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Abstract 

In this Thesis we mainly deal with packing problems. Packing problems have 
mathematical as well as practical application point of interest. Population 
based heuristic algorithms like Evolutionary algorithm, Genetic algorithms etc. 
frequently used for such Non Polynomial (NP) hard problems. But packing 
circles into a circular container is relatively new. 1-lere, we present Population 
based Basin Hopping (PBH) rather than Monotonic heuristic search approach 
like Monotonic Basin Hopping (MBH) to solve the problem of packing 
identical circles within a minimum size of circular container. For the evolution 
among the population we will also present two dissimilarity measures. 
Extensive computational experiments have been performed for analyzing the 
problem as well as for choosing an appropriate way the parameter values for 
the proposed methods. From the experiments, It is observed that the 
population based basin hopping approach is comparable for solving packing 
problem. Moreover when the problem has many narrow basin, then population 
based basin hopping may perform better than MBH approach. Also several 
improvements with respect to the best results reported in the literature have 
been detected. 

It is worthwhile to mention here that MBH heuristic approaches are 
successfully implemented for solving equal circles problems. For the presence 
of combinatorial part, due to unequal radii, simple extension of MBH 
approach is not the appropriate way to co-opt the problem of packing non-
identical circles within a smallest circular container. Here, we present a 
modified Monotonic Basin Hopping heuristic approach to solve the problem. 
As well as some new perturbation moves are proposed which are suitable for 
the case of unequal circles packing problems. Several improvements with 
respect to the best results reported in the literature have been detected. 
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CHAPTER I 

INTRODUCTION 

1.1 Background 

The problem of optimally placing N non overlapping and possibly of different (or 

equal) size objects belonging to R" within a smallest container is a classical 

mathematical problem and have a spectrum of application including production and 

packing for the textile, apparel, naval, automobile, aerospace and food industries, 

newspaper, web pages design, in particular, to problems related to cutting and packing 

[Dyckhoffet al. (1997), Haessler and Sweeney (1991), Sugihara et al. (2004), Sweeney 

and Paternoster (1992), Dyckhoff (1990)]. They are bottleneck problems in Computer 

Aided Design (CAD) and Computer Aided Manufacturing (CAM) where design's 

plans are to be generated for industrial plants, electronic modules, nuclear and thermal 

plants, etc [Stoyan (2003)]. In particular, we consider in this works, the Equal Circles 

Packing in a Minimized Circular Container (ECP-MCC) problems and Non-Equal 

Circle Packing in a Minimized Circular Container (NECP-MCC) problems. The ECP-

MCC/ NECP-MCC problems can be described by the several equivalent problems 

[Dyckhoff (1990)]. One of the mathematical models is given bellow: 

minr (1.1) 

Subject to 

x 
1 

2 
+y1 —r 2  +2rr ,2;  iEI (1.2) 

(x1  -x1 ) 2  +(y, 
_,)2 ~(r, +rj ) 2  i,jEI,i<j; (1.3) 

max(r1) <r (1.4) 

1.2 Literature Review 

- The Problem of packing equal circle is about 50 years old. In 1960, Moser was the first 

who studied circle packing in a square [Moser (1960)]. He guessed the optimal 

arrangement of 8 circles. Schaer and Meir [Schaer (1965)] proved his conjecture and 

Schaer also solved the problem for n = 9 [Schaer (1965)]. For n? 10 only the optimal 

packing of n = 14, 16, 25, 36 have been proved by hand. Wengerodt published proofs 
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for n = 14, 16, 25 [Wengerodt (1983)], while Wengerodt and Kirchner published a 

proof for n = 36 [Kirchner and Wengerodt (1987)] by using theoretical tools. However, 

there are gaps in both proofs for n = 25 and 36 according to the review MR1453444 in 

Mathematical Reviews [Szabo' and Specht (2007)]. 

As the problem might be shown to be NP-hard [Garey and Johnson (1979)], there does 

not exist an algorithm that is both rigorous and fast [Garey and Johnson (1979)]. Hence 

researchers are searching for the efficient heuristic approximation algorithms to solve 

the problems. To tackle larger numbers of circles, researchers turned to computer-aided 

methods. By using them, optimal packing have been derived up to n = 30 [Markót and 

Csendes (2005), Peikert et al. (1992)]. In [Locatelli and Raber (2002)] optimality 

within precision 105  has been proven for n up to 35 and for n = 38, 39. Computer-aided 

optimality proofs turn out to be quite computationally demanding. It is interesting to 

observe that these proofs are usually based on subdivisions of the unit square into non-

overlapping sub-rectangles, each of which is guaranteed to contain at most one point of 

an optimal solution, and on the subsequent analysis of all the possible combinations of 

n such sub-rectangles. As a consequence, the computational burden does not increase 

regularly with n but has a sudden increase each time there is a need to increase the 

number of sub-rectangles (and then also the number of possible combinations) in order 

to guarantee that each of them contains at most one point of an optimal solution. 

The difficulty of proving optimality led to the development of heuristic approaches 

aiming at improving best known results without giving optimality proofs for them. This 

represents the second main branch of research in the field of packing problems. Good 

approximate packing (i.e., packing determined by computer aided numerical 

computations without a rigorous proof) are reported in the literature for n up to 100 

[Szabo' and Specht (2007)] (results for larger n values are also reported in the 

Packomania web site [www.packomonia.com ], but only a few methods have been run 

over such larger instances). At the same time, some other related results (e.g., patterns, 

bounds and some properties of the optimal solutions) were published as well [Graham 

and Lubachevsky (1996), Szabo' and Specht (2007)]. A short description of some of 

the employed methods are given below. 



de Groot et al. [Groot et al. (1990)] searched for packing with n < 22 circles employing 

the simplex and quasi-Newton BFGS algorithm. One technique that has proved 

effective simulates the Idealized movements of billiard balls Inside a circular or square 

table. In [Graham and Lubachevsky (1996), Lubachevsky (1991)] an event driven 

(billiard balls) simulation algorithm has been applied for solving packing problems of 

equal circles: given a number of points-tiny disks-randomly spread out over a circular 

or square area, the disks move around like billiard balls, colliding, rebounding, and 

changing speed. As the disks roam, their diameters gradually increase, so the disks have 

less and less space within which to move. Eventually, they get locked into some sort of 

packing. The procedure is applied hundreds of times for a given number of disks, 

started in random positions and at random velocities. Boll et al. proposed a two-phase 

approach in [Boll et al. (2000)]. During the 1st phase, each point in turn is moved along 

appropriately chosen directions with a step-size which is exponentially decreased 

during the run. The second phase is a refining one where the starting point for the 

billiards simulation method. 

'I 

There is a long history of solving packing problems in literature. But literature of 

packing in a circular container is not so rich. Also history of circular container packing 

problem is relatively recent [Lubachevsky and Graham(1997)]. Many contributions 

exist in the literature about the problem of placing equal or unequal circles in a circular 

container. To the author's knowledge, the first reference to this problem dates back to 

Kravitz [Kravitz (1967)], where solutions for the problem of packing n identical circles 

in a minimal circular container are reported for n up to 19 without any optimality. 

Graham [Graham (1968)] proved optimality of packing with up to 7 circles. Fodor in 

[Fodor (2004), Fodor (2000) ], exhibited the densest packing of n = 12 as well as n = 19 

congruent circles in a circle with the help of a mathematical tool based on Besicovitch's 

lemma, developed by Bateman and Erdos [Bateman and Erdos (1951)]. Lubachevsky 

and Graham in [Lubachevsky and Graham (1997)] proposed a mathematical 

formulation for packing higher order identical circles in a large circle called curved 

hexagonal packing, when the number of circles can be formulated in a specific form. 

For 37, 61, and 91 disks, the curved hexagonal packing were the densest they obtained 

by computer experiments using the so-called 'billiards' simulation algorithm. 

3 



Huang and Xu [Wenqi and Ruchu (1999)] gave a quasi-physical personification 

algorithm based on combining the quasi-physical approach with the personification 

strategy by simulating the movement system tbr packing unequal and equal circles into 

a circle container. An improved quasi-physical quasi-human (QPQH) algorithm has 

been given in [Wang et al. (2002)]. This algorithm combines the quasi-physical 

approach and the quasi-human strategy. The equivalent maximin distance problem for n 

points in a unit circle has been discussed and tackled with a standard greedy approach 

in [Akiyama et al. (2003)]. 

Zhang and Huang [Zhang and Huang (2004)] presented a heuristic simulated annealing 

(HSA) algorithm to solve the (equal/unequal) circles packing in a circular container 

problem. For constructing a special neighborhood and jumping out of the local 

minimum trap, some effective heuristic strategies are incorporated in their SA based 

algorithm. The 1-ISA algorithm inherits the merit of the SA algorithm, and can avoid the 

disadvantage of blind search in the simulated annealing algorithm to some extent 

according to the special neighborhood. 

Zhang and Deng [Zhang and Deng (2005)] proposed a hybrid algorithm for the packing 

of identical circles as well as unequal circles in a large circle. They combined the 

Simulated Annealing (SA) approach with Tabu Search (TS) approach to develop a 

hybrid algorithm to overcome the disadvantages of the two approaches taken by their 

own. The key of this algorithm lies in a powerful means for getting out of local 

minima. SA was introduced to escape from local optima with probability mechanism. 

TS is mainly used for preventing cycling and enhancing diversification. The 

computational results based on some benchmark instances showed that the hybrid 

algorithm was effective and robust, and almost always outperformed TS, SA and 

QPQH for all benchmark instances. 

Miadenovic et al., in [Mladenovic et al.(2005)], proposed a Reformulation Descent 

(RD) heuristic method, which iterates among several formulations of the same problem 

until local searches obtain no further improvement to pack equal circles into a unit 

circle. RD exploits the fact that a point which is stationary w.r.t. one formulation is not 

necessarily so with another. Therefore RD alternates between several formulations 

using a fast NLP code that stops in a stationary point. 
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Pruned Enriched-Rosenbluth Method (PERM) [Grassberger (1997)], also called 

population control algorithm, is a powerful strategy for pruning and enriching branches 

when searching the solution space and it has shown to be very efficient for solving 

protein folding problems [Hsu et al. (2003) and Huang et al. (2005)]. Lu and Huang 

[LuZ., and Huanga (2008)] presented a new method that incorporates the PERM 

scheme into the strategy of maximum cave degree for (equal/unequal) circles packing 

in a circle. The basic idea of their approach is to evaluate the benefit of a partial 

configuration (where some circle save been packed and others are outside) using the 

principle of maximum cave degree, and use the PERM strategy to prune and enrich 

branches efficiently. Huang et al. in [Huang et al., (2006)], proposed two new heuristics 

to pack unequal circles into a two-dimensional circular container. In the first proposed 

heuristic, they used the concept of maximal hole degree for selecting the next circle to 

place. In the second one, they incorporate the concept of self look-ahead strategy to 

improve the first one. Recently, in [Huang et al. (2003)] and [Huang et al. (2006)] 

Huang et al. proposed a heuristic, based on the principle of maximum cave degree for 

corner-occupying actions (COAs), to select and pack the circles one by one, and they 

proposed a two level search strategy to improve the basic heuristic algorithm. 

In [Hifi and M'Hallah (2008)], Hifi and M'Hallah proposed a three-phase approximate 

algorithm. During its first phase, the algorithm successively packs the ordered set of 

circles. It searches for each circle its "best" position, given the positions of the already 

packed circles, where the best position minimizes the radius of the current containing 

circle. During its second phase, the algorithm tries to reduce the radius of the 

containing circle by applying (i) an intensified search, based on a reduction search 

interval, and (ii) a diversified search, based on the application of a number of layout 

techniques. Finally, during its third phase, the algorithm introduces a restarting 

- procedure that explores the neighborhood of the current solution in search for a better 

ordering of the circles. 

Addis et al. [Addis et al. (2008)] investigated the problem of packing equal circles in 

the unit square and proposed a quite successful method (heuristic approach) for the 
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problem. In [Addis et al. (2007)], Addis et al. proposed a heuristic approach for the 

problem of placing n circles with increasing radii from 1 to n into a square, which 

allowed them to win Al Zimmermann's Programming Contest about this problem. 

Their heuristic is based on the Monotonic and Population Basin Hopping approaches, 

but exploits the mixed nature, continuous (circle centers) and combinatorial (radii's 

values), of the problem to define proper perturbation moves. Moreover, some tricks are 

employed taking into account the special structure of the problem. 

On the other hand Grosso et al. [Grosso et al. (2010)] proposed Monotonic Basin 

Hopping (MBH) [Leary(2000)] for packing n circles into a minimized circular 

container. They consider both equal and unequal circles for packing into minimized 

circular container. It is noted that the best known results are continuously updated in 

the Packomania web site. 

1.3 Goal of Thesis 

We know that Monotonic Basin Hopping is a single search based algorithm. When the 

problem has few basins of attraction [Leary (2000)], MBH approach successfully coup 

the problems. But when number of basins is large and/or very narrow, then MBH 

approach frequently fail to obtain optimal solution. Multi-search approach may coup 

the problems. In this research, we will try to modif' the MBH approach for multi-

search approach for both equal and unequal circles problems. 

At first we will consider the MBH approach proposed by Grosso et al. [Grosso et al. 

(2010)] for equal circles as well as unequal circles problems. We will modify the MBH 

algorithm so that the modified algorithm is suitable for multi search heuristic approach. 

On the other hand for the presence of population, we will have to introduce 

dissimilarity measure as well as selection mechanism. It will be worthwhile to mention 

here that there are infinity many similar solution formed by the displacement of the 

positions of the circles, and all have same object value but different solution in 

structure. 



After developing the population based Basin hopping algorithm, we will perform 

several experiments to study the algorithms as well as the performance of the 

algorithms by comparing available one in the literature. 

I 

Population based heuristic algorithms like Evolutionary algorithm, Genetic algorithms 

etc. frequently used for such NP hard problems. But packing circles into a circular 

container is relatively new. We may expect the population based basin hopping 

approach is comparable for solving packing problem. Moreover when the problem has 

many narrow basin, then population based basin hopping may perform better than 

MBH approach. 

It has been already mentioned above that the packing problem has much recent interest 

and this is likely to grow as more and more simulation models are used to carry out 

research. It is worthwhile to mention here that simple replacement of MBH approach 

for equal circle packing problem to unequal circle packing problems is not enough for 

11 solve the problems. 

We will also investigate the problem of packing unequal circles in a circle. In spite of 

the similarity of this problem with the problem of packing equal circles, we will show 

that the obvious extension of the method proposed for the case of equal circles to the 

case of unequal ones will not be successful. The peculiarities of the problem with 

unequal circles (in particular, its combinatorial nature due to the different radii of the 

circles) have to be taken into account in order to define a successful method also for 

this case. 

In equal circles problem, the search space is just continuous. On the other hand for 

unequal circles problem, though the search space is continuous but the presence of 

unequal radii, the problem becomes combinatorial too. So for unequal circles the 

problem becomes much harder to solve. The main objectives of the project are point 

out below. 
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As mention earlier MBH is single search heuristic approach. Single individual 

searches the space to find out the optimal solution. Here we will propose 

population based search rather than single search to find the solution. 

At first we will develop population based algorithm on the base of MBH to 

solve Equal circle problems. 

> Several experiments will be performed for the comparison among available 

one in the literature. 

We will also proposed multi-search based algorithm for solving unequal 

circles packing problems by considering the combinatorial nature. 

Several experiments will also be performed for the comparison among 

available one in the literature. 

But the aim of this works is not merely to apply a method, proved to be successful for 

one problem, to a closely related one. The aim of the work is also (and, actually, 

mainly) to perform a more detailed computational investigation both of the problem at 

hand and of the proposed method, in order to better understand how to choose its most 

relevant parameters. 

1.4 Structure of the Thesis 

After the Chapter I in which the literature review as well as introduction of the 

research work is presented, the concept of heuristic approach is briefly discussed in 

Chapter II. In Chapter III, the brief discussion about the mathematical model of the 

packing problems is presented. In Chapter IV, the multi-search approach called 

Population Basin Hopping approach is proposed as well as some experiments are 

performed. The experimental results are compared with available one in the literature. 

On the other hand modified Monotonic Basin Hopping approach for unequal circles 

packing is presented in Chapter V. Finally the conclusion remarks are given in 

Chapter VI. In Appendix I, some improved configurations of circle's packing have 

been displayed and some of their properties have been discussed. 



CHAPTER II 

OVERVIEW OF HEURISTIC APPROACHES 

El 

2.1 Introduction 

As we cope with optimization problems, we usually aim at finding an optimal solution 

for it. Unfortunately, the intrinsic difficulty of the problem and/or the limited 

availability of computation time for the particular application from which the problem 

arises (think, e.g., about real-time applications, where solutions are required in very 

short times) may make computationally infeasible to return an optimal solution by the 

required time. 

When it is not possible to solve the problem of optimality, the only possible alternative 

is the use of meta-heuristic approaches. In particular, these approaches are usually of 

primary importance when dealing with problems with, among others, the following 

characteristics: 
p 

• Non polynomial (NP) Hard; 

• Multi-modality (many local optima); 

• Non-differentiability or discontinuities (for continuous problems); 

• Good quality solutions, though not necessarily optimal, are searched for. 

If the problem does not fit these requirements, one should probably search for other 

optimization tools; meta-heuristics should not be the best choice. Such approaches to 

optimization problems have developed dramatically in the last three decades. It has 

been successful in tackling many difficult problems for which finding a solution in a 

straightforward manner is computationally infeasible, and have become more and more 

competitive. When designing a meta-heuristic, it is preferable for it to be simple, both 

conceptually and in practice. Naturally, it also must be effective, and if possible, 

general purpose. Of course, meta-heuristics offer no guarantee of obtaining the global 

solutions: ease of implementation and quickness has to be paid with the fact that even 

iterating might not provide a good enough solution for some instances. Although being 

general purpose is one of the requirements which should be fulfilled by a meta-

heuristic, the quest for greater performance often suggests incorporating problem- 



specific knowledge to increase efficiency, with the consequence of loosing both 

simplicity and generality [Lourenco et al. (2002)]. 

The meta-heuristic approaches can be classified according to the particular 

characteristics of each algorithm. This classification leads to a better understanding of 

what strengths and shortcomings each method contains. Some of the most widely used 

meta-heuristic techniques are inspired from naturally occurring systems. The systems 

are based on biological evolution, intelligent problem solving, physical sciences and 

swarm intelligence, etc. Meta-heuristics can be classified into two broad classes: 

population-based methods and point-to-point methods. 

In the latter methods, the search invokes only one solution at the end of each iteration 

from which the search will start in the next iteration. They can also be viewed as single-

path search methods, where a single trajectory of solutions is followed during a run. On 

the other hand, the population-based methods invoke a set of many solutions at the end 

of each iteration. They can also be viewed as multi-path search methods, where 

different trajectories of solutions are followed in parallel during a run, and usually 

collaboration mechanisms exist which guarantee a sufficient diversification of the 

followed trajectories. Genetic algorithm [Goldberg (1989)], Population Basin Hopping 

(PBH) [Grosso et al. (2007)] are examples of population-based methods; Simulated 

Annealing [Kirkpatrick et al. (1983)], Tabu Search [Glover and Laguna (1997)], 

Iterated Local Search (ILS) [Baum (1986)], Monotonic Basin Hopping (MBH) [Leary 

(2000)] are examples of point-to-point methods. 

2.2 MBH approach 

Monotonic Basin Hopping (MBH) is a heuristic approach for the global optimization of 

high-dimensional and highly multi-modal continuous functions. It has been first applied 

in the field of molecular conformation problems (see [Leary (2000)], where the global 

optimization of the mathematical model of the energy of a cluster of atoms allows to 

predict the geometrical structure of such cluster. MBH falls into the category of 

methods in which the function to be optimized is transformed to make searching easier 

without affecting the solution. In MBH the transformation maps the function onto a 
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series of plateaus where the barriers between local minima have been removed [Leary 

El 

(2000)] (see Figure 2.1(b)). 

1; a 

Fig. 2.1: A schematic diagram illustrating Funnel and MBH approach on one dimensional 
example 

7 

The key idea of this approach is the measurement of the difficulty of the problems by 

the concept offunnel (see again Figure 2.1(b)). This concept was first introduced in the 

- previously mentioned global optimization problems arising in computational chemistry. 

For many molecular conformation potential energy surfaces, the local minima can be 

organized by a simple adjacency relation into a single or at most a small number of 

funnels. A distinguished local minimum lies at the bottom of each funnel and a 

monotonically descending sequence of adjacent local minima connects every local 

minimum in the funnel with the funnel bottom. Thus the global minimum can be found 

among the comparatively small number of funnel bottoms, and a multistart strategy 

based on sampling funnel bottoms becomes viable. 

In order to roughly describe what a funnel is, here we give an definition based on 

neighborhoods of local minima (see also [Addis et al. (2008)]). Let N be a 

neighborhood structure defined upon the set 0 of all local minima of a given objective 

function f Then, a funnel can be defined as a maximal subset Yç x of local minima 

with the following property: there exists a local minimum X E Y such that for all 
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X E Y a decreasing sequence of neighbor local minima in Y starting at X and ending at 

X exists, i.e. 

:X1  €N(X,)Y i = 

f(X)<f(X, 1 ) x0  =x,x,=X 

The common final endpoint of the sequences is called funnel bottom. We can also think 

of a graph whose nodes are local optima; two local optima X and . with f(X1)f(X3) are 

connected by a directed arc if from X, it is possible to reach X1. This possibility might 

be interpreted and defined in different ways. In chemistry and biology reachability 

corresponds to the situation in which there exists a continuous path connecting the two 

configurations which never exceed a given energy level. So we might define as 

connected by an arc two local minima such that there is a path connecting them along 

which the objective function never exceeds a given value (the red path in figure 2.1(b)). 

Alternatively, we might say that X1  is reachable from X1  if a local optimization started 

from a point in a neighbor of X, ends up at X. In any case, given a definition of 

reachability, a funnel bottom is defined as a local minimum with no outgoing arcs and a 

funnel is defined as a maximal set of local optima from which the same funnel bottom 

can be reached through a directed path. Thus, a funnel is a set of local minima 

characterized by the fact that for each of them there exists at least one decreasing 

sequence of "neighbor" local minima along a path leading to a unique local minimum 

corresponding to the bottom of the funnel. The number of funnels, together with their 

width, seems to be a much more appropriate measure for characterizing difficult Global 

optimization (GO) problems with respect to the overall number of local minima. 

There exist in the literature simple but quite effective algorithms which are particularly 

well suited for functions of the above type; the Basin Hopping (BH) algorithm by 

Wales and Doye [Wales and Doye (1997)] and, the Monotonic Basin Hopping (MBH) 

algorithm by Learly [Leary) (2000)] and some of its variants [Locatelli and Schoen 

(2005)] proved to be extremely efficient in detecting funnel bottoms. The basic 

structure of MBH, as given in [Leary (2000)] is the following, where MaxNolmp is a 

10 prefixed parameter. 
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Algorithm of MBH: 

Let X: initial local minimum 

Step 1. Compute Y : (X) such that YE N(X) 

Step2. if f(Y)<f(X) thensetX:Y; 
else reject Y; 

Step 3. Repeat Steps 1 - 2 until 

MaxNolmp consecutive rejections have occurred; 

Step4. returnX; 

The local move CT is usually defined as 

't(X) = L1(X + A), 

Where A is usually a uniform random vector drawn from a box with given size. We 

observe that MBH performs a kind of monotonic depth-first search in search space S. 

Despite its simplicity, computational experiments reveal the effectiveness of MBH 

when faced with GO problems with single funnel landscapes or with a large basin of 

attraction of the funnel containing the global optimum [Addis (2005), Leary (2000)1. In 

fact, MBH cleverly copes with the structure of a funnel, generating a descent sequence 
JP of local minima; the current best solution is (heuristically) declared to be a funnel 

bottom after MaxNolmp non-improving iterations. 

But if we have a closer look to MBH, it will become immediately clear what we stated 

in the introduction of this chapter, i.e. that MBH is in fact nothing but an Iterated Local 

Search (ILS) [Grosso et al. (2010)] heuristic. Indeed, D is nothing but the perturbation 

operator, the acceptance criterion is the monotonic one (only accepts improving 

moves), and the stopping criterion asks for stopping when no improvement is observed 

for a given number (MaxNolmp) of iterations. 
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CHAPTER III 

PACKING PROBLEMS: DEFINITIONS AND MATHEMATICAL MODELS 

I 

3.1 Introduction 

The general problem of finding the densest packing of objects without overlapping in a 

bounded space is a classical one which has a wide spectrum of applications in scientific 

as well as engineering fields [Dowsiand (1991), Dyckhoff (1990), Dyckhoff et al. 

(1997), Stoyan (2003), Stoyan et al.(2004), Sugihara et al. (2004), Sweeney and 

Paternoster (1992)]. The packing problem consists of packing a set of geometric objects 

of fixed dimensions and shape into a region ü of predefined shape, in such a way that 

the dimension of the region is as small as possible. In this thesis we consider two-

dimensional packing problems. Moreover we focus on the special case where the n 

objects are identical (non- identical) circles, the region 0 is circular and the objective 

function is to minimize the radius of the region 0. Therefore, we consider the Identical 

Circles Packing in a Circular Container (ICPCC in what follows) problem and the Non-

Identical Circles Packing in a Circular Container (NICPCC in what follows) problem. 

If we denote by C the circular container, by r its radius, by C1, 1 EE I ={l,2 ....... n} the n 

circles, and by r, I G I ,the radii of the n circles NICPCC amounts at searching for the 

smallest radius r ofC such that C, c  C V i€I, and C n C 0 = for all i j, where C 

denotes the interior of circle C, (circles do not overlap). Of course, ICPCC can be 

viewed as a special case of NICPCC where r, = r j  for all i,j. 

3.2 Some Definitions 

If the positions of n circles are fixed, we call the set of positions a configuration. 

In the Cartesian coordinate system a configuration is denoted as 

X = (x,y1,...,x1,y,, .,x,,,y,,) 

where (x,,y1 ) denotes the position of the center of circle Q. 
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Fig. 3.1: Graphical illustration of the definitions 

DefinitioH .i. uiveii a eoultgwauonA, we say mat two CUCICS C1,C1  overlap, if 

(x1_x)2 +(y, —p1)2 <! +1:, 

We also define the embedded depth Ed between the i-th circle and the j-th circle as 
a 

Edt, = max{O, r7  +t, —,j(x,—x)2  +(y, -y)2 } 

Similarly, we say that the i-th circle and the large container circle overlap (with radius 

r), if 

jx2+y >r -  . 

The embedded depth Ed 01  between them is defined as 

Ed0, =n  x(O,r1+/x,2+y, -r) 
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Fig. 3.2: Relation between points and circle 

Definition 2: Two circles 1, j are in touch (contact) if the distance between their 

centers is equal to the sum of their radii, i. e., 

(x1  - x1 )2 + ( - 
= + 

Definition 3: A circle is said to be free if the centre of this circle can be moved by a 

-' positive distance in some direction without causing overlapping with other circles and 

with the circular container. Note that if a packing contains one or more free circles then 

the solution is obviously not unique. See also Figure 3.1 for a graphical illustration of 

the definitions. 

3.3 Mathematical Models 

Although the NICPCC and ICPCC problems are geometrical ones, they can be easily 

reformulated as global optimization ones. A possible mathematical model for the 

NTCPCC problem is the following: 
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min r (3.1) 

subject to 

-' sJx,2 +y, —<r — r, iEI (3,2) 

(x_xi ) 2 +(y 1 y 1 ) 2  >r,+r i,jEI, i  <  j (3.3) 

LBr  :!~ r (3.4) 

where LBr  = maxlEl r, (of course, ICPCC can be viewed as the special case of 

NICPCC where r. =1 for all i E I). Constraints (3.2) indicate that each circle i is within 

the container. There are n such constraints, one for each circle (C,) (that is Ed 0, =0 

for all i E I). Constraints (3.3) guarantee the non- overlap condition for any pair of 

distinct circles ( C,, C ) (that is Ed,1  =0 for all i ,J E I , i #j) There are n(n- 1)/2 

such constraints . Constraint (3.4) provides a positive lower bound for the radius r of 

the container circle [Hif and M'Hallah (2008)]. It substitutes the non -negativity 

constraint. The model makes the NICPCC problem unbounded if we eliminate this 

constraint. Then, the model has a total of (1+n(n+1)/2) constraints, and 2rz±1 

variables; Among the 2n+1 variables, 2n variables representing the coordinates 

(Xj,yj) i E I of the n circles , and one variable being the radius of the container 

circle C (whose center is assumed to be the origin). 

The above model can be modified in such a way that we can get rid of the square 

roots. The equivalent model is the following 

mm r 

subject to 

x+y,2 —r 2 +2r,r:!~r,2 iEI 

(x1 -x1 ) 2 +(y,-y)2  >_(r,+r1 ) 2  i,jEI, i<j (3.5) 

LBr  < r 
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This way the problem becomes a quadratic one (even with a linear objective function). 

Unfortunately, the quadratic constraints are "nasty" (non-convex) ones , thus 

making the problem a hard global optimization one with many local minimizers 

"hiding" the global one. 

We finally remark that the optimal solutions of these problems need not be unique. For 

instance, if the optimal solution has free circles (see Definition 3), then we can move 

them around, thus obtaining an infinite set of solutions all with the same optimal 

radius of the container. 

3.4 Problems Equivalent to ICPCC 

We conclude this chapter by observing that problem ICPCC is equivalent to a few other 

ones, namely: 

or . Problem E- 1: Find the value of the maximum circle radius such that n identical 

non -overlapping circles can be placed in a unit circular container. 

. Problem E-2: Locate n points in a unit circular container such that the 

minimum pair-wise distance d ,, between any two points is maximal (maximin 

distance problem). 

. Problem E-3: Instead of fixing the radius of the circular container and 

searching for the maximum radius of the circles in the packing, one can 

equivalently search for the minimum ratio of the radius of the container to the 

radius of the circles in the packing without fixing them. 

For a given number n of circles, let r,1  be the optimal value of problem E-1, d,, be the 

optimal value of problem E-2, and D the optimal value of problem ICPCC. Then, it is 

well known that the following relations hold between such optimal values (see, e.g., 

[Graham and Lubachevsky (1996)]) 
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D=1/r,1 d=2r,,I(l-r), D—l+2Id , (3.6) 

This is basically a consequence of the fact that given a collection of points in the unit 

circle at distance at least d from each other , the points can serve as the centers of a 

collection of circles of diameter d that will pack into a circle of diameter 1 +d as also 

illustrated in Figure 3.2. 

41 
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CHAPTER IV 

BASIN HOPPING ALGORITHMS FOR THE ICPCC 

PROBLEM 

1 

As a mathematical model for the ICPCC problem we will employ model (3.5) 

with r1  = 1 for all i E I. For the sake of completeness, we point out that other 

models, like, e.g., (3.1) - (3.4), or any other model which can be obtained by 

any monotonic transformation of the objective function, are all theoretically 

equivalent to model (3.5) but might have a different practical impact on the 

performance of the algorithms (for a discussion about this subject we refer to 

[Addis et al. (2008), Dimnaku et al.(2002)]). As already commented, the 

problem turns out to be a hard global optimization one, with the number of 

local minimizers tending to increase quite quickly with the number n of circles 

(this fact will be experimentally verified in Section 5.1). Such large number of 

local minimizers indicates that the simplest approach based on multiple local 

Ir searches, Multistart , where we simply start different local searches from 

randomly generated initial points, is deemed to failure. As an alternative to 

Multistart here we are proposing a Monotonic Basin Hopping (MBH) approach. 

4.1 MBH Approach for ICPCC Problem 

The MBH approach is quite close to Multistart (they Only differ in the mecha-

nism for the generation of the initial points) but at the same time will also turn 

out to be dramatically more efficient than Multistart, at least for this problem. 

For ease of reference we report here the short pseudo-code of a MBH approach. 

Monotonic Basin Hopping 

Isr Step l(Init): Let X0  be randomly generated initial solution 

Step 2: Let X =r(X0) be a local minimum 

While SR not satisfied 

Step 3(PM): Let V :=C(X) 

Step 4(LS): LetX' :=r(Y) 
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Step 5(AR): If f(X') <f(X) , then X:= X' 

Endif 

End While 

- 4 Return X 

The main ingredients of the method are: an Initialization step (mit), a Local 

Search procedure (LS) denoted here by r, a Perturbation Move (PM) denoted 

here by C, an Acceptance Rule (AR) and a Stopping Rule (SR). 

In the next subsections we will detail our choices of mit, LS, PM, AR and SR 

for the problem at hand. 

4.1.1 Initialization 

The initialization step is rather simple: we randomly generate an initial solution X0  

within a large enough region, and then we start a local search from it. Note that this is 

exactly what Multistart performs at each iteration. The difference in MBH is that only 

the first local minimizer is detected in this way, all the others are detected by local 

searches starting at points generated by the perturbation move. 

4.1.2 Local search procedure 

As shown in (3.5), our problem can be viewed as a non-convex one with objective and 

constraint functions continuously differentiable infinitely many times. Therefore, any 

local search method for this kind of problems can be employed. However, according to 

our experience, SNOPT [Murray and Saunders (2002)] appears to be particularly well 

suited for these problems. Of course, constraint satisfaction in SNOPT (in particular for 

what concerns the non-convex non-overlapping constraints) can only be guaranteed 

within a given tolerance (we set such tolerance to 10 2  for all the experiments). 

However, we remark that even in case of slight infeasibihty of a given solution, we can 

easily restore feasibility by multiplying each variable by an appropriate factor (slightly) 

larger than 1. 
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4.1.3 Acceptance Rule 

Although in the pseudo-code above, following the monotonic principle, we have only 

defined a rather simple acceptance rule (namely, accept a candidate configuration only 

if it improves the current one), we would like to point out here that, following other 

heuristic approaches, like simulated annealing, also non-improving moves 

(backtracking) could be accepted. In fact some sort of backtracking is advisable, since 

MBH tends sometimes to get trapped into local and not global minimizers, but, 

according to our experience, randomly restarting the search when no more progress is 

observed (see also the discussion about the stopping rule SR) seems already a quite 

reasonable option. 

4.1.4 Perturbation Move 

The perturbation move is certainly the main ingredient of MBH. We have already 

discussed that a good move should guarantee that the structure of the current 

local minimizer is not completely disrupted by the perturbation. This way, the 

method does not simply perform a random search among the local minimizers (as 

in Multistart), but it moves between different but "close" local minimizers, 

performing a sort of meta-local search (a local search in the space of local 

minimizers). In the case of equal circles we have proposed three simple 

perturbation moves, based on uniform random perturbation of some or all the 

coordinates of each circle's center within some interval [-A, A]. The moves are 

called Full Jerk (FJ), Random Partial Jerk (RPJ), and Fixed Partial Jerk (FPJ) and 

are briefly introduced below. 

(a) Full Jerk Perturbation Move 

The FJ perturbation move is rather simple - all the centers of the circles are displaced 

by some random quantity uniformly sampled within an interval [-A, A]. The single 

parameter A, on which the perturbation depends, is of great importance. If ' is too 

small, the starting point will be very likely in the basin of attraction of the current local 

minimizer (we are not disrupting at all the structure of the current local minimizer); on 

the other hand, if A is too large, the method becomes basically equivalent to a 
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Multistart method (which disrupts the structure too much). In Section 5.3 we will 

further discuss the choice of A and perform experiments in order to select an 

appropriate value for it. The pseudo-code structure for the FJ move is as follows 

Pseudo-code of FJ 

Step 1: Let Z={zii,z12, ...,zj,z,,2} be a local minimum 

do i1 to n 

do k1 to 2 

Step 2: if AZ/k E (-A, A) select randomly 

Step 3: set z"Ik;= Zik + A Zik 

End do 

End do 

return Z'={Z"11/12, ...,Z"nj,/n2} 

(b) Random Partial Jerk Perturbation Move (PM) 

The RPJ perturbation move is similar to FJ, the only difference being that not all the 

circle centers are perturbed but only a limited number of them, selected at random (the 

position of all the other circles is left unchanged). The pseudo-code of the RPJ 

technique is as follows 

Pseudo-code of RPJ 
Step 1: Let Z—{z11,z12, . ,z,,j,z,,} be a local minimum and set Z' = Z 

Step 2: select An E (1, A) randomly; 

Step 3: randomly select a set 7 i of cardinality An 

do i = 1 to n 

If I E ' then 

do k = 1 to 2 

Step 4: select AZ/k E (-A, A) randomly 

Step z" fk;—  ZIk + A Z,k 
End do 

End if 
End do 

return  

It 
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(c) Fixed Partial Jerk PerturbaVon Move 

The proposed FPJ perturbation move Is a variant of' RPJ where the number An of 

Vs 
perturbed coordinates is not randomly selected but is fixed in advance. The 

pseudo-code structure of the FPJ technique is as follows 

Pseudo-code of FPJ 
Step 1: Let Z={z1/,z12, . .. be a local minimum and set Z' = Z 

Step 2: set An E (1, A) deterministically 

Step 3: randomly select a se I c I of cardinality An 

do i = 1 to n 

If i E [then 

DO k= I TO 2 

Step 4: Azlk  E (-A, A) select randomly 

Step 5: set Zik + A Z,k 
End do 

End if 
p 

End do 

return Z'={/ // ,z"/2, . . . 

It is worthwhile to remark at this point that the initial configuration produced by any 

PM operation may be (and, in fact, often is) unfeasible. But we can easily restore 

feasibility by multiplying each variable for a large enough factor (unless the quite 

unlikely case of two circle centers being the same point occurs), or, alternatively, we 

can simply start the local search LS from the unfeasible point, letting LS itself restore 

feasibility. 

4.1.5 Stopping Rule 

Ideally we would like to stop a method as soon as no more progress can be expected. 

For the Multistart method, for which, under mild assumptions, it can be proved that it is 

able to detect the global minimizer with probability one if we allow for an infinite 

number of local searches, this would mean stopping when the global minimizer has 

been detected. Instead, a single run of MBH does not necessarily lead to a global 

24 



minimizer and might get stuck into a local minimizer from which it is unable to escape. 

In such case what we can do is simply to restart MBH from a new random starting 

point, thus ending up with a sort of Multistart where local searches are substituted by 

MBH runs (as already commented in Section 4.1.3, the alternative is to introduce 

backtracking in the search by changing the acceptance rule AR in such a way that also 

non-monotonic moves are performed). In practice, if no special information is 

4 available, we are unable to stop though when we are really sure that no more progress 

will be possible. The best we can do is to stop when no improvement has been observed 

for a sufficiently large number of iterations (of course, this is just a heuristic rule with 

no guarantee that improvements are not possible any more). The number of iterations 

without improvements after which we stop MBH is denoted by the parameter 

MaxNonlmp. The choice of this parameter is particularly important: we should not stop 

too early (which could mean that we are not patient enough to reach the global 

minimizer) or too late (which would mean a waste of computational effort). The choice 

of this parameter will be computationally investigated in Section 5.2. 

p 

4.2 Population Basin Hopping for ICPCC Problem 

Each run of MBH follows a single path through the space of local minimizers. An 

alternative to MBH is Population Basin Hopping (PBH) [Grosso et al.(2007)], inspired 

by the Conformational Space Annealing algorithm (see, e.g., [Lee et al.(1997]), 

in which the single path search is substituted by a multiple path search. During 

this search, members of the population collaborate with each other in order to 

guarantee diversification of the search and to avoid the greediness which might 

characterize a single path search. All components of MBH are present in PBH. 

The new ingredient in PBH is the dissimilarity measure D. New parameters are 

N (the size of the population) and dcut (a threshold dissimilarity value). If we 

denote by S the space of the solutions at which we are interested (in ICPCC 

basically the local minimizers), the dissimilarity measure can be defined as the 

following function 

D:SxS - R4  

'.4 
which, for a given pair of solutions, quantifies the diversity between them. Ide-

ally, given two solutions X,YES, D(X,Y) should be close to zero only if 
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X,YES are very "similar "and, in particular, equal to 0 only if they represent 

(modulo symmetries, rotations, translations, numbering of circles, and so on) 

the same solution. We allow the concept of similarity to be problem-specific; 

the only essential requirement we impose is that for similarity of a solution 

xEswith itself, it must hold that D(X,Y) = 0 [Grosso et al. (2007)]. 

Given the dissimilarity measure, the pseudo-code for PBH is the following. 

Population Basin Hopping 

Step 0(Inil.): Let Xo be a set of N randomly generated solutions 

Step 1(LS): Compute X'r(Xo) (initial population) 

While the stopping rule SR is not satisfied 

Step2(PM): Compute X,' :=c(X,):X, EX,i=1,2,",N1, 

Step3 (LS): let Y:=,r(X'): Xil  eX',i=1,2,•••,N1, (pert, pop.) 

Sequential Replacement: Repeat y,  Y,Vi = 1,2,••, A',, 

Step 4 : LetX,, such that D(Y1,X,,) is minimum 

Step 5(AR): if D(Y,,Xh) < dcut and f(Y1)<f(X11 ) then 

set X := X[(X}4Yç} 

Endif 

else if D(Y1,Xj,)> dcut then 

select X E Xsuch that f(X) is maximum, and 

iff{ Y,}<f(X)then 

set X;= X/{Xç }U{}'} 

Endlf 

End Repeat 

End While 

Return X 

Basically, at each iteration: a set Y of new candidates is generated through the 

application of the perturbation move to each member of the population; each 

new candidate ,k = i... i,,, competes either with the member X,, of the current 

population X most similar to it with respect to the dissimilarity measure,D (if 
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D(Xh, Yk )< dcut) with the worst member X of the population if D(X),,Yk)> dcut, 

i.e. Yk is dissimilar enough with respect to all members ot the current 

population); if it wins (i.e., if it has a better function value), it replaces Xh (or 

-' 
X.) in the population for the next iteration. Note that MBH is, in fact, a 

special case of PBH where N 1. There is a trade off between two 

conflicting objectives in choosing N. We have already outlined above the 

(possible) advantages of PBH: increasing N increases diversification and 

decreases greediness. On the other hand, increasing N also increases the 

computational effort per iteration. We will discuss appropriate choices for N 

in Section 5.5. 

The local search procedure and perturbations techniques of the PBH approach 

are the same as those for the MBH approach. Each individual is independently 

perturbed and a local search starts at the perturbed point. The real difference in 

PBH is represented by the acceptance rule. A candidate replaces the member of 

the population with which it competes only if it has a better function value as 

in MBH, but the member with which it competes is not necessarily (and, in 

fact, often it is not) the member of the population whose perturbation led to the 

candidate. Formally, a candidate Y, does not necessarily compete with its 

"father" X1 . This means that Yi  could enter the new population even if f(Y1 ) > 

f(X1 ) (a backtracking move which is not allowed in MBH), but also that Y 

might not enter the new population even if f(Y1) <f(X1 ) (this is called hesitation 

and might be profitable in order to avoid the drawbacks of a too greedy 

approach). The stopping rule SR is basically the same employed for MBH: we 

stop if the best member of the population does not change for a fixed number 

MaxNonlmp of iterations. In the following subsection we discuss our choices 

for the dissimilarity measure and the dcut value. 

4.2.1 Dissimilarity Measure 

Since the dissimilarity measure D is the core component of the proposed PBH 

approach, we will discuss below a couple of possible choices of such measures 

for packing problems. Note that in [Grosso et al. (2007)] there are several 

dissimilarity measures proposed for molecular conformation problems. For 
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what concerns the choice of the dcut value, we adopted in our PBI-I algorithm a 

simple definition: it is equal to half the average dissimilarity within the initial 

randomly generated population. 

-s 

(A) Distance Dissimilarity Measure 

Let X=  {(Xi 1,(Xi2J i= 1,...,n and Y={I3 i, 13i2}i=I.....n be two distinct local minimizers. 

Let ph(X) be the distance of circle h from the barycenter of the 

centers of all circles in the local minimizer X, i.e., if we move the barycenter 

to the origin 

p,7 (X) = 

and define p(y) in a similar way; let o be the vector whose components are 

the distances p,(X)vlz = i,... , ordered in a nondecreasing way, i.e., 

~S[n1 where ax[k] denotes the k-th component of the 

vector Similarly for the local minimizer V. Then, the distance dissimilarity 

measure is defined as follows 

D (X, Y) = . 
(4.1) 

- k=l 

(B) Objective-distance dissimilarity measure 

The objective-distance dissimilarity measure is very similar to the distance measure 

dissimilarity but also takes into account the difference between objective function 

values. More precisely, we define the objective-distance dissimilarity measure as 

follows 

D(X,Y) = f(X) —f(Y) * ô l[kl [k1i 1   
(4.2) 

The reason for this slight modification is due to free circles. When a configuration X 

has free circles, then we can move them around thus obtaining different configurations 

with positive distance dissimilarity but a null objective-distance one with respect to X. 
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4.1 Comparison between MBH and PBH regarding average elapsed time per success 

in hard instances 

In the first experiment we compare the behavior of PBH and MBH on the 

previously identified Hard Instances for MBH. We might think that the 

difficulty of such instances is due to the existence of different funnels, so that 

many runs of MBH are needed before hitting the (putative) global optimum. in 

this case the multi-path search performed by PBH should allow to detect the 

solution more easily, though at a higher computational cost (approximately, a 

single run of PBH has a cost which is N times larger than a single run of 

MBH, where N denotes the size of the population). We will compare MBH(FJ) 

and PBH(FJ) setting L\0.8  and MaxNonImp500 in both cases, setting N=10 

and employing the distance dissimilarity measure in PBH. In order to have a 

comparable overall computation time, we perform 50 runs of MBH and 5 of 

PBH. The results are displayed in Table 4.1, where for each instance we report 

the percentage of successes. The results reported in the table suggest that PBH 

with a relatively large N value is certainly a robust approach, able to detect 

with a high percentage of success (often 100%) the solution of the hard 

instances. On the other hand, we should recall the higher computational cost of 

a PBH run. 

29 



Table.4.1: Comparison between MBH and PBH with N =10 approaches in 
some hard instances 

Our Best Result Success (in %) 

n (in PBH) PBH(N = 10) MBH 

31 6.291502622129 100 2 

68 9.229773746751 100 42 

78 9.857709899885 100 42 

79 9.905063467661 60 4 

80 9.968151813153 80 8 

83 10.116857875102 100 42 

92 10.684645847916 60 10 

95 10.840205021597 80 38 

98 10.979383128207 100 82 

Table 4.2: The Impact of Number of Populations in PBH approach 

r OurBestResult Success (in % ) with MNI=100  

n (in PBH) Nl N2 N4 N8 N10 

80 9.96815181315344 4 8 25 50 100 

81 10.0108642412007 38 68 83 100 100 

82 10.0508242234505 58 92 100 100 100 

83 10.116857875102 4 4 25 67 60 
84 10.1495308672362 100 100 100 100 100 

85 10.1631114658768 100 100 100 100 100 

86 10.29870105311 72 100 100 100 100 
87 10.363208505078 18 100 100 100 100 

88 10.432337692732 74 100 100 100 100 

89 10.500491814574 28 68 75 50 100 

90 10.5460691779537 68 100 100 100 100 
91 10.5667722335056 64 100 100 100 100 
92 10.684645847916 0 0 0 17 0 

93 10.73335260026 18 12 25 17 20 
94 10.778032160252 36 28 42 50 60 
95 10.840205021597 0 40 50 100 60 
96 10.8832027597222 0 4 0 0 0 
97 10.938590110073 14 4 42 67 100 

98 10.979383128207 4 100 100 100 100 

99 11.0331411514456 0 16 50 83 100 
100 11.08214972431 18 64 83 100 100 

Total No. Failure 4 1 2 1 2 
Number of 100% success 2 8 9 12 15 

For this reason, we compare the two approaches on the basis of the elapsed time per 

success. Figure 4.1 displays the average elapsed time per success of MBH(FJ) and 
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PBH(FJ) on the hard instances. The figure shows that ,with the remarkable exception of 

the n=3 1 case, where PBH strongly outperforms MBH, the two approaches are often 

comparable but MBH is, usually, slightly superior. 

4.2.2 Impact ofpopulation size N in PBH 

In the previous experiments we considered PBH(FJ) with N =10. Now we would like 

to investigate more thoroughly the impact of the population size in PBH . In these 

experiments we consider PBH(FJ) with population sizes N{1,2,4,8,10}. We set Max 

Nonlmp = 100, L= 0.8 and employ the distance dissimilarity measure. The experiments 

are performed on the large instances n=80" 100. Note that N =1 corresponds to the 

MBH approach. In order to have a comparable computation time, the number of runs is 

R =50,25,13,6,5 for N= {1,2,4,8,10} respectively. The results are reported in Table 4.2 

in form of percentage of successes. 

4.2.3 Comparison OfDjfferent Dissimilarity Measures 

The results somehow confirms those in the previous subsection: indeed in spite of on or 

two failures, the largest tested N values, say, N E {8,10} usually guarantee the highest 

percentage of successes (very often 100 % successes), confirming that for large N 

values PBH turns out to be a quite robust approach. On the other hand, in many cases 

also small N values (even N1, i.e. MBH, although this is also the case with the 

largest number, 4, of failures) quite often guarantee a high percentage of successes (at 

a lower computational cost per success with respect to large N values). Basically, it 

seems that for these problems single or few path searches are often already quite 

efficient and that the benefits coming from the greater diversification guaranteed by 

PBH with larger N values are overridden by the larger computational cost per iteration. 

It is worthwhile to remark that we could obtain two further Improvements at n 96, 99. 

Since we have previously proposed two dissimilarity measures, we would like to 

perform a final experiment to compare the performance of PBH(FJ) with the two 

dissimilarity measures Distance Dissimilarity (DD) and Obj ective-D i stance 

Dissimilarity (ODD). For this experiments we consider the instance n80 ...... 100 plus 

the hard instance with n <80, set MaxNonImp200 and 500, A0.8. We also consider 
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three population sizes N0={2,5,10} and always perform R=5 runs.The results are 

displayed in Table 5.12. We notice that there is no significant differences between the 

two dissimilarity measures, although, with the only exception of N =10 with 

Table 4.3: The Comparison between different dissimilarity measures in PBH approach 

with Np  =2,5,10. Note that in this table OurBestResult is denoted as OBR. 

OBR NO of Success for R =5& No Success for R=5&MNI=500 

MNI=200 

N=2 N=5 N=10 N=2 N=5 N0=10 

( ODD JODD ODD ODD ODD ODD 

99 11.033141 I(s) i(s) 1 3(s) 2 3 I 1 I 4(s) 4 3 

100 11.032149 2 2 2 3 2 4 3 4 4 5 5 5 

T. Failure(0) 6 9 2 3 4 3 2 3 0 2 2 2 

T.Impro(12) 8 7 11 9 9 11 10 10 13 10 11 11 

T.time(hrs) 48 44 62 76 117 107 120 111 152 179 297 269 

MaxNonlmp =200, DD usually has a slightly lower number of failures and higher 

number of improvements. As a final remark, we point out that DD and ODD are 

reasonable measures but certainly not the only possible ones. A possible aim for future 

researches is that of proposing and testing new measures. 

Finally we would like to compare our experimental result with the literature, basically 

with [Specht, 2009] in which latest optimal values are updated. The table 4 shows the 

overall improved solution obtained by our proposed PBH approach as well as MBH 
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approach [Jamali et al. 2009]. Our approach able to obtain 21 improvements compare 

to the best known values available in [Specht, 20101. On the other hand the PBH 

approach also able to obtain other optimal value reported in [Specht, 2010]. Moreover 

as mention earlier PBH approach able to further improve for number of circles n = 96 

and 99. It is also worthwhile to mention here that our improved solutions are also now 

available on the web http://www.packomania.com/. The Figure and coordinates values 

of the optimal packing for circles n = 96 and 99 is given in the Appendix I. 

Table 4.4: Overall improved value compare to the Best Known Result available in 
T ,ite,rti ire. 

S.L n Radii 
1 66 9.0962794269 

2 67 9.1689718818 

3 70 9.3456531941 

4 71 9.4157968969 

5 73 9.5403461521 

6 74 9.5892327643 

7 75 9.67202963 19 

8 77 9.7989119245 

9 78 9.8577098999 
10 83 10.1168578751 
ii 86 10.2987010531 

12 87 10.3632085051 

13 88 10.4323376927 
14 89 10.5004918146 
15 92 10.6846458479 
16 93 10.7333526003 

17 94 10.7780321603 

18 96 10.8832027597 

19 97 10.9385901101 

20] 99 11.0331411514 

21 j 100 11.0821497243 

33 



CFIAPTER V 

PACKING PROBLEMS: NON-IDENTICAL CIRCLES IN A SMALLEST 
CIRCULAR CONTAINER 

•1 

5.1 Introduction 

In chapter III we have given the mathematical formulation for the problem of packing 

equal/ unequal circles into a circular container and also proposed algorithms for solving 

the problem with equal circles, called Identical Circles Packing in a Circular Container 

(ICPCC) problem. In order to deal with the case of unequal circles one may think to 

extend the approaches employed for the case of equal circles with a slight variant in the 

perturbation moves: for instance, for the FJ perturbation strategy the coordinates of 

each circle i are displaced by a uniform random perturbation within the interval 

[—Lxr, where r i  denotes the radius of circles i (for RPJ and FPJ the displacement 

is restricted to a subset of circles). But, as we will see through some experiments, this 

simple extension is not the best way to tackle the problem. Indeed, the case of unequal 

circles has some peculiarities which have to be taken into account. The combinatorial 

side of this problem, represented by the different radii of the circles, can (and actually 

should) be exploited in some ways. In particular, we will propose a further possible 

perturbation move which is only suitable for the unequal circle packing problem. 

Moreover, we will also propose another strategy, again only suitable for unequal 

circles, where we first optimize a fraction of relatively larger circles, and then insert 

one or a part of the remaining smaller circles sequentially and simultaneously optimize 

them. All these issues, together with some computational experiments will be discussed 

in the following sections. 

5.1 Proposed Sequential Insertion Based MBH 

At first we discuss the strategy based on first removing and later re-inserting "small" 

circles. The basic idea is that, once a configuration with large circles is available, we 

can easily find some room for the smaller circles within the circular container without 

having to enlarge the radius of the container, or by only mildly enlarging it. Having 

removed "small" circles, we have the advantage of dealing with a smaller and simpler 

problem. 
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The technique is rather simple. First we select some circles to be removed; then, we 

apply MBH (or PBH) on the reduced set of circles; finally, the algorithm sequentially 

inserts the missing circles (following a non increasing order of the radii). In what 

follows we define this approach as Sequential Insertion Based MBH or PBH (SIB-

MBH or SIB-PBH). The new procedure, which exploits the different radii of the 

circles, performs the following steps: 

• (a) apply the Removal Strategy to remove "small" circles; 

• (b) apply MBH (or PBH) on the remaining subset of larger circles; 

• (c)apply Insertion Rule for sequentially inserting the missing circles. 

(b) Optimized Container before insertion (a) Container after insertion a circle 
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Fig 5.1 Illustration of Insertion Rule (iR) 

Besides all components of the MBH (or PBH) approach, there are two further 

components in this new approach namely (i) Removal Strategy (RemS) and (ii) 

Insertion Rule (IR).  Before giving a formal description of SIB-MBH, we describe these 

two new components. 

(i) Removal Strategy (RemS). It is observed from the experiments that small 

circles are sometimes relatively easily inserted in holes of optimized configurations for 

some subset of the larger circles without having to enlarge the container or with just a 



small enlargement. According to our Removal Strategy, circles are indexed in 

decreasing order with respect to their radius. Then, a fraction of circles - "small" 

circles - is removed. 

Of course, we need to define what a "small" circle is. We define a circle i as a small 

circle if its radius is at least four times smaller than the largest one, i.e., circle i is small 

if 
U 

1 
maxr 

4 j=1,•,n 

Let us denote the set of initially removed circles as SR ; then 

SR = [i: r :5 ;j: ma7} (5.2) 

This strategy strongly simplifies some instances of the problem through a considerable 

reduction of the search space during the first phase where some circles are removed. 

(ii) Insertion Rule (Ip): In the insertion process of a given circle c in SR, first the 

algorithm creates a regular grid of points over a square region containing the circular 

container. The step of the square grid is half of the inserted circle's radius. The edge 

length of the square region is the sum of the diameter of the container and the radius of 

the circle to be inserted, so that the circular container, which is optimized previously by 

the reduced circles, is fully enclosed within the square (both have the origin as their 

common center). Next, the algorithm searches for "free" spaces where to insert circle 

c3. Given a point (x1, y) over the grid, we declare the space around it as free, if its 

distance from the other circles' centers is at least equal to r3, the radius of the circle to 

be inserted. In other words, if we place circle c with center in point (x1, y) over the 

grid, the other circles' centers are not in the interior of such circle. Note that at least one 

free space certainly exists. Indeed, according to the above definitions, all the corners of 

the square certainly correspond to free spaces. It is worthwhile to note that the 

definition of "free" space does not mean that the space is large enough to contain circle 

c with no overlap with the other circles: a partial overlap is permitted and, actually, if 

the circle to be inserted is small compared to other circles, then even full overlapping 

may occur during the insertion process. It may also happen that the new circle is not 

fully (or even not at all) contained in the circular container. In spite of this partial or full 
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overlap with other circles and of the possibility of crossing the border of the circular 

container, a local search procedure started at the new configuration with the added 

circle is able to adjust it in such a way that no overlap occurs without enlarging the 

radius of the circular container or with an as small as possible enlargement of such 

radius. 

We may illustrate the Insertion Rule (IR) by Figure 5.1. Suppose we have 9 unequal 

circles in which S circles are "small". So after that we have found a configuration with 

the four larger circles by any algorithm like, e.g. MBH or PBI-I (see Figure 5.1(a)), next 

the insertion algorithm searches for a space in the given four-circle configuration by 

exploring the grid of points to insert the remaining largest circle (green color) in SR. 

Once the algorithm finds a "free" space, it picks up the green colored (largest) circle 

from the set S1  and places its center at the point of the grid where a "free" space has 

been detected (see Figure 5.1(b)). Notice in Figure 5.1(b) that the inserted circle 

partially overlaps with some of the other circles and also crosses the border of the 

container circle. After having detected a "free" space, the algorithm starts a local search 

from the newly created configuration in order to remove possible overlaps and reduce 

as much as possible the radius of the circular container. The algorithm is stopped when 

all free spaces have been tested. The new configuration with the added circle will be the 

one with the smallest radius of the circular container. In case during the search a 

configuration is detected with the same radius of the circular container as before the 

addition of the circle, then the algorithm stops returning this configuration. Once the 

new configuration is returned, the algorithm removes the added circle from SR,  selects 

the next largest circle in SR (the blue circle in the example), and repeats the above 

procedure until SR  becomes empty. The pseudo-code structure of the insertion rule In 

starting from an initial configuration X and trying to add circle s is as follows (r denotes 

the local search procedure, while f returns the radius of the circular container for a 

given configuration): 

- IR(Xs): 
Step 1 (mit) Set minrad =  +00 

Step 2 (Grid): create a regular grid T on the square region containing the circular 

container 

For each (xi, )Jj  )E T 
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If the space around (x1, y) is "free" Then 

Set YXU{ (x1 ,y,)} 

Set X' =r(Y) 
If f(X') <minrad Then 

Set X* =X' 

If J(X1) =f(X) Then 
return 

EndFor 
ReturnX * 

Once we have defined the insertion procedure, we are ready to give a formal 
description of the whole algorithm: 

Sequential Insertion Based MBH 
Step 1 (Rem): remove the set SR of all the "small" circles 

Step 2 (MBH): Apply MBH on the reduced problem. 

LetXbe the outcome of MBH 
While R5# 0 

LetsEargmax{r1  :iESR} 

Set X=I/?(X,$) 

Set SR =SR\ {s} 

End While 

- ReturnX 

In the above algorithm MBH can be easily substituted by any other algorithm returning 

a configuration in the reduced space. In case MBH is replaced by PBH, the insertion 

procedure can be either applied to the best member of the final population, or, 

alternatively, to all members of the final population. 

5.2 New Perturbation Moves 

As already pointed out, when dealing with unequal circles, we can add new 

perturbation moves to the slight variant of the perturbation moves employed for equal 

circles. In particular, here we propose two further perturbation moves namely (i) the 

Random Jump (RI) perturbation move and (ii) the Radius Based Random Swap 

(RBRS) perturbation move. The former could actually be employed also with equal 
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circles (in fact, we will see that it is basically equivalent to the Jerk Perturbation move 

but less "local"). The latter can only be employed with unequal circles. 

5.2.1 Random Jump (RJ) Perturbation Move 

1 In [Grosso et al. (2010)] authors have developed the Jerk Perturbation (JP) move 

technique in which circles' centers are perturbation within a neighbor space. The 

proposed Random Jump (RJ) perturbation move is actually quite similar: circles are 

I 

(b) Before RJ perturbation (a) After RJ perturbation 
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Figure 5.2. Illustration of RJ perturbation move 

randomly selected but rather than being slightly perturbed, they can jump within a large 

region (actually, in some sense the JP move can be regarded as a special case of the RJ 

perturbation move, in which only small jumps are allowed). Figure 5.2 illustrates the 

move. In Figure 5.2(a) we have a locally optimal configuration. In the example the RJ 

perturbation move randomly selects a single circle (the red one in the figure). Then, 

after the RJ perturbation the new configuration is displayed in Figure 5.2(b). Notice 

that the red circle jumps within a square region whose edge is Iri  and is delimited by 

the dotted line in the figure, but crosses the border of the container and also overlaps 

with another circle. As usual, the local search procedure adjusts all the circles so that no 

overlaps occurs, and the circular container in such a way that its radius is as small as 

possible. The pseudo-code of the RJ perturbation moves is given below (the value of 

ti 
BR, the diameter of the square boundary, is fixed to 
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The pseudo-code of the RJ perturbation 

Step 1: Let Z={; jj:12 , ",_,,J,Z,,2 } be a local minimum and set Z =2 

Step 2 : select In E (1, n) randomly 

doi=l ton 

Step 3 : select i E {1, , n } randomly 

Step 4: select iZjk E ( —BR, BR  ) randomly 

dok1 to2 
I 

Step 5 : set Z "k : ;jk +&jk 

End do 
Step 6: set = Z'fl {z( } I {;, } 

End do 

return Z1  

(b) Before RBRS Perturbation 

1 

(a) After RBRS Perturbation 

/ 
/ 

L I 

Figure 5.3 Illustration of RBRS perturbation move 

In the Radius Based Random Swap (RBRS), first one or few pairs of circles are 

selected in such a way that in each pair the radii of the two circles are different (it will 

be soon clear that if two circles in a pair have the same radius, then the RBRS 

perturbation is meaningless). Then, we keep fixed the centers of the circles but swap 

their radii. For illustration, let Figure 5.3(a) represent a local optimal configuration; let 

the red and blue circles form the randomly selected pair. Then, after RBRS perturbation 

the new configuration is given in Figure 5.3(b). Notice that after swapping the radii, 

overlaps between circles occur and the red circle gets (slightly) outside the circular 

container. As usual, the local search procedure will adjust the situation in order to 
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recover a feasible solution. The pseudo-code of the RBRS perturbation move is given 

below: 

The pseudo-code of RBRS perturbation 

Step 1: Let Z={zii,z /2" ,Z/,Zn2 } be a local minimum and set 7' =Z 

Step 2 : define An E (1, n/2) randomly / deterministically 

Step 3: randomly select An distinct circles' pairs (iA, jk),  k = 1, , An 

so that rk# ljk 

dokl toLfl 

Step 4: swap the two radii (r,k  , 

End do 

Return Z' 

Table 5.1: Test set with unequal circles 

Test n. N Radii BestKnown 

1 6 r!.3=IO;r4.o-4.826 2i.5480 
___ 

2 9 1r 4=1,r6.9=0.41415 2.4142 
'-10 r4  =3.533 21.5470 

4 12 r13=10 r49-3533rrn! -23 215470 
____ 

5 13 r1.3 10,r4.6 4.826,r7.12 2.371,ri3 1.547 i 21.5470 

6 19 r I.3 10,r,=4.826,r7.]2=2:371,rl31.547 -  21.5470 
r 4.19 1.345  

7 19 r1.3 1 0,r4.9 3.533,r10.12 2.3,ri3.1 1.8 21.5470 
191.54

7 

8 22 r1.3 10,r4.4.826,r7.12 2.371 21.5470 
r13=1.547,r14.19=1.345,r20.22=1. 161 

9 25 rl.3 10,r49 3.533,rl0.122.3,r3.181.8 21.5470 
r19=1.547,r20.2 = 1.08 

10 28 . r1.3=10,r4.6 4.826,r1.12 2.371,r13 1.547 21.5470 
r14.19 1.345,r20.22=1. 161,r21.28=0.9 

11 10 r=50,r2 40,r3.30,r6 21 99.8850 
r7 20,r8 15,r9 12,r10 10 .

. 

12 11 r1.2 25,r3.4 20,r5 15,r6 14 60.8900 
r7=12,r8=1 1r9=10.5,r10 10,r1 8.4 

13 14 R1 40,r2 38,r3 37,r4 36,rc 35,r6 31,r7 27 114.9800 
R8=23,r9=19,r10 17,r11=16,r12=15,r13=14,r14=l I 

r I=252O,r3 -15,rs.7—IOsi7-5 49.6837 

15 12 . r1.3=100,r4.6=48.26,r712 23.72 215.4700 
16 15 r1 1,r +1 r±1,il ...... 14 39.3700 
17 17 r1 =100,r5.9 41.415,r.720 1 241.4214 

18 162 . r1.3 1 .8,r4 1.75,r5.16 1.3,r17.25 1.05 11.7300 
r26.40 0.9r41.71 0.8,r72 0.75,r73.83 0.7 

- 
r84.137 0.65.r138.1 62 0.55 
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Table 5.2 The Impact of Removal Strategy in Sequential insertion based approach 

Test n n Reduced circles 
1 6 6 

2 9 9 
3 9 9 
4 12 9 
5 13 6 

6 19 6 
7 19 9 
8 22 6 
9 25 9 

10 28 6 
11 10 8 
12 11 11 
13 14 14 
14 17 7 
15 12 6 

16 15 12 
17 17 9 
18 1 162 162 

5.3 Experiments and Discussion 

In this section we will perform some experiments to investigate different issues. In 

particular we will study: 

• The performance of the proposed perturbations; 

• The performance of the Sequential Insertion Based MBH (SIB-MBH) 

approach; 

• The impact of the population. 

• The test instances which will be considered are those reported in [Hifi,and 

M'Hallah (2008)]. These are 18 test instances for the case of unequal circles. 

The characteristics of each test are indicated in Table 5.1. In such table 

column Test n. denotes the identifier of the instance; column n denoted the 

number of circles of the instance; colunm Radii denotes the different radii of 

the circles in the instance; column Bestknown denotes the best known value 

in the literature for the instance. 
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5.3.1 Experiments with different perturbation moves and with the sequential 

insertion strategy 
The different perturbation moves which will be tested are the Full Jerk (FJ) one (with 

perturbation rangei 1= 0.8r1  for the coordinates of the i-th circle), the Random Jump 

(RJ) perturbation move (with a number of randomly selected circles, on which the 

perturbation is carried on, equal to r n120 +11), and the Radius Based Random Swap 

(RBRS) one (with r n120 ±li randomly selected pairs of circles on which the 

perturbation is carried on). Experiments are performed both with the standard MBH 

approach and with the sequential insertion strategy, i.e. with the SIB-MBH approach. 

In all cases we set MaxNonlmp = 200. The number of runs is R = 50 for all tests except 

for the highly computationally demanding Test n. 18 for which we reduced the number 

of runs to R = 6. 

Table 5.3 The performance of MBH approaches with different perturbation moves and 
Insertion strategies. Note that in this table OurBestResults is denoted as OBRS 

Test n . OBRs No. of success(Rcsult) of MI3FI approach 
____________ ____________ 

No. of succcss(Rcsult) of SIB-MI3H 
approach 

____________ 

H Ri RBRS Fi Ri RI3RS 

21.5480 50 15 50 50 15 50 

2 2.4142 12 15 37 12 15 37 

3  21.5470 14 10 40 14 10 40 

4 21.5470 8 1 19 14 10 40 

5 215480 3 C) 5 3 2 9 

6 21.5470 0  0 0 19 1 14 50 

7 21,5470 0  0 0 14 10 40 

8 21.5480 0  0 0 20 16 1 50 

9 21.5470 0  0 0 14 15 38 

10 21.5470 0 0 0 20 15 24 

- 1 99.8850 0 0 12 0 0 50 

- 2 60.7099 0 0 12 
(60.7099)  

0 0 12 

13 113.5552(4) 10 
(114.0814) 

0 6 
 (113.5846) 

10 
(114.0814)  

0 6 

14 49.1873 1 
(49.31945) 

10 
(49.6498) 

1 
(49.2470) 

6 
(49.1873) 

100 
(49.1873)  

50 

15 215.4700 5 0 7 31 16 50 

16 38.8380 1 
(38.9189) 

10 
(39.2962) 

1 
(38.8380) 

0 3 
 (39.3534)  

5 

171 241.4214 0 0 7 7 8 28 

18 11.5119(+) 1 
(11.5336) 

5 
(11.6599) 

I 
(11.5422) 

1 
(11.6599) 

5 
(11.6599)  

1 

Failure 1 0 8 11 5 3 3 0 

Success 118 10 7 ] 13 1 15 15 18 

Imp. [5 4 3 5 3 3 1 5 

B.lmp. 5 0 0 2 1 1 3 

For what concerns SIB-MBH, we report in Table 5.2 for each test instance the total 

number n of circles for the instance and the reduced number of circles after removal of 
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the "small" circles. We observe from the table that for some test instances like, e.g., n. 

6-10 a large number of "small" circles is removed. For some other instances a lower 

number of circles is removed (like, e.g., instances n. 4 and 11). Finally, for the test 

- instances n. 1, 2, 3, 12, 13 and 18 there is no "small" circle and, consequently, the 

MBH and SIB-MBH approach are equivalent ones. 

The results are reported in Table 5.3. Column Test n. denotes the identifier of the test 

instance as indicated in Table 5.1. Column OBRs (OurBestResult) denotes the best 

results we could obtain during all our experiments. Note that in all cases a value (in the 

Column OBRs) at least as good as the BestKnown one in the literature as reported in 

Table 5.1, is reached and that values in boldface indicate better results compared to the 

BestKnown ones. The next following three columns report the number of successes on 

each instance for each of the three perturbation moves tested (FJ, RJ, RBRS) with 

MBH approach. The last three columns report the number of successes on each instance 

for each of the three perturbation moves tested (FJ, RJ, RBRS) with, SIB-MBH i.e. 

with the use of the sequential insertion strategy. It is worthwhile to explain here what 

do you mean by number of successes. When the number of successes is equal to 0, this 

means that the approach was unable to reach the best known result in the literature. For 

all the instances for which the best result obtained by an approach was at least as good 

as the best known one in the literature, the number of successes is the number of runs 

where the best result has been obtained. In the latter case, when a result better than the 

best known one in the literature could be obtained, we also report within parenthesis 

such result. We also remark here that for Test n.13, we have obtained the best result - 

113.55524by the 500 runs of SIB-MBH(RBRS) approach, while for Test n.18 we have 

obtained the best result -11.51194  by the SIB-PBH(FJ) approach discussed later on. 

In the table the row named Failure reports the total number of instances where the 

approach was unable to reach the best known result in the literature (or, equivalently, 

the number of instances for which the number of successes is equal to 0). Similarly, 

row Success reports the total number of instances where the approach was able to 

obtain a solution at least as good as the best known one. Row Imp. reports the total 

number of instances for which the approach was able to obtain an improved solution 

and, finally, row B. Imp. indicates the total number of instances for which the approach 
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was able to obtain an improved solution which is also the overall best among all those 

obtained in the different experiments. 

Now we briefly discuss the results reported in Table 5.3. At first we consider the 

performance of the different perturbations moves within the standard MBH approach, 

i.e. MBH without sequential insertion strategy. We observe that the MBH(RBRS) 

approach was able to obtain success in 13 instances out of 18; in five instances it was 

able to improve the available BestKnown value and in three cases the improvement is a 

best one. Unfortunately, there are also five failures. Note that enlarging the number of 

runs only partially helps. Indeed, when we extended the number of runs to R= 500, we 

could get at least one success for all the instances but still two failures, namely for the 

two tests n. 9 and 10. This situation is even worse for the MBH(FJ) and MBH(RJ) 

approaches, for which the number of failures is clearly higher compared to that of the 

MBH(RBRS) approach; moreover, though there are some improvements in both the 

approaches, none of them has a best improvement. 

Things get definitely better when we consider the performance of the different 

perturbations moves in the SIB-MBH approach. The SIB-MBH(RBRS) approach has 

no failure, five improvements and three best improvements; both SIB-MBH(FJ) and 

SIB-MBH(RJ) approaches, though inferior with respect to SIB-MBH(RBRS), have 

only three failures but one best improvement. If we focus our attention on the 

comparison between MBH(RBRS) and SIB-MBH(RBRS),we can remark that the five 

failures in MBH(RBRS) occur with instances n. 6-10, for which the SIB-MBH(TBRS) 

approach first removes a relatively large number of ("small") circles. Once such circles 

are removed, the problems get quite easy ones and the following sequential insertion 

can always be carried on relatively easily without having to enlarge the radius of the 

circular container (i.e., all the missing circles can be inserted in the "holes" of the 

container). This is not always the case. Instance n. 14 deserves some attention. The 

different runs of MBH over the reduced space return two distinct solutions with the 

seven remaining circles, one with radius 48.6111 and the other with radius 48.922, so 

that the first one is clearly better than the second one. But when moving to the second 

phase (sequential insertion of the missing circles), the situation is reversed: the first 

solution leads to a solution with radius 49.2296, while the second one leads to a better 

solution with radius 49.1873. Basically, the second solution has a worse radius but 
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larger holes where the missing circles can be placed. Therefore, what we can conclude 

from this is that it is often a good strategy to perform the insertion of missing circles 

not only from the best solution returned by the first phase, but also from some 

suboptimal solutions obtained during the first phase, because the latter may lead to 

better solutions after insertion of the missing circles. 

The final indications of this set of experiments are quite clear: 

• The use of the sequential strategy clearly enhances the performance of all the 

approaches, independently from the perturbation move employed (for a given 

perturbation move the performance with the sequential strategy is almost 

always better than the one without); 

• The RBRS move is a clear winner with respect to the FJ and RJ moves with a 

lower number of failures, a higher number of improvements and best 

improvements, and with a number of successes almost always larger than 

those obtained with the other moves. The only exception is represented by 

instance n. 18. The peculiarities of this instance and a possible explanation for 

the worse behavior of RBRS with respect to FJ on it, will be discussed later 

on. 

- 

Table 5.4 The total elapsed CPU times of the experiments for SIB-MBH (RBRS) 
anoroach 

Test n Elapsed time (see) 
39 

2 75 

3 104 
4 440 
5 35806 
6 17607 
7 3778 
8 11768 
9 63890 
10 52967 
11 213 
12 264 
13 468 
14 4975 

15 813 
16 249 
17 3130 
18 407137 



Some attention should be focused on instance n.13 and, even more, on instance n.16. In 

both cases all radii are different and the different between two consecutive radii is 

relatively small. In these cases the MI3H(RBRS) approach (or the SIB-MJ3H(RBRS) 

approach) works much better than the approaches with other perturbation moves. For 

instance n. 16 we observed a large variability of the final solutions and, in spite of the 

relatively small dimension, this instance turns out to be particularly challenging. We 

remark that instance n.16 is one (actually of moderate size) among those proposed in 

the Circle Packing Contest (see http ://www.recmath.orjcontestJCirClePackiflg/indeX.Pl1P), 

and its difficulty seems to confirm that such instances are more challenging than the 

other test instances with unequal circles reported in the literature. More generally, our 

impression is that the hardest instances for the case of unequal circles are those with 

many circles with slightly different radii. For a discussion about how to deal with the 

instances of the contest we refer to [Addis et al. (2007)] 

Table 5.5 Impact of Population in RBRS perturbation moves on sequential insertion 
based approach. Note that in this table OurBestResults is denoted as OBRs. 

Test No. of success in % (result) 
OBRs 

,Vl N=2 I N=4 lv=5 N=8 V5=l 0 

1 21.5480 100 100 100 100 100 100 

2 2.4142 74 100 100 100 100 100 

3 21.5470 80 100 100 100 100 100 

4 21.5470 80 100 (00 100 100 100 

5 21.5480 18 too ioo 100 100 100 

6 21.5470 100 100 100 100 100 tOO 

7 21.5470 80 100 100 100 tOO tOO 

8 21.5480 100 100 100 100 100 100 

9 21.5470 76 100 100 100 100 100 

10 21.5470 48 100 100 100 100 100 

11 99.8850 100 100 100 100 100 100 

12 60.7099 24(60.7099) 44(60.7099) 67(60.7099) 80(60.7099) 33(60.7099) 80(60.7099) 
13 113.5552 12(113.5846) 12(113.7753) 16(113.8376) 40(113.94340 33(114.02999) 100(113.59499) 

14 49.1873 100(49.1873) 96(49.1873) 100(49.1873) 100(49.1873) 100(49.1873) 100(49.1873) 

15 215.4700 100 100 16 100 100 100 

16 38.8380 10(38.8380) 28(38.8380) 12(38.8380) 70(38.8380) 50(38.8380) 80(38.8380) 

17 241.4214 56 100 100 100 100 100 

18 1.5119 12(11.5422) 8(11.5256) 50(11.5410) 30(11.5410) 100(11.5416) 60(11.5369) 

I00%Suc. 6 13 13 15 15 15 

50%<Suc.<100% 6 1 1 0 0 3 

5% < Suc.<50% 6 4 I 3 3 J 0 

Best Impro. 3 3 3 3 3 I 3 

As a final comment, we emphasize once again that the proposed approaches and, in 

particular, the SIB-MBH(RBRS) one, turn out to be extremely efficient when compared 

with the existing literature, being able to get at least the same results and, in some 

cases, also to considerably improve the best known results as reported in [Hifi and 
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M'Hallah (2008)1 (and in Table 5.1). We also report in Table 5.4 the overall 

computation time required for R= 50 runs on all the test instances except for the 

instance n. 18, for which R = 6, as already mentioned. 

5.3.2 Impact ofpopulation 

In the section we investigate the PBH approach with different population sizes. 

Following the indications obtained from the previous set of experiments, we will first 

restrict our attention to SIB-PBH(RBRS) (sequential insertion will be performed 

starting from all the members of the final population). 

We consider the population sizes A 2,4,5,8,10 as well as N= 1 (i.e. the SIB- 

MBH(RBRS) approach). In Table 5.5 we report the results in terms of percentage of 

successes obtained with: 50 runs of SIB-MBH(RBRS), 25 runs of SIB-PBH(RBRS) 

with IV =2, 12 runs of SIB-PBH(RBRS) with N = 4, 10 runs of SIB-PBH(RBRS) with 

Np  = 5, 6 runs of SIB-PBH(RBRS) with N = 8, and 5 runs of SIB-PBH(RBRS) with N, 

10. This way the overall computational effort with the different population sizes is 

approximately the same. We set MaxNonlmp = 200 for all the population sizes. 

The distance dissimilarity measure in SIB-PBH(RBRS) approach is similar to (4.1), the 

one employed with equal circles, but with a slight difference. Given a local minimizer 

X, in vector Sx  we first place the distances with respect to the barycenter of the circles 

with largest radius, ordered in a non-decreasing way, then the distances with respect to 

the barycenter of the circles with second largest radius, ordered again in a non-

decreasing way, and so on for all the different radii. Then, we define the dissimilarity 

measure as follows: 

D(X, Y) =Iox[k - ô[kJ 

We observe in the table that both MBH as well as PBI-1 based approaches are able to 

obtain at least the best known value in the literature (no failure is observed), and in 

some cases, to improve it. Even MBH turns out to be able to reach good percentage of 

successes in most instances. On the other hand, as we increase the population size, the 

robustness of the method also increases, reaching 100% in almost all instances (15 out 

of 18) for Np > 5. 
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Table 5.6: The impact of FJ and RBRS perturbation moves on sequential insertion based 
approaches in presents of population. Note that in this table OurBestResults is 

denoted as OBRs. 

Test n BestKnown OBRs Results for N=5 with Results for N=lO with 

(B.K) R=10  R=5  

FJ RBRS FJ RBRS 

12 60.8900 60.7099 61.8213(1) 60.7099(8) 61.3821(1) 60.7099(4) 

13 114.9800 113.5552 115.8722(1) 113.9434(4) 115.7018(l) 113.59499(5) 

14 49.6837 49.1873 49.1873(1) 49.1873(10) 49.1873(1) 49.1873(5) 

16 39.3700 38.8380 39.4056(1) 38.8380(7) 39.4980(1) 38.8380(4) 

18 11.7300 11.5119 11.5242(1) 11.5410(3) 11.5119(l) 11.5369(3) 

Total Failure 0 3 0 3 0 

Best Improve 5 1 3 2 3 

5.3.3 Comparison of PBHs with different perturbation moves 

We decided to perform also some experiments to compare the performance of PBH 

(actually, SIB-PBH) with the FJ perturbation move as well as with the RBRS 

perturbation move. We only considered N 5, 10 with the number of runs R = 10, 5 

respectively. We also restricted the instances to the five ones for which we were able to 

improve the best known results in the literature, i.e. Tests n. 12, 13, 14, 16 and 18. The 

experimental results are reported in Table 5.6. It can be clearly seen that in all cases, 

except instance n. 18, the FJ perturbation move, which does not take into account the 

combinatorial nature of the problem, delivers results inferior to those obtained with the 

RBRS perturbation move based on swapping the centers of circles with different radii. 

Test n.18deserves a separate comment. For this case it seems that the FJ perturbation 

move is better than the RBRS one (this was also observed in Table 5.3). If we look at 

this instance, we notice that it contains a large number of circles with the same radius 

(e.g., 54 circles, one third of the total number of circles, have radius equal to 0.65). It is 

possible that such circles occupy a portion of the container which cannot be optimized 

by swapping moves (recall that such moves only involve circles with different 

radii),while it can be optimized efficiently by random perturbations. Seen in another 

way, we have two distinct aspect in a problem with unequal circles: a continuous one, 

represented by the fact that circle centers have to be chosen in R2, and a combinatorial 

one, due to the different radii of the circles. In the case of circles with all equal radius 
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the combinatorial component simply does not exist, while in case there are a lot of (or 

even all, as in instances n.13 and 16) circles with different radii, the combinatorial 

component is more relevant than the continuous one. In case of test n. 18, with few 

different radii and many circles with the same radius, it seems that taking into account 

the continuous aspect (through the use of the random FJ perturbation) is more 

important than taking into account the combinatorial aspect (through the use of 

swapping moves). Something which could be explored in the future is a mixed strategy, 

where both swap moves and random ones are employed. 
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CHAPTER VI 

CONCLUDING REMARKS 

6. 1 Introduction 

In the thesis, we have dealt with two optimization problems, packing equal circles into 

a circular container and packing unequal circles into a circular container. In both the 

problems, we have considered, the shape of the optimal container is circular. Though 

the packing objects are circular but in the first case the radii of all circles are identical 

whereas in the latter case radii of circles are not identical. Here, in both the cases, we 

have considered two dimensional objects as well container. Though in both the cases, 

the nature of their feasible region is same and is continuous, but for the existence of 

the non-identical radii, in the latter case we have to consider combinatorial movement. 

These problems may be raised in different contexts and applications. However, in spite 

of these differences, there are more similarities between them: in both, we have to place 

objects - circles in a region in such a way that some constraints are satisfied (no 

overlapping between circles' interiors) and some quality measure is optimized ( the 

radius of the circular container, to be minimized). The similarities between the 

problems suggested to study similar heuristic approaches for them - Monotonic Basin 

Hopping (MBI-I) heuristics and their population-based variant PBH. Below we 

summarize the main findings of the thesis and discuss about possible future research 

directions. 

We have discussed the existence Monotonic Basin I-loping (MBH) approach and 

proposed multi-search based approach - Population Basin Hopping (PBH) approach. 

For the presence of combinatorial movement in case of unequal circles, we have 

proposed some new perturbation moves which are suitable only for unequal circle 

packing problems. Their performance turned out to be quite good (with many 

improvements with respect to the existing literature). But besides deriving such results, 
It 

our aim were that of analyzing the each components of the approaches in order to study 

their impact and to choose carefully their definition. Below we will deliver concluding 

discussion of each case separately. 
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6.2 Packing Equal Circles 

In this thesis we have proposed population (based) Basin Hopping (PBH) approach to 

solve the packing identical circles in a circular container. It is known that MBH 

approach, which is successfully implements for packing problems when the basin of 

attraction are few and /or size of the basin is not narrow, is a single search approach. 

But when the number of basin of attractions are huge and /or size of the basin is 

narrow, the MBH approach frequently failed to obtain optimal solution. For overcome 

this shortcoming, here we have proposed the multi-search heuristic approach based on 

MBH heuristic approach. As multi-search based approach has more than one individual 

searched the solution space, we have to set up survival mechanism for selecting next 

generation. For the presents of population we have proposed two simple dissimilarity 

measures in order to guarantee diversUlcation of the search and to avoid the greediness 

which might characterize a single path search. Extensive experiments have been 

performed to investigate the impact of the population. Also some experiments have 

been carried out about the impact of the two primarily proposed dissimilarity measures. 

The proposed PBH approach is certainly more robust but as the same time 

computationally it is a bit costly with respect to MBH (single search based) approach. 

But in the case of Hard Instances population based (basin hopping) approach is much 

more efficient because of existence of large number of funnel of attraction. The 

proposed PBH approach able to improve a large number of optimal solutions with in 

the range of number of circles, n = 50 to n =100. 

6.3 Packing Unequal Circles 

For the existence of combinatorial nature, in presents of unequal radii, we could not 

successfully apply MBH algorithm as well as population basin hopping algorithms for 

packing non-identical circles packing in a circular container (NICPCC). For this 

combinatorial nature, we have proposed two new perturbation moves name Random 

Jump (Ri) and Radius based Random Swap (RBRS) for solving NICPCC problems. 

Experimentally it is shown that RBRS is more efficient in the case of non-identical 

circle packing problem. We also proposed another variant of MBH approach - 

Sequential Insertion Based MBH (SIB-MBH) approach which is only suitable for 

unequal circle packing problems. By experimentation we saw that SIB-MBH is more 

52 



efficient than MBH approach for non-identical circle packing problems. We have also 

investigated the efficiency of the proposed algorithm for solving packing non-identical 

circles in minimum circular and have compared with available ones. Below we have 

pointed out the main achievements regarding packing problems: 

• Proposed a variant of MBH approach SIB-MBH approach for NICPCC. The use of 

the sequential strategy clearly enhances the performance of all the approaches, 

independently from the perturbation move employed (for a given perturbation move 

the performance with the sequential strategy is almost always better than the one 

without); 

• Proposed two perturbation techniques for unequal circle packing problems. The 

RBRS move is a clear winner with respect to the FJ and RJ moves with a lower 

number of failures, a higher number of improvements and best improvements, and 

with a number of successes almost always larger than those obtained with the other 

moves. The only exception is represented by instance n.18. The peculiarities of this 

instance and a possible explanation for the worse behavior of RBRS, with respect to 

FJ on it, will be discussed later on. 

• Radius Based Random Swap (RBRS) perturbation based SIB-MBH/PBH approach 

seems the most robust one in NICPCC. 

• Obtained many improved solutions compared to the available literature. 

6.4 Future Research 

Though extensive experiments have been performed for a careful choice of the 

algorithmst components and of the parameter values, and for a comparison with the 

existing literature, we believe that a major issue for the future is a further analysis, not 

merely from the experimental point of view but also from the theoretical one, of the 

algorithms as well as of the problems at hand. Exploiting theoretical properties of the 

problems could allow, e.g., to reduce the search space and improve the quality of the 

results. Moreover other possible directions for future works could include: 

Improve the code to reduce time complexity; 

Extend the approaches to other packing problems; 

Develop more robust perturbations moves; 

Develop more robust dissimilarity measures. 
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APPENDLXI 

REPRESENTATION OF SOME PACKING OF IDENTICAL CIRCLES 

Here we have displayed some improved optimal circles packing in a circular container 

obtained by PBH approach namely 96 identical circles in a circular container and 99 

identical circles in a circular container. Also some other information such as density of 

the packing container, number of contacts of circles, coordinates of the circles' center 

etc.are given below 

Figure Al. I represents the packing of 96 identical circles in a circular container. In the 

figure, pink colored circles indicateloose circles i.e. number of circles that have still 

degrees of freedom for a movement inside the container (so called "rattlers"). The 

yellow colored circles indicate sami-loose whereas the brown colored circles noted that 

these circles are highly compacted. The density of the packing circles is 

0.810508907817. . 
1• 

S. . - 

N 
C' 
QO ... 

Figure A 1.1 Representation of the packing of 96 identical 
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Moreover, the Figure A 1.2 displays the contact of circles elaborately for the packing 

of 96 identical circles in a circular container. We have counted that there are 189 

contacts i.e. number of contacts between circles and container and between the circles 

themselves, respectively. Note that number of contacts of the circles are displayed 

elaborately by the different colors as well as connecting lines in the figure A 1.2. 

0 
 

•7 9 I 1 93 
__ 

O 7071 
65 66 67 

ALL 59 60 62 63 

53 54 55 57 

V 46 47 00 
40 41 42 43 w 

35 36 37 38 

C121  2 9 30 31 33 
25 26 27 

• 20 21 22 •:aI.;,,. •.-.S 
Figure A 1.2 Representation of the contact of the packing of 96 identical 

The table Al represents the coordinates of the center of the circles. Note that the 

center of the container is considered at the origin of the coordinates system. 

Table A 1 Renresentation of the coordinates of the circles for nackinr of 96 

NI 
1 

x  
-0.091884716482624623441391537005 -0.903454795235904845721454071067 

2 0.091884716482624623441391537005 -0.903454795235904845721454071067 

3 0.275441533959899640985424030244 -0.864232546010552702267850273621 

4 ..0336376472487612337124185939273 -0.843518960613591449280467281371 

5 0.439032221636880658698194954426 -0.774807748109827022667291804591 

6 -0.502486365447530527757856868842 -0.756383596168018891813813685099 

7 -0.182249832599223749565776412379 -0.743438076479386177133067733622 

rd 
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8 0.149585806402288155829710406604 -0.728979041291546891852983752336 
9 -0.345985740636846783558310500700 -0.660000933003208318821607890070 

10 -0.023271208349825364778823421858 -0.649727695824150576756230439103 
11 0.304710073658081644227968038724 -0.630451551722785460022348003447 

12 0.667225054212462013636470667323 -0.616022804114442007870750046159 

13 0.484797965558552513395041885027 -0.593851610695325383983053465390 

14 -0.690298948889168126939037565990 -0.590051463281257113972413076783 

15 -0.507402433310267598893288507152 -0.572160988679776217253295309249 

16 -0.188713613951625120799542099367 -0.559782355024818949952782595916 

17 0.129300095869718797596173769211 -0.546332676858640532368054639882 

18 -0.351603056517175550797000335826 -0.474704543622235935706874803062 

19 0.777659608848736528372533332203 -0.4689551 16107152802272036782069 

20 -0.033589346695831632401284467248 -0.461254865456057518122146847028 

21 0.284424363125512285994431401331 -0.447805187289879100537418890994 

22 0.595212326618680626584926743373 -0.446950714292162134898071271737 

23 -0.794956848207843 577628506259268 -0.438995418706499268096734885481 

24 -0.529013139888578447206091328994 -0.389666654922381467738601224799 

25 -0.196478789261382062398742703707 -0.376177054053474503876239054174 

26 0.121534920559961855996973164872 -0.362727375887296086291511098140 
27 0.439548630381305774392689033450 -0.349277697721117668706783142106 
28 0.856149031186333629321398770806 -0.302790694303086845809968177702 
29 -0.684676836125953299398329038917 -0.291993638351337001547313095168 

30 -0.359368231826932492396200940166 -0.291099242650891489630331261320 
31 -0.041354522005588574000485071587 -0.277649564484713072045603305286 
32 -0.867103924779862799639757821213 -0.269822444932220377659616514398 
33 0.276659187815755344395230796991 -0.264199886318534654460875349252 
34 0.601967792114776151397358895742 -0.26330549061808-9142543893515404 
35 -0.522257674392482922393659176625 -0.20602143 1248308475384423468466 
36 -0.204243964571139003997943308046 -0.192571753082130057799695512432 
37 0.113769745250204914397772560532 -0.179122074915951640214967556398 
38 0.431783455071548832793488429111 -0.165672396749773222630239600363 
39 0.749207167906240627634202464747 -0.153342902848843090893281487167 
40 -0.756689563719734686449872962866 -0.122921548529057128574634320746 
41 -0.367133407136689433995401544505 -0.107493941679547043553787719578 
42 -0.049119697315345515599685675927 -0.094044263513368625969059763544 
43 0.268894012505998402796030192652 -0.080594585347190208384331807509 
44 0.586907722327342321191746061230 -0.067144907181011790799603851475 
45 0.906290566977729452025465720113 -0.05697557048554590543387658 1853 
46 -0.530022849702239863992859780964 -0.022416130276964029307879926724 
47 -0.212009139880895945597143912386 -0.008966452110785611723151970689 
48 0.106004569940447972798571956193 0.004483226055392805861575985345 
49 -0.907383088965867947188034901713 0.005557153512230479084204803287 
50 0.424018279761791891194287824771 0.017932904221571223446303941379 
51 0.744570444820633115127422160981 0.030368025762920860845751724189 
52 -0.698342096476292006495889589750 0.051339111284466532026125381547 
53 -0.374898582446446375594602148845 0.076111359291797402522755822165 
54 -0.056884872625102457198886280266 0.089561037457975820107483778199 
55 0.261128837196241461196829588312 0.103010715624154237692211734233 



I 

p 

'4 

56 0.579142547017585379592545456891 

57 0.898697084709021702685831687875 

58 -0.537788025011996805592060385304 
59 0.219774315190652887196344516725 
60 0.098239394630691031199371351853 

61 -0.887695552491025912112791022951 

62 0.416253104452034949595087220432 

63 0.734961176671398668693297599555 

64 -0.706107271786048948095090194089 

65 -0.382663757756203317193802753184 

66 -0.064650047934859398798086884606 

67 0.253363661886484519597628983973 

68 0.574156964172083392238766921555 

69 -0.553040493717286951567732606536 

70 -0.227539490500409828795545121064 

71 0.090474219320934089600170747514 

72 -0.828357162086474142793320664756 

73 0.828357162086474142793320664756 

74 0.408487929142278007995886616093 

75 -0.390428933065960258793003357523 

76 -0.072415223244616340397287488945 

77 0.245598486576727577998428379634 

78 0.556521465383760792265379787485 

79 -0.552711344072174919127521187175 

80 -0.736472445603849519351929127752 

81 0.736472445603849519351929127752 

82 -0.235304665810166770394745725404 

83 0.082709044011177148000970143175 

84 0.393632022818210362267921551026 

85 -0.398584704183786331569111660281 

86 -0.072954652226197704191267566748 

87 0.612166322176477139308300357740 

88 -0.562320612221409365561645748602 

89 0.271891598161182173054831077839 

90 -0.241804734595973028740913957595 

91 0.089464509507272672813402295544 

92 0.438083006079082427829632007815 
93 -0.403700909753940670154610609309 

94 0.199878870567400786003287153890 

95 -0.165850082297165502382361204816 

96 0.017297239359107049255972927065  

0.116460393790332655276939690267 

0.130448909897126132993151271938 

0.161189170694380416768663615012 
0.174638848860538834353391571053 
0.188088527026737251938119527087 

0.188493897278165024718634851917 

0.201538205192915669522847483121 

0.213886053373303991304611115490 

0.234944412255810978102668923289 

0.259716660263141848599299363907 

0.273166338429320266184027319941 

0.2866 16016595498683768755275975 

0.305123156115400510303365175824 

0.345651970124898212499888787300 

0.358244149831903280429935112795 

0.371693827998081698014663068829 

0.372152898924468768191274253664 

0.372152898924468768191274253664 

0.385143506164260115599391024864 

0.443321961234486294675842905649 

0.456771639400664712260570861683 

0.470221317566843129845298817718 

0.494034629035735913750314829047 

0.529552023106082185828456618132 

0.531301896311436077530179817403 

0.531301896311436077530179817403 

0.541849450803247726506478654538 

0.555299128969426144091206610572 

0.579112440438318927996222621901 

0.629632907240287457975856165881 

0.652972145540470610282494740203 

0.669328462323779417398890743074 

0.713070050716465316287316009433 

0.716773159224382512557687786136 

0.725503891528619308146576796415 

0.738944352643499136445384366905 

0.795418162772814871032048548905 
0.813387332741793823630132170296 

0. 885 8452490466623 85530366560558 

0.892842157584343959782381254486 

0.907950534813652070368771667550 

Figure A2.1 represents the packing of 99 identical circles in a circular container. In the 

figure pink colored circles indicate loose circles (so called "rattlers"). The yellow 

colored circles indicate sami-loose whereas the brown colored circles noted that these 
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circles are highly compacted as well. 

0.813273920663. 

The density of the packing circles is .• 
110 

N 

U- 

o 

- cJ . 
Figure A 2.1 Representation of the packing of 99 

Moreover theFigure A 2.2 displays the contact of circles elaborately for the packing of 

99 identical circles in a circular container. We have observed that there are 186 contacts 

among the circles and /or container.Note that number of contacts of the circles are 

displayed elaborately by the different colors as well as connecting lines in the figure A 

2.2 

The tableA2 represents the coordinates of the center of the circles. Note that the center 

of the container is considered at the origin of the coordinates system as well. 

UET 

' 
61ng2.00Sb 
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21 -0.328591369012226599961941357293 -0.4717101728083335803376921 19334 
22 -0.014684757306469315661062631476 -0.465283962608808656679412956057 
23 
24 

0.809683909236840857932490273901 
0.628628052244050144083674407042 

-0.413950257379818756197358142 
-0.405099890232332572978496890476 

25 -0.489133816517474242298227601676 -0.386729523235965088888442744863 
26 -0.173493150253630374495648665468 -0.377880034324209969424051264664 

27 0.139861735217576624157442728986 -0.370547834344274871223655892331 

28 0.451605017992501207268997508476 -0.366081975187905651388204707738 

29 -0.665140822133512661883550645038 -0.341857917658712432513061514707 

30 -0.846196679126303375732366511898 -0.333007550511226249294422583741 

31 -0.333362016483470872464591615594 -0.290500920084461073930336279047 

32 -0.018946657729584434677143305007 -0.283143906059676183968294200938 

33 0.294408227741622563975948089447 -0.275811706079741085767898828605 
34 0.875702732533025215425696396973 -0.245127666117196648790343777777 
35 0.578007080133811908740220426417 -0.230344253290493094012151178344 

36 -0.542838799376561445324937837300 -0.208060430464081712494762244267 

37 -0.178263797724874646998298923768 -0.196670781600337463016695424378 

38 0.135599834794461505141362055455 -0.188407777795142398512537137212 
39 -0.895435338751546982548152861089 -0.158550946313080199665214492977 
40 -0.713667386603698387547036021062 -0.147046412110167066886386963372 
41 0.418262184857631780455299212051 -0.143449514889262017292461286415 
42 0.733338855811280512584519166538 -0.132913233200592460855962348338 
43 -0.386064057996993967404562048277 -0.117059151267529109722958739283 
44 -0.023717305200828707179793563307 -0.101934653335803677560938360651 
45 0.903452240828481322378233141414 -0.064021399058262526388654511839 
46 0.259453791910470721620713178059 -0.056045586604663330037099595022 
47 0.572808677381677720273804572513 -0.048713386624728231836704222689 
48 -0.572618246804895355868966551169 -0.029251211292076261906228306404 
49 -0.230965839238397741938269356452 -0.023229012783405498809317884613 
50 -0.909092815899053488190227564566 0.022205867301246721830245385910 
51 0.100136651915180509299557559298 0.030427537854675390914499181538 
52 0.414000284434516661439218538521 0.038690541659870455418657468704 
53 0.755260250006108571493608551302 0.047028437422401765677081092972 
54 -0.731422305742323086158450784945 0.058160591200705938886900984018 
55 -0.390834705468238239907212306578 0.064150101456343396684397101004 
56 -0.076419346714351802119763995991 0.071507115481128286646439179113 
57 0.254683144439226449118062919759 0.125163666119209176370256245265 
58 0.569098503193112886905511230346 0.132520680143994066332298323374 
59 -0.550151845463528452228367925339 0.150623225915682117635995877564 
60 -0.235736486709642014440919614752 0.157980239940467007598037955673 
61 0.894651739167791203750531571594 0.162914437868217903167173197675 
62 -0.886626414557686584549628938737 0.202080304509005101372469569878 
63 0.095366004443936236796907300997 0.211636790578547897321855021825 
64 0.410290110245951828070925196354 0.219924608428592753587660014767 
65 0.724595774257898330119733407001 0.225688008330670239308900212720 
66 -0.708955904400956182517852159115 0.238035028408464318429125167986 
67 -0.395605352939482512409862564878 0.245359354180215903091752941290 
68 -0.081189994185596074622414254291 0.252716368205000793053795019400 

zi 



69 0.250972970250661615749769577592 
70 0.566161865713122063734715018219 
71 -0.554812798192832788992378083700.  
72 -0.240507134180886286943569873053 
73 -0.828928863762308558427750271210 
74 0.828928863762308558427750271210 
75 0.091655830255371403428613958830 
76 0.405519462774707555568274938053 
77 -0.399315527128047345778155907045 
78 -0.084900168374160907990707596458 
79 0.560622333792758726804729681634 
80 0.260976831332043401908252317066 
81 -0.557749435672823612163174295827 
82 -0.244217308369451120311863215220 
83 -0.738292843949489128836506461256 
84 0.738292843949489128836506461256 
85 0.091233781384060238055940328824 
86 0.416079702350094573144707060647 
87 -0.089051514818232231688121268971 
88 -0.418357946511140979906251275535 
89 0.618319884588136752926608349161 
90 0.227896396488003828493055977408 
91 -0.588413911421033853537049440128 
92 -0.251563191454801913751849153310 
93 0.036512769889462517799876237996 
94 0.473777253145472599266585728174 
95 -0.394986551374305969976043571561 
96 0.310408522074583357418748228824 
97 -0.225564580238630320020617770930 
98 0.134705341168400127011673963055 
99 -0.046350515824390586837141903804  

0.306397732887931474539258791327 
0.313768931198591274278241784173 
0.333426092762262028284153598007 
0.339189492664339514005393795960 
0.3739248417578043 64039884803033 
0.373924841757804364039884803033 
0.392870857347270195490857567888 
0.401133861152465259995015855054 
0.42659342094893 8201260755487353 
0.433950434973723091222797565462 
0.494956309169967802599239446952 
0.510527554049584976528212088082 
0.514674343816859236230097058806 
0.520423559433061812174396342023 
0.530911033069427019655895045060 
0.530911033069427019655895045060 
0.574142405651987363882966952005 
0.604350002067087519132435679980 
0.615699813902062086668512624428 
0.6305603442626753737201 89163509 
0.66680084641 8767065266654680107 
0.693241386137117892095050018816 
0.693333914725 127709861916178554 
0.701546695315078667956893949946 
0.746957807891045005491558405183 
0.776194539315886781799850913135 
0.8 1284653875343394240 1322967717 
0.854745223961704177661984856430 
0.880944645595647763868873345432 
0.899331595977021071385888314388 
0.908181963124507254604527245354 
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