1004 1008 1068 1072 1076

N N D N

0 1 2 17 18 19

Figure 2.1 Vector/one-dimensional array

The mathematical concept of a matrix can be represented as a two-dimensional array
having two index or keys where first key represent row number and second key represent
column number. Typical graphical view/image on a plane is just a matrix or row-column

view ol a two-dimensional data. Figure 2.2 illustrates a matrix or two dimensional array,



A[l][15] of size 5 * 5 where [, and /, are length of dimensions. An element, Alx][x2] can
be identified either row major or column major order in linearized memory by below
addressing function.

,/l.'m\ 1112i_ic\['(~\.| 5 82) = %) x[y +x; and _ftll[]ll.ll‘l'll'l nm_]'ur(-\-'l-. Xa2) =%1 X[ + X2

x=0 1 2 3 5
x=0lo0olT1[2]3]4
1|slel[7[8]9
210 I [ 1213 | 14
3[15]16]17]18] 19
42021 22|23 24

Figure 2.2 Matrix or Two-dimensional array
[ets us consider a three dimensional array. A[/,][/2][/s] having three key where length of
dimensions are /,. /> and /5. The set of continuous memory location into which the array
maps is denoted by A[0:/] where /=1, x [, x [;— 1. A three dimensional coordinate system

or cube having X. Y and Z axis can be represent as three dimensional data as shown in

*
figure 2.3.
v X1 T T 7
L8 y 0 T vy
B T
i, - T .- '
X2
= - 0 r |{ r 11 4
I b il e sl ey o e e I
] 1 : : : R
P A e e I,
/ T it L
0 1 2 3
/ »
x3
Figure 2.3 Three-dimensional Array
Fach element of this TMA can be addressed in row major order as below
I)"(.\‘]. X X5} = Xy oWl FAERI TRy v svnnsmavan svevs Susannes s (21)
J
Similarly a four dimensional array, A[/i][][/5][/s] having four key to indentify each
element. The continuous memory location to map with four keys is A[0:/] where / =/} x ],
l5 % I; — 1. A four dimensional array can be view as a /; number of three dimensional
array. B [5][/5][14] as shown in Figure 2.4. The element of this four dimensional array can
I s

map into continuous memory location with below addressing function.

.f{-\_l- X3, X3, X4) = X| xfaxlyxly + XX laxig+ 3%y T Xg ioraiiviniivis (2.2)



X =0

)

Figure 2.4 Visualization of Four-dimensional Array

If we consider a six dimensional array, A[/,][5][5]1[Z][/5][/s] having six key to indentify
cach element. The continuous memory location to map is A[0:/] where [ = [} x [ x [3 % [4 %
Is * lg — 1. Further we can say that above six dimensional array can be view as a /; number
of five dimensional array namely B[54][55][/4][/5][ls]. The row major addressing function

for six dimensional array is mentioned below.

J (31 X2.03.X4.85.X6) = Xy * I X3 X Iy xlsxgtxa x3xlyxlsx gt} [pxlsx lgtxg XIsxlgt xsxletxg,. (2.3)

I'herefore a multidimensional array A[/}][/2]....[/,] is an association between n-tuples of
integer indices < x|, X3, ..... x, > and the elements of a set of E such that, to each n-tuples
given by the ranges 0 <x; </, 0 <x; < b,.... 0 <x, </, correspond to an element of £.
The domain from which the elements are chosen is immaterial and the assumption is made
that only one memory location need be assigned to each n-tuples. Each array may be

visualized as the lattice points in a rectangular region of n-space. The set of continuous

memory locations into which the array maps is denoted by A[0:/] where

([T 0)-1

Any element in the multidimensional array is determined by addressing function as

follows,
_/-(.\‘i..\'1..\'_;,..... Xie1s Xn) = Xl dy F bl cdy o T LN e (24)

An array is sparse [5][27][34][35] when most of its elements have default value (usually 0
or null). Sparse array may be any dimensional data. The sparsity problem becomes serious
when the number of dimensions increases. This is because the number of all possible
combinations of dimension values exponentially increases, whereas the number of actual

data values would not increase at such a rate. In the case of sparse arrays, one can ask for a



value from an "empty" array position. If one does this. then for an array of numbers, a
value of zero should be returned. and for an array of objects, a value of null should be
returned. A naive implementation of an array may allocate space for the entire array, but in
the case where there are few non-default values, this implementation is inefficient. Figure
2.5 illustrates a sparse matrix or two-dimensional array where only eight locations have

non-zero value among total 25 locations.

x=0 1 2 3 5

x=0l0| 10|02
I{f3]010(14]0
2(Q0 |0 (5|00
31016171010
4 | 0(0]0[80

Figure 2.5 Sparse matrix or Two-dimensional sparse array

Loop transformation [2][15][16] is a compiler optimization technique to increase the
performance. There are different types of loop transformation but this thesis only consider
about loop permutation or re-organization to improve the memory performance. The
fascinating characteristic of loop transformation is data locality. References to the same
memory location or adjacent locations are reused within a short period of time. As of
Steve Carr|15][16], data locality is measured with the algorithm called LoopCosi(l). The
LoopCost(l) algorithms compute the costs of various loop orders of an array operation.
The LoopCosi(l) finds the number of cache line accessed by a loop /. The value of
LoopCost(l) indicates the cache miss rate for a loop / and hence smaller the LoopCosi({)
indicates the smaller the cache miss rate. Therefore the LoopCost(l) determines the best
loop orders for nested loops with a specific innermost loop /. If the consideration is of loop
cost for below matrix multiplication algorithm then the loop cost is listed at Table 2.1 with

ditferent loop order for cache line length r.
1 KJI ordering }
Do K=1, N
Do J=1.N
Do [=1, N

C(LJ)=C(LhH + A(LK) * B(K,J)
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Table 4.1 LoopCost for Matrix Multiplication

Refs [ J K 1
C(LJ) nxn | xn* Wrx 0
A(LLK) I x n’ nxn % 0
B(KJ) | n=x " nrxn’ | x i

total | 2n™+n* | (+ 1};13.-"J'+312 26" r+n’

Multidimensional array has an inherent facility of random accessing — the reason of
becoming the most popular. There are many data structures already exist to represent
multidimensional data. Some of the well-known and prominent data structures are

discussed below,

The EKMR scheme[2][5][35] is based on the Karnaugh map[45] representation for
minimizing Boolean expression. It can represent a three and four dimensional array with
two dimensional arrays. Representation of higher dimensional (greater than 4) is abstract
pointer array of EKMR of four dimensional data. Let a three dimensional TMA,
AlLA](5] of size 3x4x5 shown in Figure 2.6.a). The EKMR(3) of this TMA 1s a two-
dimensional array, A'[h'][fﬂ where !,I = =4 and L =1 xl3=3x5=15 as shown in
Figure 2.6.b). The representation ( Alxy, x2. x3: /1, L, ] — A'[xf, X2 1y, Zgl] ) 1s a
permutation of elements where index tuple < X1, X2> can be derived by x| = x and x,
= x3 * [, + x; EKMR can also returns to its original TMA ( A'lxi,x2; Iy ] — Alxy, X2,
x3: 1y b, 5] ) according to below backward mapping equation x; = X1, X1 = x;gr /I and x3 =
Xy % [,. Similarly. a four-dimensional TMA, A[/i][l2][/5][/4] can also be represented as a

two-dimensional array, A'[/, |[/>] where /| =1, x lyand I, = 5 x I in EKMR(4) scheme.
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A J

——
0 1 2 3 4 120 21 22 23 2440 41 42 43 44
5 6 7 8 9 |25 26 27 28 29|45 46 47 48 49
1o 11 12 13 14|30 31 32 33 34|50 51 52 33 34
x, |15 16 17 18 19|35 36 37 38 39|55 56 57 58 59
(a)
> X2
0 20 40 1 21 41 2 22 42 3 23 43 4 24 44
5 25 45 6 26 46 7 27 47 8 28 48 9 29 4
1o 30 50 11 31 51 12 32 52 13 33 53 14 34 54
X 15 35 55 16 36 36 17 37 57 18 38 38 19 39 5
(b)
Figure 2.6 a) TMA(3) of size 3x4x5 b) EKMR(3) of TMA having size 3x4x5

The representation of n-dimensional TMA to EKMR(n) is based on EKMR(4) when n>4
i.e. set of EKMR(4) construct EKMR(n). If the length of each dimension is / then
EKMR(n) is represented by /™ EKMR(4) which introduce a structure to link all
EKMR(4). The new structure is a one-dimensional array X of size /" for one-to-one
mapping with each EKMR(4). Consider a six-dimensional TMA, A[/,][22][/][/4] [/s][fs] of
size 3x2x2x3x4x5, Equivalent EKMR(6) is represented by six (3x2) EKMR(4) where

cach EKMR(4) is a (2x4) x (3x5) two dimensional array.

A tensor|1][13][26][32][33] is a multidimensional array. More formally, an N-way or
N"-order tensor is an element of the tensor product of N vector spaces, each of which has
its own coordinate system. This notion of tensors is not to be confused with tensors in
physics and engineering (such as stress tensors), which are generally referred to as tensor
fields in mathematics. A third-order tensor has three indices, as shown in Figure 2.3. A
[irst-order tensor is a vector, a second-order tensor is a matrix and tensors of order three or

higher are called higher-order tensors.

Matricization. also known as unfolding or flattening, is the process of reordering the
clements of an N-way array into a matrix. For instance, a 2x3x4 tensor can be arranged as a
64 matrix or a 3x8 matrix. and so on. The mode-n matricization of a tensor X € R '1 "2

"IN is denoted by X(n and arranges the mode-n fibers to be the columns of the resulting

matrix. Though conceptually simple, the formal notation is clunky. Tensor element (i}, iy,

... In ) maps to matrix element (iy. j), where
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N k-1
j: 1+ Z(ik—l)]k With]k: ﬂlm

k=1 m=1
k#n m #n

The concept is easier to understand using an example. Let the frontal slices of X € R3x4x2

1 4 -7 10 13 16 19 22
Xy = [2 5 8 11 14 17 20 23
3 6 ‘9 12 15 18 21 24

1 X2=

Then the three mode-n unfolding are

1 4 7 10 13 16 19 22
Xy = [2 5 8 11 14 17 20 23]
3 6 9 12 15 18 21 24
1 2 3 13 14 15
Xy = |4 5 6 16 17 18
7 8 9 19 20 21

10 11 12 22 23 24

x—[1 2 .3 &4 85 .. 8 10 11 1z
)~ 113 14 15 16 17 .. 21 22 23 24

It is also possible to vectorize a tensor. Once again the ordering of the elements is not

important so long as it is consistent. In the example above, the vectorized version is
- 1 _‘
2
3
vec (X) =| -
23
1241

2.3 Storage Scheme for Higher Dimensional Arrays [5][7][18]-[24][27][32][33]

Multidimensional array are the basic data structure used in many applications such as
MOLAP and compute intensive task. But in many cases, they are found to be sparse in
nature — i.e. many of the array cells contain null values and consume unnecessary space.
So it is important to design a technique, “The Storage/Compression’, to store such arrays.

Some common storage schemes are reviewed below.
CRS/CCS[5]]27][34][35] scheme is based on sparse matrix storage where three vectors
namely RO. CO and VL are needed. Let us consider a matrix, Ay, where m is the number

ol rows and » is the number of column. In CRS scheme, the length of RO is m+1 which is
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n+1 in CCS. First element of RO is zero and later elements store cumulative sum of total
number of non-zero elements in each row (each column in CCS). VL stores none-zero
elements itself and CO store respective column index (row index for CCS) of non-zero
values. Thus, the CCS is the CRS on transpose of targeted matrix. Figure 2.7 illustrates a
two-dimensional array/matrix of 4x4 and equivalent CRS/CCS. There are seven (7) non-
zero element out of total sixteen (16) elements. To store this matrix in CRS/CCS scheme, it
requires to store a total of (4+1)+2x7=19 elements. First element of RO is initialized with 0
and rests are the cumulative sum of total number of non-zero elements in each row (column
for CCS). The number of non-zero element(s) in j'th Row (Column for CCS) can be found

by RO[j+1[-RO[j].

x=0 1 2 3
X;=0 o 1 2 0 ROL‘RS' 0 l 2 | 3 l 5 | ?l
1 300 0 T e e
#) 0 4 0 5| COxs|[1]2]0]1]3[0]2
3 6 07 0| VLeps|[1]2[3]4[5]6]7
ROces [0 [2]4]6]7]
COccs [ 1]3]0]2]0]3]2
Viees | 316 |1 |42 [7]5
Figure 2.7 CRS/CCS for 2-D sparse array
1 -

o 5/016 x;=0 1
ya 0[0]7 xs=0 1 2 0 1 2
| 0 0[8]0 x=0 [0 0 1|5 0 6

| | = (o]0 1 = 1[0 2 0[0 0 7
I/ 0210 213 0 4/0 8 0
[3]6[4]

ROcs (013138 ROccs [0 [4__[5]8]
) A4 — L i ‘l' %%h:::;_:f“-—n
COcrs [2]0]2]172]0]2]1] COces |2 0 1[/2]0]2 1
KOcrs [OJ1]1]O]1]0]0]1] KOces | 0 1 0/1/0]0|1]1
Veiers [1]5]6[2[7[314[8] VLees [3 5 2814 7

Figure 2.8 CRS/CCS for sparse 3-D array
Figure 2.8 shows the storage of a three dimensional array or cube of size 2x3x3. This cube
can be viewed as two two-dimensional arrays having size 3x3 for each. An additional
array named KO is introduced which stores indices of first dimension x; along with RO,

CO and VL. The number of non-zero elements is eight (8) out of eighteen (18) elements
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and it requires to store (1+3)+3x8=28 elements. Similarly it needs two KO to store a four-
dimensional array of Figure 2.9 of size 2x2x3x3 where KO" and KO' store indices of x|
and x, respectively. In this case it requires storing total of (1+3) + 4 x 12 = 52 elements.

Thus. it needs n number of auxiliary one-dimensional arrays to store a n-dimensional

Ell‘l'il)".
X|:0 1
o 1 e e —
e
=00 0 1.4 0 0[7 0 0.0 10 0
110 2 0'0 0 5|0 8 0 ;11 0 O
] [}
213 0O 0'0 6 01]0 0 9 12 0 0
ROc¢rs | 0| 4__|__8 | _l?_. |
Cosg [2]0 [0 ]1 [T J271[0 J0 |1 ]2 |0
KO«ws O[T ]0]1 JOo [1]0]1 O |1 [0]1
Ei'tess (O[O L ]T TO (@12 11 (8 (01 |1
Viers | 1471102 [5[8[11]3 [6 ]9 ]12
ROces [0]5 [9 |__1_2_ .
COxs [2T0T0 71 J2 J1]2]1 [0 [0 |1 |2
KOs O0f[1 101 [1 [olL]O [1 [0]1]0
KO'eces [OJOT1 1 J1 Jolol1 [1 [0 0|1
Viees |34 |7 (11122168 (101 |5 (9

Figure 2.9 CRS/CCS for sparse 4-D array

The ECRS/ECCS scheme [5][27][34] use one one-dimensional floating-point array V
and two one-dimensional integer arrays R and CK to compress a multidimensional sparse
array based on the EKMR scheme. Given a sparse array based on the EKMR(3), the ECRS
(ECCS) scheme compresses all of nonzero array elements along the rows (columns for
ECCS) of the sparse array. Array R stores information of nonzero array elements of each

" column

row (column for ECCS). The number of nonzero array elements in the i" row 4]
for ECCS) can be obtained by subtracting the value of R[i] from R[i+1]. Array CK stores
the column (row for ECCS) indices of nonzero array elements of each row (column for
ECCS). Array V stores the values of nonzero array elements. Similarly, It can be used
arrays R. CK, and V to compress a sparse array based on the EKMR(4) in the

FCRS/ECCS schemes. Since EKMR(K) can be represented by m<* EKMR(4), in the
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ECRS/ECCS schemes, each EKMR(4) is first compressed by using arrays R, CK, and V.
Then, an abstract pointer array with a size of m*™ is used to link arrays R, CK, and V in
each EKMR(4). For example, assume that there is a 3x2x2x3x4x5 sparse array A based
on the TMR(6). The sparse array A' based on the EKMR(6) can be represented by six
EKMR(4) with a size of 8x15. The ECRS/ECCS scheme compress each EKMR(4) to
arrays R, CK, and V. Then, use an abstract pointer array with a size of 6 to link arrays R,

CK. and V of each EKMR(4) shown in Figure 2.10.

An abstract pointer array

[0T1]2]3]4 5]

Ri:L'H.‘i ol'l -_Ie‘\if('l{.‘i ol | leL‘i{.‘i ol'2 RliCRS ol 3 RECRS al 4 RECRS ol 3
C‘KI:'L'RS ol C‘[<i"(.'](5 ol CKIECRS ol2 CKECRS of 3 CKECRS ol4 CKECRS of 3
‘ VECRS of 0 VECRS of 1 VECRS of 2 VECRS of 3 VECRS of 4 VECRS of 5
ECRS T ECRS T ECRS T ECRS T ECRS T ECRS T
| EKMR(4) EKMR(4) EKMR(4) EKMR(4) EKMR(4) EKMR(4)

Figure 2.10 ECRS for sparse 6-D array

The optimal chunking technique [23] partitions multidimensional array into coarse
grained hyper-rectangular blocks called chunks. A chunk is defined by the index range of
values along each dimension. A query over the dataset retrieves either the entire array or
sub-array based on overlapping the query result. An optimal chunking is characterized as
chunk size and chunk shape. Suppose a n-dimensional array A[/,][/2]....[/s], consists of
[ 14 L; elements. The storage of A is done by partitioning A into equal shape rectangular
chunks such that each chunk fits on a disk block, i.e., if each chunk has dimensions <c¢|, ¢,
B3, s G then [Tt qle; < C.

Ci

Al

Az

Figure 2.11 Query to retrieve chunks
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The system supports queries that retrieve rectangular sub-arrays of A. A query q = <[u :
Vil [ va)s (a0 vads vinis [y @ vo)> specifies a lower bound #; and upper bound v; on
cach of the n dimensions. The query retrieves all elements <xj, x2, X3, ....., Xx,> of A such
that u; < x; < v; for 1< i < n. Figure 2.11 illustrates a 2-dimensional query of shape <A,

A>> operating on a chunked array where each chunk has the shape <c|, ¢;>.

ArrayStore[7] is a storage manager which supports range query as well as binary
operations like join and complex user defined function. ArrayStore takes the approach of
breaking an array into fragments called chunks and storing these chunks on disk. Figure
2.12 shows array Al of size 4x4x4 which is divided into eight 2x2x2 chunks. Each chunk
is a unit of /O (a disk block or larger). Each X-Y, X-Z, or Y-Z slice needs to load 4 I/O
units. The array A2 is laid out linearly through nested traversal of its axes without
chunking. X-Y needs to load only one 1/O unit, while X-Z and Y-Z need to load the entire

array.

Al: (4 X 4x4) A2: (4 X 4x4)

v
4 |
|
|

gl ; W A v L)

X-Z: (4 X 4) [ T b

Figure 2.12 ArrayStrore for 3-D data

ArrayStore use two types of chunking scheme namely Regular Chunks (REG) and
Irregular Chunks (IREG). Each array in ArrayStore is represented with one data file and
one metadata file. The data file contains the actual array values. The metadata file contains
array meta information such as number of dimensions, total number of chunks, and in the

case of regular chunking the number of chunks.

SciDB[24] is a multidimensional array data model which supports both functional and
SQL-like query language. It was pretty obvious that SciDB had to run on a grid (or cloud)
ol computers. It should chunk arrays to storage blocks using some (or even all) of the

dimensions. SciDB should chunk arrays across the nodes of a grid, as well as locally in
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storage. Hence, it distributes chunks to nodes using hashing, range partitioning, or a block-

cyclic algorithm.

2.4 Discussion

Every array models described in this chapter have some pros and cons. TMA is still the
standard to implement higher dimensional data and good for random accessing but the
performance of TMA drastically decrease with the increase of number of dimensions.
EKMR is a prominent technique to represent higher dimensional data with two-
dimensional data. But when the number of dimension is greater than four then it uses an
abstract pointer array to point each EKMR(4) which make EKMR clunky to handle data
with very high dimensions. Tensor decomposition slices the tensor into vector which is

prominent for operation but very costly to store.

Most storage technique of higher dimensional sparse data is based on CRS/CCS scheme
which is excellent to store sparse matrix. But using CRS/CCS for higher dimensional
sparse data is hardly possible for its storage size. ECRS/ECCS is better than CRS/CCS
which works well until four dimensional arrays. When the dimensional is greater than four
then it stores as a collection of ECRS/ECCS(4). Generating the collection of
ECRS/ECCS(4) is inefficient when the data dimension is very high. Optimal chunking,
ArrayStore and SciDB based on the splitting the whole array into smaller size. But

delining the size is widely affect the performance for higher dimensional data

[hough, there are a lot of research has been done on array model, but only a few
researches have been made on the generalization the scheme to any number of dimensions.
Hence the proposed generalized representation scheme will outperform over TMA and

EKMR scheme. The detail of the proposed scheme is presented in the next chapter.
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CHAPTER 111

Generalized 2-Dimensional Array

3.1 Introduction

Traditional multidimensional array is widely popular for implementing higher
dimensional data but its performance diminishes with the increase of the number of
dimensions. On the other side, traditional row-column view is facile for implementation,
imagination and visualization. It is well known that the multidimensional array is the
logical abstraction and linearized when stored on the memory. Compilers/ programming
languages map the array index into the linearized memory address. So, it needs to compute
the specified dimensional indices. If we consider a TMA(3) array, A[/;][/2][/3] then a tuple

<X, X2, X3 can be linearized and identified by array linearization function as follows
S s %o %3) = Xylals ¥ Xol3 + %3

This chapter represents an implementation procedure for n-dimensional array with row-
column abstraction which named Generalized Two-dimensional Array (G2A). Odd
dimensions contribute along row-direction and even dimensions along column direction
which gives lower cost of index computation and higher data locality. It is not related with
dimension reduction depending upon eigen value. It is a permutation on higher dimensional
data to fit into a new two-dimensional array. Thus the length and indices of new 2-
Dimensional array is determined based on n-Dimensional arrays’ length and indices. To do
this. G2A fits [ n/2 1 number of dimensions along row direction and the rest n/2 number of
dimensions along column direction. Odd dimensions contribute for rows and even

dimensions contribute for column.

3.2 Realization of 2-Dimensional Representation

G2A Is the way ol representing an n-dimensional array (n>2) with a two-dimensional array.

Let. AlL] A]... [1n] be a TMA) of size [1), b.....,] and <x), x2,....x,> be the subscripts of
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an element of A: where /|, b.....l; is the length of each dimension d;, ds,..., d; and x; =
0.1.2.3, .... (1) (0 € i < ). The representation of the TMA(#), A into a G2A A'[?H][f’g] of
size /', 1] and subscripts < x'|, x, > where /'| and /; are the length of each dimension d',
and d>:x'1 =0,1,2,.....,(/''-Dand x, =0, 1, 2, ...., ({2-1). In the following the conversion
of TMA(3), TMA(4) and TMA(6) to G2A are shown and then the generalization for
TMA(n) is described.

3.2.1 2-Dimensional Representation of TMA(3)

Consider a three dimensional TMA, A[/][A][/3] of length [/}, b, 5] = [2, 3, 4]. It can be
represented as a two-dimensional array, A'[/,'][/4'] having length [/}, '] = [8, 3] as

L'=Lxhandh'=1h

and the G2A elements index tuple <x, x»> can be derived from TMA tuple <x;,x2.x3> by

x; =x;*xh5+x; and x;=x;

3¢
[
b4

>
for.
Fund
=
o
=
e}

\ 1 ’ ; z'/ x 0 | i 0
i v ’ P S S ——
B e | 1
0 i ¢ * ] 1 ] [ 1
X2 - - + 4 1) SR = e
w 1 ] ] .r:, 2 1 : 2
g I SalE e L it R e B
1 ! ! ] )J 3 1l | 3
] | ] il
U5 SR il e Hl Al Rt 0 ' ] 4
2T e
s ' 1
e d E S A E)
X -
1
X‘z 40 2

Figure 3.1 TMA(3) and its equivalent G2A

Thus a TMA index tuple <1, 1, 2> is equivalent to G2A tuple <6, 1>. In reverse, it is also
possible to reconstruct a TMA from its corresponding G2A. This is done by finding
corresponding TMA tuple which is called backward mapping. Backward mapping to
construct a TMA(3) from G2A can be as follows

Xi-= .\‘]. / .I!I_‘, e _\‘[I % [3 and X = ).'zl
Here % indicates the 'modulus’ operation and / indicates 'division' operation. Thus, a G2A

index tuple <6, 1> is equivalent to TMA tuple <1, 1, 2>.
3.2.2 2-Dimensional Representation of TMA(4)

Let. a four-dimensional TMA, A of length [/}, L, 5, ls] = [2, 3, 3, 2]. Its corresponding
G2A (Figure 5). A'[/)'][/>'] where /') and /'; can be found as follows:
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.f(|‘:.1|x{3:2x3:6&32':fzxf4=3><2=6

and any G2A index <x'j. x> can be found with corresponding TMA index <x|, x2, x3,
X4~ as

X|| =GR 4’3 + X3 & x'h=x2% ;’4+X4
As example if a TMA index is <1, 1, 2, 0 >, then its equivalent G2A index will be <

1x342, 1x24+0>=<35, 2 >. Inreverse, if a G2A index < 3, 2 > is known then its
equivalent TMA index can be found by

X3=x1%5=5%3=2,x=x" /l3=5/3=I and
X4 =Xx" 0/0?4:2%)2:0._ JC2=)C'2£{[4:21’|2:1

» B
X3 0 1 2 s
e e R T i W =k
\ Rl e I o sl
o gl g""H
N "
M :
\al 2
1 |I| l . ?......-----. ; 4
[T
\2 : : 3
Vie— 0 1 2 3 4 3

Figure 3.2 G2A representation of TMA(4)

3.2.3 2-Dimensional Representation of TMA(6)

Consider a six dimensional TMA, A[]||[L][5][4][5][ls]) of length [/, b, B, 1 s, 1] = |2,
2. 2,3, 3. 2]. It can be represented as a two-dimensional array, A'[/,'][/z'] having length
[/, ') = [12, 12] as
Lh'=hxhxlsandh'=Lxlyx g
and the G2A elements index tuple < xll. x3'> can be derived from TMA tuple <x,, x2, X3, X4,
Xs. Xo> by
= xixbxls+xyxls+txs and  xo=xy % Iy x [+ x4 % lg+ Xg
Thus a TMA index tuple <1, 1, 1, 0, 0, 1> is equivalent to G2A tuple <9, 7>. In reverse, it
s also possible to reconstruct TMA from its corresponding G2A by backward mapping as
X5 = X1 % Is,x3 = x1 % (I3 1), x1 = X\ % (I % l3% Is)

and X6 ,\';}Iu/a fﬁ. X4= le(%] (f4>< :"(,). X2 = )Cgl% sz {4 f(,)
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Figure 3.3 G2A representation of TMA(6)
3.2.4 2-Dimensional Representation of TMA(n)
Similarly it is possible to represent any dimensional array (n>2) with a single 2-
dimensional array. The length of generalized 2-dimensional array, A'[/\'][/'] from n-
dimensional TMA., A[/][/] ... [/,] length can have two cases as below

Cuase [:1f n1s even
f|' = .’|>< f}x fsx ...... an,j.x fn-] and 1’2' = ng f4X f(,x ...... Xf.1-2>< Zn

Case 2:if n is odd
L'= [* t'_;x .{5X ...... xfn.gx fn and fg' = fgx iqx f.g,x ...... xfn.3x I'n.]

Above two cases can be generalized as

n—i

B
b= | [t li=12andj=0123,..7]
J=0

To generate a G2A from n-dimensional TMA it is necessary to generalized the TMA
index tuple <xj, x,..., x,> into G2A’s index tuple <x|'.x»">. Again two cases may occur

based on the value of n.
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Cuse 1:if nis even
xlr :x|]3jf_\"'--fl‘l-3gl‘l-| + x.’i"il? ----- If!n-3£n-l it +xn-33n-1 + Xn-1

and x2' = xalale. ... naly + Xalely. . I + Xrioody

Case 2: if nis odd
X[' :xl.,l_]flj ..... zn-z}n +x3£53'}-.-..f|‘.2[|‘| S T +XI'|-23[] +xn &I'ld

xl' ZXE*’-I;h-----fn-]zn-] +x4g61}8-----{n-3!|1-! T ran + xn-ﬂn-l + Xn-1

Above two cases and equations may be generalized to generate G2A tuples from TMA

tuples as

y Xit2j lisvak
k=j+1

[i=T12and |k = 0:1:2:3 nj
The algorithm to implement above notation is shown in Algorithm 3.1 and Algorithm 3.2.
Algorithm 3.1: finding G2A indexes from TMA indexes:

G2A-forward mapping(x;’, x2°, x1- Xy, 11 Iy)

1. Initialize x;':=0, x»":=0

2. Repeati:=1ton

3: Repeat j:=i1+2 ton
4. Xi =5 l’j
3, sl

6. X'y-img =X 200 YR

For backward mapping, if a G2A tuple <x|', x2"> is known then its equivalent TMA tuple
<X|. X2, X3,.....xp> can be derived. To do this, two derivations can be considered based on

the value of n.

Cuse I:if nis even
%=xa' Y 1y
5i=( e ' ) i lin) b [1=4,6; ...,0-2 ]
X2 =0C (O T E) lia) ) L s) [

Xn-1 :xll%gn-l
X7 = Cer® Vo dnct) s ffj+3) % fj [i=3,5,...,n-3]
% =00 The ) T lsz) )ff; )/ I
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Case 2:1f nis odd
xn=x' %/,
= el 1) el B ) Wo:dy | 153008, van 11220
x1=((..C" T L)/ L) ) Es) 1 s

X1 =%3 Yo Inoy
_\fj':( (.‘fz‘f']f”.l) )’rf_iﬂ) %!'_'[ [f:4, 6, ...,1'1-3]
X2 :(( ( (x;':"’;’n_1):'r{n.3) )f!ﬁ)f[;;

The generalization of above mentioned backward mapping can be done as below
Xi=x9_iu2 %[ } where 1 = ntol

X2.i9%2=X2-i%3/l;

Algorithm 3.2 shows the reverse mapping which described above.
Algorithm 3.2: finding TMA(n) indexes from G2A indexes:

G2A-backward mapping(x;’, X2, x1- Xy, /1= /i)
1. Repeati:=ntol
2. Xi =X -2 %

]

3 X9 w2 = (x2wm -xi) !

3.3  Comparison of TMA and G2A for Matrix Operations

The TMA and G2A are both higher dimension arrays with different data layouts. In G2A,
the array cells are organized into chunks according to the number of dimensions. For a
ITMAM) Al][L5] ... [£,] its equivalent G2A A'[l;][ I;] has the chunk size |I, X [,,_1| and
there are such [l; X [; X ... X l,_,| chunks exists. Each chunk is a two dimensional array
ol size [L,, 1,,-1] Figure 3.4 shows the data layout separated into chunks for matrix- matrix

addition/subtraction and multiplication for 4 dimensional matrices.
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Figure 3.4  Addition and Multiplication of matricized TMA(4) of size 2x2x2x2

The G2A is organized as chunks according to d4 and ds (i.e. x4 and x3). The chunk size is
[l5 % 1] i.e 2x2 and there are such 2x2 = 4 chunks exists. Fig. 3.4 shows the data layout
for matrix-matrix addition and multiplication for Cyggition=A+B and Cyyniptiaion=A*B where
A and B are two matrices. The addition/subtraction and multiplication are performed by
fixing rows for varying columns as done for a 2 dimensional matrix. This increases the
cache hit rate of the processor because of the data locality [15][16]. In the following at
first the algorithms for three dimensional matrixes are presented and then extend it to

higher dimensional matrix representation.

3.3.1 Matrix-Matrix Addition/Subtraction Algorithms[2]

LLet two three dimensional TMA A and B of size [/, /5, /3]. The resultant matrix, C =A + B

is down by fixing first dimensions for pointing the row and column (second dimension as
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row and third dimension as column). Algorithm 3.3, 3.4 and 3.5 show the matrix-matrix

addition/subtraction for TMA(3), TMA(n) and G2A respectively.

Aleorithm 3.3:
matrix-matrix addition TMA3

begin
forx, = 0to (/;-1) do
for x> =0to (h-1) do

for x3 =0 to (/5-1) do

Clx][x2][x3] = Alxy][x2][x3] + Blxy][x2] [x3];

End.

Algorithm 3.4:
matrix-matrix_addition TMA n

begin
for x; = 0to (/;-1) do
for x> = 0 to (l,-1) do
for x, =0 to (/,-1) do
Clx][x2]...[xa] = Alx1][x2]
End.

Aloorithm 3.5:

matrix-matrix addition G2A
begin
for x; = 0to ({4-1) do

for x4, = 0 to ({,-1) do

oo [xn] + B[x1][x2]

Clxyllx, 1= Al [ x5] + Bl I[ %3]

End.

3.3.2 Matrix-Matrix Multiplication Algorithms

[l

Let two three dimensional TMA A and B of size [/}, /5, /3]. The resultant matrix, C = A x

B is done by fixing first dimensions for pointing each 2-dimensional grid of row and

column (second dimension as row and third dimension as column) where length of row

and column are same i.¢ /., = [,. Algorithm 3.6, 3.7 and 3.8 show the matrix-matrix

multiplication for TMA(3). TMA(n) and G2A respectively.



Algorithm 3.6:

matrix-matrix multiplication TMA_3

begin

forx; =0to (/;-1) do
for x =0 to (h-1) do
for x3 =0 to (/3-1) do

End.

for i =0 to (/5-1) do
Claillx2]xs] = Clxi][x2][x3] + Alxi][x2][7] x Blxi][#][x3];

Algorithm 3.7:

matrix-matrix_ multiplication_TMA n

begin

forx; =0to (/;-1)do

for x; = 0 to (,-1) do

End.

for x, =0 to (/;-1) do

for i =0 to (/,-1) do
Clxi][xa)... [xa] = Clxi]lxa]..[xa] + ADer]Dxa]. . [0t ][] % Blxi][x2]

Algorithm 3.8:

matrix-matrix_ multiplication G2A _naive

begin

for x;'= 0 to (/;'-1) do
begin
u :X]I = )."|' % 1|‘

End.

for x»'=0to (/'-1) do

end

begin
v=x2'—x2'% /0
fori=0to (I-1)do
C'lxr'llx2'] = C'lxi']lx2'] + A'Ler'][v+i] * B'luti][x2'];

end

26
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However, the performance of the naive algorithm (Algorithm 3.8) for C'=A' x B' will be
low because of the modulus operation for the calculation of u and v. The algorithm is

revised for avoiding modulo operation as shown in Algorithm 3.9.

Algorithm 3.9:

matrix-matrix_ multiplication_G2A

begin
u=10
forx;'=0to (/,'-1) do
begin
p=x'—u
if p=1then
u=u+l;
v=_
for x,' =0 to (i'-1)do
begin
q=x2—4q
if ¢ =1[then
v=y+/
for i =0 to (/-1) do
C'lx1"[x2'] = C'[x)"1[x2'] + A'xi'][v+i] x B'[u+i][x2']
end
end
end.

The correctness of algorithm 3.9 is shown in Table 3.1 by showing the operation and
values of different variables where A' and B' are two G2A of four-dimensional TMA

having length 2 for cach of four dimensions as shown in Figure 3.4.

A B'
x2=0 | |
P e o 2 aEEE
=0 170 1 0 1
x1=0 [ x;= g 1 I &l s |'s=0 4 |5 |x4=0
( e Rl
| 0| 8 9 |12]13| 2 12 13] 2
( 1] 10 _]_I_J__M s | 3 14 15
Y= I 27 3 2 3
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Table 3.1 Multiplication of matricized TMA(4) of size 2x2x2x2 as of Algorithm 3.9

C'lx)"[[x"] = C'[xy'[[xa'] +
ALy [[v] % B[] (x|
0x0+1 x2
0x I+l %3
4 x4+5 %6
4 x 5+5 x 7
2x0+3x2
2% |+3 %3
6 x 4+7 x 6
6 x5+7x7
8 x 8+9 x10
8 x 9+9 x]1
12x12+13%14
12x14+13%15
10x 8+11x10
10 9+ =11
14x12+15x14
14x13+15%15
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3.4  Theoretical Analysis

There are two aspects for performance improvement on matrix operation of proposed G2A
(shown in Section 3.3) namely 1) Cost of index computation and 2) Cost of cache line
accessed. The cost ol index computation comprise of the cost of total number of addition
and multiplication operations. Another aspect, the cost of cache line accessed is analyzed
with the algorithm called LoopCost(l) proposed by Carr et al. [15][16]. The parameters
are grouped as shown in Table 4.2. Some of these parameters are provided as input, while

others are derived from the input parameters. All lengths or sizes are in bytes.

Table 3.2 Parameters for theoretical analysis

Parameter | Ny = Description
n Number of dimension for both TMA & G2A
/; Length of dimension i (2 < i < n)for TMA. Consider [,= L= [3=...=

Iy=1[for all i. Hence size of the array or total array elements
becomes /"

l, | Length of row for G2A; i.e. l; = [¥ where k = [n/2]
I Length of column for G2A; i.e. [, = [¥

r | Size of cache line

o | Cost of a multiplication operation

i | Cost of an Addition/Subtraction operation
A | Improvement; ‘1] = (1 - %) x 100%
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3.4.1 Cost of Index Computation

According to our algorithms described at section 3.3, the total cost of index computation
for matrix-matrix addition and multiplication for different number of dimensions can be

presented as

Total Cost = Cost of Index Calculation + Cost of Array operation
The analysis is performed on three TMA A, B and C as well as three G2A A’, B' and C'.
The index computation is generalized with » number of dimensions though 3, 4 and 6

dimensions.

Matrix-Matrix Addition/Subtraction:

For matrix-matrix addition/subtraction operation, each element is accessed only once. An
n-Dimensional TMA of length / for each dimension needs to compute /" number of index
for cach of three matrixes as well as /" number of addition/subtraction operations.
Consider C=A + B and C'=A' + B' for three dimensional data having /° elements for each.

The index computation function for TMA and G2A are fand /" respectively as below
Fxi,x,x3)=xxixl +xxl+x;3 and f'(x'1,x'2) =x"1xly+x%

The function f requires two additions and three multiplications while /' requires one
addition and one multiplication to compute each index. The G2A also requires another one
multiplication to calculate /,=/x/. Thus the index computation costs 3(3a+2p) I’ and
3(atP) Pta for TMA and G2A respectively. But the total cost is the sum of index

computation cost and cost ol array operation. So,

Total cost for operation on TMA = 3(3a+2p) P+ I’ = (9a+78)  and

Total cost for operation of G2A = 3(a+f) P+ o+ P B=a+ 3a+4p) P

Now, the improvement, n over schemes for three dimensional arrays can be calculated as

_fy_8 + (Ba+ 4p)13 o
”_( BENCIEETE )"

follows.

As we know that the cost of multiplication is very high than that of addition (a>>p). If we

ignore the o with respect to 3 then

= (2= 2 Ve 10
”"(3 §ﬁ)x
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If the above analysis is considered for four dimensional array with below TMA index
computation function

J (X1, X2, X3, X4) = X XIXIX] + xo%[x] + x3%x! + x4

There are /' elements and each element requires three addition and six multiplication
operations. The index computation function for any dimensional array is same as shown
for three dimensional data. For four dimensional data equivalent G2A needs another
multiplication operation to compute /'>=/x/. So, the index computation cost for total three
array of TMA and G2A are 3(6a+3p) I* and 3(a+p) I* +2a respectively. The total cost will

4 1
be the above cost plus " B for each case as shown below

Total cost for operation on TMA = 3(6a-+3p) I'+ I'B = (18a+10p) I* and
Total cost for operation of G2A = 3(utp) I+ 20+ I'B =20 + (3a+4p) I*

So. the improvement rate over scheme for addition operation on four dimensional data,

2a + (3o +4p)1*
(180 + 10B) 14

n=>00- ) X 100

= p . 100 [fi
—(g—ﬁ)x [0ra>>ﬁ]

Similarly. below TMA index computation function for six dimensional arrays have five

additions and fifteen multiplications operation for each of total /° elements.
F (X1 X2 X3, X4,y X5, Xg) = X XIXIXIRIX] 4 xo %I} ]RIX] 4 x3%IX DX ] + xq}I%] + x5%] + X4

Equivalent G2A needs four multiplications to determine the lengths /'\=/x/x/ and
[h=1=Ix[. So, the total cost for matrix-matrix addition for six dimensional data would be

as below

Total cost for operation on TMA = 3(15a+5p) I°+ I°B = (450+16pB) I° and

Total cost for operation of G2A = 3(a+f) I+ 4a + I°B = do + 3a+4p)
So, the improvement rate for six dimensional data operation,

4o+ (Budt 4B)1° o
@50+ 16p)1¢ 0 °

n=(1
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(14 2 )x 100 [fora > B]
=il e ora
15 4bl®

Now the generalization of above analysis for n-dimensional array with below TMA index
computation function which has (n-1) addition and n(n-1)/2 multiplication.

L g
,/(xl- X240es Xi-15 Xn) lex,_’” : + X% 4 ot X R 20

G2A index computation function is same for any number of dimensions as shown before
except calculation of /'y and /'; which require (#-2) multiplication. The total cost for n-
dimensional data computation for both cases are below

n(n-1)
2

Total cost of TMA = 3/[™ ( a+(n— 1)[3) + BI™ and

Total cost of G2A = 3(a+P) I"+ (n-2)a + " B = (n-2)at + (3a+4p) I

Hence, the improvement for addition operation considering o>>3,

B 2 2(n—2)
= (1 B nn-—1) B 3n(n—1)I"

) X 100 o oo o (31)

Matrix-Matrix Multiplication:

Matrix-matrix multiplication described in section 3.3.2 requires multiple accesses for same
clement. The index computation function for TMA and G2A are same as described for
matrix-matrix addition for different number of dimensions. The multiplication operation
for three dimensional array having length / of each dimension needs to access /* elements.
The array operation needs another one addition and one multiplication of I* elements. So
the total cost to compute C = A x B for three dimensional TMA are the sum of index
computation cost and cost of array operation as

Total cost of TMA = 3(3a+2p) I+ (UL+|3»)Z4 = (10u+7P) I* and

Total cost of G2A = 3(at+p) o+ (atP) P=o+ 4(ut+p) #
Thus the improvement, 1 over schemes can be calculated as below

o + 4(a+ B4
~ (100 + 7p)I* )

n=~1 x 100

= (g— 101”) x 100 [a > B]

Similarly. the total cost of TMA(4) and equivalent G2A, can be calculate as follows

Total cost of TMA = 3(6a+3p) P+ (u+P)° = (190+10pB) I° and
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Total cost of G2A = 3(a+B) '+ 20 + (at+P) = 2a + d(at+p) I°

If we neglect the cost of addition with comparing the cost of multiplication then the

improvement for four dimensional array computation,
= (15 - ) x 100
T=\19 " 1955

Again the consideration of six dimensional arrays for matrix multiplication then total cost

of TMA and equivalent G2A would be as below

Total cost of TMA = 3(150+5p) I+ (a+B)!” = (46a+168) /" and

Total cost of G2A = 3(a+P) '+ 4o + (a+P)!’ = da + d(a+P) I/

Thus the improvement rate for six dimensional data considering a>>f is

WL )xloo
”‘(Eﬁzw

. i N 0 - . . +1
Now the generalization of above analysis for n-dimensional data needs to access /"

clement for each array. Thus the total cost for both TMA and G2A are as below

n{nz—l}u +(n— 1)[3) [nt1 4 (o + B)JH‘H and

Total cost of TMA =3 (

Total cost of G2A = 3(a+p) /"' + (n-2)a +(a+B) "' = (n-2)a + 4(at+p) I

Hence the generalized improvement rate by ignoring cost of addition for matrix-matrix

multiplication of n-dimensional data can be represent as below

o (1 8 Zln— 2)

e 2}zn+1) % 100 e o e e e e (3.2)

Remarks 3.1: Tor large values of » and / the improvement rate ) will increase. Hence the
overall improvement will increase for higher dimensional array of large size for matrix-

matrix addition or multiplication operation.

3.4.2 Cache Effect Analysis

[t 1s well known that the compilers allocate memory sequentially. For a n-dimensional
array. it is possible to access into factorial of n possible loop order. Among them, !n-1
number of loop order access memory randomly. We all know that random access of

memory increase the cache miss rate. But this thesis desires lowest cache miss rate to
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ensure higher efficiency and thus considering sequential access of memory. Hence, the
loop order </, b, ...., ln-1+ [y> 1s considered i.e outer loop is managed by /; then /; and

finally /.

Matrix-Matrix Addition/Subtraction:

There are 3 (three) different loop orders are possible for a TMA(3). We assume the loop
order </y. b5, 5 > to ensure the most sequential access of the memory. As the Cache is
partitioned into lines and, during data transfer, a whole line is read or written. If the cache

line size is » then the number of cache line access using LoopCost(l)[2][3] for matrix-
matrix addition/ subtraction, [* EI (see algorithm 3.3.1) is same for both TMA(3) and its

cquivalent G2A  ie. no improve for G2A over TMA(3) for matrix-matrix
addition/subtraction. For TMA(4). 4! different loop orders are possible. We assume the
loop order </\. [5. l5. I; > to ensure the most sequential access of the memory. The number

of cache line access using LoopCost(l) for matrix-matrix addition/ subtraction for TMA(4)

: . 5 [! 2 [? ; : : 2 i ;
and equivalent G2A are (3 H & [? I;—[ respectively (See algorithm 3.3.2). So, the improve

o

n=[1—[£]—x£3}x100
T

For TMA(n). n! different loop orders are possible. We assume the loop order </|, /. /.

rate for G2A over TMA(4) is

ly.... 1y.1. [y > to ensure most sequential access of the memory. The number of cache line
access for matrix-matrix addition/ subtraction for TMA(n) and equivalent G2A are

el |i] & {[”/ET I;IPUEI'
=

respectively. So, the improvement for G2A over TMA(n) is

[ﬂ_ﬂ B
1

e

-

f= X100 s sinavevmmmmms s (33)

When / is divisible by r, the improvement is 0, that is, the number of cache line accessed
for the G2A is the same as that of the TMA. When /[ is not divisible by r, the improvement

is positive. If' / is much larger than r, then 7 = 0.
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Matrix-Matrix Multiplication:

If we consider most sequential access of memory i.e. X3 is the innermost indices of
TMA(3) then the LoopCost(l) of Alx (][ x2][ x3], B[x1][ x2][ x3] and C[x1][ x2][ x3] are 1xP,
[L/r]%F and [l/r]*P respectively. So the total loop cost of TMA(3), 2[1/r]*P+P is same
for equivalent G2A i.e. no improve for G2A over TMA(3). The number of cache line

accessed for A[x)][ x2][ x3] [ xa], Blxi][ x2][ x3] [ x4] and Clx(][ x2][ x3] [ x4] of TMA(4) are

120, [U/r]=0 and [L/r|=I" respectively. IxF; [? xP and [?IXIB are the number of cache

line accessed for A'. B' and C' respectively of equivalent G2A. The improvement for G2A

((2 [gl +1) x z3)

CLEED

over TMA(4) is

n=1-

When [/ is divisible by », the improvement is 0, and when / is not divisible by r, the

(H +1)1

Similarly, The number of cache line accessed for A, B and C of TMA(n) are 1x/", [l/

improvement is
n=1-

r|x"and [l/r]x/" respectively. Equivalent G2A has cache line accessed for A', B' and C'

/2l % A 3
X [M/2*1 respectively. So, the improvement for

2

(2[£]+1)xzn)xz4)

; (/2|
are 1 x [M/2+1 | - I x [M2+1 and |

G2A over TMA(n) is

+ 1) X l{1?‘1,?‘2+1)

n=1-

Once again, if' / is divisible by r then the improved rate is 0, that is, the number of cache

line accessed for the G2A is the same as that of the TMA. When / is not divisible by r, the

i ),
n=1- (2 [H PP — )) SO € 3 |

improvement is
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Remarks 3.2: If / is divisible by r then there is no improvement for G2A based
algorithms over TMA based algorithms i.e, the number of cache line accessed for the G2A
is the same as that of the TMA. When / is not divisible by r, the improvement is positive

for G2A based algorithms.

3.5 Conclusion

This chapter explains proposed G2A scheme as the realization of the scheme based on
three, four and six dimensional data. Finally the generalization scheme for n-dimensional
data is described. The derivation of equations to calculate the parameter for generating
G2A from its equivalent TMA are called forward mapping. Similarly, returning to its
original TMA from G2A namely backward mapping is generalized. For both of mapping
algorithms are provided. The performance improvement due to G2A structure is shown by
matrix-matrix addition and multiplication operation. Algorithms for 3, 4 and 6
dimensional array are shown for both operations. Finally the generalized algorithms to
support n dimensional data are analyzed. Lower cost of index computation and higher data
locality show the improvement performance though details analysis. The matrix-matrix
addition and multiplication operation described in this chapter works well for dense array.
But when there are huge of empty cells in a multidimensional array then the schemes
needs some revision. In this regards, generalized array storage scheme for sparse

multidimensional data based on G2A is described in chapter V.
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CHAPTER 1V

Generalized Compressed Row/Column Storage

4.1 Introduction

Multidimensional arrays are good storage for dense data but it shows bad performance for
sparse datasets which wastes huge memory because of the empty cells in the array. Hence
it is very hard to usc in actual implementation. The sparsity problem becomes serious
when the number of dimensions increases. This is because the number of all possible
combinations of dimension values exponentially increases, whereas the number of actual
data values would not increase at such a rate. Efficient storage schemes are required to
store such sparse data for multidimensional array[2][5][35][40][42]. That's why most data
scientists suggest efficient storage scheme on higher dimensional sparse array where the
operations on stored data can be performed without returning to the original structure. But
existing storage schemes are inefficient and clunky when the number of dimension
becomes higher specially greater than four. The traditional CRS/CCS[5](27][34] or n-way
tensor decomposition scheme requires » number of auxiliary one dimensional array/vector
to store the indexes. The length of each vector is the number of non-zero element that
exists in entire array. For example, to store a 4-dimensional array in CRS/CCS or 4-way
tensor decomposition requires 4 vectors. When the number of dimension increases, those
schemes become unusable due to low data sparsity and high space and time complexity.
Hence the schemes are not effective enough for storing higher dimensional sparse array.
This chapter proposes a storage scheme namely Generalized Compressed Row/Column

Storage (GCRS/GCCS) based on the G2A representation described in chapter II1.

4.2 Realization of GCRS/GCCS Scheme

GCRS/GCCS is a storage scheme to store n-dimensional sparse array. It is independent of
number of array dimensions and requires only three vectors namely RO, CO and VL. VL

is one-dimensional floating point array, RO and CO are two one-dimensional integer array.
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The length of RO and VL are same and equal to the total number of non-zero value. Array
VL stores the values of nonzero array elements. Array RO stores information of nonzero

array elements of each G2A row (columns for CCS).
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Figure 4.1  G2A representation of TMA(6) having size 2x2x2x3x3x2
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Figure 4.2 CRS and GCRS of TMA(6) having size 2x2x2x3x3x2
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If the number of G2A rows is ['y for a n-dimensional TMA then RO contains /';+1 elements.
RO[0] contains 0, RO[1] contains the summation of the number non zero elements in row
0. In general, RO[i] contains the number of nonzero elements in (i-1)" row of the array plus
the contents of RO[i-1]. The number of non zero array elements in the i" row of G2A can
be obtained by subtracting the value of RO[/] from RO[i+1]. Array CO stores the G2A
column (row for CCS) indices of nonzero array element of each.row (columns for CCS).
Figure 4.1 illustrate a TMA(6) of size 2x2x2x3x3x2 and its equivalent G2A
representation. The CRS of this TMA(6) is shown in Figure 4.2-a) which requires to store
total of 79(seventy nine) indexes and 15(fifteen) value itself. The GCRS of same TMA(6)

is shown in Figure 4.2-b) which requires to store total of only 28(twenty eight) indexes.

4.2.1 Generating of GCRS/GCCS File

The generation of GCRS/GCCS can be done from G2A which is a row-column
representation of TMA(#n) with only three one-dimensional array RO, CO and VL. But we
cannot neglect the cost of matricization of higher dimensional array. So an alternate
solution can be the generation of GCRS/GCCS from TMA(n) directly. In this case G2A is
logical/abstraction and there is no need to convert the TMA(#) into G2A. To do this, it
needs to transform the loop order. The loop order is such that odd dimensions are accessed
first then access the even dimensions i.e, loop order <ly, 5, s, ....., 1, la, ls, ......>. So, the

generation of GCRS/GCCS can be done in two ways:

1. First, convert the TMA(»n) into G2A. Then store the converted G2A according

existing CRS/CCS scheme described in chapter I1.

2. Generate GCRS/GCCS directly from TMA(#) though loop transformation.

The rest of the storage scheme is described based on loop transformation technique.
Consider a three-dimensional array of Figure 4.3 having length [/}, b, 5] = [2. 3. 3]. In
G2A., odd dimensions contribute for row-direction and even dimensions contribute for
column direction. Thus. the length of RO for GCRS,/=1+/,x/3=1+2 x 3 =7 and for
GCCS.IT=1+ 5 =1+ 3 =4 First element of RO is always zero and all elements are
initialized with 0 at the beginning. Table 4.1 shows the generation of GCRS where loop
order to read TMA(3) is </\. L5, l>. If a non-zero element is found then its corresponding

G2A index < x'j, x5> is calculated which is described in Chapter 3.
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Figure 4.3 GCRS/GCCS from TMA(3) of size 2x3x3
Table 4.1  GENERATION OF GCRS FROM TMA(3)
' Non- Thl e Generation of GCRS (loop order </y, /3, [,>)
zero Index Index
Value | <x;, x2,x3> | <x'y, x'»> 4 15 CcO RO
3 0,2,0 0,2 Insert 3 Insert 2 [0] ++
2 0.1.1 151 Insert 2 Insert 1 [1] ++
1 0,0,2 2.0 Insert 1 Insert 0 [2] ++
4 0,2,2 2.2 Insert 4 Insert 2 [2] #+
5 1,00 3,0 Insert 5 Insert 0 [3] =+
8 15251 4,2 Insert 8 [nsert 2 [4] ++
6 10,2 5.0 Insert 6 Insert 0 [5] ++
7 112 5.1 Insert 7 Insert 1 [3] ++

Then insert the non-zero value into VLgers, x5 into COgers and the value of ROgers[x'1] is

incremented by 1. Here, insert means adding the value at the end of the array. Finally, the

cumulated some of ROgcrs values are calculated (i.e. RO[i+1] = R[i] + RO[i+1] where | <

i =1). To store this TMA according CRS/CCS scheme, it require to store total 28 elements

(Figure 2.8) while GCCS scheme needs only 20 elements to store as of Figure 4.1.

Similarly. Table 4.2 shows the generation of GCCS where loop order to read TMA(3) is

<. 1. l5>. For a non-zero element, corresponding G2A index < x'|, x»> is calculated. Then
2515 13

push the non-zero value into VLgees, x't into COgeces and the value of ROgees [x5] is

incremented by 1.
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Table 4.2 GENERATION OF GCCS FROM TMA(3)

PREEY; . ShlA o Generation of GCRS

Zero Index Index

Value _<_r;. X2 x> | <x'p, x'> VL CcO RO
1 0,02 | 2.0 Insert 1 Insert 2 [0] ++
5 [0\ 3,0 Insert 5 Insert 3 [0] ++
6 1;0,2 50 Insert 6 Insert 5 [0] ++
2 0,11 1,1 Insert 2 Insert 1 [1] ++
7 1, 1.2 5.1 Insert 7 Insert 5 [1] ++
3 0,2,0 0,2 Insert 3 Insert 0 [2] ++
- 02,2 2.2 Insert 4 Insert 2 [2] ++

8 [ 121 4,2 Insert 8 Insert 4 [2] ++

I array dimension is n is even for GCRS scheme, then the length, / of RO can be found as

follows:

|+
|

I 3 I (G (% )

=

[y

L=

The number of non-zero element(s) in /'th Row/Column can be found by RO[i1]-RO[i-1].

Its not necessary to convert the whole n-dimensional array into two-dimensional array, but

G2A’s index computation function returns two-dimensional equivalent row and column

indices. For each non-zero element, its TMA equivalent G2A row and column index is

calculated. Then push the non-zero value into VL, push the column/row index into CO and

increment the RO pointed by row/column index. It is noted that the GCRS/GCCS affects

by odd/even number of dimensions which may be described as

1.

[R]

(&5 ]

If 77 1s odd and scheme is GCRS then CO stores row index and increment RO value
pointed by column index

I 7 is odd and scheme is GCCS then CO store column index and increment RO
value pointed by row index

If 1 is even and scheme is GCRS then CO stores column index and increment RO
value pointed by row index

If 17 1s even and scheme is GCCS then CO store row index and increment RO value

pointed by column index
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Figure 4.4 GCRS/GCCS of TMA(4)

Table 4.3 GENERATION OF GCRS FROM TMA(4)

Non- | pviA Index | G3A Generation of GCRS
| zero Index
Value | <x;.x.03.%4> | <x'1.x'2> VL cO RO

1 0,0,0,2 0,2 Insert 1 | Insert2 | [0] ++

4 0, 1,0, 0 0,3 Insert4 | Insert3 | [0] ++
T L1 Insert 2 | Insert1 | [1]++
5 U Lol 2 ], Insert 5 | InsertS | [1]++
3 [ 0,0,2,0 2,0 |Insert3 | InsertO | [2]++
6 | O L21 2,4 Insert 6 | Insert4 | [2]++
7 1.0,0,0 3,0 Insert 7 Insert 0 | [3] ++
10 I O | 3.4 Insert 10 | Insert4 | [3]++
8 | Lo 1,1 4,1 Insert 8 | Insert1 | [4]++
11 | Lo 4,3 Insert 11 | Insert3 | [4] ++
9 1,'0;2, 2 5.2 Insert9 | Insert2 | [5]++
12 | LI,Z0 5,3 |Insert12 | Insert3 | [5]++

Figure 4.4 show a four-dimensional array having length [/}, L, 5, 4] = [2, 2, 3, 3]. In
GCRS scheme, the length of RO, /=1+/x/5=1+2x3=7and for GCRS,/=1+1, x4

7. The generation of GCRS/GCCS is shown in Table 4.3 where RO is finally re-
caleulated as earlier. It needs to store only (1+6) + 2 x 12 = 31 elements in GCRS/GCCS



42

which is 532 in CRS/CCS scheme. From the above discussion, it is clearly visible that the
storage in GCRS/GCCS is improved than CRS/CCS. The improvement will be superior

with the increase of number of dimensions.

4.3  Operations on GCRS/GCCS

Matrix-matrix addition/subtraction and multiplication is the basic operation for most of the
computing techniques and it is shown that the efficiency GCRS/GCCS scheme with
matrix-matrix addition/subtraction and multiplication operation on stored data. It 1s well
known that the operation on two similar arrays is possible. G2A is a two-dimensional
representation of higher dimensional array. So, two-dimensional array/matrix operation is
possible on G2A. Similarly. GCRS/GCCS is the storage scheme for higher-dimensional
sparse array and matrix operations are also possible on stored data. To do this, it is not
necessary to be same length CO and VL for both GCRS but same length of RO is
essential. For the simplification of algorithms and representation, let us consider equal
length for each dimensions in both matrixes (i.e. length of each dimension in array A is

same with respective dimension of array B).
4.3.1 Matrix-Matrix Addition

Let two n dimensional array. A and B having same length [/}, b...., lh.1, &]. If A and B are
stored according GCRS or GCCS, then six vectors ROa, COa, VL4, ROp, COp and VLg
would be generated. The length of vector RO4 and ROg, /ro would be same. The number of
non-zero elements in array A is /5 and equal to the length of vectors CO4 and VLa. The
length of vector COg and VLg is /. It is not necessary to be /4 = /g and CO, = COg. If the
resultant GCRS/GCCS is C then it would be, C = A + B. The algorithm to calculate the

addition can be done as below algorithm.

Algorithm: Addition of two n-dimensional arrays stored as GCRS/GCCS scheme

GCRS/GCCS-addition (/g RO, COa, VLA, RO, COg, VL)
I. Initialize & =0, RO[0] :=0
Repeat i = 0 to ({ro-2)
RLA=RO[i+1]- ROA[i], RL =ROg[i+1]- ROg|/]
4. RPs =RO[i], RPi3 =ROg]i].

I~

(]

Lh

RL‘I'&CU.[ | -0 1o [!’]((1'2)
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6. SUM :=0

4 if ( COA[RPA] = COp[RPg] and COA[RPA] =j and RLA>0 and RLg>0 )
8. SUM = VL,A[RPA] + VL[RPg], RPs++, RPg++, RLa--, RL--

9, else if (COA[RPA] =j and RL,>0)

10. SUM = VLA[RPA], RPa++, RLa--

ij else if ( COp[RPy] = j and RLg>0 )

J&, SUM := VLi[RPg], RPg++, RLg—

k3. if(SUM!=0)

14, RO[/+1 ++, CO[k] =], VL[k] = SUM, k++

15. RO[i+1] = RO[i+1]+ RO[i]

Figure 4.5 illustrates the addition of two GCRS where associated pointer and length are

shown

ROcers [0]2]4]6 [8 [10]12]

A COocrs (2131115 10 14 10 14 [1 13 12 |3
1

Vieiz |11 2]215 13 |6 17 (1018 [11]8 |12

_i_
ROqers [0[3[5]7 [10]12]14]

B COsis [OTIT311 12 (2018 10 12 13 1L 14 |2
Viacrs [11215]3 16 [4 |7 |8 (9 [12[10]13]11]14

ROqers [0 [4]7]11] - ‘ : | = ‘

C COucrs [0]1[2[3 |1 [4 [5 |0 [2 [4 [5_
VLegers | 112119 |5 [6 [5 |3 |4 [6 |7 |
Figure 4.5 Addition of Two GCRS/GCCS

The GCRS/GCCS-addition algorithm picks the elements row/collumn-wise from array A
and B. The number of element to be picked for i’th row addition is calculated as:

A: RLA = ROy[i+1]- RO4[i] and B: RL = ROg[i+1]- ROg[/]
The value of ROA[/] and ROg[/] points the i'th row first element of A and B respectively.
After pointing and fixing the number of total elements in row-wise (column-wise in

GCCS). there are three conditions to be checked for defining result for j’th column as

below
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i. is the column value same as pointed element of CO4 AND is pointed CO,4 and

COpsame
- addition is done for VLA and VL
- both pointers are incremented
il is the column value same as pointed element of COx
- add new non-zero element of VL4 in result

- pointer of A is incremented

1. is the column value same as pointed element of COg
- add new non-zero element of VLg in result

- pointer of B is incremented

4.3.2 Matrix-Matrix Multiplication

IFor the multiplication of two matrixes, it should be similar (i.e. the number of dimensions
and the length of each dimensions should be same). Let two » dimensional array, A and B
having same length [/}, /..., 1. 1], We know the elements of A and B are accessed row-
wise and column-wise respectively. So, it needs to generate GCRS of array A and GCCS of
array B for multiplication for improving the data locality. If the resultant multidimensional
array is C then
C=AxB =>Cqers = Agers X Boers or Coees = Agees * Boees

The only condition for multiplication is the same length of vector RO, and ROg. The

algorithm to calculate the multiplication is shown below.
Algorithm: Multiplication of two n-dimensional arrays stored as GCRS/GCCS scheme

GCRS/GCCS-multi (f. f|<u, RO,\. CO;\._ VL,\, ROH, COB. VLB)

1. Initialize & :=0, RO[0] :=0

2. Repeati=0to (lrp-2)

3. RILA=ROA[i+1]- ROA[i], RPA=RO[{]
4. m=i—i%1
5. Repeat ) = 0 10 (/ro-2)

6. MUL =0, n=j—j %!
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W CL=ROg[i+1]- ROg]/], CP =ROg[i]

8. Repeat p =0 to (RLa-1)

2 if (COAl RPatp | >=n AND COA[ RPatp | <ntl)

10. Repeat q =0 to (CLg-1)

11. if ( COg[ CP+q ] >=m AND COg[ CPs+q ] <m+l)

12. if ( COA[RPs+p] = CO[CPy+q) OR COA[RPA+p]%/=COg[ CPg+q]%!/ )
13. MUL += VLA[RPA+p] * VLg[CPs+q]

14. if (MUL 1= 0)

15. RO[i+1]++, CO[k] =], VL[k] = MUL, k++

16. RO[i+1] = RO[i+1]+ RO[i]

GCRS/GCCS-multi algorithm takes GCRS of A and GCCS of B as input as shown in

Figure 4.6.

RO (012 [4T6 T8 [0112]

A COs[2T3 1115 10 T4 10 [4 [T 13 12 |3
VLoows | L% 125 [306 |7 |18 181519 |12
X
[11]12]

ROgces [0]2 | 'U 6 [9 -

B COqees

VLgees |

A »

= T O . L T
7. |28 [1 |9 |4

4 15 (20 [3 |1
W 126 [10]5

|2 o

ROgers [0 ]2 | 4_’ 6 l 8 _.J__]O “2 |

C COqers

VL(E('RS

A S e e T i

3 L[4 2008 10 |3 [1 [ |2 |4
164303 [30]49]110|64| 11081120

Figure 4.6 Multiplication of Two GCRS/GCCS

(O8] R}

To determine result for element (7)), i'th row from A4 and j’th column from B is chosen. A
partition for specific number of element for a specific chunk is generated with variable m
and n when scanning the clements. After defining the partition, checking is done for

equivalent COx and COy. If the result is non-zero then it is used for constructing resultant
GCRS.
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44  Theoretical Analysis

The cost model for the compression scheme is developed in this section. Theoretical
evaluation is compared with the experimental implementation of Chapter V. Some

definition is important to proceed for detail of analysis.

Density of array. p determines the degree of data sparsity of an array. It is the ratio of
number of non-empty elements with total number of array elements. The maximum value

of data density is one. We can right data density as below

Total number of non—zero elements

Total number of elements

The compression ratio, n is the ratio of the total memory required after compress an array
and the actual size of the array is defined as compression ratio. It can represented as follows

Memory required to store after compression
‘.}’} —

Total size of uncompressed array

Range of usability of a compression scheme is defined as the maximum range of data

density up to which the compression ratio is less than 1.

Improvement over scheme, : It is the ratio of memory required to store after compression
in CRS scheme and GCRS scheme. It is desired to be greater than 1. Formally it can be
expressed as

Compression Ratio for CRS/CCS scheme _ MNcrsjccs

t = =
Compression Ratio for GCRS/GCCS scheme  Ngers/cecs

This section shows the space requirement and hence the compression ratio for
GCRS/GCCS scheme based on G2A. The cost model for the range of usability and
improvement over schemes for CRS and GCRS is shown in section 4.2 and 4.3. Some
parameters are provided as input and some are derived which is grouped as shown in table

4.3. All the lengths and size are in bytes.

Table 4.4  DIFFERENT PARAMETERS FOR THEORITICAL EvVALUATION OF GCRS/GCCS

)

ara o

Description
| meter N

n Number of dimensions

/i Length of dimension 7

/ | Length of each dimension (for simplification /,=hL=5L=...=[ )
1" Total number of elements
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p Data density or sparse ratio of array

p!™ | Total number of Non-zero elements

I Length of G2A Row where /,'=/ WEkIfe
/" | Length of G2A Column where 5,=/""*
Y Size of elements for storing index

o Size of array element

Scrs | Memory required to store in CRS/CCS scheme

Siers | Memory required to store in GCRS/GCCS scheme

4.4.1 Space Requirement of CRS/CCS and GCRS/GCCS

Consider a TMA of n dimension having sparse ratio p and the length of each dimension is /.

The storage requirement is the sum of storage of indexes and the storage of value itself.
Compression Ratio:

Cost of storing indexes in CRS/CCS scheme is the sum of one vector RO having length
I+1, one vector CO having length p/" and »-2 number of KO vector having length p/" for
each. The non-zero values needs storage of p/" 8. So, total storage required for CRS/CCS,
Scre/ces can be shown as below:

Scrsices = Space for RO + Space for CO + Space for VL + Space for (n-2) number of KO
(H1)y+pl"y +pl" 8+ (n-2) pl"y
=4 AL +pl+ (m-2) pl" Yy +pl" B

= § B 0510 304008 cnsnmmisorisaias s s e a e s (4.2)
So. the compression ratio for CRS/CCS,

Memory required to store after compression
n —

Total size of uncompressed array

{t41+(n—-)pl"}y+ pl"é8

h‘i]‘i
1+ .
=otm-ptp [H9=8]
I+1
= ?-b-np

. g lo " +1
=np |forlarge value of / and n, 7 ]
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In GCRS/GCCS scheme, there is no need to store any KO index but increased amount of
index at RO vector which is equivalent to 14+/™12 Thus the total storage required for

GCRS/GCCS. Seicrs/iiecs can be shown as below:
Saersigees = Space for RO + Space for CO + Space for VL
= (1+ /"2y g+ o'y + pI" §
ol 052 ARRE S B 0T (4.3)

So, the compression ratio,

Memory required to store after compression
E Total size of uncompressed array

n+1
{1+£ 2 +p1’”}}'+p!”6

st
n+1
- y2p [ify=3]
n+1
=2p [for large value of / and n, H:? ~ 0]

So, the storage improvement in GCRS/GCCS is linear and independent of data sparsity.
The improvement will be four times for eight-dimensional array and nineteen times for
thirty-eight dimensional array storage. Now, the ratio of improvement over schemes can be

defined as the ratio of compression. The improvement over scheme, ¢ can be as follows

t = Compression Ratio of CRS/CCS + Compression Ratio of GCRS/GCCS

=np+2p

=PD e s s e SRR (4.4)
Range of Usability:

The range of usability of'a compression scheme is defined as the maximum range of sparse
ratio up to which the size of the compressed array is less than that of the size of the original

array. So, the range of usability for CRS/CCS scheme can be defined as follows:
(1 +(n-1)pl" Yy +pl"6<I"$
= p<{I'd—-(+D)y Y l"y-I"y+1I"d)
=>p<d/{(n-1)y+8} [LetI"d-(+1)y=I"8]

=>n<l1/n [ if y=6; for worst case ]
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It shows that the range of usability of CRS/CCS is inversely proportional with the number
of data dimensions (i.e. range of usability decrease with the increase of data dimensions).

Similarly. the range of usability for GCRS/GCCS scheme can be defined as follows:
P+ 1" Dy pl" < S
= p< {8 )y Y I (y +D)
=>p<8/(y+8) [I8-("*+D)y=I"8]
=>p<'a [ify=9, for worst case]

Hence range of usability of GCRS/GCCS is minimum 50% and independent of number of

data dimensions. So, the scheme can also be usable for a wide range of dense data.

4.5 Conclusion

This chapter described GCRS/GCCS scheme to store an n-dimensional sparse array. Total
memory required to store an array depends on data density and independent of number of
data dimensions. The operations on stored data are also shown by matrix operation.
Algorithms ensure the matrix-matrix addition and multiplication operation on stored data.
The experimental result complying with the theoretical analysis shown in this chapter is

described in Chapter V.
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CHAPTER V

Experimental Results

5.1 Introduction

This chapter simulates the algorithms for matrix-matrix addition and multiplication
operation for both TMA and G2A as described in chapter I11. This chapter also shows the
experimental results to store sparse array of different dimensions in CRS/CCS and

GCRS/GCCS schemes of chapter IV.

5.2 Experimental Setup

The construction of prototype system for G2A operations, GCRS/GCCS conversion and

GCRS/GCCS operations are done on a machine having the following specification.

Table 5.1 EXPERIMENTAL SETUP

._ Parameter Specification
| Processor Intel(R) Xeon(R) E5620
' No. of Processor 8

Clock Speed 2.4 GHz

Cache Memory 1406 MB

RAM 32GB

HDD 20TB

Operating System B Linux (Debian 8.2)

Compiler GCC
| Compiler Optimization | None

5.3  Experimental Results for G2A Operations

The array size is set from 10 to 120, 6 to 24 and 4 to 11 for each length of dimension and
number of dimension 4, 6 and 8 respectively in both matrix-matrix addition/subtraction
and matrix-matrix multiplication. The experimental result considered at traditional row

major order looping lor both addition and multiplication. Figure 5.1 shows the execution
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time in milliseconds of algorithms for the matrix-matrix addition on the TMA and G2A
based algorithms(see chapter 11). Experimental results show that execution time is less for
G2A based algorithms than TMA based algorithms. This is because the lower index
computation cost and higher data locality. The improvement due to index computation for
matrix-matrix addition of TMA(n) and G2A as shown in equation 3.1 which shows that if

n and / increase then the improvement 1 will increase which supports remarks 3.1.

The improvement due to data locality of TMA(n) and G2A for matrix-matrix addition
algorithm as derived in equation 3.3. Hence TMA based algorithm has higher cache miss
rate than that of G2A based algorithms. The cache misses has direct influence to the
performance because the processor needs to wait for the next data to be fetched from the
next cache level or from the main memory. Even a single cache miss can degrade the
performance as processor speed outperforms the memory speed. On the other hand G2A
based algorithm improves the data locality that minimizes the cache miss rates. Caches

take advantage of data locality in programs.
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—m- TMA) Addiion -m— TMA(E) Au_mlsnn /
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5 10004 7 Stk /. .
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Figure 5.1 Experimental results for matrix-matrix addition
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Figure 5.2 Experimental performance for matrix-matrix multiplication

Figure 5.2 shows the improved performance for matrix-matrix multiplication of TMA and
equivalent G2A. As of our analysis the improvement is for lower index computation cost

shown in equation 3.2 and higher data locality shown in equation 3.4.

5.4  Experimental Results for generation of CRS/CCS and GCRS/GCCS

The input is taken from secondary memory and the output is also written into secondary
memory. The number of dimensions is set 4, 8, 16 and 32. The length of each dimension
was set such that the input file is less than or equal to 1 TB. The sparse ratio is set 0.01 to

0.15 and o=3=4 for all cases.
5.4.1 Time Requirement

Figure 5.3 show the test results for time requirement for constructing of CRS and GCRS
scheme for n= 4. 8. 16 and 32. This section only shows the experimental result for CRS
and GCRS (row major order). It is clear that storing time increases for both CRS and

GCRS when number of non-zero elements increase.
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Figure 5.3 Time requirement for creating CRS and GCRS of different number of dimensions

Most of the required time is the scanning time or conversion time and index computation
time is negligible to scanning time. Index computation cost increases with increase
number of dimension(equation 2.4). That is why it shows very slow improvement of time
requirement with increased dimensions. It is well known that, for TMA(n), it can be
possible n! loop order for scanning array and ordering of loops highly affect the
performance. But in this experiment, for both case, our loop order was such that most
sequential memory access is ensured i.e (xi. X2, ..., X;) order which ensure most outmost

loop is x; and most innermost loop is x,.
5.4.2 Space Requirement

Iigure 5.4 shows the total size of stored arrays for 4-D, 8-D, 16-D and 32-D arrays (left to

right). Compressed storage increases with the increase in sparse ratio for each specified
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length and dimension shown in Figure 5.4- a), b), ¢) and d). From experimental result it is

clear that the GCRS/GCCS outperform over CRS/CCS which comply with the equation

4.2 and equation 4.3 analyzed in section 4.4.1
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Figure 5.4 Space requirement for CRS and GCRS of different number of dimensions

[t is clearly visible that the requirement of total storage in CRS increases drastically with

the increase in number of dimensions. Sparse ratio of CRS shown in Figure 5.5- a), b), ¢)

and d) are 25.0%. 12.5%. 6.25% and 3.13% respectively (decrease with increase in data-

dimensions). Storage improvement in GCRS over CRS is 2, 4, 8 and 16 times in Figure

5.4-a). b). ¢) and d) respectively. It is also observed that the usable sparse ratio 50% is

same for any dimensional array i.e independent of number of array dimension.
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Figure 5.5 Compression Ratio for CRS & GCRS

Advantages of applying GCRS scheme over CRS scheme are the improvement of about 2,
4. 8 and 16 for 4-D. 8-D. 16-D and 32-D arrays respectively. Finally, Figure 5.6 shows the
improvement over schemes and which is a straight line increases sharply with increase of
the number of dimensions. It is clear that space complexity is very much prominent for

GCRS than CRS when number of dimensions is very high.

Improvement for GCRS over CRS

MNumber of Dimensions

Figure 5.6 Improvement of GCRS over CRS

Experimental result of Figure 5.5 comprises that when number of dimensions increase for
TMA then CRS/CSS schemes become unusable soon. But in case of our proposed
GCRS/GCCS scheme, there is no relation between degree of data sparsity or range of
usability and number of array dimensions. Hence it verified the theoretical analysis in

Section 4.4.
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5.5 Experimental Result for GCRS/GCCS Operations

The sparse ratio is set 0.01to 4 percent for 4, 6 and 8 dimensional array operations in both
matrix-matrix addition and matrix-matrix multiplication. Figure 5.7 shows the execution
time in milliseconds of algorithms for the matrix-matrix addition on the sparse TMA and
GCRS/GCCS. Experimental results show that execution time is less for GCRS/GCCS
until data density is less than or equal to 2%. It seems that matrix-matrix addition
algorithm for GCRS/GCCS is superior to TMA for wider range of data density. But

matrix-matrix multiplication algorithm is superior for highly sparse data.
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Figure 5.7 Experimental results for GCRS/GCCS addition
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5.6 Discussion

This chapter shows the experimental result is described in chapter 3 and chapter4. The
experimental results comply with the theoretical analysis described in individual cases.
For matrix-matrix addition of G2A and TMA, the experimental results are shown only for
equal length of each dimension. It is also experimented by varying length of each
dimension from 2 to 120 and every case, G2A show better performance. The performance
improvement in GCRS/GCCS scheme over CRS/CCS scheme to store an n-dimensional
sparse array is a bit low than TMA and G2A operation. This is because the sparse storage
scheme is implemented in secondary memory and accessing the secondary storage takes

most of the time.
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CHAPTER VI

Conclusions

6.1 Concluding Remarks

Most of the scientific and engineering computing requires operation on flooded amount of
data having very high number of dimensions. This thesis represented a higher dimensional
array implementation as row-column view or matricization. The main idea of the row-
column view or G2A is fitting the odd dimensions allow row direction and even
dimensions along column direction. The performance of matricized representation was
shown and analyzed with matrix-matrix addition, subtraction and multiplication operation.
But when most of the elements of multidimensional array are empty or null then above
representation needs special treatment. Our proposed generalized row/column storage
scheme for compressing higher dimensional sparse array was described. The algorithms
for matrix operation on GCRS/GCCS data were elaborated with interactive figure. It is
shown that the GCRS/GCCS scheme is independent with data dimensions and range of
usability for it is higher than that of CRS/CCS scheme which comply with the theoretical
analysis with simulated results. The performance improvement of GCRS/GCCS is directly
proportional with degree of data sparsity while CRS/CCS performance inversely
proportional with number of data dimensions. For worst case, GCRS/GCCS worked well
for at least 50% dense data. Therefore, the scheme can be applied to the implementation of

higher dimensional array computation, storage and analysis applications.

6.2  Future Scope
The future direction of this research may be summarized as bellow

* The parallel implementation of G2A scheme would be possible as G2A generates a
set of 2-D blocks and each 2-D block is independent of each other to perform the
operation on G2A. For the same independency of 2-D blocks it may be possible to

found the parallel algorithms to store like GCRS/GCCS scheme.
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The G2A is a static structure. It is possible to make the G2A as a dynamic one i.e
extension and reduction of the length of G2A can be made dynamic. This is an

important property of big data technology.

The parallel algorithms can be found for operation of matrix-matrix addition,

subtraction and multiplication on compressed data according GCRS/GCCS scheme.

The scheme can be applied to implement the compressed form of MOLAP server

and schemes are based on G2A.



[6]

7]

8]

1]

[10]

60

REFERENCES

Tamara G. Kolda, Brett W. Bader, "Tensor Decompositions and Applications",
SIAM Review 51(3). pp. 455-500, 2009

Chun-Yuan Lin. Jen-Shiuh Liu, and Yeh-Ching Chung "Efficient Representation
Scheme for Multidimensional Array Operations", [EEE Transactions on Computers,
51(3). pp.327-345. 2002

S. Sarawagi, M. Stonebraker. "Efficient organization of large multidimensional
arrays" In Proc. of 10" International Conference on Data Engineering (ICDE), pp.
328-386. Houston, Texas. 1994

Yihong  Zhao. Prasad  Deshpande, Jeffrey F. Naughton, "An Array-Based
Algorithm for Simultancous Multidimensional Aggregates”, In Proc. of SIGMOD
Conference, pp.159-170, 1997

Sheikh Mohammad Masudul Ahsan, “An efficient implementation scheme for
multidimensional index array operations and its evaluation”, A Masters” Thesis
submitted to Department of Computer Science and Engineering, Khulna University
of Engineering & Technology, Khulna, Bangladesh, Thesis No. CSER-M-1201,
January 2012

Mackale Joyner, Zoran Budimli” ¢. Vivek Sarkar, Rui Zhang "Array Optimizations
for Parallel Implementations of High Productivity Languages" In Proc. of PPOPP,
pp. 1-8, 2008

Emad Soroush. Magdalena Balazinska "ArrayStore: A Storage Manager for
Complex Parallel Array Processing" In Proc. of ACM SIGMOD International
Conference on Management of data, pp. 253-264, 2011

Francisco Heron de Carvalho Junior, Cenez Aratjo Rezende, Jefferson de Carvalho
Silva. Francisco José Lins Magalh™ aes, and Renato Caminha Jua caba-Neto "On
the Performance of Multidimensional Array Representations in Programming
Languages Based on Virtual Execution Machines" In Proc. of SBLP-2013,
LNCS(8129), pp. 31-45,2013

Jun Yan, Ning Liu, Shuicheng Yan, Qiang Yang, Weiguo Fan, Wei Wei. Zheng
Chen “Trace-Oriented Feature Analysis for Large-Scale Text Data Dimension
Reduction™, IEEE Trans. Knowl. Data Eng. 23(7), pp.1103-1117, 2011

E Acar. B Yener. "Unsupervised multiway data analysis: A literature survey”, IEEE
Transactions on Knowledge and Data Engineering 21 (1), pp. 6-20, 2009



61

[11] G. Beylkin, M. J. Mohlenkamp, “Algorithms for numerical analysis in high

[12]

[13]

[14]

[15]

[17]

[18]

[19]

[20]

[22

dimensions™, SIAM J. Sci. Comput., 26 (2005), pp. 2133-2159, 2005

P. M. Kroonenberg, “Applied Multiway Data Analysis”, Wiley, New York, 2008

Jimeng Sun. Dacheng Tao, Spiros Papadimitriou, Philip S. Yu, Christos “Faloutsos:

Incremental tensor analysis: Theory and applications” ACM Transactions on
Knowledge Discovery from Data, 2(3), 2008

B. Christian, M. Urs, “Multidimensional Index Structures in Relational Databases”,
Intelligent Information Systems, 15, pp. 51-70, 2000

Steve Carr, Kathryn S. McKinley, Chau-Wen Tseng “Compiler optimizations for
improving data locality”, In Proc. of the sixth international conference on
Architectural support for programming languages and operating systems, p.252-
262, 1994

Kathryn S. McKinley, Steve Carr , Chau-Wen Tseng . “'Improving data locality
with loop transformations”, ACM Transactions on Programming Languages and
Systems (TOPLAS), 18(4), p.424-453, 1996

Holger Arndt. Markus Bundschus; Andreas Naegele, "Towards a Next-Generation
" el

Matrix Library for Java", 33rd Annual IEEE International Computer Software and
Applications Conference pp: 460-467, 2009

K. M. Azharul Hasan, Masayuki Kuroda, Naoki Azuma, Tatsuo Tsuji, and Ken
Higuchi. "An extendible array based implementation of relational tables for multi
dimensional databases." In Data Warehousing and Knowledge Discovery, LNCS,
Springer Berlin Heidelberg, pp. 233-242, 2005

Ekow I. Otoo. T. H. Merrett. "A storage scheme for extendible arrays." Computing
31.no.1(1983): 1-9

Arie Shoshani "OLAP and statistical databases" Proceeding of the 16" ACM
SIGACT-SIGMOD-SIGART symposium on Principles of databases systems, pp.
185-196.1997

Prasad Deshpande. Karthikeyan Ramasamy, Amit Shukla, Jeffrey F. Naughton,
"Caching Multidimensional Queries Using Chunks" In Proceedings of the ACM
SIGMOD Conference on Management of Data, pp. 259-270, 1998

Michael Steinbach. Levent Ertoz. Vipin Kumar, "The Challenges of Clustering
High Dimensional Data" New Directions in Statistical Physics, pp. 273-309,
Springer Berlin Heidelberg, 2004



[24]

126]

[27]

62

Ekow J. Otoo, Doron Rotem, and Sridhar Seshadri "Optimal Chunking of Large
Multidimensional Arrays for Data Warehousing" In Proc. of DOLAP, pp. 25-
32,2007

Michael Stonebraker, Paul Brown, Alex Poliakov, Suchi Raman "The Architecture
of SciDB" In Proc. of the 23rd international conference on Scientific and statistical
database management. pp. 1-16, 2011

Naser Sedaghati, Te Mu. Louis-Noél Pouchet, Srinivasan Parthasarathy, P.
Sadayappan “Automatic Selection of Sparse Matrix Representation on GPUSs”,
ICS"15, June 8-11, 2015

Tamara G. Kolda, Brett W. Bader, J. P. Kenny, “Higher-order web link analysis
using  multilinear algebra”, in ICDM 2005: Proceedings of the 5th IEEE
International Conference on Data Mining, IEEE Computer Society Press, pp. 242—
249, 2005

Zhaojun Bai, James Demmel, Jack Dongarra, Axel Ruhe, and Henk van der Vorst,
"Templates for the Solution of Algebraic Eigenvalue Problems: a Practical Guide",
SIAM, ISBN: 978-0-89871-471-5 (pp. 315-336), 2000

Nathan Bell. Michael Garland. "Efficient Sparse Matrix-Vector Multiplication on
CUDA" NVIDIA Technical Report, 2008

The X10 Programming Language. “http://x10-lang.org/” retrieved at May 11, 2016
The Julia Language. “http://julialang.org/” retrieved at May 11, 2016

Parallel Programming and Computing Platform, “http://www.nvidia.com/object/
cuda_home new.html™ retrived at May 11, 2016

Ekow J. Otoo, H Wang. G Nimako, "New Approaches to Storing and Manipulating
Multi-Dimensional Sparse Arrays", Proc. of SSDBM'14, 2014

Brett W. Bader, Tamara G. Kolda "Efficient MATLAB computations with sparse
and factored tensors" SIAM Journal on Scientitic Computing, 2007

Chun-Yuan Lin, Yeh-Ching Chung,Jen-Shiuh Liu, "Efficient Data Storage Methods
for Multidimensional Sparse Array Operations Based on the EKMR Scheme", IEEE
Transactions on Computers, Vol. 52, No. 12, pp.1640-1646, 2003

M d. Rakibul Islam, K. M. Azharul Hasan, Tatsuo Tsuji, "EaCRS: An Extendible
Array Based Storage Scheme for High Dimensional Data", Proc. of SoICT 'l1, pp.
92-99, 2011



136]

139]

[40]

[41]

[42]

[44]

[45]

63

Md. Rakibul Islam, “Compression schemes for high dimensional data based on
extendible multidimensional arrays”, A Masters® Thesis submitted to Department of
Computer Science and Engineering, Khulna University of Engineering &
Technology. Khulna, Bangladesh, Thesis No. CSER-M-1502, March 2015

Tatsuo Tsuji, Akihiro Hara and Ken Higuchi, "An Extendible Multidimensional
Array System for MOLAP", Proc. of SAC’06, pp. 503-510, 2006

K. M. Azharul Hasan, Masayuki Kuroda, Naoki Azuma, Tatsuo Tsuji, Ken
Higuchi (2005) “An Extendible Array Based Implementation of Relational Tables
for Multi dimensional Data bases™, In: Proceedings of 7th International Conference
on Data Warehousing and Knowledge Discovery (DaWak’05), Copenhagen,
Denmark. LNCS 3580, Springer-Verleg, pp. 233-242, 2005

K M Azharul Hasan, Tatsuo Tsuji, Ken Higuchi “An Efficient MOLAP Basic Data
structure and Its Evaluation™, Proc. of DASFAA, LNCS 4443, Springer-Verleg, pp.
288-299, 2011

Sk. Md. Masudul Ahsan and K.M. Azharul Hasan "An Implementation Scheme for
Multidimensional Extendable Array Operations and Its Evaluation" In Proc. of
ICIEIS. Part III, CCIS 253, pp. 136150, Springer-Verleg, 2011

Geir Gundersen, Trond Steihaug, "Sparsity in higher order methods for
unconstrained optimization", Optimization Methods and Software, Volume.27,
Issue.2, pp.275, 2012

Zbigniew Koza, Maciej Matyka, Sebastian Szkoda, FLukasz Mirostaw,
"Compressed multi-row storage format for sparse matrices on graphics processing
units", SIAM J. Sci. Comput. 36-2. pp. 219-239, 2014

Michael McCourt, Barry Smith, Hong Zhang, "Sparse Matrix-Matrix Products
Executed Through Coloring"., SIAM Journal on Matrix Analysis and App., 36:1, pp.
90-109. 2015

Chun-Yuan Lin, Huang Ting Y, Che-Lun Hung, “Efficient Strategies of
Compressing Three-Dimensional Sparse Arrays based on Intel XEON and Intel
XEON Phi Environments™ IEEE International Conference on Computer and
[Information Technology, 2015

M. M. Mano, “Digitial Logic and Computer Design”, Prentice Hall, 2005



