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CHAPTER ONE 

Introduction 

This thesis studics the nature of Standard ideal of a lattice. The idea of 

standard ideal in lattice was first introduced by G. Gratzcr and E.T. Schmidt. The 

characterization of standard ideal was lirst introduced by M. F. Jamowitz. It had 

extended the ideal to convex sub lattices and proved many result of homomorphism by 

E. Fried and E.T. Schmidt. 

First we can define inlimum of two ideals of a lattice in their set theoretic intersection 

but supremum of two ideals I and J. In a lattice L is given by 

I v I =(xE L :x:!~ iv j,l vi for some iE 1,1 El). In a distributive lattice, two ideals 

1 and J, the supremum i.e., 1 v I ={i v j:i E l,j E .1, where i,j cxists}. 

But in a general lattice the formula for the suprernum of two ideals is not easy. We start 

in c'1pter one the lemmas which gives the formula for the supremum of two ideals. 

An ideal I of a latticeL is called standard if and only if 1 is standard as all element of 

1(L) the lattice of all ideals ofL. 

That is of any ideals J,L E I(L),1 A (.1 v S) = (IA L) v (IA S) 

Any element of a lattice is standard if and only if it is distributive and modular. Thus, in 

a modular lattice every distributive element is standard. Not only that in a modular lattice 

every standard element is also neutral. Therefore, all ideal is standard if and only II' it is 

both distributive and modular. Since a neutral element n of L is modular if and only if 

1(L) is modular. So every distributive ideal ofL is standard when L is modular and n 

is neutral. 

A congruence of a lattice L is called standard if for some standard ideal SoiL. 

A meet semi lattice together with the properly that any two elements possessing a 

common upper bound have a suprimum. For any two lattice L1 and L21  

a map : L1  —> L2  is called an isotone if for x,y E L any with x :5 y implies 

ço(x) :~ (y), also the above mapping is called a meet homomorphism ii for all x, y c L. 

A y) = (x) A (y). Therefore, meet homomorphism is all isotone and 

(x) v (y) :~ (x v y). Therefore, ço(x) v (y) exist by upper bound property of L2 . 

Chinthayamma Malliah and Parameshwara Bhatta have characterize those lattices, whose 

all congruence are standard and neutral. l-lere we generalize characterization of those 

lattice whose all congruence are standard. 

In this thesis, we have studied several properties of Standard ideal of a lattice. Moreover, 

we give several results on Standard ideal of a lattice which certainly extend and 

ger'eralize many results in lattice theory. 



In Chapter two, we have discussed ideals, congruence, length and covering 

COfl('i .ons, For any subset K of a lattice L, (K] denotes the ideal generated by K. 

Infiniuni of two ideals of a lattice is their set theoretic intersection. supremum of 

two kals I and J in a lattice L is given by 

I V J= I v J = {X e LIX :5 i v j for some I 1,1 E I). Corn ish and Hickman in [3] 

showed that in a distributive lattice L for two ideals I and J, 

I v I = {i v j : I e 1,1 E J, where Iv / exists}. But in a general lattice the formula 

for the suprernum of two ideals is not very easy. Which are explain with some examples 

and generalized many theorems of them. 

In Chapter three, Standard and Neutral elements of a lattice and Traces have 

been discussed. Standard elements in lattices were first studied in depth by,  Gratzer and 

schmid [15]. Since then little attenton has been paid to these notions. A lower Semi 

lattice is said to have the upper bound property if the suprcnium of any two elements 

automatically exists when they share a common upper bound. According to Gratzer and 

4 Schmidt [15] ifa is an element of a lattice L then, 

(I) a is called distributive if' 

(av (rAs) = (avr) A (ays) for all r,s L; 

a is called standard if 

' A (s V a) = (r As) V (r A a) fir all r,s E L; 

a is called neutral if the sub lattice generated by ,•,s and a is distributive for all 

1,] E L 

i.e., (aAr)v(rAs)v(sAa)r(avr)A(rA.$)A(svc,)fbrall r,sEL. 

Standard and Neutral elements are essential for the further development of standard 

ideals. 

In chapter four we give a description of Prime ideals, minimal prime ideals and 

noniiaiWc have also studied Minimal prime ii-  ideals of' a lattice, We give some 

characterizations on minimal prime n-ideals which are essential for the further 
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development of this chapter. Here we provide a number of results which are 

generalizations of the results on Normal and generalized Normal lattices. 

In chapter five we studied relatively pseudocomplemented of a lattice. We have 

also studied Multiplier extentions of pseudocomplemented lattices. These have been 

studied by Cornish and l-Iicman [3] and many other authors. I lere we extend several 

results of Cornish and Hicman to lattices. 

Pseudocompleniented distributive lattices satisfying Lce s identities l'orm educational 

subclasses denoted by B, - I :!~ ii :!~ w. Cornish and Mandelker have studied distributive 

lattices analogues to B1  -lattices and relatively B-lauices. Moreover, Cornish. I3cazer 

and Davey have idependently obtained several characterizations of sectionally B,,, 

lattices and relatively B lattices. 

These have been studied by Cornish and 1-licman and many other authors. Here we 

extend several results of Cornish and Hicrnan to lattices. 
A. 

Chapter six introduces the concept of standard ideals, homomorphism, kcrncls,which 

have been studied by Gratzer, Schmidt and many other authors. We have given a 

characterization of standard ideals also characterise in a lattice every standard ideal in a 

homomorphism kernel of at least one congruence relation. Noor [32] has introduced the 

concept of standard n- ideals of a lattice. We conclude this thesis with some more 

properties of standard and neutral ideals, which are the basic concept or this thesis. 

le 

A 

.4'  
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CHAPTER TWO 

IDEALS AND CONGRUENCES OF A LATTICE 

Introduction: The intention of this Section is to outline and lix the notation for some the 

concepts of lattices which are basic to this thesis. We also formulate some results on 

arbitrary lattices for later use. For the background material in lattice theory, we refor the 

49 render to the text of Brikhoff [11], Gratzer [12], Rutherford [34],1'alukder and Noor [39] and 

Khanna [22]. 

By a lattice L , we will always mean a lower semi lattice which has the property that 

any two elements possessing a common upper bound, have a supremun. Cornish and 

Hickman [3] referred this property in their analysis as the upper bound property and a 

semilattice of this nature as a semilattice with the upper bound property. We shall see later, 

the behavior of such a semilattice is closer to that of a lattice than an ordinary semilattice. 

For the sake of brevity, we prefer to use the term lattice in place of semilattice with the 

upper bound property. 

The upper bound property appears in Gratzer and Lakser [13], While Rozen 35] 

shows that it is the result of placing certain associativity conditions on the partial join 

operation . Moreover, more recently Evans [9] referred nearlattices as coiditional lattices. 

By conditional lattice he means a lower semilattice L with the condition that for each 

xc L, {ye L/ y :!~x} is a lattice; and it is very easy to cheek that this condition is equivalent 

to the uppi bound property of L. 

Whenever a lattice has a least clement we will denote it by 0. If x1  , x-)  
A 

are elements of a lattice then by x1  v x2  v ......x,?,  we mean that the supremum 

of x1  , x2  ......x,, exists and x 1  , x2  ...... x,, , is the symbol denoting this supremum 

4 



2.1 LATTICE 

A non empty subset k of a lattice L is called a sub lattice of L if for any a, b E k both 

a A b and a v b (whenever it exists in L) belong to k (A and v are taken in L ) and the A 

and v of k are the restrictions of the Aand v of L to k. Moreover, a sub lattice k of a 

lattice L is called a sublattice of L if a v b E K for all a,b E K . A lattice L is called 
k 

modular if for any a, b, c e L with c :5 a, U A (b v c) = (a A b) v c whenever b v c exists. 

A Lattice L is called distributive for any x, x1  , x2  ...... 

xA(x1  v x2  v x3 )v ......v x, (xA x1 )v(x A x2)v ...... (xv x,,), 

whenever x v x1  v X2 v ......x, exists. Notice that the right hand expression always exist by 

the upper bound property of L. 

Lemma 2.1.1: A lattice L is modular if and only if (x] ={yE L /y:!~x }is a modular 

lattice for each x E L. 

Consider the following lattices: 

e 

 

F1 

   

4 

b C 

a C 

    

Figure-2.1 Figure- 2.2 

Hickman in [19], [20] has given the following extension of a very fundamental result of 

lattice theory. 

10 
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Theorem 2.1.2: A lattice L is distributive if and only if L does not contain a sublattice 

isomorphic to N5  or M5. 

Now we give another extension of a fundamcntal result of lattice theory. 

Theorem 2.1.3: A lattice L is modular if and only if L does not contain a sub lattice 

isomorphic to N5. 

Proof: Suppose L does not contain any sub lattice isomorphic to N 6 , then (x] does not 

contain any sub lattice isomorphic to N 5  for each x E L .Thus, a fundamental result of 

lattice theory says that (x] is modular for each x E S as (x] is a sublattice of L. 1 Icncc L is 

modular by Lemma 2.1.1. 

Conversely, let L be modular. If L contains a sub lattice isomorphic to N 5 , then letting e as 

the largest element of the sub lattice. We see that (e] is not modular [by lattice theory]. 1'hus, 

by Lemma 2.1.1 is not modular and this gives a contradiction. This completes the prool 

In this context it should be mentioned that many lattice theorists' e.g Balbes [2] 

Varlet [39], Hickman [20] and Shum [34] have worked with a class of semi lattices L 

which has the property that for each x, a1  , a, ,--------, a E L, 

if a1  Va 2  v — — — — — — — — — — va,.exists 

then (x A a1 )v (x A a2 )v --------v(x A ar ) exists 

and equals xA(a1  Va2  v ---------va,). 

R. Balbes [2] called them as prime semi lattices while D.E. Rutherford [34] referred them 

as weakly distributive semi lattices LI 

Theorem 2.1.4: Let <R+> be a ring and L be the set of all ideals of R. Then (L ?) 

forms a lattice, where for any A, B E L, A A B = A n B 

and AvB=A+B<AuB< then L ismodular. 
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Proof: Let A, B, C E L be any three nienbcrs with A D B. 

We claim An(B+C)=B=(AnC), 
I 

Letx e A n(B + C) be any element. Thcnx E/i andx E B -i-  C => XE ii 

and x=b+c,bEB,cEC.NowbE B A,b+c=x€ A. 

Thus,(b+c)—bEA = (c+b)—bEA orthatcEA=xeAnC 

i.e., x=b+c,bEB,cEAC.Thus,xEB+(AflC) i.e An(B+C)cB+(AC) 

Again by modular inequality (which holds in every lattice) A n (B + c) Q B + (A n C). 

Hence An(B+C)=B-i-(AnC). 

L is a modular lattice fl 

Theorem 2.1.5: The normal subgroups of a group ordered by set inclusion lrm a 

modular lattice. 

Proof: Let G be any group and L be the set of all normal subgroup of G . Then L # Q as 

G E L(L ) is then a posct. For any A, B e L, let A A B = A n B which is well delined as 

intersection of two normal subgroups is a normal subgroup and of course. A n B is the 

largest subset of A and B. 

A Again, define A v B = AB. Which is also well defined as AB is a normal Subgroup. 

Whenever A and B are normal. Also A AB, B c AB (as a E A => aa = ac E i1B ctc). 

That AB is the smallest normal subgroup containing A and B is also trivially seen to be 

true. Indeed if C is any normal subgroup containing A and B, then AB (-- (' 

(xEAB=x=abeC as a€AcC,beB(--C). 

Finally to check the modularity condition. 

Let A, B, C E L with A B be any members we show A A (B v c) = B V (/1 A c) 

7 
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i.e A ti(,' = a(A n c). Let x E /1 BC be any clement. 

Then x E A and x E BC 

=bEB,cEC s.tx=bc 

xeA=bc€A also bEBAb EA. 

Thus b'bcEAcEA='cEAnC 

SobEB,cEACbcEB(ArmC)xEB(AnC). 

AgainifyEB(ArC),then y=bk where bEB,keAnC. 

NowheBA,k€Abk€A. Also bEB,kECbkuBC. 

Thus, bkEAmBCB(ArC)cAnBC 

Hence AnBC=B(ArC) ii 

Theorem 2.1.6: Any non modular lattice L contains a sub lattice isomorphic with the 

pentagonal lattice. 

Proof: Since L is non modular 3 at least three elements a, b, c with a ~! h, 

s,t aA(bAc)#bv(aAc). 

We must I-ave a > b, and as in any lattice the modular inequality 

a b, a A (b A c) (b V QV c) holds, 

weget aA(bvc)>-bv(aAc) 

Consider the chain 

aAc:5bv(aAc)-<aA(bvc):!~-bvc .......(i) 

We show at all places strict inequality holds. 

Suppose aAc=bv(aAc).Then b:~aAcbvc:!~(aAc)vc. 

4 
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avc 

U A (b 
C 

 

a c 

 

by (a A c) 

Fig-2.3 

=' by c :5 c v c =' b v c = c 

=aA(bvc)=aAc , a contradiction to(i). 

Thus, aAc<bv(aAc). 

Similarly, aA(bvc)<bvc. 

Hence chain (I) becomes 

aAC<bV(UAC)<UA(bVC)<bvc -------------  (2) 

Consider now the chain a A C :!~ c :5 b v c. 

As seen above b v c = c leads to contradiction and 

similarly, a A C = c would give a contradiction. 

Hence U A C <c <b v c 

we show c does not lie in chain (2). For this it is sufficient to proved that c is not 

comparable with a A (b v C). 

Supposea A (b V c) c. 

a A (a A (b v c)) :!; a A C 

' Cl A (b V C !~ U AC 

a contradiction to (2). 

Again, ifaA(bvC)>c, thenas a~!aA(bvc). We find a>c 
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which gives U A C = c a contradiction to (3). 

Hence the chain (2) and (3) form a pentagonal subset 

S={aAc.15v(aAc),aA(bvc),bvc,c} of L. 

We show now this pentagonal subset is a sublattice for that meet and join of any two 

elements 'i' S should lie inside S. Mcci. and join of any two comparable elements being 

one of them is clearly in S. 

So we need to check it for only non comparable elements. 

Now [a A (b v c)]A c =a A [(b v c) A c}=a/\ CE S. 

Also[aA(bvc)vc]~{bv(aAc)]vc by(2) 

=bv [(a A c)c] =b V c 

andaA(bvc):!~bvc gives aA(bvc)vc:~(bvc)vc=bvc. 

Thus, [aA(bvc)]vc=bvcES. 

Similarly, 

wecanshow [bv(aAc)]vc=bvcES 

v (a Ac)] Ac=a A CE S. 

Hence S forms a sub lattice of L. Proving our assertion (1) 

Hickman in [20] has defined a ternary operation j by j(x, y, z) = (x A )I) v (y A:) 

on a lattice L (which exists by the upper bound property of L). In fact he has shown that 

(also see Lyndon [24], theorem 4]) the resulting algebras of the type (L ; j) form a variety, 

which is referred to as the variety of join algebras and following are its defining identities. 

y 
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(i)j(x, x, x) = x 

(ii)j(x, y, x) = j(y, x, y) 

(iii)j(j(x, y, x), z, j(x, y, x) = j(x, j(y, z. y), xO 

(iv)j(x, y, z) = j(z, y, x) 

(v)j(/(x,y,z),j(x,y,x),j(x,y.:) 

(vi)j(j(x,y,x),y,z) = j(x,y,x) 

(vii)j(x, y, j(x, z, x)) = j(x, Y.  x) 

(viii)j(j(x, y, j(w, y, z), j(x, y' j(x, y, z)) = j (x, y,:) 

We do not want to elaborate it further as it is beyond the scope to this thesis. 

We call a lattice L medial lattice it for all x, y, z e L, 

m(x, y, z) = (x A y) v (y A z) v (z A x)cxists. For a (lower) semitattice S. if ,n(x. y. z) 

exists for all x, y, z E S , then it is not hard to see that S has the upper bound property and 

hence is a lattice. Distributive medial lattice were first studied by Sholander in 1361 and 

recently by Evans in 19 
. 

Sholander prcferaed to call these as median semi lattices. 'l'here 

be showed that every medial lattice L can be characterized by means of algebra (s;m) of 

type <3 > known as median algebra, satisfying the following two identities: 

(1) ,n(a,a,b)=a. 

(ii) ,n(m(a, b, c), in(a, b, d), e) = m(nz(c, d, e), a, b) 

A lattice L is said to have the three properties if for any a, h, c € L, i v b v c exists, 

whenever a v b,b v c and cv a exist. Lattice with the three properties were discussed by 

Evans in [9], where he referred. It is strong conditional lattices. 

The equivalence of (i) and (iii) of the following lemma is trivial, while the proof of 

(i) => (ii) is inductive LI 

Lemma 2.1.7: For a lattice L the following conditions are equivalent. 

L has the three properly. 

Every pair of a finite number n~:3) of elements of L possess a supremum ensures the 

existence of the supremuin of all the n elements. 

0 



2.2. IDEALS OF LATTICES 

A non empty subset I of a lattice L is called an ideal if it is hereditary and closed 

under existent finite suprcma. We denote the set of all ideals of L by 1(1-). Ii L has a 

smallest element 0 then 1(L) is an algebraic closure system on L , and is consequently an 

algebraic lattice. 1-lowever, if L dose not possess smallest clement then we can only assert 

that 1(L) u {Ø} is an algebraic closure system. 

For any subset K of a lattice L, (K] denotes the ideal generated by K. 

Infimum of two ideals of a lattice is their set theoretic interscction.Supermum of two ideals 

I and I in a lattice L is given by 

I v I = (x E LIx :!~- I v j for some 1 E I,] c= J) . Cornish and 1-Iickman in [3] showed that 

in a distributive lattice L for two ideals I and I. 

I v .1 = v jI I e 1,j E I, where i v / exists}. But in a general lattice the formula for 

the suprernum of two ideals is not very easy. We start this section with the Ibilowing lemma 

which gives the formula for the suprernum of two ideals. It is in fact Gragter [11, p-541  for 

partial lattice. 

Definition (ideal): A sub lattice I of a lattice L is called an ideal of L if I e I i and a E L 

implies that U A I E I 

Equivalently, a non empty subset I of a lattice L is an ideal if 

(I) a,bE1,avbEl 

(ii) a e] and I E= L implies that U A I E I. 

13 



Let L = { l,2,3,5,6,10,15,30} bc a lattice of factors of 30 under divisibility. 

q 15 

Figure-2.5 

Then {1}, t1,2}, {1,3},{1,5}, {1,2,5,10}, {1,3,5,15} ,{1,2,3,6}, {1,2.3,5,6,10,15} are all the 

ideals of L. 

Lemma 2.2.1: Let I and J be ideals of a lattice L. LetB0  =IJ, 

B,1  ={xe L/x:!~yv Z;v exists and y,zE B,, 1 } for n= 1,2,3 ............and K= U 1311 . 
ii=0 

Then K = I v J. 

Proof: Since B. g B,  C B2 , K is an ideal 

containing I and J. Suppose I-I is any ideal containing I and J .Of course, B()  H. We 

proceed by induction. Suppose B,, 1  c H for some n ~: 1 and let x E B,1 . Then x :!~ y v z 

withy, z € B 1  sinec B,,_1  c H and H is an ideal, y  v z e H and x E H. That is 

-% B111  c I-I for ever n. Thus, K = I v .1 [1 

Lemma 2.2.2: Let K be a non empty subset of lattice L. Then (K] = U {B / n ~i 0}, 

where B0 ={lEs/t=i(k1 ,1,k2),forsomek1,k2 EK}and B,,= {iELIi=j(a1 ,1a2 ) 

for some a,a2 EB,11 } for n>1. 

14 



Proof: For any k E K , clearly K = .J(k. k, k) and so K ç  B1, similarly. for any a E I3, 

a = j(a, a, a) a implies that B,,_ 1  c B,,, Thus, 

Kc:B0 cB1  c — — — — — cB,, ----------- 

Let tE U A,1 ; n = 0,1,2,3,-------- , and 1 E S such that t ~! 1. Then / E B,,, 
,,=0 

for some in ~: 0 clearly, z = j(l,t ,i)t1 and sot1  E . Thus U B,, is hcrcditary. 

Now suppose, 11,12  E U B,, and , I  v i exist. Let 1 G B and/ 2  E B, for some r.s ~! 0 
,z=0 

with r :!~ s (say).Then 1 ,t2  E B, and t v '2 = A115ti v 1,,!) says tl v 1 E 

Finally, suppose H is an ideal containing K. lfxE B 

Then x= j(k 1 ,x,k 2 )=(k 1  A x)v(k 2  v x)for some k 1 ,k 2  E K. AsK c H and II is an 

ideal, K, A X, K 2  A X, E I-I and so x E H. Again we use the induction.Supposc  

for some, ~: 1. Let XE B,, so thatx = j(a1 ,x,a2 ) for some a1  ,a2  E 

Then x E H as a1  , a2  E H and x = (a1  A v (a2  A 

Lemma 2.2.3: A non empty subset K of a lattice L is an ideal if only if XE k whcncvcr 

xis anelementof L such that x=j(k,x,k2 )for same k1 ,k 2 ,E K. 

Proof: Since the only if part is of obvious, suppose X E k whenever x is an clement of S 

and X = j(k , X, k 2 ) for some k, , k 2  E K. Then clearly B0  (of Lemma 2.2.2) ç  K. Now for 

any x E B1 , x = (a1  , X, a2 ) for some a1  , a 2  E B0  E K .Thus x E K and so B, gK. 

Hence using induction. 

We obtain that (K I = U B,, ç K, i.e  K = (K]. Therefore K is an ideal 
,,=0 

We now give an alternative formula for the suprernum of two ideals in an arbitrary 

lattice. 
-4 
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Leiiiina 2.2.4: For any two ideals K 1  and K 2  , K 1  v K 2  = U 11 1  •whcrc 
',() 

B0  ={xe L/x=j(k,k,k 2 ),k, e K 1 } and B,, ={xe L/x=j(h1 .x,b 2 ),h 1 b 2  e and 

n=O, 1,2................ 

Proof: K,  5  K 2 g BO  g B1c: ..........  c:B,, 1 cB,,c:........... 

Suppose b e U B,, and b1  :!~ b ; be L. Then be B,, for some in ~! o. Also b1  = j(h,b1  . h) 
n=0 

and so b1  e B,,,+  Thus U B,, is hereditary. Now suppose exists e U B,, . such that 

ti  v 2  exists. Then there exist r' >— 0 Such that i e B1  and 12  e B If I . Then 1 1.12 e B1  

and t v/2 =j(1,11  vt2112 ) implies that t v17  e B1+ . 1-lence U B,, is an ideal. 
,s=0 

Finally, suppose H is an ideal containing K 1  and K 2 . lfxe B,, then 

x j(k 1  x , k 2 ) = (k 1  A x)v (k 2  A x) for some k,  e K and k 2  e K 2  since 1-1 is an ideal and 

K 1  , K 2  c H. Clearly x e H . Then using the induction on n it is very easy LU see that 
-11 

1-1 B,, for each n [1 

Theorem 2.2.5: Cornish and Hickman [3,Theorem 1.1]. 

The following conditions on a lattice L are equivalent: 

L is distributive. 

For any H e 1-1(L), 

(H]={t/h1  v — — — — — — —  vh,, /h -----h,, eH. 

y (iii) For any l,J e J(L) , I vJ={a1  v ..... . ........ v a Ia1  ................ a El vl} 

.J(L) is a distributive lattice. 

The map f : H —* (1-I] is a lattice homomorphism of H(L) onto J(L) (which preserves 

arbitrary suprema). 
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Observe here that (iii) of above could easily be improved by 2.2.4 to (iii). 

Forany J,feJ(L),IvJ={ivjliEl,jEJ}. 

Let j1  (L) form hence forth denotes the set of all finitely generated ideals of a 

lattice L. Of course J (L) is an upper subsemilattice of .1(s) 

Also for any x1  , x2 . .............. x,, E L(x 1  , x2 . ...............  x,  ) is clearly the supremum of 

(x1]v(x2]v..................................... 

When L is distributive, 

(x1, x2......... 
= ((x]v(x2 ]v .................v (x,,,])n((y1 Jv (y2 ] .......................... v (yb]) = U  k  A y,) for 

1 .1  

any x1  , x2 .............x,,,, y1 , .. .................  y,, € L (by 1,2.5) and so J1(L) is a distributive sub 

lattice of J(L). c.f Cornish and Hickman [3]. 

A Lattice L is said to be finitely smooth if the intersection of two finitely generated 

ideals is itself finitely generated. For example, (i) distributive lattice, (ii) finite lattices, (iii) 

lattices, which are finitely smooth. Hickman in [20] exhibited a lattice which is not finitely 

smooth. 

By Cornish and Hickman [3], we know that a lattice L is distributive if and only ii 1(L) 

is so. Our next result shows that the case is not the some with the modularity. 

Theorem 2.2.6: Let L be a lattice. If 1(L) is modular then L is also modular but the 

converse is not necessarily true. 

Proof: Suppose 1(L) is modular. Let a, h, c E L with c ::~ a and b V c exists. 

Then (c] g (a]. Since 1(L) is modular, so [a A (b v c) = (a] A ((b] v (c] 

= ((a] A (bj) v (c] = (a A b) v c]. 

Thus implies that a A (b v c) = (a A h) v c, and so L is modular, 

Ltticc L of fiurc 2.5 shows that the converse of this result is not true. 

17 
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a, 

0 

Fig 2.6 

Notice that (rl is modular for each r E L . But in 1(L) clearly {(O],(a1 ],(a1 ,y],(a,h], L} is 

a pentagonal sublattice. 

A filter F of a lattice L is a non empty subset of L such that if Jf2 F and x€ L with 

f1 :!~ x , then both f1 A  f2 and x are in F. A filter G is called a prime filter if G # L and 

at least one of x1  , x2. ............ ..x is in G whenever x1  v x2 .............v x,, exists and is in U 

An ideal p is a lattice L is called a prime ideal it P # L and x A y E P implies x E P or 

y e P. It is not hard to see that a filter F of a lattice L is prime if and only if L - F is a 

prime ideal. 

The set of filters of a lattice is an upper semilattice; yet it is not a lattice in general. as 

there is no guarantee that the intersection of two filters is non empty. 

The join F v F2  of two filters is given by 

F vF2  ={tEL/t~:f 1  Af2  forsorne j (=- F1 ,f2  €F2 }. 

The smallest filter containing a sub semi lattice H of L is {t E L h for some Ii E 11 } 

and is denoted by [H). 

Moreover, the description of the join of filters shows that for all 

a,beL,[a)v[b)=[aAb) U 
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1o11owing theorem and corollary is due to Noor and Rahman 1 24  1 which is an extension 

of a well known theorem of lattice theory. 

JL 
Theorem 2.2.7: Let L be a lattice. The following conditions are equivalent. 

L is distributive. 

For any ideal I and any filter F of L such that I A F = , there exists a prime ideal 

PJPI and disjoint from F. 

Corollary 2.2.8: A lattice L is distributives if and only if every ideal is the intersection 

of all prime ideals containing it. 

Theorem 2.2.9: A lattice L is modular if and only if the ideal lattice of L is modular. 

Proof: Let the lattice L be modular. 

Also let A, B, C E 1(L) be three members s.t B A. 

We show Ar'(BvC)=Bv(AnC). 

Let x e A A (B v C) be any element. 

Then XEA and xEBvC 

xEA and x:!~bvc for some bEB, eEC. 

Since bEBçA,XVbEA. Let xvb=a 

Nowx :5 b v c,x :5 a => x :5 a A (b v c) 

x :!~ b v (a A c) as a ~! b' and L is modular 

Again a A c:!~a,aE A => aAcEa. 

QAC:!~C,CEC=aACEC 

Thus atc ArC and as be B, we find xc Bv(AnC) 

i.e An(BvC)cBv(Ar'C) 

B v (A n C) c A n (B v C) follows by modular inequality or to prove it independently. 

Let yEBV(AC). 
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Then y :!~, h v k where h E B, k (= (A n C) 

Thus y:~bvk(bEBA,kEJ1hvkE/1bvkEJ1yE,J 

-41 
Also y:,--- I'vk,bEB,kECyEBvC 

i.e., yEAr(BvC) 

Showing that B v (A C) ç A n (B v C). 

1-lence A A (B u C) = B A (A n C) of that 1(L) is modular. 

Conversely, let 1(L) be modular, since L can be imbedded in to 1(L), it is isomorphic to a 

sub lattice of 1(L). This sub lattice must be modular as 1(L) is modular. 1-lence L is 

modular Li 

Lemma-2.2.10: Union of two ideal may not be an ideal. 

Proof: Let us suppose two ideals A = {1,2} B = {1,3} of a lattice L = {l,2,3,4,6,l 21 under 

divisibility. But A u B is not an ideal, because 2,3 E A u B but 2 v 3 = 6 o A u B 

Theorem 2.2.11: Every convex sub lattice of a lattice L is the intersection of an ideal and 

a dual ideal. 

Proof: Let S be a convex sub lattice of a latice L. Also let A = {x E L 3s E S, x :!~- S. 

Then A # q as S ç A. Notice s :5 S V s E S. 

We show A is an ideal of L. Let x, y E A be any elements. 

Then, there exist S,S ES, such that x :!~ 5, ,y :!~ S2 

xvy s,vs2 xvyEAass,vs2 ES. 

Again let x E A and I E L any elements. Then x :!~ S for some s E S. 

NOwxA/:!~x:!~s => XAIEA. 

Hence A is an ideal of L. 

Let A' ={xeL/3sES,s:!~x} then by duality it follows that A' isadual ideal of L. 
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We show S = A r A' S c A im A' (by dcl' of A and ii' ). Let I G A A A' . Then I A and 

I E A' 
-4' 

B s1 ,s2  €S, such that s, :!~ I,I:!~ s2 i.e., s, :~I:~s2 , IE[s, , s2 S S is Co"" 

sublattice, s1  , s2  E S, [s, , S2 ]:!~ S=> t e s=> a A A' S. 

Hence S=AnA' LI 

Theorem 2.2.12: Dual of a modular lattice is modular. 

Proof: Let L be a modular lattice. Let a, b, c e L, since L is modular. 

y (b A c)= (av b) A(av c) V a,b,c,e L. 

Now we have to show that dual of L is modular 

i.e., aA(ovc)=(a Ab) v (a Ac) V a,h,c,EL'. 

1-lere L' is the dual of L. Let a, b, c e L' be any there element, then 

(aAb)v(aAc)= [(aAb)vaA[(aAb)vc] 

= aA by [(a A b) V c] 

= aA[(cva)A(cvh)] 

= a A (c v a) A (cv b) 

= a A (b V c). 

Therefore, L' is modular. 

Hence dual of a modular lattice is modular LI 

Theorem:2.2.13 L is distributive if the identity 

(xAy)v(yAz)v(zAx)xvy)A(yvz)A(zvx) holds in L. 

Proof: Let L be a distributive lattice. Then 
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(rvy)A(yvz)A(zvx)={xA[()'vz)A(zvx)}v{yA[(yvz)A(zvx)] 

= {x A (z v x) A (y v z)j v LtYA)Y v z) A (z v x)J 

=[x A (y v z)]v [y A (z v x)] 
41 

=(x A y)  V (x A z) V (y A z) V (y A x) 

=(xAy)v(yA z)v(z Ax). 

Conversely, we first show that L is modular. 

Let a, b, c be any three elements of L with a > b .Then 

U A (b V c) =[a A (a A c)] A (b v c) 

=(a v b) A (a v c) A (b v c) 

=(a v b) A (b v c) A (c v a) 

=(a A b) v (b v c) v (c A a) 

=(b v (b A c)) v (c A a) 

= by (a Ac) 

i.e., L is modular. 

Now for any x,y,ze L, 

XA(yVZ) =[xA(xvz)]A(yvz) 

=[x A (x v y) A (x v z)]A(y vx) 

= xA[(xAy)v(yAz)v(zAx) 

= X A (y A z) v (x A y) v (z A x)] 

Now using modularity, as x~:XAy, X~!ZAX gives x~!(xAy)v(zAx), 

we get xA(yvz)=[(xAy)v(zvx)v(yAzAx) 

- =(xAy)v[(zAx)v[(zAx)Ay]j 

(x A y)  v (z A x) 

Hence L is distributive U 

Theorem 2.2.14 : Every distributive lattice is modular, but not conversely. 

Proof: Let us suppose that L is distributive and x, y, z E L. 

Therefore,xA(yvz)=(xAy)v(xAz) Vx,y,z,EL,Let x~:y.Then 
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XA(yVZ) =[xA(xvz)]A(yvz) 

= (xvy)A(xvz)A(yvz) 

= (xvy)A(yvz)A(zvx) 
-4- 

(x A y) v (y  A z) v (z A x) 

= (y v  (y  A z))v (z A x) 

=y v(x A z). 

Therefore, L is modular. 

Conversely, from the Fig the lattice M 5  is net distributive, but it is modular. 

U 

a c 

re: 

Fig-2.7 

Notice aA(bvc)=a , whereas (aAb)v(aAc)=O 

I.e., aA(bvc) # (aAb)v(aAc). 

Hence the theorem U 

Theorem 2.2.15: Any chain is a distributive lattice. 

Proof: Let x, y, z be any three members of a chain. 
4- 

Then any two of these are comparable. 

Suppose x!~-y, x~:z, y<z. 

Then x:!~,y z:5x => x=y=z. 

Thus xA (y  v z)x (x A y) v (x A z) 

If x :!~ y,x ~! z,z 5y, 

then z :5 x, x :!~ y, z :!~ y. Thus 
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XA(yV :)= XAy x 

(xAy)v(xAz) = xvz=x 

- One can check that under different cases (x :!~ y, x :~z; x :!~ z, x~: y, x ~y, x the 

condition of destructivity holds and thus a chain is always a distributive lattice 

Cor: A ron modular lattice contain at least five elements or a lattice with up to four 

elements is always modular. 

Remark: It is possible that we may have a modular lattice which contains a pentagonal 

subset. Consider for instance, the lattice L of factors at 240. The lattice is given by the 

diagram. 

240 120 60 30 15 

< 24 

/2N>40  /PN20//N>1 5 

48 1 ô 

2 1 

Fig-2.8 

We notice S = {2,6,10,12,60} is a pentagonal subset of L but not a Sub lattice For in L. 

10 v 6 = 30 # S 10 v 6 = 30 # S. Again L is modular, as it is cardinal product of three 

chains, 

4 A = {0 < 1 <2 <3} B = {0 <l} C = {0 < 11 and a chain being modular gives product of 

chains to be modular. 

Theorem 2.2.16: A lattice L is modular iff it does not contain a pentagonal sublattice. 

Theorem 2.2.17: A modular lattice is non distributive ill it contains a sublattice 

isomorphic with M5. 

Proof: Let L be a modular lattice which is not distributive. We know in any lattice. 

(aAb)v(bAc)v(cAa):!~(avb)A(bvc)A(cva) Va,b,c 
-k 
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Again a lattice is distributive itT the above is an equality. 

Hence as L is not distributive 3 at least three elements a,b,c in L , such that 

(a A b)v (b v c) v (c v a) :~,(avb)A (hvc)A(cva) 

Let p=(avb)A(bvc)A(cva) 

q = (a A b) v (b A c) v (c A a) 

Then q<p. 

Consider now the tree elements 

r=pA(qv a)=qv(pAa) 

s = p A(q v b)=q v (p A b) 

1= pA(q vc)=q v(pAc). 

Then by definition of r,s,t we find q :!~r :!~ p, q :5:s !!~ p, q ::~1:!~- p............(1) 

we will show p, q, r, s,I form a sub lattice of L, isomorphic to M 5 . 

Now 

rAs={pA(qva)}A {pA(qvb)j 

=p A (q V a) A(q V b) 

=p A[a V (b A c) A {b V (c A a)}} 

As q =(a A b) v (b A c) v (c A a) (using absorption) 

qva=av(aAb)v(b Ac)v(cAa)=av(bAc)v(cA a) 

=av(c Aa)v(b A c)=a v(b Ac) 

Similarly avb=bv(cAa). 

Thus rAs=PA[(cAa)v(av(bAc)Ab11 

As a v (b A c) > a ~: a A c and using modularity. 

i.e., rAs=pA[(cAa)v{bA(bAc)bva}] 

=pA[(cAa)v(bAc)v(bAa) I 

=pAq=q. 

By duality we can say that r v 

Thus rAs=q<p=rvs andalsothen r#s 

25 



(indeed r s = P As = s q,r v .s = s = p or /) = q 

By symmetry, we can say 

S At = q <p = S Vt 

I A! = q </) = I V r 

And S#I,I#r 

r"2 t  

Fig-2.9 

We now show equality does not hold in (1). 

Suppose q = r thenas q:!~s:!~p , we get r:5srAs=r, 

rvs=s,p=s. 

Similarly, q ::~ I :!~ p gives r < I 

r At = r, r 'it = I, p = I 

or that s = I , which is not true. 

Similarly, other equalities do not hold in (1), 

Hence q<r<p,q<s<p,q<I<p. 

Combining all the results prove above it is obvious that (p,q,r,s,I) forms a sub lattice, which is 

isomorphic to M 5  Conversely, let L be a lattice which has a sub lattice isomorphic to M 5 . 

Then L cannot be distributive as M 5  •is not distributive. It is then that A lattice is 

distributive iff it does not contain a pentagonal sub lattice or M 5 . sublattice fl 

-.J. 
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Congruence 

Defmnitic (Congruence): An equivalence relation ®A  (that is a reflexive, symmetric 

and transitive binary relation) of a lattice L is called a congruence relation if a, b, (e) !r 

i=l,2(a, b, eL then (i) a1  A a2 b1  Al)2  (o), and (ii) a  Va, h1  vh, (o) provided 

a1  v a2  and b1  v b2  exists. 

It can be easily shown that for an equivalence relation C on L, the above conditions are 

equivalent to the conditions that for a,b eL if a h (®), then (i) a Al = hA 1(e) for all 

teL and (ii)avt=bvt (®) for all teL,providedboth avl and bvt exist. 

The set C(L) of all congruence on L is an algebraic closure system on L x L and 

hence , when ordered by set inclusion, is an algebraic lattice. 

Cornish and l-Iickman [3] showed that for an ideal I of a distributive lattice L, the 

relation ®(I) defined by a b (o (1)) if and only if (a] v I = (b] v I is the smallest 

congruence having I as a congruence class. Moreover the equivalence relation R (I) defined 

yRah(R (1)) if and only if for any Ic L,aAl cl is equivalent to hAle I is the 

largest congruence having I as a congruence class. 

Suppose L is a distributive lattice and a e L , we will use C,., as an abbreviation for 

e((afl. Moreover Pa  denote the congruence, defined by x y(P,,)if and only if' 

xAa=yAa. 

Cornish and Hickman [3] also showed that for any two elements a,h of a distributive 

lattice L with x :5 y,thc smallest congruence identifying x and y is equal to I' nC and we 

denote if by C (x, y). Also in a distributive lattice L , they observed that if L 

has a smallest element 0, then clearly Ca  = C (0, a) for any a e L. Moreover, it is easy to 

see that (i)® x  v Yx  = 1, the largest congruence of L. 
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®, = w, the smallest congruence of L and 

®(x,y)' =®. vP, where x<y. 

Now suppose L is an arbitrary lattice and E(L) denotes its lattice of equivalence 

relations F or c° 2 E E (L), v ço, denotes their suprimum; a 5 (-p1  v o 2)  if and only 

it there exists a = z0 , z1 .......................= b such that z, ( or 
, ) for for- 

1,2,..............n 

Theorem 2.3.1: A lattice L is algebraic iff it is isomorphic to the lattice of all ideals of 

ajoin-sen'j lattice with 0. 

Proof: Let F be a j oin-semi lattice with 0; we want to prove that 1(F) is algebraic. We 

know that 1(F) is complete. We claim that for a E F, (a] is a compact clement of 1(F). 

Let Xc 1(F) and let (a] c {I/IEX}. 

But we have v (1/1 E x)= {x : x :!~ 1 V .............. V nL  t1  El1 III  E x}. 

Therefore a :!~ to  v ................... v t,,_ 1  ,t I  El, I E x. Thus with x1  = {1 ..........l, } 

(a]v(I/I(=- x 1 ).since for any JEJ(F) 

We have I = v ((a]! a El). we see that 1(F) is algebraic. 

Now let L be an algebraic lattice and let F be the set of compact elements of L. Obviously 

OEF, let a,hEF, avb:!~VX,XcL. Then a:!~avb::~VX and so CI:!~VX0  for some 

finite X0  c X, similarly b :!~- v 1  for some finite X 1  E X. Thus a v h :!~ V(X (,X1  ), and 

X0  uX1  is a finite subset of X. So a v b E F 

Therefore, (F;V) is a join-semi lattice with 0. Consider the map : a - (xix E F,x:!~ a} 

aE L. Obviously maps L into 1(F), by the definition of an algebraic lattice, a = va, 

and thus (p is one-to-one. 

To provc .hat ço is onto, let IEI(F). a = vi .Thcn aç 1, let xaq,. T!ienx !~ Vi. 
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So that by the compactness of x, x :!~ VI for some fThiie J c I . Therefore. x E I proving 

that açJ. 

Consequently aço = I and so ço is on to. Thus ('p is an isomorphism H 

Now we connect the foregoing with congruence lattices. 

Theorem 2.3.2: For any lattice L, C(L) is a distributive sublattice of E(L). 

Proof: Suppose 0, C(L). Define '-I' to be the suprernum of 0 and çø in the lattice 

equivalence relations E(L) on L. 

Let a b(tlf).  Then there exists a = z0 , z.................z,, = h such that z, = z, (001-ço). 

Thus for any tEL z, 1  At Z, AI(®or(p) as E), ç9 E c(L). 

Hence a A/ b A t('+')and consequently "F is semi lattice congruence. Then in 

particular a A b = a(P) and a A b b("+'). To show that '-1' is a congruence, let a b("I) 

with a :!~ b, and choose any t L such that both a v t and b Vt exist. Then there exists 

z0 ,z1 ,z2  ...............z,,, such that a=z0,z,,=b and z 1  =z,(®or(p) 

Put w, = Z,  A b for all I = o,1 ........... n, then a = w0  , it,,,  = b w,_ 1  =w, , (®or'p). 

Hence by the upper bound property w, v / exists for all i = 0,1 ..............n (as it,, ,i :!~ h v i) 

andw,_1  Vt w, vi(oorço) for all 1=1,2 ...........  n(as0,q, e C(L)). i.e., av/ =bvi("l). 

Then F is congruence on L. Therefore C(L) is a sub lattice of the lattice E(L). 

To show the distributivity of C(L) , let a b(0 n (0 v 02 ) 

Then a A b y(®) and (01 v02 ). Also, a Ah a(0) and (® v 02). 

Since a A b =b(® 1  V®2 ),there exists to , /. ..........  1 such that (as we have seen in the proof 

of the first part) a A b = to ,  t,,  =b, t, = i(® or02 ) and a A b =10  :!~I, :!~b for each 

1 = 0,1 ..........n. Hence t,_1 =t,(®) for all I = 1,2..............n and so 
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i, i,(0)1 )o,'n(-), )• 

Thus aAbb((6nO1 )v(®r'02 )) . By symmetry, aAba((6nO1 )v(0fl02) and 

the proof completes by transitivity of the congrucnccs. 

In lattice theory it is well known that a lattice is distributive if and only if every 

ideal is a class of some congruence. Following theorem gives a generalization of this result 

in case of lattices L 

Theorem:2.3.3: L is distributive if and only if every ideal is a class of some congruence. 

Proof: Suppose L is distributive. Then for each ideal I of L, 0(1) is the smallest 

congruence containing I as a class. 

MW To prove the converse, let each ideal of L be a congruence class with respect to some 

congruence on L. Supposes L is not distributive. Then by theorem:2. 1 .2 we have either j\15 

(Figure 2.2) or M5  (Figure2.3) as a sublattice of L. In both cases consider I = (aj and 

suppose I is a congruence class with respect ot 0. Since d e I , d = a(0). 

Now d=bAc=bA(avc)bA(dvc)=bAc=d(®)I.e bd0)and this implies bE 1, 

I.e b :!~ a which is a contradiction. Thus L is distributive. 

An equivalence relation C on a lattice L is called a congruence relation ifa1 Ch1  and 

a 2 Cb2  imply (a1  Aa2 )C(b1  A b2 ) and (a1  va2 )C(b1  vb2 ). 

We know C would partition L in equivalence classes, where for any a€ L equivalence class 

of 'a' is given by C(a) = {x e L / xCa} U 

Theorem 2.3.4: Let L and M be lattices and suppose C1  and C, arc congruence 

relations on L and M respectively. Then a relation C = C1  x C2  on L x Al by 

(a,b)C(x,y) => aC1 x,bC2y,a,x E !,b,y eM then C = C1  x C2  is a congruence relation on 

L x M . Conversely any congruence relation on L x Iv! is of this type. 
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Proof: Since aCa,hC2 b, VaE L,bE M 

We get (a,b)C(a,b) V(a,b)ELxM orthat C is reflexive. 

Again let (a,b)C(x,y) = aC'x,bC2y 

= xC1 a,yCb 

(x, y)C(a, b) 

= C is symmetric. 

Similarly it is seen that C is transitive. 

Let now (a, b)C(x, y) , (p, q)C(r, s) 

= aC1 x,bC2 y,pCr,qC1 s 

='(aAp)C1 (xAr) and (bAq)C2 (yAs) 

= (a A p,bA q)C(x A r,yA s) 

=' (a, b) A (p, q)C(x, y) A (r, s). 

Similarly, we can prove that (a, b) v (p, q)C(x, y) v (r, s). 

Hence C is a congruence relation on L x M 

Conversely, let C be a congruence relation on L x M. 

Define a relation C on L by aC1 b (a,x)C(b,x) for some x EM, a,b e L Let y E PvI 

be any element, then since (a A b, y) (a A b, y) e L x M and C is a congruence relation on 

LxM. 

We get (a A b, y)C(a A b, y), similarly (a v b, y)C(a v b, y). 

Now (a, x)C(b, x), (a A b, y) v (a, x)C(a A b, y) v (b, x) 

(a, y v x)C(b, y v x) 

(a v b, y) A (a, y v x)C(a v b, y)(b, y v x) 

(a, y)C(b, y). 
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We thus notice (a, x)C(b, x) for some x e Al is equivalcnt to saying that (a, x)C(h, x) for 

all xEM. 

4 
So we define aC 1 b(a,x)C(b,x)aCi b for all x e lvi. It is easy to verily that ( is a 

congruence relation on L. Similarly, we define a relation C2  on lvi by 

aC2b => ((x, a)C(x, b) aC2b Vx e L, (a, b E Al). We claim C = C1  x 

Let (a, b)C(p, q), a, p E L, b, q € Lv! then (a v p,  b A q) A (a, h)C(a v p, b A q) A (p, q) 

=(a,bAq)C(p,bA(1) forsorne bAqEM. => aCp 

we can say bC2q and thus get (a,b)C1  x C2 (p,q). Again, if (a,h)C1  x C,(p,q), them 

aC1  p and bC1  q => (a, x)C(p, x) and (y, b)C(y, q) for all x E M,y E L. 

In particular 

(a,bAq)C(p,bAq) and (aAp,b)C(aAp,q) x=bAqEM 

y = a A pe L 

=(a,b Aq)v(aAp,b)C(p,b Aq)v(aA p,q) 

= (a, b)C (p, q). 

Hence (a, b)C(p, q) (a, b)c1  x c2  (p, q) 

or that C=C1  xC2  ii 

Definition( Convex sublattice): The subset K of the lattice L is called convex sub 

latticeifa,beK,c€L and ci:!~c:5birnplythat ceK. 

Theorem 2.3.5: Let 0 be a congruence relation of L. Then for every a E L[a] 0 is a 

convex sublattice. 

Proof: Let x,yE[a]®;then xa0and yaO. 

Therefore, XA aAa=a(®),and xvy=ava=a®, proving that [a] ®isa 

sublattice. If x :!~ I :!~- y, x, x E [a]E), then x = a(0) and y 

Therefore, t = t A y = I A a(0), and 1=1 v x = (i A a) v x (I A a) v a = u (0), 

proving that [ a ] 0 is convex U 
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Theorem 2.3.6: (The 1-lomomorphism Theorem) : Every homomorphism image of a 

lattice L is isomorphic to a suitable quotient lattice of L. In fact, if 0: L —> L, is a 

homomorphism of L onto L and if 0 is the congruence relation defined by x yO  iii' 

O(x) = q5(y), then L, J 0 = L1  is an isomorphism and is given by 

cii : [x]® — f q5(x), x®L1  

Proof: Since (D is a homomorphism and ( 0) is obviously a congruence, to prove that 

P is an isomorphism we need to check 

To show that 0 is well defined: let [x]® — [y](®) 

Then 0(x) = P(y) => ([x®)ii (y]0)u i.e., P is well defined. 

To show that P is one-one T[x] = 
IJy],0 => 0(x) = O(y) then x y(®) and so 

[x](®) [y](®) i.e P is one-one. 

To show that P is onto: Let x E L. Since 1 is onto. There is any y e L 

with 0(y) = x. Thus [y](®)ycif = x i.e., P is onto. 

To show that P is a homomorphism: Let [x®jy]0 E Lie, 

Therefore yi([x]® A [y]®) = ,i([x A y®) = 0(x) A 

= yi(x)® A ci'(y®) and 

v [yj0) = yi([x v y]0) = v y) = 0(x) v q5(y)çii([x1® v 

i.e., P is homomorphism then the theorem is proved U 

-16 
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2.4 Length and covering conditions 

A finite chain with n clements is said to have length n-I. We say a covers h if b :!~ a 

and there exists no c such thatb :!~ c :!~ a. 

A chain x1  <x2  < .......  <x,?  is called a minimal chain if each x, 1  covers x1  . Suppose now 

[a,b] is an interval in a lattice and if amongst all chains from a to b, There is one of 

maximum length n. We say [a, b] has tength n. Thus it is the sup of lengths of chains from a 

to b. We denote it by 1[a, b] = n. In case some chains from a to b have infinite length here 

[a, b] has infinite length. 

Let L be a lattice with least element o' and greatest element u then as L = [0. UI. 

length of L is defined to be length of the interval [0, U]. 

All finite lattices have finite length, infinite lattices can also have finite length as the 

lattice given by Fig has finite length 2 but it is infinite. 

Fig-2.I0 

Theorem 2.4.1: Length of a pentagonal lattice is 3. 

Proof: Consider the pentagonal lattice as shown 

in the Fig 

ii 

 

C 

Fig-2.11 
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It has five chains. O<ti, O<a<u, O<b<u , O<c<u, O<b<a<u 

from 0 to u. The last two being maximal chains. The chains have lengths 1, 2, 2, 2. 3. 

1. 
Therefore [O, u] = 3 and hence length of the pentagonal lattice is 3 Li 

Jordan-Dedekind condition: Let L be a lattice of finite length. Then L satisfies the 

Jordan-Dcuekind condition if all maximal chains between same end points have same 

length. 

Remark: The pentagonal lattice does not satisfy the jordain- Dedckind condition. Because 

there are two maximal chains from o to u and have different lengths 2 and 3 Li 

Theorem 2.4.2: Let L be a lattice of finite length. Suppose in L wheneverx,y cover 

X A y implies x v y covers x and y. Then L Wsatisfies the Jordain- Dedekind condition. 

Proof: Let a, b be any two comparable points (a :!~ b).we show all maximal chains from a 

to b have same length l[a,b] . Since all chains from a to b are finite, at least one maximal 

chain exists of finite length from a to b. We show all maximal chains are of the same length. 

We prove the result by induction on n, the length l[a,b] . Ifi[a,b] = 1, then b covers 

a and thus there is only one maximal chain from a to h with length I and hence the result 

holds for n= 1. 

Let the result be true for x =rn- 1 

Let a<x<x2<................ 

a <y1  <y2  < ......................< Yk = h be two maximal chains from a to b of lengths in 

and kweshow k=in. 

Case (i) lfx1 = y then x1  <x2  < .......................< x = b y1  <y2  < ....................< Yk = h 

.are two maximal chains from x, to b with length in - 1, k - I and as the result holds for 

in —1, k — I = rn— I . k = in. 
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Case (ii) x, # y 
. Here x1  and yl  cover a = x,  A Yt• 

Thus by given condition x1  v y1  cover x1  and y,. 

Letx1  v Y1  = t . Since x <b1 ,y <b1  =X1  v y1  :!~b and we find land bare comparable. 

Letl<z 1 <z 2 < .................. z=b 

be a maximal chain from t to b with length i 

Now x1  <x2  < .......................  <x, =b x1  <t<z1 ............................  : Z, =b 

are two maximal chains from x1  to b of lengths in - I and i + I (Note t covers x ). 

But the result holds for rn-i and thus i + 1 = in - 

Again, the chains y <y2  < ...................< = b , y1  <1 <z1  < ................. = h 
-41 

are maximal chains from yi  to b with length k —I, and i + 1 i.e are maximal chains from yi 

tobwith lengths k — i and rn— i. 

But result holds for in - 1, and so k - 1 = in - 1 k = in 

 

i.e., the result holds for n=m. 

 

b = = Yk = ZI 

ZI 

Of 

" C~)e'ali?916ral  

-4 

ibrall 

esh 

 

x 

Fig-2.12 

Hence by induction hypothesis, the result holds for all n and our assertion is proved LI 
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Atom: An element a in lattice L called an atom if it covers o. i.e a is atom iff a # 0 and 

xAa=aorxAa=0,VxEL. 

Dual atom: An element b is called dual atom if the greatest element u of a lattice cover b. 

Complements: Let [a, b] be an interval in a lattice L. Let x [a, b] j  be any element if 

B y € L, s.t, X A y = a, x v y = b we say y is a complement of x relative to [a, b]. 

Theorem 2.4.3: No ideal of a complemented lattice which is a proper sub lattice can 

contain both an element and its complement. 

Proof: Let L be a complemented lattice. Then 0, u e L. Let I be an ideal of L such 

that I is a proper sublattice of L . Suppose B an element a in I such that its complement 

a' is also in I .Thena A a' =0,av a' =u Since I is a sub lattice, a Aa ' ,ava'  arc in!. 

I.e 0,u€I, 

Nowif IEL beany element then as UeI,1AuflJlEILciIL, 

a contradiction. Hence the theorem Li 

Theorem 2.4.4: Let L be a uniquely complemented lattice and let a be an atom in L. 

Then a' i.e the complement of a is a dual atom of L. 

Proof: Since L is uniquely complemented lattice, every element has a unique complement. 

Suppose a t  is not a dual atom, then B at least on x, s,t, 

a' <x<u=a' va:!~xva 

='u:!~x:!~u => u=xva 

Nowifa:5x then xva=xx=u,nottrue. 

Again ifa ::~ x , then a A x = 0 (note a is an atom). Thus a A X = 0, a V X = U x = a' 

a A X, again a contradiction. 

Hence a' is a dual atom Li 
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CHAPTER THREE 

Standard Element of a lattice 

Introduction: Standard elements in lattices were first studied in depth by Gratzer and 

schrnid [15]. Since then little Attenton has been paid to these notions. A lower semi lattice is 

said to have the upper bound property if the supremum of any two elements automatically 

exists when they share a common upper bound according to Gratzer and Schmidt [I 5] if a is 

an element of a lattice L then, 

a is called distributive if 

(a v (r As) = (a v r) A (a V s) fbr all r,sE L; 

a is called standard if 

r A (s v a) = (r As) V (r A a) for all r,s E L; 

a is called neutral if the sub lattice generated by r,s and a is distributive for all r,s E L 

i.e (aAr)v(rAs)v(sAa)=(avr)A(rvs)A(sva) for all r,sEL. 

It is easily seen that a standard elements is distributive and a neutral element is both standard 

and distributive. In a distributive lattice, the three notions coincide At was shown by Gratzer 

and Schmidt [15] that an element n in a lattice L is neutral if and only it for all r,s E 

r A(sv n)=(r As)V(r An) and nA(ry s)=(nAr)v(nAs). Also Gratzer [11] has shown 

that an element n in a lattice L is neutral if and only if 

(nAr)v(rAs)v(sAn)=(nVr)A(rvs)A(svn)forall r,seL. 

The following results are well known C.f Gratzer [11, Thecrem 9 P. 143] the suprenium 

)01 of two distributive elements are distributive; both the infimuni and suprcmum 0! two 

standard elements are standard; both the infimum and supremum of two neutral elements are 

neutral. On the other land , the following example due to Gratzer [ll,p 144] shows that the 
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inlimum of two distributive elements is not necessarily distributive in Figure 3.1 both r and 

s are distributive whereas r A S is not. 

t 

b 

Figure 3.1 

Cornish and Noor in [4] generalized the concepts of standard and neutral elements to 

lattices. They have also introduced the notion of new type of element. They preferred to call 

it as a strongly distributive element, as in case of lattices such an element stands between a 

distributive and a standard element. 

In section 1 of this chapter we give a description on standard neutral and strongly 

distributive elements of a lattice, 

In section 2 we discuss on standard elements in a weakly modular lattice. we show 

that in a weakly modules lattice , every strongly distributive element is neutral Thus in 

particular every standard element is neutral in a modular latticc.which is a generalization of 

[15, corr.2.3 and 2.4] 

1 
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3.1. Staiidard and Neutral Elements of a Lattice. 

3.1.1. Defination (Standard element): Let L be a lattice and s be an element or L. 

Then s is said to standard if for all x,y,i E L, (A[x A y)v(x A s)j=(! AX A y)v(i AX As) 

Obviously, any element of a distributive lattice is standard. Now SUOSC s is a standard 

element of a latticeL c.f Introduction, then for all 

x,y,! EL,! A[xAy)v(xAs)]=tA[xA(yvs)]=(IAX)A(yvs) =(/AXAy)v(AxAs). 

This and a part of following proposition show that the two concepts coincide in a lattice. 

Proposition 3.1.2: 

The following two conditions on an arbitrary element s of a lattice L are equivalent. 

For any x,y E L,xA(yAs) = (xA y)v(xAs) whenever yv sexists. 

(a) if x v sand y vs exist for any x, y E L Then (; A y) v s exists and 

(xAy)vx = (xvs)A(yvs). 

(b)For any x,yE L for which xvs and yvs exist XAS~:yAS 

and xvs~!yvs imply x>y. 

Moreovci oth (i) and (ii) are necessary for L to be standaed but are not sufficient. 

Proof: (i) inplies (ii) suppose x,yE L are such that xv sand yvs exist. Then (x A )I) vs 

exists because of the upper bound property of L. Due to (i) 

(xv s)A(yv s)=[(xvs)Ay]v [(xv s)As]= (xAy)v(s Ay)v 5XA V S.  

Also if xAs~:yAsand xvs~:yvs , then 

X =x A (xv s) ~! xv ((y v s) = (x A y) v (x As) 

by(i) ~!(xAy)v(yAs)=yv(xvs)~!yA(yvs)=y 

(ii) implies (i) suppose x,yE L and yv s exists. 

Let PxA(yvs) andq=(xAy)v(xAs). 

Now pAs=xAs:!~q=(xAy)v(xAs):!~xA(yvs)=p. 
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l-Iencc pAs:!~qAs:!~, pAs. 

That is p A S = q A S. Observe that as p,s :!~ y v s, p v S exists and since 

p=pA(yvs),pvs=[pA(yvS)]vS 

= (pvs)Ayvs) by (ii) (a)= (pAy)vs(by(ii)(a)) = (xAy)vS 

=(xAy)v(xAs)vs=qvs. Thenby(ii)(b), 

- p = q , that is (i) holds. 

Now suppose S is standard in L, x,y Land y v s exists, then letting yvs=r. 

We obtain xA(yvs)=xA[(rAy)v(rAs)]=(xArAy)v(xArAs)=(xAy)v(xAS)as 

S is standard thus (i) and (ii) holds. 

Finally, consider the lattice L in Figure 3.2. Here for all x,y e L the condition (I) holds but 

dA[(cAa)v(cAs)J >(dAcAa)v(d AC AS) 

a 

rI 

co 

Figure 3.2 

On many occasions we find that a long computation is required to prove that a given binary 

relation is congruence. Such computations are after facilitated by the following useful 

Leruua which is due to Cornish and Noor 4.1emma 231. This is an extension of a 

characterization of lattice congruence. e.f 

Gratzer [20 lemma 8,p-241 and also Gratzer and schimdt [15] to lattice. 
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Lemma 3.1.3: A rcllexivc symmetric binary relation 0 on a lattice L is a congruence ii' 

and only if, for any x,y,z,l E L 

x y(0) if and only if xAy=x(0) and xAy=y(0) 

x :~ y:5: z, x y(9) and y z(0) imply x z(0) 

x :~y and x y (0) imply that X A y y A t (0) and 

X v / y v i (0) whenever xv y and y v I exist LI 

We now proceed to characterization of a standard clement. The following theorem is a 

characterization of a standard element in a lattice, which is due to Greatzcr and Schmidt [l7] 

The following conditions upon an element s of the lattice L are equivalent. 

s is a standard element. 

The relation 9, defined by X y(0) if and only if 

(x A y) v s = x v y , for some s1  :!~ s is a congruence relation. 

For each ideal K, (s]v k = {s1  v k : s1  < s,keK} 

(SI is a standard element of the ideal lattice of L. 

Theorem3.1.4: For an element s of a lattice L. 

The following conditions are hold. 

(i) s is a standard element. 

The binary relation 9, which is defined by x y(0) 

if and only if X = (x A y) v (x A s) and y = (x A y) v (y A s), is a congruence relation. 

The binary relation 0 which is defined by x = y() if and only if 

(x Al) v (t As) = (y At) v (y As) for all I E L is a congruence relation. 

For each ideal k, (s] k = {s k : s s, k and s k exists} 

(s] is a standard element of the ideal lattice of L. 

Ii 
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Moreover 0 and 0 of (ii) and (iii) respectively represent the some congruence v i:. 

0 . The smallest congruence of L having (s] as congruence class. 

'-I 

Proof: (i) implies (ii) Let 0 be the binary relation, such that x y(0) if and only ii 

x = (x A V (x A s) and y = (x A y) v (y A s) clearly, 9 is reflexive and symmetric. Now 

x y(0) implies 

x=(xAy)v(xAs)=xA(xAy)v(xAs) Also 

XA =(XA(XAy))V((xAy)As) and so x xAy(0) 

similarly y x A y(0) conversely x A y x(0) and 

X A y y(0). Certainly imply x y(0). 

Suppose x:~y:5z and xy(0);yz(0). 

Then z=yv(zAs) and y=xv(yAs). So z=xv(yAs)v(zAs) 

= xv (z As). And it follows that x z(0). 

Now let x :!~ y,x y(0) and xvl,yvt exist for some 

I E L.Thcn yvt=(xv(yAs))vt=(xvt)v(yAs);that 

is y Vt = (x Vt) V ((y Vt) V s) , which implies x v I y v 1(0). 

Also forany rEL,rAy=rA((xAy)V(yAs))=(rAxAy)V(rAyAs) 

= (r Ax) V (r A y As). And so r A y = r A x(0). Hence by 3.1.3 

0 is a congruence relation. 

(ii) implies (iii) suppose x y(0) since 0 is a congruence relation, x A I = y A 1(0) for any 

IEL.Then xAt=(xAyAt)V (xAIAs) 

and yAt=(xAyAI)V(yA1As) and hence 

(xAI)v(IAs)=(xAyAt)v(tAs)=(yA)v(tAs). 

This implies thatx = y(Ø). 
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Conversely. Let x = yØ) 

Then (xAI)v(tAs)(yAI)v(,As) foralliE L 

Byletting 1=x and /=y,weobtajii X=(XAy)V(XA.$) 

And y = (x A y) v (y A s) respectively. Hence x = y(0). 

This implies that 9 and 0 are the one and the some congruence (iii) implies (iv). Then 

T = f s, v k :S1  :!~- S,k e Kand SE K exist } is clearly closed under existent finite suprema. 

Suppose x:!~51  vk with s1 :!~s and k E K. 

Clearly, s1  vKK(Ø) and so x=xA(51 vk)xAk(Ø). 

I- lenceforall 

x Choosing r= x, we obtain x = (x A k) v (x As) and so x E T. 

Thus T is the ideal of L and it is clearly the supremum of (s] and K. 

Implies (v).Let J and K be two ideals on L and 

Suppose x E j n((s)] v k) . Then x E J and x = s1  v k for some 

s :!~s And kE K. So x=(xAs1 )v(xAk) and thus xE(Jfl(s)])v(Jflk) 

Consequently J ((s] v k) = J n (sj v (J n k), which implies 

that (s] is standard in the ideal lattice of L 

implies (i) is trivial. 

IA The last part is quite clear from the proof 

of(ii) implies (iii) and of preliminaries L] 

In a lattice L an element n is called neutral if for any t,x,y E: L. 

()1A((XAY)A(xAn))=(tAxAy)v(tAxAll)ie n is standard, and 

(ii) nA((tAx)v(tAy))(nA t Ax) v(nAt Ay). 

Notice that a lattice is distributive if and only if each of its elements is neutral. 
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Also we already mentioned in the introduction that an element n in lattice L is 

neutral if and only if for all x, y E L, x A (y v n) = (x A y) v (x A n) and 

flA(XVy)=(flAX)V(XAy) LI 

The following lemma shows that the two concepts coincide in a lattice. 

Lemma 3.1.5: Let a be an element of a lattice L. The following conditions are equivalent 

(i)For all i,x,yEL, aA((tvx)v(tAy))=(aAtAx)v(aAtAy). 

(ii)Forall x,yEL for which x v y exists, aA(xvy)=(aAx)v(aAy). 

(iii) For all idealsi and Kof L (a](jvk)=((a]rj)v(a1rk). 

Proof: When xv y exists put I = xv y in (i) to obtain (ii) 

(ii) implies (iii). Let XE (a]n (j v k). 

By the property of the suprernum and infirnurn of the ideals x :~ a and x E L, for 

112=0,1,2 .......... when, L0 =JuK, 

L ={t:!~c d;cv d exists and c, d E L 11  }. 

Suppose XE L0. Then XE (a]nJ,orx E (a]nk and so xE((a1mJ)v((alflk). 

Now we will use the induction, suppose y E L, 1  , and y :!~ a implies that, 

E ((aJnJ)v((d]nk). 

- Since X E , x :!~ c v d for suitable c,d E L,,, 1 . 

Then x:!~aA(cvd)=(aAc)v(aAd). But aAc,aAd:!~a and both hclongto  

Thus x€((a]nf)v((a]nk). 

The reverse inclusion is obvious. 

(iii) implies (i) is trivial U 
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The lollowing result gives a characterization of a i:cutral element of a lattice which is 

immediate consequence of above lemma. 

Theorem 3.1.6: An element n of a lattice L is neutral if and only if (n] in neutral in the 

lattice of ideals if L LI 

Theorem 3.1.7: Suppose 11 is an element of a lattice L. Such that (i) for all x,y e L lbr 

41- which xvy exists, 

nA(xvy)=(nAx)v(nAy). And (ii) for any x,y E L for which y v n exists 

x A (y v n) = (x A y) v (x A n). One may ask the question: "is n with the properties (1) and 

(ii) a neutral element of L" Figure 2.3 show that, that answer is "No", 

0"'. 

a 

Figure 3.3 

IX Notice that here n has both of the above properties. Yet 

bA ((c A a) v (c A (b AC A a) v (b ACA n). 

Thus n is not even a standard element Li 
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3.2 Traces 

Let s be an element in a lattice L L . If t is any fixed element ofL , then by the trace of s in 

(tj''or simply "the trace of s ''. We mean the element I A S of(tj 

Following proposition give characterizations of standard and neutral elements of a lattice 

which are due to N. Thus, in a lattice, these elements are trace invariant, 

Proposition 3.2.1: An element s of a lattice L is standard if and only it its trace is 

standard in (ii, for each i E L. 

Proof: Suppose s is standard inL, let, a,h,c e (Ii. Then 

aA[bAc)v(bA(1As)J=aA[(bAC)V(hAS)](aAbAC)V(UAbAS) 

= (a A b Ac) v (a A b A (I As). Hence the trace of s is always standard. 

Conversely, suppose the trace of S is standard in (tj for each i c= L 

Let x,y,z,eL and 

consider X A (y A z) v (y A s)J. 

Asy AS IS standard in (y] 

xA[(yAz)v(yAs)]=(xAy)AftyAz)v(yAs)(xAyAz)v(xAyAs).And s is 

standard in L LI 

Proposition 3.2.2: An element n of a lattice L is neutral if and only if its trace is neutral 

in (t], for alit eL 

Proof: Suppose n is neutral in L. Then by 3.2.1 the trace of n is standard in (t for all 

t E L suppose a,b,c e (ti. 

Then (I A n) A A b) v (b A c)] =1 A Va  A b A n) v (b A C A n)] 

=1 Aa Ab Al An)v(bAcAtA n)=((I An) A(aAb))v((I A n)Ab Ac). 

Thus 1Afl is neutral in(tl, for all tEL. 

Conversely, suppose I Afl is neutral in (tj, for alt E L (by 3.2.1) n is standerd in L. 
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Let x, y,; L. Then 

flA[(XAy)V(yAZ)]=(yAfl)A[(XAy)V(yAZ)]XAyAfl)V(yAzAfl). 

As y A ii i.; neutral in (y]. Thus a is neutral in L E 

Corollary 3.2.3: An element a of a lattice L is neutral if and only if the sublattice 

generated by tAn,! AX and I A y are distributive for all t,x and y LI 

We tried to give definition of a distributive element for a lattice. But the concept 

does not seem appropriate in the context. From figure 3.1, it is fair enough to say that even 

for lattices, the notion of a distributive element is not trace invariant .From the idea of traces. 

Cornish and Noor [4] have introduced a new type of element, we start with the following 

proposition which is due to [4]. 

Proposition 3.2.4: Let L be a lattice and s E L. Then the following condition is 

equivalent 

(i)Forany x,y,IEL,(tAXAy)v(tAs)=[(tAx)v(IAs)]A[(1Ay)v(tAs)j. 

if (ii) For any x,y,t E L, I A((x A y)v (x A s))v (x As) = ((AX A y)v (x A s). 

Proof: (i) implies (ii) suppose (i) holds. Choose any ',x,y of L and let 

p=(xAy)v(xAs). Then pAx=p and so (IA[(xAy)v(xAs)]v(xAs) 

= (t A p) v (x A s) = (x A t A p) v (x A s) = [(x At) V (x A s)] A [(x A p) v (x A s)] [by (i); here 

x, t and P play the roles oft, x and y respectively. 

In(i)) =[(xAI)v(xAs)]A[(xAy)v(xAs)]=(xAtAy)v(xAs) bya 

second application of (i) where x,t and y play the roles of x,t andy respectively in (i) 

(ii) implies (i) suppose (ii) satisfies . Then for any 

t,x,y E L, [(i A x)v (i A s)] A [(i A y) v (lAs)] = ([(i Ax) v ((As)] A (t A y) V (I A s)])v (I As) 
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([I A y) V (1 A )1 A(! A .v) v (I A .$) (b)' (ii) Where (i Ax) v (I A s).i and y play the roles of 

t,x and y rcspectively in (iii). 

* 
Hence, [(i Ax) v (1 A s)] A [(1 A y) v (1 A s)] = ([(I A x) v (I A s)J A (1 A y) v (1 A s) 

= (y A [(i Ax) v (1 A s)]) v (1 As) = (y Al Ax) v (1 As) by a second application of' (ii). Where 

y,l,x play the role of t,x,y respectively of(ii) Li 

Proposition 3.2.5: Suppose L is a lattice and s K holds the equivalent conditions of' 

the above proposition. 

Let a,bEL. Put t=avbvs to obtain 

(U Ab) vs =(tAaAb)v(tAs) =[((Aa)v(!As)]A[(/Ab)v(lAs)=(ays)A(hvs). 

1-lence s is a distributive element of L. We have proved. 

Proposition: if an element of a lattice satisfies the equivalent conditions of 2.1.10. Then it is 

distributive then it distributive Li 

Proposition 3.2.6: An element s of a lattice, which satisfies the equivalent conditions of 

AO prop. 3.1.10 is said to be strongly distributive. Clearly any standard element of lattice is 

strongly distributive. 

Figure 3.1 produce (i) a distributive element in a lattice which is not strongly distributive 

and (ii) a strongly distributive element which is not standard. 

Notice that in figure 3.1 b is distributive and a is strongly distributive. Observe that 

(aA/Ah)v(aAb)<[(aAt)v(aAb)]A[(aAh)v(aAb)]. 

Which implies b is not strongly distributive. On the other hand b A (Cl v c) > (b A a) v (b A c), 

which implies that a is not standard. 

Thus even for lattice, the notion of a strongly distributive element is strictly between the 

concepts of distributive and standard element. 
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The lol lowing proposi lion gives a su Ilicient condition 111.  a distributive element to be 

strongly distributive LI 

Proposition 3.2.7: Any distributive atom of a lattice L with 0 is strongly distributive. 

Proof: Suppose s is a distributive atom. For any t c L 

Either IAS=O or I A S = S . if I A S = 0 then obviously, 

(IAxAy)v(IAs)=[(tAx)v(IAs)A[(IAy)v(IAs)]. For any x,yEL 

If IAs=5,then (/AxAy)v(IAs)=(1rxA)I)vs=[(1Ax)vs]A[(1Ay)vs 

= Ri A x) v (I A s)] A {(i A y) v (I As). As s is distributive. 

An illustration of 3.2.7 considers the element c of the pentagonal lattice 

{o,a,b,c,l: oLbZaLl:cva = c v b =l:cAa=cAb=O}. Here c is both distributive and an 

atom. Therefore, it is strongly distributive. 

We conclude this section with the following characterization of a strongly 

distributive element. We omit the proof as it is immediate from its definition. 

In fact, one might prefer this as the definition of a strongly distributive element. If is 

more easily to understood than the original definition LI 

Proposition 3.2.8: For an element s of a lattice L the following condition are equivalent. 

s is strongly distributive. 

Its traces distributive in (t] for all I e L. 

Its trace is strongly distributive in (t] for all I e L LI 

I 
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3.3. Some properties of standard and neutral elements. 

From [4] we know that the standard (neutral) elements of a lattice from a distributive 

sub lattice. Moreover, the map S - O is a lattice embedding of this sublattice into the 

distributive lattice of all congruence of L [4] also exhibited two examples to show that the 

strongly distributive elements may not be closed under infimum and supremum. 

11 We are now about to generalize an interesting result of Gratzer and Schmidt [15. 

Theorem 5]; for any two strandard elements s1  and s2  of a lattice L. the sublattice 

generated S, s and x is distributive for all x E L. 

Proposition 3.3.1: Suppose s1  and S2  are standard elements of a lattice L. Then the sub 
14 

lattice generated by s1 , s 2  and x is distributive for all x E L. 

Proof: Let x E L. Suppose L1  is the sublattice generated by x,s1  and s2 . As s and s2  are 

standard i.i L, thay are standard in L1  by 2.1.5. [s ]A  and [s2 ]A  (principal ideals in A ) 

4 
are standard in the ideal lattice 1(L1 ) of L1 . 1-lence by Gratzer and Schmidt [15] Theorem 5 

], the sub iattice p of 1(L1 ) generated by (x] A (s;]A and (21).  is distributive. But as L1  is 

generated by x 1  s1  and S2 1(L1 ) = P. Thus, 1(L1 ) is distributive and so, L1  is distributive. 

We already know from the introduction that an element n in a lattice L is neutral if 

and only if the sublattice generated by x, y and n is distributive for all x, y  e L . Sec also on 

3.2.3 unfortunately, things are not the same in near lattices L 

Theorem3.3.2: Let n be a neutral element of a lattice L . Then sublattice generated by 

- x.y and n is distributive for all x,y e L. But the converse is not necessarily true. 
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1'roof: we omit the prool of lirsi. part as it is easily seen that this can be done in exactly the 

same way in which 3.3. 1 was proved. To prove the converse we consider the lattice I. of 

figure 3.4. 1-lere, all the sub lattices generated by x,y and 11 for all 

X,y EL are distributive, yet b A [(t Ad) v (IA ii)J> (b A f Ad) V (h A! A ii). 

Thus n is not even a standard elements of L B 

ci 

n 

Figure 3.4 

Now we prove the following results which generalize some of the results of [15]. 

Theorem 3.3.3: Let s and n be elements of a lattice L such that n is neutral, s :!~ n and s 

is standard in ('nJ. 

Then s is a standard clement of L B 

P roof: Let 1, x, y be the elements of L. 

Then [(xAy)v(nvs)]A{(xAy)V(xAn)] 

=([xAy)v(nAs)],\(xAy))v(((xAy)v(nAs))A(xAn)) 

=(xAy)v(xAn)A[(xAyAn)v(nAs)))]) as n is neutral. 

= (x A y) v ((x A y A n) v (x A n A s) as s in standard in (nJ 
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= (xA y) v (x All A s) 

= (x A y) V (x A s). 

Hence using the neutrality of n 

t A [(x A y) v (x A s)] 

=tA[(xAy)v(nAs)JA((xAy)v(xAn) 

= ((x A y) v (n A s))At A ((x A y) v (x A n)) 

=((xAy)v(nAs))A((/AxAy)v(t AXAfl)) 

= ((x A y) v (n A s))A (t AX A y)v ((x A y) v (n A s))A (t AX A n) 

As n is neutral. 

= (tAxA n) v [(I A x) A ((x A Y A n) v (s A n))] 

=(tAxAy)v(tAxAn)A((xAyAn)v(sAn)) 

= (I AX A y) v (t AX A y An) v (1 AX A S A n) 

Since s is standard in ('nJ 

=(tAxAy)v(tAxAs). 

So s is standard element in L LI 

Theorem 3.3.4: Let s be a neutral element of (nJ and n is neutral in L. Then s is a neutral 

element of L. 

Proof: By the previous theorem s is standard in L. 

To show that s is neutral, we need only to show that 

sA[(xAy)v(XAt)]=(aAxAy)v(sAxAt)forall x,y,IEL 

Now, sA[(xAy)v(xA1)]=(sAn)A((xAy)v(xA1)) 

SA(XAyAfl)V(XAtAfl)ASfl is neutral 

= (s A X A y A n) v (s A X At A n) As s is neutral in ('nJ 

= (s A X A y)  v (s AX A 1). 

The proof is thus complete LI 
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Theorem 3.3.5: An element n of a lattice L is neutral if and only if for all t,x,yE L 

(1 A n Ax) v (I Afl A y) v (I AX A y) = {(i v n) v (I A x)} A {(i A n) v (I A A ((I A x) v (I A )I)J - 

Proof: When n is neutral its trace t A n is neutral in the lattice (t] and so the equality holds 

as t A n,t AX and I A y then generated a distributive sub lattice of(t]. 

Conversely, the equality says that t A fl is neutral in the lattice (t]. Then the proposition 

3.2.2 does the rest. 

We ëonclude here with two observations about strongly distributive elements LI 

1 
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CHAPTER FOUR 

4.1 Prime ideals of a lattice. 

Introduction: Prime ideal and pseudo complemented of a lattice have been studied by 

several authors including [32]. In this chapter we discuss prime ideals, minimal prime ideals 

and minimal prime n-ideals of a lattcies. In section one of these chapters we give some basic 

A properties of prime ideals which will be needed in the next part. 

In section two of this chapter we have given characterization of minimal prime ideals of a 

pseudocomplemented distributive lattice. Then we have show that every 

pseudocomplemented lattice is generalized stone 

In section three we discuse the minimal prime n-ideals. 

In section four of this chapter we have discussed lattice whose principal n-ideal form normal 

lattice. 

Definition: (Dual ideal): A non empty subset I of a lattice L is called dual ideal of L 

if(1)x,yElirnpliesthatxAyE I 

(2)d EI,xELimpliesthatdAxel 

Let I = { 1,2,5, lO} be the lattice under divisibility. Then { lo}, {5. lO} {2, lO.} arc all dual 

ideals of lattice L. 

ii 
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Figure 4.1 

An i/cul / of L is proper ifi I 

Figure 4.2 

4 

Figure 4.3 
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A proper ideal P of a latticeL is called a prime ideal if' for any x.yE L and 

xAyEpimphes either x P or YE P. Let L HI,2,3,4,6,12} of' factors 12 under 

divisibility forms a lattice then { 1, 2, 41 be a prime ideal of L. But in the lattice { 1, 2. 5, 

I O} under divisibility { 1 } in not a prime ideal because 2 A 5 = 1 { I }. But 2,5 1,1 }. 

Theorem 4.1.1: Every ideal of a lattice L is prime ideal if and only if the lattice L is 

chain. 

Proof: Let L be a chain, let P be any proper ideal of L. If U A b E P then as a,h are in a 

chain, they are comparable. Let a:!~b, then aAb=a. Thus, aAhe Pac J P is 

prime. 

Conversely, let every ideal in P be prime. To show that L in a chain, let a,h E L be any 

elements. Let P = {x E L / x :!~- a A b} then P is easily seen to be an ideal of L. Thus, P is a 

prime ideal. 

Now aAbEI,P is prime, thus UEP or bE? a!~aAb or h:~aAb 

aAb:~a:!~aAb or =a=aAb or b=aAb 

or b:!~a. L isachain Li 

Corollary 4.1.2: Let L be a distributive lattice. Let I be an ideal of L and Ida L and 

a E I. Then there is a prime ideal P such that P D I and ao P. 

Theorem 4.1.3: Every ideal I of a distributive lattice is the intersection of all prime 

ideals containing it. 

Proof: Let I = fl{P / P Q  I; P is a prime ideal of L If , if I # 1 then there is an element 

a e I - I and so by Corollary 4.1.2. There in a prime ideal P, with P D I and a 0 P. But 

then a e P I and is a contradiction. E 

ON 
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Theorem 4.1.4: Let P be a prime ideal of a lattice L, then L - P is a dual prime ideal. 

Proof: Since P is a prime ideal, therefore P is not empty. 

L - P is a proper subset of L. 

Let x, y E L P. Then x, y E L, x, yo P 

='XAy(L,XAyP (as xAyE=xEP or yEP asP is prime) => XAyEL — P. 

-141 Again,let x€L—P,I€L.Then 

(as XVJEP=XEP as x:5xvl).Thus, xvIEL—P i.e L—P isdual ideal. 

Nowict xvy€L—P,then xvy€L,xvyP 

=x,yEL,xP or yP (as x,y€P=xvyeP) 
41 

= x € L - P or y € L - P 

i.e., L - P is a dual prime ideal LI 
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4.2 Minimal prime ideal. 

Def ( Minimal prime ideal): A prime ideal P of a lattice I. is called minimal ii there 

does not eXiStS a prime ideal Q such that Q P. 

The following lemma is an extension of a fundamental result in lattice theory e, f i.E. Kist 

[23]. Thou&h our proof is similar to their proof, we include the proof for the convenience of 

the reader. 

Theorem4.2.1: Let L be a lattice with 0. Then every prime ideal contains a minimal prime 

ideal. 

Proof: Let P be a prime ideal of L and let R be the set of all prime ideals Q contained in 

41 P. Then R is nonvoid, since P E R If C is a chain in R and Q = fl(x : x E C) then Q is 

nonvoid, since 0 c Q and  Q is an ideal ; infact Q is prime. In deed if r A S € Q for some 

r,s EL. Then r A S E X , for all XE C, since X is prime , either rEX or SEX. Thus, 

either Q=n(X:rEX) or Q=n(X:s€X). 

Proving that either r or s E Q. 

Therefore, we can apply to 1? the dual form of Zorn's lemma to conclude the existence of 

minimal member of R LI 

Theorem 4.2.2: Let L be a distributive lattice with 0, the following conditions are 

equivalent. 

L is normal. 

Each prime ideal of L contains a unique minimal prime ideal. 

Each Prime filter of L is contained in a unique ultrafilter of L. 

Any two distinct minimal prime ideals are comaximal. 

(v)Forall x,yEL,xAy=0 implies (x] v(y] =L. 

(vi) (xAy]' =(x11 v(y]'for all x,y€L LI 
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Remark: 1-Icre (xJ' we means relatively pseudo complement ol' (xl 

Dense set: D(L) = {a E L = O}, D(L) is called the dense set. 

Theorem 4.2.3: Let L be a sectionally pseudo complemented distributive lattice and P 

be a prime ideal in L. Then the following conditions are equivalent 

(i) P is minimal, (ii) x E P implies (xJ 0 P, (iii) x E P implies (xl" c P 

(iv) P r' D(L) = 

Remarks: Consider the following distributive lattice with 0. Observe that in both L1  and 

L2 , (bl and (d] are distinct minimal prime ideals. 

Jk c! 

b 

d 

a <> 

 S I  

Figure- 4.4 

1 
S.) 

 

Moreover, (b] v (dj = S1  but (b] v (d] # S2  . Therefore, L1  is normal but L 2  is not. Also 

observe that in L2 ,{0,a,b,c,d} is a prime ideal which contains two prime ideals (bj and 

(d] , and so L2  is not normal U 

Definition (Stone lattice): A distributive pseudo complemented lattice L is called a 

stone lattice if for each a E I , a v a = I. 

C d 

Figure 
- 4.5 
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Theorem 4.2.4: If L is a complete stone lattice, then ideal ol L is also complete stone 

lattice. 

Proof: Let I =(O], where a=(x :xEL) and let xEI(mJ , then XEJ and x€1 =(a] 

implies that x e I and XE A implies that xe I and x :!~ y for all y E I implies that x :!~ x 

implies that x = x A = 0, implies that I A I = (0]. 

Let IA.J,chooseany jEJ,then IA j=0 for all IEI , implies that /:!~IiE/j <j * 

implies that j :!~ A(I :/ E I) implies that j :!~ a implies that j E 1 implies that .1 :!~ I 

implies that I' is a pseudocomplemented. 

Since 0 E L, so ideal of L is complete. Finally, we have to show that 1' v I" = L. 

Now I' v I" = (a] V (a] = (a]" v (a]' 

= (a"] v (a' I 

= (a" v a] 

- =L 

1-lence ideal of L is a stone. Thus ideal of L is a complete stone lattice U 

Definition (Generalized stone lattice): A lattice L with 0 is called generalized stone 

lattice if (X]'  v (x]" = L for each XE L. 

Theorem 4.2.5: A distributive lattice L with 0 is a generalized stone lattice if and only if 

each interval [0, x],0 <x E L is a stone lattice. 

Proof: Let L with 0 be a generalized stone and let P E [0, x]. Then (F]' v (F]" = L. 

So X E (F]' v (F]" implies x = r v s for some r E (F]', s E (F]". Now r E (F]' implies 

r A p = 0 also 0 <r <x. Suppose I E[0,x] such that IA p = 0, then i E (Pr implies 

tAS=0.Theref6re, IAX=IA(rvs)=(tAr)v(IAs)=(IAs)vO=tAr implies 
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t I A r implies I :!~ r . So r is the relative pseudo complement ol' P in 0. xl. i.c.r = J since 

sE(P]** and r€(PF. SO SAr=O. Let qe[0,x]. Suchthat qAr=0. Then as x=rvs. 
RE 

SO q A x = (q A r) v (q A s) implies q = q A s implies q :!~ s . 1-lence, s is the relative pseudo 

complement of r = p in [0, x] i.e., s = p implies x = r v s = p v p. Thus [0, x] is a 

stone lattice. 

4. Conversely, suppose [0,x],0 <xc - L [o, x]. is a stone lattice. Let p E L, then 

P A X E [0, p] . Since [0, p] is a stone lattice, then (p A v (p A = 1) ,  where 

(p A x) is the relative pseudo complement of p A x in [0, p]. 

41- 
Therefore, P e ((p] n (p A xf v ((p]  n (p A x)'. So, we can take p =r v s. 

forrE(pAx]*,sE(pAx]**. Now, rE(pAx implies rApAX=O implies rAx0 

implies r E (xJ and s e (p A x)**. Now p A X :!~ x implies (px] ç (x]", and so s E (xi"  

Therefore, p = r v s E (xJ (x]" and so, L c (x] v (x]. But (x]' v (x]" ç L is obvious. 

- Hence (xr  v (x]" = L and so L is generalization stone LI 

Theorem 4.2.6: Let L be a distributive lattice with 0. If L is generalized stone, then it is 

normal. 

Proof: Let P and Q be two minimal prime ideals of L. 

Then P,Q are unordered. Let x E P- Q. Then (x] A (x1 = (0] Q implies (xj Q. 

Since P is minimal, so by Theorem 4. 2.3 above (xj" g P. Again as L is generalized stone. 

so (xJ v (xj" = L 

This implies P v Q = L, and so by Theorem 4.2.2, L is normal LI 

Def (Co- maximal ideal): Two Ideals I andf of a lattice L are called Co-maximal 

if Iv.J=L 
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Theorem 4.2.7: A sectionally pseudocomplemented distributive lattice L is generalized 

stone if and only if any two minimal prime ideals are co-maximal. 

Proof: Suppose L is generalized stone. So by theorem 4.2.6 any two minimal prime ideals 

are co-maximal. 

To prove the converse, let F, Q be two minimal prime ideals of L. We need to show 

that [O,x] is stone, for each XE L. Let P1 Qi,  be two minimal prime ideals in [O,x]. 

We know if L1  is a sub lattice of a distributive lattice L and P1  is minimal prime ideal 

in L1 , then there exists a minimal prime ideal P in L, such that 1 = L,  A P. 

So there exist minimal prime ideal P, Q in L such that I = P A [0, x], Q = Q A [0. x]. 

Therefore, P vQ1 =(Pn[0,x]v(QO,X]=[PvQ]'m[O,x]=Lr'i[O,x]=[O,xj. 

Therefore, [0, x] is stone. So by Theorcm3. 2.5 above L is generalized stone I 

Theorem 4.2.8: Let L be a distributive with 0 and 1 for an ideal I of L. 

We set I = {X : X A I = 0 for all i E I}. Let P be a prime ideal of L. Then P is minimal 

prime ideal if and only if x E P implies that (x] P. 

Proof: By the definition of I,(xj' =y:yAx=0} as x Ax=0 implies that x 

implies that (x] g (x]' , again let z E (x] , then Z A X = 0 implies that z :!~ x implies that 

IL z E (x] implies that (x]* g  (x] implies that (x1 = (x' 1. Now suppose P be a minimal 

prime ideal and x E P, then by x 0 P implies (x] a P implies (x I c P. Conversely, if 

forx E P, (x] P and if possible, let P is not minimal then there exist a prime ideal Q such 

that Qcp. Let XE P—Q 

Now X A X = 0 E Q implies that x E Q implies that x E P implies (x Ic P 

implies (x] ç P which is a contradiction. 1-lence the proof Li 
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Theorem 4.2.9: A prime ideal P of a stone algebra L is minimal 

if and only P = (P n S(L)), 

Proof: Suppose P is minimal, let a E (P S(L)), . Then a ::-~ r for some r E (P S(L))1  

r€P and rES(L)=aEP=rEP and rES(L) implies r€P implies aEP. 

Implies that (P n S(L))1  c P . . ......... (i) 

-k Again let a E P, since P is minimal so, a t  E P n S(L), since a :!~ a*.  So a E (P r' S(L)), 

implies that P :!~ (P m S(L)) L  .......(ii) 

From (i) and (ii) we have a E (P S(L))1  

Conversely let P=(Pr)S(L))1  and a E P then a:!~r for somer€PrS(L) =a :!~r" =r 

= E P. Hence P is minimal L 

14, 
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4.3 MiNiMAL PRIME n-IDEALS 

*Y <& 
A prime n-ideal P is a minimal prime n-ideal belonging to n-ideal I if 

40171 

Ic:I' and 

* V 
There exists no prime n-ideal Q such that Q 1' and I c Q P. 

Thus a prime n-ideal P of a lattice L is minimal prime n-ideal if there exists no prime n-

ideal Q such that Q # P and Q g P . i.e., minimal prime n-ideal is a minimal prime n-ideal 

belonging to {n} 

Definition (Medial): An element n of a lattice L is medial if ,n(x,n,y) exists for all 

x, y e L. 

Since for the definition of a prime n-ideal of L , the medial property of n is essential, so any 

distribution about prime n-ideals of L we will always assume n as a medial element. We 

start this section with the following result which is a generalization of a well known result in 

lattice theory. 

Theorem 4.3.1: Let L be lattice with medial element n. Then every prime n ideal 

contains a minimal prime n-ideal. 

Proof: Let P be a prime n-ideal of L and let R be the set of all prime n-ideal Q 

contained in p . Then R is non-void, since P e R . if C is a chain in I? and 

r 
Q = r(x : x € C), then Q is a non-empty as ii E Q and  Q is all n-ideal, in fact, Q is prime. 

Indeed, if in(a, n,b) E Q for some a, b E L, then in(a, n, b) e X for all X E C. Since 

X is prime, either a E X or b E X. Thus, either Q = r(X a E X) or Q = b E X), 

proving that a E Q or b E Q . Therefore, we can apply to R the dual form of zorns lemma 

to conclude the existence of a minimal member of R. 

If L is a distributive lattice with n L, then we already know that F, (L) is a 

distributive lattice with {n} as the smallest element. So we can talk on the sectionally 
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pseudoconiplementeness of I, (L) is called sectio'ially pseudo- coinpiemenued if each 

interval [{n}, < a1  < ...............a,. > n] is pseudo-complemented. 

That is for {n }  c:< b1  < ..........br  > n] ç< (11 < ................... ...> n. relative pseudo- 

complement < bi  < ........................b,. > ii in [(n}, < a.......................a,. > ii belongs to (L) 

Now we give a characterization of minimal prime n-ideals of a distributive lattice L, 

when F (L) is seasonally pseudo complemented. To do this we establish the following 

theorems Li 

Theorems 4.3.2: Let L be a distributive lattice and n c= L be a medial element. Then for 

any i,jEI,,(L),(liThf) (ThI=J (ThI. 

Proof: Since I m J c: J. So R H. S c L. H. S. 

To prove the reverse inclusion, let x E L. I-I. S Then x E I and m(x, n, I) = n 

for all 1EInJ. Since xEI,so m(x,n,j)EInJ. 

Thus in(x, n, m(x, n, j)) = n 

But it can be easily seen that in(x, n, m(x, n, /)) = in(x, n. j) Thus implies ,n(x. iz.j) = /1 for 

all I e J. Hence XE R.H.S and so L.iI.S g R.H.S Thus (In ,J) n 1 = J n 1 H 

Theoren 4.3.3: Suppose n is medial element of a lattice L. If I c J,I,J I,, (L). 

Then(i) i=I nJ and (ii)1 =I nJ. 

Proof: (i) am trivial, For (ii), using (i) we have, 1' (1')' n J = (1 fl 

Thus by Theorem 3.2, I = 1 r J Li 

Theorem 4.3.4: Let n be a sesqui - medial element of a distributive lattice L. Suppose 

F(L) is sectionally pseudo-complemented distributive lattice and P is a prime n-ideal of 

L. Then the following conditions are equivalent. 
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(i) P is minimal. (ii) x E I' implies < v P 

x E 1' implies <x >,, 

PmD(<t,1 >)=ço forall ieL — P, where D(<i >)={xEL<1,1  >:<x>,=nH 

Proof: (i) (ii), suppose P is minimal. If (ii) fails, then there exists x E 1', 

such that <x P . Since P is a prime ii-ideal, then P is a prime ideal or a prime filter. 
A- 

Suppose P is a prime ideal. Let D = (L - P) v [x). We claim that ii o D. if ii E D, then 

n=qAx forsomeqEL—P. 

Then <q>,1  n<x>,,=<(qAx)v(qAn)v(xAn)>,,={n} implies <q>ç<x>,,cI'. 

Thus, q E P, which is contradiction. 1-lence n 0 D. Then there exist a prime n- ideal Q with 

QnD=ç . Then QP as Q(L—P)=ço and Q#P, since xq . But this contradicts 

the minimality of P. 

I-Iencc <x > P. Similarly, we can prove that <x >, ~ P if P is a prime fitter. 

= (iii). Suppose (ii) holds and x E P. Then <x >,, P. 

Since <x>,, <x>,1 ={n} P and I' is prime, so< x >,," c P. 

=> (iv). Suppose (iii) holds and i E L - P. Let x E= P r' D(< i' >,) 

Then xEP,xED(<t>,,). Thus <x>,={n} and so<x>,=<1>,, 

By (iii)x e P implies <x >,, P. Also by Theorem 3.3.3, <x >,, n <x >" r <I >,, 

Hence <x>,, r<t>,1 =<i>,, and so <t>,,<x>,, c P. That isle P. which isa 

- contradiction. 

Therefore, PnD(<t>,,)=ço forall tEL—P. 

= (i). Suppose P is not minimal. Then there exists a Prime n-ideal Q c P. 

LetxeP—Q . Since <x> n<x>,,={n}Q So <x>,,'cQP 
-4 
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1'hus, <x >,, v <x >,,c: P. 

Choose any teL — P.Then <i> r(<x>, v<x>P. 

=< rn(t,n,x)>,, v <t >,, n <x >,,) n(<t >)(<t> (by Theorem3. 3.2) 

=<m(t,n,x) >, v (n2(1,n,x) >, () <1>,) 

=<m(t,n,.t)>,, v (<m(t,n,x)> by Theorem 3.3.3), where<m(t,n,x)> is the relative 

pseudo-complement of <m(t, n, x) >, in <I >,. Since F, (L) is sectionally pseudo- 

complemc-r.ted <m(t,n,x)>* is finitely generated and so (<m(i,n,x)> vm(1,n,x) is a 

finitely generated n-ideal contained in <t >. 

Therefore, <m(t, n, x) > v m(1, n, x) >, =< r >,, for some r E < t > 

Moreover, <r >,' = <,n(t, n, x) >,: vm(t, n, x),,** {n}. Thus, r e P 'm D <1 >, 

which is a contradiction. Therefore, P must be minimal II 

LOU 

IL 

4 

El 
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4.4 Lattice whose I)nncipal n-ideal form normal lattice. 

Definitioii( Normal lattice): A distributive lattice L with 0 is normal if every ideal of 

L contains a unique minimal prime ideal. 

Definition( Central element): Any element of a lattice which is standard and 

complemented in each interval containing it is actually neutral, then the element is called 

central. 

We already known that for a central element n E L, P (L) (n)" xtn). 

Thus, we have the following result. 

Lemma 4.4.1: Suppose n is a central element of a distributive lattice L. 

Then P,(L) is normal if and only if (nr'  and [n) are normal. 

A distributive lattice L with I is called dual normal if its every prime iltcr is 

contained in a unique ultra-filter (maximal and proper). In a general lattice, this condition is 

also equivalent to the condition of normality, that is, every prime ideal contains a unique 

minimal prime ideal. Thus obviously the concept of dual normality coincides with the 

normality in case of bounded distributive lattices. 

Therefore, from above lemma P(L) is normal if and only if [n) is a normal lattice 

and [n) is a dual normal lattice. Following theorem is needed to prove the main results of 

this chapter. 

Theorem 4.4.2: Suppose L be a distributive lattice and n E L. 

Lt x, y E L with <x >, n < y > = {n}. Then the following conditions are equivalent. 

(i)<x>, fl<y)',=L. 
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(ii) For any ,' L, < ,n(x, n, x) >,, v < m(y, n, I) >,,, <I >,, .whcrc < m(x. n, x) >,, 

denote the relative pseudocornplcment of <,n(x, n, 1) > in [{n}, < I >,,]. 

Proof: (i) = (ii). Suppose (i) hold. Then for any I E 

<rn(x, n, I) >,,. v <m(y, n, I) >,, = (<x >,, n <I >,,) v (< y >,, n <I >,, ) 

= ((< x > n <t >,, )' n <I >)v <y >,, )n <1 >,,)' n < t >,,) [by Lemma 4.3.3.] 

= ((< x >,, n <t >,,)v <y >,,)n <1 >,,) [by Lemma 4.3.2.] 

= x >,, v <y >,,) n (<I>,,) 

= Sr-) <1 >,, 

Ir 

=< > 1-lence (ii) holds. 

(ii) = (i). Suppose (ii) holds and I L. 

By (ii), <m(x,n,I) >,,+ v <m(y,n,I) >,, =< t >. Then using Lemmas 4.3.2 and 4.3.3 and 

the calculation of (i) => (ii) above, we get, 

(<x>,,' v <y>')n<I>,,=<I >,, This implies<t >,,ç< x >,,' v <y >,,' and 

I E< X >,, V < y >,, so . Therefore, <x >,, v <y > = L L 

Conish in [4] has given some characterizations of normal lattices. Then [30] 
extended those results for lattices [30] has given the following characterizations for normal 
lattices. 

Theorem 4.4.3: Let L be a distributive lattice and n be a central element of L. The 

following conditions are equivalent. 
> 

P,, (L) is normal. 

Every prime n-ideal of L contains a unique minimal prime n-ideal. 

For any two minimal prime n-ideals P and Q of L, P v Q = L. 

IN 
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1'roof: (i) => (ii). Let /, ( L) be nolmal, since 1, ( L) (ii 1" x ,,)' so both ()i I" and ii) 

are normal. Suppose P is any prime n-ideal of L . Then either P (ni or I' D [17) . Without 

loss of generality, suppose P (nj. Then P is prime ideal of L. 1-lence 1 = P n [n) is a 

prime ideal of [n) . Since [i is normal, so by definition I contains a unique minimal 

prime ideal R1  of [n) . Therefore, P contains a unique minimal Prime ideal 1? of L where 

R1  = R rTh {n). Since n e Ri  son e 1? and hence R is a minimal prime n-ideal of L . Thus (ii) 

holds. 

(ii) => (i). Suppose (ii) holds. Let 1 be a prime ideal in [n). Then i P n [n) for some 

prime ideal P of L. Since n e P ç P, so P is prime n-ideal 

Therefore, 1 contains a unique minimal prime n-ideal R of L. Thus, J contains the 

unique minimal prime ideal R1  = R n [n) of [n). 1-lence by definition [n)  is normal. 

Similarly, we can prove that(n]" is also normal. Since P,, (L) (nj"  x [n)", so P (L) P is 

normal. 

(ii) (iii) is trivial by Stone's separation Theorem. 

Recall tha for a prime ideal P of a distributive lattice L with 0, [31] has defined 

0(1') = {x e L: x A y = 0 !br some ye L - P}. Clearly, 0(1') is an ideal and 0(P) P. [3 I] 

has shown that 0(1') is the intersection of al the minimal prime ideals of L , which are 

contained in P. 

For a prime n-ideal P of a distributive lattice L, we write 

n(1') = {y e P in(y,n,x) = n for some xe L - P}. Clearly, n(P) is an n- ideal and 

n(P)GP LI 

Lemma 4.4.4: Let n be a medial element of a distributive lattice L and 1' be a prime n-

ideal in L . Then each minimal prime n-ideal belonging to n(P) is contained in P 

Proof: Let Q be a minimal prime n-ideal belonging to n(P). lfQ P, then choose 

y e Q - P. Since Q is a prime n-ideal, so we have Q is either an ideal or a filter. Without 
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loss of generality, suppos Q is an ideal. Now let T = {t € L,in(y,n,') e n(J')} . We show that 

TzQ. If not, let D=(L—Q)v[y). Then n(p)nD=-p 

For otherwise, y A r E n(P) for some r E L 
- Q. 

Then by convexity, y A r :5 m(y, n, r) :!~ (y A r) v ii implies in(y, n, r), n(P) 

Hence r E T ç Q, which is a contradiction. Thus there exists a prime n- ideal I? containing 

n(P) disjoint to D. Then R ç Q. 

Moreover, R # Q as y E R , this shows that Q is not a minimal prime n- ideal belonging to 

n(P), which is a contradiction.Therefore, T Q. Hence there exists z z Q such that 

in(y, ii, z) E n(P). Thus ,n(rn(y, n, z), n, x) = n for some x E L - P. It is easy to see that 

in(m(y, n, z), n, x) = n = m(,n(y, n, x), n, z) 

Hence in(m(y, n, x), n, z) = n. Since P is prime and y, z E P so  

Therefore, z E n(P) g Q, which is a contradiction. Hence Q 1' 

Proposition 4.4.5: If n is a medial clement of a distributive lattice and P is a prime n- 

ideal in L , then n(p is the intersection of all minimal prime n - ideals contained in P 

Proof: Clearly, 12(P) is contained in any prime n- ideal which is contained in P 

Hence n(P) is contained in the intersection of all minimal prime n- ideals contained in P 

4 Since L is distributive, son(P) is the intersection of all minimal prime n- ideals belonging 

to it. Since each prime n- ideal contains a minimal prime n- ideal, above remarks and 

Lemma 4.4.4 establish the proposition 0 

Theorem 4.4.6: Let L be a distributive lattice and let n be central clement in L. Then the 

following conditions are equivalent. 

P,, (L) is normal. 

Every prime n- ideal contains a unique minimal prime n- ideal. 
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For each prime n- idea! P, n(P) is prime n- ideal. 

For all x,yE L,<x >,, n <y> = {n} 

Imp!ies < x >,,*  

For allx,yEL,(<x>n<y>)=<x>v<y> t  

Proof: (i) => (ii) holds by theorem 4.4.3 

(iii) is a direct consequence of proposition 4.4.5. 

(iii) => (iv). Suppose (iii) is a direct consequence of proposition 4.4.5 

(iv). Suppose (iii) holds. 

Consider x,y EL with <x > v <y >,= {n} 

If <x >,' v <y > # L, then by Theorem 1.4.7 there exiats a prime n- ideal P 

Such that <x >,, v <y >,,c P, then <x >,, 1' and <y P, imply x E 

And y e n(P). But n(P) is prime and so m(x, n, y) = n E n(P) is contradictory. 

Therefore. <x>,, v<y>,,=L. 

= (v). Obviously, <x> v<y>,c (<x>,1  (Th<y>fl ). 

Conversely, let WE (<x >, n <y >,) 

Then, <w >,, n(< x >,, r) <y >,,) = {n} or, <m(w, n, x) >, <y >, = {n}. 
4 

So by (iv), <rn(w,n,x)>,, n<y>,,=L 

So, w E< in(w, n, x) >• n <y > 

Threfore, WAfl,WV nE<n2(w,n,x)>, v 

Here w v n exists as n is an upper element. 

Then w v n = r v s for some 1' € < in(w, n, x) >, and s E < y >, with r, s ~! ii. 

Nowr E< Fn(w,n,x) >, 
-J 
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CHAPTER FIVE 

lntroduction:_In lattice theory there arc different classes of lattice known as verity of'  

course the most powerful variety. Throughout this captcr we will be concerned with another 

large veriety known as the class opseudocomplcmcntcd lattice. Pseudocomplcmented 

lattices have been studied by several authors [16],[17], [25], [26 ], [27], [28 

In this chapter we have studies relatively pseudocomplemented lattice and Multipler 

Extension of Sectionally Pseudocomplemented Distributive lattices. 

5.1. Relatively Pseudoeomplemented of lattice. 

Definition ( Pseudoeomplemented element): Let L be a lattice with o and I for 

an element xe L, element x*  eL is called pseudo complement of x if x AX = 0 

and X A y = O(y E L) implies y :!~ x. 

Definition ( Pseudoeomplemented lattice): Let L be a bounded distributive 

lattice, let a e L , an element a E L is called a pseudocomplemented of a in L if the 

following conditions hold:(i) a A = 0 (ii) V x E L, a A X = 0 implies that x :!~ a 

Also A lattice L is called pseudocornplen-iented if its every element has a peudocomplement. 

For a lattice L with o, we can talk about sectionally pseudocomplemented lattice, 

A lattice L with 0 is called sectionally Pscudocomplemented if the interval [0, x] 

for each x c= L is pseudocomplemented. Of course every finite distributive lattice is 

Sectionally pseudocomplemented. 
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Definition( Relatively Pseudocomplement lattice): A lattice L is called relatively 

pseudocomplementcd if interval [a,b] for each u,b € L ,a <b is pscudocomplemcntcd. 

Theorem 5.1.1: If L is a distributive sectionally lscudocomplcmenlcd lattice, then S1: is 

a distributive pseudocomplemented lattice. 

Proof: Suppose L is sectionally pseudocomplemented. Since L,. is a distributive lattice. 

Let [x]€ L,.., then O] [x] :!~ F. Now 0 < x A f :~ .1 for all f e F. Let y be the 

pseudocomplement of x A .1 in [0, f], then y A X A .1. = 0 implies [y A 1] A [x] = [0], 

that is [y] A [x] = [0]. 

Suppose [z] A [x] = [0], for some [z] E L,.., then Z A x = O(y/1; ). 

This implies Z A X A = 0-----------(i) for some F. Since z = Z A 

So zAf'  =zAfAf"  .................... (ii)forsomef" EF from(i) and (ii). 

Weget zAxAf' Af"=O.Setting g=f' Af 

wehave zAg=zAgAf which implies zAg:!~f and ZAgAXAJ=0. 

So 0:!~-zAgAx::-~f and 

Z A g :!~ y. 1-lence, [z A g] c (y). But [z] = [z A g] as g e F. Therefore, [z] ç [y] and so L,.. 

is pseudocomplernented distributive lattice II 

Lemma 5.1.2: Let L be a distributive relatively pseudocomplemented lattice. 

Let x :~ y :!~ z in L and s E L is the relative pseudocomplerneted of y in [x, z]. 

Then for any r E L, s e r is the relative pseudocomplernet of y A r in [x A r, Z A r]. 

Vq 
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Proof: Suppese I A r is the relative pscudoconiplemct of 1' Ar Ifl Ix Ar.: A rl. Since s is 

the relative pseudocomplemented of y in [x, z. So s A .' = x, Thus, 

(s A r) v (y A r) = X A r. 

This implies s A r :!~ I A r. Again, x :!~ s V (I A r) :~ z and 

yA(sv(/Ar)=(yAs)v(yAr)v(IAr)=xv(xAr) implies sv(IAr):!~s 

i.e s=sv(IAr). 

1-lence 1Ar:!!~s, and so tAr :!~sAr. 

This implies I A r :!~ s A r. Therefore, s A r is the relative pseudocomplemet of y A r in 

[XAr,ZAr] 

Theorem 5.1.3: If L is a distributive relatively pseudocomplemeted lattice, then LE  is a 

distributive relatively pseudocomplemeted lattice. 

Proof: Since L,, is a distributive lattice. Let [x],[y],[z] E L,; with [x] c [y] ç [z]. 

Then [x]=[xAy]and[y]=[yAz].Thus x=xAy(y!J)  and y=yAz(y!,. ) . 

This implies xAf=xAyAfand yig=yizi'.g forsorne f,gEF. 

Then xAfAg=xAyAfAgand yAfAg=yAzAfAg,andso 

xAfAg:!~yAfAg:!~zAfAg,thatis xAh::-~yAh:!~zAh where h=fAgE/ 

Suppose t is the relative pseudocomplemented of y A h in [x A h, Z A h]. 

Then IAyAh=xA,h and so [t]A[yAh]=[xAh].Thatis[/]A[y]=[x] as 

y=yAh(yl j; ) and x=xAh(yl,; ). 

Moreover, [t] A [z] = [t] A [z A = [r A z A h] = [t] implies [x] [y] [z]. We claim 

that [t] is the relative pseudocomplement of [y] in [[x,[y]J in L,;. 

Suppose [s] A [y] =xJ for some [s]E [x],[z]j. Then x A y = X(yl,; ) and 

SO S A y A f1 for some E F. Again [s=z]implics s s A z(çu,..) 

and so sg' =sAzAg' forsome g' EF.Then sAyAf1  Ag1  = A ,f '  A 
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andsf Ag' =sAzAf' Ag' Thus, sAyAk=xAk and sAk=SA:Ak 

where k=f' hg' . TheseimplyxAhAk:!~sAhAk:!~zAhAk and 

(sAhAk)A(yAhAk)=xAhAk .Thenbyabove!emma, sAhAk::~1Ak 

Hence [s] = [s A Ii A k] A k] = [t] and so [t] is relative pseudocomplemet of [y] in 

[[x],[y]]. Therefore, L1. is relatively pseudocomplemet LI 

Definition (Stone aLgebra): A pseudocomplemented distributive lattice L is called a stone 

algebra if and only if it satisfies the condition for each a v = I which is known as stone 

identity. 

rm 
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5.2 Multiplier Extension of Sectionally Pseudo-complemented Distributive Lattices. 

Introduction: A lattice is a meet semilattice together with the property that any two 

elements po:sessing a common upper bound have a supremum. Here, the authors study 

multipliers on distributive lattices which are sectionally in B1 , - I :~ ii :!~ w. They have 

showed that a distributive lattice L is sectionally in B,, if and only if its set of all multipliers 

M(L) is in B,,. Moreover, for 1 :~ n :!~ o., the above conditions are also equivalent to the 

condition that L is sectionally pseudo-complemented, and for any n + I minimal prime 

ideals P....., IA ... A F, 1 =L. 

Let L be a lattice and o a mapping of L into itselil Then is called a multiplier 

on L, if o-(x A y) = 0(x) A U(Y) for each x, y e L. Each multiplier on L has the following 

properties: 

o-(x) :f~- x, o-(= o-(x)a(x)) and x :!~ y implies a(x) :!~ cr(y). 

Each a E L induces a multiplier p,,  defined by p,,  (x) = a A x for each x E L, which is 

called an inner multiplier. The identity function on L, which will be denoted by i, is always 

a multiplier. M(L) denotes the set of all multipliers on L . It is obvious that M(L) has a 

zero denoted by w if and only if L has a 0. 

If a and 2 are multipliers on a lattice L, then a A 2 and a v 2 are defined by 

k. 

(a A 2)(x) = a(x) A a(x) and (a v 2)(x) = a(x) v u(x). Note that a(x) v a(x) always 

exists by the upper bound property of L, as a(x), a(x) :~ x, although a v 2 is not 

necessarily a multiplier. 

Also, a(2(x) = 0-(2(x A x)) = a(2(x) A x) = U(X) A o-(x). If L is a distributive lattice, then 

M(L) is a distributive lattice. 

A distributive lattice L with 0 is called sectionally pseudo-complemented if each interval 

[0,x],x e L is pseudo-complemented. 
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Let L be a sectionally pseudo-complemented distributive lattice and o E M(L). We define the 

pseudo-complement of a (denoted by 
*) 

by o (x) = o-(x), where a(x) is the relative 

pseudo-complement of a(x) in [0, x] For cachx E L . In Fact, we have given a proof of this in 

Proposition 5.2.2 

In this section, we study multipliers on sectionally pseudo-complemented distributive 

lattices and also on distributive latices which are sectionally in B,, - 1 :!~ ii :!~ . Then we 

generalize a number of results of [1]. We show that L is sectionally in 13,, if and only if 

M(L) is in B,,. We also show that, for I :!~ n :!~ a, the above conditions are also equivalent 

to the conditions that L is sectionally pseudo-complemented and for any /1 + I minimal 

prime ideals P ...... .1)fl-fl'  1 A ... A = L. I   

Multipliers on Distributive lattices which are Sectionally in B11  

Lee [4] has determined the lattice of all equational subclasses of the class of all pseudo- 

complemented distributive lattices. They are given by B 1  130  c B c ... B,, c ... 

where all the inclusions are proper and 130  is the class of all pseudo-complemented 

distributive lattices, B_ 1  consists of all one element algebras, B. is the variety of Boolcan 

algebras while B,,, for 1 :5 n :!~ w, consists of all algebras satisfying the equation 

f * 

A X2  A ... A X,,) V V A ... A X, 1  A X, A X, 1  A ... A X,,) = 1, 

where x denotes the pseudo-complement of x . Thus B,  consists of all Stone algebras. 

A lattice L is sectionally complemented if [0, x] is complemented for each x E L. L is 

semiboolcan if it is sectionally complemented and distributive. 

Recall that a distributive lattice L with 0 is sectionally pseudo-complemented if each 

interval [0, x] , x e L is pseudo-complemented. 

Theorem 5.2.1: A lattice L is distributive if and only if M(L) is a distributive lattice. 



Proposition 5.2.2: If L is a sectionally pseudo-complemented distributive lattice with 0. 

then M(L) is pseudo-complemented. 
-I,  

Proof: For each a e M(L) and x E L, a(x) E [0, x]. Suppose a(x)' dcnotcs the pseudo- 

complement of a(x) in [0, x]. Define a' : L -> L by o-' (x) = a(x)' for each x E L. If 

a,b EL, 

then (a'(a)Ab)Aa(aAb)=a'(a)AbAa(a)Ab=O implies 

(a' (a) A b) ::~ a(a A b)' = a*  (a A b). On the other hand, 

(a*  (a A b) A a(a) = cr(a A b)' A a(a) = a(a Al)) A a(a) A/) = 0 

implies a'(aAb):!~a(a)'o-'(a). 

Since a'(aAb) :5:b, so a'(aAb) :!~ a(a'(a)Ab. 

Therefore, a' (a A b) = a' (a) A b and so a' E lvl(L). 

Now, (a A a' )(x)= a(x)A a' (x)= 0 = a(x) implies a A a'  = . If 

4 aAr=w, a(x)Ar(x)=0. 

Then ftr each XE L. Since a(x), r(x) e [0, x], so r(x) :!~ a(x)' = a' (x). 

This implies z :~ a' and so is the pseudo-complement of a in M(L). Therefore, lvI(L) is 

pseudo-complemented L 

Proposition 5.2.3: For a distributive lattice L with 0, if M(L) is pseudo-complemented 

then L is sectionally pseudo-complemented. 

Moreover, for each a-  E M(L) and x E L, the element a (X) is the relative pseudo- 

complement of a (x) in [0, x]. 

Proof: Consider any interval [0, y] in L. Suppose x E [0, y. 

Then 0 = a(y) 
= (p Apy)= p(y)Aji(y)= X A y AJL(y)= x AJL(y). Now, if x Al = 0 

for some! E[O,y], then for allpEL, (1u A/!1Xp)=xAtAp=O,  and so1u A/f, =w.1'his 
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implies i, Thus, an1 so I = IA y '(y).  Hence,  i(y)  is the relative 

pseudo-complement of x in [O,y] . Therefore, L is sectionally pseudo-complemcnted.Finally. Ibr 

each xEL, o-(x)Aa'(x)=O.A!so a'(x)€[O,x].Nowlet 1Acr(x)=O for some IetO,xi. 

Then for any pEL, (pAci)(p)=,u(p)Aa(p)=IApAo(p)=IAa(p)=AxAo(p) 

=1 ApAo-(x)=O=a)(p). This implies ,UAJ=W and so u:!~_o Then ,u(x):!~o'(x) 

Thus, I = I t x :!~ o (x). This shows that o(x) is the pseudocomplement of C(x) in[O, x] 

Corollary 5.2.4: Suppose L is a sectionally pseudo-complemented distributive lattice with 

0. if x is the pseudo-complement of x in then f = ,ux(y). 

Theorem 5.2.5: Let L be a distributive with 0. For a given n such that - 1 :~ ii :!~ w, the 

following conditions are equivalent: 

L is sectionally in B,1 ; 

M(L) is in B,,. 

Proof: (i) implies (ii). The case n = —1 is trivial. The case n = w follows from 

Proposition 4.2.2 

For n = 0, L is serniboolean. Then by Proposition 4.2.2, M(L) is pseudo-complemented 

and for o-  E M(L), o (x) = cr(x)' for each x e L, where u(x) is the pseudo-complement 

of o-(x) ,[0,x]. Since L is seiniboolean, o(x) is also the relative complement of o(x) in 

[0, x]. Then (ci v r)(x) = u(x) v o (x) = a(x) v o (x)x = 

This implies Cr A = z and so is also the complement of a in M(L). 

Ir Therefore, M(L) is Boolean. 

Now, suppose L is sectionally in B,,. 1 :!~- n :~ cv. For a. .............  ci,, c= M(L) and for 

each XE L, using Proposition 5.2.2 
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[(a[ A ...A a,, v V A... A  U A ...A a,, ](x) 

= ( A...Aa,,)(X)V  '( A...Aa, A ... Aa,,)(X) 

'3 

((Or, (( A...Aa,,XX)) V VA ... Aa, A ... Aa,,X)) 
1=I 

?J I 

= (a1(x)A ... Aa(x)Y v va(x)A ... Aa,*(x)A ... Aa,,(x)) 
1=l 

fl / 
=(a1(x)A ... Aa,,(x))v VaI(X)A ... AUI(X)A ... AU,,(X) 

,=1 

= x = 

Hence, (a A ... A a,,)' v A ... A a,, ) v ... v A ... A (7,:)' = i and so M(L) is in B, 

(ii) implies (i). The case n = w follows from Proposition 5.2.3. For n = 0, M(L) is 

Boolean. Then by Proposition 5.2.3, L is sectionally pseudo-complemented. 

Suppose x E [O,y]. Then the pseudo-complement p of p is also the complement 

of 1u.  Thus, ,u v ,u' = t. If x is the pseudo-complement of x in [0, y] , then by Corollary 

5.2.4 

y=i(y)=(t vp')(y)= p(y)v '(y)J(y)V/i(Y)=(XAY)VX =xvx'  .This 

implies x is the relative complement of x in [O,y] and hence, L is serniboolcan. 
A 

Now, suppose M(L) is in B,,, 1 :~- n ~: o. Let x............x,, e [0, y]. 

Then using Proposition 5.2.2 

y=z(y) = 

((Px, AAr) D 
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Lemma 5.2.6: 

(i) Let L be a distributive lattice with 0. If 0 :!~ x :!~ L and the interval [0, x] is pseudo- 

complemented, where y is the pseudo- complement of' x E [0, x] then in the 

lattice of ideals of L . (y] n (xj and (y = (y)" n (xj. 

(ii) If L is a distributive near lattices with 0 and 0 :~ x ::~ L is such that (1 * n (xl is 

4 principal for each y E [0, x, then [0, x] is pseudo-complemented and (y] * r (xl = (y' ]. 

Lemma 5.2.7: Let L be a distributive lattice with 0. For any r E L and any ideal I. 

((,']n J)* (rJ=I*n (r]. 

Proof: Obviously, Ri-IS ç  LI-IS. To prove the reverse inclusion, let 

tE ((rJr' I)r (,]. 

Then t:!~rand IArAi=O for all iEI . Thisimplies 1Ai=0 and so te [Thus. 

I E I*r ('rJ and this completes the proof Li 

Lemma 5.2.8: IfS is sub lattice of a distributive lattice L and is a prime 

ideal in L,, then there exists a prime ideal P in L such that P = S1 P. 

Proof: Let I be the ideal generated by 1- in L . Then 1 = (HI ] where II is the 

hereditary subset of L generated by I . Suppose x E I n (L J-P ). Then x E I 

A 
and xES1  -. Then by Theorem 11 in[2], x=h1  v ..............  vh, forsome 

h................h, € H. Again, h, e H implies h1  :!~t :f~-I, for some t,  e P,, i = 1,2........n. 

Then x = (x A h) v ............(x A h,,) :!~ (x A () v ........(x A i) :!~ x (this exists by the upper 

bound property). Thus, x = (x = (x A t ) v ..... v (x A t )E p1 ) which gives a contradiction. 

Therefore, I n (L1  - P,) = go. Then as L1  - P is a filter in L 1 , I n (L1  - 1)  

where (L1  - P) is the filter generated by L1  - 1 in L. Then by Theorem in [7], there is a 
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prime ideal P in L such that I c P and (L - i) P = 0 . Then 11,  c  I n L ç  P L1  

and PnL1  cI .1-lence, P =L1  rP 

A prime ideal I' of a near lattice L with 0 is a minimal prime ideal if there exists no prime 

ideal Q such that Q c P. Thus, we have the following corollary. We omit the proof as it 

can be donz in a similar way. 

Corollary 5.2.9: If L 1  is a sub lattice with a smallest element of a distributive lattice L 1  

with 0 and P is a minimal prime ideal in L 1 , then there exists a minimal prime ideal P 

in L such that P,  = L1  n P. 

We conclude this paper with the following tlieoreiii which is a nice extension of Thcorcm4.5 
r 

m[]. 

Theorem 5.2.10: Let L be a distributive lattice with 0. For a given n such that 

1 :!~ n :!~ co the following conditions are equivalent 

L is sectionally in B,, 

M(L) is in B,, 

For any ye L and forx. ........... x,, e (y], 

(y]c ((xi  ]A ........A (x,,]) v ((x]) v .........v ((xj)' ((xi ] A .........A (x,,]) 

For any x. ................. x,, eL 

((xjA...r(x,,I)*v((xj*A ... A(x
,, ])*v ...  v((xi]A  ... A(x ,, ]* 

)*L 

L is sectionally pseudocomplemented and each prime ideal contains at most 

n minimal prime ideals; 

L is sectionally pseudocomplemented and for any n+l distinct minimal prime ideals 

v .................  vP,, 1 =L 
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((r AX1  I A  ....... A (r A X,1 I) A (r 1) = ((x1  IA. A (x j) A (rl 

Again, for each I :!~ i !~ n, r A X, :!~ x1  implies (r A x, (1 ] Thus. 

((rAx1 ]A .......A(rAx,]) A ....... (rAx,,j)((rAX1 JA ..... A(rAx,] A ..... (rAx,,]). 

Psendocomplernented distributive lattices 

and so 

Ar ((r A X1  A .......A (r A X,]) A ........(r A X,1 
])* 

A (i'] 

c((rAx1 JA ..... A(rAx,JA .....  (rAx])A(rJ)) 

= ((x1 ] A .....A (x, ]) A ...........A (x,,]) A (rj. 

By using Lemma 5.2.7 again. 

Therefore,(r] g ((x1 ] A .......A (x,,J v ((x1  ] A ......A (x,, 
]) 

v .....v ((x1  A ......  x,?]) * .Which 

implies that, 

((x1  I  A .......A (x ] v ((X1 ') A ......A (xl? 
])t 

v .....v ((x1  A ......x } ) = L 

If n = 1, then for any r, we have by (iii) that 

(r c (c A X1 ] v (r A X1 ]. 

Thus, 

(r] = ((r A Xl J n (rj v ((r A x (r]) 

= ((x1  1' n (r]) v (fr A x1 ] n  (rl)  (by Lemma 2.7) 

C (x1 j v (x1 ]"  

and hence (x1 ]' v (x1  1" = L 

implies (i) following exactly from the same proof of Theorem 5.2.5 (iv) => (i) in [111. 

implies (vi). Suppose (v) holds, and I ................., P, are distinct minimal prime ideals. 

If P v .................v P,, 1  # L, them by Theorem 5.2.6 , there exists a prime ideal P 

containing P1 .................
, 

which contradicts (v), 
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(vi) implies (v). Suppose (vi) holds. If (v) does not hold then there exists a prime ideal P 

which contains more then n minimal prime ideals. They by (vi), P = L which is impossible. 

(v) implies (vi). We omit this proof as it can be prove exactly in a similar way 

(iv) implies (vi) in Theorem 5.2.5 in [1]. 

(vi) implies (i). Suppose (vi) holds and a E L. Let Q1 ................., Q,,+1 be ii + i distinct 

minimal prime ideals in [O,a] .By Corollary 5.2.9, there are minimal prime ideals ]' in L, 

such that Q, = [0, a]P, for each 1 :!~ i :!~ n + 1. Since Q, are distinct, all P, 's are also distinct. 

By(vi), 

(a]=(a]A(P1  v .............. vP 1 )=((a]vI)v ..............  v((a]A]+1)=Q  v .............. vQ,,+1. 

Since each interval [0,a] is pscudocomplcmented, so [0,a] = B,, by Theorem 1 in [4], and 

hence, L is section ally in B,, U 
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CIIAPTER SiX 

Homomorphism and standard ideals 

Introduction: In this Chapter we studies extensively standard ideal and homomorphism 

kernels. The idea of standard ideals in lattice was first introduced by [15], [21]. It had 

extended the ideal to convex sub lattices and proved many results on homomorphism by 

[10], [33] also [7] and [8] 

A congruence of a lattice L is called standard if 0 = ® for some standard ideal S 

of L. For any two lattice L1  and L2 , a map 0: L1  - L 2  is called an isotone if for any 

x,y E L, with x :!~ yirnplies Ø(x):!~ 0(y).  Also the above mapping is called a meet 

homomorphism if for all x, y e L1 , O(x A y) = 0(x) A 

Therefore meet homomorphism is an isotone, and hence 0 is isotone. 

Ø(x)v 0(y) :!~ Ø(x v y). Therefore Ø(x)v 0(Y)  exists by upper bound property of L .Latif 

in his thesis has introduced the concept of standard n- ideals of a lattice. We conclude this 

section with some more properties of standard and neutral ideals, For the background 

meterial on standard ideals we refer the reader to consult the text of Gratzer [18]. We also 

extended the result of Cornish and A.S.A Noor [4] , we also show that if I is an arbitrary 

ideal and S is standard ideal then I AS and I vS are principal, then I itself principal. 

Secondly, we have discussed homomorphism, kernels and stadard ideals. Gratzer and 

- Schmitd in [15] were translated several thorem of Group theory to lattice theory. l-lere we 

have generalized so of their result, we have shown that if S is a standard ideal of a lattice L. 

then ® s the extension of ® (S) to 1(L) and 0 (S) is the restriction of 0 s  to the lattice L 

Then we have shown that in a sectionally complemented lattice all congruenccs are 

standard. We also show that in a relatively complemented lattice L with 0, if every standard 

ideal of L is generated by a finite number of standard elements, then the congruence lattice 

C(L), is Boolean. 



Finally, we have generalized two results of [5] and [6] regarding lattices all of whose 

congruence are standard. We know that the set of all standard ideals of a lattice L is a sub 

lattice of 1(L). Also the congruence ® where S is standard form a sub lattice of 0 (1(L)) 

and S - 0 is an isomorphism. Suppose 0 is a congruence relation of L. 0 delines in the 

natural way a homomorphism of 1(L) under which I = J(1,J e 1(L)) if and only if to any 

x e 1 there exists a,b E J such that x y® and conversely. We call this congruence 

relation the extension of 0 to I (L). On the other hand any congruence relation p  of 1(L) 

induces a congruence relation of A under which x y if and only if (x} (y}(ç). This is 

called the restriction of ç) to L. 

Thirdly in [15] Gratzer and Schmidt have proved Isomorphism theorem for standard ideals 

in lattices. In their paper they have translated several theorems of group theory to lattice 

theory using ideal, standard ideal, factor group and group operation. 1-lere we shall 

generalize isomorphism theorem. 

We refer the reader to [6], [7], [8], [9] for a necessary background on this section. 
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6.1 Cliarecterization of standard ideals 

We start with the following characterization of standard ideals in a lattice, which is due to 

[4]. We prefer to include the proof for the convenience of the reader. 

Theorem:6.1.1 LetSbe an ideal in a latticeL. Then the following conditions are 

equivalent. 

S is a standard ideal. 

The binary relation 0(s), defined byx Y0()'  if and only if 

x = (x A y)v (x A a)v y = (x A y)v (y A b)for some a,b E S is a congruence relation. 

The binary relation 0 defined byx y(Ø),  if and only if 

4,- 
For all I e L,x A I)v (t Ac) = (y A 1)v I Ac) for some c E S is a congruence. 

For each ideal K,S v K = s v k : s v k exists, and s e S and k E K. Moreover, (ii) and (iii) 

represent the same congruence, viz. ®(s), the smallest congruence of L having S as 

congruence class. 

Proof: (i) implies (ii). If (i) holds, then the relation 

J K(®sXJ,KE1(L))  if and only ill =(Jr)K)v(.Jr)S) and K =(JnK)v(KnS) is 

a congruence on 1(L). Then Os! L, restriction to L, is a congruence on L and x y(0s! L) 

-41 if and only if (x)=(xAy)v(xnS) and (y}—_(xAyX(yJnS ). 

Thus to prove (ii), it is sufficient to prove that (x ] = (x A y JA ((x In S ) 

implies x = (x A y)v (x A a) for some a E S. This is proved by induction. By the property 

of the supremurn of two ideals,(x A y]v ((x]n S 
= 

Ln, where L. = (x A y I  U ((x ]n S and 
ii=0 

Ln = t eL :t:5 JV q;pvq exists and p,q E A 11 } for n=l,2............. 
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Indeed, we show by induction that (x A y ]v ((x]n s) = {i :i :~ (x A y]v (x v a) 

(XAY ]v((xjnS)={1:1:!~(xAy]v(xv) forsomc aES }. 

IfteL then IE(xAy] 

Or, I E (x] S. In the first instance, i:!~ X A y :!~ (x A y) v (x A s) for any s E S and in the 

second instance I = I A X :!~ (x A y) v (x A I) and I S. Thus the result holds for ,z = 0. 

Suppose the result hold for n—I for some n ,~: 1. Let I EE L, then I :!~- p v q with p. q E L, 1 . 

So p:!~(xAy)v(xAs) and q:!~(xAy)v(xAs2 ) for some s1 ,S 2 E S 

Then /:!~(xAy)v(xAs1 )v(xAs2 )=(xAy)v(xAs). 

For some s E S since (x A s1  ) v (x A 2)  :!~ S and is in S, it is of the form x A S for some 

seS. Thus, wehave (xAy]v((xr'\s)={/:/:!~(xAy)v(xAs) for someseS; in fiuct, 

x :!~ (x A y) v (x A a) for some a e S and so x = (x A y) v (x A a); as required. 

Implies (iii), Let x y(0(S)). Since 0(S) is a congruence , x Al = y A /(0(S)) for any 

tEL, and so xA/=(xAyAr)v(xAtAa) andA/=(xAyA/)v(xA/Ab) for some 

a,b E S .Thcn 

(xA/)v[/A[tAa)v(/Ab)=(xA/)v(/Aa)v(/Ab)(xAyA/)v(/Aa)v(/Ab) 

=(yA/)v(iAa)v(IAh)=(yA/)v(/ A[(/A(1)v(/ Ab). 

Observe taht (I A a) v (I A b) E S. Thus, x y() 

Conversely, if x y(Ø) then for any i E L, (x A I) v (i A c) = (y A t) v (1 A c) for some 

c E S. Choosing / = x and /= y , we have x = (x A y) v (x A I) and y = (x A y) v (y A c) 

respectively. Thus, x y(0(S)) and 0 is the congruence 0(S). 

Implies (iv). Let T = (s v k: s v k exixis and s E S and k E K). Suppose x :~ s v k, 

SE S,k E K. Clearly s v k k(®(S) and so x = xA(sv k)(xAk)(®(S)). 

1-lence for all t € 
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(XAI)v(1Ac)=(xAkAt)v(IAc) for some CES Choosing i=x, 

we obtain x = (x A k) v (x A c)and so x € T. But T is closed under existent finite suprima. 

it follows that T is an ideal of L and T = S v K. 

Imlies (i) Let x E J im (S v K) .Then x E J and x E (s v k). So x = s v k for 

.4 suitablesES. And k€ K Then, x=(xAs)v(xAk)and so xE(.JnS)v(.JnK). The 

reverse inclusion is obvious. Thus J im (S im K) = (J im S) v (J im K); S is a standard ideal. 

The last part is clear from the proof of (ii) implies (iii). Now we give another 

characterization of standard ideals of a lattice. This is a generalization of[15, Theorem 21 [1 

Theorem 6.1.2: For an ideal S of a Lattice L, the following conditions are equivalent; 

(i) S is a standard ideal. 

ii) The equality I r' (S v K) = (In S) v (in K) holds if I and K are principal ideals. 

(iii) If for the principal ideals I and J the inequality J c  S v / holds, then 

J=(JnS)v(JnI). 

iv) The relation ® [S] of L defined by x y(O(S))hold if and only if 

x = (x A y) v (x A a), 

y = (x A y) v (y A b) for some a,b E S is a congruence realtion. 

Proof: (i) Implies (ii) is obvious, from the definition of the standard ideal. 

(ii) Implies (iii) is clear. 

Implies (iv). Obviosly the relation is an equivalence relation. Let x :!~ y and x y(e(S)) 

then y = xv (y A b) y for some h e S. Suppose for some / e L, y v i exists. Then y v I 

exists. 

I- Ience,yvt u=(xvl)v(yAb):5(xvs')v((yvt)Ab)5yvt 

thus yvl=(xvt)v(yvt)Ab). So xvIyvt(®S)). 



Now, yA1:~ xv (y A h) (xjv 5, so (yA ijc (x]vS 

Then by (iii) (y Al] = (x A y Al) v (sAy A 1},0 = (x At] V (s A (y All) . Then a similar prool 

Ir 

of implies (ii) of Theorem 5.1.1 shows that y Al = (x At) v (y v ) A a) ; for some a E S 

Thus (S) is a congruence relation. 

(iv) implies (i) holds by theorem 5.1.1 U 

4 We conclude this section with the following result, which is a generalization of a well 

known result of lattice theory of [15, Lemma 8] 

Theorem: 6.1.3: Let I be an arbitrary and S be a standard ideal of the lattice L. 

If I v S and I r S are principal, then I itself is principal. 

Proof: Let IvS=(a] and limS=(b] . Then by Theorem 6.l.1, a = x v s forsome x c= 1 

and s E S. Since b :!~ a and x :!~ a, so x v b exists by the upper bound pioperty of L. We 

claim thaL I = (x V b). Of course (x V b] c I. For the reverse inequality, let I 1. Since 

I, x v b :!~ a so again by the upper bound property of L, w = t V x v b cxixts and w E L. 

Then (a]Sv((w]DSV(xvb]DSv(x]=(a}, i.e., Sv(wj=SV(xVb]. 

Further, (b]=Sr'IDSn(xVbj=sn(/,]=(h], and so Sn(w]=sn(xVb]. 

This two equalities imply that (w] = (x V bj as S is standard and so it,  = X V b e (x V bj. 

Since / :!~ w,t E (x V b] and hence I = (xv bj, which completes the proof U 

4- 

94 



6.2 Standard ideals and Homomorphism kernels 

Gratzer and Schmidt in [15] proved many results on homomorphism kernels and standard 

ideals of a lattice. Their main aim was to translate several theorems of Group theory to 

lattice theory. In this chapter we have Generalized some of their results. We have also given 

the charecterizations of those lattices whose all congruences are standard, which are 

generalizations of two papers [5] and [6]. 
4 

A congruence of a lattice L is called a standard if = 0(S) for some standard ideal S 

of L. 

Definition (Isotone): For any two lattice L1  and L2 , a map c'p :L - L2  is called an 

istone if for any x, y, e L1  with x :!~ y implies ç9(x) :f~' (y). 

Definition( Meet homomorphism): For any two lattices L1  and L,, a map :L1  —> L2  is 

called a meet homomorphism if for all x, y E L1  , ço(x A y) = (x) A 

Therefore, it is clear that every meet homomorphism is an istone. 

Defination(Join homomorphism): q: L1  -> L2  is called Join homomorphism if 

(p(xvy)= (x)vço(y) for all x,yE L1 . 

Since ço is istone (x) v (y) :!~ (x v y). Therefore, (x) v o(y) exists by the upper bound 

property of L2  

In chapter 1, we have given homomorphism theorem for lattice. Now we generalize two 

isomorphism theorems of [9] for lattice. 

Definition: If 9:L1  -> L2  be an onto homomorphism .The set {x E L /0(x) = o l } where 

01 is least element of L2  is called kernel of 9 and is denoted by KerO if L, does not have 

the zero element, ker 0 does not exist. 
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Defi;iition( Subiattice): A non empty subset A ola lattice L is called a sub lattice ofL 

if a,h E ;I implies that ab,a v hE A. If L is any lattice and a E L then {a} is sublattice of 

L. 

Theorem 6.2.1: 1-lomomorphic image of relatively complemented lattice is relatively 

complemented. 

Proof: :L1  —>L 2  be an onto homomorphism and suppose L1  is relatively complemented. 

Let [x' , y' ] be any interval in L2  since C is onto homomorphism 

Pre-images x and y for x' , y '  respectively such that (x) = x' 

(y) 
- 

y1  andx < y(ax'Zy'). 

Thus [x, y] is an interval in L1  

Let b E [x' ,y'] = [Ø(x),Ø(y)] be any element. Then as before 3 a prc-image a of h, such 

that G(a)=b and x:!~a<y. 

Now L1  relatively complemented implies that a has a complement a1  relative to[x' y' J 

i.e aAa'=x,ava'=y 

a) A q(a') =q (x),ço(a) v ç9(a 1 )= ço(y) 

b A (a') = , b v (a') = y' 

(a1) is complement of b relative to [x', y'] 

Thus each element in any interval in L2  has complement, going us the required result H 

Theorem 6.2.2: 9:L1  - L2  is an onto homomorphism whcreL1  , L2  are lattices and 01  is 

ILI least element of L2 , then kernel 0 is an ideal of L. 

Proof: Since C is onto, 0 E L2  thus kerO # 0 as pre-mage of 01  exists in L1 . 

Now a, bE kerO 0(a) = 0 1  = 0(b) 0(a v b) = 0(a)v 0(b) = 0' v 0' == a v 1, e ker 0. 

Again aEkerO,lELgivesO(a)=0', O(aA/)=0(a)AO(l)=0'A/=O' 
4- 
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Hence kerO is an ideal of L Li 

Theorem 6.2.3: Let S be a standard ideal. Then ® is the extension of e (S) to 1(L) and 

® (s) is the restriction of 0 s  to the lattice L. 

Proof: Lut 0 be the extension of ® to 1(L) and I = 

We suppose I c J. Choosing a,y e I. We can find an x e I(y ~: x) with x Y(0())  and 

so there exists an S with y = xv (y A so.) . The ideal S' generated by the y A S satislics 

S1 S and I v S  1  = J. Hence I .1(0). On the other hand, if I J(0)thcn / vS1  = I 

Is with a suitable S' c S. Then for any y e I it follows that y e I v S and so for any y e I 

it follows that ye I v S and so y=xvs =xv(yAs) for some se S asS is standard 

.Thus XE y(®()) [Theorem 6.1.11 and hence = 

To prove the 2nd assertion, suppose (a] (b](® ç ). 

Then (a] = (a] A (b]® ç  = (a A b](0.) and hence (a] = (a A b] vS1  for suitable s' c S. 

Then a e (a A b) v S and since S is standard [Theorem 6.1.11. 

So a = (a A b) v (a A s1 ) for some s,  e S. 

Similarly, we can show that b = (a A b) v (b A s 2 ) for some s, e S. Thus (a] (h](0j. 

Hence ® (s) is the restriction of 0 to L Li 

Recall that a congruence 0 of L is a standard congruence of 0 = 0(5) for some standard 

ideal S of L. Thus we have the following corollary. 

Corollary 6.2.4: The correspondence 0(s) -* 0 is a isornorphism between the lattice of 

all standard congruence relations of L and the lattice of all principal standard congruence 

relations of 1(L). IfS is a standard ideal of a lattice L , then 0(.,; )  is the congruence relation 
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defined in ITheorcin 6.1 .1 . The congruence induced by S and S is the kernel of the 

homomorphism induced byO(). Thus in a lattice every standard ideal is a homomorphism 

kernel of at least one congruence relation. 

Following figure shows that even in lattice theory, the converse of this is not true. 

a 

t 

Figure- 6.1 

The principal ideal (a of this lattice is a homomorphism kernel, but it is not standard 

for xA(avl)=x but (xAa)v(xAy)=.y. 

Recall that a lattice L with 0 is sectionally complemented if [0,x] is a complemented sub 

lattice for each x E L. 

Theorem 6.2.5: Let L be a sectionally complemented lattice. Then every homomorphism 

kernel of L is a standard ideal and every standard ideal is the kernel of precisely one 

congruence- relation. 

Proof: Suppose the ideal I of L is homomorphism kernel induced by the congruence 

relation 0. Let a b(0),a,b € L, then a A b a(0) and 0 :5 U A b :5 a. Since L is 

sectionally complemented, so there exists c; such that a A b A C = 0 and (a A b) v c = a. 
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This implies 0 = (a A b) A c = a A C = c(0) .Since I is a homomorphism kernel, 

so c E I. Moreover, a = ((I A b) v c = (a A h) v (a A c); similarly,we can show that 

b = (a A h) v (h A d) for some d E I. Therefore, I is a standard ideal fl 

At the same time we have proved that if I is the kernel of the homomorphism induced by 0, 

then 0 = 1(0). 1-lence every standard ideal is the kernel of precisely one congruence relation. 

Thus we have the following corollary; 

Corollary 6.2.6: In a sectionally complemented lattice all congruencies are standard. 

We know, an ideal (s] is standard if and only if s is a standard element . Moreover, we can 

easily show that an ideal generated by finite number of standard elements is standard. 1 

Theorem 6. 2.7: Let L be a relatively complemented lattice with 0. If every standard 

ideal of L is generated by a finite number of standard elements, then C(L) the congruence 

lattice is Boolean. Moreover, the converse of this is not true. 

Proof: Letq E C(L) with w <q <w1  where w and w1  are the smallest and the largest 

1 
congruence. Since L is relatively complemented, so by Corollary 5.1 .6 above, P = 

some standard ideal S. Then (0] c S c L. Since every standard ideal is generated by a fi nite 

number of standard elements, so there exist standard elements a...........a,,, and h............h,,. 

such that s = (a............a] and L = (b. ........... be ]. Then (0] (a. ........ a) c (b ......... b,,). 

Since (a. ........ a,] c (b.........b,,], at least one of b o (a............a,,,]. 

Suppose b1  ,b1  . ....... b, are the only elements {b. ........... h,,} , such that they do not belong 

k to (a............a,,,]. Then of course (a. ............ a] v (b1  , b1  ..........,b,.] = L 

Set ç =c AII)k  v.......v.,, t.SL)Kfor each k, 1 < k < r, 

then 0 K b1  and each c1  is standard. Since L is socUonully eomp1nitd, thurQ 

exist d I.c' such that cI  A d I;  = 0 and c v d I  = b . Since each d is standard. I,. 
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Now C/A  E (a .a ) Ir each k. 

Thus (a.a)v (d,, ~:(c1, j, ]v(d,, .dl k  ] 

=(c1,  vd,, ] v ....................... v(c1  vd,I=(h11 1v ...............  v(h1 ]=(h,,  ...........h, 1, and so 

(a1  ......... a111] V (d,, ........... d1 ] 

=(h, .............b, ]v(a........... 

Also as each a1  is standard. 

So (a...........a, n (diAl = ((a,Jv .......................... (a])n (d,K  i1 (b/A.] 

= ((, Ab,]v ................ v (as, Ab, ])n(dj, = ((a, Ab, )v ............... v (a Ahl K  )]n(d,] 

= (c/K  ] (d,  ] = (o]. Then using the standardness of each di A , we have 

(a.....................a113 }(d................d,]=(O] 

Thus we obtain a standard ideal T = (d1............d, ] of L, 

such that 0(T) is the complement of . Therefore, C(L) is Boolean. For the converse 

statement, consider the following lattice L 1-Icre it is easy to see that C(L) is Boolcan. 

P 

91 

PA 

F] 

rj 

Figure 6.2 
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L = (a,d], which is of course a standard ideal. But both a and d are not standard elements of,  

L L 
A- 

[8] and [9] have characterized those lattices whose all congruence is standard and neutral. 

Our following theorems give characterizations to those lattices whose all congruence are 

standard and neutral. These are certainly generalizations of above authors work. 

Theorem 6.2.8: Let L be a lattic. Then the following conditions are equivalent. 

All congruence of L is standard. 

L has a zero and for x,y e L there exists a E L, such that x = (x A y) v (x A a), 

a e(x A y,x) 

Proof: (i) imply (ii). Since the smallest congruence w of L is standard. L must have a 

zero. 

Let x,y E L, then®(x A y,x) = 0(I), for some standard ideal I 

i.e., x = (x A y(®(J), where I is standard , hence x = (x A y) v (x A a) for some a E I. 

1-knee a 3(0(x A y, x)) 

(ii) Implies (i). Let 0 be a congruence and I = [O]Ø. Supposex y(Ø).  Then by (ii) there 

exists a c= L such that x=(xAy)v(xAa) and aO(0(xAy,x). Since ®(xAy,x):!~, 

so a 0(0)  and hence a E I. Similarly y = (x A y) v (y A b) for some b c 

Thus I is a standard ideal and = 0(I), and so (i) holds 

Theorem 6.2.9 : LetL be a lattice. Then the following conditions are equivalent. 

All congruence of L is neutral. 

L has a zero and satisfies the condition: 

x :f~- (IA y)v (IA z ) ; t , x , y , z E L,implies the existenccofa€L,  such that 

x v (1 A a) = (a A I A y) v (a A I A z) v (x A y), a 00 (x A 

L has a zero and satisfies the condition 
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x :!~ ( I A y)v (/A z);I,x.y,z e L. implies thcexisteneeolaE L 

such that xv (IA a) = (/A CI A y)v (y A ((.'A a)v x)), a OO(x A v.x). 

4- 
Proof: L must have a zero of w 

Letx :5 (I A y)v (IA z);t,x,y,z E L 

Then O(x A y,x) = ®(I) for some neutral ideal I. since I is standard , by the above theorem 

there exists a E I such that x = (x A y) v (x A a, ) 

Now xa1  :5(/Ay)v(/Az),a, E I,(xAa,] I,and (xAa1  :!~((/Ay)v(!Az)j. 

Hence (xAa1)as I is neutral. 

Therefore, xAa1  :!~pAq, forsome p E In(IAy] and q€ In(/Az]. 

Thus, p:!~/Ay,q:!~/Azp:!~tAy,and p,qel. Hence p=pA1Ay and q=qA/A:. 

Let pvq=a,then xAa1 :!~a=(pAtAy)v(qA/Ay):!~(aA/Ay)v(aA/Az)!~-a. 

1-lence a=(aA/Ay)v(aAIAz),ael. 

But av(xAy)=av(xAa)v(xAy)=av(xAa1 )v(xAy)=avx. 

Thus. (aA/)vx=avx=av(xAy)=(aA/Ay)v(aA/Az)v(xAy) and 

aO(®(xAy,x))®(I)as a E I 

(ii) implies (iii). Let x, y, z, i E L and x :!~ (t A y) v (/ A z), then there exists a L 

such that a O(O(x A y, x)) and x v (I A a) = (a A I A y) v (a A I A z) v (x A y). 

Now 

xv(/Aa)=(aA/Ay)v(aA/Az)v(yA(xA(/Aa))):~(aA(Ay)v(aA/AZ)A(YA(XAY) 

= x v (I A a), 

hence . v (I A a) = (a A I A z) v (y A (x v (I A a)))). Thus (iii) holds. (iii) implies (i). Let ço 

be any congruence of L. Suppose x~ -y and xy(). Let I =O]. Since x~y x=yvx 

so by (iii) with t = z = x there exists an a c L, such that 

xv(xAa)=(aAxAx)v(yA(xv(xAa)))=(xAa)vy.i.e x=(xAa)vy,  
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where a 0(®(x Al, .v)) :!~- 0 I since 'l'heorem 6.1.11. 

I-fence I is a standard ideal and 0 = 0(I). 

Now it suffices to show that all standard ideals of L are neutral. Let I he a standard ideal ol 

L and x e L r' (J v K) for some ideals J and K. Then x c I and xe .1 v K. Then 

xe L for some m=O,l, 2 .......... where A0  = J uK. 

L={l:~pvq:pvqeL 1 }. 

Suppose x e L0 . Then x e I and x e J or x e K, and so x (=- (I r).1) v (I m K). Now we 

will use the induction. Suppose y E L,,, 1  , and y e I implies that 

ye(IrJ)v(InK). Since xe L,,,,x :!~ p v q for suitable p,q e L. Set I = pvq. Then 

x f~ (t A p) v (1 A q). Then by (iii) there exists b e L such that 

x v (I A b) = (b Al A q) v (p A (1 A b) v x)),b0(O(xAp,x)). Since X,XA/1,OE I 

and I is a homomorphism kernel, we get b e I. 

Hencexv(tAb)e I. 

Further (xv(/Ab))Ap)v((xv(bAt)Aq)~:(xv(/Ab))Ap)v(bAtAq)=xA(/Ab). 

Putting a = x v (i A b), we get x ::~ a = (a A p) v (a A q) with a e I. 

Now both a A p, a A r are members of I and L, 1 . Thus both a A p. a A q a A p, a A q 

belongsto (InJ)v(JnK), and soxe(IrJ)v(InK). 

Hence I is neutral  El 

Theorem 6.2.10: Let k be an ideal in a lattice. Then following conditions are hold. 

K is a standard ideal 

The binary relation 0(K) , defined by x = y0(x), if and only if 

x = (x A y) v (x A a), y = (x A y) v (y A b) for some a, b e K is a lattice congruence. 

The binary relation p, defined by x = y(0) if and only if for all t e S 
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(x A I)v ((A c)= (y A I)v (/A c), iorsomccEK,is lattice congrucncc. 

(iv) For each ideal H,Kv H = {k vh :kvh exists and k E K and liE If 
A. 

In Chaptc- 3 Theorem 3.1.4 proved the theorem. 

Theorem 6.2.11: Let L be a lattice with a smallest clement o in which each initial 

segment i a complemented lattice. Then the map K --> ®(k) is a lattice - isomorphism of 

A 
the lattice of standard ideals of L on to the lattice - congruence of L. 

Proof: Let q$ be a lattice - congruence of L and J = {xEL:xo()}. Of course 

J is an ideal. Suppose a b(Ø) and let c and d be respective complements 

of a A b in (a] and (b]. Then c = C A a = C A a A b = 0(0) and d = d A b 0(0). 

Also a = (a A b) v (a A c) and b = (a A b) v (1 A d) with c, d € J. 

Conversely, these last relations imply a = b(q$). 

Hence by the above theorem J is a standard ideal and = (H)(J). 

The remainder follows from corollary: The standard ideals of a lattice L form a distributive 

sub lattice of the ideal - lattice J(L)) and the map K -> 0(K) is a lattice - embedding of 

this sub lattice into the distributive lattice of all lattice congruence on L. 

The situation is more complex when it comes to permutability. We close this section with 

some result in this direction. 

A lowersemi lattice (L: A) is called medial if the supermum (xAy)v(yA:)v(zAx) 

exists for all x, y, z E L. This is equivalent to saying the supremurn of any three elements 

exists when the suprema of each pair exist. Thus a medial lower semi lattice is a lattice and 

so will be referred to as dedial lattice 0 
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6.3. Isomorphism's Theorem 

Definition( Isomorphism's): Let (P,R) and (Q,R) be two posets . A one-one and on 

to mapf: P — Q is called an isomorphism's if xRy f(x)R'f(y),x,y E P. 

If we use the same symbol :~ for both the relations R and R1  and thus our definition 

translates to a one-one, onto map J p - a is called an isomorphism's if 

A 
x :!~ y .1(x) :!~ [(y). We write in that case P Q. It is easy to show that the relation of 

isornorphism's is an equivalence relation. 

In fact a map f: I' --> Q is called isotone ifx :!~ y f(x) :!~ f(y). 

Gratzcr and schmidt have proved isomorphism theoerms for standcrd ideals in lattices. In 

their paper they have transleted serveral thcoerms of group theory to lattice theory using 

idea!, standard ideal, factor lattice and join operation for subgroup, invariant subgroup, 

factor group and group operation respectively. In this section we generalize two 

isomorphism theorem for standard ideals of lattices. 

Definition(Congruence classes): Set of all congruence classes of a lattics L for any 

congruence ® on L, L / ® denotes the set of all congruence classes of L. 

We define A on L/Oby [a]®A[b]O=[aAb]O.lf for any a,hE L,avb exists, then we 

define [a]O v [b]® = [a v b]O. 

Theorem 6.3.1: A mapping f: L —> M is an isomorphism iff f is isotone and has an 

isotone inverse. - 

Proof: Let f L —> M be an isomorphism.Thcnfbeing one-one, onto f exists and is 

one-one onto. Again by definition of isomorphism, f will be isotone. We show 

—* L is also isotone. Let y1 ,y2  EM, where y1 ~: y2 . Since [is onto, 

x1 ,x eLs.t f(x1 )y1 ,f(x2 )=y2 x 1  =[' (y1),x2 =f'(y2). 

Now y1 :!~ y2  , f(x1) :!~ f(x2 ) x1 :!~ x2  [from the definition of isornorphism] 
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.f'() ~ = f is isotone. 

Conversely, let f be isotone such that f 1  is also isotone, since f cxists / is one-one, 

onto. Again, as f is isotone x1  :!~ x2  = f(x1) :!~ 1(x2 ), x1  , x 2  e L. 

Also f is isotone implies f(x1) :!~ (x1 ) ~ f(x 2 ) = ff(x 1 ) ::~ •f(f(x2) = x1 :!~ x,. 

Thus x1  :!~-  x2 f(x1) :!~ f(x 2 ). Hence f is an isomorphism U 

A 
Theorem 6.3.2: LI® is a lattice. 

Proof: Of course LI® is a meet semilatticc. We need only to show that it has the upper 

bound property. 

Let [a ]®, [h]® :!~ [c]®, then [a]® = [a]® A [c]® = [a A dO of E 

[b]® = [b]® A [c]® = [b A c]®. 

Now, (a A c) v (b A c) exists by the upper bound property of L. 1c 

Hence [a A c]O v [b A C]® = [(a A c) v (b A c)iO and so [a]O v [b]0 exists. 

Therefore, L / 0 is a lattice. 

If 0 is a congruence of a lattice L, then the map : L —> LI® defined by 0(a) = [a]O is 

the natural homomorphism. This is known as the homomorphism induced by 0 . For a 

standard ideal S of L, we denote the quotient lattice LI ®()• simply by L / S Li 

Now we give the homomorphism theorem for lattices which is a generalization of [Lattice 

Theory First Concepts by Gratzer Theorem 11 p-26] 

Theorem 6.3.3: Every homographic image of a lattice L is isomorphic to a suitable 

quotient lattice L. In fact if 0 : L —> M is a homomorphism of L onto M and if 0 is the 

congruence relation of L defined by x y®  if and only if 0(x) = (y), then LI® = L1 ; is 

in isomorphism givcn by w [x]® —+ q(x),x a 1.. 
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Proof: Since ço is a hoinoinoplusm then it is easy to check that is a congruence relation. 

To prove that l-' is an isornorphism, we have to check that (i) 4.1  is well defined. 

Let [x]® - [y]®. Then x y(®) ;thus 0(x) = (p(y)) => ([x]® çu = [y]® yi. is wet 

defined. 

-1 is one - one. u([x])® = yi(y)® = ço(y) then x = y(®) and so 

A 
[x](®) y](®), i.e., F' is one - one. 

LI-' is onto: Let x e L since q' is onto There is any y € L with ç(y) = x. 

Thus, (y®)yP = x, i.e., P is onto. 

Preserves the operations. i.e. P is homomorphism. Let [x]®,[y]® € LI®. 

Therefore, VI([x]® A ([y]®) = P([x A y]® = A y) = (x) A 

= 
1-I([x]®) A çLI([y]®), and finally for v. Suppose [x]O v [y]O exists. 

Then [x]® v [y® = [118  for some t € L. So [x]® c [i]® and [y]® c [1]0. 

This implies [x]O = [x]® A [t]® = [x A l]®. 

Similarly [y]® = jjy A 1®. 

Then yi([x]® v [y]®) 

= ip([x A t]® v [y A 1])® = yi([(x At) v (y A 

A 
=xAt)v(yAt))=ç(xAt)vcp(yAt) 

= A v A t]®) 

I. 
= yi([x]® v 

Hence P is a lattice homomorphism and so it is an isomorphism [1 

lak 
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Theorem 6.3.4 (First isoiuorphism theorem for standard ideals): Let I. he a lattice. S be a 

standard ideal and I an arbitrary ideal of L. Then S (-) I  is a standard ideal of I and 

(IuS)/SI/(JnS). 

Proof: 1St part mentioned here in Theorem 6.1 .3 

For the 2nd part, we can use the first isomorphism theorem for universal algebra [38 

Theorem 1.21. Then it remains to prove that every congruence class of I v S may be 

represent by an element of I . So let x € I v S. Then [since Theorem 6. 1 . 1 1 

x = i vs for some i € I,s eS. Moreover x = i vs 10(s). 

1-lence congruence class that contains x may be represented by i € I. That is [x] [i]®(s). 

Thercfore(ItS)/S I/(InS) U. 

For the 2nd isomorphism theorem we need the following results. We omit the proofs as they 

are very trivial. 

Lemma 6.3.5 Let the correspondence x —+ Y be lattice homomorphism of lattice L 

onto a latticeL . If s is a standard element of L , then 9 is a standard element of L 11 

Corollary 6.3.6: Let x —> Y be a lattice homomorphism of L onto L. 

Let s be an ideal of L, and denote by S the homomorphic image of S under this 

4 homomorphism .If S is standard in L then S is standard in L Li 

Theorem 6. 3.7 (Second isomorphism theorem for standard ideals): 

Let L be a lattice, s be an ideal and T be a standard ideal of L. S c  T. Then S is a 

standard ideal of L if and only if SIT is a standard ideal in LIT and in this case 

LIS (A/T)/(SIT) 

Proof: First suppose that s is a standard ideal of L. Let : L —* L I T çÜ: be the natural 

mapping. Then x - is a lattice homomorphism and onto.So by Corollary 5,2,6, 

is a standard ideal of L / T. 
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Now S = SIT. Hence SIT is a standard ideal of LI]'. 

Conversely, suppose that S I T is a standard ideal of L I T. 

We are to show that s is a standard ideal of L. 

Let us define a relation ®(S) by 6.1.1 (ii), suppose x ~! y with x y(O(s)). 

Then x = y v s x = for some s E S. 

Thus, for any u € L, if x v u exists, then x v u = (y v u) v s. This implies 

xv u y v u(®(s)). 

To prove substitution property for A, suppose a denotes the image of the clement a under 

the homomorphism L - LIT. Suppose x y(®(SIT)).Since SIT is standard in LIT, 

there is a suitables€SIT, such that xAu=(yAu)vs. 

Further, since T is standard in L we can find a € T such that X A u = [(y A u) v s] v I. 

We put s1  = S Vt and get x AU = (y Au) V S ,s1  € S 1-lence ®(s) is a congruence relation 

of L, and so by 6.1.1, S is standard. 

In above proof we have also shown that the congruence classes of L I T under ®(S I T) are 

the homomorphism image of those of L under ®(s). Then the second isomorphism theorem 

for universal algebra [38, Theorem 1.4] finishes the proof U 

•/ 

A 

IL 
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