STANDARD IDEAL AND FILTER OF A LATTICE

By

MD. MIZANUR RAHMAN

A thesis
submitted in partial fulfillment of the requirements for the Degree of Master of Philosophy
in Mathematics

Khulna University of Engineering \& Technology
Khulna-9203, Bangladesh
September, 2009

Declaration

I hereby declare that this thesis entitled "Standard Ideal and Filter of a Lattice" submitted for the partial fulfillment of the degree of Master of Philosophy is done by myself under the supervision of Dr. Md. Abul Kalam Azad and is not submitted else where for any other degree or diploma.

Signature of the Supervisor
Dr. Md. Abul Kalam Azad

Signature of the student
Md. Mizanur Rahman

Associate Professor
Department of Mathematics
Khulna University of Engineering \& Technology
Khulna-9203.

Approval

x. This is to certify that the thesis work submitted by Md. Mizanur Rahaman entitled "Standard Ideal and Filter of a Lattice" has been approved by the Board of Examiners for the partial fulfillment of the requirements for the Degree of Master of Philosophy in the Department of Mathematics, Khulna University of Engineering \& Technology, Khulna, Bangladesh in September, 2009.

BOARD OF EXAMINERS

2. flem

Head
Department of Mathematics
Khulna University of Engineering \& Technology
3. Nt em.

Dr. Md. Bazar Rahman
Professor
Department of Mathematics
Khulna University of Engineering \& Technology
\qquad
Dr. M. M. Touhid Hossain
Assistant Professor
Department of Mathematics
Khulna University of Engineering \& Technology
5.

Dr. Md. AbdulLatif
Member
(External)
Professor
Department of Mathematics
Rajshahi University, Rajshahi

ACKNOWLEDGEMENT

It is my heartfelt pleasure expressing my gratitude to my supervisor Dr. Md. Abul Kalam Azad, Associate Professor, Department of Mathematics, Khulna university of Engineering \& Technology for his guidance, criticism and encouragement through out my research work. I am obliged to express my heartiest thanks to my supervisor who taught the topic of the present thesis and provided me the way with his suggestions .Without his encouragement and sincere help, my thesis would never come to light. In particular I would like to extend my gratitude to Dr.Md. Bazlar Rahman, Professor, Department of Mathematics, KUET for his constructive suggestions, kind discussion and help to improve my thesis. I must also thank to Dr. Mohammad Arif Hossain, Professor, Department of Mathematics, KUET for his encouragement and caring concern also, I would like to express a lot of thanks to Dr. M. M. Touhid Hossain, Assistant Professor, Department of Mathematics, KUET.

I can not but express my sincere admiration, appreciation and gratitude to all the teachers of the Department of Mathematics, KUET for providing me with valuable suggestions during the period of my research work, particularly, Md. Zaidur Rahman, Assistant professor, Department of Mathematics, KUET for willing help to improve my thesis.

My family, inevitably, had to suffer a lot while this work was being done. This thesis owes a lot to the patience and co-operation of my wife Nazreen Jahan and our two children Mahir and Sigma for their suffering while I remained absent from home for thesis purpose; I am deeply thankful to them.

Finally, I would like to shoulder upon all the errors and shortcoming in the study if there be any, I am extremely sorry for that.

CONTENTS

Page
Title Page iii
Dedication iii
Declaration iv
Approval v
Acknowledgement vi
Contents
CHAPTER ONE: Introduction 01 01
CHAPTER TWO: Ideals and Congruence of a lattice 04
Introduction
2.1 Lattice 05
2.2 Ideals of lattices. 13
27
2.3 Congruence 34
2.4 Length and covering conditions.
CHAPTER THREE: Standard and neutral element of a Lattice 38
Introduction
Introduction
3.1 Standard and neutral elements of a lattice 40
3.2 Traces 47
3.3 Some properties of standard and neutral elements 51
CHAPTER FOUR: Prime ideals of a Lattice
Introduction 55
4.1 Prime ideals of a lattice 55 55
4.2 Minimal prime ideals 59 59
4.3 Minimal prime n - ideals 65 65
4.4 Lattice whose principal n - ideal form normal lattice 69 69
CHAPTER FIVE: Pseudo complemented of a lattice 75
Introduction
Introduction
5.1 Relatively Pseudocomplemented of lattice 75
5.2 Multiplier extension of sectionally pseudocomplemented 79 distributive lattices
CHAPTER SIX: Homomorphism and standard ideals
89
Introduction
91
91
6.1 Characterization of standard ideals
6.1 Characterization of standard ideals
95
95 105
6.2 Standard ideal and Homomorphism, kernel
6.2 Standard ideal and Homomorphism, kernel
6.3 Isomorphism 110
References

CHAPTER ONE

Introduction

This thesis studies the nature of Standard ideal of a lattice. The idea of standard ideal in lattice was first introduced by G. Gratzer and E.T. Schmidt. The characterization of standard ideal was first introduced by M. F. Jamowitz. It had extended the ideal to convex sub lattices and proved many result of homomorphism by E. Fried and E.T. Schmidt.

First we can define infimum of two ideals of a lattice in their set theoretic intersection but supremum of two ideals I and J. In a lattice L is given by
$I \vee J=\{x \in L: x \leq i \vee j, \mathrm{I} \vee \mathrm{J}$ for some $i \in I, j \in J\}$. In a distributive lattice, two ideals I and J, the supremum i.e., $I \vee J=\{i \vee j: i \in I, j \in J$, where i, j exists $\}$.

But in a general lattice the formula for the supremum of two ideals is not easy. We start in chapter one the lemmas which gives the formula for the supremum of two ideals.
An ideal I of a lattice L is called standard if and only if I is standard as an element of $I(L)$ the lattice of all ideals of L.

That is of any ideals $I, L \in I(L), I \wedge(J \vee S)=(I \wedge L) \vee(I \wedge S)$
Any element of a lattice is standard if and only if it is distributive and modular. Thus, in a modular lattice every distributive element is standard. Not only that in a modular lattice every standard element is also neutral. Therefore, an ideal is standard if and only if it is both distributive and modular. Since a neutral element n of L is modular if and only if $I(L)$ is modular. So every distributive ideal of L is standard when L is modular and n is neutral.

A congruence φ of a lattice L is called standard if for some standard ideal S of L. A meet semi lattice together with the properly that any two elements possessing a common upper bound have a suprimum. For any two lattice L_{1} and L_{2}, a map $\varphi: L_{1} \rightarrow L_{2}$ is called an isotone if for $x, y \in L$ any with $x \leq y$ implies $\varphi(x) \leq \varphi(y)$, also the above mapping is called a meet homomorphism if for all $x, y \in L$, $\varphi(x \wedge y)=\varphi(x) \wedge \varphi(y)$. Therefore, meet homomorphism is an isotone and $\varphi(x) \vee \varphi(y) \leq \varphi(x \vee y)$. Therefore, $\varphi(x) \vee \varphi(y)$ exist by upper bound property of L_{2}, Chinthayamma Malliah and Parameshwara Bhatta have characterize those lattices, whose all congruence are standard and neutral. Here we generalize characterization of those lattice whose all congruence are standard.
In this thesis, we have studied several properties of Standard ideal of a lattice. Moreover, we give several results on Standard ideal of a lattice which certainly extend and generalize many results in lattice theory.

In Chapter two, we have discussed ideals, congruence, length and covering conc'i ons, For any subset K of a lattice $L,(K]$ denotes the ideal generated by K.

Infimum of two ideals of a lattice is their set theoretic intersection. supremum of two ir'sals I and J in a lattice L is given by
$\mathrm{I} \vee \mathrm{J}=I \vee J=\{X \in L / X \leq i \vee j$ for some $i \in I, j \in J\}$. Cornish and Hickman in [3] showed that in a distributive lattice L for two ideals I and J,
$I \vee J=\{i \vee j: i \in I, j \in J$, where $i \vee j$ exists $\}$. But in a general lattice the formula for the supremum of two ideals is not very easy. Which are explain with some examples and generalized many theorems of them.

In Chapter three, Standard and Neutral elements of a lattice and Traces have been discussed. Standard elements in lattices were first studied in depth by Gratzer and schmid [15]. Since then little attenton has been paid to these notions. A lower Semi lattice is said to have the upper bound property if the supremum of any two elements automatically exists when they share a common upper bound. According to Gratzer and Schmidt [15] if a is an element of a lattice L then,
(i) a is called distributive if

$$
(a \vee(r \wedge s)=(a \vee r) \wedge(a \vee s) \text { for all } r, s \in L
$$

(ii) a is called standard if

$$
r \wedge(s \vee a)=(r \wedge s) \vee(r \wedge a) \text { for all } r, s \in L \text {; }
$$

(iii) a is called neutral if the sub lattice generated by r, s and a is distributive for all $i, j \in L$
i.e., $(a \wedge r) \vee(r \wedge s) \vee(s \wedge a)=(a \vee r) \wedge(r \wedge s) \wedge(s \vee a)$ for all $r, s \in L$.

Standard and Neutral elements are essential for the further development of standard ideals.

In chapter four we give a description of Prime ideals, minimal prime ideals and normal. We have also studied Minimal prime n - ideals of a lattice. We give some characterizations on minimal prime n-ideals which are essential for the further
development of this chapter. Here we provide a number of results which are generalizations of the results on Normal and generalized Normal lattices.

In chapter five we studied relatively pseudocomplemented of a lattice. We have also studied Multiplier extentions of pseudocomplemented lattices. These have been studied by Cornish and Hicman [3] and many other authors. Here we extend several results of Cornish and Hicman to lattices.

Pseudocomplemented distributive lattices satisfying Lee's identities form educational subclasses denoted by $B_{n},-1 \leq n \leq \omega$. Cornish and Mandelker have studied distributive lattices analogues to B_{1}-lattices and relatively B_{1}-lattices. Moreover, Cornish, Beazer and Davey have idependently obtained several characterizations of sectionally B_{m} lattices and relatively B_{m} lattices.

These have been studied by Cornish and Hicman and many other authors. Here we extend several results of Cornish and Hicman to lattices.

Chapter six introduces the concept of standard ideals, homomorphism, kernels, which have been studied by Gratzer, Schmidt and many other authors. We have given a characterization of standard ideals also characterise in a lattice every standard ideal in a homomorphism kernel of at least one congruence relation. Noor [32] has introduced the concept of standard n - ideals of a lattice. We conclude this thesis with some more properties of standard and neutral ideals, which are the basic concept of this thesis.

CHAPTER TWO

IDEALS AND CONGRUENCES OF A LATTICE

Introduction: The intention of this Section is to outline and fix the notation for some the concepts of lattices which are basic to this thesis. We also formulate some results on arbitrary lattices for later use. For the background material in lattice theory, we refer the render to the text of Brikhoff [11], Gratzer [12], Rutherford [34],Talukder and Noor [39] and Khanna [22].

By a lattice L, we will always mean a lower semi lattice which has the property that any two elements possessing a common upper bound, have a supremun. Cornish and Hickman [3] referred this property in their analysis as the upper bound property and a semilattice of this nature as a semilattice with the upper bound property. We shall see later, the behavior of such a semilattice is closer to that of a lattice than an ordinary semilattice. For the sake of brevity, we prefer to use the term lattice in place of semilattice with the upper bound property.

The upper bound property appears in Gratzer and Lakser [13], While Rozen [35] shows that it is the result of placing certain associativity conditions on the partial join operation. Moreover, more recently Evans [9] referred nearlattices as conditional lattices. By conditional lattice he means a lower semilattice L with the condition that for each $\mathrm{x} \in \mathrm{L},\{\mathrm{y} \in \mathrm{L} / \mathrm{y} \leq \mathrm{x}\}$ is a lattice ; and it is very easy to cheek that this condition is equivalent to the upper bound property of L.

Whenever a lattice has a least element we will denote it by 0 . If $x_{1}, x_{2}, \cdots \cdots, x_{n}$ are elements of a lattice then by $x_{1} \vee x_{2} \vee \cdots \cdots x_{n}$, we mean that the supremum of $x_{1}, x_{2} \cdots \cdots x_{n}$ exists and $x_{1}, x_{2} \cdots \cdots x_{n}$, is the symbol denoting this supremum .

2.1 LATTICE

A non empty subset k of a lattice L is called a sub lattice of L if for any $a, b \in k$ both $a \wedge b$ and $a \vee b$ (whenever it exists in L) belong to k (\wedge and \vee are taken in L) and the \wedge and \vee of k are the restrictions of the \wedge and \vee of L to k . Moreover, a sub lattice k of a lattice L is called a sublattice of L if $a \vee b \in K$ for all $a, b \in K$. A lattice L is called modular if for any $a, b, c \in L$ with $c \leq a, a \wedge(b \vee c)=(a \wedge b) \vee c$ whenever $b \vee c$ exists.

A Lattice L is called distributive for any $x, x_{1}, x_{2} \cdots \cdots x_{n}$,
$x \wedge\left(x_{1} \vee x_{2} \vee x_{3}\right) \vee \cdots \cdots \vee x_{n} \equiv\left(x \wedge x_{1}\right) \vee\left(x \wedge x_{2}\right) \vee \cdots \cdots\left(x \vee x_{n}\right)$,
whenever $x \vee x_{1} \vee x_{2} \vee \cdots \cdots x_{n}$ exists. Notice that the right hand expression always exist by the upper bound property of L.

Lemma 2.1.1: A lattice L is modular if and only if $(x]=\{y \in L / y \leq x\}$ is a modular lattice for each $x \in L$.

Consider the following lattices:

Figure-2.1

Figure- 2.2

Hickman in [19], [20] has given the following extension of a very fundamental result of lattice theory.

Theorem 2.1.2: A lattice L is distributive if and only if L does not contain a sublattice isomorphic to N_{5} or M_{5}.

Now we give another extension of a fundamental result of lattice theory.

Theorem 2.1.3: A lattice L is modular if and only if L does not contain a sub lattice isomorphic to N_{5}.

Proof: Suppose L does not contain any sub lattice isomorphic to N_{5}, then (x] does not contain any sub lattice isomorphic to N_{5} for each $x \in L$. Thus, a fundamental result of lattice theory says that (x$]$ is modular for each $x \in S$ as (x$]$ is a sublattice of L. Hence L is modular by Lemma 2.1.1.

Conversely, let L be modular. If L contains a sub lattice isomorphic to N_{5}, then letting e as the largest element of the sub lattice. We see that (e] is not modular [by lattice theory]. Thus, by Lemma 2.1.1 is not modular and this gives a contradiction. This completes the proof.

In this context it should be mentioned that many lattice theorists' e.g Balbes [2]
Varlet [39], Hickman [20] and Shum [34] have worked with a class of semi lattices L which has the property that for each $x, a_{1}, a_{2},--------, a_{r} \in L$,
if $a_{1} \vee a_{2} \vee----------\vee a_{r}$, exists
then $\left(x \wedge a_{1}\right) \vee\left(x \wedge a_{2}\right) \vee--------\vee\left(x \wedge a_{r}\right)$ exists
and equals $x \wedge\left(a_{1} \vee a_{2} \vee---------\vee a_{r}\right)$.
R. Balbes [2] called them as prime semi lattices while D.E. Rutherford [34] referred them as weakly distributive semi lattices

Theorem 2.1.4: Let $\langle R+\rangle$ be a ring and L be the set of all ideals of R. Then ($L \geq$) forms a lattice, where for any $A, B \in L, A \wedge B=A \cap B$
and $A \vee B=A+B<A \cup B<$ then L is modular.

Proof: Let $A, B, C \in L$ be any three members with $A \supseteq B$.
We claim $A \cap(B+C)=B=(A \cap C)$,
Let $x \in A \cap(B+C)$ be any element. Then $x \in A$ and $x \in B+C \Rightarrow x \in A$
and $x=b+c, b \in B, c \in C$. Now $b \in B \subseteq A, b+c=x \in A$.
Thus, $(b+c)-b \in A \Rightarrow(c+b)-b \in A$ or that $c \in A \Rightarrow x \in A \cap C$,
i.e., $x=b+c, b \in B, c \in A \cap C$. Thus, $x \in B+(A \cap C)$ i.e $A \cap(B+C) \subseteq B+(A \cap C)$

Again by modular inequality (which holds in every lattice) $A \cap(B+C) \supseteq B+(A \cap C)$.
Hence $A \cap(B+C)=B+(A \cap C)$.
L is a modular lattice

Theorem 2.1.5: The normal subgroups of a group ordered by set inclusion form a modular lattice.

Proof: Let G be any group and L be the set of all normal subgroup of G. Then $L \neq Q$ as $G \in L(L \subseteq)$ is then a poset. For any $A, B \in L$, let $A \wedge B=A \cap B$ which is well defined as intersection of two normal subgroups is a normal subgroup and of course, $A \cap B$ is the largest subset of A and B.

Again, define $A \vee B=A B$. Which is also well defined as $A B$ is a normal Subgroup.
Whenever A and B are normal. Also $A \subseteq A B, B \subseteq A B$ (as $a \in A \Rightarrow a a=a c \in A B$ etc).
That $A B$ is the smallest normal subgroup containing A and B is also trivially seen to be true. Indeed if C is any normal subgroup containing A and B, then $A B \subseteq C$. $(x \in A B \Rightarrow x=a b \in C$ as $a \in A \subseteq C, b \in B \subseteq C)$.

Finally to check the modularity condition.
Let $A, B, C \in L$ with $A \supseteq B$ be any members we show $A \wedge(B \vee C)=B \vee(A \wedge C)$
i.e $A \cap B C=B(A \cap C)$. Let $x \in A \cap B C$ be any element.

Then $x \in A$ and $x \in B C$
$\Rightarrow \exists b \in B, c \in C$ s.t $x=b c$
$x \in A \Rightarrow b c \in A$ also $b \in B \subseteq A \Rightarrow b^{-1} \in A$.
Thus $b^{-1} b c \in A \Rightarrow c \in A \Rightarrow c \in A \cap C$
So $b \in B, c \in A \cap C \Rightarrow b c \in B(A \cap C) \Rightarrow x \in B(A \cap C)$.
Again if $y \in B(A \cap C)$, then $y=b k$ where $b \in B, k \in A \cap C$.
Now $b \in B \subseteq A, k \in A \Rightarrow b k \in A$. Also $b \in B, k \in C \Rightarrow b k \cup B C$.
Thus, $b k \in A \cap B C \Rightarrow B(A \cap C) \subseteq A \cap B C$
Hence $A \cap B C=B(A \cap C)$
Theorem 2.1.6: Any non modular lattice L contains a sub lattice isomorphic with the pentagonal lattice.

Proof: Since L is non modular \exists at least three elements a, b, c with $a \geq b$,
s,t $a \wedge(b \wedge c) \neq b \vee(a \wedge c)$.
We must bave $a>b$, and as in any lattice the modular inequality
$a \geq b, a \wedge(b \wedge c) \geq(b \vee a \vee c)$ holds,
we get $a \wedge(b \vee c) \succ b \vee(a \wedge c)$
Consider the chain
$a \wedge c \leq b \vee(a \wedge c) \prec a \wedge(b \vee c) \leq b \vee c$
We show at all places strict inequality holds.
Suppose $a \wedge c=b \vee(a \wedge c)$. Then $b \leq a \wedge c \Rightarrow b \vee c \leq(a \wedge c) \vee c$.

Fig-2.3
$\Rightarrow b \vee c \leq c \vee c \Rightarrow b \vee c=c$
$\Rightarrow a \wedge(b \vee c)=a \wedge c$, a contradiction to (i).

Thus, $a \wedge c<b \vee(a \wedge c)$.
Similarly, $a \wedge(b \vee c)<b \vee c$.
Hence chain (I) becomes
$a \wedge c<b \vee(a \wedge c)<a \wedge(b \vee c)<b \vee c$
Consider now the chain $a \wedge c \leq c \leq b \vee c$.
As seen above $b \vee c=c$ leads to contradiction and similarly, $a \wedge c=c$ would give a contradiction.

Hence $a \wedge c<c<b \vee c$
we show c does not lie in chain (2). For this it is sufficient to proved that c is not comparable with $a \wedge(b \vee c)$.

Suppose $a \wedge(b \vee c) \leq c$.
$a \wedge(a \wedge(b \vee c)) \leq a \wedge c$
$\Rightarrow a \wedge(b \vee c \leq a \wedge c$
a contradiction to (2).
Again, if $a \wedge(b \vee c)>c$, then as $a \geq a \wedge(b \vee c)$. We find $a>c$
which gives $a \wedge c=c$ a contradiction to (3).
Hence the chain (2) and (3) form a pentagonal subset
$S=\{a \wedge c, b \vee(a \wedge c), a \wedge(b \vee c), b \vee c, c\}$ of L.

We show now this pentagonal subset is a sublattice for that meet and join of any two elements of S should lie inside S. Meet and join of any two comparable elements being one of them is clearly in S.

So we need to check it for only non comparable elements.
Now $[a \wedge(b \vee c)] \wedge c=a \wedge[(b \vee c) \wedge c]=a \wedge c \in S$.
Also $[a \wedge(b \vee c) \vee c] \geq[b \vee(a \wedge c)] \vee c$ by (2)

$$
=b \vee[(a \wedge c) c]=b \vee c
$$

and $a \wedge(b \vee c) \leq b \vee c$ gives $a \wedge(b \vee c) \vee c \leq(b \vee c) \vee c=b \vee c$.
Thus, $[a \wedge(b \vee c)] \vee c=b \vee c \in S$.
Similarly,
we can show $[b \vee(a \wedge c)] \vee c=b \vee c \in S$

$$
[b \vee(a \wedge c)] \wedge c=a \wedge c \in S
$$

Hence S forms a sub lattice of L. Proving our assertion (1)
Hiekman in [20] has defined a ternary operation j by $j(x, y, z)=(x \wedge y) \vee(y \wedge z)$ on a lattice L (which exists by the upper bound property of L). In fact he has shown that (also see Lyndon [24], theorem 4]) the resulting algebras of the type ($L ; \mathrm{j}$) form a variety, which is referred to as the variety of join algebras and following are its defining identities.
(i) $j(x, x, x)=x$
(ii) $j(x, y, x)=j(y, x, y)$
(iii) $j(j(x, y, x), z, j(x, y, x)=j(x, j(y, z, y), x 0$
(iv) $j(x, y, z)=j(z, y, x)$
(v) $j(j(x, y, z), j(x, y, x), j(x, y, z)=j(x, y, x)$
(vi) $j(j(x, y, x), y, z)=j(x, y, x)$
(vii) $j(x, y, j(x, z, x))=j(x, y, x)$
(viii) $j(j(x, y, j(w, y, z), j(x, y, j(x, y, z))=j(x, y, z)$

We do not want to elaborate it further as it is beyond the scope to this thesis.
We call a lattice L medial lattice it for all $x, y, z \in L$,
$m(x, y, z)=(x \wedge y) \vee(y \wedge z) \vee(z \wedge x)$ exists. For a (lower) semitattice S, if $m(x, y, z)$ exists for all $x, y, z \in S$, then it is not hard to see that S has the upper bound property and hence is a lattice. Distributive medial lattice were first studied by Sholander in [36] and recently by Evans in [9]. Sholander preferaed to call these as median semi lattices. There he showed that every medial lattice L can be characterized by means of algebra ($\mathrm{s} ; \mathrm{m}$) of type $<3>$ known as median algebra, satisfying the following two identities:
(i) $m(a, a, b)=a$.
(ii) $m(m(a, b, c), m(a, b, d), e)=m(m(c, d, e), a, b)$.

A lattice L is said to have the three properties if for any $a, b, c \in L, a \vee b \vee c$ exists, whenever $a \vee b, b \vee c$ and $c \vee a$ exist. Lattice with the three properties were discussed by Evans in [9], where he referred. It is strong conditional lattices.

The equivalence of (i) and (iii) of the following lemma is trivial, while the proof of (i) \Leftrightarrow (ii) is inductive

Lemma 2.1.7: For a lattice L the following conditions are equivalent.
(i) L has the three properly.
(ii) Every pair of a finite number $\mathrm{n} \geq 3$) of elements of L possess a supremum ensures the existence of the supremum of all the n elements.

2.2. IDEALS OF LATTICES

A non empty subset I of a lattice L is called an ideal if it is hereditary and closed under existent finite suprema. We denote the set of all ideals of L by $I(L)$. If L has a smallest element 0 then $I(L)$ is an algebraic closure system on L, and is consequently an algebraic lattice. However, if L dose not possess smallest element then we can only assert that $I(L) \cup\{\phi\}$ is an algebraic closure system.

For any subset K of a lattice $L,(K]$ denotes the ideal generated by K.
Infimum of two ideals of a lattice is their set theoretic intersection.Supermum of two ideals I and J in a lattice L is given by
$I \vee J=\langle x \in L / x \leq i \vee j$ for some $i \in I, j \in J\}$. Cornish and Hickman in [3] showed that in a distributive lattice L for two ideals I and J.
$I \vee J=\{i \vee j / i \in I, j \in J$, where $i \vee j$ exists $\}$. But in a general lattice the formula for the supremum of two ideals is not very easy. We start this section with the following lemma which gives the formula for the supremum of two ideals. It is in fact Gragter [11, p-54] for partial lattice.

Definition (Ideal): A sub lattice I of a lattice L is called an ideal of L if $i \in I$ i and $a \in L$ implies that $a \wedge i \in I$.

Equivalently, a non empty subset I of a lattice L is an ideal if
(i) $a, b \in I, a \vee b \in I$
(ii) $a \in I$ and $i \in L$ implies that $a \wedge i \in I$.

Let $L=\{1,2,3,5,6,10,15,30\}$ be a lattice of factors of 30 under divisibility.

Figure-2.5
Then $\{1\},\{1,2\},\{1,3\},\{1,5\},\{1,2,5,10\},\{1,3,5,15\},\{1,2,3,6\},\{1,2.3,5,6,10,15\}$ are all the ideals of L.

Lemma 2.2.1: Let I and J be ideals of a lattice L. Let $B_{0}=I \cup J$,
$B_{n}=\left\{x \in L / x \leq y \vee Z ; \vee\right.$ exists and $\left.y, z \in B_{n-1}\right\}$ for $\mathrm{n}=1,2,3$ \qquad and $\mathrm{K}=\bigcup_{n=0}^{\mathrm{a}} \mathrm{B}_{\mathrm{n}}$.

Then $K=I \vee J$.
Proof: Since $B_{0} \subseteq B_{1} \subseteq B_{2} \subseteq--------\subseteq B_{n} \subseteq---------, \quad K$ is an ideal containing I and J. Suppose H is any ideal containing I and J.Of course, $B_{0} \subseteq H$. We proceed by induction. Suppose $B_{n-1} \subseteq H$ for some $n \geq 1$ and let $x \in B_{n}$. Then $x \leq y \vee z$ with $y, z \in B_{n-1}$ sinec $B_{n-1} \subseteq H$ and H is an ideal, $y \vee z \in H$ and $x \in H$. That is $B_{n-1} \subseteq H$ for ever n. Thus, $K=I \vee J$

Lemma 2.2.2: Let K be a non empty subset of lattice L. Then $(K]=\bigcup_{n=0}^{\mathrm{a}}\left\{B_{n} / n \geq 0\right\}$, where $B_{0}=\left\{t \in s / t=i\left(k_{1}, t, k_{2}\right\}\right.$, for some $\left.k_{1}, k_{2} \in K\right\}$ and $B_{n}=\left\{t \in L / t=j\left(a_{1}, t, a_{2}\right)\right.$ for some $\left.a_{1}, a_{2} \in B_{n-1}\right\}$ for $n \geq 1$.

Proof: For any $k \in K$, clearly $K=J(k, k, k)$ and so $K \subseteq B_{0} \quad$ similarly, for any $a \in B_{n-1}$
$a=j(a, a, a)$ a implies that $B_{n-1} \subseteq B_{n}$, Thus,
$K \subseteq B_{0} \subseteq B_{1} \subseteq-----\subseteq B_{n-1} \subseteq B_{n}-----------$.

Let $\mathrm{t} \in \bigcup_{n=0}^{\mathrm{a}} A_{n} ; n=0,1,2,3,--------$, and $t_{1} \in S$ such that $t_{1} \geq t$. Then $t \in B_{m}$ for some $m \geq 0$ clearly, $t_{1}=j\left(t, t_{1}, t\right) \mathrm{t}_{1}$ and so $t_{1} \in B_{m+1}$. Thus $\bigcup_{n=0}^{\mathrm{a}} B_{n}$ is hereditary.

Now suppose, $t_{1}, t_{2} \in \bigcup_{n=0}^{\mathrm{a}} B_{n}$ and $t_{1} \vee t_{2}$ exist. Let $t_{1} \in B_{r}$ and $t_{2} \in B_{s}$ for some $r, s \geq 0$ with $r \leq s$ (say).Then $t_{1}, t_{2} \in B_{s}$ and $t_{1} \vee t_{2}=j\left(t_{1}, t_{1} \vee t_{2}, t\right)$ says $t_{1} \vee t_{2} \in B_{s+1}$.

Finally, suppose H is an ideal containing K. If $x \in B_{0}$.

Then $x=j\left(k_{1}, x, k_{2}\right)=\left(k_{1} \wedge x\right) \vee\left(k_{2} \vee x\right)$ for some $k_{1}, k_{2} \in K$. As $K \subseteq H$ and H is an ideal, $K_{1} \wedge x, K_{2} \wedge x, \in H$ and so $x \in H$. Again we use the induction.Suppose $B_{n-1} \subseteq H$ for some $n \geq 1$. Let $x \in B_{n}$ so that $x=j\left(a_{1}, x, a_{2}\right)$ for some $a_{1}, a_{2} \in B_{n-1}$.

Then $x \in H$ as $a_{1}, a_{2} \in H$ and $x=\left(a_{1} \wedge \chi\right) \vee\left(a_{2} \wedge \chi\right)$

Lemma 2.2.3: A non empty subset K of a lattice L is an ideal if only if $x \in k$ whenever x is an element of L such that $x=j\left(k_{1}, x, k_{2}\right)$ for same $k_{1}, k_{2}, \in K$.

Proof: Since the only if part is of obvious, suppose $x \in k$ whenever x is an element of S and $x=j\left(k_{1}, x, k_{2}\right)$ for some $k_{1}, k_{2} \in K$. Then clearly B_{0} (of Lemma 2.2.2) $\subseteq K$. Now for any $x \in B_{1}, x=\left(a_{1}, x, a_{2}\right)$ for some $a_{1}, a_{2} \in B_{0} \in K$.Thus $x \in K$ and so $B_{1} \subseteq K$.

Hence using induction .

We obtain that ($K]=\bigcup_{n=0}^{\mathrm{a}} B_{n} \subseteq K$, i.e $K=(K]$. Therefore K is an ideal
We now give an alternative formula for the supremum of two ideals in an arbitrary lattice.

Lemma 2.2.4: For any two ideals K_{1} and $K_{2}, K_{1} \vee K_{2}=\bigcup_{n=0}^{a} \mathrm{~B}_{n}$, where
$B_{0}=\left\{x \in L / x=j\left(k_{1}, k, k_{2}\right), k_{i} \in K_{1}\right\}$ and $B_{n}=\left\{x \in L / x=j\left(b_{1}, x, b_{2}\right), b_{1} b_{2} \in B_{n-1}\right\}$ and $\mathrm{n}=0,1,2$.

Proof: $K_{1}, K_{2} \subseteq B_{0} \subseteq B_{1} \subseteq \ldots \ldots \ldots . . \subseteq B_{n-1} \subseteq B_{n} \subseteq$

Suppose $b \in \bigcup_{n=0}^{\mathrm{a}} B_{n}$ and $b_{1} \leq b ; b \in L$. Then $b \in B_{n}$ for some $m \geq o$. Also $b_{1}=j\left(b, b_{1}, b\right)$ and so $b_{1} \in B_{m+1}$, Thus $\bigcup_{n=0}^{\mathrm{a}} B_{n}$ is hereditary. Now suppose exists $t_{1}, t_{2} \in \bigcup_{n=0}^{\mathrm{a}} B_{n}$, such that $t_{1} \vee t_{2}$ exists. Then there exist $r^{1} \geq 0$ Such that $t_{1} \in B_{1}$ and $t_{2} \in B_{1}$ If $r \leq \mathrm{I}$. Then $t_{1}, t_{2} \in B_{1}$ and $t_{1} \vee t_{2}=j\left(t, t_{1} \vee t_{2}, t_{2}\right)$ implies that $t_{1} \vee t_{2} \in B_{l+1}$. Hence $\bigcup_{n=0}^{\mathrm{a}} B_{n}$ is an ideal.

Finally, suppose H is an ideal containing K_{1} and K_{2}. If $x \in B_{o}$ then $x=j\left(k_{1} x, k_{2}\right)=\left(k_{1} \wedge x\right) \vee\left(k_{2} \wedge x\right)$ for some $k_{1} \in K_{1}$ and $k_{2} \in K_{2}$ since H is an ideal and $K_{1}, K_{2} \subseteq H$. Clearly $x \in H$. Then using the induction on n it is very easy to see that $H \supseteq B_{n}$ for each n

Theorem 2.2.5: Cornish and Hickman [3,Theorem 1.1].
The following conditions on a lattice L are equivalent:
(i) L is distributive.
(ii) For any $H \in H(L)$,
$(H]=\left\{t / h_{1} \vee-------\vee h_{n} / h_{1}-----h_{n} \in H\right.$.
(iii) For any $I, J \in J(L), I \vee J=\left\{a_{1} \vee\right.$ \qquad $\left.\vee a_{n} / a_{1}, \ldots \ldots \ldots \ldots, a_{n} \in I \vee J\right\}$
(iv) $J(L)$ is a distributive lattice.
(v) The map $f: H \rightarrow(H]$ is a lattice homomorphism of $H(L)$ onto $J(L)$ (which preserves arbitrary suprema).

Observe here that (iii) of above could easily be improved by 2.2 .4 to (iii).
For any $I, J \in J(L), I \vee J=\{i \vee j / i \in I, j \in J\}$.

Let $J_{f}(L)$ form hence forth denotes the set of all finitely generated ideals of a lattice L. Of course $J_{f}(L)$ is an upper subsemilattice of $J(s)$.

Also for any $x_{1}, x_{2}, \ldots \ldots \ldots \ldots x_{n} \in L\left(x_{1}, x_{2}, \ldots \ldots \ldots \ldots \ldots x_{m}\right)$ is clearly the supremum of

$$
\left(x_{1}\right] \vee\left(x_{2}\right] \vee \ldots \ldots \ldots \ldots \ldots \ldots . ~\left(x_{m}\right] .
$$

When L is distributive,

$$
\begin{aligned}
& \left.\left(x_{1}, x_{2}, \ldots \ldots ., x_{m}\right)\right] \cap\left(y_{1}, y_{2}, \ldots, y_{n}\right) \\
& =\left(\left(x_{1}\right] \vee\left(x_{2}\right] \vee \ldots \ldots \ldots \ldots \ldots \vee\left(x_{m}\right]\right) \cap\left(\left(y_{1}\right] \vee\left(y_{2}\right] \ldots \ldots \ldots \ldots \ldots \ldots . \ldots \ldots\left(y_{n}\right]\right)=\cup_{,}\left(x_{1} \wedge y_{,}\right) \text {for }
\end{aligned}
$$

any $x_{1}, x_{2}, \ldots \ldots \ldots \ldots x_{m}, y_{1}, y_{2}, \ldots \ldots \ldots \ldots \ldots y_{n} \in L$ (by 1.2.5) and so $\mathrm{J}_{\mathrm{f}}(\mathrm{L})$ is a distributive sub lattice of $J(L)$. c.f Cornish and Hickman [3].

A Lattice L is said to be finitely smooth if the intersection of two finitely generated ideals is itself finitely generated. For example, (i) distributive lattice, (ii) finite lattices, (iii) lattices, which are finitely smooth. Hickman in [20] exhibited a lattice which is not finitely smooth.

By Cornish and Hickman [3], we know that a lattice L is distributive if and only if $I(L)$ is so. Our next result shows that the case is not the some with the modularity.

Theorem 2.2.6: Let L be a lattice. If $I(L)$ is modular then L is also modular but the converse is not necessarily true.

Proof: Suppose $I(L)$ is modular. Let $a, b, c \in L$ with $c \leq a$ and $b \vee c$ exists.

Then $(c] \subseteq(a]$. Since $I(L)$ is modular, so $[a \wedge(b \vee c)=(a] \wedge((b] \vee(c]$

$$
=((a] \wedge(b]) \vee(c]=(a \wedge b) \vee c] .
$$

Thus implies that $a \wedge(b \vee c)=(a \wedge b) \vee c$, and so L is modular.

Lattice L of figure 2.5 shows that the converse of this result is not true.

Fig 2.6
Notice that $(r]$ is modular for each $r \in L$. But in $I(L)$ clearly $\left\{(0],\left(a_{1}\right],\left(a_{1}, y\right],\left(a_{2}, b\right], L\right\}$ is a pentagonal sublattice.

A filter F of a lattice L is a non empty subset of L such that if $f_{1} f_{2} \in F$ and $x \in L$ with $f_{1} \leq x$, then both $f_{1} \wedge f_{2}$ and x are in F. A filter G is called a prime filter if $G \neq L$ and at least one of $x_{1}, x_{2}, \ldots \ldots \ldots \ldots, x_{n}$ is in G whenever $x_{1} \vee x_{2}$ \qquad $\vee x_{n}$ exists and is in G An ideal p is a lattice L is called a prime ideal it $P \neq L$ and $x \wedge y \in P$ implies $x \in P$ or $y \in P$. It is not hard to see that a filter F of a lattice L is prime if and only if $L-F$ is a prime ideal.

The set of filters of a lattice is an upper semilattice; yet it is not a lattice in general, as there is no guarantee that the intersection of two filters is non empty.

The join $F_{1} \vee F_{2}$ of two filters is given by

$$
F_{1} \vee F_{2}=\left\{t \in L / t \geq f_{1} \wedge f_{2} \text { for some } f_{1} \in F_{1}, f_{2} \in F_{2}\right\} .
$$

The smallest filter containing a sub semi lattice H of L is $\{t \in L / t \geq h$ for some $h \in H\}$ and is denoted by $[H)$.

Moreover, the description of the join of filters shows that for all

$$
a, b \in L,[a) \vee[b)=[a \wedge b)
$$

Following theorem and corollary is due to Noor and Rahman [24] which is an extension of a well known theorem of lattice theory .

Theorem 2.2.7: Let L be a lattice. The following conditions are equivalent.
(i) L is distributive.
(ii) For any ideal I and any filter F of L such that $I \wedge F=\phi$, there exists a prime ideal $P \supseteq I \mathrm{P} \supseteq \mathrm{I}$ and disjoint from F.

Corollary 2.2.8: A lattice L is distributives if and only if every ideal is the intersection of all prime ideals containing it.

Theorem 2.2.9: A lattice L is modular if and only if the ideal lattice of L is modular.

Proof: Let the lattice L be modular.

Also let $A, B, C \in I(L)$ be three members s.t $B \supseteq A$.
We show $A \cap(B \vee C)=B \vee(A \cap C)$.
Let $x \in A \wedge(B \vee C)$ be any element.
Then $x \in A$ and $x \in B \vee C$.
$\Rightarrow x \in A$ and $x \leq b \vee c$ for some $b \in B, c \in C$.
Since $b \in B \subseteq A, x \vee b \in A$. Let $x \vee b=a$
Now $x \leq b \vee c, x \leq a \Rightarrow x \leq a \wedge(b \vee c)$
$\Rightarrow x \leq b \vee(a \wedge c)$ as $a \geq b^{1}$ and L is modular
Again $a \wedge c \leq a, a \in A \Rightarrow a \wedge c \in a$.
$a \wedge c \leq c, c \in C \Rightarrow a \wedge c \in C$.
Thus $a \wedge c \in A \cap C$ and as $b \in B$, we find $x \in B \vee(A \cap C)$
i.e $A \cap(B \vee C) \subseteq B \vee(A \cap C)$
$B \vee(A \cap C) \subseteq A \cap(B \vee C)$ follows by modular inequality or to prove it independently.
Let $y \in B \vee(A \cap C)$.

Then $y \leq b \vee k$ where $b \in B, k \in(A \cap C)$
Thus $y \leq b \vee k(b \in B \subseteq A, k \in A \Rightarrow b \vee k \in A \Rightarrow b \vee k \in A \Rightarrow y \in A$.
Also $y \leq b \vee k, b \in B, k \in C \Rightarrow y \in B \vee C$
i.e., $y \in A \cap(B \vee C)$

Showing that $B \vee(A \cap C) \subseteq A \cap(B \vee C)$.
Hence $A \wedge(B \cup C)=B \wedge(A \cap C)$ of that $\mathrm{I}(\mathrm{L})$ is modular.
Conversely, let $I(L)$ be modular, since L can be imbedded in to $I(L)$, it is isomorphic to a sub lattice of $I(L)$. This sub lattice must be modular as $I(L)$ is modular. Hence L is modular

Lemma-2.2.10: Union of two ideal may not be an ideal.
Proof : Let us suppose two ideals $A=\{1,2\} \quad B=\{1,3\}$ of a lattice $L=\{1,2,3,4,6,12\}$ under divisibility. But $A \cup B$ is not an ideal, because $2,3 \in A \cup B$ but $2 \vee 3=6 \notin A \cup B$

Theorem 2.2.11: Every convex sub lattice of a lattice L is the intersection of an ideal and a dual ideal.

Proof: Let S be a convex sub lattice of a latice L. Also let $A=\{x \in L \exists s \in S, x \leq S\}$.
Then $A \neq \varphi$ as $S \subseteq A$. Notice $s \leq S \forall s \in S$.
We show A is an ideal of L. Let $x, y \in A$ be any elements.
Then, there exist $S_{1}, S \in S$, such that $x \leq S_{1}, y \leq S_{2}$
$\Rightarrow x \vee y \leq s_{1} \vee s_{2} \Rightarrow x \vee y \in A$ as $s_{1} \vee s_{2} \in S$.
Again let $x \in A$ and $i \in L$ any elements. Then $x \leq S_{s}$ for some $s \in S$.
Now $x \wedge l \leq x \leq s \quad \Rightarrow x \wedge l \in \mathrm{~A}$.
Hence A is an ideal of L.
Let $A^{1}=\{x \in L / \exists s \in S, s \leq x\}$ then by duality it follows that A^{1} is a dual ideal of L.

We show $S=A \cap A^{\prime} S \subseteq A \cap A^{\prime}$ (by def of A and A^{\prime}). Let $t \in A \wedge A^{\prime}$. Then $t \in A$ and $t \in A^{1}$
$\Rightarrow \exists s_{1}, s_{2} \in S$, such that $s_{1} \leq t, t \leq s_{2}$ i.e., $s_{1} \leq t \leq s_{2}, \quad t \in\left[s_{1}, s_{2}\right]$. Since S is convex
sublattice, $s_{1}, s_{2} \in S,\left[s_{1}, s_{2}\right] \leq S \Rightarrow t \in s \Rightarrow a \wedge A^{\prime} \subseteq S$.
Hence $S=A \cap A^{1}$
Theorem 2.2.12: Dual of a modular lattice is modular.
Proof: Let L be a modular lattice. Let $a, b, c \in L$, since L is modular.
$\therefore a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c) \forall a, b, c, \in L$.
Now we have to show that dual of L is modular
i.e., $a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c) \forall a, b, c, \in L^{1}$.

Here L^{1} is the dual of L. Let $a, b, c \in L^{1}$ be any there element, then

$$
\begin{aligned}
(a \wedge b) \vee(a \wedge c) & =[(a \wedge b) \vee a] \wedge[(a \wedge b) \vee c] \\
& =a \wedge b \vee[(a \wedge b) \vee c] \\
& =a \wedge[(c \vee a) \wedge(c \vee b)] \\
& =a \wedge(c \vee a) \wedge(c \vee b) \\
& =a \wedge(b \vee c) .
\end{aligned}
$$

Therefore, L^{1} is modular.
Hence dual of a modular lattice is modular
Theorem:2.2.13 L is distributive if the identity
$(x \wedge y) \vee(y \wedge z) \vee(z \wedge x)=(x \vee y) \wedge(y \vee z) \wedge(z \vee x)$ holds in L.
Proof: Let L be a distributive lattice. Then

$$
\begin{aligned}
(x \vee y) \wedge(y \vee z) & \wedge(z \vee x)=\{x \wedge[(y \vee z) \wedge(z \vee x)]\} \vee\{y \wedge[(y \vee z) \wedge(z \vee x)] \\
& =[\{x \wedge(z \vee x)\} \wedge(y \vee z)] \vee[\{y \wedge) y \vee z)\} \wedge(z \vee x)] \\
& =[x \wedge(y \vee z)] \vee[y \wedge(z \vee x)] \\
= & (x \wedge y) \vee(x \wedge z) \vee(y \wedge z) \vee(y \wedge x) \\
= & (x \wedge y) \vee(y \wedge z) \vee(z \wedge x) .
\end{aligned}
$$

Conversely, we first show that L is modular.
Let a, b, c be any three elements of L with $a \geq b$.Then

$$
\begin{aligned}
a \wedge(b \vee c) & =[a \wedge(a \wedge c)] \wedge(b \vee c) \\
= & (a \vee b) \wedge(a \vee c) \wedge(b \vee c) \\
= & (a \vee b) \wedge(b \vee c) \wedge(c \vee a) \\
= & (a \wedge b) \vee(b \vee c) \vee(c \wedge a) \\
& =(b \vee(b \wedge c)) \vee(c \wedge a) \\
& =b \vee(a \wedge c)
\end{aligned}
$$

i.e., L is modular.

Now for any $x, y, z \in L$,

$$
\begin{aligned}
x \wedge(y \vee z) & =[x \wedge(x \vee z)] \wedge(y \vee z) \\
= & {[x \wedge(x \vee y) \wedge(x \vee z)] \wedge(y \vee x) } \\
= & x \wedge[(x \wedge y) \vee(y \wedge z) \vee(z \wedge x) \\
= & x \wedge[(y \wedge z) \vee(x \wedge y) \vee(z \wedge x)]
\end{aligned}
$$

Now using modularity, as $x \geq x \wedge y, x \geq z \wedge x$ gives $x \geq(x \wedge y) \vee(z \wedge x)$,

$$
\text { we get } \begin{aligned}
x \wedge(y \vee z) & =[(x \wedge y) \vee(z \vee x) \vee(y \wedge z \wedge x) \\
& =(x \wedge y) \vee[(z \wedge x) \vee[(z \wedge x) \wedge y]] \\
& (x \wedge y) \vee(z \wedge x)
\end{aligned}
$$

Hence L is distributive
. Theorem 2.2.14 : Every distributive lattice is modular, but not conversely.
Proof: Let us suppose that L is distributive and $x, y, z \in L$.
Therefore, $x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z) \forall x, y, z, \in L$, Let $x \geq y$. Then

$$
\begin{aligned}
x \wedge(y \vee z) & =[x \wedge(x \vee z)] \wedge(y \vee z) \\
& =(x \vee y) \wedge(x \vee z) \wedge(y \vee z) \\
& =(x \vee y) \wedge(y \vee z) \wedge(z \vee x) \\
& =(x \wedge y) \vee(y \wedge z) \vee(z \wedge x) \\
& =(y \vee(y \wedge z)) \vee(z \wedge x) \\
& =y \vee(x \wedge z) .
\end{aligned}
$$

Therefore, L is modular.
Conversely, from the Fig the lattice M_{5} is net distributive, but it is modular.

Fig-2.7
Notice $a \wedge(b \vee c)=a$, whereas $(a \wedge b) \vee(a \wedge c)=0$
I.e., $\quad a \wedge(b \vee c) \neq(a \wedge b) \vee(a \wedge c)$.

Hence the theorem
Theorem 2.2.15: Any chain is a distributive lattice.

Proof: Let x, y, z be any three members of a chain.

Then any two of these are comparable.
Suppose $x \leq y, \quad x \geq z, \quad y \leq z$.
Then $x \leq y \leq z \leq x \Rightarrow x=y=z$.
Thus $x \wedge(y \vee z) x=x=(x \wedge y) \vee(x \wedge z)$.

If $x \leq y, x \geq z, z \leq y$, then $z \leq x, x \leq y, z \leq y$. Thus
$x \wedge(y \vee z)=x \wedge y=x$
$(x \wedge y) \vee(x \wedge z)=x \vee z=x$

One can check that under different cases ($x \leq y, x \leq z ; x \leq z, x \geq y, x \geq y, x \geq z$) the condition of destructivity holds and thus a chain is always a distributive lattice

Cor: A non modular lattice contain at least five elements or a lattice with up to four elements is always modular.

Remark: It is possible that we may have a modular lattice which contains a pentagonal subset. Consider for instance, the lattice L of factors at 240 . The lattice is given by the diagram.

Fig-2.8
We notice $S=\{2,6,10,12,60\}$ is a pentagonal subset of L but not a Sub lattice For in L.
$10 \vee 6=30 \neq S 10 \vee 6=30 \neq S$. Again L is modular, as it is cardinal product of three chains,
$A=\{0<1<2<3\} \quad B=\{0<1\} \quad C=\{0<1\}$ and a chain being modular gives product of chains to be modular.

Theorem 2.2.16: A lattice L is modular iff it does not contain a pentagonal sublattice.

Theorem 2.2.17: A modular lattice is non distributive iff it contains a sublattice isomorphic with M_{5}.

Proof: Let L be a modular lattice which is not distributive. We know in any lattice. $(a \wedge b) \vee(b \wedge c) \vee(c \wedge a) \leq(a \vee b) \wedge(b \vee c) \wedge(c \vee a) \quad \forall a, b, c$.

Again a lattice is distributive iff the above is an equality.
Hence as L is not distributive \exists at least three elements a, b, c in L, such that

$$
(a \wedge b) \vee(b \vee c) \vee(c \vee a) \leq(a \vee b) \wedge(b \vee c) \wedge(c \vee a)
$$

Let $p=(a \vee b) \wedge(b \vee c) \wedge(c \vee a)$
$q=(a \wedge b) \vee(b \wedge c) \vee(c \wedge a)$
Then $q<p$.
Consider now the tree elements
$r=p \wedge(q \vee a)=q \vee(p \wedge a)$
$s=p \wedge(q \vee b)=q \vee(p \wedge b)$
$t=p \wedge(q \vee c)=q \vee(p \wedge c)$.
Then by definition of r, s, t we find $q \leq r \leq p, q \leq s \leq p, q \leq t \leq p$.
we will show p, q, r, s, t form a sub lattice of L, isomorphic to M_{5}.
Now

$$
\begin{aligned}
& r \wedge s=\{p \wedge(q \vee a)\} \wedge\{p \wedge(q \vee b)] \\
&=p \wedge(q \vee a) \wedge(q \vee b) \\
&= p \wedge[a \vee(b \wedge c) \wedge\{b \vee(c \wedge a)\}] \\
& \text { As } \quad q=(a \wedge b) \vee(b \wedge c) \vee(c \wedge a) \\
& q \vee a=a \vee(a \wedge b) \vee(b \wedge c) \vee(c \wedge a)=a \vee(b \wedge c) \vee(c \wedge a) \\
&= a \vee(c \wedge a) \vee(b \wedge c)=a \vee(b \wedge c) \\
& \text { Similarly } a \vee b=b \vee(c \wedge a) .
\end{aligned}
$$

Thus $r \wedge s=p \wedge[(c \wedge a) \vee(a \vee(b \wedge c) \wedge b]$
As $a \vee(b \wedge c) \geq a \geq a \wedge c$ and using modularity.
i.e., $r \wedge s=p \wedge[(c \wedge a) \vee\{b \wedge(b \wedge c) b \vee a\}]$

$$
\begin{aligned}
= & p \wedge[(c \wedge a) \vee(b \wedge c) \vee(b \wedge a)] \\
& =p \wedge q=q
\end{aligned}
$$

By duality we can say that $r \vee s=p$.
Thus $r \wedge s=q<p=r \vee s$ and also then $r \neq s$
(indeed $r=s \Rightarrow r \wedge s=s=q, r \vee s=s=p$ or $p=q$
By symmetry, we can say

$$
\begin{aligned}
& s \wedge t=q<p=s \vee t \\
& t \wedge r=q<p=t \vee r
\end{aligned}
$$

And $s \neq t, t \neq r$

Fig-2.9
We now show equality does not hold in (1).
Suppose $q=r$ then as $q \leq s \leq p$, we get $r \leq s \Rightarrow r \wedge s=r$,

$$
r \vee s=s, p=s
$$

Similarly, $q \leq t \leq p$ gives $r \leq t$

$$
r \wedge t=r, r \vee t=t, p=t
$$

or that $s=t$, which is not true.
Similarly, other equalities do not hold in (1),
Hence $q<r<p, q<s<p, q<t<p$.
Combining all the results prove above it is obvious that $\{p, q, r, s, t\}$ forms a sub lattice, which is isomorphic to M_{5} Conversely, let L be a lattice which has a sub lattice isomorphic to M_{5}. Then L cannot be distributive as M_{5} is not distributive. It is then that A lattice is distributive iff it does not contain a pentagonal sub lattice or M_{5}. sublattice

Congruence

Definiticin (Congruence): An equivalence relation Θ_{\wedge} (that is a reflexive, symmetric and transitive binary relation) of a lattice L is called a congruence relation if $a_{1} \equiv b_{1}(\Theta)$ for $i=1,2\left(a_{i} b_{i} \in L \quad\right.$ then (i) $a_{1} \wedge a_{2} \equiv b_{1} \wedge b_{2}(\Theta)$, and (ii) $a_{1} \vee a_{2} \equiv b_{1} \vee b_{2}$ ($\left.\Theta\right)$ provided $a_{1} \vee a_{2}$ and $b_{1} \vee b_{2}$ exists.

It can be easily shown that for an equivalence relation Θ on L, the above conditions are equivalent to the conditions that for $a, b \in L \quad$ if $a \equiv b(\Theta)$, then (i) $a \wedge t=b \wedge t(\Theta)$ for all $t \in L$ and (ii) $a \vee t=b \vee t(\Theta)$ for all $t \in L$, provided both $a \vee t$ and $b \vee t$ exist.

The set $C(L)$ of all congruence on L is an algebraic closure system on $L \times L$ and hence, when ordered by set inclusion, is an algebraic lattice.

Cornish and Hickman [3] showed that for an ideal I of a distributive lattice L, the relation $\Theta(I)$ defined by $a \equiv b(\Theta(1))$ if and only if $(a] \vee I=(b] \vee I$ is the smallest congruence having I as a congruence class. Moreover the equivalence relation R (I) defined $y R a \equiv b(R(1))$ if and only if for any $l \in L, a \wedge l \in \mathrm{I}$ is equivalent to $b \wedge l \in I$ is the largest congruence having I as a congruence class.

Suppose L is a distributive lattice and $a \in L$, we will use Θ_{a} as an abbreviation for $\Theta((a])$. Moreover Ψ_{a} denote the congruence, defined by $x \equiv y\left(\Psi_{a}\right)$ if and only if $x \wedge a=y \wedge a$.

Cornish and Hickman [3] also showed that for any two elements a, b of a distributive lattice L with $x \leq y$, the smallest congruence identifying x and y is equal to $\Psi_{x} \cap \Theta$ and we denote if by $\Theta(x, y)$. Also in a distributive lattice L, they observed that if L has a smallest element 0 , then clearly $\Theta_{a}=\Theta(0, a)$ for any $a \in L$. Moreover, it is easy to see that (i) $\Theta_{x} \vee \Psi_{x}=l$, the largest congruence of L.
(ii) $\Theta_{x} \cap \Psi_{x}=w$, the smallest congruence of L and
(iii) $\Theta(x, y)^{1}=\Theta_{x} \vee \Psi_{y}$, where $x \leq y$.

Now suppose L is an arbitrary lattice and $E(L)$ denotes its lattice of equivalence relations F or $\varphi_{1}, \varphi_{2} \in E(L), \varphi_{1} \vee \varphi_{2}$ denotes their suprimum; $\quad a \equiv b\left(\varphi_{1} \vee \varphi_{2}\right)$ if and only it there exists $a=z_{0}, z_{1}, \ldots \ldots \ldots \ldots \ldots \ldots z_{n}=b$ such that $z_{i-1} \equiv z_{1}\left(\varphi_{1}\right.$ or $\left.\varphi_{2}\right)$ for $i=1,2, \ldots \ldots \ldots \ldots \ldots$. .n.

Theorem 2.3.1: A lattice L is algebraic iff it is isomorphic to the lattice of all ideals of a join-semi lattice with 0 .

Proof: Let F be a join-semilattice with 0 ; we want to prove that $I(F)$ is algebraic. We know that $I(F)$ is complete. We claim that for $a \in F,(a]$ is a compact element of $I(F)$.

Let $X \subseteq I(F)$ and let $(a] \subseteq\{I / I \in X\}$.
But we have $\vee(I / I \in x)=\left\{x: x \leq t_{0} \vee\right.$. \qquad $\left.v t_{n-1}, t_{1} \in I_{1}, I_{1} \in x\right\}$.

Therefore $a \leq t_{0} \vee$. \qquad $\vee t_{n-1}, t_{1} \in I, I_{1} \in x$. Thus with $x_{1}=\left\{I_{0} \ldots \ldots \ldots . . I_{n-1}\right\}$
$(a] \subseteq \vee\left(I / I \in x_{1}\right)$. Since for any $I \in I(F)$
We have $I=\vee((a] / a \in I)$. we see that $I(F)$ is algebraic.
Now let L be an algebraic lattice and let F be the set of compact elements of L. Obviously $0 \in F$, let $a, b \in F, a \vee b \leq V X, X \subseteq L$. Then $a \leq a \vee b \leq V X$ and so $a \leq V x_{0}$ for some finite $X_{0} \subseteq X$, similarly $b \leq v_{1}$ for some finite $X_{1} \in X$. Thus $a \vee b \leq V\left(X_{0} \cup X_{1}\right)$, and $X_{0} \cup X_{1}$ is a finite subset of X. So $a v b \in F$.

Therefore, $(\mathrm{F} ; \mathrm{V})$ is a join-semi lattice with 0 . Consider the map $\varphi: a \rightarrow\{x / x \in F, x \leq a\}$ $a \in L$. Obviously φ maps L into $I(F)$, by the definition of an algebraic lattice, $a=v a \varphi$, and thus φ is one-to-one.

To prove hat φ is onto, let $I \in I(F) \cdot a=v I$. Then $a \varphi \equiv l$, let $x \in a \varphi$. Then $x \leq V I$,

So that by the compactness of $\mathrm{x}, x \leq V I_{1}$ for some finite $I_{1} \subseteq I$. Therefore, $x \in I$ proving that $a \varphi \subseteq I$.

Consequently $a \varphi=I$ and so φ is on to. Thus φ is an isomorphism
Now we connect the foregoing with congruence lattices.
Theorem 2.3.2: For any lattice $L, C(L)$ is a distributive sublattice of $E(L)$.
Proof: Suppose $\Theta, \varphi \in C(L)$. Define Ψ to be the supremum of Θ and φ in the lattice equivalence relations $E(L)$ on L.

Let $a \equiv b(\Psi)$. Then there exists $a=z_{0}, z_{1} \ldots \ldots \ldots \ldots \ldots z_{n}=b$ such that $z_{t-1} \equiv z_{l}(\Theta \operatorname{or} \varphi)$.
Thus for any $t \in L \quad z_{i-1} \wedge t \equiv z_{i} \wedge t(\Theta \operatorname{or} \varphi)$ as $\Theta, \varphi \in c(L)$.
Hence $a \wedge t \equiv b \wedge t(\Psi)$ and consequently Ψ is semi lattice congruence. Then in particular $a \wedge b=a(\Psi)$ and $a \wedge b \equiv b(\Psi)$. To show that Ψ is a congruence, let $a \equiv b(\Psi)$ with $a \leq b$, and choose any $t \in L$ such that both $a \vee t$ and $b \vee t$ exist. Then there exists $z_{0}, z_{1}, z_{2}, \ldots \ldots \ldots \ldots . . z_{n}$, such that $a=z_{0}, z_{n}=b$ and $z_{i-1}=z_{i}(\Theta \operatorname{Or} \varphi)$

Put $w_{i}=z_{1} \wedge b$ for all $i=o, 1, \ldots \ldots \ldots . . n$, then $a=w_{0}, w_{n}=b w_{i-1} \equiv w_{i},(\Theta o r \varphi)$.
Hence by the upper bound property $w_{i} \vee t$ exists for all $\left.i=0,1 \ldots \ldots \ldots \ldots a s w_{i}, t \leq b \vee t\right)$ and $w_{t-1} \vee t \equiv w_{i} \vee t(\Theta o r \varphi)$ for all $i=1,2, \ldots \ldots \ldots . . . n(a s \Theta, \varphi \in C(L))$. i.e., $a \vee t=b \vee t(\Psi)$.

Then Ψ is congruence on L. Therefore $C(L)$ is a sub lattice of the lattice $E(L)$.
To show the distributivity of $C(L)$, let $a \equiv b\left(\Theta \cap\left(\Theta_{1} \vee \Theta_{2}\right)\right.$.
Then $a \wedge b \equiv y(\Theta)$ and $\left(\Theta_{1} v \Theta_{2}\right)$. Also, $a \wedge b \equiv a(\Theta)$ and $\left(\Theta_{1} \vee \Theta_{2}\right)$.
Since $a \wedge b=b\left(\Theta_{1} \vee \Theta_{2}\right)$, there exists $t_{0}, t_{1} \ldots \ldots \ldots . t_{n}$ such that (as we have seen in the proof
of the first part) $a \wedge b=t_{0}, t_{n}=b, t_{i-1} \equiv t_{1}\left(\Theta_{1} \operatorname{or} \Theta_{2}\right)$ and $a \wedge b=t_{0} \leq t_{1} \leq b$ for each
$i=0,1 \ldots \ldots \ldots . . n$. Hence $\mathrm{t}_{i-1}=\mathrm{t}_{i}(\Theta)$ for all $i=1,2, \ldots \ldots \ldots \ldots$.
$t_{t-1} \equiv t_{1}\left(\Theta \cap \Theta_{1}\right) \operatorname{or}\left(\Theta \cap \Theta_{2}\right)$.
Thus $a \wedge b \equiv b\left(\left(\Theta \cap \Theta_{1}\right) \vee\left(\Theta \cap \Theta_{2}\right)\right)$. By symmetry, $a \wedge b \equiv a\left(\left(\Theta \cap \Theta_{1}\right) \vee\left(\Theta \cap \Theta_{2}\right)\right.$ and the proof completes by transitivity of the congruences.

In lattice theory it is well known that a lattice is distributive if and only if every ideal is a class of some congruence. Following theorem gives a generalization of this result in case of lattices

Theorem:2.3.3: L is distributive if and only if every ideal is a class of some congruence.
Proof: Suppose L is distributive. Then for each ideal I of $L, \Theta(I)$ is the smallest congruence containing I as a class.

To prove the converse, let each ideal of L be a congruence class with respect to some congruence on L. Supposes L is not distributive. Then by theorem:2.1.2 we have either N_{5} (Figure 2.2) or M_{5} (Figure2.3) as a sublattice of L. In both cases consider $I=(a]$ and suppose I is a congruence class with respect ot Θ. Since $d \in I, d \equiv a(\Theta)$.

Now $d=b \wedge c=b \wedge(a \vee c) \equiv b \wedge(d \vee c)=b \wedge c=d(\Theta)$ I.e $b \equiv d(\Theta)$ and this implies $b \in I$, I.e $b \leq a$ which is a contradiction. Thus L is distributive.

An equivalence relation C on a lattice L is called a congruence relation if $a_{1} C b_{1}$ and $a_{2} C b_{2}$ imply $\left(a_{1} \wedge a_{2}\right) C\left(b_{1} \wedge b_{2}\right)$ and $\left(a_{1} \vee a_{2}\right) C\left(b_{1} \vee b_{2}\right)$.

We know C would partition L in equivalence classes, where for any $\mathrm{a} \in L$ equivalence class of ' a ' is given by $C(a)=\{x \in L / x C a\}$

Theorem 2.3.4: Let L and M be lattices and suppose C_{1} and C_{2} are congruence relations on L and M respectively. Then a relation $C=C_{1} \times C_{2}$ on $L \times M$ by $(a, b) C(x, y) \Rightarrow a C_{1} x, b C_{2} y, a, x \in l, b, y \in M$ then $C=C_{1} \times C_{2}$ is a congruence relation on $L \times M$. Conversely any congruence relation on $L \times M$ is of this type.

Proof: Since $a C_{1} a, b C_{2} b, \quad \forall a \in L, b \in M$.

We get $(a, b) C(a, b) \quad \forall(a, b) \in L \times M$ or that C is reflexive.

$$
\begin{aligned}
\text { Again let }(a, b) C(x, y) & \Rightarrow a C_{1} x, b C_{2} y \\
& \Rightarrow x C_{1} a, y C_{2} b \\
& \Rightarrow(x, y) C(a, b) \\
& \Rightarrow C \text { is symmetric. }
\end{aligned}
$$

Similarly it is seen that C is transitive.
Let now $(a, b) C(x, y),(p, q) C(r, s)$

$$
\begin{aligned}
& \Rightarrow a C_{1} x, b C_{2} y, p C_{1} r, q C_{1} s \\
& \Rightarrow(a \wedge p) C_{1}(x \wedge r) \text { and }(b \wedge q) C_{2}(y \wedge s) \\
& \Rightarrow(a \wedge p, b \wedge q) C(x \wedge r, y \wedge s) \\
& \Rightarrow(a, b) \wedge(p, q) C(x, y) \wedge(r, s) .
\end{aligned}
$$

Similarly, we can prove that $(a, b) \vee(p, q) C(x, y) \vee(r, s)$.
Hence C is a congruence relation on $L \times M$.
Conversely, let C be a congruence relation on $L \times M$.
Define a relation C_{1} on L by $a C_{1} b \Leftrightarrow(a, x) C(b, x)$ for some $x \in M, a, b \in L$ Let $y \in M$ be any element, then since $(a \wedge b, y)(a \wedge b, y) \in L \times M$ and C is a congruence relation on $L \times M$.

We get $(a \wedge b, y) C(a \wedge b, y)$, similarly $(a \vee b, y) C(a \vee b, y)$.
Now $(a, x) C(b, x),(a \wedge b, y) \vee(a, x) C(a \wedge b, y) \vee(b, x)$

$$
\begin{aligned}
& \Leftrightarrow(a, y \vee x) C(b, y \vee x) \\
& \Leftrightarrow(a \vee b, y) \wedge(a, y \vee x) C(a \vee b, y)(b, y \vee x) \\
& \Leftrightarrow(a, y) C(b, y) .
\end{aligned}
$$

We thus notice $(a, x) C(b, x)$ for some $x \in M$ is equivalent to saying that $(a, x) C(b, x)$ for all $x \in M$.

So we define $a C_{1} b \Leftrightarrow(a, x) C(b, x) \mathrm{aC}_{1} \mathrm{~b} \quad$ for all $x \in M$. It is easy to verify that C_{1} is a congruence relation on L. Similarly, we define a relation C_{2} on M by $a C_{2} b \Rightarrow\left((x, a) C(x, b) \mathrm{aC}_{2} \mathrm{~b} \quad \forall x \in L,(a, b \in M)\right.$. We claim $C=C_{1} \times C_{2}$

Let $(a, b) C(p, q), a, p \in L, b, q \in M$ then $(a \vee p, b \wedge q) \wedge(a, b) C(a \vee p, b \wedge q) \wedge(p, q)$
$\Rightarrow(a, b \wedge q) C(p, b \wedge q)$ for some $b \wedge q \in M . \Rightarrow a C p$
we can say $b C_{2} q$ and thus get $(a, b) C_{1} \times C_{2}(p, q)$. Again, if $(a, b) C_{1} \times C_{2}(p, q)$, them $a C_{1} p$ and $b C_{1} q \Rightarrow(a, x) C(p, x)$ and $(y, b) C(y, q)$ for all $x \in M, y \in L$.

In particular

$$
\begin{array}{ll}
(a, b \wedge q) C(p, b \wedge q) \text { and }(a \wedge p, b) C(a \wedge p, q) & x=b \wedge q \in M \\
\Rightarrow(a, b \wedge q) \vee(a \wedge p, b) C(p, b \wedge q) \vee(a \wedge p, q) & y=a \wedge p \in L \\
\Rightarrow(a, b) C(p, q) &
\end{array}
$$

Hence $(a, b) C(p, q) \Leftrightarrow(a, b) c_{1} \times c_{2}(p, q)$
or that $C=C_{1} \times C_{2}$
Definition(Convex sublattice): The subset K of the lattice L is called convex sub lattice if $a, b \in K, c \in L$ and $a \leq c \leq b$ imply that $c \in K$.

Theorem 2.3.5: Let Θ be a congruence relation of L. Then for every $a \in L[a] \Theta$ is a convex sublattice.

Proof: Let $x, y \in[a] \Theta$; then $x \equiv a \Theta$ and $y \equiv a \Theta$.

Therefore, $x \wedge y \equiv a \wedge a=a(\Theta)$, and $x \vee y=a \vee a=a \Theta$, proving that $[a] \Theta$ is a sublattice. If $x \leq t \leq y, x, x \in[a] \Theta$, then $x=a(\Theta)$ and $y=a(\Theta)$.

Therefore, $t=t \wedge y=t \wedge a(\Theta)$, and $\quad t=t \vee x=(t \wedge a) \vee x \equiv(t \wedge a) \vee a=a(\Theta)$, proving that $[a] \Theta$ is convex

Theorem 2.3.6: (The Homomorphism Theorem) : Every homomorphism image of a lattice L is isomorphic to a suitable quotient lattice of L. In fact, if $\phi: L \rightarrow L_{1}$ is a homomorphism of L onto L and if Θ is the congruence relation defined by $x \equiv y \Theta$ iff

$$
\begin{aligned}
& \phi(x)=\phi(y), \text { then } L, J \Theta \equiv L_{1} \text { is an isomorphism and is given by } \\
& \psi:[x] \Theta \rightarrow \phi(x), x \Theta L_{1}
\end{aligned}
$$

Proof: Since Φ is a homomorphism and (Θ) is obviously a congruence, to prove that Ψ is an isomorphism we need to check
i) To show that Θ is well defined: let $[x] \Theta-[y](\Theta)$.

Then $\phi(x)=P(y) \Rightarrow([x] \Theta) \psi \equiv([y] \Theta) \psi \quad$ i.e., Ψ is well defined.
ii) To show that Ψ is one-one $\Psi[x]=\Psi[y], \Theta \Rightarrow \phi(x)=\phi(y)$ then $x \equiv y(\Theta)$ and so $[x](\Theta) \equiv[y](\Theta) \quad$ i.e Ψ is one-one.
iii) To show that Ψ is onto: Let $x \in L$. Since Φ is onto. There is any $y \in L$ with $\phi(y)=x$. Thus $[y](\Theta) y \psi=x$ i.e., Ψ is onto .
iv) To show that Ψ is a homomorphism: Let $[x] \Theta,[y] \Theta \in L / \Theta$,

Therefore $\psi([x] \Theta \wedge[y] \Theta)=\psi([x \wedge y] \Theta)=\phi(x) \wedge \phi(y)$
$=\psi(x) \Theta \wedge \psi(y \Theta)$ and
$\psi([x] \Theta \vee[y] \Theta)=\psi([x \vee y] \Theta)=\phi(x \vee y)=\phi(x) \vee \phi(y) \psi([x] \Theta \vee \psi(y) \Theta$
i.e., Ψ is homomorphism then the theorem is proved

2.4 Length and covering conditions

A finite chain with n clements is said to have length $\mathrm{n}-1$. We say a covers b if $b \leq a$ and there exists no c such that $b \leq c \leq a$.

A chain $x_{1}<x_{2}<\ldots \ldots .<x_{n}$ is called a minimal chain if each x_{i+1} covers x_{i}. Suppose now $[a, b]$ is an interval in a lattice and if amongst all chains from a to b, there is one of maximum length n . We say $[a, b]$ has tength n . Thus it is the sup of lengths of chains from a to b . We denote it by $l[a, b]=n$. In case some chains from a to b have infinite length here [$a, b]$ has infinite length.

Let L be a lattice with least element 'o' and greatest element u then as $L=[0, u]$, length of L is defined to be length of the interval $[0, u]$.

All finite lattices have finite length, infinite lattices can also have finite length as the lattice given by Fig has finite length 2 but it is infinite.

Fig-2.10
Theorem 2.4.1: Length of a pentagonal lattice is 3 .
Proof: Consider the pentagonal lattice as shown in the Fig.

Fig-2.11

It has five chains. $0<u, \quad 0<a<u, \quad 0<b<u, \quad 0<c<u, 0<b<a<u$
from 0 to u . The last two being maximal chains. The chains have lengths $1,2,2,2,3$. Therefore $c[0, u]=3$ and hence length of the pentagonal lattice is 3

Jordan-Dedekind condition: Let L be a lattice of finite length. Then L satisfies the Jordan-Dedekind condition if all maximal chains between same end points have same length.

Remark: The pentagonal lattice does not satisfy the jordain- Dedekind condition. Because there are two maximal chains from o to u and have different lengths 2 and 3

Theorem 2.4.2: Let L be a lattice of finite length. Suppose in L whenever x, y cover $x \wedge y$ implies $x \vee y$ covers x and y. Then L Wsatisfies the Jordain- Dedekind condition. Proof: Let a, b be any two comparable points $(a \leq b)$. we show all maximal chains from a to b have same length $l[a, b]$. Since all chains from a to b are finite, at least one maximal chain exists of finite length from a to b . We show all maximal chains are of the same length.

We prove the result by induction on n , the length $l[a, b]$. If $l[a, b]=1$, then b covers a and thus there is only one maximal chain from a to b with length 1 and hence the result holds for $\mathrm{n}=1$.

Let the result be true for $\mathrm{x}=\mathrm{m}-1$
Let $a<x_{1}<x_{2}<\ldots \ldots<x_{m}=b$
$a<y_{1}<y_{2}<\ldots \ldots \ldots<y_{k}=b$ be two maximal chains from a to b of lengths m and k we show $k=m$.

Case (i) If $x_{1}=y$ then $x_{1}<x_{2}<\ldots \ldots \ldots<x_{m}=b \quad y_{1}<y_{2}<\ldots \ldots \ldots \ldots \ldots \ldots . \ldots y_{k}=b$.are two maximal chains from x_{1} to b with length $m-1, k-1$ and as the result holds for $m-1, k-1=m-1 \Rightarrow k=m$.

Case (ii) $x_{1} \neq y_{1}$. Here x_{1} and y_{1} cover $a=x_{1} \wedge y_{1}$.
Thus by given condition $x_{1} \vee y_{1}$ cover x_{1} and y_{1}.
Let $x_{1} \vee y_{1}=t$. Since $x<b_{1}, y<b_{1}=x_{1} \vee y_{1} \leq b$ and we find t and b are comparable.
Let $t<z_{1}<z_{2}<$ \qquad $z_{i}=b$
be a maximal chain from t to b with length i .
Now $x_{1}<x_{2}<$ \qquad $<x_{m}=b \quad x_{1}<t<z_{1,}$, \qquad $z_{z}=b$
are two maximal chains from x_{1} to b of lengths $m-1$ and $i+1$ (Note t covers x_{1}).
But the result holds for $m-1$ and thus $i+1=m-1$.
Again, the chains $y_{1}<y_{2}<$. \qquad $<y_{k}=b \quad, \quad y_{1}<t<z_{1}<$ \qquad $. z_{1}=b$
are maximal chains from y_{1} to b with length $k-1$, and $i+1$ i.e are maximal chains from y_{1} to b with lengths $k-1$ and $m-1$.

But result holds for $m-1$, and so $k-1=m-1 \Rightarrow k=m$
i.e., the result holds for $\mathrm{n}=\mathrm{m}$.

$$
b=x_{m}=y_{k}=z_{i}
$$

Z_{1}

y_{1}

Fig-2.12
Hence by induction hypothesis, the result holds for all n and our assertion is proved \square

Atom: An element a in lattice L called an atom if it covers o. i.e a is atom iff $a \neq 0$ and $x \wedge a=a$ or $x \wedge a=0, \quad \forall x \in L$.

Dual atom: An element b is called dual atom if the greatest element u of a lattice cover b .
Complements: Let $[a, b]$ be an interval in a lattice L. Let $x \in[a, b]]$ be any element if
$\exists y \in L$, s.t, $x \wedge y=a, x \vee y=b$ we say y is a complement of x relative to $[a, b]$.
Theorem 2.4.3: No ideal of a complemented lattice which is a proper sub lattice can contain both an element and its complement.

Proof: Let L be a complemented lattice. Then $0, u \in L$. Let I be an ideal of L such that I is a proper sublattice of L. Suppose \exists an element a in I such that its complement a^{1} is also in I.Then $a \wedge a^{1}=0, a \vee a^{1}=u$ Since I is a sub lattice, $a \wedge a^{1}, a \vee a^{1}$ are in I. I.e $0, u \in I$,

Now if $I \in L$ be any element then as $U \in I, I \wedge u \cap I \Rightarrow 1 \in I \Rightarrow L \subseteq i \Rightarrow I=L$, a contradiction. Hence the theorem

Theorem 2.4.4: Let L be a uniquely complemented lattice and let a be an atom in L. Then a^{1} i.e the complement of a is a dual atom of L.

Proof: Since L is uniquely complemented lattice, every element has a unique complement.
Suppose a^{1} is not a dual atom, then \exists at least on $\mathrm{x}, \mathrm{s}, \mathrm{t}$,

$$
\begin{aligned}
& a^{1}<x<u \Rightarrow a^{1} \vee a \leq x \vee a \\
\Rightarrow & u \leq x \leq u \quad \Rightarrow \quad u=x \vee a
\end{aligned}
$$

Now if $a \leq x$ then $x \vee a=x \Rightarrow x=u$, not true.
Again if $a \leq x$, then $a \wedge x=0$ (note $\quad \mathrm{a}$ is an atom). Thus $a \wedge x=0, a \vee x=u \Rightarrow x=a^{\prime}$ $a \wedge x$, again a contradiction.

Hence a^{1} is a dual atom

CHAPTER THREE

Standard Element of a lattice

Introduction: Standard elements in lattices were first studied in depth by Gratzer and schmid [15]. Since then little Attenton has been paid to these notions. A lower semi lattice is said to have the upper bound property if the supremum of any two elements automatically exists when they share a common upper bound according to Gratzer and Schmidt [15] if a is an element of a lattice L then,
(i) a is called distributive if

$$
(a \vee(r \wedge s)=(a \vee r) \wedge(a \vee s) \text { for all } r, s \in L
$$

(ii) a is called standard if

$$
r \wedge(s \vee a)=(r \wedge s) \vee(r \wedge a) \text { for all } r, s \in L
$$

(iii) a is called neutral if the sub lattice generated by r, s and a is distributive for all $r, s \in L$
i.e $(a \wedge r) \vee(r \wedge s) \vee(s \wedge a)=(a \vee r) \wedge(r \vee s) \wedge(s \vee a)$ for all $r, s \in L$.

It is easily seen that a standard elements is distributive and a neutral element is both standard and distributive. In a distributive lattice, the three notions coincide . It was shown by Gratzer and Schmidt [15] that an element n in a lattice L is neutral if and only it for all $r, s \in L$, $r \wedge(s \vee n)=(r \wedge s) \vee(r \wedge n)$ and $n \wedge(r \vee s)=(n \wedge r) \vee(n \wedge s)$. Also Gratzer [11] has shown that an element n in a lattice L is neutral if and only if $(n \wedge r) \vee(r \wedge s) \vee(s \wedge n)=(n \vee r) \wedge(r \vee s) \wedge(s \vee n)$ for all $r, s \in L$.

The following results are well known C.f Gratzer [11, Theerem $9 \mathrm{P}, 143$] the supremum of two distributive elements are distributive; both the infimum and supremum of two standard elements are standard; both the infimum and supremum of two neutral elements are neutral. On the other land, the following example due to Gratzer [11,p144] shows that the
infimum of two distributive elements is not necessarily distributive in Figure 3.1 both r and s are distributive whereas $r \wedge s$ is not.

Figure 3.1
Cornish and Noor in [4] generalized the concepts of standard and neutral elements to lattices. They have also introduced the notion of new type of element. They preferred to call it as a strongly distributive element, as in case of lattices such an element stands between a distributive and a standard element.

In section 1 of this chapter we give a description on standard neutral and strongly distributive elements of a lattice,

In section 2 we discuss on standard elements in a weakly modular lattice. we show that in a weakly modules lattice, every strongly distributive element is neutral Thus in particular every standard element is neutral in a modular lattice.which is a generalization of [15, corr.2.3 and 2.4]

3.1. Standard and Neutral Elements of a Lattice.

3.1.1. Defination (Standard element): Let L be a lattice and s be an element of L. Then s is said to standard if for all $x, y, t \in L, t \wedge[x \wedge y) \vee(x \wedge s)]=(t \wedge x \wedge y) \vee(t \wedge x \wedge s)$

Obviously, any element of a distributive lattice is standard. Now suppose s is a standard element of a lattice $L \mathrm{c}$.f Introduction, then for all
$x, y, t \in L, t \wedge[x \wedge y) \vee(x \wedge s)]=t \wedge[x \wedge(y \vee s)]=(t \wedge x) \wedge(y \vee s)=(t \wedge x \wedge y) \vee(t \wedge x \wedge s)$.
This and a part of following proposition show that the two concepts coincide in a lattice.

Proposition 3.1.2:

The following two conditions on an arbitrary element s of a lattice L are equivalent.
(i) For any $x, y \in L, x \wedge(y \wedge s)=(x \wedge y) \vee(x \wedge s)$ whenever $y \vee s$ exists.
(ii) (a) if $x \vee s$ and $y \vee s$ exist for any $x, y \in L$ Then $(\because \wedge y) \vee s$ exists and $(x \wedge y) \vee x=(x \vee s) \wedge(y \vee s)$.
(b) For any $x, y \in L$ for which $x \vee s$ and $y \vee s$ exist $x \wedge s \geq y \wedge s$ and $x \vee s \geq y \vee s$ imply $x \geq y$.

Moreover coth (i) and (ii) are necessary for L to be standaed but are not sufficient.
Proof: (i) inplies (ii) suppose $x, y \in L$ are such that $x \vee s$ and $y \vee s$ exist. Then $(x \wedge y) \vee s$ exists because of the upper bound property of L. Due to (i)
$(x \vee s) \wedge(y \vee s)=[(x \vee s) \wedge y] \vee[(x \vee s) \wedge s]=(x \wedge y) \vee(s \wedge y) \vee s=(x \wedge y) \vee s$.
Also if $x \wedge s \geq y \wedge s$ and $x \vee s \geq y \vee s$, then
$X=x \wedge(x \vee s) \geq x \vee((y \vee s)=(x \wedge y) \vee(x \wedge s)$
by (i) $\geq(x \wedge y) \vee(y \wedge s)=y \vee(x \vee s) \geq y \wedge(y \vee s)=y$
(ii) implies (i) suppose $x, y \in L$ and $y \vee s$ exists.

Let $P=x \wedge(y \vee s)$ and $q=(x \wedge y) \vee(x \wedge s)$.
Now $p \wedge s=x \wedge s \leq q=(x \wedge y) \vee(x \wedge s) \leq x \wedge(y \vee s)=p$.

Hence $p \wedge s \leq q \wedge s \leq p \wedge s$.
That is $p \wedge s=q \wedge s$. Observe that as $p, s \leq y \vee s, p \vee s$ exists and since
$p=p \wedge(y \vee s), p \vee s=[p \wedge(y \vee s)] \vee s$
$=(p \vee s) \wedge(y \vee s)$ by (ii) $(\mathrm{a})=(p \wedge y) \vee s(b y(i i)(a))=(x \wedge y) \vee s$
$=(x \wedge y) \vee(x \wedge s) \vee s=q \vee s$. Then by (ii) (b),
$p=q$, that is (i) holds.
Now suppose S is standard in $L, x, y \in L$ and $y \vee s$ exists, then letting $y \vee s=r$.
We obtain $x \wedge(y \vee s)=x \wedge[(r \wedge y) \vee(r \wedge s)]=(x \wedge r \wedge y) \vee(x \wedge r \wedge s)=(x \wedge y) \vee(x \wedge s)$ as S is standard thus (i) and (ii) holds.

Finally, consider the lattice L in Figure 3.2. Here for all $x, y \in L$ the condition (i) holds but $\mathrm{d} \wedge[(c \wedge a) \vee(c \wedge s)]>(d \wedge c \wedge a) \vee(d \wedge c \wedge s)$

Figure 3.2
On many occasions we find that a long computation is required to prove that a given binary relation is congruence. Such computations are after facilitated by the following useful Lemma which is due to Cornish and Noor [4.lemma 2.3]. This is an extension of a characterization of lattice congruence. e.f

Gratzer [20 lemma 8,p-24] and also Gratzer and schimdt [15] to lattice.

Lemma 3.1.3: A reflexive symmetric binary relation θ on a lattice L is a congruence if and only if, for any $x, y, z, t \in L$,
(i) $x \equiv y(\theta)$ if and only if $x \wedge y=x(\theta)$ and $x \wedge y=y(\theta)$
(ii) $x \leq y \leq z, x \equiv y(\theta)$ and $y \equiv z(\theta)$ imply $x \equiv z(\theta)$
(iii) $x \leq y$ and $x \equiv y(\theta)$ imply that $x \wedge y \equiv y \wedge t(\theta)$ and
$x \vee t \equiv y \vee t(\theta)$ whenever $x \vee y$ and $y \vee t$ exist
We now proceed to characterization of a standard element. The following theorem is a characterization of a standard element in a lattice, which is due to Greatzer and Schmidt [17] The following conditions upon an element s of the lattice L are equivalent.
(i) s is a standard element.
(ii) The relation θ, defined by $X \equiv y(\theta)$ if and only if
$(x \wedge y) \vee s=x \vee y$, for some $s_{1} \leq s$ is a congruence relation.
(iii) For each ideal $K,(s] \vee k=\left\{s_{1} \vee k: s_{1} \leq s, k \in K\right\}$
(iv) (s$]$ is a standard element of the ideal lattice of L.

Theorem3.1.4: For an element s of a lattice L.
The following conditions are hold.
(i) s is a standard element.
(ii) The binary relation θ, which is defined by $x \equiv y(\theta)$
if and only if $X=(x \wedge y) \vee(x \wedge s)$ and $y=(x \wedge y) \vee(y \wedge s)$, is a congruence relation.
(iii) The binary relation ϕ which is defined by $x \equiv y(\phi)$ if and only if
$(x \wedge t) \vee(t \wedge s)=(y \wedge t) \vee(y \wedge s)$ for all $t \in L$ is a congruence relation.
(iv) For each ideal $k,(\mathrm{~s}] \mathrm{k}=\{\mathrm{s} \mathrm{k}: \mathrm{s} \mathrm{s}, \mathrm{k}$ and s k exists $\}$
(v) $(s]$ is a standard element of the ideal lattice of L.

Moreover θ and ϕ of (ii) and (iii) respectively represent the some congruence $\vee i z$. θ_{s}. The smallest congruence of L having (s] as congruence class.

Proof: (i) implies (ii) Let θ be the binary relation, such that $x \equiv y(\theta)$ if and only if $x=(x \wedge y) \vee(x \wedge s)$ and $y=(x \wedge y) \vee(y \wedge s)$ clearly, θ is reflexive and symmetric. Now $x \equiv y(\theta)$ implies
$x=(x \wedge y) \vee(x \wedge s)=x \wedge(x \wedge y) \vee(x \wedge s)$. Also
$x \wedge y=(x \wedge(x \wedge y)) \vee((x \wedge y) \wedge s)$ and so $x \equiv x \wedge y(\theta)$
similarly $y \equiv x \wedge y(\theta)$ conversely $x \wedge y \equiv x(\theta)$ and
$x \wedge y \equiv y(\theta)$. Certainly imply $x \equiv y(\theta)$.
Suppose $x \leq y \leq z$ and $x \equiv y(\theta) ; y \equiv z(\theta)$.
Then $z=y \vee(z \wedge s)$ and $y=x \vee(y \wedge s)$. So $z=x \vee(y \wedge s) \vee(z \wedge s)$
$=x \vee(z \wedge s)$. And it follows that $x \equiv z(\theta)$.
Now let $x \leq y, x \equiv y(\theta)$ and $x \vee t, y \vee t$ exist for some
$t \in L$. Then $y \vee t=(x \vee(y \wedge s)) \vee t=(x \vee t) \vee(y \wedge s)$; that
is $y \vee t=(x \vee t) \vee((y \vee t) \vee s)$, which implies $x \vee t \equiv y \vee t(\theta)$.
Also for any $r \in L, r \wedge y=r \wedge((x \wedge y) \vee(y \wedge s))=(r \wedge x \wedge y) \vee(r \wedge y \wedge s)$
$=(r \wedge x) \vee(r \wedge y \wedge s)$. And so $r \wedge y=r \wedge x(\theta)$. Hence by 3.1.3
θ is a congruence relation.
(ii) implies (iii) suppose $x \equiv y(\theta)$ since θ is a congruence relation, $x \wedge t=y \wedge t(\theta)$ for any $t \in L$. Then $x \wedge t=(x \wedge y \wedge t) \vee(x \wedge t \wedge s)$
and $y \wedge t=(x \wedge y \wedge t) \vee(y \wedge t \wedge s)$ and hence

$$
(x \wedge t) \vee(t \wedge s)=(x \wedge y \wedge t) \vee(t \wedge s)=(y \wedge t) \vee(t \wedge s)
$$

This implies that $x \equiv y(\phi)$.

Conversely. Let $x \equiv y(\phi)$.
Then $(x \wedge t) \vee(t \wedge s)=(y \wedge t) \vee(t \wedge s)$, for all $t \in L$
By letting $t=x$ and $t=y$, we obtain $x=(x \wedge y) \vee(x \wedge s)$.
And $y=(x \wedge y) \vee(y \wedge s)$ respectively. Hence $x=y(\theta)$.
This implies that θ and ϕ are the one and the some congruence (iii) implies (iv). Then $T=\left\{s_{1} \vee k: S_{1} \leq S, k \in K\right.$ and $\mathrm{s} \in \mathrm{K}$ exist $\}$ is clearly closed under existent finite suprema.
Suppose $x \leq s_{1} \vee k$ with $s_{1} \leq s$ and $\mathrm{k} \in \mathrm{K}$.
Clearly, $s_{1} \vee K \equiv K(\phi)$ and so $x=x \wedge\left(s_{1} \vee k\right) \equiv x \wedge k(\phi)$.
Hence for all $t \in L,(x \wedge t) \vee(t \wedge s)=(x \wedge k \wedge t) \vee(t \wedge s)$.
Choosing $t=x$, we obtain $x=(x \wedge k) \vee(x \wedge s)$ and so $x \in T$.
Thus T is the ideal of L and it is clearly the supremum of (s] and K .
(iv) Implies (v).Let J and K be two ideals on L and

Suppose $x \in j \cap((s)] \vee k)$. Then $x \in J$ and $x=s_{1} \vee k$ for some
$s_{1} \leq s$ And $k \in K$. So $x=\left(x \wedge s_{1}\right) \vee(x \wedge k)$ and thus $\left.x \in(J \cap(s)]\right) \vee(\mathrm{J} \cap \mathrm{k})$.
Consequently $J \cap((s] \vee k)=J \cap(s] \vee(J \cap k)$, which implies
that (s$]$ is standard in the ideal lattice of L
(v) implies (i) is trivial.

The last part is quite clear from the proof
of (ii) implies (iii) and of preliminaries
In a lattice L an element n is called neutral if for any $t, x, y \in L$.
(i) $t \wedge((x \wedge y) \wedge(x \wedge n))=(t \wedge x \wedge y) \vee(t \wedge x \wedge n)$ i.e., n is standard, and
(ii) $\mathrm{n} \wedge((\mathrm{t} \wedge \mathrm{x}) \vee(\mathrm{t} \wedge \mathrm{y}))=(\mathrm{n} \wedge \mathrm{t} \wedge \mathrm{x}) \vee(\mathrm{n} \wedge \mathrm{t} \wedge \mathrm{y})$.

Notice that a lattice is distributive if and only if each of its elements is neutral.

Also we already mentioned in the introduction that an element n in lattice L is neutral if and only if for all $x, y \in L, x \wedge(y \vee n)=(x \wedge y) \vee(x \wedge n)$ and $n \wedge(x \vee y)=(n \wedge x) \vee(x \wedge y)$

The following lemma shows that the two concepts coincide in a lattice.
Lemma 3.1.5: Let a be an element of a lattice L. The following conditions are equivalent
(i) For all $t, x, y \in L, a \wedge((t \vee x) \vee(t \wedge y))=(a \wedge t \wedge x) \vee(a \wedge t \wedge y)$.
(ii) For all $x, y \in L$ for which $x \vee y$ exists, $a \wedge(x \vee y)=(a \wedge x) \vee(a \wedge y)$.
(iii) For all ideals J and K of $L(a] \cap(j \vee k)=((a] \cap j) \vee(a] \cap k)$.

Proof: When $x \vee y$ exists put $t=x \vee y$ in (i) to obtain (ii)
(ii) implies (iii). Let $x \in(a] \cap(j \vee k)$.

By the property of the supremum and infimum of the ideals $x \leq a$ and $x \in L_{m}$ for
$m=0,1,2 \ldots \ldots \ldots .$. when , $L_{0}=J \cup K$,
$\mathrm{L}_{\mathrm{m}}=\left\{\mathrm{t} \leq \mathrm{cd} \mathrm{d} ; \mathrm{c} \vee \mathrm{d}\right.$ exists and $\left.\mathrm{c}, \mathrm{d} \in \mathrm{L}_{\mathrm{m}-1}\right\}$.
Suppose $x \in L_{0}$. Then $x \in(a] \cap J$, or $x \in(a] \cap k$ and so $x \in((a] \cap J) \vee((a] \cap k)$.
Now we will use the induction, suppose $y \in L_{m-1}$, and $y \leq a$ implies that,

$$
y \in((a] \cap J) \vee((d] \cap k) .
$$

Since $x \in L_{m}, x \leq c \vee d$ for suitable $c, d \in L_{m-1}$.
Then $x \leq a \wedge(c \vee d)=(a \wedge c) \vee(a \wedge d)$. But $a \wedge c, a \wedge d \leq a$ and both belong to L_{m-1}.
Thus $x \in((a] \cap J) \vee((a] \cap k)$.
The reverse inclusion is obvious.
(iii) implies (i) is trivial

The following result gives a characterization of a neutral element of a lattice which is immediate consequence of above lemma.

Theorem 3.1.6: An element n of a lattice L is neutral if and only if $(\mathrm{n}]$ in neutral in the lattice of ideals if L

Theorem 3.1.7: Suppose n is an element of a lattice L. Such that (i) for all $x, y \in L$ for which $x \vee y$ exists, $n \wedge(x \vee y)=(n \wedge x) \vee(n \wedge y)$. And (ii) for any $x, y \in L$ for which $y \vee n$ exists $x \wedge(y \vee n)=(x \wedge y) \vee(x \wedge n)$. One may ask the question: `Is n with the properties (1) and (ii) a neutral element of L " Figure 2.3 show that, that answer is "No",

Figure 3.3
Notice that here n has both of the above properties. Yet
$b \wedge((c \wedge a) \vee(c \wedge n))>(b \wedge c \wedge a) \vee(b \wedge c \wedge n)$.
Thus n is not even a standard element

3.2 Traces

Let s be an element in a lattice L. If t is any fixed element of L, then by the "trace of s in (t]'" or simply "the trace of s ". We mean the element $t \wedge s$ of (t$]$.

Following proposition give characterizations of standard and neutral elements of a lattice which are due to [4]. Thus, in a lattice, these elements are trace invariant,

Proposition 3.2.1: An element s of a lattice L is standard if and only it its trace is standard in $(t]$, for each $t \in L$.

Proof: Suppose s is standard in L, let, $a, b, c \in(t]$. Then
$a \wedge[b \wedge c) \vee(b \wedge(t \wedge s)]=a \wedge[(b \wedge c) \vee(b \wedge s)]=(a \wedge b \wedge c) \vee(a \wedge b \wedge s)$
$=(a \wedge b \wedge c) \vee(a \wedge b \wedge(t \wedge s)$. Hence the trace of s is always standard.
Conversely, suppose the trace of S is standard in (t$]$ for each $t \in L$
Let $x, y, z, \in L$ and
consider $x \wedge[(y \wedge z) \vee(y \wedge s)]$.
As $y \wedge s$ is standard in (y]
$x \wedge[(y \wedge z) \vee(y \wedge s)]=(x \wedge y) \wedge[(y \wedge z) \vee(y \wedge s)]=(x \wedge y \wedge z) \vee(x \wedge y \wedge s)$. And s is standard in L

Proposition 3.2.2: An element n of a lattice L is neutral if and only if its trace is neutral in (t], for all $t \in L$.

Proof: Suppose n is neutral in L. Then by 3.2.1 the trace of n is standard in (t$]$ for all $t \in L$ suppose $a, b, c \in(t]$.

Then $(t \wedge n) \wedge[(a \wedge b) \vee(b \wedge c)]=t \wedge[(a \wedge b \wedge n) \vee(b \wedge c \wedge n)]$ $=t \wedge[a \wedge b \wedge t \wedge n) \vee(b \wedge c \wedge t \wedge n)]=((t \wedge n) \wedge(a \wedge b)) \vee((t \wedge n) \wedge b \wedge c)$.

Thus $t \wedge n$ is neutral in (t], for all $t \in L$.
Conversely, suppose $t \wedge n$ is neutral in (t], for al $t \in L$ (by 3.2.1) n is standerd in L.

Let $x, y, z \in L$. Then
$n \wedge[(x \wedge y) \vee(y \wedge z)]=(y \wedge n) \wedge[(x \wedge y) \vee(y \wedge z)]=(x \wedge y \wedge n) \vee(y \wedge z \wedge n)$,
As $y \wedge n$ is neutral in (y]. Thus n is neutral in L

Corollary 3.2.3: An element n of a lattice L is neutral if and only if the sublattice generated by $t \wedge n, t \wedge x$ and $t \wedge y$ are distributive for all t, x and y

We tried to give definition of a distributive element for a lattice. But the concept does not seem appropriate in the context. From figure 3.1, it is fair enough to say that even for lattices, the notion of a distributive element is not trace invariant .From the idea of traces. Cornish and Noor [4] have introduced a new type of element, we start with the following proposition which is due to [4].

Proposition 3.2.4: Let L be a lattice and $s \in L$. Then the following condition is equivalent
(i) For any $x, y, t \in L,(t \wedge x \wedge y) \vee(t \wedge s)=[(t \wedge x) \vee(t \wedge s)] \wedge[(t \wedge y) \vee(t \wedge s)]$.
(ii) For any $x, y, t \in L, \quad t \wedge((x \wedge y) \vee(x \wedge s)) \vee(x \wedge s)=(t \wedge x \wedge y) \vee(x \wedge s)$.

Proof: (i) implies (ii) suppose (i) holds. Choose any t, x, y of L and let
$p=(x \wedge y) \vee(x \wedge s)$. Then $p \wedge x=p$ and so $(t \wedge[(x \wedge y) \vee(x \wedge s)] \vee(x \wedge s)$
$=(\mathrm{t} \wedge \mathrm{p}) \vee(\mathrm{x} \wedge \mathrm{s})=(\mathrm{x} \wedge \mathrm{t} \wedge \mathrm{p}) \vee(\mathrm{x} \wedge \mathrm{s})=[(x \wedge t) \vee(x \wedge s)] \wedge[(x \wedge p) \vee(x \wedge s)][$ by $(\mathrm{i}) ;$ here
x, t and P play the roles of t, x and y respectively.
In (i)) $\Rightarrow[(x \wedge t) \vee(x \wedge s)] \wedge[(x \wedge y) \vee(x \wedge s)]=(x \wedge t \wedge y) \vee(x \wedge s)$ by a second application of (i) where x, t and y play the roles of x, t and y respectively in (i)
(ii) implies (i) suppose (ii) satisfies . Then for any
$t, x, y \in L,[(t \wedge x) \vee(t \wedge s)] \wedge[(t \wedge y) \vee(t \wedge s)]=([(t \wedge x) \vee(t \wedge s)] \wedge(t \wedge y) \vee(t \wedge s)]) \vee(t \wedge s)$
$=([t \wedge y) \vee(t \wedge s)] \wedge(t \wedge y) \vee(t \wedge s)$ (hy (ii). Where $(t \wedge x) \vee(t \wedge s), t$ and y play the roles of t, x and y respectively in (iii).

Hence, $[(t \wedge x) \vee(t \wedge s)] \wedge[(t \wedge y) \vee(t \wedge s)]=([(t \wedge x) \vee(t \wedge s)] \wedge(t \wedge y) \vee(t \wedge s)$
$=(y \wedge[(t \wedge x) \vee(t \wedge s)]) \vee(t \wedge s)=(y \wedge t \wedge x) \vee(t \wedge s)$ by a second application of (ii). Where y, t, x play the role of t, x, y respectively of (ii)

Proposition 3.2.5: Suppose L is a lattice and $s \in K$ holds the equivalent conditions of the above proposition.

Let $a, b \in L$. Put $t=a \vee b \vee s$ to obtain $(a \wedge b) \vee s=(t \wedge a \wedge b) \vee(t \wedge s)=[(t \wedge a) \vee(t \wedge s)] \wedge[(t \wedge b) \vee(t \wedge s)=(a \vee s) \wedge(b \vee s)$. Hence s is a distributive element of L. We have proved.

Proposition: If an element of a lattice satisfies the equivalent conditions of 2.1.10. Then it is distributive then it distributive

Proposition 3.2.6: An element s of a lattice, which satisfies the equivalent conditions of prop. 3.1.10 is said to be strongly distributive. Clearly any standard element of lattice is strongly distributive.

Figure 3.1 produce (i) a distributive element in a lattice which is not strongly distributive and (ii) a strongly distributive element which is not standard.

Notice that in figure 3.1 b is distributive and a is strongly distributive. Observe that
$(a \wedge t \wedge h) \vee(a \wedge b)<[(a \wedge t) \vee(a \wedge b)] \wedge[(a \wedge h) \vee(a \wedge b)]$.
Which implies b is not strongly distributive. On the other hand $b \wedge(a \vee c)>(b \wedge a) \vee(b \wedge c)$, which implies that a is not standard.

Thus even for lattice, the notion of a strongly distributive element is strictly between the concepts of distributive and standard element.

The following proposition gives a sufficient condition for a distributive element to be strongly distributive

Proposition 3.2.7: Any distributive atom of a lattice L with 0 is strongly distributive.
Proof: Suppose s is a distributive atom. For any $t \in L$.
Either $t \wedge s=0$ or $t \wedge s=s$. if $t \wedge s=0$ then obviously,
$(t \wedge x \wedge y) \vee(t \wedge s)=[(t \wedge x) \vee(t \wedge s)] \wedge[(t \wedge y) \vee(t \wedge s)]$. For any $x, y \in L$
If $t \wedge s=s$, then $(t \wedge x \wedge y) \vee(t \wedge s)=(t \wedge x \wedge y) \vee s=[(t \wedge x) \vee s] \wedge[(t \wedge y) \vee s]$
$=[(t \wedge x) \vee(t \wedge s)] \wedge[(t \wedge y) \vee(t \wedge s)$. As s is distributive.
An illustration of 3.2.7 considers the element c of the pentagonal lattice
$\{o, a, b, c, 1: o \angle b \angle a \angle 1: c \vee a=c \vee b=1: c \wedge a=c \wedge b=0\}$. Here c is both distributive and an atom. Therefore, it is strongly distributive.

We conclude this section with the following characterization of a strongly distributive element. We omit the proof as it is immediate from its definition.

In fact, one might prefer this as the definition of a strongly distributive element. If is more easily to understood than the original definition

Proposition 3.2.8: For an element s of a lattice L the following condition are equivalent.
(i) s is strongly distributive.
(ii) Its traces distributive in (t] for all $t \in L$.
(iii) Its trace is strongly distributive in (t$]$ for all $t \in L$

3.3. Some properties of standard and neutral elements.

From [4] we know that the standard (neutral) elements of a lattice from a distributive sub lattice. Moreover, the map $\mathrm{S} \rightarrow \theta_{\mathrm{s}}$ is a lattice embedding of this sublattice into the distributive lattice of all congruence of L [4] also exhibited two examples to show that the strongly distributive elements may not be closed under infimum and supremum.

We are now about to generalize an interesting result of Gratzer and Schmidt [15. Theorem 5]; for any two strandard elements s_{1} and s_{2} of a lattice L, the sublattice generated s_{1}, s_{2} and x is distributive for all $x \in L$.

Proposition 3.3.1: Suppose s_{1} and s_{2} are standard elements of a lattice L. Then the sub lattice generated by s_{1}, s_{2} and x is distributive for all $x \in L$.

Proof: Let $x \in L$. Suppose L_{1} is the sublattice generated by x, s_{1} and s_{2}. As s_{1} and s_{2} are standard in L, thay are standard in L_{1} by 2.1.5. $\left[s_{1}\right]_{\lambda}$ and $\left[s_{2}\right]_{\lambda}$ (principal ideals in A_{1}) are standard in the ideal lattice $I\left(L_{1}\right)$ of L_{1}. Hence by Gratzer and Schmidt [15] Theorem 5], the sub iattice p of $I\left(L_{1}\right)$ generated by $(\mathrm{x}]_{\lambda},\left(s_{1}\right]_{\lambda}$ and $\left(s_{2}\right]_{\lambda}$ is distributive. But as L_{1} is generated by $\mathrm{x}_{1} \mathrm{~s}_{1}$ and $s_{2} I\left(L_{1}\right)=P$. Thus, $I\left(L_{1}\right)$ is distributive and so, L_{1} is distributive.

We already know from the introduction that an element n in a lattice L is neutral if and only if the sublattice generated by x, y and n is distributive for all $x, y \in L$. See also on 3.2.3 unfortunately, things are not the same in near lattices

Theorem3.3.2: Let n be a neutral element of a lattice L. Then sublattice generated by x, y and n is distributive for all $x, y \in L$. But the converse is not necessarily true.

Proof: We omit the proof of lirst part as it is easily seen that this can be done in exactly the same way in which 3.3.1 was proved. To prove the converse we consider the lattice L of figure 3.4. Here, all the sub lattices generated by x, y and n for all $x, y \in L$ are distributive, yet $b \wedge[(t \wedge d) \vee(f \wedge n)]>(b \wedge f \wedge d) \vee(b \wedge f \wedge n)$.

Thus n is not even a standard elements of $L \square$

-.

Figure 3.4
Now we prove the following results which generalize some of the results of $\{15]$.
Theorem 3.3.3: Let s and n be elements of a lattice L such that n is neutral, $s \leq n$ and s is standard in (n].

Then s is a standard element of $L \square$

Proof: Let t, x, y be the elements of L.
Then $[(x \wedge y) \vee(n \vee s)] \wedge[(x \wedge y) \vee(x \wedge n)]$

$$
\begin{aligned}
& =([x \wedge y) \vee(n \wedge s)] \wedge(x \wedge y)) \vee(((x \wedge y) \vee(n \wedge s)) \wedge(x \wedge n)) \\
& =(x \wedge y) \vee(x \wedge n) \wedge[(x \wedge y \wedge n) \vee(n \wedge s)))]) \text { as } n \text { is neutral. } \\
& =(x \wedge y) \vee((x \wedge y \wedge n) \vee(x \wedge n \wedge s) \text { as } s \text { in standard in }(n]
\end{aligned}
$$

$$
\begin{aligned}
& =(x \wedge y) \vee(x \wedge n \wedge s) \\
& =(x \wedge y) \vee(x \wedge s) .
\end{aligned}
$$

Hence using the neutrality of n

$$
\begin{aligned}
& t \wedge[(x \wedge y) \vee(x \wedge s)] \\
& =t \wedge[(x \wedge y) \vee(n \wedge s)] \wedge((x \wedge y) \vee(x \wedge n) \\
& =((x \wedge y) \vee(n \wedge s)) \wedge t \wedge((x \wedge y) \vee(x \wedge n)) \\
& =((x \wedge y) \vee(n \wedge s)) \wedge((t \wedge x \wedge y) \vee(t \wedge x \wedge n)) \\
& =((x \wedge y) \vee(n \wedge s)) \wedge(t \wedge x \wedge y) \vee((x \wedge y) \vee(n \wedge s)) \wedge(t \wedge x \wedge n)
\end{aligned}
$$

As n is neutral.

$$
\begin{aligned}
& =(t \wedge x \wedge n) \vee[(t \wedge x) \wedge((x \wedge y \wedge n) \vee(s \wedge n))] \\
& =(t \wedge x \wedge y) \vee(t \wedge x \wedge n) \wedge((x \wedge y \wedge n) \vee(s \wedge n)) \\
& =(t \wedge x \wedge y) \vee(t \wedge x \wedge y \wedge n) \vee(t \wedge x \wedge s \wedge n)
\end{aligned}
$$

Since s is standard in ($n]$

$$
=(t \wedge x \wedge y) \vee(t \wedge x \wedge s) .
$$

So s is standard element in L
Theorem 3.3.4: Let s be a neutral element of $n]$ and n is neutral in L. Then s is a neutral element of L.

Proof: By the previous theorem s is standard in L.
To show that s is neutral, we need only to show that
$s \wedge[(x \wedge y) \vee(x \wedge t)]=(a \wedge x \wedge y) \vee(s \wedge x \wedge t)$ for all $x, y, t \in L$
Now, $s \wedge[(x \wedge y) \vee(x \wedge t)]=(s \wedge n) \wedge((x \wedge y) \vee(x \wedge t))$
$=s \wedge(x \wedge y \wedge n) \vee(x \wedge t \wedge n)$ As n is neutral
$=(s \wedge x \wedge y \wedge n) \vee(s \wedge x \wedge t \wedge n)$ As s is neutral in ($n]$
$=(s \wedge x \wedge y) \vee(s \wedge x \wedge t)$.
The proof is thus complete

Theorem 3.3.5: An element n of a lattice L is neutral if and only if for all $t, x, y \in L$ $(t \wedge n \wedge x) \vee(t \wedge n \wedge y) \vee(t \wedge x \wedge y)=\{(t \vee n) \vee(t \wedge x)\} \wedge\{(t \wedge n) \vee(t \wedge y)\} \wedge\{(t \wedge x) \vee(t \wedge y)\}$.

Proof: When n is neutral its trace $t \wedge n$ is neutral in the lattice $(\mathrm{t}]$ and so the equality holds as $t \wedge n, t \wedge x$ and $t \wedge y$ then generated a distributive sub lattice of $(\mathrm{t}]$.

Conversely, the equality says that $t \wedge n$ is neutral in the lattice (t]. Then the proposition 3.2.2 does the rest.

We conclude here with two observations about strongly distributive elements

CHAPTER FOUR

4.1 Prime ideals of a lattice.

Introduction: Prime ideal and pseudo complemented of a lattice have been studied by several authors including [32]. In this chapter we discuss prime ideals, minimal prime ideals and minimal prime n-ideals of a lattcies. In section one of these chapters we give some basic properties of prime ideals which will be needed in the next part.

In section two of this chapter we have given characterization of minimal prime ideals of a pseudocomplemented distributive lattice. Then we have show that every pseudocomplemented lattice is generalized stone

In section three we discuse the minimal prime n-ideals.
In section four of this chapter we have discussed lattice whose principal n-ideal form normal lattice.

Definition: (Dual ideal): A non empty subset I of a lattice L is called dual ideal of L if (1) $x, y \in I$ implies that $x \wedge y \in I$
(2) $d \in I, x \in L$ implies that $d \wedge x \in I$

Let $I=\{1,2,5,10\}$ be the lattice under divisibility. Then $\{10\},\{5,10\}\{2,10$,$\} are all dual$ ideals of lattice L.

Figure 4.1

An ideal $/$ of L is proper if $/=1$.

Figure 4.2

Figure 4.3

A proper ideal P of a lattice L is called a prime ideal if for any $x, y \in L$ and $\mathrm{x} \wedge \mathrm{y} \in$ pimplies either $x \in P$ or $y \in P$. Let $L=\{1,2,3,4,6,12\}$ of factors 12 under divisibility forms a lattice then $\{1,2,4\}$ be a prime ideal of L. But in the lattice $\{1,2,5$, $10\}$ under divisibility $\{1\}$ in not a prime ideal because $2 \wedge 5=1\{1\}$. But $2,5\{1\}$.

Theorem 4.1.1: Every ideal of a lattice L is prime ideal if and only if the lattice L is chain.

Proof: Let L be a chain, let P be any proper ideal of L. If $a \wedge b \in P$ then as a, b are in a chain, they are comparable. Let $a \leq b$, then $a \wedge b=a$. Thus, $a \wedge b \in P \Rightarrow a \in I \Rightarrow P$ is prime.

Conversely, let every ideal in P be prime. To show that L in a chain, let $a, b \in L$ be any elements. Let $P=\{x \in L / x \leq a \wedge b\}$ then P is easily seen to be an ideal of L. Thus, P is a prime ideal.

Now $a \wedge b \in I, P$ is prime, thus $a \in P$ or $b \in P \Rightarrow a \leq a \wedge b \Rightarrow$ or $b \leq a \wedge b$
$\Rightarrow a \wedge b \leq a \leq a \wedge b$ or $\Rightarrow a=a \wedge b$ or $b=a \wedge b$
$\Rightarrow a \leq b \Rightarrow$ or $\quad b \leq a . L$ is a chain
Corollary 4.1.2: Let L be a distributive lattice. Let I be an ideal of L and let $a \in L$ and $a \in I$. Then there is a prime ideal P such that $P \supseteq I$ and $a \notin P$.

Theorem 4.1.3: Every ideal I of a distributive lattice is the intersection of all prime ideals containing it.

Proof: Let $I_{1}=\bigcap\{P / P \supseteq I ; P$ is a prime ideal of $L\}$, if $I \neq I_{1}$ then there is an element $a \in I_{1}-I$ and so by Corollary 4.1.2. There in a prime ideal P, with $P \supseteq I$ and $a \notin P$. But then $a \notin P \supseteq I_{1}$ and is a contradiction.

Theorem 4.1.4: Let P be a prime ideal of a lattice L, then $L-P$ is a dual prime ideal.
Proof: Since P is a prime ideal, therefore P is not empty.
$\therefore L-P$ is a proper subset of L.
Let $x, y \in L-P$. Then $x, y \in L, x, y \notin P$
$\Rightarrow x \wedge y \in L, x \wedge y \notin P$ (as $x \wedge y \in \Rightarrow x \in P$ or $y \in P$ as P is prime) $\Rightarrow x \wedge y \in L-P$.
Again, let $x \in L-P, I \in L$. Then $x \in L, x \notin P, I \in L \Rightarrow x \vee I \in L, x \notin P \Rightarrow x \vee I \in L, x \vee I \notin P$ (as $x \vee I \in P \Rightarrow x \in P$ as $x \leq x \vee I$). Thus, $x \vee I \in L-P$ i.e $L-P$ is dual ideal.

Now let $x \vee y \in L-P$, then $x \vee y \in L, x \vee y \notin P$
$\Rightarrow x, y \in L, x \notin P$ or $y \notin P$ (as $x, y \in P \Rightarrow x \vee y \in P$)
$\Rightarrow x \in L-P$ or $y \in L-P$
i.e., $L-P$ is a dual prime ideal

4.2 Minimal prime ideal.

Def (Minimal prime ideal): A prime ideal P of a lattice L is called minimal if there does not exists a prime ideal Q such that $Q \subset P$.

The following lemma is an extension of a fundamental result in lattice theory e, f J.E. Kist [23]. Though our proof is similar to their proof, we include the proof for the convenience of the reader.

Theorem4.2.1: Let L be a lattice with 0 . Then every prime ideal contains a minimal prime ideal.

Proof: Let P be a prime ideal of L and let R be the set of all prime ideals Q contained in P. Then R is nonvoid, since $P \in R$ If C is a chain in R and $Q=\cap(x: x \in C)$ then Q is nonvoid, since $0 \in Q$ and Q is an ideal ; infact Q is prime. In deed if $r \wedge s \in Q$ for some $r, s \in L$. Then $r \wedge s \in X$, for all $x \in C$, since X is prime, either $r \in X$ or $s \in X$. Thus, either $Q=\cap(X: r \in X)$ or $Q=\cap(X: s \in X)$.

Proving that either r or $s \in Q$.
Therefore, we can apply to R the dual form of Zorn's lemma to conclude the existence of minimal member of R

Theorem 4.2.2: Let L be a distributive lattice with 0 , the following conditions are equivalent.
(i) L is normal.
(ii) Each prime ideal of L contains a unique minimal prime ideal.
(iii) Each Prime filter of L is contained in a unique ultrafilter of L.
(iv) Any two distinct minimal prime ideals are comaximal.
(v) For all $x, y \in L, x \wedge y=0$ implies $(x]^{*} \vee(y]^{*}=L$.
(vi) $(x \wedge y]^{\prime}=(x]^{\prime} \vee(y]^{\prime}$ for all $x, y \in L$

Remark: Here $(x]^{*}$ we means relatively pseudo complement of $(x]$.

Dense set: $D(L)=\left\{a \in L: a^{*}=0\right\}, D(L)$ is called the dense set.

Theorem 4.2.3: Let L be a sectionally pseudo complemented distributive lattice and P be a prime ideal in L. Then the following conditions are equivalent
(i) P is minimal, (ii) $x \in P$ implies $(x]^{*} \notin P, \quad$ (iii) $x \in P$ implies $(x]^{*} \subseteq P$, (iv) $P \cap D(L)=\varphi$.

Remarks: Consider the following distributive lattice with 0 . Observe that in both L_{1} and $L_{2},(b]$ and (d] are distinct minimal prime ideals.

Figure- 4.4
Moreover, $(b] \vee(d]=S_{1}$ but $(b] \vee(d] \neq S_{2}$. Therefore, L_{1} is normal but L_{2} is not. Also observe that in $L_{2,},\{0, a, b, c, d\}$ is a prime ideal which contains two prime ideals $(b]$ and (d], and so L_{2} is not normal \square

Definition (Stone lattice): A distributive pseudo complemented lattice L is called a stone lattice if for each $a \in I, a^{*} \vee a^{*}=I$.

Figure - 4.5

Theorem 4.2.4: If L is a complete stone lattice, then ideal of L is also complete stone lattice.

Proof: Let $I^{*}=(0]$, where $a=\left(x^{*}: x \in L\right)$ and let $x \in I \cap I^{*}$, then $x \in I$ and $x \in I^{*}=(a]$ implies that $x \in I$ and $x \in A$ implies that $x \in I$ and $x \leq y^{*}$ for all $y \in I$ implies that $x \leq x^{*}$ implies that $x=x \wedge y^{*}=0$, implies that $I \wedge I^{*}=(0]$.

Let $I \wedge J$, choose any $j \in J$, then $i \wedge j=0$ for all $i \in I$, implies that $j \leq i^{*} i \in I \mathrm{j} \leq \mathrm{i}^{*}$, implies that $j \leq \wedge\left(I^{*}: i \in I\right)$ implies that $j \leq a$ implies that $j \in I^{*}$ implies that $J \leq I^{*}$ implies that I^{*} is a pseudocomplemented.

Since $0 \in L$, so ideal of L is complete. Finally, we have to show that $I^{*} \vee I^{* *}=L$.
Now $I^{*} \vee I^{* *}=(a] \vee(a]^{*}=(a]^{* *} \vee(a]^{*}$

$$
\begin{aligned}
& =\left(a^{*}\right] \vee\left(a^{*}\right] \\
& =\left(a^{*} \vee a\right] \\
& =L
\end{aligned}
$$

Hence ideal of L is a stone. Thus ideal of L is a complete stone lattice
Definition (Generalized stone lattice): A lattice L with O is called generalized stone lattice if $(x]^{*} \vee(x]^{* *}=L$ for each $x \in L$.

Theorem 4.2.5: A distributive lattice L with 0 is a generalized stone lattice if and only if each interval $[0, x], 0<x \in L$ is a stone lattice.

Proof: Let L with 0 be a generalized stone and let $P \in[0, x]$. Then $(P]^{*} \vee(P]^{* *}=L$.
So $x \in(P]^{*} \vee(P]^{* *}$ implies $x=r \vee s$ for some $r \in(P]^{*}, s \in(P]^{*}$. Now $r \in(P]^{*}$ implies $r \wedge p=0$ also $0<r<x$. Suppose $t \in[0, x]$ such that $t \wedge p=0$, then $t \in(P]^{*}$ implies $t \wedge s=0$. Therefore, $t \wedge x=t \wedge(r \vee s)=(t \wedge r) \vee(t \wedge s)=(t \wedge s) \vee 0=t \wedge r$ implies
$\mathrm{t}=t \wedge r$ implies $t \leq r$. So r is the relative pseudo complement of P in $[0, x]$, i.e. $r^{r}=P^{*}$ since $s \in(P]^{* *}$ and $r \in(P]^{*}$. So $s \wedge r=0$. Let $q \in[0, x]$. Such that $q \wedge r=0$. Then as $x=r \vee s$, so $q \wedge x=(q \wedge r) \vee(q \wedge s)$ implies $q=q \wedge s$ implies $q \leq s$. Hence, s is the relative pseudo complement of $r=p^{*}$ in $[0, x]$ i.e., $s=p^{* *}$ implies $x=r \vee s=p^{*} \vee p^{* *}$. Thus $[0, x]$ is a stone lattice.

Conversely, suppose $[0, x], 0<x \in L[0, \mathrm{x}]$. is a stone lattice. Let $p \in L$, then $p \wedge x \in[0, p]$. Since $[0, p]$ is a stone lattice, then $(p \wedge x)^{*} \vee(p \wedge x)^{*}=p$, where ($p \wedge x)^{*}$ is the relative pseudo complement of $p \wedge x$ in $[0, p]$.

Therefore, $P \in\left((p] \cap(p \wedge x]^{*} \vee\left((p] \cap(p \wedge x)^{*}\right.\right.$. So, we can take $p=r \vee s$, for $r \in(p \wedge x]^{*}, s \in(p \wedge x]^{*}$. Now, $r \in(p \wedge x]^{*}$ implies $r \wedge p \wedge x=0$ implies $r \wedge x=0$ implies $r \in(x]^{*}$ and $s \in(p \wedge x)^{* *}$. Now $p \wedge x \leq x$ implies $\left(p^{* *} x\right] \subseteq(x]^{* *}$, and so $s \in(x]^{*}$ Therefore, $p=r \vee s \in(x]^{*}(x]^{* *}$ and so, $L \subseteq(x]^{*} \vee(x]^{* *}$. But $(x]^{*} \vee(x]^{* *} \subseteq L$ is obvious. Hence $(x]^{*} \vee(x]^{*}=L$ and so L is generalization stone

Theorem 4.2.6: Let L be a distributive lattice with 0 . If L is generalized stone, then it is normal.

Proof: Let P and Q be two minimal prime ideals of L.
Then P, Q are unordered. Let $x \in P-Q$. Then $(x] \wedge(x]^{*}=(0] \subseteq Q$ implies $(x]^{*} \subseteq Q$.
Since P is minimal, so by Theorem 4. 2.3 above $(x]^{* *} \subseteq P$. Again as L is generalized stone, so $(x]^{*} \vee(x]^{* *}=L$

This implies $P \vee Q=L$, and so by Theorem 4.2.2, L is normal
Def (Co-maximal ideal): Two Ideals I and J of a lattice L are called Co-maximal if $I \vee J=L$

Theorem 4.2.7: A sectionally pseudocomplemented distributive lattice L is generalized stone if and only if any two minimal prime ideals are co-maximal.

Proof: Suppose L is generalized stone. So by theorem 4.2 .6 any two minimal prime ideals are co-maximal.

To prove the converse, let P, Q be two minimal prime ideals of L. We need to show that $[0, x]$ is stone, for each $x \in L$. Let $\mathrm{P}_{1} \mathrm{Q}_{1}$, be two minimal prime ideals in $[0, x]$.

We know if L_{1} is a sub lattice of a distributive lattice L and P_{1}, is minimal prime ideal in L_{1}, then there exists a minimal prime ideal P in L, such that $P_{1}=L_{1} \wedge P$.

So there exist minimal prime ideal P, Q in L such that $P_{1}=P \wedge[0, x], Q=Q \wedge[0, x]$.
Therefore, $P_{1} \vee Q_{1}=(P \cap[0, x] \vee(Q \cap[0, x]=[P \vee Q] \cap[0, x]=L \cap[0, x]=[0, x]$. Therefore, $[0, x]$ is stone. So by Theorem3. 2.5 above L is generalized stone \square

Theorem 4.2.8: Let L be a distributive with 0 and 1 for an ideal I of L.

We set $I^{*}=\{x: x \wedge i=0$ for all $i \in I\}$. Let P be a prime ideal of L. Then P is minimal prime ideal if and only if $x \in P$ implies that $(x]^{*} \subseteq P$.

Proof : By the definition of $I^{*},(x]^{*}=\{y: y \wedge x=0\}$ as $x^{*} \wedge x=0$ implies that $x^{*} \in(x]^{*}$ implies that $\left(x^{*}\right] \subseteq(x]^{*}$, again let $z \in(x]^{*}$, then $z \wedge x=0$ implies that $z \leq x^{*}$ implies that $z \in(x]^{*}$ implies that $(x]^{*} \subseteq\left(x^{*}\right]$ implies that $(x]^{*}=\left(x^{*}\right]$. Now suppose P be a minimal prime ideal and $x \in P$, then by $x^{*} \notin P$ implies $\left(x^{*}\right] \not \subset P$ implies $\left(x^{*}\right] \subseteq P$. Conversely, if for $x \in P,(x]^{*} \not \subset P$ and if possible, let P is not minimal then there exist a prime ideal Q such that $Q \subseteq p$. Let $x \in P-Q$.

Now $x^{*} \wedge x=0 \in Q$ implies that $x^{*} \in Q$ implies that $x \in P$ implies $\left(x^{*}\right] \subseteq P$ implies $(x]^{*} \subseteq P$ which is a contradiction. Hence the proof

Theorem 4.2.9: A prime ideal P of a stone algebra L is minimal if and only $P=(P \cap S(L))_{L}$.

Proof: Suppose P is minimal, let $a \in(P \cap S(L))_{l}$. Then $a \leq r$ for some $r \in(P \cap S(L))_{l}$ $\Rightarrow r \in P$ and $r \in S(L) \Rightarrow a \in P \Rightarrow r \in P$ and $r \in S(L)$ implies $r \in P$ implies $a \in P$.

Implies that $(P \cap S(L))_{L} \subseteq P$
Again let $a \in P$, since P is minimal so, $a^{* *} \in P \cap S(L)$, since $a \leq a^{*}$. So $a \in(P \cap S(L))_{l}$. implies that $P \leq(P \cap S(L))_{L}$

From (i) and (ii) we have $a \in(P \cap S(L))_{L}$.
Conversely let $P=(P \cap S(L))_{L}$ and $a \in P$ then $a \leq r$ for some $r \in P \cap S(L) \Rightarrow a^{*} \leq r^{* *}=r$ $\Rightarrow x^{* *} \in P$. Hence P is minimal

4.3 MINIMAL PRIME n-IDEALS

A prime n -ideal P is a minimal prime n -ideal belonging to n -ideal I if
(i) $\quad I \subseteq P$ and
(ii) There exists no prime n-ideal Q such that $Q \neq P$ and $I \subseteq Q \subseteq P$.

Thus a prime n-ideal P of a lattice L is minimal prime n-ideal if there exists no prime nideal Q such that $Q \neq P$ and $Q \subseteq P$. i.e., minimal prime n-ideal is a minimal prime n-ideal belonging to $\{n\}$

Definition (Medial): An element n of a lattice L is medial if $m(x, n, y)$ exists for all $x, y \in L$.

Since for the definition of a prime n -ideal of L, the medial property of n is essential, so any distribution about prime n -ideals of L we will always assume n as a medial element. We start this section with the following result which is a generalization of a well known result in lattice theory.

Theorem 4.3.1: Let L be lattice with medial element n . Then every prime n ideal contains a minimal prime n-ideal.

Proof: Let P be a prime n-ideal of L and let R be the set of all prime n-ideal Q contained in p. Then R is non-void, since $P \in R$. If C is a chain in R and $Q=\cap(x: x \in C)$, then Q is a non-empty as $n \in Q$ and Q is an n-ideal, in fact, Q is prime.

Indeed, if $m(a, n, b) \in Q$ for some $a, b \in L$, then $m(a, n, b) \in X$ for all $X \in C$. Since X is prime, either $a \in X$ or $b \in X$. Thus, either $Q=\cap(X: a \in X)$ or $Q=\cap(X: b \in X)$, proving that $a \in Q$ or $b \in Q$. Therefore, we can apply to R the dual form of zorns lemma to conclude the existence of a minimal member of R.

If L is a distributive lattice with $n \in L$, then we already know that $F_{n}(L)$ is a distributive lattice with $\{n\}$ as the smallest element. So we can talk on the sectionally
pseudocomplementeness of $F_{n}(L)$ is called sectionally pseudo- complementted if each interval $\left[\{n\},<a_{1}<\right.$ \qquad $\left.. a_{r}>n\right]$ is pseudo-complemented.

That is for $\{n\} \subseteq<b_{1}<$ \qquad $\left.. . b_{r}>n\right] \subseteq<a_{1}<$ \qquad $. a_{r}>n . \quad$ relative pseudocomplement $<b_{1}<$ \qquad $. b_{r}>n$ in $\left[\{n\},<a_{1}\right.$ \qquad $. a_{r}>n$ belongs to $F_{n}(L)$

Now we give a characterization of minimal prime n-ideals of a distributive lattice L, when $F_{n}(L)$ is seasonally pseudo complemented. To do this we establish the following theorems

Theorems 4.3.2: Let L be a distributive lattice and $n \in L$ be a medial element. Then for any $i, j \in I_{n}(L),(I \cap J)^{*} \cap I=J^{*} \cap I$.

Proof: Since $I \cap J \subseteq J$. So R H. S \subseteq L. H. S .

To prove the reverse inclusion, let $x \in L$. H. S Then $x \in I$ and $m(x, n, t)=n$ for all $t \in I \cap J$. Since $x \in I$, so $m(x, n, j) \in I \cap J$.

Thus $m(x, n, m(x, n, j))=n$.
But it can be easily seen that $m(x, n, m(x, n, j))=m(x, n, j)$. Thus implies $m(x, n, j)=n$ for all $i \in J$. Hence $x \in$ R.H.S and so L.H.S \subseteq R.H.S Thus $(I \cap J)^{*} \cap I=J^{*} \cap I$

Theoren 4.3.3: Suppose n is medial element of a lattice L. If $I \subseteq J, I, J \in I_{n}(L)$.
Then (i) $I^{*}=I^{*} \cap J$ and (ii) $I^{* *}=I^{*} \cap J$.
Proof: (i) am trivial. For (ii), using (i) we have, $I^{* *}=\left(I^{*}\right)^{*} \cap J=\left(I^{*} \cap J\right)^{*}$.
Thus by Theorem 3.2, $I^{* *}=I^{* *} \cap J$
Theorem 4.3.4: Let n be a sesqui - medial element of a distributive lattice L. Suppose $F_{n}(L)$ is sectionally pseudo-complemented distributive lattice and P is a prime n-ideal of L. Then the following conditions are equivalent.
(i) P is minimal.
(ii) $x \in P$ implies $\langle x\rangle_{\text {„ }}{ }^{*} \not \subset P$.
(iii) $x \in P$ implies $\langle x\rangle_{n}{ }^{*} \subseteq P$.
(iv) $P \cap D\left(<t_{n}>\right)=\varphi$ for all $t \in L-P$, where $D\left(<t_{n}>\right)=\left\{x \in L\left\langle t_{n}>:<x\right\rangle_{n}{ }^{+}=\{n\}\right\}$

Proof: (i) \rightarrow (ii), suppose P is minimal. If (ii) fails, then there exists $x \in P$,
such that $\langle x\rangle_{n}{ }^{*} \subseteq P$. Since P is a prime n -ideal, then P is a prime ideal or a prime filter.
Suppose P is a prime ideal. Let $D=(L-P) \vee[x)$. We claim that $n \notin D$. if $n \in D$, then $n=q \wedge x$ for some $q \in L-P$.

Then $\left\langle q>_{n} \cap\left\langle x>_{n}=\left\langle(q \wedge x) \vee(q \wedge n) \vee(x \wedge n)>_{n}=\{n\}\right.\right.\right.$ implies $\langle q\rangle_{n} \subseteq<x>_{n}{ }^{\circ} \subseteq P$.
Thus, $q \in P$, which is contradiction. Hence $n \notin D$. Then there exist a prime n - ideal Q with $Q \cap D=\varphi$. Then $Q \subseteq P$ as $Q \cap(L-P)=\varphi$ and $Q \neq P$, since $x \notin q$. But this contradicts the minimality of P.

Hence $\langle x\rangle_{n}{ }^{*} \subseteq P$. Similarly, we can prove that $\langle x\rangle_{n}{ }^{*} \leq P$ if P is a prime fitter.
(ii) \Rightarrow (iii). Suppose (ii) holds and $x \in P$. Then $\langle x\rangle_{n}{ }^{*} \not \subset P$.

Since $\langle x\rangle_{n}{ }^{*} \cap\langle x\rangle_{n}{ }^{\bullet}=\{n\} \subseteq P$ and P is prime, so $\langle x\rangle_{n}{ }_{n} \subseteq P$.
(iii) \Rightarrow (iv). Suppose (iii) holds and $t \in L-P$. Let $x \in P \cap D\left(\langle t\rangle_{n}\right)$

Then $x \in P, x \in D\left(\left\langle t>_{n}\right)\right.$. Thus $\langle x\rangle_{n}{ }^{*}=\{n\}$ and so $\langle x\rangle_{n}{ }^{*}=\langle t\rangle_{n}$.
By (iii) $x \in P$ implies $\langle x\rangle_{n}{ }^{*} \subseteq P$. Also by Theorem 3.3.3, $\langle x\rangle_{n}{ }^{*} \cap\langle x\rangle_{n}{ }^{*} \cap\langle t\rangle_{n}$. Hence $\langle x\rangle_{n}{ }^{* *} \cap\langle t\rangle_{n}=\langle t\rangle_{n}$ and so $\langle t\rangle_{n} \subseteq\langle x\rangle_{n}{ }^{*} \subseteq P$. That is $t \in P$, which is a contradiction.

Therefore, $\left.P \cap D(<t\rangle_{n}\right)=\varphi$ for all $t \in L-P$.
(iv) \Rightarrow (i). Suppose P is not minimal. Then there exists a Prime n-ideal $Q \subset P$.

Let $x \in P-Q$. Since $\langle x\rangle_{n} \cap\langle x\rangle_{n}=\{n\} \subseteq Q \quad$ So $\langle x\rangle_{n}{ }^{\circ} \subseteq Q \subset P$

Thus, $\langle x\rangle_{"} \quad \vee\langle x\rangle_{n}{ }^{*} \subseteq P$.
Choose any $t \in L-P$. Then $\langle t\rangle_{n} \cap\left(\langle x\rangle_{n} \vee\langle x\rangle_{n}{ }^{*} \subseteq P\right.$.
Now $\left.\langle t\rangle_{n} \cap\left(\langle x\rangle_{n} \vee\langle x\rangle_{n}{ }^{*}\right)=\langle t\rangle_{n} \cap\langle x\rangle_{n}\right) \vee\left(\langle t\rangle_{n} \cap\left(\langle x\rangle_{n}{ }^{*}\right.\right.$
$\left.=\langle m(t, n, x)\rangle_{n} \vee\langle t\rangle_{n} \cap\langle x\rangle_{n}\right)^{*} \cap\left(\langle t\rangle_{n}\right)\left(\langle\mathrm{t}\rangle_{\mathrm{n}}(\right.$ by Theorem3. 3.2)
$=<m(t, n, x)\rangle_{n} \vee\left(m(t, n, x)>_{n}{ }^{*} \cap<t>_{n}\right)$
$=\langle m(t, n, x)\rangle_{n} \vee\left(\langle m(t, n, x)\rangle_{n}{ }^{*}\right.$ (by Theorem 3.3.3), where $\langle m(t, n, x)\rangle_{n}$ is the relative pseudo-complement of $\langle m(t, n, x)\rangle_{n}$ in $\langle t\rangle_{n}$. Since $F_{n}(L)$ is sectionally pseudocomplemented $\langle m(t, n, x)\rangle_{n}{ }^{*}$ is finitely generated and so $\left(\langle m(t, n, x)\rangle_{n} \vee m(t, n, x){ }_{n}{ }^{*}\right.$ is a finitely generated n-ideal contained in $\langle t\rangle_{n}$.

Therefore, $\left.\langle m(t, n, x)\rangle_{n} \vee m(t, n, x)\right\rangle_{n}{ }^{*}=\langle r\rangle_{n}$ for some $r \in\langle t\rangle_{n}$.
Moreover, $\langle r\rangle_{n}{ }^{*}=\langle m(t, n, x)\rangle_{n} \vee m(t, n, x)_{n}{ }^{*}\{n\}$. Thus, $r \in P \cap D\langle t\rangle_{n}$,
which is a contradiction. Therefore, P must be minimal

4.4 Lattice whose principal n-ideal form normal lattice.

Definition(Normal lattice): A distributive lattice L with 0 is normal if every ideal of L contains a unique minimal prime ideal.

Definition(Central element): Any element of a lattice which is standard and complemented in each interval containing it is actually neutral, then the element is called central.

We already known that for a central element $n \in L, P_{n}(L) \cong(n)^{d} x[n)$.
Thus, we have the following result.

Lemma 4.4.1: Suppose n is a central element of a distributive lattice L.

Then $P_{n}(L)$ is normal if and only if $(n]^{d}$ and $[n)$ are normal.

A distributive lattice L with 1 is called dual normal if its every prime filter is contained in a unique ultra-filter (maximal and proper). In a general lattice, this condition is also equivalent to the condition of normality, that is, every prime ideal contains a unique minimal prime ideal. Thus obviously the concept of dual normality coincides with the normality in case of bounded distributive lattices.

Therefore, from above lemma $P_{n}(L)$ is normal if and only if $[n)$ is a normal lattice and $[n)$ is a dual normal lattice. Following theorem is needed to prove the main results of this chapter.

Theorem 4.4.2: Suppose L be a distributive lattice and $n \in L$.
Let $x, y \in L$ with $\langle x\rangle_{n} \cap\langle y\rangle_{n}=\{n\}$. Then the following conditions are equivalent.
(i) $\langle x\rangle_{n}{ }^{\bullet} \cap<y>_{n}{ }^{*}=L$.
(ii) For any $t \in L,\langle m(x, n, x)\rangle_{n}, \vee\langle m(y, n, t)\rangle_{n},\langle t\rangle_{n}$, where $\langle m(x, n, x)\rangle_{n+}$ denote the relative pseudocomplement of $\langle m(x, n, t)\rangle_{n}$ in $\left[\{n\},\langle t\rangle_{n}\right]$.

Proof: (i) $\Rightarrow \quad$ (ii). Suppose (i) hold. Then for any $t \in L$,

$$
\begin{aligned}
& \left.<m(x, n, t)\rangle_{n+} \vee<m(y, n, t)\right\rangle_{n_{+}}=\left(\langle x\rangle_{n} \cap\langle t\rangle_{n}\right)^{+} \vee\left(\langle y\rangle_{n} \cap\langle t\rangle_{n}\right)^{+} \\
& \left.\left.\left.=\left(\left(\langle x\rangle_{n} \cap\langle t\rangle_{n}\right)^{*} \cap\langle t\rangle\right) \vee\langle y\rangle_{n}\right) \cap\langle t\rangle_{n}\right)^{*} \cap\langle t\rangle_{n}\right) \text { [by Lemma 4.3.3.] } \\
& \left.=\left(\left(\langle x\rangle_{n} \cap\langle t\rangle_{n}\right) \vee\langle y\rangle_{n}{ }^{*}\right) \cap\langle t\rangle_{n}\right) \quad \text { [by Lemma 4.3.2.] } \\
& =\left(\langle x\rangle_{n} \vee\langle y\rangle_{n}\right)^{*} \cap\left(\langle t\rangle_{n}\right) \\
& =S \cap\langle t\rangle_{n}
\end{aligned}
$$

$=\langle t\rangle_{n}$. Hence (ii) holds.
(ii) \Rightarrow (i). Suppose (ii) holds and $t \in L$.

By (ii), $\langle m(x, n, t)\rangle_{n+} \vee\langle m(y, n, t)\rangle_{n+}=\langle t\rangle_{n}$. Then using Lemmas 4.3.2 and 4.3.3 and the calculation of (i) \Rightarrow (ii) above, we get, $\left.\left.\left(\langle x\rangle_{n}{ }^{*} \vee<y\right\rangle_{n}{ }^{*}\right) \cap<t\right\rangle_{n}=\langle t\rangle_{n}$. This implies $\left.\langle t\rangle_{n} \subseteq\langle x\rangle_{n}{ }^{*} \vee<y\right\rangle_{n}{ }^{*}$ and $\left.t \in\langle x\rangle_{n}{ }^{*} \vee<y\right\rangle_{n}{ }^{*}$ so. Therefore, $\left.\langle x\rangle_{n}{ }^{*} \vee<y\right\rangle_{n}{ }^{*}=L$

Conish in [4] has given some characterizations of normal lattices. Then [30] extended those results for lattices [30] has given the following characterizations for normal lattices.

Theorem 4.4.3: Let L be a distributive lattice and n be a central element of L. The following conditions are equivalent.
(i) $P_{n}(L)$ is normal.
(ii) Every prime n-ideal of L contains a unique minimal prime n-ideal.
(iii) For any two minimal prime n -ideals P and Q of $L, P \vee Q=L$.

Proof: (i) \Rightarrow (ii). Let $P_{n}(L)$ be normal, since $P_{n}(L) \cong(n]^{d} \times[n)^{d}$, so both ($\left.n\right]^{d}$ and $[n$) are normal. Suppose P is any prime n -ideal of L. Then either $P \supseteq(n]$ or $P \supseteq[n)$. Without loss of generality, suppose $P \supseteq(n]$. Then P is prime ideal of L. Hence $P_{1}=P \cap[n)$ is a prime ideal of $[n)$. Since $[n)$ is normal, so by definition P_{1} contains a unique minimal prime ideal R_{1} of $[n)$. Therefore, P contains a unique minimal Prime ideal R of L where $R_{1}=R \cap[n)$. Since $n \in R_{1}$ so $n \in R$ and hence R is a minimal prime n-ideal of L. Thus (ii) holds.
(ii) \Rightarrow (i). Suppose (ii) holds. Let P_{1} be a prime ideal in $[n)$. Then $P_{1}=P \cap[n)$ for some prime ideal P_{1} of L. Since $n \in P_{1} \subseteq P$, so P is prime n -ideal .

Therefore, P_{1} contains a unique minimal prime n-ideal R of L. Thus, P_{1} contains the unique minimal prime ideal $R_{1}=R \cap[n)$ of $[\mathrm{n})$. Hence by definition $[n]$ is normal. Similarly, we can prove that $(n]^{d}$ is also normal. Since $P_{n}(L) \cong(n]^{d} \times[n)^{d}$, so $P_{n}(L) P_{n}$ is normal.
(ii) \Leftrightarrow (iii) is trivial by Stone's separation Theorem.

Recall that for a prime ideal P of a distributive lattice L with 0 , [31] has defined $0(P)=\{x \in L: x \wedge y=0$ for some $y \in L-P\}$. Clearly, $O(P)$ is an ideal and $O(P) \subseteq P .[31]$ has shown that $O(P)$ is the intersection of al the minimal prime ideals of L, which are contained in P.

For a prime n-ideal P of a distributive lattice L, we write
$n(P)=\{y \in P: m(y, n, x)=n$ for some $x \in L-P\}$. Clearly, $n(P)$ is an n- ideal and $n(P) \subseteq P$

Lemma 4.4.4: Let n be a medial element of a distributive lattice L and P be a prime n ideal in L. Then each minimal prime n -ideal belonging to $n(P)$ is contained in P.

Proof: Let Q be a minimal prime n -ideal belonging to $n(P)$. If $Q \not \subset P$, then choose $y \in Q-P$. Since Q is a prime n-ideal, so we have Q is either an ideal or a filter. Without
loss of generality, suppos Q is an ideal. Now let $T=\{t \in L, m(y, n, t) \in n(P)\}$. We show that $T \not \subset Q$. If not, let $D=(L-Q) \vee[y)$. Then $n(p) \cap D=\varphi$.

For otherwise, $y \wedge r \in n(P)$ for some $r \in L-Q$.
Then by convexity, $y \wedge r \leq m(y, n, r) \leq(y \wedge r) \vee n$ implies $m(y, n, r), n(P)$.
Hence $r \in T \subseteq Q$, which is a contradiction. Thus there exists a prime n - ideal R containing $n(P)$ disjoint to D. Then $R \subseteq Q$.

Moreover, $R \neq Q$ as $y \in R$, this shows that Q is not a minimal prime n - ideal belonging to $n(P)$, which is a contradiction. Therefore, $T \not \subset Q$. Hence there exists $z \notin Q$ such that $m(y, n, z) \in n(P)$. Thus $m(m(y, n, z), n, x)=n$ for some $x \in L-P$. It is easy to see that $m(m(y, n, z), n, x)=n=m(m(y, n, x), n, z)$.

Hence $m(m(y, n, x), n, z)=n$. Since P is prime and $y, z \in P$ so $m(y, n, x) \notin P$. Therefore, $z \in n(P) \subseteq Q$, which is a contradiction. Hence $Q \subseteq P$

Proposition 4.4.5: If n is a medial element of a distributive lattice and P is a prime n ideal in L, then $\mathrm{n}(\mathrm{p}$ is the intersection of all minimal prime n - ideals contained in P.

Proof: Clearly, $n(P)$ is contained in any prime n - ideal which is contained in P. Hence $n(P)$ is contained in the intersection of all minimal prime n - ideals contained in P.

Since L is distributive, so $n(P)$ is the intersection of all minimal prime n - ideals belonging to it. Since each prime n - ideal contains a minimal prime n - ideal, above remarks and Lemma 4.4.4 establish the proposition

Theorem 4.4.6: Let L be a distributive lattice and let n be central element in L. Then the following conditions are equivalent.
(i) $P_{n}(L)$ is normal.
(ii) Every prime n-ideal contains a unique minimal prime n - ideal.
(iii) For each prime n- ideal $P, n(P)$ is prime n - ideal.
(iv) For all $x, y \in L,\langle x\rangle_{n} \cap\langle y\rangle_{n}=\{n\}$

Implies $\left.\langle x\rangle_{n}^{*} \cap<y\right\rangle_{n}{ }^{*}=L$.
(v) For all $\left.x, y \in L,\left(\langle x\rangle_{n} \cap\langle y\rangle_{n}\right)=\langle x\rangle_{n}{ }^{*} \vee<y\right\rangle_{n}{ }^{*}$.

Proof: (i) \Rightarrow (ii) holds by theorem 4.4.3
(ii) \Rightarrow (iii) is a direct consequence of proposition 4.4.5.
(iii) \Rightarrow (iv). Suppose (iii) is a direct consequence of proposition 4.4.5
(iii) (iv). Suppose (iii) holds.

Consider $x, y \in L$ with $\langle x\rangle_{n} \vee\langle y\rangle_{n}=\{n\}$
If $\langle x\rangle_{n}{ }^{*} \vee\langle y\rangle_{n}{ }^{*} \neq L$, then by Theorem I.4.7 there exiats a prime n - ideal P.
Such that $\left.\langle x\rangle_{n}{ }^{*} \vee<y\right\rangle_{n}{ }^{*} \subseteq P$, then $\langle x\rangle_{n} \subseteq P$ and $\langle y\rangle_{n} \subseteq P$, imply $x \in n(P)$.
And $y \notin n(P)$. But $n(P)$ is prime and so $m(x, n, y)=n \in n(P)$ is contradictory.
Therefore, $\langle x\rangle_{n}{ }^{*} \vee\langle y\rangle_{n}{ }^{*}=L$.
(iv) \Rightarrow (v). Obviously, $\langle x\rangle_{n}{ }^{*} \vee\langle\dot{y}\rangle_{n}{ }^{*} \subseteq\left(\langle x\rangle_{n} \cap\langle y\rangle_{n}\right)^{*}$.

Conversely, let $w \in\left(\langle x\rangle_{n} \cap\langle y\rangle_{n}\right)^{*}$.
Then, $\langle w\rangle_{n} \cap\left(\langle x\rangle_{n} \cap\langle y\rangle_{n}\right)=\{n\}$ or, $\langle m(w, n, x)\rangle_{n} \cap\langle y\rangle_{n}=\{n\}$.
So by (iv), $\langle m(w, n, x)\rangle_{n}{ }^{*} \cap\langle y\rangle_{n}{ }^{*}=L$.
So, $\left.w \in<m(w, n, x)>_{n}{ }^{*} \cap<y\right\rangle_{n}{ }^{*}$.
Threfore, $w \wedge n, w \vee n \in\left\langle m(w, n, x)>_{n}{ }^{*} \vee\langle y\rangle_{n}{ }^{*}\right.$.
Here $w \vee n$ exists as n is an upper element.
Then $w \vee n=r \vee s$ for some $r \in\left\langle m(w, n, x)>_{n}\right.$ and $s \in\langle y\rangle_{n}{ }^{*}$ with $r, s \geq n$.
Now $r \in<m(w, n, x)>_{n}{ }^{*}$.

CHAPTER FIVE

Introduction:_In lattice theory there are different classes of lattice known as verity of course the most powerful variety. Throughout this capter we will be concerned with another large veriety known as the class opseudocomplemented lattice. Pseudocomplemented lattices have been studied by several authors [16],[17], [25], [26], [27], [28]

In this chapter we have studies relatively pseudocomplemented lattice and Multipler Extension of Sectionally Pseudocomplemented Distributive lattices.

5.1. Relatively Pseudoeomplemented of lattice.

Definition (Pseudoeomplemented element): Let L be a lattice with o and 1 for an element $x \in L$, element $x^{*} \in L$ is called pseudo complement of x if $x \wedge x^{*}=0$ and $x \wedge y=0(y \in L)$ implies $y \leq x^{*}$.

Definition (Pseudoeomplemented lattice): Let L be a bounded distributive lattice, let $a \in L$, an element $a^{*} \in L$ is called a pseudocomplemented of a in L if the following conditions hold:(i) $a \wedge a^{*}=0$ (ii) $\forall x \in L, a \wedge x=0 \quad$ implies that $x \leq a^{*}$ Also A lattice L is called pseudocomplemented if its every element has a peudocomplement. For a lattice L with o, we can talk about sectionally pseudocomplemented lattice,

A lattice L with 0 is called sectionally Pseudocomplemented if the interval $[0, x]$ for each $x \in L$ is pseudocomplemented. Of course every finite distributive lattice is Sectionally pseudocomplemented.

Definition(Relatively Pseudocomplement lattice): A lattice L is called relatively pseudocomplemented if interval $[a, b]$ for each $a, b \in L, a<b$ is pseudocomplemented.

Theorem 5.1.1: If L is a distributive sectionally pseudocomplemented lattice, then S_{F} is a distributive pseudocomplemented lattice.

Proof: Suppose L is sectionally pseudocomplemented. Since L_{l} is a distributive lattice.
Let $[x] \in L_{F}$, then $[0] \subseteq[x] \leq F$. Now $0 \leq x \wedge f \leq f$ for all $f \in F$. Let y be the pseudocomplement of $x \wedge f$ in $[0, f]$, then $y \wedge x \wedge f=0$ implies $[y \wedge f] \wedge[x]=[0]$, that is $[y] \wedge[x]=[0]$.

Suppose $[z] \wedge[x]=[0]$, for some $[z] \in L_{F}$, then $z \wedge x=0\left(\psi_{F}\right)$.
This implies $z \wedge x \wedge f^{1}=0$--------- (i) for some $f^{1} \in F$. Since $z=z \wedge f\left(\hat{\psi}_{F}\right)$.
So $z \wedge f^{1}=z \wedge f \wedge f^{11}$
(ii) for some $f^{11} \in F$ from (i) and (ii).

We get $z \wedge x \wedge f^{1} \wedge f^{11}=0$. Setting $g=f^{1} \wedge f^{11}$
we have $z \wedge g=z \wedge g \wedge f$ which implies $z \wedge g \leq f$ and $z \wedge g \wedge x \wedge f=0$.
So $0 \leq z \wedge g \wedge x \leq f$ and
$z \wedge g \leq y$. Hence, $[z \wedge g] \subseteq(y)$. But $[z]=[z \wedge g]$ as $g \in F$. Therefore, $[z] \subseteq[y]$ and so L_{F} : is pseudocomplemented distributive lattice

Lemma 5.1.2: Let L be a distributive relatively pseudocomplemented lattice.

Let $x \leq y \leq z$ in L and $s \in L$ is the relative pseudocomplemeted of y in $[x, z]$.

Then for any $r \in L, s \in r$ is the relative pseudocomplemet of $y \wedge r$ in $[x \wedge r, z \wedge r]$.

Proof: Suppese $t \wedge r$ is the relative pseudocomplemet of $y \wedge r$ in $\lceil x \wedge r, z \wedge r\rceil$. Since s is the relative pseudocomplemented of y in $[x, z]$. So $s \wedge y=x$, Thus,
$(s \wedge r) \vee(y \wedge r)=x \wedge r$.
This implies $s \wedge r \leq t \wedge r$. Again, $x \leq s \vee(t \wedge r) \leq z$ and
$y \wedge(s \vee(t \wedge r)=(y \wedge s) \vee(y \wedge r) \vee(t \wedge r)=x \vee(x \wedge r)$ implies $s \vee(t \wedge r) \leq s$
i.e $s=s \vee(t \wedge r)$.

Hence $t \wedge r \leq s$, and so $t \wedge r \leq s \wedge r$.
This implies $t \wedge r \leq s \wedge r$. Therefore, $s \wedge r$ is the relative pseudocomplemet of $y \wedge r$ in $[x \wedge r, z \wedge r]$

Theorem 5.1.3: If L is a distributive relatively pseudocomplemeted lattice, then L_{l} is a distributive relatively pseudocomplemeted lattice.

Proof: Since L_{F} is a distributive lattice. Let $[x],[y],[z] \in L_{F}$ with $[x] \subseteq[y] \subseteq[z]$.
Then $[x]=[x \wedge y]$ and $[y]=[y \wedge z]$. Thus $x=x \wedge y\left(\psi_{F)}\right.$ and $y=y \wedge z\left(\psi_{F)}\right.$.
This implies $x \wedge f=x \wedge y \wedge f$ and $y \wedge g=y \wedge z \wedge g$ for some $f, g \in F$.
Then $x \wedge f \wedge g=x \wedge y \wedge f \wedge g$ and $y \wedge f \wedge g=y \wedge z \wedge f \wedge g$, and so $x \wedge f \wedge g \leq y \wedge f \wedge g \leq z \wedge f \wedge g$, that is $x \wedge h \leq y \wedge h \leq z \wedge h$ where $h=f \wedge g \in F$.
Suppose t is the relative pseudocomplemented of $y \wedge h$ in $[x \wedge h, z \wedge h]$.
Then $t \wedge y \wedge h=x \wedge, h$ and so $[t] \wedge[y \wedge h]=[x \wedge h]$. That is $[t] \wedge[y]=[x]$ as

$$
y=y \wedge h\left(\psi_{F}\right) \text { and } x=x \wedge h\left(\psi_{F}\right)
$$

Moreover, $[t] \wedge[z]=[t] \wedge[z \wedge h]=[t \wedge z \wedge h]=[t]$ implies $[x] \subseteq[y] \subseteq[z]$. We claim that $[\mathrm{t}]$ is the relative pseudocomplement of $[y]$ in $[[x],[y]]$ in L_{F}.

Suppose $[s] \wedge[y]=[x]$ for some $[s] \in[[x],[z]]$. Then $x \wedge y=x\left(\psi_{\mid:}\right)$and so $s \wedge y \wedge f^{1}$ for some $f^{1} \in F$. Again $[s]=\subseteq[z]$ implies $s \equiv s \wedge z\left(\psi_{F}\right)$ and so $s \wedge g^{1}=s \wedge z \wedge g^{1}$ for some $g^{1} \in F$. Then $s \wedge y \wedge f^{1} \wedge g^{1}=x \wedge f^{1} \wedge g^{1}$
and $s \wedge f^{\prime} \wedge g^{\prime}=s \wedge z \wedge f^{\prime} \wedge g^{1} \cdot$ Thus, $s \wedge y \wedge k=x \wedge k$ and $s \wedge k=s \wedge z \wedge k$
where $k=f^{\prime} \wedge g^{\prime}$. These imply $x \wedge h \wedge k \leq s \wedge h \wedge k \leq z \wedge h \wedge k$ and
$(s \wedge h \wedge k) \wedge(y \wedge h \wedge k)=x \wedge h \wedge k$. Then by above lemma, $s \wedge h \wedge k \leq t \wedge k$.

Hence $[s]=[s \wedge h \wedge k] \subseteq[t \wedge k]=[t]$ and so $[t]$ is relative pseudocomplemet of $[y]$ in $[[x],[y]]$. Therefore, L_{F} is relatively pseudocomplemet \square

Definition (Stone algebra): A pseudocomplemented distributive lattice L is called a stone algebra if and only if it satisfies the condition for each $a^{*} \vee a^{* *}=I$ which is known as stone identity.

5.2 Multiplier Extension of Sectionally Pseudo-complemented Distributive Lattices.

Introduction: A lattice is a meet semilattice together with the property that any two elements possessing a common upper bound have a supremum. Here, the authors study multipliers on distributive lattices which are sectionally in $\mathrm{B}_{\mathrm{n}},-1 \leq n \leq \omega$. They have showed that a distributive lattice L is sectionally in B_{n} if and only if its set of all multipliers $M(L)$ is in B_{n}. Moreover, for $1 \leq n \leq \omega$, the above conditions are also equivalent to the condition that L is sectionally pseudo-complemented, and for any $n+1$ minimal prime ideals $P_{1} \ldots . ., P_{n+1}, P_{1} \wedge \ldots \wedge P_{n+1}=L$.

Let L be a lattice and σ a mapping of L into itself. Then σ is called a multiplier on L , if $\sigma(x \wedge y)=\sigma(x) \wedge \sigma(y)$ for each $x, y \in L$. Each multiplier on L has the following properties:
$\sigma(x) \leq x, \quad \sigma(=\sigma(x) \sigma(x))$ and $x \leq y$ implies $\sigma(x) \leq \sigma(y)$.
Each $a \in L$ induces a multiplier μ_{a} defined by $\mu_{a}(x)=a \wedge x$ for each $x \in L$, which is called an inner multiplier. The identity function on L, which will be denoted by i , is always a multiplier. $M(L)$ denotes the set of all multipliers on L. It is obvious that $M(L)$ has a zero denoted by ω if and only if L has a 0 .

If σ and λ are multipliers on a lattice L, then $\sigma \wedge \lambda$ and $\sigma \vee \lambda$ are defined by $(\sigma \wedge \lambda)(x)=\sigma(x) \wedge \sigma(x)$ and $(\sigma \vee \lambda)(x)=\sigma(x) \vee \sigma(x)$. Note that $\sigma(x) \vee \sigma(x)$ always exists by the upper bound property of L, as $\sigma(x), \sigma(x) \leq x$, although $\sigma \vee \lambda$ is not necessarily a multiplier.

Also, $\sigma(\lambda(x)=\sigma(\lambda(x \wedge x))=\sigma(\lambda(x) \wedge x)=\sigma(x) \wedge \sigma(x)$. If L is a distributive lattice, then $M(L)$ is a distributive lattice.

A distributive lattice L with 0 is called sectionally pseudo-complemented if each interval $[0, x], x \in L$ is pseudo-complemented.

Let L be a sectionally pseudo-complemented distributive lattice and $\sigma \in M(L)$. We define the pseudo-complement of σ (denoted by σ^{*}) by $\sigma^{*}(x)=\sigma(x)^{*}$, where $\sigma(x)^{*}$ is the relative pseudo-complement of $\sigma(x)$ in $[0, \mathrm{x}]$ for cach $x \in L$. In fact, we have given a proof of this in Proposition 5.2.2

In this section, we study multipliers on sectionally pseudo-complemented distributive lattices and also on distributive latices which are sectionally in $B_{n},-1 \leq n \leq \omega$. Then we generalize a number of results of [1]. We show that L is sectionally in B_{n} if and only if $M(L)$ is in B_{n}. We also show that, for $1 \leq n \leq \omega$, the above conditions are also equivalent to the conditions that L is sectionally pseudo-complemented and for any $n+1$ minimal prime ideals $P_{1} \ldots . ., P_{n+1}, P_{1} \wedge \ldots \wedge P_{n+1}=L$.

Multipliers on Distributive lattices which are Sectionally in B_{n}

Lee [4] has determined the lattice of all equational subclasses of the class of all pseudocomplemented distributive lattices. They are given by $B_{-1} \subset B_{0} \subset B_{1} \subset \ldots \subset B_{n} \subset \ldots \subset B_{\theta}$, where all the inclusions are proper and B_{θ} is the class of all pseudo-complemented distributive lattices, B_{-1} consists of all one element algebras, B_{0} is the variety of Boolean algebras while B_{n}, for $1 \leq n \leq \omega$, consists of all algebras satisfying the equation

$$
\left(x_{1} \wedge x_{2} \wedge \ldots \wedge x_{n}\right)^{*} \vee \vee_{i=1}^{n}\left(x_{1} \wedge \ldots \wedge x_{i-1} \wedge x_{i}^{*} \wedge x_{i+1} \wedge \ldots \wedge x_{n}\right)^{*}=1
$$

where x^{*} denotes the pseudo-complement of x. Thus B_{1} consists of all Stone algebras.
A lattice L is sectionally complemented if $[0, x]$ is complemented for each $x \in L . L$ is semiboolean if it is sectionally complemented and distributive.

Recall that a distributive lattice L with 0 is sectionally pseudo-complemented if each interval $[0, x], x \in L$ is pseudo-complemented.

Theorem 5.2.1: A lattice L is distributive if and only if $M(L)$ is a distributive lattice.

Proposition 5.2.2: If L is a sectionally pseudo-complemented distributive lattice with 0 , then $M(L)$ is pseudo-complemented.

Proof: For each $\sigma \in M(L)$ and $x \in L, \sigma(x) \in[0, x]$. Suppose $\sigma(x)^{*}$ denotes the pseudocomplement of $\sigma(x)$ in $[0, x]$. Define $\sigma^{*}: L \rightarrow L$ by $\sigma^{*}(x)=\sigma(x)^{*}$ for each $x \in L$. If $a, b \in L$,
then $\left(\sigma^{*}(a) \wedge b\right) \wedge \sigma(a \wedge b)=\sigma^{*}(a) \wedge b \wedge \sigma(a) \wedge b=0$ implies
$\left(\sigma^{*}(a) \wedge b\right) \leq \sigma(a \wedge b)^{*}=\sigma^{*}(a \wedge b)$. On the other hand,
$\left(\sigma^{*}(a \wedge b) \wedge \sigma(a)=\sigma^{*}(a \wedge b)^{*} \wedge \sigma(a)=\sigma(a \wedge b)^{*} \wedge \sigma(a) \wedge b=0\right.$
implies $\sigma^{*}(a \wedge b) \leq \sigma(a)^{*} \sigma^{*}(a)$.
Since $\sigma^{*}(a \wedge b) \leq b$, so $\sigma^{*}(a \wedge b) \leq \sigma\left(\sigma^{*}(a) \wedge b\right.$.
Therefore, $\sigma^{*}(a \wedge b)=\sigma^{*}(a) \wedge b$ and so $\sigma^{*} \in M(L)$.
Now, $\left(\sigma \wedge \sigma^{*}\right)(x)=\sigma(x) \wedge \sigma^{*}(x)=0=\omega(x)$ implies $\sigma \wedge \sigma^{*}=\omega$. If
$\sigma \wedge \tau=\omega, \quad \sigma(x) \wedge \tau(x)=0$.
Then for each $x \in L$. Since $\sigma(x), \tau(x) \in[0, x]$, so $\tau(x) \leq \sigma(x)^{*}=\sigma^{*}(x)$.
This implies $\tau \leq \sigma^{*}$ and so σ^{*} is the pseudo-complement of σ in $M(L)$. Therefore, $M(L)$ is pseudo-complemented

Proposition 5.2.3: For a distributive lattice L with 0 , if $M(L)$ is pseudo-complemented then L is sectionally pseudo-complemented.

Moreover, for each $\sigma \in M(L)$ and $x \in L$, the element $\sigma^{*}(x)$ is the relative pseudocomplement of $\sigma(x)$ in $[0, x]$.

Proof: Consider any interval $[0, y]$ in L. Suppose $x \in[0, y]$.
Then $0=\omega(y)=\left(\mu_{x} \wedge \mu_{x}^{*}\right)(y)=\mu_{x}(y) \wedge \mu_{x}^{*}(y)=x \wedge y \wedge \mu_{x}^{*}(y)=x \wedge \mu_{x}^{*}(y)$. Now, if $x \wedge t=0$ for some $t \in[0, y]$, then for all $p \in L,\left(\mu_{x} \wedge \mu_{t}\right)(p)=x \wedge t \wedge p=0$, and so $\mu_{x} \wedge \mu_{t}=\omega$. This
implies $\mu_{t} \leq \mu_{x}^{*}$. Thus, $\mu_{t}(y) \leq \mu_{x}^{*}(y)$, and so $t=t \wedge y \leq \mu_{r}^{*}(y)$. Hence, $\mu_{r}^{*}(y)$ is the relative pseudo-complement of x in $[0, y]$. Therefore, L is sectionally pseudo-complemented.Finally, for each $x \in L, \sigma(x) \wedge \sigma^{*}(x)=0$. Also $\sigma^{*}(x) \in[0, x]$. Now let $t \wedge \sigma(x)=0$ for some $t \in[0, x]$.

Then for any $p \in L,(\mu \wedge \sigma)(p)=\mu(p) \wedge \sigma(p)=t \wedge p \wedge \sigma(p)=t \wedge \sigma(p)=t \wedge x \wedge \sigma(p)$ $=t \wedge p \wedge \sigma(x)=0=\omega(p)$. This implies $\mu \wedge \sigma=\omega$ and so $\mu \leq \sigma^{*}$. Then $\mu(x) \leq \sigma^{*}(x)$

Thus, $t=t \wedge x \leq \sigma^{*}(x)$. This shows that $\sigma^{*}(x)$ is the pseudocomplement of $\sigma(x)$ in $[0, x]$
Corollary 5.2.4: Suppose L is a sectionally pseudo-complemented distributive lattice with 0 . If x^{*} is the pseudo-complement of x in $[0, y]$, then $x^{+}=\mu^{*}(y)$.

Theorem 5.2.5: Let L be a distributive with 0 . For a given n such that $-1 \leq n \leq \omega$, the following conditions are equivalent:
(i) L is sectionally in B_{n};
(ii) $M(L)$ is in B_{n}.

Proof: (i) implies (ii). The case $n=-1$ is trivial. The case $n=\omega$ follows from

Proposition 4.2.2
For $n=0, L$ is semiboolean. Then by Proposition 4.2.2, $M(L)$ is pseudo-complemented and for $\sigma \in M(L), \sigma^{*}(x)=\sigma(x)^{*}$ for each $x \in L$, where $\sigma(x)^{*}$ is the pseudo-complement of $\sigma(x),[0, x]$. Since L is semiboolean, $\sigma(x)^{*}$ is also the relative complement of $\sigma(x)$ in $[0, x]$. Then $\left(\sigma \vee \sigma^{*}\right)(x)=\sigma(x) \vee \sigma^{*}(x)=\sigma(x) \vee \sigma^{+}(x) x=t(x)$. This implies $\sigma \wedge \sigma^{*}=t$ and so σ^{*} is also the complement of σ in $M(L)$.

Therefore, $M(L)$ is Boolean.
Now, suppose L is sectionally in $B_{n} . \quad 1 \leq n \leq \omega$. For $\sigma_{1} \ldots \ldots \ldots \ldots . . . \sigma_{n} \in M(L)$ and for each $x \in L$, using Proposition 5.2.2

$$
\begin{aligned}
& {\left[\left(\sigma_{1} \wedge \ldots \wedge \sigma_{n}\right)^{*} \vee \vee_{i=1}^{n}\left(\sigma_{1} \wedge \ldots \wedge \sigma_{i}^{*} \wedge \ldots \wedge \sigma_{n}\right)^{*}\right](x) } \\
= & \left(\sigma_{1} \wedge \ldots \wedge \sigma_{n}\right)^{*}(x) \vee \vee_{i=1}^{n}\left(\sigma_{1} \wedge \ldots \wedge \sigma_{i}^{*} \wedge \ldots \wedge \sigma_{n}\right)^{*}(x) \\
= & \left(\left(\sigma_{1} \wedge \ldots \wedge \sigma_{n}\right)(x)\right)^{+} \vee \vee_{i=1}^{n}\left(\left(\sigma_{1} \wedge \ldots \wedge \sigma_{i}^{*} \wedge \ldots \wedge \sigma_{n}\right)(x)\right)^{*} \\
= & \left(\sigma_{1}(x) \wedge \ldots \wedge \sigma_{n}(x)\right)^{+} \vee{\underset{i=1}{n}\left(\sigma_{1}(x) \wedge \ldots \wedge \sigma_{i}^{*}(x) \wedge \ldots \wedge \sigma_{n}(x)\right)^{*}}^{=}\left(\sigma_{1}(x) \wedge \ldots \wedge \sigma_{n}(x)\right)^{+} \vee \vee_{i=1}^{n}\left(\sigma_{1}(x) \wedge \ldots \wedge \sigma_{i}(x)^{+} \wedge \ldots \wedge \sigma_{n}(x)\right)^{*} \\
= & x=t(x) .
\end{aligned}
$$

Hence, $\left(\sigma_{1} \wedge \ldots \wedge \sigma_{n}\right)^{*} \vee\left(\sigma_{1}^{*} \wedge \ldots \wedge \sigma_{n}\right)^{*} \vee \ldots \vee\left(\sigma_{1} \wedge \ldots \wedge \sigma_{n}\right)^{*}=t$ and so $M(L)$ is in B_{n}
(ii) implies (i). The case $n=\omega$ follows from Proposition 5.2.3. For $n=0, M(L)$ is

Boolean. Then by Proposition 5.2.3, L is sectionally pseudo-complemented.
Suppose $x \in[0, y]$. Then the pseudo-complement μ_{x}^{*} of μ_{x} is also the complement of μ_{x}. Thus, $\mu_{x} \vee \mu_{x}^{*}=l$. If x^{+}is the pseudo-complement of x in $[0, y]$, then by Corollary

5.2.4

$y=t(y)=\left(\mu_{x} \vee \mu_{x}{ }^{*}\right)(y)=\mu_{x}(y) \vee \mu_{x}{ }^{*}(y)=\mu_{x}(y) \vee \mu_{x}{ }^{*}(y)=(x \wedge y) \vee x^{*}=x \vee x^{*}$. This implies x^{+}is the relative complement of x in $[0, y]$ and hence, L is semiboolean.

Now, suppose $M(L)$ is in $B_{n}, 1 \leq n \leq \omega$. Let $x_{1} \ldots \ldots \ldots . . x_{n} \in[0, y]$.
Then using Proposition 5.2.2

$$
\begin{aligned}
y=t(y) & \left.=\left[\left(\mu_{x_{1}} \wedge \ldots \wedge \mu_{x_{n}}\right) \vee \stackrel{V_{=1}^{n}\left(\mu_{x_{1}} \wedge \ldots \wedge \mu_{x_{1}} \wedge \ldots \wedge \mu_{x_{n}}\right.}{ } \cdot\right]\right](y) \\
& =\left(\left(\mu_{x_{1}} \wedge---\wedge \mu_{x_{n}}\right) \cdot\right.
\end{aligned}
$$

Lemma 5.2.6:

(i) Let L be a distributive lattice with 0 . If $0 \leq x \leq L$ and the interval $[0, x]$ is pseudocomplemented, where y^{+}is the pseudo- complement of $x \in[0, x]$ then in the lattice of ideals of $L \cdot(y]^{*} \cap(x]$ and $\left(y^{++}=(y)^{*} \cap(x]\right.$.
(ii) If L is a distributive near lattices with 0 and $0 \leq x \leq L$ is such that (y$]^{*} \cap(\mathrm{x}]$ is principal for each $y \in[0, x]$, then $[0, x]$ is pseudo-complemented and $(y]^{*} \cap(x]=\left(y^{+}\right]$.

Lemma 5.2.7: Let L be a distributive lattice with 0 . For any $r \in L$ and any ideal I ,

$$
((r] \cap I)^{*} \cap(r]=I^{*} \cap(r] .
$$

Proof: Obviously, RHS \subseteq LHS. To prove the reverse inclusion, let $\mathrm{t} \in((r] \cap I) \cap(r]$.

Then $t \leq r$ and $t \wedge r \wedge i=0$ for all $i \in I$. This implies $t \wedge i=0$ and so $t \in I^{*}$. Thus, $t \in I^{*} \cap(r]$ and this completes the proof

Lemma 5.2.8: If S is sub lattice of a distributive lattice L and is a prime ideal in L_{L}, then there exists a prime ideal P in L such that $P_{1}=S_{1} \cap P$.

Proof: Let I be the ideal generated by P_{1} in L. Then $\left.I=(H]\right]$ where H is the hereditary subset of L generated by P_{1}. Suppose $x \in I \cap\left(L_{l}-\mathrm{P}_{1}\right)$. Then $x \in I$ and $x \in S_{1}-P_{1}$. Then by Theorem 11 in [2], $x=h_{1} \vee$ \qquad $\checkmark h_{i}$ for some
$h_{1} \ldots \ldots \ldots \ldots . . . h_{i} \in H$. Again, $h_{i} \in H$ implies $h_{1} \leq t_{1} \leq t_{i}$ for some $t_{i} \in P_{i}, \mathrm{i}=1,2 \ldots \ldots . . \mathrm{n}$.
Then $x=\left(x \wedge h_{1}\right) \vee$ \qquad $\left(x \wedge h_{n}\right) \leq\left(x \wedge t_{i}\right) \vee$ \qquad $\left(x \wedge t_{n}\right) \leq x$ (this exists by the upper bound property). Thus, $\mathrm{x}=\left(x=\left(x \wedge t_{1}\right) \vee \ldots . . \vee\left(x \wedge t_{n}\right) \in p_{1}\right)$ which gives a contradiction. Therefore, $I \cap\left(L_{1}-P_{1}\right)=\varphi$. Then as $L_{1}-P_{1}$ is a filter in $L_{1}, \quad I \cap\left(L_{1}-P_{1}\right)=\varphi$, where $\left(L_{1}-P_{1}\right)$ is the filter generated by $L_{1}-P_{1}$ in L. Then by Theorem in [7], there is a
prime ideal P in L such that $I \subseteq P$ and $\left(L_{1}-P_{1}\right) \cap P=\phi$. Then $P_{1} \subseteq I \cap L_{1} \subseteq P \cap L_{1}$ and $P \cap L_{1} \subseteq P_{1}$.Hence, $P_{1}=L_{1} \cap P$

A prime ideal P of a near lattice L with 0 is a minimal prime ideal if there exists no prime ideal Q such that $Q \subseteq P$. Thus, we have the following corollary. We omit the proof as it can be done in a similar way.

Corollary 5.2.9: If L_{1} is a sub lattice with a smallest element of a distributive lattice L_{1} with O and P_{1} is a minimal prime ideal in L_{1}, then there exists a minimal prime ideal P in L such that $P_{1}=L_{1} \cap P$.

We conclude this paper with the following theorem which is a nice extension of Theorem4.5 in [1].

Theorem 5.2.10: Let L be a distributive lattice with 0 . For a given n such that $1 \leq n \leq \omega$ the following conditions are equivalent
i) L is sectionally in B_{n}
ii) $M(L)$ is in B_{n}
iii) For any $y \in L$ and for $x_{1} \ldots \ldots x_{n} \in(y]$,
$(y] \subseteq\left(\left(x_{1}\right] \wedge \ldots \ldots .\right.$. $\left.\wedge\left(x_{n}\right]^{*}\right) \vee\left(\left(x_{1}\right]\right)^{*} \vee$ \qquad $\vee\left(\left(x_{1}\right]\right)^{*}\left(\left(x_{1}\right] \wedge\right.$ \qquad $\wedge\left(x_{n}{ }^{*}\right)^{*}$
(iv) For any x_{1} \qquad $x_{n} \in L$ $\left(\left(x_{1}\right] \wedge \ldots \wedge\left(x_{n}\right]\right) * \vee\left(\left(x_{1}\right]^{*} \wedge \ldots \wedge\left(x_{n}\right]\right) * \vee \ldots \vee\left(\left(x_{1}\right] \wedge \ldots \wedge\left(x_{n}\right]^{*}\right) *=L$
(v) L is sectionally pseudocomplemented and each prime ideal contains at most n minimal prime ideals;
(vi) L is sectionally pseudocomplemented and for any $\mathrm{n}+1$ distinct minimal prime ideals $P_{1}, \ldots \ldots \ldots, P_{n+1}, P_{1} \vee$ \qquad $\vee P_{n+1}=L$

$$
\left.\left(\left(r \wedge x_{1}\right] \wedge \ldots \ldots \wedge\left(r \wedge x_{n}\right]\right)^{*} \wedge(r]\right)=\left(\left(x_{1}\right] \wedge \ldots . . \wedge\left(x_{n}\right]\right)^{*} \wedge(r]
$$

Again, for each $1 \leq i \leq n, r \wedge x_{i} \leq x_{i}$ implies $\left(r \wedge x_{i}\right]^{*} \supseteq\left(x_{i}\right]^{*}$ Thus.

$$
\left.\left(\left(r \wedge x_{1}\right] \wedge \ldots \ldots . \wedge\left(r \wedge x_{i}\right]\right)^{*} \wedge \ldots \ldots . .\left(r \wedge x_{n}\right]\right) \supseteq\left(\left(r \wedge x_{1}\right] \wedge \ldots . . \wedge\left(r \wedge x_{i}\right]^{*} \wedge \ldots . .\left(r \wedge x_{n}\right]\right) .
$$

Psendocomplemented distributive lattices
and so

$$
\begin{aligned}
& \left.\quad\left(\left(r \wedge x_{1}\right] \wedge \ldots \ldots . \wedge\left(r \wedge x_{i}\right]\right)^{*} \wedge \ldots \ldots . .\left(r \wedge x_{n}\right]\right)^{*} \wedge(r] \\
& \left.\left.\subseteq\left(\left(r \wedge x_{1}\right] \wedge \ldots . \wedge\left(r \wedge x_{i}\right]^{*} \wedge \ldots . .\left(r \wedge x_{n}\right]\right)^{*} \wedge(r]\right)\right) \\
& \left.=\left(\left(x_{1}\right] \wedge \ldots . . \wedge\left(x_{i}\right]\right)^{*} \wedge \ldots \ldots \ldots . . \wedge\left(x_{n}\right]\right)^{*} \wedge(r] .
\end{aligned}
$$

By using Lemma 5.2.7 again.
Therefore, $(r] \subseteq\left(\left(x_{1}\right] \wedge \ldots \ldots . . \wedge\left(x_{n}\right]^{*} \vee\left(\left(x_{1}\right]^{*} \wedge \ldots \ldots \wedge\left(x_{n}\right]\right)^{*} \vee \ldots . . \vee\left(\left(x_{1} \wedge \ldots . . . x_{n}\right]^{*}\right)^{*}\right.$. Which implies that,
$\left(\left(x_{1}\right] \wedge \ldots \ldots . \wedge\left(x_{n}\right]^{*} \vee\left(\left(x_{1}\right]^{*}\right) \wedge \ldots \ldots \wedge\left(x_{n}\right]\right)^{*} \vee \ldots \ldots \vee\left(\left(x_{1} \wedge \ldots \ldots x_{n}\right]^{*}\right)^{*}=L$
If $n=1$, then for any r , we have by (iii) that

$$
(r] \subseteq\left(c \wedge x_{1}\right]^{*} \vee\left(r \wedge x_{1}\right]^{*} .
$$

Thus,

$$
\begin{aligned}
(r] & =\left(\left(r \wedge x_{1}\right]^{*} \cap(r] \vee\left(\left(r \wedge x_{1}\right]^{* *} \cap(r]\right)\right. \\
& =\left(\left(x_{1}\right]^{*} \cap(r]\right) \vee\left(\left(r \wedge x_{1}\right]^{*} \cap(r]\right) \quad \text { (by Lemma 2.7) } \\
& \subseteq\left(x_{1}\right]^{*} \vee\left(x_{1}\right]^{* *}
\end{aligned}
$$

and hence $\left(x_{1}\right]^{*} \vee\left(x_{1}\right]^{* *}=L$
(iv) implies (i) following exactly from the same proof of Theorem 5.2 .5 (iv) \Rightarrow (i) in [1].
(v) implies (vi). Suppose (v) holds, and P_{1} \qquad P_{n+1} are distinct minimal prime ideals. If $P_{1} \vee$ \qquad $\vee P_{n+1} \neq L$, them by Theorem 5.2 .6 , there exists a prime ideal P containing P_{1} \qquad P_{n+1} which contradicts (v),
(vi) implies (v). Suppose (vi) holds. If (v) does not hold then there exists a prime ideal P which contains more then n minimal prime ideals. They by (vi), $P=L$ which is impossible.
(v) implies (vi). We omit this proof as it can be prove exactly in a similar way
(iv) implies (vi) in Theorem 5.2.5 in [1].
(vi) implies (i). Suppose (vi) holds and $a \in L$. Let $Q_{1}, \ldots \ldots \ldots, Q_{n+1}$ be $n+1$ distinct minimal prime ideals in $[0, a]$. By Corollary 5.2.9, there are minimal prime ideals P_{i} in L, such that $Q_{i}=[0, a] P_{i}$ for each $1 \leq i \leq n+1$. Since Q_{i} are distinct, all P_{i} 's are also distinct. $B y(v i)$,
$(a]=(a] \wedge\left(P_{1} \vee\right.$ \qquad $\left.\vee P_{n+1}\right)=\left((a] \vee P_{1}\right) \vee$ \qquad $\vee\left((a] \wedge P_{n+1}\right)=Q_{1} \vee$ \qquad $\vee Q_{n+1}$.
Since each interval $[0, a]$ is pseudocomplemented, so $[0, a]=B_{n}$ by Theorem 1 in [4], and hence, L is section ally in B_{n}

CHAPTER SIX

Homomorphism and standard ideals

Introduction: In this Chapter we studies extensively standard ideal and homomorphism kernels. The idea of standard ideals in lattice was first introduced by [15], [21]. It had extended the ideal to convex sub lattices and proved many results on homomorphism by [10], [33] also [7] and [8]

A congruence φ of a lattice L is called standard if $\phi=\Theta_{(s)}$ for some standard ideal S of L. For any two lattice L_{1} and L_{2}, a map $\phi: L_{1} \rightarrow L_{2}$ is called an isotone if for any $x, y \in L$, with $x \leq y$ implies $\phi(x) \leq \phi(y)$. Also the above mapping is called a meet homomorphism if for all $x, y \in L_{1}, \quad \phi(x \wedge y)=\phi(x) \wedge \theta(y)$.

Therefore meet homomorphism is an isotone, and hence ϕ is isotone.
$\therefore \phi(x) \vee \phi(y) \leq \phi(x \vee y)$. Therefore $\phi(x) \vee \phi(y)$ exists by upper bound property of L.Latif in his thesis has introduced the concept of standard n - ideals of a lattice. We conclude this section with some more properties of standard and neutral ideals, For the background meterial on standard ideals we refer the reader to consult the text of Gratzer [18]. We also extended the result of Cornish and A.S.A Noor [4], we also show that If I is an arbitrary ideal and S is standard ideal then $I \wedge S$ and $I \vee S$ are principal, then I itself principal.

Secondly, we have discussed homomorphism, kernels and stadard ideals. Gratzer and Schmitd in [15] were translated several thorem of Group theory to lattice theory. Here we have generalized so of their result, we have shown that if S is a standard ideal of a lattice L, then Θ_{s} the extension of $\Theta(\mathrm{S})$ to $I(L)$ and $\Theta(\mathrm{S})$ is the restriction of Θ_{S} to the lattice L. Then we have shown that in a sectionally complemented lattice all congruences are standard. We also show that in a relatively complemented lattice L with 0 , if every standard ideal of L is generated by a finite number of standard elements, then the congruence lattice $C(L)$, is Boolean.

Finally, we have generalized two results of [5] and [6] regarding lattices all of whose congruence are standard. We know that the set of all standard ideals of a lattice L is a sub lattice of $I(L)$. Also the congruence Θ_{S} where S is standard form a sub lattice of $\Theta(I(L))$, and $S \rightarrow \Theta_{S}$ is an isomorphism. Suppose Θ is a congruence relation of L. θ delines in the natural way a homomorphism of $I(L)$ under which $I=J(I, J \in I(L))$ if and only if to any $x \in I$ there exists $a, b \in J$ such that $x \equiv y \Theta$ and conversely. We call this congruence relation the extension of Θ to I (L). On the other hand any congruence relation φ of $I(L)$ induces a congruence relation of A under which $x \equiv y$ if and only $\operatorname{if}(x] \equiv(y](\varphi)$. This is called the restriction of φ to L.

Thirdly in [15] Gratzer and Schmidt have proved Isomorphism theorem for standard ideals in lattices. In their paper they have translated several theorems of group theory to lattice theory using ideal, standard ideal, factor group and group operation. Here we shall generalize isomorphism theorem.

We refer the reader to [6], [7], [8], [9] for a necessary background on this section.

6.1 Charecterization of standard ideals

We start with the following characterization of standard ideals in a lattice, which is due to [4]. We prefer to include the proof for the convenience of the reader.

Theorem:6.1.1 Let S be an ideal in a lattice L. Then the following conditions are equivalent.
(i) S is a standard ideal.
(ii) The binary relation $\Theta_{(s)}$, defined by $x \equiv y \Theta_{(s)}$, if and only if $x=(x \wedge y) \vee(x \wedge a) \vee y=(x \wedge y) \vee(y \wedge b)$ for some $a, b \in S$ is a congruence relation.
iii) The binary relation ϕ defined by $x \equiv y(\phi)$, if and only if

For all $t \in L,(x \wedge t) \vee(t \wedge c)=(y \wedge t) \vee(t \wedge c)$ for some $c \in S$ is a congruence.
iv) For each ideal $K, S \vee K=s \vee k: s \vee k$ exists, and $s \in S$ and $k \in K$. Moreover, (ii) and (iii) represent the same congruence, viz. $\Theta(S)$, the smallest congruence of L having S as congruence class.

Proof: (i) implies (ii). If (i) holds, then the relation
$J \equiv K(\Theta s)(J, K \in I(L))$ if and only if $J=(J \cap K) \vee(J \cap S)$ and $K=(J \cap K) \vee(K \cap S)$ is a congruence on $I(L)$. Then $\Theta s / L$, restriction to L , is a congruence on L and $x \equiv y(\Theta s / L)$ if and only if $(x)=(x \wedge y) \vee(x \cap S)$ and $(y]=(x \wedge y)((y] \cap S)$.

Thus to prove (ii), it is sufficient to prove that $(x]=(x \wedge y] \wedge((x] \cap S)$ implies $x=(x \wedge y) \vee(x \wedge a)$ for some $a \in S$. This is proved by induction. By the property of the supremum of two ideals, $(x \wedge y] \vee\left((x] \cap S=\bigcup_{n=0}^{\alpha} L n\right.$, where $L_{0}=(x \wedge y] \cup((x] \cap S$ and $L n=\left\{t \in L: t \leq p \vee q ; p \vee q\right.$ exists and $\left.p, q \in A_{n-1}\right\}$ for $\mathrm{n}=1,2, \ldots \ldots \ldots \ldots$.

Indeed, we show by induction that $(x \wedge y] \vee((x] \cap S)=\{t: t \leq(x \wedge y] \vee(x \vee a)$ $(x \wedge y] \vee((x] \cap S)=\{t: t \leq(x \wedge y] \vee(x \vee a)$ for some $a \in S\}$.

If $t \in L$ then $t \in(x \wedge y]$
Or, $t \in(x] \cap S$. In the first instance, $t \leq x \wedge y \leq(x \wedge y) \vee(x \wedge s)$ for any $s \in S$ and in the second instance $t=t \wedge x \leq(x \wedge y) \vee(x \wedge t)$ and $t \in S$. Thus the result holds for $n=0$. Suppose the result hold for $n-1$ for some $n \geq 1$. Let $t \in L$, then $t \leq p \vee q$ with $p, q \in L_{n-1}$.

So $p \leq(x \wedge y) \vee\left(x \wedge s_{1}\right)$ and $q \leq(x \wedge y) \vee\left(x \wedge s_{2}\right)$ for some $s_{1}, s_{2} \in S$
Then $t \leq(x \wedge y) \vee\left(x \wedge s_{1}\right) \vee\left(x \wedge s_{2}\right)=(x \wedge y) \vee(x \wedge s)$.
For some $s \in S$ since $\left(x \wedge s_{1}\right) \vee\left(x \wedge s_{2}\right) \leq S$ and is in S , it is of the form $x \wedge s$ for some $s \in S$. Thus, we have $(x \wedge y] \vee((x] \cap s)=\{t: t \leq(x \wedge y) \vee(x \wedge s)$ for some $s \in S$; in fact , $x \leq(x \wedge y) \vee(x \wedge a)$ for some $a \in S$ and so $x=(x \wedge y) \vee(x \wedge a) ;$ as required.
ii) Implies (iii), Let $x \equiv y(\Theta(S))$. Since $\Theta(S)$ is a congruence , $x \wedge t=y \wedge t(\Theta(S))$ for any $t \in L$, and so $x \wedge t=(x \wedge y \wedge t) \vee(x \wedge t \wedge a)$ and $\wedge t=(x \wedge y \wedge t) \vee(x \wedge t \wedge b)$ for some $a, b \in S$.Then
$(x \wedge t) \vee[t \wedge[t \wedge a) \vee(t \wedge b)]=(x \wedge t) \vee(t \wedge a) \vee(t \wedge b)(x \wedge y \wedge t) \vee(t \wedge a) \vee(t \wedge b)$ $=(y \wedge t) \vee(t \wedge a) \vee(t \wedge b)=(y \wedge t) \vee(t \wedge[(t \wedge a) \vee(t \wedge b)$.

Observe taht $(t \wedge a) \vee(t \wedge b) \in S$. Thus, $x \equiv y(\phi)$
Conversely, if $x \equiv y(\phi)$ then for any $t \in L,(x \wedge t) \vee(t \wedge c)=(y \wedge t) \vee(t \wedge c)$ for some $c \in S$. Choosing $t=x$ and $t=y$, we have $x=(x \wedge y) \vee(x \wedge t)$ and $y=(x \wedge y) \vee(y \wedge c)$ respectively. Thus, $x \equiv y(\Theta(S))$ and ϕ is the congruence $\Theta(S)$.
iii) Implies (iv). Let $T=\{s \vee k: s \vee k$ exixts and $s \in S$ and $k \in K\}$. Suppose $x \leq s \vee k$, $s \in S, k \in K$. Clearly $s \vee k \equiv k(\Theta(S)$ and so $x=x \wedge(s \vee k) \equiv(x \wedge k)(\Theta(S))$.

Hence for all $t \in L$,
$(x \wedge t) \vee(t \wedge c)=(x \wedge k \wedge t) \vee(t \wedge c)$ for some $c \in S$ Choosing $t=x$, we obtain $x=(x \wedge k) \vee(x \wedge c)$ and so $x \in T$. But T is closed under existent finite suprima. It follows that T is an ideal of L and $T=S \vee K$.
iv) Imlies (i) Let $x \in J \cap(S \vee K)$.Then $x \in J$ and $x \in(s \vee k)$. So $x=s \vee k$ for suitable $s \in S$. And $k \in K$ Then, $x=(x \wedge s) \vee(x \wedge k)$ and so $x \in(J \cap S) \vee(J \cap K)$. The reverse inclusion is obvious. Thus $J \cap(S \cap K)=(J \cap S) \vee(J \cap K)$; S is a standard ideal. The last part is clear from the proof of (ii) implies (iii). Now we give another characterization of standard ideals of a lattice. This is a generalization of [15, Theorem 2]

Theorem 6.1.2: For an ideal S of a Lattice L, the following conditions are equivalent;
(i) S is a standard ideal.
ii) The equality $I \cap(S \vee K)=(I \cap S) \vee(I \cap K)$ holds if I and K are principal ideals.
(iii) If for the principal ideals I and J the inequality $J \subseteq S \vee I$ holds, then
$J=(J \cap S) \vee(J \cap I)$.
iv) The relation $\Theta[\mathrm{S}]$ of L defined by $x \equiv y(\Theta(S))$ hold if and only if $x=(x \wedge y) \vee(x \wedge a)$, $y=(x \wedge y) \vee(y \wedge b)$ for some $a, b \in S$ is a congruence realtion.

Proof: (i) Implies (ii) is obvious, from the definition of the standard ideal.
(ii) Implies (iii) is clear.
iii) Implies (iv). Obviosly the relation is an equivalence relation. Let $x \leq y$ and $x \equiv y(\Theta(S))$ then $y=x \vee(y \wedge b) y$ for some $b \in S$. Suppose for some $t \in L, y \vee t$ exists. Then $y \vee t$ exists.

Hence, $y \vee t=(x \vee t) \vee(y \wedge b) \leq(x \vee t) \vee((y \vee t) \wedge b) \leq y \vee t$
thus $y \vee t=(x \vee t) \vee(y \vee t) \wedge b)$. So $x \vee t \equiv y \vee t(\Theta S))$.

Now, $y \wedge t \leq x \vee(y \wedge b) \in(x] \vee S$, so $(y \wedge t] \subseteq(x] \vee S$
Then by (iii) $(y \wedge t]=(x \wedge y \wedge t) \vee(s \wedge y \wedge t], 0=(x \wedge t] \vee(s \wedge(y \wedge t])$. Then a similar proof of (i) implies (ii) of Theorem 5.1.1 shows that $y \wedge t=(x \wedge t) \vee(y \vee t) \wedge a)$; for some $a \in S$. Thus (S) is a congruence relation.
(iv) implies (i) holds by theorem 5.1.1 \square

We conclude this section with the following result, which is a generalization of a well known result of lattice theory of [15, Lemma 8]

Theorem: 6.1.3: Let I be an arbitrary and S be a standard ideal of the lattice L. If $I \vee S$ and $I \cap S$ are principal, then I itself is principal.

Proof: Let $I \vee S=(a]$ and $I \cap S=(b]$. Then by Theorem 6.1.1, $a=x \vee s$ for some $x \in I$ and $s \in S$. Since $b \leq a$ and $x \leq a$, so $x \vee b$ exists by the upper bound property of L. We claim that $I=(x \vee b)$. Of course $(x \vee b] \subseteq I$. For the reverse inequality, let $t \in I$. Since $t, x \vee b \leq a$ so again by the upper bound property of $\mathrm{L}, w=t \vee x \vee b$ exixts and $w \in L$.

Then $(a] \supseteq S \vee((w] \supseteq S \vee(x \vee b] \supseteq S \vee(x]=(a)$, i.e., $S \vee(w]=S \vee(x \vee b]$.
Further, $(b]=S \cap I \supseteq S \cap(x \vee b]=s \cap(b]=(b]$, and so $S \cap(w]=s \cap(x \vee b]$.
This two equalities imply that $(w]=(x \vee b]$ as S is standard and so $w=x \vee b \in(x \vee b]$.
Since $t \leq w, t \in(x \vee b]$ and hence $I=(x \vee b]$, which completes the proof

6.2 Standard ideals and Homomorphism kernels

Gratzer and Schmidt in [15] proved many results on homomorphism kernels and standard ideals of a lattice. Their main aim was to translate several theorems of Group theory to lattice theory. In this chapter we have Generalized some of their results. We have also given the charecterizations of those lattices whose all congruences are standard, which are generalizations of two papers [5] and [6].

A congruence φ of a lattice L is called a standard if $\varphi=\Theta(S)$ for some standard ideal S of L.

Definition (Isotone): For any two lattice L_{1} and L_{2}, a map $\varphi: L_{1} \rightarrow L_{2}$ is called an istone if for any $x, y, \in L_{1}$ with $x \leq y$ implies $\varphi(x) \leq \varphi(y)$.

Definition(Meet homomorphism): For any two lattices L_{1} and L_{2}, a map $\varphi: L_{1} \rightarrow L_{2}$ is called a meet homomorphism if for all $x, y \in L_{1}, \varphi(x \wedge y)=\varphi(x) \wedge \varphi(y)$.

Therefore, it is clear that every meet homomorphism is an istone.
Defination(Join homomorphism): $\varphi: L_{1} \rightarrow L_{2}$ is called Join homomorphism if $\varphi(x \vee y)=\varphi(x) \vee \varphi(y)$ for all $x, y \in L_{1}$.

Since φ is istone $\varphi(x) \vee \varphi(y) \leq \varphi(x \vee y)$. Therefore, $\varphi(x) \vee \varphi(y)$ exists by the upper bound property of L_{2}.

In chapter 1, we have given homomorphism theorem for lattice. Now we generalize two isomorphism theorems of [9] for lattice.

Definition: If $\theta: L_{1} \rightarrow L_{2}$ be an onto homomorphism. The set $\left\{x \in L_{1} / \theta(x)=o^{1}\right\}$ where 0^{1} is least element of L_{2} is called kernel of θ and is denoted by $\operatorname{Ker} \theta$ if L_{2} does not have the zero element, ker ϕ does not exist.

Definition(Sublattice): A non empty subset A of a lattice L is called a sub lattice of L if $a, b \in A$ implies that $a b, a \vee b \in \mathrm{~A}$. If L is any lattice and $a \in L$ then $\{\mathrm{a}\}$ is sublattice of L.

Theorem 6.2.1: Homomorphic image of relatively complemented lattice is relatively complemented.

Proof: $\varphi: L_{1} \rightarrow L_{2}$ be an onto homomorphism and suppose L_{1} is relatively complemented.
Let $\left[x^{1}, y^{1}\right]$ be any interval in L_{2} since θ is onto homomorphism,
\exists Pre-images x and y for x^{1}, y^{1} respectively such that $\varphi(x)=x^{1}$
$\varphi(y)=y^{1}$ and $x<y\left(a x^{1} \angle y^{1}\right)$.
Thus [x, y] is an interval in L_{1}.
Let $b \in\left[x^{1}, y^{1}\right]=[\phi(x), \phi(y)]$ be any element. Then as before \exists a pre-image a of b , such that $\quad \theta(a)=b$ and $x \leq a \leq y$.

Now L_{1} relatively complemented implies that a has a complement a ${ }^{1}$ relative to $\left[x^{1}, y^{1}\right]$
i.e

$$
\begin{aligned}
& \quad a \wedge a^{1}=x, a \vee a^{1}=y \\
& \Rightarrow \varphi(a) \wedge \varphi\left(a^{1}\right)=\varphi(x), \varphi(a) \vee \varphi\left(a^{1}\right)=\varphi(y) \\
& \Rightarrow b \wedge \varphi\left(a^{1}\right)=x^{1}, b \vee \varphi\left(a^{1}\right)=y^{1} \\
& \Rightarrow \varphi\left(a^{1}\right) \text { is complement of } \mathrm{b} \text { relative to }\left[x^{1}, y^{1}\right] .
\end{aligned}
$$

Thus each element in any interval in L_{2} has complement, going us the required result
Theorem 6.2.2: $\theta: L_{1} \rightarrow L_{2}$ is an onto homomorphism where L_{1}, L_{2} are lattices and 0^{1} is least element of L_{2}, then kernel θ is an ideal of L.

Proof: Since θ is onto, $0^{1} \in L_{2}$ thus $\operatorname{ker} \theta \neq \phi \quad$ as pre-mage of 0^{1} exists in L_{1}.
Now $\mathrm{a}, \mathrm{b} \in \operatorname{ker} \theta \Rightarrow \theta(a)=o^{\prime}=\theta(b) \quad \theta(a \vee b)=\theta(a) \vee \theta(b)=0^{\prime} \vee 0^{\prime} \Rightarrow a \vee b \in \operatorname{ker} \theta$.
Again $a \in \operatorname{ker} \theta, l \in \mathrm{~L}$ gives $\theta(a)=0^{1}, \quad \theta(a \wedge l)=\theta(a) \wedge \theta(l)=0^{1} \wedge l=0^{1}$

$$
\Rightarrow a \wedge l \in \operatorname{ker} \theta
$$

Hence $\operatorname{ker} \theta$ is an ideal of L
Theorem 6.2.3: Let S be a standard ideal. Then Θ_{S} is the extension of $\Theta_{(S)}$ to $I(L)$ and $\Theta(\mathrm{s})$ is the restriction of Θ_{S} to the lattice L.

Proof: Let Θ_{S} be the extension of Θ_{S} to $I(L)$ and $I=J\left(\Theta_{(s)}\right)$.

We suppose $I \subseteq J$. Choosing $a, y \in I$. We can find an $x \in I(y \geq x)$ with $x \equiv y\left(\Theta_{(s)}\right)$ and so there exists an S_{xy} with $y=x \vee\left(y \wedge s_{x y}\right)$. The ideal S^{1} generated by the $y \wedge S_{x y}$ satisfies $S^{1} \subseteq S$ and $I \vee S^{1}=J$. Hence $I \equiv J(\theta)$. On the other hand, if $I \equiv J\left(\Theta_{s}\right)$ then $I \vee S^{1}=J$ with a suitable $S^{1} \subseteq S$. Then for any $y \in J$ it follows that $y \in I \vee S$ and so for any $y \in J$ it follows that $y \in I \vee S$ and so $y=x \vee s=x \vee(y \wedge s)$ for some $s \in S$ as S is standard .Thus $x \equiv y\left(\Theta_{(s)}\right)$ [Theorem 6.1.1] and hence $\Theta_{(s)}=\Theta_{s}$.

To prove the 2 nd assertion, suppose $(a] \equiv(b]\left(\Theta_{s}\right)$.

Then $(a]=(a] \wedge(b] \Theta_{s}=(a \wedge b]\left(\Theta_{s}\right)$ and hence $(a]=(a \wedge b] \vee S^{1}$ for suitable $s^{1} \subseteq S$.
Then $a \in(a \wedge b) \vee S$ and since S is standard [Theorem 6.1.1].

So $a=(a \wedge b) \vee\left(a \wedge s_{1}\right)$ for some $s_{1} \in S$.
Similarly, we can show that $b=(a \wedge b) \vee\left(b \wedge s_{2}\right)$ for some $s_{2} \in S$. Thus $(a] \equiv(b]\left(\Theta_{s}\right)$.
Hence $\Theta_{(\mathrm{s})}$ is the restriction of Θ_{s} to L
Recall that a congruence Θ of L is a standard congruence of $\Theta=\Theta(S)$ for some standard ideal S of L. Thus we have the following corollary.

Corollary 6.2.4: The correspondence $\Theta(s) \rightarrow \Theta_{S}$ is a isomorphism between the lattice of all standard congruence relations of L and the lattice of all principal standard congruence relations of $I(L)$. If \mathbf{S} is a standard ideal of a lattice L, then $\theta_{(s)}$ is the congruence relation
defined in [Theorem 6.1.1. The congruence induced by S and S is the kernel of the homomorphism induced by $\theta_{(s)}$. Thus in a lattice every standard ideal is a homomorphism kernel of at least one congruence relation.

Following figure shows that even in lattice theory, the converse of this is not true.

Figure- 6.1
The principal ideal (a] of this lattice is a homomorphism kernel, but it is not standard for $x \wedge(a \vee t)=x$ but $(x \wedge a) \vee(x \wedge y)=y$.

Recall that a lattice L with 0 is sectionally complemented if $[0, x]$ is a complemented sub lattice for each $x \in L$.

Theorem 6.2.5: Let L be a sectionally complemented lattice. Then every homomorphism kernel of L is a standard ideal and every standard ideal is the kernel of precisely one congruence- relation.

Proof: Suppose the ideal I of L is homomorphism kernel induced by the congruence relation θ. Let $a \equiv b(\theta), a, b \in L$, then $a \wedge b \equiv a(\theta)$ and $0 \leq a \wedge b \leq a$. Since L is sectionally complemented, so there exists c; such that $a \wedge b \wedge c=0$ and $(a \wedge b) \vee c=a$.

This implies $0=(a \wedge b) \wedge c=a \wedge c=c(0)$. Since I is a homomorphism kernel, so $c \in I$. Moreover, $a=(a \wedge b) \vee c=(a \wedge b) \vee(a \wedge c)$; similarly, we can show that $b=(a \wedge b) \vee(b \wedge d)$ for some $d \in I$. Therefore, I is a standard ideal

At the same time we have proved that if i is the kernel of the homomorphism induced by θ, then $\theta=I(\theta)$. Hence every standard ideal is the kernel of precisely one congruence relation. Thus we have the following corollary;

Corollary 6.2.6: In a sectionally complemented lattice all congruencies are standard.
We know, an ideal (s] is standard if and only if s is a standard element. Moreover, we can easily show that an ideal generated by finite number of standard elements is standard.

Theorem 6. 2.7: Let L be a relatively complemented lattice with 0 . If every standard ideal of L is generated by a finite number of standard elements, then $C(L)$ the congruence lattice is Boolean. Moreover, the converse of this is not true.

Proof: Let $\varphi \in C(L)$ with $w<\varphi<w_{1}$ where w and w_{1} are the smallest and the largest congruence. Since L is relatively complemented, so by Corollary 5.1.6 above, $\varphi=\Theta_{(s)}$ for some standard ideal S . Then $(0] \subset S \subset L$. Since every standard ideal is generated by a finite number of standard elements, so there exist standard elements $a_{1} \ldots \ldots \ldots . a_{m}$ and $b_{1} \ldots \ldots b_{n}$, such that $s=\left(a_{1} \ldots \ldots \ldots . . a_{m}\right]$ and $L=\left(b_{1} \ldots \ldots \ldots . b_{n}\right]$. Then $(0] \subset\left(a_{1} \ldots \ldots . . a_{m}\right) \subset\left(b_{1} \ldots \ldots . . b_{n}\right)$. Since $\left(a_{1} \ldots \ldots . . a_{m}\right] \subset\left(b_{1} \ldots \ldots . . b_{n}\right]$, at least one of $b \notin\left(a_{1} \ldots \ldots \ldots . . . a_{m}\right]$. Suppose $b_{1_{1}}, b_{1_{2}}, \ldots \ldots ., b_{l_{r}}$ are the only elements $\left\{b_{1} \ldots \ldots b_{n}\right\}$, such that they do not belong λ to $\left(a_{1} \ldots \ldots \ldots . . a_{m}\right]$. Then of course $\left(a_{1} \ldots \ldots \ldots . . . a_{m}\right] \vee\left(b_{I_{1}}, b_{I_{2}}, \ldots \ldots \ldots, b_{1 r}\right]=L$. Set $C_{k}=(q \wedge q)_{k} \vee \ldots \ldots . \vee \cdot\left(a_{m} \wedge g\right)_{K}$ for each $\mathrm{k}, 1 \leq k \leq r$, then $0 \leq c_{I K} \leq b_{I_{K}}$ and each $c_{I_{K}}$ is standard. Since L is sectionally complemented, there exist $d_{I_{K}}$, such that $c_{l_{k}} \wedge d_{I_{k}}=0$ and $c_{l_{K}} \vee d_{I_{k}}=b_{I_{k}}$. Since each $d_{I_{\kappa_{K}}}$ is standard.

Now $c_{t_{k}} \in\left(a_{1} \ldots \ldots . . . a_{m}\right)$ for cach k.

Thus $\left(a_{I} \ldots \ldots a_{m}\right) \vee\left(d_{i_{1}} \ldots \ldots . d_{l_{r}}\right] \geq\left(c_{1_{l}}, \ldots \ldots . c_{l_{r}}\right] \vee\left(d_{l_{1}} \ldots \ldots . d_{1_{k}}\right]$
$=\left(c_{l_{1}} \vee d_{l_{I}}\right] \vee$ \qquad $\vee\left(c_{l_{r}} \vee d_{l_{r}}\right]=\left(b_{l_{l}}\right] \vee$ \qquad $\vee\left(b_{l_{r}}\right]=\left(b_{l_{1}} \ldots \ldots \ldots . . . b_{l_{r}}\right]$, and so (a_{1} \qquad . $\left.\mathrm{a}_{\mathrm{m}}\right] \vee\left(d_{l_{1}}\right.$ $\left.d_{l_{r}}\right]$
$=\left(b_{l_{1}}\right.$ \qquad $\left.b_{l_{r}}\right] \vee\left(a_{l}\right.$ \qquad $\left.a_{m}\right]=A$

Also as each a_{1} is standard.
So $\left(a_{l}, \ldots \ldots \ldots . a_{m}\right] \cap\left(d_{l_{K}}\right]=\left(\left(a_{i}\right] \vee\right.$ \qquad $\left.\left(a_{m}\right]\right) \cap\left(d_{l_{k}}\right] \cap\left(b_{l_{k}}\right]$
$=\left(\left(a_{l} \wedge b_{I_{K}}\right] \vee \ldots \ldots \ldots \ldots \ldots . \ldots\left(a_{m} \wedge b_{I_{K}}\right]\right) \cap\left(d_{I_{K}}\right],=\left(\left(a_{I} \wedge b_{I_{K}}\right) \vee\right.$ \qquad $\left.\vee\left(a_{m} \wedge b_{l_{k}}\right)\right] \cap\left(d_{l_{k}}\right]$
$=\left(c_{l_{K}}\right] \cap\left(d_{t_{K}}\right]=(o]$. Then using the standardness of each $d_{t_{K}}$, we have
$\left(a_{l} \ldots \ldots \ldots \ldots \ldots \ldots . . . a_{m}\right] \cap\left(d_{l} \ldots \ldots \ldots \ldots \ldots . . . d_{l_{k}}\right]=(0]$
Thus we obtain a standard ideal $T=\left(d_{I_{1}}\right.$ \qquad $\left.d_{l^{\prime}}\right]$ of L ,
such that $\theta(\mathrm{T})$ is the complement of φ. Therefore, $C(L)$ is Boolean. For the converse statement, consider the following lattice L Here it is easy to see that $C(L)$ is Boolean.

Figure 6.2
$L=(a, d]$, which is of course a standard ideal. But both a and d are not standard elements of L
[8] and [9] have characterized those lattices whose all congruence is standard and neutral.
Our following theorems give characterizations to those lattices whose all congruence are standard and neutral. These are certainly generalizations of above authors work.

Theorem 6.2.8: Let L be a lattic. Then the following conditions are equivalent.
(i) All congruence of L is standard.
(ii) L has a zero and for $x, y \in L$ there exists $a \in L$, such that $x=(x \wedge y) \vee(x \wedge a)$, $a \equiv \Theta(x \wedge y, x)$.

Proof: (i) imply (ii). Since the smallest congruence w of L is standard. L must have a zero.

Let $x, y \in L$, then $\Theta(x \wedge y, x)=\Theta(I)$, for some standard ideal I.
i.e., $x=(x \wedge y(\Theta(I)$, where I is standard, hence $x=(x \wedge y) \vee(x \wedge a)$ for some $a \in I$.

Hence $a \equiv \vartheta(\Theta(x \wedge y, x))$.
(ii) Implies (i). Let ϕ be a congruence and $I=[0] \phi$. Suppose $x \equiv y(\phi)$. Then by (ii) there exists $a \in L$ such that $x=(x \wedge y) \vee(x \wedge a)$ and $a \equiv 0(\Theta(x \wedge y, x)$. Since $\Theta(x \wedge y, x) \leq \varphi$, so $a \equiv 0(\phi)$ and hence $a \in I$. Similarly $y=(x \wedge y) \vee(y \wedge b)$ for some $b \in I$.

Thus I is a standard ideal and $\varphi=\Theta(I)$, and so (i) holds
Theorem 6.2.9 : Let L be a lattice. Then the following conditions are equivalent.
(i) All congruence of L is neutral.
(ii) L has a zero and satisfies the condition:
$x \leq(t \wedge y) \vee(t \wedge z) ; t, x, y, z \in L$, implies the existence of $a \in L$, such that $x \vee(t \wedge a)=(a \wedge t \wedge y) \vee(a \wedge t \wedge z) \vee(x \wedge y), a \equiv o \Theta(x \wedge y, x)$ (iii) L has a zero and satisfies the condition
$x \leq(t \wedge y) \vee(t \wedge z) ; t, x, y, z \in L$, implies the existence of $a \in L$, such that $x \vee(t \wedge a)=(t \wedge a \wedge y) \vee(y \wedge((t \wedge a) \vee x)), a \equiv 0 \Theta(x \wedge y, x)$.

Proof: L must have a zero of $w=\Theta(\{0\})$.

Let $x \leq(t \wedge y) \vee(t \wedge z) ; t, x, y, z \in L$.
Then $\Theta(x \wedge y, x)=\Theta(I)$ for some neutral ideal I. since I is standard, by the above theorem there exists $a \in I$ such that $x=(x \wedge y) \vee\left(x \wedge a_{l}\right)$.

Now $x \wedge a_{l} \leq(t \wedge y) \vee(t \wedge z), a_{l} \in I,\left(x \wedge a_{l}\right] \subseteq I$, and $\left(x \wedge a_{1} \leq((t \wedge y) \vee(t \wedge z)]\right.$.
Hence $\subseteq I \cap(t \wedge y] \vee(t \wedge z])=\left(I \cap(t \wedge y] \vee(I \cap(t \wedge z])\left(\mathrm{x} \wedge \mathrm{a}_{1}\right)\right.$ as I is neutral.
Therefore, $x \wedge a_{1} \leq p \wedge q$, for some $p \in I \cap(t \wedge y]$ and $q \in I \cap(t \wedge z]$.
Thus, $p \leq t \wedge y, q \leq t \wedge z \mathrm{p} \leq \mathrm{t} \wedge \mathrm{y}$, and $p, q \in I$. Hence $p=p \wedge t \wedge y$ and $q=q \wedge t \wedge z$.
Let $p \vee q=a$, then $x \wedge a_{1} \leq a=(p \wedge t \wedge y) \vee(q \wedge t \wedge y) \leq(a \wedge t \wedge y) \vee(a \wedge t \wedge z) \leq a$.
Hence $a=(a \wedge t \wedge y) \vee(a \wedge t \wedge z), a \in I$.

But $a \vee(x \wedge y)=a \vee\left(x \wedge a_{1}\right) \vee(x \wedge y)=a \vee\left(x \wedge a_{1}\right) \vee(x \wedge y)=a \vee x$.

Thus. $(a \wedge t) \vee x=a \vee x=a \vee(x \wedge y)=(a \wedge t \wedge y) \vee(a \wedge t \wedge z) \vee(x \wedge y)$ and $a \equiv 0(\Theta(x \wedge y, x)) \Theta(I)$ as $a \in I$
(ii) implies (iii). Let $x, y, z, t \in L$ and $x \leq(t \wedge y) \vee(t \wedge z)$, then there exists $a \in L$, such that $a \equiv 0(\Theta(x \wedge y, x))$ and $x \vee(t \wedge a)=(a \wedge t \wedge y) \vee(a \wedge t \wedge z) \vee(x \wedge y)$.

Now
$x \vee(t \wedge a)=(a \wedge t \wedge y) \vee(a \wedge t \wedge z) \vee(y \wedge(x \wedge(t \wedge a))) \leq(a \wedge t \wedge y) \vee(a \wedge t \wedge z) \wedge(y \wedge(x \wedge y)$ $=x \vee(t \wedge a)$,
hence $x \vee(t \wedge a)=(a \wedge t \wedge z) \vee(y \wedge(x \vee(t \wedge a))))$. Thus (iii) holds. (iii) implies (i). Let φ be any congruence of L. Suppose $x \geq y$ and $x \equiv y(\phi)$. Let $I=[0] \phi$. Since $x \geq y x=y \vee x$ so by (iii) with $t=z=x$ there exists an $a \in L$, such that $x \vee(x \wedge a)=(a \wedge x \wedge x) \vee(y \wedge(x \vee(x \wedge a)))=(x \wedge a) \vee y$.i.e $\quad x=(x \wedge a) \vee y$,
where $a \equiv 0(\Theta(x \wedge t, x)) \leq \phi$ [since Theorem 6.1.1].
Hence I is a standard ideal and $\phi=\Theta(I)$.
Now it suffices to show that all standard ideals of L are neutral. Let I be a standard ideal of L and $x \in L \cap(J \vee K)$ for some ideals J and K. Then $x \in I$ and $x \in J \vee K$. Then $x \in L_{m} \quad$ for some $\mathrm{m}=0,1,2 \ldots \ldots . .$. , where $A_{0}=J \cup K$.
$L_{m}=\left\{t \leq p \vee q: p \vee q \in L_{m-1}\right\}$.
Suppose $x \in L_{0}$. Then $x \in I$ and $x \in J$ or $x \in K$, and so $x \in(I \cap J) \vee(I \cap K)$. Now we will use the induction. Suppose $y \in L_{m-1}$, and $y \in I$ implies that $y \in(I \cap J) \vee(I \cap K)$. Since $x \in L_{m}, x \leq p \vee q$ for suitable $p, q \in L_{m-1}$. Set $t=p \vee q$. Then $x \leq(t \wedge p) \vee(t \wedge q)$. Then by (iii) there exists $b \in L$ such that $x \vee(t \wedge b)=(b \wedge t \wedge q) \vee(p \wedge(t \wedge b) \vee x)), b \equiv 0(\Theta(x \wedge p, x))$. Since $x, x \wedge p, 0 \in I$ and I is a homomorphism kernel, we get $b \in I$.

Hence $x \vee(t \wedge b) \in I$.
Further $(x \vee(t \wedge b)) \wedge p) \vee((x \vee(b \wedge t) \wedge q) \geq(x \vee(t \wedge b)) \wedge p) \vee(b \wedge t \wedge q)=x \wedge(t \wedge b)$.
Putting $a=x \vee(t \wedge b)$, we get $x \leq a=(a \wedge p) \vee(a \wedge q)$ with $a \in I$.
Now both $a \wedge p, a \wedge r$ are members of I and L_{m-1}. Thus both $a \wedge p, a \wedge q \mathrm{a} \wedge \mathrm{p}, \mathrm{a} \wedge \mathrm{q}$ belongs to $(I \cap J) \vee(I \cap K)$, and so $x \in(I \cap J) \vee(I \cap K)$.

Hence I is neutral

Theorem 6.2.10: Let k be an ideal in a lattice. Then following conditions are hold.
(i) K is a standard ideal
(ii) The binary relation $\Theta(K)$, defined by $x=y \Theta(x)$, if and only if
$x=(x \wedge y) \vee(x \wedge a), y=(x \wedge y) \vee(y \wedge b)$ for some $a, b \in K$ is a lattice congruence.
(iii) The binary relation φ, defined by $x=y(\phi)$ if and only if for all $t \in S$
$(x \wedge t) \vee(t \wedge c)=(y \wedge t) \vee(t \wedge c)$, for some $c \in K$, is lattice congruence. (iv) For each ideal $H, K \vee H=\{k \vee h: k \vee h$ exists and $k \in K$ and $h \in H\}$.

In Chapte: 3 Theorem 3.1.4 proved the theorem.
Theorem 6.2.11: Let L be a lattice with a smallest element o in which each initial segment is a complemented lattice. Then the map $K \rightarrow \Theta_{(k)}$ is a lattice - isomorphism of the lattice of standard ideals of L on to the lattice - congruence of L.

Proof: Let ϕ be a lattice - congruence of L and $J=\{x \in L: x \equiv o(\varphi)\}$. Of course J is an ideal. Suppose $a \equiv b(\phi)$ and let c and d be respective complements of $a \wedge b$ in $(a]$ and $(b]$. Then $c=c \wedge a=c \wedge a \wedge b=0(\Theta)$ and $d=d \wedge b \equiv 0(\phi)$. Also $a=(a \wedge b) \vee(a \wedge c)$ and $b=(a \wedge b) \vee(b \wedge d)$ with $c, d \in J$. Conversely, these last relations imply $a=b(\phi)$.

Hence by the above theorem J is a standard ideal and $\varphi=(H)(J)$.
The remainder follows from corollary: The standard ideals of a lattice L form a distributive sub lattice of the ideal - lattice $J(L))$ and the map $K \rightarrow \Theta(K)$ is a lattice - embedding of this sub lattice into the distributive lattice of all lattice congruence on L.

The situation is more complex when it comes to permutability. We close this section with some result in this direction.

A lower semi lattice $(L: \wedge)$ is called medial if the supermum $(x \wedge y) \vee(y \wedge z) \vee(z \wedge x)$ exists for all $x, y, z \in L$. This is equivalent to saying the supremum of any three elements exists when the suprema of each pair exist. Thus a medial lower semi lattice is a lattice and so will be referred to as dedial lattice \square

6.3. Isomorphism's Theorem

Definition(Isomorphism's): Let (P, R) and (Q, R) be two posets. A one-one and on to map $f: P \rightarrow Q$ is called an isomorphism's if $x R y \Rightarrow f(x) R^{1} f(y), x, y \in P$.

If we use the same symbol \leq for both the relations R and R^{1} and thus our definition translates to a one-one, onto map $f: p \rightarrow a$ is called an isomorphism's if $x \leq y \Leftrightarrow f(x) \leq f(y)$. We write in that case $P \cong Q$. It is easy to show that the relation of isomorphism's is an equivalence relation.

In fact a map $f: P \rightarrow Q$ is called isotone if $x \leq y \Leftrightarrow f(x) \leq f(y)$.
Gratzer and schmidt have proved isomorphism theoerms for standerd ideals in lattices. In their paper they have transleted serveral theoerms of group theory to lattice theory using ideal, standard ideal, factor lattice and join operation for subgroup, invariant subgroup, factor group and group operation respectively. In this section we generalize two isomorphism theorem for standard ideals of lattices.

Definition(Congruence classes): Set of all congruence classes of a lattics L for any congruence Θ on $L, L / \Theta$ denotes the set of all congruence classes of L.

We define \wedge on L / Θ by $[a] \Theta \wedge[b] \Theta=[a \wedge b] \Theta$.If for any $a, b \in L, a \vee b$ exists, then we define $[a] \Theta \vee[b] \Theta=[a \vee b] \Theta$.

Theorem 6.3.1: A mapping $f: L \rightarrow M$ is an isomorphism iff f is isotone and has an isotone inverse.

Proof: Let $f: L \rightarrow M$ be an isomorphism. Then f being one-one, onto f^{-1} exists and is one-one onto. Again by definition of isomorphism, f will be isotone. We show $f^{1} ; M \rightarrow L$ is also isotone. Let $y_{1}, y_{2} \in M$, where $y_{1} \geq y_{2}$. Since f is onto, $\exists x_{1}, x_{2} \in L$ s.t $f\left(x_{1}\right) y_{1}, f\left(x_{2}\right)=y_{2} \Leftrightarrow x_{1}=f^{-1}\left(y_{1}\right), x_{2}=f^{-1}\left(y_{2}\right)$.

Now $y_{1} \leq y_{2}, f\left(x_{1}\right) \leq f\left(x_{2}\right) \Rightarrow x_{1} \leq x_{2}$ [from the definition of isomorphism]
$\Rightarrow f^{-1}\left(y_{1}\right) \leq f^{-1}\left(y_{2}\right) \Rightarrow f^{-1}$ is isotone.

Conversely, let f be isotone such that f^{-1} is also isotone, since f^{-1} exists, f is one-one, onto. Again, as f is isotone $x_{1} \leq x_{2} \Rightarrow f\left(x_{1}\right) \leq f\left(x_{2}\right), x_{1}, x_{2} \in L$.

Also f^{-1} is isotone implies $f\left(x_{1}\right) \leq\left(x_{1}\right) \leq f\left(x_{2}\right) \Rightarrow f^{-1} f\left(x_{1}\right) \leq f^{-1}\left(f\left(x_{2}\right) \Rightarrow x_{1} \leq x_{2}\right.$.
Thus $x_{1} \leq x_{2} \Leftrightarrow f\left(x_{1}\right) \leq f\left(x_{2}\right)$. Hence f is an isomorphism
Theorem 6.3.2: L / Θ is a lattice.

Proof: Of course L / Θ is a meet semilattice. We need only to show that it has the upper bound property.

Let $[a] \Theta,[b] \Theta \leq[c] \Theta$, then $[a] \Theta=[a] \Theta \wedge[c] \Theta=[a \wedge c] \Theta$ $[b] \Theta=[b] \Theta \wedge[c] \Theta=[b \wedge c] \Theta$.

Now, $(a \wedge c) \vee(b \wedge c)$ exists by the upper bound property of L.
Hence $[a \wedge c] \Theta \vee[b \wedge c] \Theta=[(a \wedge c) \vee(b \wedge c)] \Theta$ and so $[a] \Theta \vee[b] \Theta$ exists.
Therefore, L / Θ is a lattice.
If Θ is a congruence of a lattice L, then the $\operatorname{map} \phi: L \rightarrow L / \Theta$ defined by $\phi(a)=[a] \Theta$ is the natural homomorphism. This is known as the homomorphism induced by Θ. For a standard ideal S of L, we denote the quotient lattice $L / \Theta_{(s)}$, simply by L / S

Now we give the homomorphism theorem for lattices which is a generalization of [Lattice Theory First Concepts by Gratzer Theorem 11 p-26]

Theorem 6.3.3: Every homographic image of a lattice L is isomorphic to a suitable quotient lattice L. In fact if $\phi: L \rightarrow M$ is a homomorphism of L onto M and if ϕ is the congruence relation of L defined by $x \equiv y \Theta$ if and only if $\phi(x)=\phi(y)$, then $L / \Theta=L_{1}$; is an isomorphism given by $\psi ;[x] \Theta \rightarrow q(x), x \in L$.

Proof: Since φ is a homomophism then it is casy to check that Θ is a congruence relation.
To prove that Ψ is an isomorphism, we have to check that (i) Ψ is well defined.
Let $[x] \Theta-[y] \Theta$. Then $x \equiv y(\Theta)$; thus $\phi(x)=(p(y)) \Rightarrow([x] \Theta \psi=[y] \Theta \psi$. i.e. Ψ is wel defined.
(ii) Ψ is one - one. $\psi([x]) \Theta=\psi(y) \Theta \Rightarrow \varphi(x)=\varphi(y)$ then $x=y(\Theta)$ and so

A
$[x](\Theta)=[y](\Theta)$, i.e., Ψ is one - one.
(iii) Ψ is onto : Let $x \in L$ since φ is onto There is any $y \in L$ with $\varphi(y)=x$.

Thus, $([y] \Theta) y \Psi=x$, i.e., Ψ is onto .
(iv) Preserves the operations. i.e. Ψ is homomorphism. Let $[x] \Theta,[y] \Theta \in L / \Theta$.

Therefore, $\psi([x] \Theta \wedge([y] \Theta)=\Psi([x \wedge y] \Theta=\varphi(x \wedge y)=\varphi(x) \wedge \varphi(y)$
$=\Psi([x] \Theta) \wedge \psi([y] \Theta)$, and finally for \vee. Suppose $[x] \Theta \vee[y] \Theta$ exists.
Then $[x] \Theta \vee[y] \Theta=[t] \Theta$ for some $t \in L$. So $[x] \Theta \subseteq[t] \Theta$ and $[y] \Theta \subseteq[t] \Theta$.
This implies $[x] \Theta=[x] \Theta \wedge[t] \Theta=[x \wedge t] \Theta$.
Similarly $[y] \Theta=[y \wedge t] \Theta$.
Then $\psi([x] \Theta \vee[y] \Theta)$
$=\psi([x \wedge t] \Theta \vee[y \wedge t]) \Theta=\psi([(x \wedge t) \vee(y \wedge t)] \Theta)$
$=\varphi((x \wedge t) \vee(y \wedge t))=\varphi(x \wedge t) \vee \varphi(y \wedge t)$
$=\psi([x \wedge t] \Theta \vee \psi([y \wedge t] \Theta)$
$=\psi([x] \Theta \vee \psi([y] \Theta)$.
Hence Ψ is a lattice homomorphism and so it is an isomorphism \square

Theorem 6.3.4 (First isomorphism theorem for standard ideals): I et I be a lattice, S be a standard ideal and I an arbitrary ideal of L. Then $S \cap I$ is a standard ideal of I and $(I \cup S) / S \cong I /(I \cap S)$.

Proof: 1st part mentioned here in Theorem 6.1.3
For the 2nd part, we can use the first isomorphism theorem for universal algebra [38 Theorem 1.2]. Then it remains to prove that every congruence class of $I \vee S$ may be represent by an element of I. So let $x \in I \vee S$. Then [since Theorem 6.1.1] $x=i \vee s$ for some $i \in I, s \in S$. Moreover $x=i \vee s \equiv i \Theta(s)$.

Hence congruence class that contains x may be represented by $i \in I$. That is $[x] \equiv[i] \Theta(s)$. Therefore $(I \cup S) / S \cong I /(I \cap S)$

For the 2 nd isomorphism theorem we need the following results. We omit the proofs as they are very trivial.

Lemma 6.3.5: Let the correspondence $x \rightarrow \bar{x}$ be lattice homomorphism of lattice L onto a lattice \vec{L}. If s is a standard element of L, then \vec{s} is a standard element of \bar{L}

Corollary 6.3.6: Let $x \rightarrow \bar{x}$ be a lattice homomorphism of L onto \bar{L}.
Let s be an ideal of L, and denote by \bar{S} the homomorphic image of S under this homomorphism .If S is standard in L then \bar{S} is standard in \bar{L}

Theorem 6. 3.7 (Second isomorphism theorem for standard ideals):
Let L be a lattice, s be an ideal and T be a standard ideal of $L . S \subseteq T$. Then S is a standard ideal of L if and only if S / T is a standard ideal in L / T and in this case $L / S \cong(A / T) /(S / T)$.

Proof: First suppose that s is a standard ideal of L. Let $\varphi: L \rightarrow L / T \varphi$: be the natural mapping. Then $x \rightarrow \bar{x}$ is a lattice homomorphism and onto.So by Corollary 5.2.6, \bar{S} is a standard ideal of L / T.

Now $\bar{S}=S / T$. Hence S / T is a standard ideal of L / T.
Conversely, suppose that S / T is a standard ideal of L / T.

We are to show that s is a standard ideal of L.

Let us define a relation $\Theta(S)$ by 6.1 .1 (ii), suppose $x \geq y$ with $x \equiv y(\Theta(s))$.

Then $x=y \vee s \mathrm{x}=$ for some $s \in S$.

Thus, for any $u \in L$, if $x \vee u$ exists, then $x \vee u=(y \vee u) \vee s$. This implies $x \vee u \equiv y \vee u(\Theta(s))$.

To prove substitution property for \wedge, suppose \bar{a} denotes the image of the element a under the homomorphism $L \rightarrow L / T$. Suppose $\bar{x} \equiv \bar{y}(\Theta(S / T))$. Since S / T is standard in L / T, there is a suitable $\bar{s} \in S / T$, such that $\bar{x} \wedge \bar{u}=(\bar{y} \wedge \bar{u}) \vee \bar{s}$.

Further, since T is standard in L we can find $a \in T$ such that $x \wedge u=[(y \wedge u) \vee s] \vee t$.

We put $s_{1}=s \vee t$ and get $x \wedge u=(y \wedge u) \vee s_{1}, s_{1} \in S$. Hence $\Theta(s)$ is a congruence relation of L, and so by 6.1.1, S is standard.

In above proof we have also shown that the congruence classes of L / T under $\Theta(S / T)$ are the homomorphism image of those of L under $\Theta(s)$. Then the second isomorphism theorem for universal algebra [38, Theorem 1.4] finishes the proof

Reference

1. G. Birkhoff: Lattice theory, Amar Math. SOC. Colloq, Publ. 25,3rd Edition,(1967)
2. R. Balbes: A representation theory for prime and implicative semilattices, Trans, Amer Math. Soc 126 (1969) 261--267.
3. W.H. Cornish and Hicman. Weakly distributive semilattices, Acta Math, AcadSci, Hunger. 32(1978), 5-16.
4. W.H Cornish and A.S.A. Noor, Standard elements in a nearlattice Bull. Aust. Math Soc Volume 26. No-2 Oct 1982, 185-213.
5. Chinthayamma Malliah and Parameshwara Bhatta - Lattices all of whose Congruences are standard or distributive, manuscript.
6. Chinthayamma Malliah and Parameshwara Bhatta Lattice all of whose congruences are neutral Amer Math. Soc Vol 94 No. 1 May 1989.
7. Chinthayamma Malliah and Parameshwara Bhatta - A generalization of distributive ideals to convex sublatteces. Acta Math. Hunger. 48 (1986). No.1-2, Page 73-77

8 Chinthayamma Malliah and Parameshwara Bhatta-Generalizations of dually distributive and neutral ideals to convex sublattices, manuscript.
9. E.Evans:Median lattices and convex aub-algebras.Manuscript[18],G.Gratzer,General Lattice theory,Birkhauser verlag, Basel(1978)
10. E.Fried and E.T. Schmidt: Standard sublattices Alg.Univ. 5 (1975), 203-211
11. George Gratzer: Lattice Theory, First concept and distributive lattice, Freeman, Sanfrancisco 1971
12. George Gratzer -General lattice theory, Birkhauser Verlag Basel (1978)
13. Gratzer and H. Lakser: Extension theorems on congruences of partial lattices. 1.Notices, Amer. Math. Soc 15 (1968)

14 George Gratzer -Congruence extension and amalgamation, Trans, Amer, Math.Soc 156(1971) 343-358.
15. G. Gratzer and E. T. Schmidt: Standard ideals in lattices Acta Math, Acad. Sci Hung. 12(1961). 17-86.
16. G. Gratzer and H. Lakser, The structure of pseudocomplemented distributive attice 11 Congruence extension and amalgamation. Trans Amer. Math. Soc 156 (1971)343-358.

17 G. Gratzer and H. Lakser -The stucture of pseudocomplemented distributive lattices 111 Injective and absolute subratracts.Trans. Amer Math.Soc 169 (1972) 475-487.
18.G. Gratzer: General lattice theory, Birkhauser Verlag, Basel (1978)
19.R.C Hicman. Distributivity in semilattices Ph. D Thesis, Flinders University of Sauth Australia 1978.
20. R.C Hicman -Join algebras, Manuscript. To be published.
21. M.F Jamowitz, A charecterization of standard ideals, Acta Math. Acad. Sci. Hung. 16(1965) 289-301.
22. Vijoy K. Khanna. Lattices and Boolean Algebras (First concepts) Vikas publishing Pvt. LTD. New Delhi.
23. J.E Kist. Minimal prime ideals in commutative semigroups.proc London Math Soc (3), 13 (1983) 13-50.
24. R.C. Lyndon: Identites in two-valued calculi, Trans, Amar, Math.sco. 71(1951)457-465.
25. H. Lakser, principal congruences of pseudocomplemented distributive lattice, proc, Amar. Math. soc. 37(1973)32-36
26. H. Lakser-. The structure of pseudocomplemented distributive lattices 1 sub direct Decomposition, Trans. Amer Math. Soc. 156 (1971)335-342.
27. K. B. Lee. Equational classes of a distributive pseudocomplemented lattices.Canad J Math. 22(1970) 881-891.
28. P. Medarly, A charecterization of modular pseudocomplemented semilattices,College. Math. Soc J Bolyai Szeged. 14 (1975) 231-248.
29.Noor and Rahman. Separation properties in nearlattice. Accepted for publication in Rajshahi university studies.
30.A.S.A. Noor and M.A Ali: Minimal prime n-ideals of a lattice, The Journal of Science Math. Bengle University Review.India 9(1) (1998), 32-36.
31. A.S.A.Noor and Ayub Ali, Minimal prime n- ideals of a lattice. Submited in the Lurnal of science, North Bengal University India.
32. A.S.A.Noor and Ayub Ali - Lattices whose finitely genarated n - ideals from a stone lattice. Accepted in the Rajshahi university studies (part B) Bangladesh.
33.J. Niemeinen: Distributive, standard and neutral convex sublattices of a lattice. Comment, Math. Universilatis, sancti, Pauli vol, 33 no-1 (1984) Japan.
34. D.E. Rutherford, Introduction to lattice Theory, Oliver and Boyd 1965.
35. V.V Rozen. Partial operations in ordered Sets (Russian) Publishing house of Saratov University (1973)
36. M. Sholander: Medians lattices and Traces, proc. Amer. Math soc. 5(1954)801-812.
37. Universal algebra, Springer-verlag, New York, Heidelbery Berlin, 2nd edition 1979.
38. J.C.Verlet: on the charecterization of stone lattices Acta. SCi Math (Szeged) 27(1966)81-84
39. M. R. Talukder and A.S.A Noor: Modular ideals of a join semilattice directed below. SEA BULL Math, 22(1998) 215-218.

