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CHAPTER ONE
Introduction
This thesis studies the nature of Standard ideal of a lattice. The idea of

standard ideal in lattice was first introduced by G. Gratzer and E.T. Schmidt. The
characterization of standard ideal was first introduced by M. F. Jamowitz. It had
extended the ideal to convex sub lattices and proved many result of homomorphism by
E. Fried and E.T. Schmidt.

First we can define infimum of two ideals of a lattice in their set theoretic intersection
but supremum of two ideals / and J. In a lattice L is given by

IvJ={xel:x<iv j,1v] forsome iel, jeJ}.Inadistributive lattice, two idcals
Iand J, the supremum i.e., IvJ={iv j:iel,jeJ, where i, exists}.
- But in a general lattice the formula for the supremum of two ideals is not easy. We start
in chapter one the lemmas which gives the formula for the supremum of two ideals.

An ideal I of a lattice L is called standard if and only if / is standard as an element of
I(L) the lattice of all ideals of L .
That is of any ideals I,Le I(L),IAn(Jv S)=(IAL)v (I AS)
Any element of a lattice is standard if and only if it is distributive and modular. Thus, in
a modular lattice every distributive element is standard. Not only that in a modular lattice
every standard element is also neutral. Therefore, an ideal is standard if and only if it is
both distributive and modular. Since a neutral element n of L is modular if and only if
I(L) is modular. So every distributive ideal of L is standard when L is modular and n
is neutral.

A congruence ¢ of alattice L is called standard if for some standard ideal SofL.

A meet semi lattice together with the properly that any two elements possessing a
common upper bound have a suprimum. For any two lattice L,and L,,

amap @:L, = L, iscalled an isotone if for x, ye L any with x < y implies

@(x) < @(y), also the above mapping is called a meet homomorphism if for all x,ye L,
p(x A y)=@(x) A @(p) . Therefore, meet homomorphism is an isotone and

P(x) v @(y) < @p(x v y). Therefore, p(x) v @(y) exist by upper bound property of L,,
Chinthayamma Malliah and Parameshwara Bhatta have characterize those lattices, whose
all congruence are standard and neutral. Here we generalize characterization of those
lattice whose all congruence are standard.

In this thesis, we have studied several properties of Standard ideal of a lattice. Morcover,

we give several results on Standard ideal of a lattice which certainly extend and

gereralize many results in lattice theory.



In Chapter two, we have discussed ideals, congruence, length and covering
conc'i ,ons, For any subset K of a lattice L, (K] denotes the ideal gencrated by K.
Infimum of two ideals of a lattice is their set theoretic intersection. supremum of
two ir'als 1 and J ina lattice L is given by
L vl=IvJ={XelL/X<ivj for some icl,jeJ}. Cornish and Hickman in [3]
showed that in a distributive lattice L for two ideals / and J,

IvJ=livj:iel, jeJ, where iv j exists}. But in a general lattice the formula
for the supremum of two ideals is not very easy. Which are explain with some examples

and generalized many theorems of them.

In Chapter three, Standard and Neutral elements of a lattice and Traces have
been discussed. Standard elements in lattices were first studied in depth by Gratzer and
schmid [15]. Since then little attenton has been paid to these notions. A lower Semi
lattice is said to have the upper bound property if the supremum of any two clements
automatically exists when they share a common upper bound. According to Gratzer and
Schmidt [15] if a is an element of a lattice L then,

(i) a is called distributive if
(av (ras)=(avr)a(avs) forall r,seL;

(11) a is called standard if

ra(sva)=(ras)v(raa) forall r,selL;

(iii) a is called neutral if the sub lattice generated by r,s and a is distributive for all

i,jelL

e, (@Ar)v(ras)visaa)=(@vr)a(ras)a(sva) forall r,selL.

Standard and Neutral elements are essential for the further development of standard
ideals.

In chapter four we give a description of Prime ideals, minimal prime ideals and

normal. We have also studied Minimal prime n- ideals of a lattice. We give some

characterizations on minimal prime n-ideals which are essential for the further



development of this chapter. Here we provide a number of results which are
generalizations of the results on Normal and generalized Normal lattices.

In chapter five we studied relatively pseudocomplemented of a lattice. We have
also studied Multiplier extentions of pseudocomplemented lattices, These have been
studied by Cornish and Hicman [3] and many other authors. Here we extend several
results of Cornish and Hicman to lattices.

Pseudocomplemented distributive lattices satisfying Lee‘s identities form educational

subclasses denoted by B,, —1<n<w. Cornish and Mandelker have studied distributive
lattices analogues to B, -lattices and relatively B, -lattices. Morcover, Cornish, Beazer
and Davey have idependently obtained several characterizations of sectionally B,

lattices and relatively B, lattices.

These have been studied by Cornish and Hicman and many other authors. Here we
extend several results of Cornish and Hicman to lattices. .

Chapter six introduces the concept of standard ideals, homomorphism, kernels,which
have been studied by Gratzer, Schmidt and many other authors. We have given a
characterization of standard ideals also characterise in a lattice every standard ideal in a
homomorphism kernel of at least one congruence relation. Noor [32] has introduced the
concept of standard n- ideals of a lattice. We conclude this thesis with some more

properties of standard and neutral ideals, which are the basic concept of this thesis.



CHAPTER TWO

IDEALS AND CONGRUENCES OF A LATTICE

Introduction: The intention of this Section is to outline and fix the notation for some the

concepts of lattices which are basic to this thesis. We also formulate some results on
arbitrary lattices for later use. For the background material in lattice theory, we refer the
render to the text of Brikhoff [11], Gratzer [12], Rutherford [34],Talukder and Noor [39] and
Khanna [22].

By a lattice L, we will always mean a lower semi lattice which has the property that
any two clements possessing a common upper bound, have a supremun. Cornish and
Hickman [3] referred this property in their analysis as the upper bound property and a
semilattice of this nature as a semilattice with the upper bound property. We shall sce later,
the behavior of such a semilattice is closer to that of a lattice than an ordinary semilattice.
For the sake of brevity, we prefer to use the term lattice in place of semilattice with the
upper bound property.

The upper bound property appears in Gratzer and Lakser [13], While Rozen [35]
shows that it is the result of placing certain associativity conditions on the partial join
operation . Moreover, more recently Evans [9] referred nearlattices as conditional lattices.
By conditional lattice he means a lower semilattice L with the condition that for cach
xeL, {yeL/y <x} isa lattice ; and it is very easy to cheek that this condition is equivalent
to the upper bound property of L .

Whenever a lattice has a least element we will denote it by 0. If x,,x,,+- X

are elements of a lattice then by x, v x, v -+ x, , we mean that the supremum

n?e

of xj,xy e X, exists and x,,x, -+ X, » is the symbol denoting this supremum .



2.1 LATTICE

A non empty subset k of a lattice L is called a sub lattice of L if for any a,bek both

anband avb (whenever it exists in L) belong to k (Anand v are taken in L ) and the A
and v of k are the restrictions of the Anand v of L to k. Moreover, a sub lattice k of a

lattice L is called a sublattice of L if avbe KX for all a,be K. A lattice L is called

modular if for any a,b,ce L with c<a,an(bvc)=(aAb)vc whenever b v ¢ exists.

A Lattice L is called distributive for any x, x,,x, -+--+- %
XA, vx, v, Jvseess v, = (e v (o Ak Y sses (xvx,),
whenever x v x, v x, v x, exists. Notice that the right hand expression always exist by

the upper bound property of L.

Lemma 2.1.1: A lattice L is modular if and only if (x]={yeL /y<x}is a modular

lattice for each xe L .

Consider the following lattices:

e
u
d
a be c
b - M;
N;s
d
d
Figure-2.1 Figure- 2.2

Hickman in [19], [20] has given the following extension of a very fundamental result of

lattice theory.



Theorem 2.1.2: A lattice L is distributive il and only il Z does not contain a sublattice
isomorphic to Ns or M.

Now we give another extension of a fundamental result of lattice theory.

Theorem 2.1.3: A lattice L is modular if and only if L does not contain a sub lattice

isomorphic to Ns.
Proof: Suppose L does not contain any sub lattice isomorphic to Ny, then (x] does not

contain any sub lattice isomorphic to N, for cachxe L .Thus, a fundamental result of

lattice theory says that (x] is modular for each x€ S as (x] is a sublattice of L . Hence L is
modular by Lemma 2.1.1.

Conversely, let L be modular. If L contains a sub lattice isomorphic to N, then letting ¢ as

the largest element of the sub lattice. We see that (¢] is not modular [by lattice theory]. Thus,
by Lemma 2.1.1 is not modular and this gives a contradiction. This completes the proof.
In this context it should be mentioned that many lattice theorists’ e.g Balbes (2]

Varlet [39], Hickman [20] and Shum [34] have worked with a class of semi lattices L

which has the property that for each x,a,,a,,~—————-— a, €L,
ifava,v-——————ae va, exists

then (x Aa, )v (x A az)v ———————— v(x A a,,) exists

and equals x A (g, V dy vV ——=—————— va,)

R. Balbes [2] called them as prime semi lattices while D.E. Rutherford [34] referred them

as weakly distributive semi lattices [

Theorem 2.1.4: Let <R+> be aring and L be the set of all ideals of R. Then (L =)
forms a lattice, where forany 4, Be L,AAB=ANB

and Av B=A+ B< AU B < then L is modular.

6



Proof: Let A4, B,C € L be any three menibers with 42 B

We claim AN (B+C)=B=(4nC),

Letxe AN (B+C) beany element . Thenxe 4 andxe B+C = xe 4

and x=b+c,beB,ceC.Nowbe Bc A,b+c=xe€ A.

Thus,(b+c)-bed = (c+b)-beAdorthatce A=>xednC
ie,x=b+cbeBceAnC.Thus,xe B+(4NC) ie An(B+C)cB+(4nC)
Again by modular inequality (which holds in every lattice) 4 N (B + C); B+ (A NC).
Hence AN(B+C)=B+(4ANC).

L is a modular lattice O

Theorem 2.1.5: The normal subgroups of a group ordered by set inclusion form a

modular lattice.

Proof: Let G be any group and L be the set of all normal subgroup of G . Then L# Q) as

G e L(L <) is then a poset. For any 4, Be L, let AA B=An B which is well defined as

intersection of two normal subgroups is a normal subgroup and of course, 4N B is the

largest subset of 4 and B.

Again, define Av B=AB. Which is also well defined as 4B is a normal Subgroup.
Whenever A and B are normal. Also A < AB,Bc AB (as a€ A= aa=ac e AB ctc).
That 4B is the smallest normal subgroup containing 4 and B is also trivially seen to be
true. Indeed if C is any normal subgroup containing A4 and B, then ABcC.
(xeAB=>x=abeC asaceAcC,be B C).
Finally to check the modularity condition .

Let 4,B,C e L with A2 B be any members we show 4 A (B v C)=Bv(4AC)



e ANBC=B(ANC). Let xe AN BC be any clement.
Then xe 4 and xe BC

=3dbeB,ceC stx=bc
xed=>bceAdalsobeBcA=>b" e A.

Thus b'bce A= ce A=>ce ANC

SobeB,ce ANC=>bce B(ANC)=xe B(ANC).

Againif ye B(4NC), then y =bk where be Bjke ANC.
Nowbe Bc A,ke A=>bke A. Also be B,ke C = bk u BC .
Thus-, bke AN BC= B(ANnC)c An BC

Hence AN BC=B(ANC) [

Theorem 2.1.6: Any non modular lattice L contains a sub lattice isomorphic with the

pentagonal lattice.

Proof: Since L is non modular 3 at least three elements a,b,¢ with a>b,
stan(bac)zbv(anc).

We must Favea > b, and as in any lattice the modular inequality
azb,an(bac)=(bvavc)holds,

weget an(bve)>bv(anc)

Consider the chain
ancsbv(anc)<anbve)<bvec..... (1)

We show at all places strict inequality holds.

Suppose anc=bv(anc).Then b<anc=bvcec<(anc)ve.



an(bvc)

anc
bv(anc)

Fig-2.3
= bveseve=sbve=¢
=an(bvc)=anc, acontradictionto (i) .
Thus, anc<bv(anc).
Similarly, an(bvc)<bve.
Hence chain (I) becomes
anc<bv(@nc)<an(bve)<bvc-----mmmmm-- (2)
Consider now the chain anc<c<bve.
" As seen above b v ¢ =c leads to contradiction and

similarly, a A ¢ =c¢ would give a contradiction.

Henceanc<ec<bve

we show c¢ does not lie in chain (2). For this it is sufficient to proved that c is not

comparable with a A (bve).
Supposeaan(bvc)<c.

an(anbve)<anc

=an(bvc<ganc

a contradiction to (2).

Again,if an(bvc)>c, thenas azan(bve). Wefind a>c¢



wllich givesa A ¢ =c¢ acontradiction to (3).
Hence the chain (2) and (3) form a pentagonal subset
S={anc,bv(anc)l,anbve),bve,c} of L.
We show now this pentagonal subset is a sublattice for that meet and join of any two
elements oi’ S should lie inside S. Meet and join of any two comparable clements being
one of them is clearly in S'.
So we need to check it for only non comparable elements.
Now [an(bv)lac=an[(bvc)acl=anceSs.
Alsofan(bvec)ve]lz[bv(anc)ve by(2)
=bv[(anc)]=bve
andan(bvec)sbve givesan(bve)ves(bvcec)ve=bve.
Thus, [an(bvec)lve=bvceS.
Similarly,
we can show [bv(aac)]ve=bvcelS
[bv(@anc)lac=anceSs.

Hence S forms a sub lattice of L. Proving our assertion (1) [

Hiekman in [20] has defined a ternary operation j by j(x,y,z)=(xAy)Vv (¥ Az)
on a lattice L (which exists by the upper bound property of L ). In fact he has shown that

(also see Lyndon [24], theorem 4]) the resulting algebras of the type (L ; j) form a variety,

- which is referred to as the variety of join algebras and following are its defining identities.

10



(M) j(x,x,x)=x

(i) j(x, ¥, x)= j(¥, X, )

i) j(j(x, ¥, X), 2, j(x, y, x) = j(x, j(¥,2,¥), X0

() j(x,y,2) = j(z,y,x)

W) Jj(j(x,y,2), j(x,y, %), j(x, ¥,2) = (¥, ¥, X)

i) j(J(x, y,x), y,2) = j(x,,%)

ii) j(x, y, j(x,2,x)) = j(x,,X)

iii) j(j(x, y, j(W, ¥, 2), j(x, ¥, j(x, ¥, 2)) = j(x, ¥, 2)

We do not want to elaborate it further as it is beyond the scope to this thesis.
We call a lattice L medial lattice it for all x, y,z€ L,
m(x,y,z)=(x Ay)Vv (¥ Az)v(z Ax)exists. For a (lower) semitatticesS, if  m(x,y.z2)
exists for allx, y,ze S, then it is not hard to see that S has the upper bound property and
hence is a lattice. Distributive medial lattice were first studied by Sholander in [36] and
recently by Evans in [ 9 ]. Sholander preferaed to call these as median semi lattices. There
he showed that every medial lattice L can be characterized by means of algebra (s;m) of
type <3 > known as median algebra, satisfying the following two identities:
(i) m(a,a,b)=a.
(i) m(m(a,b,c),m(a,b,d),e)=m(m(c,d,e),a,b).
A lattice L is said to have the three properties if for any a,b,ce L,gvbvec exists,
“whenever av b,bvc and ¢V a exist. Lattice with the three propertics were discussed by
Evans in [9], where he referred. It is strong conditional lattices.

The equivalence of (i) and (iii) of the following lemma is trivial, while the proof of
(i) < (i1)is inductive [
Lemma 2.1.7: For alattice L the following conditions are equivalent.
(1) L has the three properly.
(ii) Every pair of a finite number n>3) of elements of L possess a supremum ensurcs the

existence of the supremum of all the n elements.

11




2.2. IDEALS OF LATTICES

A non empty subset / of a lattice L is called an ideal if it is hereditary and closed
under existent finite suprema. We denote the set of all ideals of L by /(L). If L has a
smallest element 0 then I(L) is an algebraic closure system on L, and is consequently an
algebraic lattice. However, if L dose not possess smallest element then we can only asscrt
that /(L) U {¢} isan algebraic closure system.

For any subset K of a lattice L, (K] denotes the ideal generated by K.
Infimum of two ideals of a lattice is their set theoretic intersection.Supermum of two ideals
I and J ina lattice L is given by

IvJ= (xe L/x<ivj forsome iel,jeJ} . Cornish and Hickman in [3] showed that

in a distributive lattice L for two ideals / and J.

IvJ ={ivjliel,jeJ, where iv j exists}. But in a general lattice the formula for
the supremum of two ideals is not very easy. We start this section with the following lemma
which gives the formula for the supremum of two ideals. It is in fact Gragter [11, p-54] for
partial lattice.

Definition (Ideal): A sub lattice I of a lattice L is called an ideal of L if ie/ iand aeL
implies that aniel .
Equivalently, a non empty subset I of a lattice L is an ideal if

() abel,avbel
(ii) ael and ie L impliesthat aniel.

13



Let L={1,2,3,5,6,10,15,30} be a lattice of factors of 30 under divisibility.
30

10 15
2 3

Figure-2.5
Then {1}, {1,2}, {1,3},{1,5}, {1,2,5,10}, {1,3,5,15} ,{1,2,3,6}, {1,2.3,5,6,10,15} are all the
ideals of L.

Lemma 2.2.1: Let I and J be ideals of a lattice L. Let B, =T U J ,

B,={xel/x<yvZyv existsand y,ze B, |} forn=123 ........... and K= U B,.

n=0
ThenK=71vJ.
Proof: Since BycB,cB,c——-——--— cB c-——————-——- , K is an ideal

containing / and J. Suppose H is any ideal containing / and J.Of course, B, < H . We
proceed by induction. Suppose B, , c H for some n>1 and let xe B,. Then x<yv:z
withy,ze B, | sinec B, , cH and H is an ideal, yvzeH and xeH. That is

B _, < Hforevern. Thus, K=/vJ [0

n=I|

Lemma 2.2.2: Let K be a non empty subset of lattice L. Then (K]= U {B, /n=0},

n=0
where B, ={tes/t=i(k,,t,k,},forsome k ,k, e K}and B, ={te L/t = j(u,,l,a,)

for some a,,a, € B, ,} for n>1.

14



Proof: Forany ke K ,clearly K =.J(k.k.k) andso K < B, similarly, forany ae B, ,

a= j(a,a,a)a implies that B, , < B, , Thus,

Ke By -hie——=—== E B C B, mme—amree

Lette U 4,;n=0]123---————— ,and f, €S suchthat ¢, 2¢. Then 1€ B,
n=0

for some m >0 clearly, ¢, = j(t,t,,/)t; andsot, € B,,, . Thus U B, is hereditary.
n=0

da
Now suppose, 1,,/, € U B, and ¢, v, exist. Let 1, € B, and{, € B, for some r,520
n=0

with » <s (say).Then t,,¢, € B,and {, v 1, = j(,,t, V,.t) says [, VI, €B,,, .

Finally, suppose H is an ideal containing K . If x € B, .
Then x = j{k,,x,k,)=(k, Ax)Vv (k, v x)for some k,,k, e K. AsKc H and H isan
ideal, K, Ax,K, Ax,e H and so x € /. Again we usc the induction.Suppose B, , < H
for some # =1. Let xe B, so thatx = j(a,,x,a,) forsome a,,a, €B,_,.
Then xe H as a,,a, € H andx=(a, A y)v (4, A x) O
Lemma 2.2.3: A non empty subset K of a lattice L is an idecal if only if x € & whenever
x is an element of L such that x = j (k,,x, k, )for same k,,k,,e K.
Proof: Since the only if part is of obvious, suppose x € & whenever x is an element of §
and x = j(k,,x,k,) for some k,,k, € K. Then clearly B,(of Lemma 2.2.2) < K. Now for

any x€ B,, x=(a,,x,a,) for some a,,a, € By € K. Thus xe Kandso B, c K .

Hence using induction .

We obtain that (K | = L1J B,c K ,ieK =(K]. Therefore K is an ideal (]

n=0

We now give an alternative formula for the supremum of two ideals in an arbitrary

lattice.

15
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Lemma 2.2.4: For any two idcals K, and K,, K, v K, = U B, where
n=u

B, ={xeL/x=j(k,,kk,),k,€K,} and B, ={xe L/x=j(b,x,b,),bb, € B,  }and

Suppose b e LaJ B, and b, <b;be L. Then beB, for some m=>o0. Also b, = j(b,b,,b)

n=0

i a
and so b e€B,, Thus U B,is hereditary. Now suppose exists f,,/, € U B,, such that
3 n=0 n=0

t, v't,exists. Then there exist ' 20 Such that ¢, € B, and ¢, € B, If r<I. Then 1,,1, € B,

and £, v, =j(tt vit,,t,) impliesthat t, v, € B,,,. Hence U B, is an ideal.
‘ . n=0

Finally, suppose H is an ideal containing K, and K, . Ifxe B, then
x=j(k, x,k,)=(k, Ax)v(k, Ax) forsome k, €K, and k,eK, since H is an idcal and
K,,K, cH. Clearly x € H.Then using the induction on n it is very easy o see that
H o B, foreachn [

Theorem 2.2.5: Cornish and Hickman [3,Theorem 1.1].
The following conditions on a lattice L are equivalent:

(1) L is distributive.
(ii) Forany H € H(L),

H]={t/hyv——————— vh,lh ————- h,eH.
(ii) Forany I,J € J(L) , IvJ={a, V.conurirnes va
(iv) J(L) is a distributive lattice.

(v) The map f:H — (H] is a lattice homomorphism of H(L) onto J(L) (which preserves

arbitrary suprema).
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Observe here that (iii) of above could easily be improved by 2.2.4 to (iii).

Forany I,.JeJ(L),IvJ={ivjliel jelJ}.
Let J,(L) form hence forth denotes the set of all finitely generated ideals of a
lattice L. Of course J, (L) is an upper subsemilattice of J(s) .

Also foraniy &, % i R [F g s x,, ) 1s clearly the supremum of
IV B Y ssaimaiimisnssenssnsans vi(x, ]
When L is distributive,

(xl'-‘x'l" """" ’xm)]m(yl?yli""yn)
S (CR I C N [V —— b (& ) Vgt (7 | ()7 ) R — v(y”]):u(x, Ay})for

)
Y XisXssnsann > S [ AP St vy, € L (by 1.2.5) and so J¢ (L) is a distributive sub
lattice of J(L). c.f Cornish and Hickman [3].

A Lattice L is said to be finitely smooth if the intersection of two finitely generated

ideals is itself finitely generated. For example, (i) distributive lattice, (ii) finite lattices, (iii)

lattices, which are finitely smooth. Hickman in [20] exhibited a lattice which is not finitely

smooth.

By Cornish and Hickman [3], we know that a lattice L is distributive if and only if /(L)
is s0. Our next result shows that the case is not the some with the modularity.
Theorem 2.2.6: Let L be a lattice. If /(L) is modular then L is also modular but the
converse is not necessarily true.

Proof: Suppose /(L) is modular. Let a,b,c € L with ¢<a and b v ¢ exists.
Then (c¢] < (a]. Since /(L) is modular, so [a A (b v ¢)=(a] A ((b] Vv (c]

=((alAa (b v(cl=(a@anb)vc].

Thus implies that a A(bv c)=(a A b) v c,and so L is modular,

Lattice L of figure 2.5 shows that the converse of this result is not true,
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4

0
Fig 2.6

Notice that (r]is modular for each » € L.Butin /(L) clearly {(0],(4,],(a,y].(a, b],L} is
a pentagonal sublattice.

A filter I of a lattice L is a non empty subset of L such that if f, f, € ¥ and xe L with
fi <x ,thenboth f, A f, and x are in F. A filter G is called a prime filter if G # L and

at least-one of &, 5 X5 geaisiioss sy ASI0 G whenever xy VX i v x, existsand is in G

An ideal p is a lattice L is called a prime ideal itP# L and x A ye P implies xe P or
ye P. It is not hard to see that a filter F' of a lattice L is prime if and only if L - F isa
prime ideal.

The set of filters of a lattice is an upper semilattice; yet it is not a lattice in general, as

there is no guarantee that the intersection of two filters is non empty.

The join F, v F, of two filters is given by

FvFE ={telLltzf Af, forsome f, eF,,f,eF,}.

The smallest filter containing a sub semi lattice H of L is {teL/t=h for somehe H |
and is denoted by [H).

Moreover, the description of the join of filters shows that for all

a,beLla)v[b)=[lanb) O
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Following theorem and corollary is duc to Noor and Rahman [ 24 ] which is an extension

of a well known theorem of lattice theory .

Theorem 2.2.7: Let L be alattice. The following conditions are equivalent.

(1) L is distributive.

(11) For any ideal / and any filter  of L suchthat / A F =g, there exists a prime ideal
P o 1P >l and disjoint from F'.

‘Corollary 2.2.8: A lattice L is distributives if and only if every ideal is the intersection

of all prime ideals containing it.

Theorem 2.2.9: A lattice L is modular if and only if the ideal lattice of L is modular.
Proof: Let the lattice L be modular.

Also let 4, B,C € I(L) be three members s.t Bo 4.

We show AN(BvC)=Bv(AnC).

Let xe A A(Bv C) be any element.

Then xe 4 and xe Bv C .
= xedand x<bwve for some beB, ceC.

Since be Bc A, xvbed.Let xvb=a

Nowx<bve,x<a=x<an(bvc)

= x<bv(anc)asa=b"and L is modular

Again anc<a,ac A=>ancea.

anc<c,ceC=anceC .

Thus ance AnC andas be B, we find xe Bv(AnC)

e AN(BvC)c Bv(AnC)

Bv(ANnC)c An(Bv C) follows by modular inequality or to prove it independently.

Let yeBv(ANnC).
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Then y<bvk where beB, ke(AnC)
Thus y<bvk(beBc Aked=bvked=bvked=ye A.
Also y<bvk,beBkeC=>yeBvC(C
ie, yedAn(Bv ()
Showing that Bv(ANC)c An(Bv ).
Hence AA(BUC)=BA(ANC) of that I(L) is modular.
Conversely, let /(L) be modular, since L can be imbedded in to (L), it is isomorphic to a
sub lattice of /(L). This sub lattice must be modular as /(L) is modular. Hence L is
mod-ular 0
Lemma-2.2.10: Union of two ideal may not be an ideal.
Proof : Let us suppose two ideals 4={1,2} B=1{1,3} of a lattice L ={1,2,3,4,6,12} under
divisibility. But 4 B is not an ideal, because 23€ AUB but2v3=6g AU B []
Theorem 2.2.11: Every convex sub lattice of a lattice L is the intersection of an ideal and
a dual ideal.
_ Proof: Let S be a convex sub lattice of a latice L. Alsolet 4 ={xeL3seS,x<S}.
Then 4 #¢ as S cA. Notice s<S V seS.
We show 4 is anideal of L. Let x, ye 4 be any elements.
Then, there exist S,,S €S, suchthat x < 88,
=XVYy S s vs,=>xvyedass vs,eS.
Again let .xe A4 and i€ L any elements. Then x<S for some se S .
Now x Al<x<s = xaAleA.
Hence 4 is anideal of L.

Let A'={xeL/3seS,s<x} thenby duality it follows that A' is a dual ideal of L .
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We show S=4nA" S cAnd' (by defof A4 and A" ). Let teAn A", Then re4 and
te A'
= 3,5, €8, such that s, <¢,/<y, ie,s <t<s,, (€[s,s,].Since S is convex
sublattice , 5,,5, €8, [5,5,]<S=>tes = a Ad'cS.
Hence S=An A4' O
Theorem 2.2.12: Dual of a modular lattice is modular.
Proof: Let L be a modular lattice. Let a,b,c € L, since L is modular.
sav(bac)=(av b)alave) Y a,b,c,e L.
Now we have to show that dual of L is modular
ie, an(bve)=(a ab)v (anc)Y ab,c,el'.
Here L' is the dual of L. Let a,b,c € L' be any there element, then

: (ax\b)v(az\c)z [lanb)va]l Al(anb)vc]

anbvi(anb)vc]

anl(cva)n(cvb)]

an(cva)n(cvb)
=an(bve).
Therefore, L' is modular.

Hence dual of a modular lattice is modular []
Theorem:2.2.13 L is distributive if the identity
xAay)viyaz)v@ax)=(xvy)a(yvz)a(zvx) holdsin L.

Proof: Let L be adistributive lattice. Then
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(W Y)AVE) A=Al VDAY OV ALY 2)A (Y )]
=[x AV} AV DIVIAY VD)) AV X))
=[x AV DIVIy Az v )]
=(xAy)vxaz)v(yaz)v(yAax)
=(xAy)v(yaz)v(zax).

Conversely, we first show that L is modular.

Let a,b,c be any three elements of L with a > b.Then

anbve)=lan(anc)ian(bve)
=(avb)an(avela(bve)
=(avb)an(bve)a(cva)
=(anb)v(bvc)v(cna)
=(bv(bac))v(cna)

=bv(anc)

i.e., L is modular.
Now for any x,y,ze L,

xA(yvz) =[xAa(xva)a(yvi)
=[xA(xvy)A(xv)]A(yvx)
=xAlxAay)v(yAzZ)v(zAX)
=xAl(yAz)v(xay)v(zax)]

Now using modularity,as x2xAy, x2zAx gives x2(xAy)Vv(zAX),
weget xAa(yvz)=[(xAay)vEzvi)v(yazAax)
=(xAp)vizax)v(zax)ayl]
(xAY)V(zAXx).
Hence L is distributive O
. Theorem 2.2.14 : Every distributive lattice is modular, but not conversely.
Proof: Let us suppose that L is distributive and x, y,ze L.

Therefore,x A(yvz)=(xAy)v(xanz) Vx,y,z,eL,Let x>y .Then
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xAn(yvz) =[x/\(xvz)]/\(yvz)
=(xvy)anlxvz)a(yvz)
=(xvy)A(yvz)a(zvx)
=(xAy)viyaz)v(zax)
=(yv(y/\z))v(21\x)

=y v(x A z).
Therefore, L is modular.

Conversely, from the Fig the lattice M, is net distributive, but it is modular.

Fig-2.7
Notice an(bvec)=a, whereas (anb)v(anc)=0
Le., an(bve) # (anb)v(anc).
Hence the theorem O

Theorem 2.2.15: Any chain is a distributive lattice.
Proof: Letx, y,z be any three members of a chain.

Then any two of these are comparable.
Suppose x<y, x=z, y<z.

Then xSy €z5sx = x=y=1z.

Thus xA(yvax=x=(xAy)v(xaz).
fx<y,x2zz<y,

then z<x,x<y,z<y.Thus
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xAn(yvzo)=xaAy=x

(xAy)vixnanz)=xvz=x
One can check that under different cases (x<y,x<z;x<z x> Yy, x2y, x2z)the

condition of destructivity holds and thus a chain is always a distributive lattice |

Cor: A ron modular lattice contain at least five elements or a lattice with up to four

clements is always modular.

Remark: It is possible that we may have a modular lattice which contains a pentagonal

subset. Consider for instance, the lattice L of factors at 240. The lattice is given by the

diagram.

Fig-2.8
We notice S ={2,6,10,12,60} is a pentagonal subsct of L but not a Sub lattice Forin L.

10v6=30%S 10v6=30%S. Again L is modular, as it is cardinal product of three

chains,

A={0<1<2<3} B={0<1} C={0<1} and a chain being modular gives product of
chains to be modular.

Theorem 2.2.16: A lattice L is modular iff it doss not contain a pentagonal sublattice.
Theorem 2.2.17: A modular lattice is non distributive iff it contains a sublattice
isomorphic with Ms,

Proof: Let L be a modular lattice which is not distributive. We know in any lattice.
(anb)yvbnac)yv(cna)s(avb)abve)an(cva) Y a,b,c .
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Again a lattice is distributive iff the above is an cquality.

Hence as L is not distributive 3 at least three elements «,b,¢ in L, such that

(anb)v(bve)vieva)<(avb)a (bvce)n(cva)

Let p=(avb)an(bvc)n(cva)
g=(anb)yvbac)v(caa)
Then g<p.

Consider now the tree elements

r=pa(gva)=gv(pna)
s=pnlgvb)=qv(pAb)
t=pAa(gve)=qv(pnc).

Then by definition of r,s,r wefind g<r<p,g<s<p,qg=<1=p...... )
we will show p,q,r,s,t forma sub lattice of L, isomorphic to M.
Now

ras={pa(gva)n{pn(gvb)
=pA(gVva)a(qvb)
=palav(ac)a{bv(cnaa)}]
As g=(anb)v(bnrc)v(cna) (using absorption)
gva=av(@ab)vbnac)v(cna)=av(bnarc)v(cna)
=av(cna)v(bac)=av(bnc)

Similarly av b=bv (c A a).
Thus ras=pAaf(cana)v(av(bac)nab]
As av(bac)2a=anc and using modularity.
ie, ras=pallecrna)viba(bac)bval]
=pnllena)vbrec)vibnra) ]
=PNG=(q.
By duality we can say that r vs=p.

Thus r As=g< p=rvs and also then r # s
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(indeed r=s=>ras=s=¢g,rvs=s=por p=q
By symmetry, we can say

SAl=g<p=svt

Inr=qg<p=ivr

And s#t,t#r

Fig-2.9

We now show equality does not hold in (1).

Suppose g =r thenas g<s<p , weget r<s=ras=r,

rVYTES =g,

Similarly, ¢ <t < p gives r <t

rat=r,rvi=t,p=t
or that s =/, which is not true.

Similarly, other equalities do not hold in (1),
Hence g <r<p,g<s<p,g<t<p.
Combining all the results prove above it is obvious that { p, g, r,s,¢} forms a sub lattice, which is
isomorphic to M _Conversely, let L be a lattice which has a sub lattice isomorphic to M.

Then L cannot be distributive as M, is not distributive. It is then that A lattice is

distributive iff it does not contain a pentagonal sub lattice or M sublattice [J
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Congruence

Definiticn (Congruence): An equivalence relation ©, (that is a reflexive, symmetric
and transitive binary relation) of a lattice L is called a congruence relation if a, =b, (®) for
i=1,2(a,b,eL then (i) a,Aa, =b Ab, (©), and (i) a,va, =bvb, (®) provided
a, v a, and b, v b, exists.

It can be easily shown that for an equivalence relation ® on L, the above conditions arc
equivalent to the conditions that for a,bel if a=b (@) then (i) ant=bnt(®) for all
tel and (ii)avt=bvt (®) forall teL,provided both av and bv! exist.

The set C(L) of all congruence on L is an algebraic closure system on L x L and
hence , when ordered by set inclusion, is an algebraic lattice.

Cornish and Hickman [3] showed that for an ideal / of a distributive lattice L, the
-relation ©(I) defined by a=b (@(1)) if and only if (a]v/=(b]v I is the smallest
congruence having I as a congruence class. Moreover the equivalence relation R (I) defined
yRa=b(R (1)) if and only if for any /e L,anl el is equivalent to balel is the
largest congruence having / as a congruence class.

Suppose L is a distributive lattice and ae L , we will use @, as an abbreviation for
®((a]). Moreover ¥, denote the congruence, defined by x= y(¥,)if and only if
xXAa=yna.

Cornish and Hickman [3] also showed that for any two elements a,b of a distributive
lattice L with x < y,the smallest congruence identifying x and y is equal to ¥, N©® and we
denote if by ®(x, y). Also in a distributive lattice L , they observed that if L
has a smallest element 0, then clearly ®, =© (0,a) for any « € L. Moreover, it is easy to

see that (1) ®, v'W, =1, the largest congruence of L.
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(1)®, "Y', =w, the smallest congruence of L and
(iii) O(x,y)' =0, v'Y¥W, , where x<y.

Now suppose L is an arbitrary lattice and E(L) denotes its lattice of equivalence
relations For ¢, ¢, €E(L), ¢, v, denotes their suprimum; «a=b(p, v ¢ ,) if and only

it there exXiStSa=2zg, Zj,oevirivirrrnnnn. z,=b such that 2, =2, (p ore,)for

-1
=) S, n.

Theorem 2.3.1: A lattice L is algebraic iff it is isomorphic to the lattice of all ideals of
a join-sert lattice with 0.

Proof: Let F be a join-semilattice with 0; we want to prove that /(F) is algebraic. We
know that /(F) is complete. We claim that for a € F,(a] is a compact clement of /(F).
Let Xc I(F) and let {(a]lc {I/Ie X}.

Butwe have v(I/lex)={x:x<t,v

.............. vt 1€l 1 ex}.

‘Therefore a<tyv....coueueeeee VIt t, €1, 1, € x. Thus with x, ={[,..........], |}

(alcv (/1 € x,).Since forany I € I(F)

We have I=v ((a]/ael). we see that I(F) is algebraic.

Now let L be an algebraic lattice and let F be the set of compact elements of L. Obviously
OeF,let abeF,avbsVX,XcL Then a<avbs<VX andso a<Vx, for some
finite X, c X, similarly b<v, for some finite X, € X. Thus avb<V(X UX,),and
X, U X, isafinite subset of X'. So avbeF.

Therefore, (F;V) is a join-semi lattice with 0. Consider the map ¢@:a — {x/xe F,x<a}
ae L. Obviously ¢ maps L into /(F'), by the definition of an algebraic lattice, a =vag,

and thus ¢ is one-to-one.

To prove ‘hat ¢ isonto,let IeI(F).a=vl Then ap=l, let xeap. Thenx < VI,
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So that by the compactness of x, x < V1, for some finiic /, < I . Therefore, x € I proving

that apc I .

Consequently ap=7and so ¢ isonto. Thus ¢ is an isomorphism [
Now we connect the foregoing with congruence lattices.

Theorem 2.3.2: For any lattice L, C(L) is a distributive sublattice of £(L).

Proof: Suppose ©,pe C(L). Define ¥ to be the supremum of ® and ¢ in the lattice
equivalence relations E(L) on L.
Let qzb(‘l’). Then thefe'exists @ = 2,4 2, ummis z, =bsuchthat z_, =z, (Qorg).
Thus forany re L z,, at=z, nt(@orp) as @,p e c(L).

Hence ant=bat(¥)and consequently ¥ is semi lattice congruence. Then in
-particular anb=a(¥) and anb=b(¥). To show that ¥ is a congruence, let a=b(¥)

with a<b, and choose any te L such that both av¢ and bv¢ exist. Then there exists

L S z,, suchthat a=z,,z, =b and z,_, = z,(Qory)

Put w, =z A b forall i=o,,.......... n, then a=wy,w, =b w,_, =w,,(Qory).

Hence by the upper bound property w, v texists for all i=o,l.............. nl(asw, t<bvi)
andw,_, vi=w, vi(@org) forall i=12,....... n(as®,p e C(L)).ie., avi=bvi(V¥).

Then ¥ is congruence on L. Therefore C(L) is a sub lattice of the lattice £(L).

To show the distributivity of C(L) , let a=b(©@N(®, vO,) .

Then a b =y(®) and (©,v0,). Also, anb= a(©) and (©, v O,).

Since anb =b(®, v 0O, ), there exists .7, .......... t, such that (as we have seen in the proof
of the first part) anb=t,,t, =b,t,, =t,(®,0r0,) and anb=t, <t, <b for each

i=0,l.....n Hencet, =t (©)forall i=1.2,............ n and so
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(,,=1,(0Nn0,)orO®nNnO, ).
Thus anb=b((@NO,)Vv (O N®,)). By symmetry, anb= a(®N®,)v(®n®O,) and
the proof completes by transitivity of the congruences.

In lattice theory it is well known that a lattice is distributive if and only if every

ideal is a class of some congruence. Following theorem gives a generalization of this result

in case of lattices [

Theorem:2.3.3: L is distributive if and only if every ideal is a class of some congruence.
Proof: Suppose L is distributive. Then for each ideal 7 of L, ©(/) is the smallest
congruence containing [ as a class.

To prove the converse, let each ideal of L be a congruence class with respect to some
congruence on L. Supposes L is not distributive. Then by theorem:2.1.2 we have either N
(Figure 2.2) or M5 (Figure2.3) as a sublattice of L. In both cases consider /=(«¢] and
suppose / is a congruence class with respect ot ©. Since de/l , d= a(@).

Now d=bac=ba(avc)=ba(dve)=b /\c=d(®) Le b=d(®)and this implies be /,
"I.e b <a which is a contradiction. Thus L is distributive.

An equivalence relation C on a lattice L is called a congruence relation ifa,Ch, and
a,Cb, imply (a, na,)C(b, nb,) and (a, v a,)C(b, v b,).
We know C would partition L in equivalence classes, where for any a€ L equivalence class
of 'a”is given by C(a)={xe L/xCa} 0O
Theorem 2.3.4: Let L and M be lattices and suppose C, and C, are congruence
relations on L and M respectively. Then a relation C=C,xC, on LxM by
(a,b)C(x,y)= aC,x,bC,y,a,x€l,b,ye Mthen C=C, xC, is a congruence relation on

L x M . Conversely any congruence relation on L x M is of this type.
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Proof: Since aC,a,bC,b, YaelL,beM .

We get (a,b)C(a,b) V(a,b)e LxM orthat C is reflexive.
Again let (a,b)C(x,y) = aCx,bC,y
== M7 By B
= (%, y)C(a,b)

= C is symmetric.

Similarly it is seen that C is transitive.
Letnow (a,6)C(x,y) , (p,q)C(r,5)
= aCx,bC,y, pC,r,qCs
= (@A p)C(xar)and (bAq)C,(y AS)
=2@Ap,bAg)C(xAr,yAS)
= (a,0) A (P, )C(x V) A (7, 5) .-
Similarly, we can prove that (a,b) v (p,q)C(x,y) Vv (r,s).
Hence C is a congruence relationon L x M .

Conversely, let C be a congruence relation on L x M .
Define a relation C, on L by aC,b < (a,x)C(b,x) forsome xeM , a,bel Let yeM

be any element, then since (a A b,y) (anb,y)eLxM and C isa congruence rclation on

LxM.
We get (a Ab,y)C(aAb,y), similatly (av b, y)C(av b,y).
Now (a,x)C(b,x),(anb,y)v (a,x)C(anb,y)v(b,x)

< (a,yvx)C(b,yvVvx)

& (avb,y)a(a,yvx)Clavb,y)b,yv x)

< (a,y)C(b, ).
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We thus notice (a,x)C(b,x) for some xe M is equivalent to saying that (u,x)C(b,x) for
all xe M .

So we define aC\b < (a,x)C(b,x)aCib forall xe M . Itis easy to verify that C, is a
congruence relation onl. Similarly, we define a relation C, on M by
aCyb = ((x,a)C(x,b)aCb VxeL,(a,be M). Weclaim C=C, xC,

Let (a,0)C(p.q),a,pe L,b,ge M then (av p,bAq)A(a,b)Clav p,bAg)A(p,q)

= (a,bAnq)C(p,bAgq) forsome bage M. = aCp

we can say bC,q and thus get (a,b)C, xC,(p,q). Again, if (a,b)C, xC,(p,q), them
aC,p‘ and bC,q = (a,x)C(p,x) and (y,b)C(y,q) forall xe M,ye L.
In particular
(a,brq)C (p,bAaq) and (an p,b)C(an p,q) x=bngqge M

y=anpel

=(@bnrq)v(anp,b)C(p.brg)v(anp,q)

= (a,0)C (p,q).
Hence (a,b)C(p.q) < (a,b)c, xc,(p,q)

orthatC=C, xC, U
Definition( Convex sublattice): The subset K of the lattice L is called convex sub
lattice if a,be K,ce L and a<c<b implythat ce K.

Theorem 2.3.5: Let © be a congruence relation of L. Then for every ae L[a] © isa
convex sublattice.

Proof: Let x,ye[a]®;then x=a®and y=a0.

Therefore, x A y = ana=a(®),and xv y=ava=a®, proving that [a] Oisa

sublattice. If x<t<y,x,x€[a]®,then x=a(®) and y=a(O).

Therefore, t=tAy=tAa(®), and (=tvx=({(Aa)vx=({lAra)Vva=u(O),

proving that [a ] © is convex O
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Theorem 2.3.6: (The Homomorphism Theorem) : Every homomorphism image of a

lattice L is isomorphic to a suitable quotient lattice of L. In fact, if ¢:L— L, is a

homomorphism of L onto L and if ® is the congruence relation defined by x = y© iff

p(x)=¢(y),then L, J O = L, isanisomorphism and is given by

v [x]® = ¢(x),xOL,

Proof: Since ® is a homomorphism and ( ®) is obviously a congruence, to prove that
YV is an isomorphism we need to check

1) To show that © is well defined: let [x]® —[y](©) .

Then ¢(x) = P(y) = ([x]O)y =([y]®)y ie., ¥ is well defined.

'ii) To show that ¥ is one-one W[x] = ¥[y],0 = ¢(x) =¢(y) then x=y(®)and so

[x](©)=[y]©) ie V¥ isone-one.
iii) To show that W is onto: Let x e L . Since ® is onto. There is any y € L
with ¢(»)=x. Thus [y]@)yy =x ie, ¥ isonto.
iv) To show that ¥ is a homomorphism: Let [x]®,[y]®¢c L/©,
Therefore y/([x]O@ A[y]®) =y ([x A y]®O) = ¢(x) Ad(y)
=y()O Ap(y0) and
y([x]© v [y]1®)=y([x Vv y]1®)=¢(x v y) =¢(x) v ¢(V)y ([x]O v ¥ (y)©

i.e., ¥ is homomorphism then the theorem is proved 0
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2.4 Length and covering conditions

A finite chain with n clements is said to have length n-1. We say a covers b if b <«

and there exists no ¢ such thatb<c<a.

A chainx, <x, <....... <x, 1s called a minimal chain if each x,, covers x; . Suppose now
[a,b] is an interval in a lattice and if amongst all chains from a to b, there is one of
maximum length n. We say [a,b] has tength n. Thus it is the sup of lengths of chains from a

to b. We denote it by /[a,b]=n. In case some chains from a to b have infinite length here
[a,b] has infinite length.

LetL be a lattice with least element "o’ and greatest element u then as L =[0,u],
length of L is defined to be length of the interval [0, u].

All finite lattices have finite length, infinite lattices can also have finite length as the

lattice given by Fig has finite length 2 but it is infinite.

Fig-2.10
Theorem 2.4.1: Length of a pentagonal lattice is 3. u

Proof: Consider the pentagonal lattice as shown

in the Fig . C

Fig-2.11
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It has five chains. O<u, O<a<u, O<b<u, O<c<u, O<b<a<u
from 0 to u. The last two being maximal chains. The chains have lengths 1, 2, 2, 2, 3.
Therefore [0,u]=3 and hence length of the pentagonal lattice is 3 [

Jordan-Dedekind condition: Let L be a lattice of finite length. Then L satisfics the

Jordan-Deackind condition if all maximal chains between same end points have same

length.

Remark: The pentagonal lattice does not satisfy the jordain- Dedekind condition. Because

there are two maximal chains from o to u and have different lengths 2 and 3 [J

Theorem 2.4.2: Let L be a lattice of finite length. Suppose in L wheneverx, y cover

x Ay implies xv y covers x and y.Then L Wsatisfies the Jordain- Dedekind condition.
Proof: Let a, b be any two comparable points (a < b).we show all maximal chains from a

to b have same length /[a,b] . Since all chains from a to b are finite, at least one maximal
chain exists of finite length from a to b. We show all maximal chains are of the same length.
We prove the result by induction on n, the length/[a,b] . Ifl[a,b]=1, then b covers

a and thus there is only one maximal chain from a to b with length 1 and hence the result

holds for n=1.

Let the result be true for x =m-1

Let a < €3, Loereonissnins <X, =D

BER, P Bersmmdrssnmennries <y, =b be two maximal chains from atob of lengths m
and k we show k=m.
Case Q)R =3 then X <& Supnnmana L. Bh WYy Qe e <y, =b

.are two maximal chains from x, to b with lengthm -1,k —1 and as the result holds for

m-lLk=-l=m-1=>k=m.
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Case (i1) x, #y,. Herex;andy, cover a=x, A y,.

Thus by given condition x, v y, cover x, and y,.

-

Letx, vy, =t . Since x<b,,y<b, =x, v y, <band we find t and b are comparable.

LB & €80-Cinuuvigin z,=b

be a maximal chain from t to b with lengthi.
> Nowi®) X Shanansmicssiis <x,=b X <t<z .. Z=b

are two maximal chains from x, to 4 oflengths m—1 and i+1 (Note t coversx,).

But the result holds for m-1 and thus i+1=m—1.

Again, the chains 3, <), Kumeisniii gy, =0 ¢ P RERZ Geemsinivern z,=b
a‘

are maximal chains from y; to b with length k-1, and /i +1 i.e are maximal chains from y,

to b with lengths 4 -1 and m—1.

But result holds for m—1, andso k-l=m—-1=2k=m

i.e., the result holds for n=m.
L

b=x,=y, =z
Z
A
Yi
4 2
t
>
a
Fig-2.12

Hence by induction hypothesis, the result holds for all n and our assertion is proved [

"~
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Atom: An element a in lattice L called an atom if it covers 0. i.c a is atom iff a# 0 and

xna=aorxna=0, Vxyel .
Dual atom: An element b is called dual atom if the greatest element u of a lattice cover b.
Complements: Let[a,b] be an interval in a lattice L. Let x € [a,b]] be any clement if

3 yel,st, xAy=a,xv y=>b wesayy isacomplement of x relative to[a,b].
Theorem 2.4.3: No ideal of a complemented lattice which is a proper sub lattice can
contain both an element and its complement.

Proof: Let L be a complemented lattice. Then O,ue L.Let [ be an ideal of L such

that ! is a proper sublattice of L. Suppose 3 an element a in / such that its complement
a' isalsoin / .Thenana' =0,ava' =u Since I isa sub lattice,a Ana',av a' arcinl.
le O,uel,
Now if I € L be any elementthenas Ue I,/ AnuNI=lel=>Lci=I1=1L,
a contradiction. Hence the theorem [J
Theorem 2.4.4: Let L be a uniquely complemented lattice and let a be an atom in L.
Then a' i.e the complcmcnt of ais a dual atom of L.
Proof: Since L is uniquely complemented lattice, every element has a unique complement.
Suppose a' is not a dual atom, then 3 at least on x, s,t,
a' <x<u=a'va<xva

DUSXSU = uUu=xvda
Now ifa<x then xva=x= x=u,nottrue.
Again ifa<x , then aAnx=0 (note a is an atom). Thus anx=0avx=u=>x=a'

a A x, again a contradiction.

Hence «'is a dual atom [
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CHAPTER THREE
Standard Element of a lattice
Introduction: Standard elements in lattices were first studied in depth by Gratzer and

schmid [15]. Since then little Attenton has been paid to these notions. A lower semi lattice is
said to have the upper bound property if the supremum of any two elements automatically

exists when they share a common upper bound according to Gratzer and Schmidt [15] if a is

an clement of a lattice L then,
(1) a is called distributive if
(av (ras)=(avr)a(avs) forall r,seL;
(ii) a is called standard if
ro(sva)=(rnas)v(rana) forallr,sel,
(111) a is called neutral if the sub lattice generated by r,s and a is distributive for all »,s € L
e (anr)v(ras)v(sana)=(@vr)an(rvs)a(sva)forall r,sel.
It is casily seen that a standard elements is distributive and a neutral element is both standard
_and distributive. In a distributive lattice, the three notions coincide .1t was shown by Gratzer
and Schmidt [15] that an element n in a lattice L is neutral if and only it for all r,se L,
ra(svm=ras)v(ranyandnn(rvs)=(nar)v(nas). Also Gratzer [11] has shown
that an element n in a lattice L is neutral if and only if
(nar)yv(ras)visan)=(nvr)a(rvs)a(svn)forall r,se L.
The following results are well known C.f Gratzer [11, Theerem 9 P, 143] the supremum
of two distributive elements are distributive; both the infimum and supremum of two
standard elements are standard; both the infimum and supremum of two neutral clements arc

neutral. On the other land , the following example due to Gratzer [11,p144] shows that the
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infimum of two distributive elements is not neeessarily distributive in Figure 3.1 both » and

s are distributive whereas r A s is not.

Figure 3.1
Cornish and Noor in [4] generalized the concepts of standard and neutral clements to
| lattices. They have also introduced the notion of new type of element. They preferred to call
it as a strongly distributive element, as in case of lattices such an element stands between a
distributive and a standard element.
In section 1 of this chapter we give a description on standard neutral and strongly
distributive elements of a lattice,
In section 2 we discuss on standard elements in a weakly modular lattice. we show
that in a weakly modules lattice , every strongly distributive element is neutral Thus in

particular every standard element is neutral in a modular lattice.which is a generalization of

[15, corr.2.3 and 2.4]
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3.1. Standard and Neutral Elements of a Lattice.
3.1.1. Defination (Standard element): Let L be a lattice and s be an clement of L .
Then s is said to standard if for all x, p,t € L, tA[x AY)V(XAS)|=( AXAYIV(IAXAS)

Obviously, any element of a distributive lattice is standard. Now suppose s is a standard

element of a lattice L c¢.f Introduction, then for all
X, Yl ELAN[XAYIVXA)]=EAXA(YV)]=UAX)AWDV)=UAXAYIVIAXAS).
This and a part of following proposition show that the two concepts coincide in a lattice.

Proposition 3.1.2:
The féllowing two conditions on an arbitrary element s of a lattice L are equivalent.
(i) Forany x,ye L,x A(y As)=(xAy)Vv(xAs) whenever yv s exists.
(if) (@) if x vsand yvs exist forany x,ye L Then (> A y)v s exists and
(xAay)vx =(xvs)a(yvs).
(b) Forany x,y € L for which xvsand yvs exist xAs=yAs
and xvs2yvs imply x>y,
Moreover coth (i) and (ii) are necessary for L to be standaed but are not sufficient.
Proof: (i) inplies (ii) suppose x,ye L are such that xv sand yvsexist. Then (x A y)v s
exists because of the upper bound property of L. Due to (i)
(xvs)a(yv s):[(xv S) A y]v [(xv S) A s]= xAay)vsay)vsxay)vs.
Alsoif xAszyasand xvs2yvs , then
X=xnAnxvs)zxv((yvs)=xAY)V(xAs)
by (i) 2(x Ay)v(yAs)=yv(xVvs)2ZyA(yvs)=y
(i1) implies (i) suppose x,ye L and yv s exists.
Let P=xA(yvs)andg=(xAy)v(xAs).

Now pAs=xAs<qg=(xAy)v(xAas)SxA(yvs)=p.
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Hence pas<gas<pnas.
Thatis pAs=gqgnas. Observe thatas p,s < yvs,pvs exists and since
p=pAyvs),pvs=[pa(yvs)lvs
= (pvs)awvs) by (i) @)= (p A y) v s(by(ii)@) = (x A y) Vv s
=(xAY)V(xAs)vs=gqvs. Then by (ii) (b),
p =q,thatis (i) holds.
Now suppose S is standard in L, x,y< Land yv s exists, then letting yvs=r.
‘We obtain x A(yvs)=xa[FAay)v(ras)=xAaray)v(xaras)=(xaAy)v(xas)as
Sis S;tandard thus (i) and (ii) holds.
Finally, consider the lattice L in Figure 3.2. Here for all x,y € L the condition (i) holds but

daf(cana)vcas)]>dnancana)v(dnancnas)

0
Figure 3.2
On many occasions we find that a long computation is required to prove that a given binary
relation is congruence. Such computations are after facilitated by the following useful
Lemma which is due to Cornish and Noor [4.lemma 2.3]. This is an extension of a

characterization of lattice congruence, e.f

Gratzer [20 lemma 8,p-24] and also Gratzer and schimdt [15] to lattice.
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Lemma 3.1.3: A reflexive symmetric binary relation @ on a lattice L is a congruence iff
and only if, foranyx, y,z,t € L ,

(i) x = y(0) ifand only if x A y =x(0) and x A y = y(0)

(ii) x < y<z, x=y(f) and y = z(H) imply x = z(0)

(iii) x<y and x=y (0) imply that x Ay =y A1 () and

xvit=yvi(0) wheneverxv y and yv¢ exist [J

We now proceed to characterization of a standard element. The following theorem is a
characterization of a standard element in a lattice, which is due to Greatzer and Schmidt [17]
The following conditions upon an element s of the lattice L are equivalent.

(i) s is a standard element.

(i) The relation @, defined by X = y(0) if and only if
(xAy)vs=xvy ,forsome s, <s isacongruence relation.

(iii) For each ideal K, (s]vk={s, vk:s <s,keK}

(iv) (s] is a standard element of the ideal lattice of L.

- Theorem3.1.4: For an element s of a lattice L.

The following conditions are hold.

(i) s is a standard element.

(ii) The binary relation @, which is defined by x = y(0)

ifand only if X =(x Ay)v(xAs) and y =(xAy)V (¥ As), s acongruence relation.

(iii) The binary relation ¢ which is defined by x = y(¢) if and only if

(xADV(EAS)=(yAl)v(yas) forall reL is a congruence relation.

(iv) For each ideal &, (s] k={s k:s s,k ands kexists}

(v) (5] is a standard element of the ideal lattice of L .
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Moreover 0 and ¢ of (i) and (iii) respectively represent the some congruence v iz.

0 ,. The smallest congruence of L having (s] as congruence class.

Proof: (i) implies (ii) Let @ be the binary relation, such that x = y(@) if and only if
x=(xAV)V(xas) and y=(xAy)v(yas) clearly, @ is reflexive and symmetric. Now
x = y(0) implies

x=(xAy)v(xas)=xaA(xAy)v(xas). Also

XAyZ(xA(XAy))V((XAy)AS) and so x = x A y(0)
similarly y = x A y(6) conversely x A y = x(0) and
- xAy=y(0). Certainly imply x = y(0).

Suppose x< y<zandx = y(8);y = z(6).

Then z=yv(zAas) and y=xv(yAs).So z=xV(yAs)V(ZAS)

=xVv(zAas). And it follows that x = z(9).
Now let x < y,x = y(f@)and xv,yv1 exist for some

tel.Then yvi=(xv(yas)vi=(xvi)v(yas);that

is yvi=(xvi)v((yvit)vs) , whichimplies xvi=yv ().

Alsoforany re LirAy=ra(xAY)V(YAS))=FAXAPIV(IFEAYAS)
=(rAx)v(rayns).And so r Ay =rAx(6).Hence by 3.1.3

0 is a congruence relation.

(ii) implies (iii) suppose x = (@) since @ is a congruence relation, x At = y A1(0) for any
teL.Then xAt=(xAyat)v (x AtAS)

and yAr=(xAyat)v(yatas) and hence
(xADVUAS)=(xAYADVEAS)=(YADV(EAS).

This implies that x = y(g).
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,

Conversely. Let x = ¥(9) .

Then (xx\l)v(r/\s)z(y/\r)v(t/\s), forallre L

By letting 7 = x and ¢ =Yy, weobtain x=(xAp)v(xns).

And Yy=xAy)v(yas) respectively. Hence x = ().

This implies that € and ¢ are the one and the some congruence (iii) implies (iv). Then
T'={s,vk:S <S,ke KandseK exist } is clearly closed under existent finite suprema,
Suppose x <, v k with s;<s and k eK.

Clearly, s, v K = K(¢) and so x=xn 5, vhk)y=xnk(g).

I‘IBI;CC forall re L,(xat)v (EAS)=(xAkAD)V(tAs).

Choosing =x, we obtain x=(xAk)v(xas) and so xeT .

Thus T is the ideal of Z and it is clearly the supremum of (s] and K.

(iv) Implies (v).Let J and K be two ideals on L and
Suppose x € jrﬁ((s)] v k) .Then xe J and x = s, v k for some
$i<s And ke K. So x=(xAs,)v(xAk) and thus x e n@)vUnk).
Consequently Jr‘m((s] % k)= J N (s]v(JNk), which implies
 that (s] is standard in the ideal lattice of I,
(v) implies (i) is trivial.
The last part is quite clear from the proof
of (ii) implies (iii) and of preliminaries []
In a lattice L an element n is called neutral if for anyt,x,ye L.
DeA((xAp) A (x A n)) =(tAXAY)V(AxARn)ie., nis standard, and
(11) nA((tAX)V(lAy))=(nA tAX) vinat ay).

Notice that a lattice is distributive if and only if each of its elements is neutral.
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Also we already mentioned in the introduction that an clement n in lattice L is
neutral if and only if for all x,y e L,x A(yvn)=(xAy)v(xAn)and
nAa(xvy)=max)v(xay) O
The following lemma shows that the two concepts coincide in a lattice.

Lemma 3.1.5: Let a be an element of a lattice L . The following conditions are equivalent
(i) Forall t,x,ye L, a/\((rvx)v(r Ay))=(@ntax)viant Ay).
I(ii) Forall x,ye L for which xv y exists, aan(xvy)=(aax)v(any).
(iii) For all ideals Jand K of L (a]n(jv k)= ((alnj)v(a]lNnk).
Pro-of: When xv y exists put f =xv y in (i) to obtain (ii)
(i) implies (ii1). Let x e (a]ln(j v k).
By the property of the supremum and infimum of the ideals x<a and xelL,for

=002 when, L, =JUK,

L ={t<c d;cv dexistsandc,d €L, }.

Suppose xe L,. Then x € (a]nJ,orx e (alnkandso xe ((a]r‘\.f)v ((a] r‘u’c).

Now we will use the induction, suppose y € L, ,, and y <a implies that,
ye(@nJ)v(d]lnk).

Since xe L, , x<cvd forsuitablec,de L, .

Then x<an(cvd)=(anc)v(and). But anc,and <a andbothbelongto L, .

Thus x e ((@]nJ)v ((a]nk).

The reverse inclusion is obvious.

(iii) implies (i) is trivial O
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The following result gives a characterization ol a reutral clement of a lattice which is
immediate consequence of above lemma.

Theorem 3.1.6: An element n of a lattice L is neutral if and only if (n] in neutral in the
lattice of ideals if L [J

Theorem 3.1.7: Suppose n is an element of a lattice L. Such that (i) for allx,y e L for

which xv y exists,

na(xv y)=(max)v(nay).And (i) forany x,ye L for which y v n exists
x A(yvn)=(xAy)Vv(xAn).One may ask the question: **Is n with the properties (1) and
(i) a neutral element of L’ Figure 2.3 show that, that answer is ""No” ,

2 Il

-

Figure 3.3
Notice that here n has both of the above properties. Yet
bA((C/\a)V(CAH))>(bAC/\a)V(bACAH).

Thus n is not even a standard element [
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3.2 Traces
Let s be an element in a lattice L . If t is any fixed element of L , then by the “trace of s in
(t]’or simply “the trace of s’’. We mean the element f A s of (1] .

Following proposition give characterizations of standard and neutral elements of a lattice

which are due to [4]. Thus, in a lattice, these elements are trace invariant,

Proposition 3.2.1: An element s of a lattice L is standard if and only it its trace is
standard in (¢], foreach 7 € L.

Proof: Suppose s is standard in L, let, a,b,c € (t]. Then
anlbrc)v(batas)=an[(bac)v(bas)=(@nbnac)v(anbns)
=(anbac)v(anbna(tas). Hence the trace of s is always standard.

Conversely, suppose the trace of S is standard in (t] for each 7 € L

Let x,y,z,e L and

consider x A[(yAz)v(yas)].

As y A s is standard in (y]

YA AV AN =EANAIY AV A =(xAYAZ)V(XAYAS). And s is
standard in L [J

Proposition 3.2.2: An element n of a lattice L is neutral if and only if its trace is neutral

in (t], foralltre L.

. Proof: Suppose n is neutral in L . Then by 3.2.1 the trace of n is standard in (1] for all
t € L suppose a,b,c € (t].
Then(t An)Al(anb)v(bac)]=tAl(anban)v(bacan)]
=tAlanbatan)v(bacnatan)]=(( An)/\(a/\b))v((f An)AbAc)
Thus ¢ An is neutral in (t], forall te L.

Conversely, suppose ¢ An is neutral in (t], foral r e L (by 3.2.1) nisstanderd in L.
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Letx,y,ze L. Then
nalxay)viyaz)l=(yan)al(xay)v(yaz)l=(xAayan)v(yAzan),
As yan 1sneutral in (y]. Thus n is neutral in L [J

Corollary 3.2.3: An element n of a laitice L is neutral if and only if the sublattice

‘generated by t An,t Ax and f A y are distributive for all £,x andy [

We tried to give definition of a distributive element for a lattice. But the concept
does not seem appropriate in the context. From figure 3.1, it is fair enough to say that even
for lattices, the notion of a distributive element is not trace invariant .From the idea of traces.
Cornish and Noor [4] have introduced a new type of element, we start with the following
proposition which is due to [4].

Proposition 3.2.4: Let L be a lattice and s € L. Then the following condition is
equivalent
(1)) Forany x,y,te L, (AxAY)VUEAS)=[(AX)VUA)]A[UAY)V(EAS)].
(ii) For any x, y,t € L, tA((xAY)V (XA s))v (xAS)=({AXAY)V(XAS).
Proof: (i) implies (ii) suppose (i) holds. Choose any £,x,y of L and let
p=(xaAy)v(xas). Then pax=p and so ( Al(xAY)V(XAS)]V(XAS)
=tAp)V XAS)=XALAPIV(XAS) =[(xA)v(XxAS)|A[(xA p)Vv(xAs)][by (i); here

X, t and P play the roles of t, x and y respectively.

In(A) =2[(xA)vxa)A[xAy)Vvxas)=(xatay)v(xas) bya

second application of (i) where x,/ and y play the roles of x,/ and y respectively in (1)
(ii) implies (i) suppose (ii) satisfies . Then for any

t,x,ye L,([(ax)v(UAs)]IA[EAY)V(As)] =([(1Ax)v(rx\.s')]/\(tr\y)v(( A.S’)])V(! AS)
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=([tAay)vUAIAUAYIVIEAS) (by (i1). Where(t Ax)Vv (I As). and y play the roles of
t,x and y respectively in (iii).

Hence,[(f AX)V{UASAIEAYIVEA)]=(UAX)VUAS)]AUAY)VEAS)
=(YA[EAX)VUEAS)DV(EAS)=(yAatAx)V(tAs) by asecond application of (ii). Where
v,t,x play the role of ¢,x, y respectively of (i1) [

Proposition 3.2.5: Suppose L is a lattice and s € K holds the equivalent conditions of

the above proposition.

Let a,be L. Putt=avbvs toobtain

(anb)vs=(t Aa/\.b)v(rf\s") =[tna)v(ns)IA[(tab)v(tas)y=(avs)a(bvys).
Hence s is a distributive elemént of L. We have proved.

Proposition: If an element of a lattice satisfies the equivalent conditions of 2.1.10. Then it is

distributive then it distributive O

Proposition 3.2.6: An element s of a lattice, which satisfies the equivalent conditions of

prop. 3.1.10 is said to be strongly distributive. Clearly any standard element of lattice is
sl.rongly distributive.

Figure 3.1 produce (i) a distributive element in a lattice which is not strongly distributive
and (i1) a strongly distributive element which is not standard.

Notice that in figure 3.1 b is distributive and a is strongly distributive. Observe that
(antrnh)v(anb)<[(ant)v(anb)]al(anh)v(anb).

Which implies b is not strongly distributive. On the other hand bA(ave)>(baa)v(bac),
which implies that a is not standard.

Thus even for lattice, the notion of a strongly distributive element is strictly between the

concepts of distributive and standard element.
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The following proposition gives a sulTicient condition for a distributive clement to be

strongly distributive [J
Proposition 3.2.7: Any distributive atom of a lattice L with 0 is strongly distributive.
Proof: Suppose s is a distributive atom. Forany r e L .
Either tAs=0o0rtas=s .if t As=0 then obviously,
Unxay)vins)=[tax)vias)]a[tay)v(tas)]. Forany x,ye L
Iftas=s,then (AxAY)VUAS)=(Urxay)vs=[tax)vsIa[(tay)vs]
=[Ax)VvUAS)A[EAY)V(EAs). As s is distributive.
An illustration of 3.2.7 considers the element ¢ of the pentagonal lattice
{o,a,b,c,l:0LbLall:cva=cvb=l.cha=cAb=0}.Here ¢ is both distributive and an
atom. Therefore, it is strongly distributive.

We conclude this section with the following characterization of a strongly
distributive element. We omit the proof as it is immediate from its definition.

In fact, one might prefer this as the definition of a strongly distributive element. If is
more easily to understood than the original definition []
Proposition 3.2.8: For an element s of a lattice L the following condition are equivalent.
(1) s is strongly distributive.
(ii) Its traces distributive in (t] forall 1 e L.

- (111) Its trace is strongly distributive in (t] forall re L [0
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3.3. Some properties of standard and neutral elements.

From [4] we know that the standard (neutral) elements of a lattice [rom a distributive
sub lattice. Moreover, the map S = &, is a lattice embedding of this sublattice into the
distributive lattice of all congruence of L [4] also exhibited two examples to show that the
strongly distributive elements may not be closed under infimum and supremum.

We are now about to generalize an interesting result of Gratzer and Schmidt [15.

Theorem 5]; for any two strandard elements s and s, of a lattice L. the sublattice
generated s,, s, and x is distributive forallxe L.
Proposition 3.3.1: Suppose s, and s, are standard elements of a lattice L. Then the sub
-lattice generated by s,, s, and x is distributive forall xe L.
Proof: Let x € L. Suppose L, is the sublattice generated by x,s, ands,. As s, and s, are
standard ia L, thay are standard in L, by 2.1.5. [s,], and [s,], (principal ideals in A )
are standard in the ideal lattice /(L,) of L,. Hence by Gratzer and Schmidt [15] Theorem 5
], the sub iattice p of I(L,) generated by (x], , (s,], and (s,], is distributive. Butas L, is
generated by x, s, ands; /(L,)=P. Thus, I(L,) is distributive and so, L, is distributive.
We already know from the introduction that an element # in a lattice L is neutral if

and only if the sublattice generated by x, y and » is distributive for all x, y € L . See also on

3.2.3 unfortunately, things are not the same in near lattices [J
Theorem3.3.2: Let n be a neutral element of a lattice L . Then sublattice generated by

x,y and n is distributive for all x, y € L. But the converse is not necessarily true.
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Proof: We omit the proofl of first part as it is casily scen that this can be done in exactly the
same way in which 3.3.1 was proved. 'T'o prove the converse we consider the lattice L of
figure 3.4. Here, all the sub lattices generated by x, y and » for all

x,y € L are distributive, yet bA[(t Ad)v (f An)]> (DA fAad)v(bA f An).

Thus n is not even a standard elements of L 0

Figure 3.4

Now we prove the following results which generalize some of the results of {15].

" Theorem 3.3.3: Let s and n be elements of a lattice L such that n is neutral, s <» and s

is standard in (n/.

Then s is a standard element of L [

Proof: Let , x, y be the elements of L.

Then [(x Ay) v (nv HIA[(xAY) Vv (xAn)]
=(xA)V(ADAEAIV((xAY)V (A A(x AN))
=(xAay)v(xan)Al(xayan)v(nas)))]) as n is neutral.

=(xAy)v((xayann)v(xannas) as s instandard in (n/
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=(XAYIV((XANRAS)
=(xAY)V(XAS).

Hence using the neutrality of »n
tA[(xAY)Vv(xAas)]

=tAa[xAay)v(ras)A((xAy)Vv(xan)

=((xny)v(nx\s))/\!/\((x/\y)v(x;\n))

=((x/\y)v(n/\s))x\((lAx/\y)v(rAx/\n))
-=((xAy)v(n/\s))/\(r/\x/\y)v((x/\y)v(nx\s))x\(rAxAn)

As n is neutral.

=(!}\xf\n)v[(tAx)x\((x;\yx\n)v(sx\n))]
=({AxAy)v(rAxAn)A((x/\yAn)v(SAn))

=(IAXAYIVUEAXAYAR)V({EAXASAR)
Since s is standard in (1]

=((AXAYIVEAXAS).

So s is standard element in L [

Theorem 3.3.4: Let s be a neutral element of (#] and n is neutral in L. Then s is a neutral
clement of L.

Proof: By the previous theorem s is standard in L.

To show that s is neutral, we need only to show that
sa[xay)vxad]l=(@nxay)visaxat)forall x,y,tel
Now, sa[(xAay)v(xad)]=GAn)A{(xAy)v(xAal))
=sA(xAyAn)v(xAtAn)Asn is neutral
=(SAXAYAN)V(SAXALAR) As s isneutral in (1]
=(sAxXAYIV(SAXAL).

The proof is thus complete [
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Theorem 3.3.5: An element n of a lattice L is neutral if and only if for all ¢,x,ye L

Ganax)vUaAnaAIVEAXAY)={v)VUAXDIA{EAR)VEAYIALUEAX)VEA Y]

Proof: When n is neutral its trace ¢ An is neutral in the lattice (t] and so the equality holds
as t an,t Ax and ¢ A y then generated a distributive sub lattice of (t].

Conversely, the equality says that ¢ A n is neutral in the lattice (t]. Then the proposition

3.2.2 does the rest.

We conclude here with two observations about strongly distributive elements [J
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CHAPTER FOUR
4.1 Prime ideals of a lattice.

Introduction: Prime ideal and pseudo complemented of a lattice have been studied by

several authors including [32]. In this chapter we discuss prime ideals, minimal prime idcals
and minimal prime n-ideals of a lattcies. In section one of these chapters we give some basic
properties of prime ideals which will be needed in the next part.
In section two of this chapter we have given characterization of minimal prime ideals of a
pseudocomplemented distributive lattice. Then we have show that every
psetidocomplemented lattice is generalized stone
In section three we discuse the minimal prime n-ideals.
In section four of this chapter we have discussed lattice whose principal n-ideal form normal
lattice.
Definition: (Dual ideal): A non empty subset / of a lattice L is called dual ideal of L
if (1)x,yelimpliesthatxaye I
(2)d el,xeLimpliesthatd Ax €1
Let I={1,2,5,10} be the lattice under divisibility. Then {lo},{5,10}{2,10,} arc all dual

ideals of lattice L.
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Figure 4.1

An ideal 7 of L is proper il /=1
1

Figure 4.2

6 4

Figure 43
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A proper ideal P of a latticel is called a prime ideal if for any x,yel and
X Ayepimplies either xe P or yeP. Let L ={1,2,3,4,6,12} of factors 12 under
divisibility forms a lattice then {1,2,4} be a prime ideal of L. But in the lattice {1, 2, 5,
10} under divisibility {1} in not a prime ideal because 2A5=1{1}. But2,5{1}.
Theorem 4.1.1: Every ideal of a lattice L is prime ideal if and only if the lattice L is
chain.

Proof: Let L be a chain, let P be any proper ideal of L.If aabe P then as a,b arc ina

chain, they are comparable. Let a<b, then aanb=a. Thus, anbeP =acl=P is

prime.
Conversely, let every ideal in P be prime. To show that L in a chain, let a,be L be any
elements. Let P={xe L/x<a b} then P is easily seen to be an ideal of L. Thus, P isa
prime ideal.
Now anbel,P is prime,thus ae P or beP =a<sanb= or b<anb
=>anb<a<anb or >a=anb orb=anb
=a<b= or b<a. L isachain []
Corollary 4.1.2: Let L be a distributive lattice. Let I be an ideal of L and leta € L and
a € I . Then there is a prime ideal P suchthat Po/and a¢ P.
Theorem 4.1.3: Every ideal / of a distributive lattice is the intersection of all prime
ideals containing it.
Proof: Let 7, =N\{P/P ;P isaprimeideal of L},if /I, then there is an clement
ael, -1 and so by Corollary 4.1.2. There in a prime ideal P, with P o/ and a ¢ P. But

then a¢ P o/, and is a contradiction. []
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Theorem 4.1.4: Let P be a prime ideal of a lattice L, then L— P is a dual prime ideal.
Proof: Since P is a prime ideal, therefore P is not empty.

~.L— P is a proper subset of L.

Let x,ye L—-P.Then x,yeL,x,yg P

=>xnycl,xnyeP (asxanye=>xeP or yeP as P isprime) =>xAyel-P.
Again,let xe L-P,/eL.Then xeL,xgP,lel=>xvielxgP=>xvielxviegrlP
(as xvieP=>xePas x<xvlI).Thus, xvIelL-P ie L-P isdual ideal.
Nowlet xvyeL—-P,then xvyelLxvygP

=>x,yel,x¢P or ygP (as x,ye P=>xvyeP)

=>xelL-Poryel-P

i.e., L—P isadual prime ideal []
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4.2 Minimal prime ideal.
Def ( Minimal prime ideal): A prime ideal 2 of a lattice L is called minimal if there
does not exists a prime ideal Q such that Qc P.
The following lemma is an extension of a fundamental result in lattice theory e, f J.E. Kist

[23]. Though our proof is similar to their proof, we include the proof for the convenience of

the reader.

Theoremd.2.1: Let L be a lattice with 0. Then every prime ideal contains a minimal prime
ideal.

'Proﬁf: Let P be a prime ideal of L and let R be the set of all prime ideals O contained in
P . Then R is nonvoid, sincePe R If C is achainin R and Q=\(x:xeC) then Q is
nonvoid, since 0 Q and Q is an ideal ; infact Q is prime. In deed if » As€ Q for some
r,seL. Then rase X , forall xeC, since X is prime , either r € X or s € X . Thus,
either O=nN(X:reX)or0=N(X:s5eX).

Proving that either » or s€ Q.

Therefore, we can apply to R the dual form of Zorn’s lemma to conclude the existence of

minimal member of R [

Theorem 4.2.2: Let L be a distributive lattice with 0, the following conditions are
equivalent.

(1) L is normal.

(i1) Each prime ideal of L contains a unique minimal prime ideal.

(iii) Each Prime filter of L is contained in a unique ultrafilter of L.

(iv) Any two distinct minimal prime ideals are comaximal.

(v)Forall x,yeL,xAy=0 implies (x]' v(y]'=L.

(vi) (xAp] =(x]" vy forall x,yel 0
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Remark: Here (x]" we means relatively pseudo complement of (x].

Dense set: D(L)={aeL:a" =0}, D(L) is called the dense sct.

Theorem 4.2.3: Let L be a sectionally pseudo complemented distributive lattice and 7
be a prime ideal in L. Then the following conditions are equivalent

(i) P is minimal, (ii) xeP implies (x]' ¢P, (iii) xeP implies (x] <P,
(V)PND(L)=¢p.

Remarks: Consider the following distributive lattice with 0. Observe that in both Z, and

L,, (b] and (d] are distinct minimal prime ideals.

v

Figure- 4.4
Moreover, (b]v (d]=S, but (b]v (d]#S, . Therefore, L, is normal but L, is not. Also
observe that in L, ,{0,a,b,c,d} is a prime ideal which contains two prime ideals (b] and
(d],and so L, is not normal [
Definition (Stone lattice): A distributive pseudo complemented lattice L is called a

stone lattice if foreach ael , a va =1.

0

Figure - 4.5
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Theorem 4.2.4: If L is a complete stone lattice, then ideal of L is also complete stone

lattice.
Proof: Let /" =(0], where a=(x":xe L) and let xe /I~ ", then xel aid xel' =(a]
implies that x e / and xe A4 implies that xe / and x < y" for all yel implies that x <x’
implies that x =x A y* =0, implies that 7 A /" =(0].
Let I AJ,chooseany jeJ,thenin j=0 forall iel , impliesthat j<i'ie/j<i*,
implies that j<A(/":iel) implies that j<a implies that je /" implies that J </’

implies that /" 'is a pseudocomplemented.
Since O€ L, so ideal of L is complete. Finally, we have to show that 1" v /™ = L.
Now I' v I" =(a]v (a] =(a]" v (a]

=(a"]v(a’]

=(a" va]

=L
Hence ideal of L is a stone. Thus ideal of L is a complete stone lattice [
Definition (Generalized stone lattice): A lattice L with O is called generalized stone
lattice if (x]" v (x]" =L foreach xe L.
Theorem 4.2.5: A distributive lattice L with 0 is a generalized stone lattice if and only if
cach interval [0,x],0<x e L is a stone lattice.
Proof: Let L with 0 be a generalized stone and let P e [0,x]. Then (P]" v (P]" =L.
So xe(P]' v(P]" implies x=rv s forsome re(P],se(P]”. Now re "(P]‘ implies
rAp=0 also 0<r<x. Suppose r€[0,x] suchthat A p=0,then re(P]" implics

t As=0.Therefore, tAx=tA(rvs)={tar)v(ans)=tans)v0=tar implics
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t=1 A r implies { <r. So ris the relative pseudo complement of P in [0,x], i.c.rr =" since

se(P]" and re(P] . So sAar=0.Let ge[0,x]. Such that g Ar=0. Then as x =7V s,
so gax=(gnar)v(gns) implies ¢ =g As implies ¢ <s. Hence, s is the relative pseudo
complement of r=p" in [0,x] i.e, s=p " implies x=rvs=p" vp". Thus [0,x] isa
stone lattice.

Conversely, suppose [0,x],0<x e L [0, x]. is a stone lattice. Let pe L, then
pAxel0,p] . Since [0,p] is a stone lattice, then (p A x) v(pax)" =p, where
(pAx) is the relative pseudo complement of p A x in [0, p].

Therefore, Pe (p]n(pAax] v((pln(pAx)". So, we can take p=rvs,
forre(pax]’,se(pax]”. Now, re(pax] implies rApAx=0 implics rAx=0
implies e (x]° and se(pa x)".Now pAax<x implies (p"x]c(x]”.andso se (x]”
Therefore, p=rv se(x] (x]" and so, Lc(x]" v(x]". But (x]' v(x]" <L is obvious.
Hence (x]" v (x]" =Landso L is generalization stone [

Theorem 4.2.6: Let L be a distributive lattice with 0. If L is generalized stone, then it is
normal.

Proof: Let P and O be two minimal prime ideals of L.

Then P,Q are unordered. Let xe P—Q. Then (x]A(x]" =(0]cQ implies (x] Q.
Since P is minimal, so by Theorem 4. 2.3 above (x] < P. Againas L is gencralized stone,
so (x]" v(x]" =L
This implies Pv Q =L, and so by Theorem 4.2.2, L is normal L]

Def (Co- maximal ideal): Two Ideals / andJ ofalattice L are called Co-maximal

if IvJ=L
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Theorem 4.2.7: A sectionally pseudocomplemented distributive lattice L is generalized
stone if and only if any two minimal prime ideals are co-maximal.
Proof: Suppose L is generalized stone. So by theorem 4.2.6 any two minimal prime ideals
are co-maximal.

To prove the converse, let P,Q be two minimal prime ideals of L. We need to show
that [0, x] is stone, for each xe L. Let P; Q, be two minimal prime ideals in [0, x].

We know if L, is a sub lattice of a distributive lattice L and P;  is minimal prime ideal
in L,, then there exists a minimal prime ideal P in L, suchthat P, =L, A P.
So there exist minimal prime ideal P, Q in L such that P, = P A[0,x],0 =0 A[0,x].

Therefore, P, v O, =(Pn[0,x]v (QN[0,x]=[PVv O]n[0,x]=LN[0,x]=[0,x].
Therefore, [0, x] is stone. So by Theorem3. 2.5 above L is generalized stone [

Theorem 4.2.8: Let L be a distributive with 0 and 1 for an ideal I of L.
Weset I'={x:xAi=0 forall iel}. Let P be a prime ideal of L. Then P is minimal
prime ideal if and only if x € P implies that (x]" c P.
Proof : By the definition of /",(x]" ={y:yAx=0} as x" Ax=0 implics that x" e (x]’
.implies that (x"]< (x]", again let ze(x]", then z A x =0 implies that z<x  implies that
ze(x]" implies that (x]" < (x"] implies that (x]" =(x"]. Now suppose P be a minimal
prime ideal and x e P, then by x" ¢ P implies (x" ]« P implies (x']< P. Conversely, if

forxe P,(x]" @ P and if possible, let P is not minimal then there exist a prime ideal Q such

that Qc p.Let xe P-Q.

Now x' Ax=0eQ impliesthat x" € Q implies that x e P implies (x| P

implies (x]” < P which is a contradiction. Hence the proof [
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Theorem 4.2.9: A prime ideal P of a stone algebra L is minimal

ifand only P=(PnNS(L)), .

Proof: Suppose P is minimal, let a € (PN S(L)), . Then a<r for some r € (P N S(L)),
=>reP andreS(L)=>acP=rePandreS(L) implies r € P implics ae .

Implies that(PNS(L)), <P .. .ccoeee. (D)

Again let ae P, since P is minimal so, a” € PN S(L), since a<a’ .So ae (PN S(L)),
implies that P <(P N S(L)), ......(iD) \

From'(i) and (ii) we have a e (PN S(L)), .

Conversely let P=(PNS(L)), and ae P then a<r forsomere PNS(L)y=da" <r” =r

= x" € P.Hence P is minimal [
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4.3 MINIMAL PRIME n-IDEALS
A prime n-ideal P is a minimal prime n-ideal belonging to n-ideal / if

(1) IcP and

(i) There exists no prime n-ideal Q suchthat Q=P and /I cQc P.

Thus a prime n-ideal P of a lattice L is minimal prime n-ideal if there exists no prime n-
ideal Q such that Q# P and Q< P. i.e., minimal prime n-ideal is a minimal prime n-idcal
belonging to {n}
Definition (Medial): An element n of a lattice L is medial ifm(x,n,y) exists for all
X,y e L.
Since for the definition of a prime n-ideal of L, the medial property of n is essential, so any
distribution about prime n-ideals of L we will always assume n as a medial element. We

start this section with the following result which is a generalization of a well known result in

lattice theory.
Theorem 4.3.1: Let L be lattice with medial element n. Then every prime n ideal
contains a minimal prime n-ideal.
Proof: Let P be a prime n-ideal of L and let R be the set of all prime n-ideal Q
contained in p. Then R is non-void, since PeR. If C is a chain in R and
_ QO=n(x:xeC),then Q is anon-empty asne Q and Q is an n-ideal, in fac;t, Q is prime.
Indeed, if m(a,n,b) e Q for some a,be L, then m(a,n,b)e X for all X eC. Since
X is prime, either ae X or be X . Thus, either 0=nN(X:aeX) or Q=n(X:belX),
proving that ae Q or beQ . Therefore, we can apply to R the dual form of zorns lemma
to conclude the existence of a minimal member of R .
If L is a distributive lattice with ne L, then we already know that F,(L) is a

distributive lattice with {n} as the smallest element. So we can talk on the scctionally
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pseudocomplementeness of F (L) is called sectionally psceudo- complementted if cach

interval [{n}, <@, < a, >n] is pseudo-complemented.
That is for {n}c<b <...nd, >1n|C<a; <.cvoercoerrean.. a,>n. relative  pseudo-
complenient b < . b, >n in [{n},<d.ccccereerenne.. a, >n belongs to I, (L)

Now we give a characterization of minimal prime n-ideals of a distributive lattice L ,

when £, (L) is seasonally pseudo complemented. To do this we establish the following
theorems [

Theorems 4.3.2: Let L be a distributive lattice and n e L be a medial clement. Then for
any i,jel (L),(INnJ) nI=J"NI.

Proof: Since /nJcJ.SoRH.Sc L. H.S.

To prove the reverse inclusion, let xe L. H. S Then x e / and m(x,n,t)=n

forall re I nJ. Since xel,s0 m(x,n, jlelnJ.

Thus m(x,n,m(x,n, j))=n.

But it can be easily seen that m(x,n, m(x,n, j))=m(x,n, J). Thus implies m(x,n, j)=n for
all ieJ.Hence xe RH.S andso LHScRH.S Thus UnJ) ni=J" 1l []
Theoren 4.3.3: Suppose n is medial element of a lattice L.1f I J,I,J € I CEYs
Then(i) I"=1I"nJ and ()" =1"NJ.

Proof; (i) am trivial, For (ii), using (i) we have, I™ =(I")' nJ=("nJ) .

Thus by Theorem 3.2, I =1" nJ [J

Theorem 4.3.4: Let n be a sesqui - medial element of a distributive lattice Z . Suppose

F, (L) is sectionally pseudo-complemented distributive lattice and P is a prime n-ideal of

L . Then the following conditions are equivalent.
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(i) P is minimal. (i) xe P implics <x>, & P.

(iii) xe P implies < x>, < P.

(iv) P D(<t,>)=¢ forall te L - P, where D(<t, >)={xe L<t, ><x> ={n})
Proof: (i)~ (ii), suppose P is minimal. If (ii) fails, then there exists x € 7,

such that <x> "< P. Since P is a prime n-ideal, then P is a prime ideal or a prime filter.

Suppose P is a prime ideal. Let D=(L—P)v[x). We claim that n¢ D. if ne D, then

n=gAnx forsome geL-P.

Then <g>, Nn<x>,=<(gax)v(gan)v(xan)>, ={n} implies <¢g> c<x > e P,
Thus, g € P, which is contradiction. Hence n ¢ D. Then there exist a prime n- ideal Q with

OnD=¢ .Then Qc P as QN (L—P)=¢ and Q# P, since x ¢ ¢ . But this contradicts

the minimality of P.

Hence <x>, < P. Similarly, we can prove that <x>, < P if P is a prime fitter.

(1) = (ii1). Suppose (ii) holds and x € P. Then <x >H‘ EF,

Since <x >”‘ N<x> ={nyc P and P is prime, so< x >"cP.

(iii) = (iv). Suppose (iii) holdsand te L— P . Let xe PN D(<t>,)

‘Then xe P,xe D(<t>,). Thus <x>,'={n} andso<x>, =<t>, .

By (iii)x € P implies < x >”" < P. Also by Theorem 3.3.3, <x >”" N<X >”" Rl &

Hence <x>,” N<t>,=<t>, andso <t>,c<x>, < P.Thatis /e P, whichisa
contradiction.

Therefore, PND(<t>,)=¢ forall treL-P.

(iv) = (i). Suppose P is not minimal. Then there exists a Prime n-ideal Q c P.
Letxe P—Q .Since <x>, Nn<x>,={njcO So x>, clcp
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Thus, <x>, v<x >”‘§; .,

Chooseany te L— P .Then <t>, N(<x>, v<x>, cP.

Now <> N(<x>, v<x>, )=<t> N<x>)Vv(<t> N(<x>,

=<m(t,n,x)>, v <t> Nn<x>) N(<t>,)(<t>, (by Theorem3. 3.2)

=<m(t,m,x)>, v (m(t,n,x)>, N<t>)

=<m(t,n,x)>, v (<m(t,n,x) >n' ( by Theorem 3.3.3), where < m(t,n,x)>, is the relative
pseudo-complement of <m(t,n,x)>, in <¢>,. Since F,(L) is sectionally pseudo-
comblem:‘.—r.‘;ed <m(t,n,x) >”‘ is finitely generated and so (<m(f,n,x) >, vm(f,n-,x)”' is a
finitely generated n-ideal contained in <> .

Therefore, <m(t,n,x)>, v m(t,n,x)>, =<r>, forsome re<t>, .

Moreover, <r >”' = <m(t,n,x) >, vm(t,n, x)“" {n}.Thus, re PnD<t>,,

which is a contradiction. Therefore, P must be minimal [
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4.4 Lattice whose principal n-ideal form normal lattice.
Definition( Normal lattice): A distributive lattice L with 0 is normal if every ideal of
L contains a unique minimal prime ideal.
‘Definition( Central element): Any element of a lattice which is standard and

complemented in each interval containing it is actually neutral, then the element is called

central.
We already known that for a central element ne L, P, (L) = (n)* x[n).

Thus, we have the following result.

Lemma 4.4.1: Suppose n is a central clement of a distributive lattice L.
Then P,(L) is normal if and only if (n]? and [n) are normal.

A distributive lattice L with 1 is called dual normal if its every prime filter is
contained in a unique ultra-filter (maximal and proper). In a general lattice, this condition is
also equivalent to the condition of normality, that is, every prime ideal contains a unique
minimal prime ideal. Thus obviously the concept of dual normality coincides with the

normality in case of bounded distributive lattices.

Therefore, from above lemma P, (L) is normal if and only if [#) is a normal lattice

and [») is a dual normal lattice. Following theorem is needed to prove the main results of

this chapter.

Theorem 4.4.2: Suppose L be a distributive lattice and ne L.

‘Let x,y€ L with <x>, n<y>,={n}. Then the following conditions are equivalent.

(1) <x>,,' n<y>,,‘=L.
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(i) Forany re L, <m(x,n,x)>, v<m(y,nit)>, <t> where <m(x.nx)>

denote the relative pseudocomplement of <m(x,n,t)>, in[{n},<t>,].

Proof: (i) = (ii). Suppose (i) hold. Then for any r€ L,

<m(x,nt) >, v<m(y,nt)> =(<x> N<t>) vKy>, Nn<t>)"
=((c<x>, Nn<t>)N<t>v<y>)Nn<t>)n<t>,) [ by Lemma4.3.3.]
=((<x>, Nn<t>)<y> )n<t>,) [byLemma43.2]
=(<x>, v<ys>, ) Nn(<ts,)

=SNn<t>,
=<(>, . Hence (ii) holds.

(i1) = (i) . Suppose (ii) holdsand r e L.
By (i), <m(x,n,t)>,, v <m(y,n,t)>, =<t>, . Then using Lemmas 4.3.2 and 4.3.3 and
the calculation of (i) =  (ii) above, we get,

(<x>, v<y> )n<t> =<t>, Thisimplies<t>,c<x >"v<y>, and

te<x>, v<y>, so.Therefore, <x>, v<y>, =L [

Conish in [4] has given some characterizations of normal lattices. Then [30]
extended those results for lattices [30] has given the following characterizations for normal
lattices.

Theorem 4.4.3: Let L be a distributive lattice and n be a central element of L. The
‘following conditions are ecquivalent.
(1) P,(L) is normal.

(ii) Every prime n-ideal of L contains a unique minimal prime n-ideal.

(iii) For any two minimal prime n-idealsPand Qof L, PvO=L.
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Proof: (i) = (ii). Let 2,(L) be normal, since P, (L) = n]* x[m)", so both (n]* and [m)
are normal. Suppose P is any prime n-ideal of L. Then cither P o (n] or P o[n). Without
loss of generality, suppose P 2(n]. Then P is prime ideal of L. Hence P =Pn|n) isa
prime ideal of [) . Since [;) is normal, so by definition P, contains a unique minimal
prime ideal R, of [) . Therefore, P contains a unique minimal Prime ideal R of L where

R, =RnN[n).Since ne R, sone R and hence R is a minimal prime n-ideal of L . Thus (ii)

holds.

(i))=>(i). Suppose (ii) holds. Let P, be a prime ideal in[pn). Then P, =P n[n) for some

prime ideal P, of L. Since ne P, < P, so P is prime n-ideal .

Therefore, P, contains a unique minimal prime n-ideal R of L. Thus, P, contains the
unique minimal prime ideal R, =R [n) of [n). Hence by definition [7) is normal.
Similarly, we can prove that(n]* is also normal. Since P, (L) = (n]‘ x[n), so P,(L) P, is
normal.

(i1) <> (iii) is trivial by Stone’s separation Theorem.

Recall tha: for a prime ideal P of a distributive lattice L with 0, [31] has defined
0(P)={xeL:xAy=0 forsome ye L~ P}.Clearly, 0(P) isan idcal and (P P.3]]
has shown that O(P) is the intersection of al the minimal prime ideals of L, which are
contained in P.

For a prime n-ideal P of a distributive lattice L , we write
n(Py={yeP:m(y,n,x)=n for some xeL—P}. Clearly, n(P) is an n- ideal and

n(Pyc P O

Lemma 4.4.4: Let n be a medial element of a distributive lattice Z and P be a prime n-
ideal in L. Then each minimal prime n-ideal belonging to n(P) is contained in 7.

Proof: Let O be a minimal prime n-ideal belonging to n(P). IfQ & P, then choose

ye@Q—P.SinceQ is a prime n-ideal, so we have Q is either an ideal or a filter. Without
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loss of generality, suppos Q is an ideal. Now let T'={r € L,m(y,n,t) € n(P)} . We show that
TzQ.lfnot,let D=(L-Q)v[y). Then n(p)nD=¢ .

For otherwise, y Ar e n(P) forsome re L—0.

Then by convexity, y Ar <m(y,n,r)<(y Ar)v n implies m(y,n,r),n(P).

Hence r €T < Q, which is a contradiction. Thus there exists a prime n- ideal R containing
n(P) disjointto D. Then Rc Q.

Morcover, R# Q as y e R , this shows that Q is not a minimal prime n- ideal belonging to
n(P), which is a contradiction.Therefore, 7' Q. Hence there exists z¢Q such that
m(y, -n, z)en(P). Thus m(m(y,n,z),n,x)=n for some xeL—-P. It is easy 1o see that
m(m(y,n,z),n,x)=n=m(m(y,n,x),n,z).

Hence m(m(y,n,x),n,z)=n. Since P is prime and y,zeP so m(y,n,x)gP.

Therefore, z € n(P) < Q, which is a contradiction. Hence Q< P [J

Proposition 4.4.5: If n is a medial element of a distributive lattice and P is a prime n-
ideal in L, then n(p is the intersection of all minimal prime n - ideals contained in 7.

Proof: Clearly, n(P) is contained in any prime n- ideal which is contained in P.
Hence n(P) is contained in the intersection of all minimal prime n- ideals contained in P.
Since L is distributive, son(P) is the intersection of all minimal prime n- ideals belonging
to it. Since each prime n- ideal contains a minimal prime n- ideal, above remarks and

Lemma 4.4.4 establish the proposition [

Theorem 4.4.6: Let L be a distributive lattice and let n be central element in L. Then the
following conditions are equivalent.

(i) P,(L) is normal.

(i) Every prime n- ideal contains a unique minimal prime n- ideal.
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(iii) For each prime n- ideal P, n(P) is prime n- ideal.

(iv) Forall x,ye L,<x>, Nn<y> ={n}

Implies <x>," n<y>"=L.

(v) Forall x,ye L,(<x>, n<y>,)=<x>"v<y S

Proof: (i) = (ii) holds by theorem 4.4.3

(ii) = (iii) is a direct consequence of proposition 4.4.5.

(i) = (iv). Suppose (iii) is a direct consequence of proposition 4.4.5

(1i1) (1v). Suppose (iii) holds.

Consider x,ye L with <x>, v<y> ={n)

If<x>"v<y >."# L, then by Theorem 1.4.7 there exiats a prime n- ideal P .
Such that <x>," v<y> "c P, then <x > 'cPand <y>'"c P, imply xen(P).
And y ¢ n(P). But n(P) is prime and so m(x,n, y) =ne n(P) is contradictory .
Therefore, <x> " v<y> ‘=L,

(iv) = (v). Obviously, <x>," v<y> 'c(<x>, n<y>,) .

Conversely, let we(<x>, n<y>,)" .

Then, <w>, N(<x>, n<y>, )={n} or, <m(w,n,x)> N<y> ={n}.

So by (iv), <m(w,n,x) >n' N<y >”' =

So, we<m(w,n,x) >,,' N <y>"' .

Threfore, w A n,wv ne<m(w,n, x) >"' v<y >”° )

Here wv n exists as n is an upper element.

Then wv n=rv sforsome r e<m(w,n,x)>, and se<y>, with r,s>n.

Nowr e< m(w,n, x) >n‘ .
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CHAPTER FIVE

Introduction:_In lattice theory there are different classes of lattice known as verity of

course the most powerful variety. Throughout this capter we will be concerned with another
large veriety known as the class opseudocomplemented lattice. Pseudocomplemented

lattices have been studied by several authors [16],[17], [25], [26 ], [27], [28 ]

In this chapter we have studies relatively pseudocomplemented lattice and Multipler

Extension of Sectionally Pseudocomplemented Distributive lattices.

5.1. Relatively Pseudoeomplemented of lattice.

Definition ( Pseudoeomplemented element): Let L be a lattice with o and 1 for

an element xe L, elementx’ € L is called pseudo complement of x if x A x" =0

and x A y=0(y € L) implies y <x".

Definition ( Pseudoeomplemented lattice): Let L be a bounded distributive

lattice, let ae L , an element a” € L is called a pseudocomplemented of a in L if the

following conditions hold:(i) ana’ =0 (ii) V xeL, aanx=0 impliesthat x<da’
Also A lattice L is called pseudocomplemented if its every element has a peudocomplement.

For a lattice L with o, we can talk about sectionally pseudocomplemented lattice,

A lattice L with 0 is called sectionally Pseudocomplemented if the interval [0, x]

for each x € L is pseudocomplemented. Of course every finite distributive lattice is

Sectionally pseudocomplemented.
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Definition( Relatively Pseudocomplement lattice): A lattice L is called relatively

pseudocomplemented if interval [a,b] foreach a,be L ,a<b is psecudocomplemented.

Theorem 5.1.1: If L is a distributive sectionally pscudocomplemented lattice, then Sy is

a distributive pseudocomplemented lattice.

Proof: Suppose L is sectionally pseudocomplemented. Since L, is a distributive lattice.

Let [x]eL,., then [0]c[x]<F. Now 0<xA f<f for all feF. Let y be the
pseudocomplement of x A f in [0, /], then yAxA f=0 implies [yA f]a[x]=[0],

that is [y] A [x]=]0].

Suppose [z] A[x]=[0], for some [z]e L, ,then zAx=0(y,).
This implies zAx A f' =0 --mconmeee (i) for some f'e F.Since z=zA f(y,.).

So zA ' =zA L AL M. (i) for some £ € F from (i) and (ii) .
Weget zaxA f'Af"=0.Setting g=1"' A f"
wehave zAg=zAgA f whichimplies zAg<f and zAgAaxA f=0.

So0<zAgAax<f and
zAng<y.Hence, [zA g]c(¥).But [z]=[z A g] as ge F. Therefore, [z]c[y]and so L,

is pseudocomplemented distributive lattice [

Lemma 5.1.2: Let L be a distributive relatively pseudocomplemented lattice.

Let x<y<z inLand seL isthe relative pseudocomplemeted of y in [x, z].

Then forany r € L,s r is the relative pseudocomplemet of y Ar in [xAr,zAr].
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Proof: Suppese 1 A r s the relative pscudocomplemet of y A+ in [x A,z A r]. Since s is
the relative pseudocomplemented of y in [x,z]. So s A v=x, Thus,
(sAr)vV(yAr)=xnAar.

This implies s Ar <t Ar. Again, x<sv (t Ar)<z and
yasviar)y=(yas)v(yar)vtar)y=xv(xar) implies sv({(Ar)<s

Le s=sv(tAr).

Hence tAar<s,andso (Ar<sar.

This implies t Ar<s Ar. Therefore, s Ar is the relative pscudocomplemet of y Ar in

[xAr,zar] O

Theorem 5.1.3: If L is a distributive relatively pseudocomplemeted lattice, then L, is a

distributive relatively pseudocomplemeted lattice.

Proof: Since L, is a distributive lattice. Let [x],[y],[z] € L, with [x]<[y]<[z].
Then [x]=[x A yland[y]=[y A z]. Thus x=x A y(y,;, and y = y A z(, .

This implies x A f=xAyA fand yaAg=yAnzag forsome f,geF.

Then xA fag=xAynfargand yAfAag=yazAfAg,andso
XNfAESYASFAgSzAfAag, thatisxAah<yanh<zah where h=fAgekF.
Suppose t is the relative pseudocomplemented of y A h in [x A b,z A h].

Then t Ay Anh=xna,h andso [{]A[y Ah]=[xAh]. Thatis [t]A[y]=[x] as-
y=ynhly;)and x=xAh(y,).

Moreover, [t]A[z] =[t]A[zAh]=[t AzA K] =[t] implies[x]c[y]c[z]. We claim

that [t] is the relative pseudocomplement of [y] in [[x],[y]] in L,..
Suppose [s] A [y]=[x] for some [s]e[[x],[z]]. Then x A y =x(y,.) and
so SAYA f' forsome f' e F. Again [s]=c[z]implies s=s A z(w,.)

andso sAg' =snzng' forsome g'e F.Then saynf ' ang'=xnf'ng'
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andsA f'Ag'=sAzaf'Ag' ‘Thus, saAyak=xnk and sak=sAzAk
where k= f' Ag'. Theseimplyx AhAk<sAhAk<zAhAk and
AhAEYA(yAhAk)=xAhAk .Then by above lemma, sAAAk<tAk .

Hence [s]=[sAhAk]lc[tak]=[t]land so [f] is relative pseudocomplemet of [y] in

[[x].[¥]]. Therefore, L, is relatively pseudocomplemet []

Definition (Stone algebra): A pseudocomplemented distributive lattice L is called a stone

algebra if and only if it satisfies the condition for each a" v a” =7 which is known as stonc

identity.
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5.2 Multiplicr Extension of Sectionally Pseudo-complemented Distributive Lattices.
Introduction: A lattice is a meet semilattice together with the property that any two
clements pocsessing a common upper bound have a supremum. Here, the authors study

multipliers on distributive lattices which are sectionally in B,, —1<n<w@. They have

showed that a distributive lattice L is sectionally in B, if and only if its set of all multipliers
M(L) is in B, . Moreover, for 1<n<w, the above conditions are also equivalent to the

condition that L is sectionally pseudo-complemented, and for any »+1 minimal prime

ideals A...., P

n+l?

Bt P

w =L

Let L be a lattice and o a mapping of L into itself. Then o is called a multiplicr
onL,if o(x A y)=0c(x)Ac(y) foreach x,ye L. Each multiplier on L has the following
properties:
o(x)<x, o(=0(x)o(x)) and x<y implies o(x)<a(y).
Each ae L induces a multiplier g, defined by u,(x)=aAx for each xe L, which is
called an inner multiplier. The identity function on L, which will be denoted by i, is always
;dmultiplicr. M(L) denotes the set of all multipliers on L. It is obvious that M (L) has a
zero denoted by @ if and only if L hasa 0.
If o and A are multipliers on a lattice L, then o AA and ov A arc defined by
(o AA)(x) = o(x) Ao(x) and (o v A)(x) =c(x)Vvo(x). Note thato(x) v o(x) always
exists by the upper bound property of L, as o(x),o(x)<x, although ov A is not
necessarily a multiplier.
Also, o(A(x)=0(A(x A x))=0(A(x) A x)=0(x) Ao(x). If L is a distributive lattice, then
M (L) is a distributive lattice.
A distributive lattice L with 0 is called sectionally pseudo-complemented if each interval

[0,x],x € L is pseudo-complemented.
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Let L be a scctionally pseudo-complemented distributive lattice and o€ M(L). We deline the
pseudo-complement of o (denoted by c) by o' (x)=0c(x)", where o(x)" is the relative
pseudo-complement of o(x) in [0,x] for cachx e L . In fact, we have given a proof of this in
Proposition 5.2.2

In this section, we study multipliers on sectionally pseudo-complemented distributive

lattices and also on distributive latices which are sectionally in B,, —1<n<w.Then we
generalize a number of results of [1]. We show that L is sectionally in B, if and only if
M(L) is in B,. We also show that, for 1 <»n <, the above conditions are also equivalent
to the conditions that L is sectionally pseudo-complemented and for any #n+1 minimal

prime ideals B....., P,

n+l?

B Fyselt o

nl = L
Multipliers on Distributive lattices which are Sectionally in B,

Lee [4] has determined the lattice of all equational subclasses of the class of all pseudo-

complemented distributive lattices. They are given by B, c B,c B c..c B, c..c B,
where all the inclusions are proper and Bg is the class of all psecudo-complemented
distributive lattices, B_, consists of all one element algebras, B, is the variety of Boolean

algebras while B, , for 1 <n <@, consists of all algebras satisfying the equation

n

* - "
(x, Xy Powes I xn) v v (x1 YN T & T A /\.../\xn) =1,

where x” denotes the pseudo-complement of x . Thus B, consists of all Stone algebras.
A lattice L is sectionally complemented if [0,x] is complemented for each xe L. L is
semiboolean if it is sectionally complemented and distributive.

Recall that a distributive lattice L with 0 is sectionally pseudo-complemented if cach

interval [0,x] , x € L is pseudo-complemented.
Theorem 5.2.1: A lattice L is distributive if and only if M (L) is a distributive lattice.
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Propositicn 5.2.2: If L is a scctionally pscudo-complemented dislribulivuf lattice with 0,
‘then M(L) is pseudo-complemented.
Proof: For each e M(L) andxe L, o(x)€[0,x]. Suppose o(x)" denotes the pscudo-
complement of o(x) in [0,x]. Define o":L—>L by o (x) = o(x)" for each xe L. If
a,bel,
then (¢" (@) Ab)Aac(anb)=c" (@) AbArc(a)Ab=0 implies

(c'(a)yab)<o(anb) =o' (anb).On the other hand,

(' (anbync(a)y=c"(anb) rno(@)=c(anb) ro(@) Ab=0

implies o (a Ab)<o(a) o’ (a).
Since o' (anb)<b,so o' (anb)<o(c (a)rb.

Therefore, ' (aAb)=0"(a)Ab andsoc’ € M(L).
Now, (0 Ac”)(x)=c(x) Ao (x)=0=w(x) implies c Ac’ =w. If

ont=w, oc(x)At(x)=0.

Then for each xe L. Since o(x),7(x)€[0,x], so r(x)<o(x) =0 (x).
This implies 7 <o and so ¢ is the pseudo-complement of ¢ in M (L) . Therefore, M(L) is
pseudo-complemented [J

Proposition 5.2.3: For a distributive lattice L with 0, if M (L) is psecudo-complemented

then L is sectionally pseudo-complemented.
.Moreover, for each ce M(L) and xe L, the element o (x) is the relative pseudo-

complement of ¢ (x) in [0, x].

Proof: Consider any interval[0, y] in L. Suppose x [0, y].

ThenO=w(y) = Lux /\,u;Xy):,ux(y)/\,u;(y):xAy/\,u;(y)zx/\y;(y). Now, if xA1=0

for somet € [0,y], then for allpe L, (u AuXp)=xrtAp=0, and sop, Ay =w.This
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implies g, Su'. Thus, g, (y)s,u:(y). and so I=fAYy S,u:(y). Hence, ,u:(y) is the relative
pseudo-complement of x in [0, y]. Therefore, L is sectionally pseudo-complemented.Finally, for
each xe L, o(x) Ao (x)=0.Also o (x)€[0,x]. Now let r A o(x) =0 for some ¢ €[0,x].
Thenforany pe L, (uno)p)=u(p)rc(p)=tapnroc(p)=trc(p)=trxnoc(p)

=t ApAc(x)=0=w(p). This implies uAoc=w andso u<o'. Then u(x)<o’(x)
Thus, =t A x <o (x). This shows that o (x) is the pseudocomplement of &(x) in[0,x][]
Corollary 5.2.4: Suppose L is a sectionally pseudo-complemented distributive lattice with
0.If x" is the pseudo-complement of x in [0, y], then x* = i1 (y)
Theorem 5.2.5: Let L be a distributive with 0. For a given n such thatl-1<n<w, the
following conditions are equivalent:
(1) L is sectionally in B, ;
(i) M(L) isin B, .
Proof: (i) implies (ii). The case n =1 is trivial. The case n = follows from

Proposition 4.2.2

For n=0, L is semiboolean. Then by Proposition 4.2.2, M (L) is pseudo-complemented
_and for ce M(L), o' (x) = o(x)" for each x € L, where o(x)" is the pseudo-complement
of &(x),[0,x]. Since L is semiboolean, o(x)" is also the relative complement of o(x) in
[0,x]. Then (v o' )(x)=c(x)vo (x)=0(x)vo'(x)x=1ux).
This implies ¢ Ao’ =7 and so o is also the complement of ¢ in M (L) .
Therefore, M(L) is Boolean.

Now, suppose L is sectionally in B,. 1<n<w.For o ... o, € M(L) and for

each x e L, using Proposition 5.2.2
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l:(cr, AAD,) V ‘\3 (a'1 Ay Pzl O’,,).](x)

n

e (0', /\...ACF")-(JC)V v (0'1 A...AO". A...AO'”).(}C)

= (o, Ano, fx)" v £/I ((0'1 AAT, A AT, Xx))

]

= (o,(x)A.cno,(x)) v M (0'1 (x)A...n0, (x)A..A0, (x)]

n

=(o,(x)A..n0,(x) v v (0', x)A..no,(x) A...AG'”(JC)).

s =1lx).

Hence, (o, A...A T, v (cr,' AAD, ) V..V (0'1 A.../\cr,,')' =7 andso M(L) isin B,
(ii) implies (i). The case n=w follows from Proposition 5.2.3. For n=0, M(L) is
Boolean. Then by Proposition 5.2.3, L is sectionally pseudo-complemented.

Suppose x €[0,y]. Then the pseudo-complement u, of u  is also the complement
of u, . Thus, u v u. =1.1fx" is the pseudo-complement of x in [0, y] , then by Corollary
524
y=1) =, v 1)) =)V i )=, )V, ()= Ay) vt =xvx This
implies x* is the relative complement of x in [0, y] and hence, L is semiboolean.

Now, suppose M(L) isin B,, 1<n<w.Let x,.........x, €[0, y].

Then using Proposition 5.2.2
y=4y) = [(,u,l A..‘Aﬂx‘)‘ v \}I o Ao A A A yx)][y)

=((@y A-==—Ap,) O
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‘Lemma 5.2.6:
(1) Let L be a distributive lattice with 0. If 0<x <L and the interval [0,x] is pseudo-

complemented, where y© is the pseudo- complement of x € [0,x] then in the
lattice of ideals of L . (y]' n(x] and (3" =(»)" N (x].

(i) If L 1s a distributive near lattices with 0 and0<x <L is such that (y]*mn(x] is

principal for each y €[0, x], then [0, x] is pseudo-complemented and (y]* (x]=(y"].

Lemma 5.2.7: Let L be a distributive lattice with 0. For any r € L and any ideal I,

((r]n D¥*n (r]=I*n (]

Proof: Obviously, RHS < LHS. To prove the reverse inclusion, let

te (rjn D (v].

Then t<rand t Ar Ai=0 forall iel . This implies t Ai=0 and so e I . Thus,

[ e I*M (r] and this completes the proof [
Lemma 5.2.8: If S is sub lattice of a distributive lattice L and is a prime
ideal in L,, then there exists a prime ideal P inL suchthat P, =S, N P.

Proof: Let / be the ideal generated by P in L . Then/= (/] ] where H is the

hereditary subset of L generated by P, . Suppose x € I N (L;-Py) Then xe/

and xe S, — F,. Then by Theorem 11 in [2], x=/ V .cccveeneeen v h, for some
S A h; € H . Again, h ¢ H implies i <t, <t, forsome 1, € F,, i=12........ n.
Then x=(xAh) V. (AR )S(XAL) V. e(x at,)<x (this exists by the upper

bound property). Thus, x = (x =(x A t, )v ..... v (x AL, )e p,) which gives a contradiction.
Therefore, IN(L,—P)=¢. Then as L —-P is a filter in L, INn(L,-F)=¢,

where (L, — P,) is the filter generated by L, — P, in L. Then by Theorem in [7], there is a
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'primc ideal P in L such that /P and (L, -P)nP=¢ .Then Lcinl, cPnlL,
andPn L, cP Hence, A=L NP

A prime ideal P of a near lattice L with 0 is a minimal prime ideal if there exists no prime
ideal O such that Q < P. Thus, we have the following corollary. We omit the proof as it

can be dornic in a similar way.

Corollary 5.2.9: If L, isasub lattice with a smallest element of a distributive lattice L,

with O and P, is a minimal prime ideal in L,, then there exists a minimal prime ideal P
inL suchthat =L NP.

We conclude this paper with the following theorem which is a nice extension of Theorem4.5

in [1].

Theorem 5.2.10: Let L be a distributive lattice with 0. For a given n such that

1< n<w the following conditions are equivalent

1) L is sectionally in B,

i) M(L) isin B,

60 =X (CT T AEIDIVED Vo v (O DT (XA e Ax, 1)

(1%) BT any & wcosscmsssesd x €L

; ((xl] A\ (x"] )* v((xl] L (x"] )* V.V ((Jc1 | (x"] * PR [
(v) L is sectionally pseudocomplemented and each prime ideal contains at most
n minimal prime ideals;
(vi) L is sectionally pseudocomplemented and for any n+1 distinct minimal prime ideals
=il

o
ST . . TR, Xk

n+l
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(P ] A AFAx D AED = ]A A, AC]
Again, foreach 1<i<n,r Ax, <x, implies (» A x,_]' o(x,]" Thus.
(AXIA e ACAX D) At A, DD (P AX A e A(FAX, ] A A X, D).

Psendocomplemented distributive lattices

and so
AXTA e ACAXD A A X, D) A (]
(A A At AX,] A(r Ax, D) A(F])
=] A e A D A A A
By using Lemma 5.2.7 again.
Therefore, (r] < (¥, ] A oo A (%, ] V(%] Ao A(X, 1) Voo V(%) A v, 1) * . Which
implies that,
(5 TA e ATV T) A A, DT Ve V(X Aveex, ] )*=L
If n=1, then for any r, we have by (iii) that

(rlceax] v(rax]".

Thus,
r1=((r Ax, 1 @IV ((rAx T (D)

=((x,]' NV ((rAax]" (@] (by Lemma?2.7)

c] vx]”
.and hence (x,]" v (x,]" =L
(iv) implies (i) following exactly from the same proof of Theorem 5.2.5 (iv) = (i) in [1].
(v) implies (vi). Suppose (v) holds, and P,,.....ccceuu... ,P,., are distinct minimal prime ideals.
If P,v.oicwnnn v P, # L, them by Theorem 5.2.6 , there exists a prime ideal P

containing P, ,........ccc... , P, which contradicts (v),
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(vi) implies (v). Suppose (vi) holds. If (v) does not hold then there exists a prime idcal P
which contains more then n minimal prime ideals. They by (vi), P = L which is impossible.
(v) implies (vi). We omit this proof as it can be prove exactly in a similar way
(iv) implies (vi) in Theorem 5.2.5 in [1].
(vi) implies (i). Suppose (vi) holds and ae L. Let Q,,..ccceeueee. nem be n+1 distinet
minimal prime ideals in [0,a] .By Corollary 5.2.9, there are minimal prime ideals 7, in L,
such that Q, =[0,a]P. foreach 1<i<m+1. Since Q, are distinct, all P ’s are also distinct.
By(vi),

(al=@]A (P Vi, ViR Y =H(a@] VBN s Vi{a) ALy, )= O Vi T8 0 -
Since each interval [0,a] is pseudocomplemented, so [0,a] = B, by Theorem 1 in [4], and

hence, L is sectionally in B, O
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CHAPTER SIX
Homomorphism and standard ideals

Introduction: In this Chapter we studies extensively standard ideal and homomorphism
kernels. The idea of standard ideals in lattice was first introduced by [15], [21]. It had

extended the ideal to convex sub lattices and proved many results on homomorphism by
[10], [33] also [7] and [8]

A congruence ¢ of a lattice L is called standard if ¢ =© ,, for some standard ideal S
of L. For any two lattice L, and L,, a map ¢:L, — L, is called an isotone if for any
x,ye L, with x < yimplies ¢(x)s gzﬁ(y) Also the above mapping is called a meet
homomorphism if for all x,y € L, , ¢(x/\ y)= gﬁl(x)/\é'(y).

Therefore meet homomorphism is an isotone, and hence ¢ is isotone.

¢5(x)v (zﬁ(y)s ¢(xv y]. Therefore ¢(x)v ¢(y) exists by upper bound property of L .Latif
in his thesis has introduced the concept of standard n- ideals of a lattice. We conclude this
section with some more properties of standard and neutral ideals, For the background
meterial on standard ideals we refer the reader to consult the text of Gratzer [18]. We also
extended the result of Cornish and A.S.A Noor [4], we also show that If Iis an arbitrary
ideal and S is standard ideal then / AS and Iv S are principal, then I itself principal.

Secondly, we have discussed homomorphism, kernels and stadard ideals. Gratzer and
Schmitd in [15] were translated several thorem of Group theory to lattice theory. Here we
have generalized so of their result, we have shown that if S is a standard ideal of a lattice L ,
then © s the extension of @ (S) to /(L) and O (S) is the restriction of ® g to the lattice L.
Then we have shown that in a sectionally complemented lattice all éongrucnces are
standard. We also show that in a relatively complemented lattice L with 0, if every standard

ideal of L is generated by a finite number of standard elements, then the congruence lattice

C(L), is Boolean.
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Finally, we have generalized two results of [5] and [6] regarding lattices all of whose

congruence are standard. We know that the set of all standard ideals of a lattice L is a sub
lattice of /(L). Also the congruence ® where S is standard form a sub lattice of ® (/(L)) ,
and § — O, is an isomorphism. Suppose @ is a congruence relation of L. ¢ defines in the
natural way a homomorphism of /(L) under which 7 =J(I,J € I(L)) if and only if to any
xel there exists a,beJ such that x=y® and conversely. We call this congruence
relation the extension of ® to I (L). On the other hand any congruence relation ¢ of /(L)
induces a congruence relation of A under which x =y if and only if(x]z (y}e). This is
call(;d the restriction of ¢ to L.

Thirdly in [15] Gratzer and Schmidt have proved Isomorphism theorem for standard ideals
in lattices. In their paper they have translated several theorems of group theory to lattice
theory using ideal, standard ideal, factor group and group operation. Here we shall
generalize isomorphism theorem.

We refer the reader to [6], [7], [8], [9] for a necessary background on this section.
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6.1 Charecterization of standard ideals

We start with the following characterization of standard ideals in a lattice, which is due to

[4]. We prefer to include the proof for the convenience of the reader.

_Theorem:6.1.1 LetSbe an ideal in a lattice L. Then the following conditions are
equivalent.

(1) S is a standard ideal.

(i1) The binary relation @ (), defined by x = YO, if and only if

x= (x A y)v (x A a)v y= (x A y)v (y Ab)for some a,b € S is a congruence relation.

1ii) ”Il"he binary relation¢ defined by x = y(gﬁ), if and only if

Forall te L(x at)v(tnc)=(y At)v (e A ¢) for some ¢ € S is a congruence.

iv) For each ideal K,Sv K =sv k:svkexists,and se S and k € K. Moreover, (ii) and (iii)
represent the same congruence, viz. (E)(S ), the smallest congruence of L having S as
congruence class.

Proof: (i) implies (ii). If (i) holds, then the relation

J=K(Os)/,Kel(L)) ifandonly if J=(J/NK)v(/NS)and K =(JnK)v(KNS) is
a congruence on I(L). Then @s/ L, restriction to L, is a congruence on L and x = y(®s/ L)
if and only if (x) = (x A y)v (x N S) and (y]: (x A y)((y]m S )

Thus to prove (ii), it is sufficient to prove that (x |=(xay Ja((x ]~ S )

implies x = (x A y)v (x A a) for some a € § . This is proved by induction. By the property
of the supremum of two ideals, (x A y]v ((x]ﬁ S= U Ln,where L, =(x A y ]u ((x ]m S and
n=0

Ln = {r el:t<pvg,pvgexistsand p,gqe 4, ,} forn=1.2,............
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Indeed, we show by induction that (xay Jv(x]nS)={:r<(xay]vixva)
(xay Iv(x]nS)={:t<(xay]v(xva) forsome aes }

If te L then te(xAy]
IOr, te(x]NS. In the first instance, t <xAy<(xAy)Vv(xAs) for any s€ S and in the
second instance f=fAx<(xAy)v(xatl) and reS. Thus the result holds for n=0.
Suppose the result hold for n—1 for some n>1.Let re L,then t < pvg with p,ge L, .
So ps(xay)v(xas)and g<(xAy)v(xAas,) for some s,,5,€S
Then' [SEAY)VAsS)VXAS,))=(xXAY)V(XAS).

For some se€S since (xAs,)V(xAs,)<S and is in S, it is of the form x A s for some
s € S.Thus, we have (x Ay]v((x]Nns)={1:t<(xAy)v(xAs) forsomese S;in fact,
X<(xAy)v(xaa) forsome aeS andso x =(x A y)Vv(xAa);as required.

i1) Implies (iii), Let x = p(O(S)). Since O(S) is a congruence ,x At = y AL(O(S)) for any
tel, and so xAt=(xAyAat)v(xataa) andat=(xAyat)v(xatab) for some
a,be S .Then
xAanDViAltraa)vUAD=(xat)virna)v(nb)xayat)v(tana)v(tab)
=(yat)v(inrna)viab)=(yat)via[taa)v(ab).

Observe taht (t Aa) v (1 Ab) e S. Thus, x = y(¢)

Conversely, if x = y(¢) thenforany te L, (x At)v(t Ac)=(yat)v(t Anc)lor some
ceS.Choosing t=xand t=y ,wehavex=(xAy)v(xal)and y=(xAy)v(yAc)
respectively. Thus, x = »(©(S)) and ¢ is the congruence O(S).

-1i1) Implies (iv). Let T ={sv k:sv k exixtsand s € S and k € K}. Suppose x < sV k,

seS,ke K.Clearly svk=k(O(S) andso x=xA(svk)=(xnAk)O(S)).

Hence forall te L,
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(xAaf)vnc)=(xnkat)yv(tac) forsome ceS Choosing f = x,

we obtain x =(xAk)v(xac)andso x e T'. But T is closed under existent finite suprima.
It follows that T'is an ideal of Land T =S v K .

iv) Imlies (i) Let xeJN(SvK) .Then xeJ and xe(svk). So x=svk for
suitables € S. And k€ K Then, x=(xAs)v(xak)and so xe(JNS)v(JNK). The
reverse inclusion is obvious. Thus JN(SNK)=(JNS)v(JNK); S is a standard ideal.
The last part is clear from the proof of (ii) implies (iii). Now we give another
characterization of standard ideals of a lattice. This is a generalization of [15, Theorem 2] [
Theorem 6.1.2: For an ideal S of a Lattice L, the following conditions arc equivalent;

(1) S is a standard ideal.

i1) The equality /N (Sv K)=(I nS) v (I nK) holds if I and K are principal ideals.

(iii) If for the principal ideals / and J the inequality J < S v I holds, then
J=(UnS)v(iInI).

iv) The relation © [S] of L defined by x = y(©(S))hold if and only if
x=(xAy)v(xaa),

y=xnany)v(yab) forsome a,b e S isa congruence realtion.

- Proof: (i) Implies (ii) is obvious, from the definition of the standard ideal.

(i1) Implies (iii) is clear.

iii) Implies (iv). Obviosly the relation is an equivalence relation. Let x < y and x = y(©(S))

then y=xv(yAb)y for some beS. Suppose for some fe L, yvi exists. Then yvi1

exists.
Hence,yvei=(xvi)v(yab)sxviv(yviab)syve
thus yvi=(xv)v(yvi)ab). So xvi=yviOS)).
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Now, yat<xv(yab)e(x]vS, so (yatlc(x]vS

Then by (iii) (yAt]=(xAyat)v(sayatl0=(xat]v(sA(y At]). Then a similar proof
of (i) implies (ii) of Theorem 5.1.1 shows that y At =(x At)v (yVI)Aa); forsome ae S .
Thus (S) is a congruence relation.

(iv) implies (i) holds by theorem 5.1.1 [

We conclude this section with the following result, which is a gencralization of a well

known result of lattice theory of [15, Lemma §]

Theorem: 6.1.3: Let / be an arbitrary and S be a standard ideal of the lattice L .

- IfIvS and I NS are principal, then I itself is principal.

Proof: Let /v S =(alandI ~S = (b] . Then by Theorem 6.1.1, a = x v s for some x € /
and s€ . Since b<a and x<a, so xvb exists by the upper bound property of L. We
claim that 7 =(xvb). Of course (xvb]c . For the reverse inequality, let /€ /. Since
t,xv b <a soagain by the upper bound property of L, w=¢v xv b exixtsand we L.
Then (a]o2Sv((W]l2Sv(xvb]l2Sv(x]=(a}, ie, Sv(w]=Sv(xVvbh].

Further, (b]=SnIoSn(xvb]l=sn(]=(b],andso SN (w]=sN(xVvb].

This two equalities imply that (w] = (xv b] as S is standard and so w=xv b e (x v b].

Since 1 < w,t € (x v b] and hence I = (x v b], which completes the proof O
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6.2 Standard ideals and Homomorphism kernels

- Gratzer and Schmidt in [15] proved many results on homomorphism kernels and standard
ideals of a lattice. Their main aim was to translate several theorems of Group theory to
lattice theory. In this chapter we have Generalized some of their results. We have also given
the charecterizations of those lattices whose all congruences are standard, which are
generalizations of two papers [5] and [6].

A congruence ¢ of alattice L is called a standard if ¢ = ®(S) for some standard ideal S

of L.

Definition (Isotone): For any two lattice Z, and L,, amap ¢:L ,— L, is called an
istone if for any x, y,e L, with x <y impliesp(x) < p(y).

Definition( Meet homomorphism): For any two lattices Z, and L,,a map ¢:L, — L, is
called a meet homomorphism if for all x,yeL,, @(x A y)=p(x) A p(p).

Therefore, it is clear that every meet homomorphism is an istone.

Defination(Join homomorphism): ¢:L — L, is called Join homomorphism if
p(xv y)=p(x)ve(y) forall x,ye L,.

Since ¢ is istone @(x)v @(y) < @(xv y). Therefore, ¢(x)v @(y) exists by the upper bound
property of Lj,

In chapter 1, we have given homomorphism theorem for lattice. Now we gencralize two

1somorphism theorems of [9] for lattice.

- Definition: If §:L, — L, be an onto homomorphism .The set {x e L, /0(x) = o'} where

0' is least element of L, is called kernel of & and is denoted by Ker@ if L, does not have

the zero element , ker ¢ does not exist.
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Definition( Sublattice): A non empty subsct A of a lattice L is called a sub lattice of L
if a,be 4 implies that ab,avbeA.If Lis any lattice and a € L then {a} is sublattice of

L;

Theorem 6.2.1: Homomorphic image of relatively complemented lattice is relatively

complemented.

Proof: p:L, —L, be an onto homomorphism and suppose L, is relatively complemented.
Let [x', '] be any interval in L, since @ is onto homomorphism ,

3 Pre-images x and y for x', y' respectively such that ¢(x) = x'

@(y)=y'andx < y(ax'2y").

Thus [x, y] is an interval in L,

Let b e[x',y']=[¢(x),4(y)] be any element. Then as before 3 a pre-image a of b, such
that O(a)=b and x<a<y.

Now L, relatively complemented implies that a has a complement a' relative to[x', ']
i.c and =x,ava'=y

= p(a) Ap(a')=p(x),p(a) v pla') = ()

=>bapa)=x",bve(a)=y'
= p(a') is complement of b relative to [x', '] .
Thus each element in any interval in L, has complement, going us the required result [
Theorem 6.2.2: 6:L, — L, is an onto homomorphism where L, , L, are lattices and 0' is
least element of L, then kernel @ is an ideal of L,
Proof: Since 6 isonto, 0' € L, thus ker@ # ¢ as pre-mage of 0' exists in L, .

Nowa,be kerd = gg)y=0'=0(b) 6O(avb)=0(a)vOb)=0"'v0' == avbekero,

Again ae ker@, leL gives 0(a)=0', O(anl)=60(a)rn8()=0"Al=0'
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Hence ker @ is an ideal of L O
Theorem 6.2.3: Let S be a standard ideal. Then @ is the extension of @ (5,to /(L) and
® (s) is the restriction of O g to the lattice L.

Proof: Let © be the extension of © to /(L) and 1 =J(O,,)).

We suppose I < J . Choosing a,y € I. Wecan find an x € [(y =2 x) with x = (0 ,,) and
so there exists an Syy with y =xv (y A 55) - The ideal S' generated by the y A S satisfics
S'cS and IvS'=J.Hence I =J(@).On the other hand, if /=J(® )then /vS' =J
‘ with a suitable S' < S . Then for any y e J it follows that ye I v S and s‘o forany yeJ
it follows that ye /vS and so y=xvs=xv(yAs) forsome se€S as S is standard
.Thus x = y(®,)) [Theorem 6.1.1] and hence O =0, .

To prove the 2nd assertion, suppose (a]=(b](O,).

Then (a] = (a] A (b]®, = (a Ab](®,) and hence (a]=(anb]vS' forsuitable s =,
Then a e (anb)v S and since S is standard [Theorem 6.1.1].

Soa=(anb)v(ans,) forsome s, €S .

Similarly, we can show that b =(aAb)v (bas,) for some s, € S. Thus (a] = (b](®,).
Hence O () 1is the restriction of @ sto L [

Recall that a congruence ® of L is a standard congruence of ® = ©O(S) for some standard

ideal S of L. Thus we have the following corollary.

Corollary 6.2.4: The correspondence ©(s) — O is a isomorphism between the lattice of

all standard congruence relations of L and the lattice of all principal standard congruence

relations of 7(L). If 8 is a standard ideal of a lattice L , then @yis the congruence relation
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defined in [Theorem 6.1.1. The congruence induced by S and S is the kernel of the
homomorphism induced by Os)- Thus in a lattice every standard ideal is a homomorphism
kernel of at least one congruence relation.

Following figure shows that even in lattice theory, the converse of this is not true.

e
Figure- 6.1
The principal ideal (a] of this lattice is a homomorphism kernel, but it is not standard
for xan(avit)=xbut (xAa)v(xay)=y.
Recall that a lattice L with 0 is sectionally complemented if [0,x] is a complemented sub
lattice for each x e L.
Theorem 6.2.5: Let L be a sectionally complemented lattice. Then every homomorphism

kernel of L is a standard ideal and every standard ideal is the kernel of precisely one

congruence- relation.
Proof: Suppose the ideal I of L is homomorphism kernel induced by the congruence
relationd. Let a=b(0),a,be L, then anb=a(@) and 0<anb<a. Sincel Iis

sectionally complemented, so there exists ¢; suchthat aAbAac=0 and (anb)ve=a.
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This implies 0= (a Ab) Ac=anc=c(0).Since | is a homomorphism kernel,
so cel. Moreover, a=(anb)vc=(anb)v(anc); similarlywe can show that
b=(anb)v(bnad) forsome d € I. Therefore, I is a standard ideal ]

At the same time we have proved that if 1 is the kernel of the homomorphism induced by @,

then & =1(0). Hence every standard ideal is the kernel of precisely one congruence relation.

Thus we have the following corollary;

Corollary 6.2.6: In a sectionally complemented lattice all congruencies are standard.

We know, an ideal (s] is standard if and only if s is a standard element . Moreover, we can

easiljr show that an ideal generated by finite number of standard elements is standard. []
Theorem 6. 2.7: Let L be a relatively complemented lattice with 0. If every standard

ideal of L is generated by a finite number of standard elements, then C(L) the congruence

lattice is Boolean. Moreover, the converse of this is not true.
Proof: Letp e C(L) with w< @ <w, where w and w; are the smallest and the largest
congruence. Since L is relatively complemented, so by Corollary 5.1.6 above, ¢ = ©y, for

some standard ideal S. Then (0] € S < L. Since every standard ideal is generated by a finite

number of standard elements, so there exist standard elements q,.......... a, and b,........... b,,
such that s=(aq,........... a,] and L=(b,........... b,]. Then (0]c (q,........ a,)c(b..... b.).
3 T 0 A | 0w b,], atleast one of b ¢ (q,........... s ) P

Suppose b, ,b, , ......b, are the only elements {b,........... b, }, such that they do not belong
to (a).ceennene a, ]. Then of course (g,............ a, IV by 5 by sereeires By ) =L,

2

Set G, =(@Aj), V.....Mag,Aj)foreach k, 1<k <r,

then 0=sc, <b, and each ¢, is standard, Since L is scctionally complemanted, there

exist d, ,suchthat ¢, Ad, =0 ande, vd, =b, .Sinceeach d, is standard.

Iy
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ThUS (@) cvoenly )V () evvenly 12(C, vy, IV (d) ey ]

= (¢, Vd, TV, ST (L — v (b, 1= (b, oo ]. and so
(GitssssessssBig) ST aomsemsnrss d, ]

S B, IV (@il ] = 4

Also as each g, is standard.

SO (@) .errrenes 0 P Y9 e (€ V2 — (a,))n(d, 10 (b, ]

SR — v(a, ab, )N, 1, = (@ Aby Ve v(a, b IN(, ]

=(c, 1N (d, ]=(o]. Then using the standardness of each d, , we have

(CTPUY S 1o ¢: SSO  E (1)

Thus we obtain a standard ideal T = (d,,

d,] of L,

such that @ (T) is the complement of ¢. Therefore, C(L) is Boolean. For the converse

statement, consider the following lattice L Here it is easy to see that C(L) is Boolean.
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L = (a,d], which is of course a standard ideal. But both a and d are not standard clements of
s

[8] and [9] have characterized those lattices whose all congruence is standard and neutral.
Our following theorems give characterizations to those lattices whose all congruence are
standard and neutral. These are certainly generalizations of above authors work.

Theorem 6.2.8: Let L be a lattic. Then the following conditions are equivalent.

(1) All congruence of L is standard.
(ii) L has a zero and for x,y € L there exists @ € L, such that x = (x A yv(xnaa),
a=0(xAy,x).

Proof: (i) imply (ii). Since the smallest congruence w of L is standard. L must have a
Zero.

Let x,y e L, then®(x A y,x) = ©([), for some standard ideal /.

Le,x =(xA y(O(), where I is standard , hence x =(x A y)v (x A da) for somea e /.
Hencea = )(O(x A y,x)) .

(ii) Implies (i). Let ¢ be a congruence and I =[0]¢. Supposex = y(¢). Then by (ii) there
exists ae L suchthat x=(xAy)v(xAd) and a=0(@(x A y,x). Since O(x A y,x)< @,

so a=0(¢) and hence a € /. Similarly y=(xA y)v(yAb) forsome be .

Thus 7 is a standard ideal and ¢ = ©(/), and so (i) holds [J

Theorem 6.2.9 : Let L be a lattice. Then the following conditions are equivalent.

(1) All congruence of L is neutral.

(if) L has a zero and satisfies the condition:

x < (tANY)Vv((Eaz);t,x,y,z e L,impliesthe existence of a € L ,such that
xv(tnana)y=(antny)yv(antnanz)v(xay)a=so0(xnaA y,x)

(iii) L has a zero and satisfies the condition
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x £ (t A y)v (t A z)it,x,y,z e L, implicsthecexistencceol ¢ € L,
suchthat x v (tAa)=(tArany)v((yan({(tra)v x)),a=00(xAny, x)
Proof: L must have a zero of w=0({0}).

Letx £ (t A )V (FA Z)5t;x,y:2€ L

Then O(x A y,x) =©O(I) for some neutral ideal 1. since I is standard , by the above thcorem
there exists ae / suchthat x = (x A y) Vv (x A a,;).

Now xAa, S((ay)v(nanz),a, el,(xna,]cl,and (x A g, S((f/\y)v(fx\z)].

Her_lce cIn(aylviazD)=(Un(AaylvUn({az]) (xaay)as ] isneutral.
Therefore, xAa, < pagq, forsome peln(tayland gelIn(Az].

Thus, p<tAy,g<tanzp<tay,and p,gel. Hence p=pAatayand g=gAlAcz.
Let pvg=a,then xana, <a=(patay)v(gnatay)s(a@antay)v(@natnanz)<a.
Hence a=(antny)v(antnaz)acl.

But av(xay)=av(xaag)v(xay)=av(xaag)v(xAy)=avx.

Thus. (ant)vx=avx=av(xay)=(@ntay)v(@ntnrz)v(xay) and
a=0(®(xAy,x))O{)as ael

(ii) implies (iii). Let x,y,z,t € L and x < (f A y) v (t A z), then there exists a € L,

such that a=0(@(x A y,x)) and xv(Aa)=(@AtAy)v(@ntanz)v(xay).

Now
xvna)y=@ntay)v@ntanz)vyaxatara))s@ntay)v@antaz)A(yAa(xay)
=xv(taa),

hence xv (tAna)=(antAz)v(yA(xv(tAa)))).Thus (iii) holds. (iii) implies (1). Let ¢
be any congruence of L. Suppose x 2y and x = y(¢). Let / =[0]¢. Since x2 y x=yvx

so by (iii) with { = z = x there exists an a € L, such that

xvxaa)=@axax)vya(xvxaa)=(xaa)vyie x=(XxXAa)Vvy,
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wherca = 0(O(x AL X)) £ ¢ [since Theorem  6.1.1].
Hence 1 is a standard ideal and ¢ = ©([).

Now it suffices to show that all standard ideals of L are neutral. Let | be a standard idcal of

L and xe LN (Jv K) for some ideals / and K. Then xe/ and xe.Jv K. Then

xel, forsomem=0,1,2..., where 4, =J UK.
L,={tspvq:pvgel,,}.
Suppose xe€ L,. Then xe/ and xeJor xe K, and so xe(/NnJ)v(INK). Now we

and y e I implies that

m=1 ?

will use the induction. Suppose y e L

ye(InJ)v(InK).Since xe L, ,x < pvq forsuitable p,ge L, ,.Set = pvg.Then

x<(tAp)v(t Aq). Then by (iii) there exists b € L such that
xv({EAb)y=(bAatag)v(pAalab)vx),b=0OxA p,x)). Since x,xA p0el
and / is a homomorphism kernel, we get b e /.

Hencexv(tab)el.

Further (x v AD)API)V((xvOADAQDZ(xVEADDADP)V(BALAG)=XA(LAD).

Putting a=xv (tAb),weget x<a=(anp)v(ang) withael.

Now both a A p,anr are members of | and L, ,. Thus both aa p,anqganp, anqg
belongsto (/NnJ)v(UNK), andsoxe(INnJ)v(INK).

Hence [ is neutral [

Theorem 6.2.10: Let k be an ideal in a lattice. Then following conditions are hold.

(i) X is a standard ideal

(ii) The binary relation @(K), defined by x = y©(x), if and only if
x=((xAy)v(xaa),y=(xAy)v(yab) forsome a,be K is alatticc congruence.

(iii) The binary relation ¢, defined by x = y(¢) ifand only if forall 1€ §
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(xAt)yv (tanc)y=(yat)v (1A c) forsome ce K, is lattice congruence.
(iv) Foreachideal H,K~v H={kvh:kvh existsand ke K and he H}.
In Chapter 3 Theorem 3.1.4 proved the theorem.
Theorem 6.2.11: Let L be a lattice with a smallest clement o in wl}ich cach initial
-segment is a complemented lattice. Then the map K — ©,, is a lattice - isomorphism of
the lattice of standard ideals of L on to the lattice - congruence of L.
Proof: Let ¢ be a lattice - congruence of L and J = {xeL:x=0(p)}. Of course
J is an ideal. Suppose a = b(¢) and let ¢ and d be respective complements
of anb in (a] and (b]. Then c=cAra=cAranb=0(0) and d =d Ab=0(p).
Also a=(anb)v(anc)and b=(aanb)v(bad)with c,d e J.
Conversely, these last relations imply a = b(¢g).
Hence by the above theorem J is a standard ideal and ¢ = (H)(J).

The remainder follows from corollary: The standard ideals of a lattice L form a distributive
sub lattice of the ideal - lattice J(L)) and the map K — ®(K) is a lattice - embedding of
this sub lattice into the distributive lattice of all lattice congruence on L.

The situation is more complex when it comes to permutability. We close this section with

some result in this direction.
A lower semi lattice (L:A) is called medial if the supermum (x A y)v (¥ Az)Vv(zAX)
exists for all x,y,z e L. This is equivalent to saying the supremum of any three elements

exists when the suprema of each pair exist. Thus a medial lower semi lattice is a lattice and

so will be referred to as dedial lattice O
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6.3. Isomorphism's Theorem
Definition( Isomorphism's): Let (P,R) and (O,R) be two posets . A onc-one and on

tomap /1 P — Q is called an isomorphism's if xRy = f(x)R' f(y),x,y € P.

If we use the same symbol < for both the relations R and R' and thus our definition
translates to a one-one, onto map f : p — a is called an isomorphism’s if

x<y & f(x) < f(y). We write in that case P = Q. It s casy to show that the relation of
isomorphism’s is an equivalence relation.

In fac.t amap f: P — @ iscalled isotone ifx < y < f(x) < f()).

Gratzer and schmidt have proved isomorphism theoerms for standerd ideals in lattices. In
their paper they have transleted serveral theoerms of group theory to lattice theory using
ideal, standard ideal, factor lattice and join operation for subgroup, invariant subgroup,

factor group and group operation respectively. In this section we generalize two

isomorphism theorem for standard ideals of lattices.

Definition(Congruence classes): Set of all congruence classes of a lattics L for any
congruence ®on L, L/©® denotes the set of all congruence classes of L .

We define A on L/®by [a]® A[b]O® =[aAb]® If for any a,be L,avb exists, then we
define [a]® v [b]© =[a v b]O.

Theorem 6.3.1: A mapping f:L — M is an isomorphism iff f is isotone and has an
isotone inverse.

Proof: Let f:L—> M be an isomorphism.Then f being one-one, onto /' exists and is
one-one onto. Again by definition of isomorphism, f will be isotone. We show
f'sM — L is also isotone. Let Y.y, € M, where y, 2 y,. Since fis onto,

dx,x, elst f(x)y,f(x,)=y, & x = S x, = 7).

Now y, <y,, f(x,) < f(x,) = x, < x, [from the definition of isomorphism]
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= o) ()= 7 isisotone.
Conversely, let f be isotone such that /™' is also isotone, since /' exists, / is one-one,
onto. Again, as fisisotone x, <x, = f(x,) < f(x,).x,,x, € L.

Also f™' isisotone implies f(x,) < (x,) < f(x,) = £ f(x) < 7 (f(x,) = x, <x,.
Thusx, <x, & f(x,) < f(x,). Hence f is an isomorphism [J

Theorem 6.3.2: L/© is a lattice.

Proof: Of course L/® is a meet semilattice. We need only to show that it has the upper
bound property.

Let [¢]®,[b]® <[c]®, then [a]O® =[u]® A[c]® =[a Ac]®
(61O =[O A[c]®=[bAc]O.

Now, (a A ¢) v (b A c¢) exists by the upper bound property of L.

Hence [anc]®@v[bacl®=[(anc)v(bac)]® and so [a]O v [b]O exists.
Therefore, L/® is a lattice.

If © isa congruence of a lattice L, then the map¢:L — L/® defined by ¢(a) =[d]®© is
the natural homomorphism. This is known as the homomorphism induced by ®. For a
standard ideal S of L, we denote the quotient lattice L/® ,,, simply by L/S [

Now we give the homomorphism theorem for lattices which is a generalization of [Lattice
Theory First Concepts by Gratzer Theorem 11 p-26]

Theorem 6.3.3: Every homographic image of a lattice L is isomorphic to a suitable
- quotient lattice L. In fact ifg: L - M is a homomorphism of L onto M and if ¢ is the

congruence relation of L defined by x = y© if and only if ¢(x) =¢(y), then L/®=L,;is

an isomorphism given by w i [x]® — g(x),x @ L,
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Proof: Since ¢ is a homomophism then it is casy to check that @ is a congruence relation,
To prove that ¥ is an isomorphism, we have to check that (i) ¥ is well defined.
Let [x]® =[y]®. Then x = y(@®) ;thus ¢(x) = (p(»¥)) = ([x]Oy =[y]Oy. i.c.'¥ is wel
defined.
(ii) W is one —one. w([x])® =w(y)® = @(x) =p(y) then x = y(®) and so
[x](®) =[»](®), i.e., ¥ is one - one.
(iii) ¥ is onto : Let x € L since ¢ is onto Thereis any y € L with ¢(y) = x.
Thus, ([y]®)y¥Y =x, ie., Yisonto.
(iv) Preserves the operations. i.e. ¥ is homomorphism. Let [x]O,[y]® € L/©.
Therefore, y/([x] A ([¥1®) = ¥([x A Y10 = p(x A y) = 9(x) A 9(¥)
=¥ ([x]®) Aw([¥]®), and finally for v. Suppose [x]O v[y]O exists.
Then [x]® v [y]® =[{]® for some ¢ € L. So [x]® c[t]® and [y]® c [(]©.
This implies [x]® = [x]® A [t]® =[x A ]O.
Similarly [y]® =[y A 1]O.
Then w([x]® Vv [y]©)
=y ([xAfl®vyathO =y([(x A1)V (y~0]O)
=p((x AV (yanD)=exat)ve(y Al

=yp(xnAt]l®vy(ynat]O)

=w([x]®vy(y]O).

Hence Y is a lattice homomorphism and so it is an isomorphism [
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Theorem 6.3.4 (First isomorphism theorem for standard ideals): Let 1. be a lattice, S be a
standard ideal and / an arbitrary ideal of L. Then S/ is a standard idcal of / and
(IuS)/S=1/(INS).

Proof: 1st part mentioned here in Theorem 6.1.3

For the 2nd part, we can use the first isomorphism theorem for universal algebra [38
Theorem 1.2]. Then it remains to prove that every congruence class of /v S may be
represent by an element of /. So let x € I v S. Then [since Theorem 6.1.1]

x=1ivs forsome iel,s €S.Moreover x =iv s =iO(s).

Hence congruence class that contains x may be represented by i e /. That is [x] =[/]O(s).
Therefore(/ U S)/S=1/(InS) L. ‘

For the 2nd isomorphism theorem we need the following results. We omit the proofs as they

are very trivial.
Lemma 6.3.5: Let the correspondence x — ¥ be lattice homomorphism of lattice L

onto a lattice L . If s is a standard element of L ,then 5 is a standard element of L [J
Corollary 6.3.6: Let x — ¥ be a lattice homomorphism of L onto L .

Let s be an ideal of L, and denote by S the homomorphic image of S under this
homomorphism .If S is standard in L then S is standard in L O

Theorem 6. 3.7 (Second isomorphism theorem for standard ideals):

Let L be a lattice, s be an ideal and 7 be a standard ideal of L. Sc 7. Then § is a

standard ideal of L if and only if S/7 is a standard ideal in L/7 and in this case

L/IS=(AITY(S/T).
Proof: First suppose that s is a standard ideal of L. Let ¢:L — L/T ¢: be the natural

mapping, Then x > ¥ isa lattice homomorphism and onto.So by Corollary 5.2.6,

S is a standard ideal of L/T.
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Now § =S/T. Hence S/7 is a standard ideal of /7.

Conversely, suppose that S/7 is a standard ideal of L/T.

We are to show that s is a standard ideal of L .

Let us define a relation ®(S) by 6.1.1 (i), suppose x = y with x = y(O(s)).

Then x = yvsx= forsome s € S.

Thus, for any welL, if xwvu exists, then xvu=(yvu)vs. This implics
xvu=yvu(O(s)).

To prove substitution property for A, suppose a denotes the image of the element a under
the hlomomorphism L— L/T. Suppose x = y(®(S/T)).Since S/T is standard in L/T,
there is a suitable se S/T', such that EAE=(;AE)VA_'.

Further, since 7 is standard in L we can find a € 7" suchthat x Au=[(y Au) v s]vi.

We put s, =svt and get xAu=(yAu)vs,,s, €S Hence O(s) is a congruence relation
of L, and so by 6.1.1, S is standard.

In above proof we have also shown that the congruence classes of L/7T under ©(S/T) are
the homomorphism image of those of L under ©(s). Then the second isomorphism thcorem

_for universal algebra [38, Theorem 1.4] finishes the proof [
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