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ABSTRACT 

In this dissertation, similarity solution of unsteady laminar combined free and forced 

convective boundary layer flow past a vertical porous plate in viscous incompressible fluid 

with suction and blowing has been investigated Firstly, the governing boundary layer 

partial differential equations have been made dimensionless and then simplified by using 

Boussinesq approximation. Secondly, similarity transformations are then introduced on the 

basis of detailed analysis in order to transform the simplified coupled partial differential 

equations into a set of ordinary differential equations. The transformed complete similarity 

equations are solved numerically by using Nachtscheim-Swigert shooting iteration 

- technique along with sixth order Runga-Kutta method. The flow phenomenon has been 

characterized with the help of obtained flow controlling parameters such as suction 

parameter, buoyancy parameter, Prandtl number and other driving parameters. Finally the 

effects of involved parameters on the velocity and temperature distributions are presented 

graphically. It is found that a small suction or blowing can play a significant role on the 

patterns of flow and temperature fields. 
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CHAPTER I 

Introduction and Literature Review 

Fluid dynamics is a subject of widespread interest to researcher and it become an obvious 

challenge for the scientists, engineers as well as users to understand more about fluid 

motion. An important contribution to the fluid dynamics is the concept of boundary layer 

flow introduced first by L. Prandtl [42]. The concept of the boundary layer is the 

consequence of the fact that flows at high Reynolds numbers can be divided into unequally 

spaced regions. A very thin layer (called boundary layer) in the vicinity (of the object) in 

- which the viscous effects dominate, must be taken into account, and for the bulk of the 

flow region, the viscosity can be neglected and the flow corresponds to the inviscid outer 

flow. Although the boundary layer is very thin, it plays a vital role in the fluid dynamics. 

Boundary layer theory has become an essential study now-a-days in analyzing the complex 

behaviors of real fluids. The concept of boundary layer can be used to simplify the Navier-

Stocks' equations to such an extent that the viscous effects of flow parameters are 

evaluated, and these are useable in many practical problems (viz, the drag on ships and 

missiles, the efficiency of compressors and turbines in jet engines, the effectiveness of air 

intakes for ram and turbojets and so on). 

Furthermore the boundary layer effects caused by free convection are frequently observed 

in our environmental happenings and engineering devices. We know that if externally 

induced flow is provided and flows arising naturally solely due to the effect of the 

differences in density, caused by temperature or concentration differences in the body force 

field (such as gravitational field), this type of flow is called 'free convection' or 'natural 

convection' flow. The density difference causes buoyancy effects and these effects act as 

'driving forces' due to which the flow is generated. Hence free convection is the process of 

heat transfer which occurs due to movement of the fluid particles by density differences 

associated with temperature differences in a fluid. In such case, free stream velocity falls 

away, in deed, no reference velocity does a prior exist. If the density in the vicinity of the 

object is kept constant, natural convection flow can not be formed. Thus, this is an effect of 

variable properties, where there is a mutual coupling between momentum and heat 

46 transport. The direct origin of the formation of natural convection flows is a heat transfer 

via conduction through the fixed surfaces surrounding the fluid. If the surface temperature 



is greater than that of ambient fluid, heat is transferred from the plate to the fluid leads to 

an increase in temperature of the fluid close the surfaces and to a change in the density, 

because it is temperature dependent. If the density decreases with increasing temperature, 

buoyancy forces arise close to the surface and warmer fluid moves upwards. Such 

buoyancy forces are proportional to the coefficient of thermal expansion flT  defined as 

fiT = ,where p, 7' and p are density, temperature and pressure 
p  aT I  (11P)P=wnstant 

respectively. It is observed that fl = . for a perfect gas, and we see that stream is well 

approximated by the perfect-gas result J3TT = 1 at low pressure and high temperature. Also 

- f3 for a liquid and may even be negative, and /3T > for imperfect gas, particularly 

at high pressure. 87. is also useful in estimating the dependence of enthalpy 'h' on 

dp 
pressure, from the thermodynamic relation dh = cdT + (1 - /3T T)—, where T is the 

p 

absolute temperature. For the perfect gas, the second term vanishes, so that h = h(7) only. 

The natural convection studies began in the year 1881 with Lorentz and continued at a 

relatively constant rate until recently. This mode of heat transfer occurs very commonly, 

the cooling of transmission lines, electric transformers and rectifiers, the heating of rooms 

by use of radiators, the heat transfer from hot pipes and ovens surrounded by cooled air, 

cooling the reactor core (in nuclear power plant) and carry out the heat generated by 

nuclear fission etc and the Mixed convection flows, combined forced and free convection 

flows, arise in many transport processes in engineering devices and in nature. This flows 

are characterized by the buoyancy parameter (measure of the influence of the free 

convection in comparison with that of forced convection on the fluid flow) which depends 

on the flow configuration and the surface heating conditions. Bulks of information are now 

available in literature about the boundary layer form of natural convection flows over 

bodies of different shapes. The theoretical, experimental and numerical analysis for the 

natural and the mixed convection boundary layer flow about isothermal, vertical porous 

flat plates have been carried out widely by many authors (viz. [13, 33, 35, 38, 48, 51, 54, 

55]). 

- Schmidt [47] was apparently the first researcher who investigated experimentally the 

behavior of the flow near the leading edge above a flat horizontal surface. The theoretical 



analysis of the laminar, two-dimensional, steady natural convection boundary layer flow on 

a semi-infinite horizontal flat plate was first considered by Stewartson [52] (later corrected 

by Gill, Zeh and Del-Caeal [16] ). In that analysis Buossinesq approximation had been 

used to show how the boundary layer analysis could be incorporated with the natural 

convection on rectangular plates. 

Rotem and Claassen [45] investigated the boundary layer equation over a semi-infinite 

horizontal surface of uniform temperature and results were presented for some specific 

values of Prandtl number with its limits from zero to infinity. The effect of buoyancy 

forces that exist in boundary layer flow, over a horizontal surface, where the surface 

temperature differs from that of ambient fluid, was studied by Sparrow and Minkowycz 

- [50]. The free convection above a heated and almost horizontal plate was treated by Jones 

[28]. 

Mixed convection flows, or combined forced and free convection floes, arise in many 

transport processes in engineering devices and in nature. These flows are characterized by 

the buoyancy parameter (measure of the influence of the free convection in comparison 

with that of forced convection on the fluid flow) which depends on the flow configuration 

and the surface heating conditions. The problem of free, mixed and forced convection over 

a horizontal porous plate has been attracted the interest of many investigators (Viz. Clark 

and Riley [11], Schneider [54] and Merkin and Ingham [33] among several others) in view 

of its applications in many engineering and geophysical problems. Ramanaiah et al. [43, 

44] considered the problem of mixed convection over a horizontal plate subjected to a 

temperature or surface heat flux varying as a power of x. 

The problem of mixed convection due to a heated or cooled vertical flat plate provides one 

of the most basic scenarios for heat transfer theory and thus is of considerable theoretical 

and practical interest and has been extensively studied by Sparrow et al. [56], Wilks [58], 

Afzal and Banthiya [5], Hunt and Wilks [22], Lin and Chen [31], Hussain and Afzal [25], 

Merkin et al. [37] etc. However, the problem of forced, free and mixed convection flows 

past a heated or cooled body with porous wall is of interest in relation to the boundary 

layer control on airfoil, lubrication of ceramic machine parts and food processing. 

Watanabe [59] considered the mixed convection boundary layer flow past an isothermal 

vertical porous flat plate with uniform suction or injection. Satter [53] made analytical 

studies on the combined forced and free convection flow in a porous medium. Further, a 

vast literature of similarity solution has appeared in the area of fluid mechanics, heat 



transfer, and mass transfer, etc. as it is one of the important means for the reduction of a 

number of independent variable with simplifying assumptions. It is revealed that the 

similarity solution, which being attained for some suitable values of different parameters, 

might be thought of being the solution of the convective boundary-layer context either near 

the leading edge or far away in the downstream. Deswita et al. [12] obtained a similarity 

solution for the steady laminar free convection boundary layer flow on a horizontal plate 

with variable wall temperature. Hossain and Mojumder [19] presented the similarity 

solution for the steady laminar free convection boundary layer flow generated above a 

heated horizontal rectangular surface. The boundary layer type of the natural convection 

flow, which occurs on the upper surface of heated horizontal surface has been investigated 

theoretically and experimentally by among other, Rotem and Claassen [46], Pera and 

Gebhart [39 , 40] and Goldstein et al. [17]. It is seen from their experiments and also from 

the flow visualization of Husra and Sparrow [21] that a boundary layer starts from each 

edge of a plate edge, each boundary layer having its leading at a straight-side plate edge. 

The boundary layer development occur normal to the corresponding edge so that collisions 

between opposing boundary layer flows occur on the plate surface. After collision, the 

fluid cheeked in the boundary layer forms a rising buoyant plume. 

Furthermore, the study of complete similarity solutions of the unsteady laminar natural 

convection boundary layer flow about a heated horizontal semi-infinite porous plate have 

been considered by Hossain et al. [23, 24] even though the solution of a system of coupled 

partial differential equations with boundary conditions is often difficult and some times 

impossible with the usual classical method. Thus, it is imperative to reduce the number of 

variables from the system which reached in a stage of great extent. Similarity solution is 

one of the important means for the reduction of a number of independent variables with 

simplifying assumptions and finally the system of partial differential equations reduces to a 

set of ordinary differential equations successfully. A vast literature of similarity solution 

has appeared in the area of fluid mechanics, heat transfer, and mass transfer, etc. The 

similarity solutions in the context of mixed convection boundary layer flow of steady 

viscous incompressible fluid over an impermeable vertical flat plate were discussed by 

Ishak et al. [26]. Ramanaiah et al. [44] studied the similarity solutions of free, mixed and 

forced convection problems in a saturated porous media. 

In 1978, Johnson and Cheng [27] examined the necessary and sufficient conditions under 

which similarity solutions exist for free convection boundary layers adjacent to flat plates 



in porous media. The solutions obtained in their work were more general than those 

appearing in the previous studies. With a parameter associated with the body shapes a 

similarity solution on the natural convection flow has also been studied by Pop and Takhar 

[41]. Ferdows et al. [14] performed a similarity analysis for the forced as well as free 

convection boundary layer flow of an electrically conducting viscous incompressible fluid 

past a semi-infinite con-conducting vertical porous plate by introducing a time dependent 

suction. 

Recently, Hossain and Mojumder [19] presented the similarity solution for the steady 

laminar free convection boundary layer flow generated above a heated horizontal 

rectangular surface. They investigated the effect of suction and blowing on fluid flow and 

heat transfer as well as skin friction coefficients. They also found that suction increased 

skin-friction and heat transfer coefficients whereas injection caused a decrease in both. In 

our present study, we confined our discussion about the unsteady, laminar, free convection 

boundary layer flow above a semi-infinite heated, horizontal porous plate and investigated 

the effects of suction and blowing on the flow and temperature fields and other important 

flow parameters like pressure distribution, skin friction and heat transfer coefficients. 

Most of the above analysis were based on the Buossinesq approximation and have been 

concerned with the seeking of similarity solutions in which the plate temperature varies 

with the distance from plate leading edge. In this approximation thus density, viscosity, 

thermal conductivity and specific heat variations are ignored except for the necessary 

inclusion of the density-variation in the body force term. An analysis was performed by 

Chen et al. [9] to study the flow and heat transfer characteristic of laminar natural 

convection in boundary layer flows from horizontal, inclined and vertical plates with 

power law variation of the wall temperature. 

In most of the above analysis the boundary layer of the natural convection flows were 

considered over heated or uniformly heated horizontal vertical, horizontal or near 

horizontal, semi-infinite, rectangular porous plates. The surface is impermeable to the 

fluid, so that there is no transpiration i.e., suction or blowing velocity normal to the surface. 

This led to the kinematics boundary condition v, =0. 

The problem of boundary layer control has become very important factor; in actual 

application it is often necessary to prevent separation. The separation of the boundary layer 

is generally undesirable, since separated flow causes a great increase in the drag 



experienced by the body. So it is often necessary to prevent separation in order to reduce 

pressure drag and attain high lift. 

In order to solve the boundary layer equation, it is anticipated that the v-component of the 

velocity is small quantity of the order of magnitude 0 Re 2  and it is assumed that the 

suction (or blowing) velocity v, = 0 normal to the surface has its magnitude of order 

(characteristic Reynolds number)"2. The consequence of this is that outer flow is 

independent of v,, and the boundary condition at the surface is given by y = 0 , u = 0, 

v = v(x). 

Suction (or blowing) is one of the useful means in preventing boundary layer separation. 

The effect of suction consists in the removal of decelerated particles from the boundary 

layer before they are given a chance to cause separation. The surface is considered to be 

permeable to the fluid, so that the surface will allow a non-zero normal velocity and fluid is 

either sucked or blown through it. In doing this however, no-slip condition u, = 0 at the 

surface (non-moving) shall continue to remain valid. 

Suction or blowing causes double effects with respect to the heat transfer. On the one hand, 

the temperature profile is influenced by the changed velocity field in the boundary-layer, 

leading to a change in the heat conduction at the surface. On the other hand, convective 

heat transfer occurs at the surface along with the heat conduction for v.a, # 0. A summary of 

flow separation and its control are found in Chang [6, 7]. 

The study of natural convection on a horizontal plate with suction and blowing is of huge 

interest in many engineering applications, for instance, transpiration cooling, boundary 

layer control and other diffusion operations. The effects of blowing and suction on forced 

or free convection flow over vertical as well as horizontal plates were analyzed in a 

symmetric way by Gortler [18], Sparrow and Cess [49], Koh and Hartnett [29], Gersten 

and Gross [15], Merkin [32, 34], Vedhanaygarm, Altenkirch and Eichhorn [57], Hasio-

Tsung and Wen-Shing [20], Merkin [36] and Acharya, Shing and Dash [1] etc. 

Using the usual asymptotic approach, the similar solutions of the steady natural convection 

boundary layer for a non-similar flow situation on a horizontal plate with large suction 

approximation has been developed by Afzal and Hussain [3]. A detailed study on similarity 

solutions for free convection boundary layer flow over a permeable wall in a fluid saturated 

porous media was carried out by Chaudhary et al. [8]. They have shown that the system 
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depends on the power law exponent and the dimensionless surface mass transfer rate. They 

also examined the range of exponent under which the solution exists. With constant plate 

temperature and particular distribution of blowing rate Clarke and Riley [11] obtained a 

special case of similarity solution, allowing variable fluid density. But there is still a 

shortage of accurate data for a wide range of both suction and blowing rate. Lin and Yu 

[30] presented a non-similar solution for the laminar free convection flow over a semi-

infinite heated upward-facing horizontal porous plate with suitable transpiration rate as a 

power-law variation. Emphasis was given for an isothermal plate under the condition of 

uniform blowing or suction. Lately, using a parameter concerned pseudo-similarity 

technique of time and position coordinates, Cheng and Huang [10] studied the unsteady 

laminar boundary layer flow and heat transfer in the presence and absence of heat source or 

sink on a continuous moving and stretching isothermal surface with suction and blowing. 

In their analysis they paid attention on the temporal developments of the hydrodynamic 

and thermal characteristics after the sudden simultaneous changes in momentum and heat 

transfer. Recently, an analysis is performed by Aydin and Kayato [4] for the laminar 

boundary layer flow over a porous horizontal flat plate, particularly, to study the effect of 

uniform suction/injection on the heat transfer. Using the constant surface temperature as 

thermal boundary condition they also investigated the effect of Prandtl number on heat 

transfer. The aim of the present paper is, therefore, to obtain a complete similarity solution 

of the unsteady laminar combined free and forced convection boundary layer flow about a 

heated vertical porous plate in viscous incompressible fluid and be attempted to investigate 

the effects of several involved parameters on the velocity and temperature fields and other 

flow parameters like skin friction, heat transfer coefficients across the boundary layer. We 

are also tried to predict the role of small suction or blowing velocity on these parameters as 

well. 

In order to solve the laminar natural convection boundary layer equations, the general 

Navier-Stokes' and energy equations are transformed into convenient simplified forms 

using the usual method of dimensional analysis. At the outset attempts are made to 

incorporate the idea of similarity analysis. Because, the objectives of seeking similarity 

solutions are modified, the governing differential equations relevant to the problem have 

been solved by using the similarity technique. The Boussinesq approximation is employed 

to deal with the possible requirements of unsteady solution. Similarity requirements for an 



incompressible fluid are sought on the basis of detailed analysis in order to reduced the 

governing coupled partial differential equations into a set of ordinary differential equations 

Here we adopt the method of classical 'separation of variables' which is of the simplest 

and most straightforward method of determining similarity solutions. This method was first 

initiated by Abbott and Kline (1960). In this method, once form of similarity variable is 

chosen, the given PDE is changed under the selected co-ordinate system. The dependent 

variables are to be expressed in terms of the product of separable functions of the new 

independent variables where each function is dependent on the single variable. Substitution 

of the product from of the dependent variables in to the original PDE generally leads to an 

equation in which no functions of single variable can be isolated on the two sides of the 

equation unless certain parameters are to be specified. Usually, these parameters can be 

specified quite readily and "separation of the variables" is achieved. In this way the 

separation proceeds until the one side becomes an ODE. Four different similarity cases 

arise here, viz. Case A, Case B, Case C and Case D, on the basis of our assumptions. 

Thus, this dissertation is composed of Six Chapters. An introduction of basic principles of 

boundary layer theory, natural convection flows, suction and blowing phenomena with 

historical review of earlier researches and background of our problem are presented in 

CHAPTER I. 

Basic equations governing the problem, dimensional analysis with simplifying assumptions 

and similarity transformations with possible similarity case are given in CHAPTER II. 

CHAPTER III is concerned with the study of "The Calculation Technique". 

In CHAPTER IV; a detailed discussion of one of the four similarity cases, namely, Case A 

has given. Under the considered condition, the numerical solutions with graphs and tables 

have also been given here for some selected values of the established parameters. The 

effects of these parameters on several variables will also be exhibited in the analysis. 

CHAPTER V is concerned with the study of another similarity case (Case B). The 

numerical solutions with the graph and tables for this case are also displayed here. We also 

have predicted the role of small suction or blowing velocity on these parameters concerned. 

In CHAPTER VI, the conclusions gained from this work and brief descriptions for further 

works related to our present research are discussed. 



CHAPTER II 

Mathematical Formulation of the present study 

2.1 Basic Equations 

A semi- infinite flat-plate extending vertically upwards and which is fixed with its leading 

edge horizontal is placed in an unsteady free stream. The plate is heated to a certain 

unsteady temperature above the ambient temperature Te. Heat is supplied by diffusion from 

the plate. The density of the fluid near the plate is reduced so that the fluid there is buoyant 

compared with the fluid in the free stream at a large distance from the plate. Consequently 

layers of the fluid close to the plate begin to rise. It is supposed that the maximum velocity 

created in this buoyant layer at a distance L from the bottom of the plate is U. If the 

Reynolds number based on this velocity U is sufficiently large, buoyant flow is amenable 

to Prandtl's boundary layer analysis. From a mathematical view point the Froude number 

for such flows may no longer be large and the body force term must be retained in the 

boundary layer equations. There are two cases to consider. Case I is that in which the plate 

extends upwards and case II that in which it extends downwards. In the first case the 

buoyancy forces act in the direction of the free stream and in the second case they oppose 

the free stream. 

y 

Figure 2.1: Schematic representation and coordinate system of the problem. 
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Considering the flow direction along the x-axis (as shown in the Fig. 2.1) the basic 
'I boundary layer equations of mass, momentum and energy for a viscous and heat 

conducting fluid of variable properties subject to a body force are 

Dp (ôu av" 
+ p1 + - =0 

Di x ay) 

P 
Du 

= Pg 
oP a( Ou' 

DT
I + T)67. (LP  pcp _ 
) 

Where, 
D --- O  —+u  0  +v  0 —— 
Di at Ox Oy 

(2.1) 

(2.2) 

0p (Ou 2  
(2.3) 

Ox) Oy) 

(2.4) 

Here u, v denote velocity components in the x and y directions, p is the density, I denotes 

time, g is the x- component of body force per unit mass (here assumed due to gravity), ,u 

is the dynamic viscosity coefficient, p is the pressure, 7' is the temperature, Ci,, is the 

specific heat at constant pressure, k is the thermal conductivity coefficient and 82  is the 

coefficient of thermal expansion. Ue  and Te  represent the external velocity and the 

ambient temperature of the fluid flowing luminary parallel to the buoyancy effect. 

Equation (2.3) is the boundary layer form of one of the numerous basic forms of the energy 

equation deduced by Haworth (1953). 

2.2 Dimensional Analysis 

To obtain solutions of equations (2.1) to (2.3), it is proposed first to discover the 

dimensionless group upon which the solutions must depend. We begin by introducing 

dimensionless quantities into the equations, referring all lengths to some characteristic 

length L along the surface, velocities with reference to some characteristic velocity U andi 

by . The density will be made dimensionless with respect to Po'  the pressure will be 

referred to p0 2  and the temperature to the temperature difference between the wall and 

To. The other transport properties of the fluid p, k, C, and the gravitational component g 

will be made dimensionless by 1u0 , k0 , C and g respectively. We use suffix '0' to refer to 
p0 

some convenient constant reference condition far from the surface. Hence the substitutions 

are as follows: 



I I 

x=Lx', y=Re2 Ly', u=Uu', v =Re2Uv', t=.1t , p=pcp', p=p02p, 

T-7 T-T0 UL 
where Re 

- T - To AT = , 
k = k0k', C, = C 0C,,,  and g = gg, 

00 

Substituting the above similarity transformations the dimensionless form of equations (2.1) 

to (2.3) are obtained as follows 

+ o' u1'  + 
) 

=0 (Calculations are shown in Appendix A) 
LDI' L ax'ay' 

av" 
O (2.5) 

Dt 
or, 

Dp'  
—,-+p —7-+-_7-,J=  

p0 p'U 2  Dii' / 
00U 2 ap' /10U 2  ô ( ,au' 

L Dt X L ax' LUReL,' y'J 
=PoP gg 

,Du' P' 1 ap' 1I0 ô ( " ,au'i 
—TI —71 or, 

Die' U 2  - ax' UL Rep0  ôy a))) 

I)u?' P' 1 
-

apl 
 + a ( / au' 

P T 
= 

—i -k,, 
-TJ 

(2.6) ay  

and 

p0p1C 0C ,.AT —
[DO U 
--+8 

 
P 

L DI' {f(loAT)+u'_(loAT)}] 
ax 

, 

AT a ( / ae 
fiT 

U 3 p0  [aP I / af)' i0U2 ,( aU 
—Ik---I~T 

= ReL2  ay' ôy'j at' ax') ReL2 ay'J

2  

/ EDO 
... 

p C ,I +9{—(logAT)+u' __(loAT)] 
LD t ' at ax' 

i a / ae 
. 

+ + Eu' 
(au' 

k I+ET 
= Pr ay' 5j') at ax) 

(2.7) 
( 

 

where Pr 
k0  ' EC 

U U 
and Fr = . If we restrict ourselves to thermally C

PO
AT gL 

perfect gasses then T/3 = 1. 

The solutions of dimensionless equations (2.5) to (2.7) depend on dimensionless groups Pr, 

E and Fr, that is on the Prandtl, Eckert and Froude numbers. Thus, for flows over 
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geometrically similar bodies to be similar, the values of the above groups must be the 
41 same. That is to say that if these conditions are satisfied, the non-dimensional forms of the 

equations (2.5) - (2.7) governing the flows over geometrically similar bodies would be the 

same. There are, however, further conditions which must be imposed in order to achieve 

flow similarity: 

For a solid surface the fluid must adhere to the plate (the no-slip condition of 

viscous flows) and the plate must be a streamline. 

Thus, (" ,O,t")= v(x' ,O,t1)=  o. 

The temperature of the fluid at the plate must be equal to the plate temperature. 

Hence, 91(x'Ot")=0 =1. 

The fluid at a large distance from the plate must be undisturbed by the boundary 

layer, i.e. z/(xut ,co,t ho)= u. ,  Ue  being in general a function of both x and!. 

The temperature at a large distance from the plate must be equal to the undisturbed 

fluid temperature i.e. 9(x1,co,ti)=  0 

Let us now focus our attention on the second dimensionless group E. This quantity leads 

directly to the temperature increase through adiabatic compression (Schlichting (1968). 

Hence one gets: 

u2  

E - 
u2 C2(1Tkid 

(28) 
CAT AT AT 

where ad = 
2CAT 

It is now possible to conclude that frictional heat and heat due to compression are 

important for calculation of temperature fields when the characteristic velocity is so large 

that the adiabatic temperature increase is of the same order of magnitude as the prescribed 

temperature difference between the wall and To. If this prescribed temperature difference is 

of the same order of magnitude as the absolute temperature of free stream, the Eckert 

number becomes equivalent to the square of the Mach number. That is 

u2 
E= 

- CAT 
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- u2 (2.9) 
Or CT0 7T 

where, M0  = is the Mach number and CT0  = -- 
a.  

a0 7-1 

The work of compression and that due to friction become important when the characteristic 

velocity (ultimately free stream velocity) is comparable with or much greater than that of 

sound, or when the prescribed temperature difference is small compared with the absolute 

temperature of the free stream. The former situation occurs usually in practice at high 

speed when buoyancy effects are ignored. 

The third dimensionless group Fr is related to the second dimensionless group E  by the 

expression 

u2 . LTCT0 
(2.10) Fr = - = E 

gL 
c;;  gL 

For a perfect gas 

CTO L (2.11) 
gL —1gl 

CT0 1o5  
so that is typically of order with L in meters. Thus, when E is extremely small 

gL gL 

with, 
AT 

- 0(1), Fr can be of the order of unity. In these circumstances the stress work 
TO 

term in the energy equation are ignored but the body force term in the momentum equation 

must be retained. 

As a result of the above discussions of the Eckert and Froude numbers (given by the 

equations (2.9) and (2.10)) we are in a position to begin our analysis on the following 

dimensional boundary layer equations: 

Dp (3u Ov'l 
—+p -+- =0 (2.12) 
Di ôx y) 

Du op o( Ou"I 
Px Ij) (2.13) 

pc p 
DT 

= 
(2.14) 
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Since at a particular station (x,t) the pressure p does not vary withy through the boundary 

layer we can write p = Pe To eliminate the pressure term in equation (2.13) the condition 

outside the boundary layer 

a 
U-u0 , T — T and 0 are imposed. Hence we get 

Pe 1  hIe  
(au ôUe 

x g eP 
3P 

I" 
a ax ax 

aT aTe  + Ue = 0 
at ax 

In view of (2.15) - (2.16) and writing 

D a a a 
Dt at ax ay 

(2.15) 

(2.16) 

LWA TTe  

TTe  

Tw Te  =AT 

the equations (2.12)— (2.14) become 

Dp (ôu ôv 
- + p1 - + - 1=0 
Dt Lax ) 

• :.:t (2.17) 

(2.18) 

(2.19) 

Du (au 5u a au 
P (ppe)gx + Pe * lIe

(" 

pC 
Dt ayLay 

or, pC 1e +AT D8 +9 D(AT)l 0 IkAT

110)  Dt Di J 3y ' 

DTe or, . 

ATDt J ayl ayJ ° Dt 

(2.20) 

or, ATPC
p
[9_ 

) 
+G{_(log AT)+  u--(logziT)U = ATk—— pC(u - 

Dt ax Jj ay ay at 
 

DT aTe  
where, —f-  = —u 

Dt eô 

I 

De  
PCP (U — U)— (2.21) + 9{_(logAT)+uOogAT) U U = k- - aT 

Dt at ax ay1 ayJ AT ax 
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where AT and T are functions of x andt. 2e ='O ( constant) is one of the solutions of 

(2.16) 

2.3 Similar Solutions for the Boussinesq Approximation: 

In this section, we shall begin our study of the unsteady combined free and forced 

convective laminar boundary layer equations by simplifying them using the Boussinesq 

approximation. In this approximation, density variations other than the variation in the 

body force term in the momentum equation are ignored. Thus the elimination of the first 

term in the continuity equation will lead to great simplifications in the boundary layer 
Dt 

equations, particularly when the later are expressed in terms of a stream function. Fluid 

property variations are ignored completely in this approximation and this factor, together 

with the removal of density variations in the convection terms, removes the requirement for 

the use of Howarth-Dorodnitsyn transformation. It is assumed here also that the fluid 

temperature outside the boundary layer, 7, is constant. 

2.4 Equation of State and Boussinesq Approximation 

The equation of state plays an important role in solving the differential equations (2.19) - 

(2.21). In the thermodynamic theory of continuous media at rest it is shown that any one 

variable of state (p, p, t) can be expressed in terms of any other two. We assume that an 

equation of state exists in a form 

- p = p(p,t) (2.22) 

For gases, a good approximation is provided by kinetic theory for widely spaced molecules 

of simple structure: 

p=pRT=-pT (2.23) 

Where Q the universal gas constant and in is is the molecular weight of the gas. Equation 

(2.23) is said to be the equation of state for a thermally perfect gas. For a calorically and 

thermally perfect gas the specific heats at constant pressure and constant volume, 

C, and C respectively, are constant so that 

y—1 
p=—ph 

7 
(2.24) 
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where, v = 
c p 

(2.25) 
CV  

h=CT (2.26) 

(2.27) 

For liquids no such simple equation of state exists. All that can be done is to consider the 

effect of small change in pressure and temperature. Writing p = p(T, p) we can write 

dP=('oe') dp+I.-'1 dl' 
ÔT) .aP) 

= _I__
(ap)PdT 

 + dp
—p OT jap 

= —p/3rdT + pkdp (2.28) 

Where, fi1-. and k are the coefficients of thermal expansion and isothermal compressibility 

given by 

(2.29) 
p ÔT 

and k 
= 

p 
(

(2.30) 
oPp ) T 

respectively. 

In non-dimensional form equation (2.28) may be written as 

PflTdt 
p 

Or, dpl  =kpo P0' dphl _/3rtiTdO (2.31) 

where, p=p0p' 

or, dp=p0dp' 

or, 
pp 

pp 

2 / P=p0U p 
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or, dp = p0U 2dY 

or, kdp = kp0U 2dp" 

= kp0 
p0U 

 dp' 

and T—T0 =AT :.dT=ATdG 

In the case of slow motion one obtains for a gas kp0  0(1), p 
u2—OC M 2  <<1 but for a 
Po 

liquid 
p0U2 

 is more significant than for a gas . However for a liquid kp0  <<I, the 
Po 

equation (2.31) becomes 

dpl  
= j6TATdO (2.32) 

Or, p=p(T) (2.33) 

For small change from reference condition (denoted by suffix r) as a first approximation 

we can replace the equation of state (2.33) in total differential form by 

P — Pr. =—p/3(T — T,.) 

P=Pr(1 f3 (TTr)) (2.34) 

Similarly we can write p = p(T) , from which one may obtain 

- 

P = Pr {i + a(T - Tr )} ; a 
= 

(2.35) 
,u aT), 

Similar relation to (2.34) may be derived for ), k, C1? etc. By virtue of exterior relations 

analogous to (2.34) we have 

PPe = Pr /JT ATO ; since Te  = To  and J'-7 =zVf9 (2.36) 

To the first order of small quantities equations (2.34) - (2.35) and similar equation for k 

and c provide 

PPr' PPr' kkr  , Cp Cp (2.37) 

That is the fluid property variations other than density variation in the buoyancy term of 

the momentum equation are ignored. In view of (2.36) - (2.37) the boundary layer 

equations (2.19)— (2.21) are simplified as 

axay 
(2.38) 
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Du_ 
—g/3K10+---+u --+v alu -- (2.39) 

Dt at 
e 

DO 

~ao 
+o(logAT)+u(logAT) 

v 320 

Dt Ox J P,.Oy 2  
(2.40) 

Where, v = —c-, Pr = r 
, v is the kinematic viscosity and Pr is the Prandtl number 

Pr kr  

of the fluid. 

2.5 Similarity Transformations 

Equations (2.38) - (2.40) are non-linear, simultaneous partial differential equations and to 

obtain solutions for them is extremely difficult. Hence we now proceed to reduce equations 

(2.39) - (2.40) together with the continuity equation (2.38) to a corresponding pair of 

ordinary differential equations which includes permissible variations in AT and Ue . 

Let us now change the variables x, y and t to a new set of variables(4,q,,r),  where the 

relations between the two sets are given by 

(2.41) 

° y(x,t) 
(2.42) 

r=t (2.43) 

Here y(x,t) can be thought of as being proportional to the local boundary layer thickness. 

From (2.41) - (2.43) one may obtain 

-=-__ 
--- (2.44) 

Or Or 

(2.45) 
Ox O y 

(2.46) 
ay 

The equation of continuity (2.19) permits us to write 

u = (2.47) 
oy 

and v = -- (2.48) 
Ox 
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where yi(x,y,1) is the stream function at any point (x, y, I). Using the equation (2.46), the 

equation (2.47) may be expressed as 

U(x,t) oy1.U(x,t) 

(U(x,t)) a 

- a, t)U(, t) 

Now on writing 

( u 

equation (2.49) yields 

I W('Q"r) p 

1 
r(,t)U(,t) 

= 

U(x,i) 

= 

F(, 

) 
or, = 

(2.49) 

(2.50) 

or, w('(p,  r) - w(4,O. r) 
= y(4, r)U(, r)F(, (p, r) 

... 'UF+(,0,r) (2.51) 

In view of (2.44)— (2.46), (2.47)— (2.48) and (2.51), the velocity component may be found 

as 

- —v= 
ox 

by(2.45) 
r 

=(yuF) +,t',0,r) — yvrUFq, 

('uF) 
- 

cor1uF - v,, (2.52) 

where, - v,, = w (,o, r) 

Now, since the surface is porous, v represents the suction or injection velocity to the 

surface. Subscripts , (9 denote here partial differentiation with respect to corresponding 

arguments. Since the external velocity Ue  is independent of y, it must also be independent 
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of , yielding (Ue )q, = 0. Thus the convective operator in terms of the new set of variables 

• D a a a 
is, —=--+u—+v— 

Di at  8x 8y 

UF =7r ar a, aJ yaq' 

(By equations 2.44, 2.45, 2.46) 

-f 

11 D 
- 

a a  
Dtôr 

In attempting separation of variables for F(4,(p, r) and e(, (o, r) we assume 

F(,r)= L(,r)f(q) 

and O(,(p,)=m(,r)9(q') 

Where / and 9 are functions of the single variable q' 

Here, u = UF9, = ULfq, 

LU 
 ayay aay 7 °  

82u 
- 

UL 
••

y
2_

y
2fKP 

Now from equation (2.39) 

Du aue  OUe  a2u 
+u —+v-- 

at e  ax 2 

(2.53) 

(2.54) 

(2.55) 

Or, 
 au 

+ UF au 
1 äu au vUL - 

-- 
7 a

ATO 
e ax 

+ 
 

Or, (UL)J + UL(UL}f — + (yui7) - 

au vUL - 

= —g,8.ATG + + lie _e + Jq)ço(p 
at ax 

Or, + [(u) + Ue(Ue)e] - gJJAI'9 + 'uL)J + [corr - v]Zi7 

—UL(UL)f, —(UL).J, = 0 

v? +ñ[(u) ]_ 
g,6T  A Tm,9 +;v (VuIA Tf, + kny' - m' If, 

- UL 
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- 2(uL)7 = 0[Dividing both sides by T]  (2.56) 
Uil r 

Again from equation (2.40) 

DO t

9t 

a 1 vô20 
+ 9—(log 1T)+ u—(logAT)?. = ___ 

Di J Pr5y 

Or, +UE 
F ii ôO 

- +(UF) - v,]___ + o{(logtr)+ u--(1ogAT) = --- 
ax I Pray2  

Or, m9 + ULfm19 
- 1~0y. + (yuL) 7- v m + 

mvlogM') +UL,(logitT)}= 
r2Pr 

+ [q,yv 
Pr 

- 19q, +y(  L)j9q, = y2  (log(mitT) + y2UL(log(mAT)9fq, (2.57) 

[Multiplying both sides by 2_] 

Now putting 

 

yfrUL) = l72UL) 72 
(UL)e}=-  (a1  +a2 ) 

—;'v =a3  

2 (UL)r 

UL 
= a4  

----mAT/37 g=a5  
UL 

1_Ue ) +ue(ue )}=a6 
UL 

y2 (log(mAT)) = a7  

y 2UL(log(mAT)) = a8  in equation (2.56) and (2.57), we get 

(2.58) 

+(a0  + a3)% +(a1  + a2)719q1 = (a7  + a81j9 (2.59) 
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Where a0,a1,a2 . ,a8  are constant. 

There are, however, boundary conditions which must be satisfied in order to determine the 

solutions of the transformed boundary layer equations (2.58) and (2.59): 

The fluid must adhere to the plate and the plate must be a streamline. However, if 

the surface be porous mathematically on the surface 

The temperature of the fluid at the plate must be equal to the plate temperature, i.e. 

e(,o, r) = ,n(, r)9(0)= 1 

The fluid at a large distance from the plate must be undisturbed by the presence of 

the boundary layer, I, e.: u(,,r)= Ue  =:> ULf(cx) = Ue  

The temperature at large distance from the plate must be equal to the undisturbed 

fluid temperature, i, e.: e(, co, r) = rn(4, r)9(co) = 0. 

In conditions (b) and (c) if general boundary conditions 1(co) = 9(0) = 1 be introduced, without 

loss of generality, we may write UL = Ue (2.60) 

(2.61) 

By virtue of equations (2.60) and (2.61) the co- efficient which are functions of and r 

may now be expressed in the following forms: 

(i) ao  

+U,  =  .r2U ).  +Y2(ue)}=!(ai  +a2) 

a3  

2 (U) 
=a4 (2.62) 

Ue  

- —AT/3g = a5  
Ue  

Ue)r  +ue  (Ue )J=a6 
Ue 
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y2(1ogAT) = a7  

r2u(logtXT) = a8  

Similar solutions for (2.58) and (2.59) exist only when all the a's are finite and independent 

of andv; that is to say that all the's must be constants. Thus, the equations (2.58) and 

(2.59) will become non- linear ordinary differential equations. Hence the relations stated by 

equations (2.62) may be considered to be the conditions which furnish equations for 

U (, v) and y(4,  v) in deferent situations and consequently the suction velocity v,4, for the 

possible requirements of similarity solution in the case of Boussinesq fluid. 

The first part of similarity requirement of equation 2.62(u) yields 

(7 2ue )=ai  

Or, 72Ue  =a1 4+A(v) (2.63) 

here A(v) is either a function of r or constant. 

Differentiating (2.63) with respect to r one obtains 

2 2 dA(v) 
7 (U) +Ue (7 ) = 

dv 

Or,  U e 
7 2 (Ue ) (p2)

r = 
dA(r) 

e U
e  dv 

In view of conditions (i) and (iv) (similarity requirements) of (2.62) the above equation 

may be expressed as 

u(a4  +2a0)= 
dA(v) 

(2.64) 
dv 

Similarly from the condition (i) of (2.62) one gets 

= a 

Or, 
ar 

= 2a0v + B() (2.65) 

here B() is either a function of or constant. 

Differentiating (2.65) with respect to we have 

( 2' dB() 

d 

By virtue of condition (ii) the above equation may be expressed as: 
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a1 —a0 dB() 
(266) 

Ue d 

Taking the product of (2.63) and (2.64) we get, 

d4(r)dB(4) =(a
1  —a0 )(a4  +2a0 ) (2.67) 

dv d 

The fonns of the similarity equations, the scale factors ue(, v) and y(, r) depends wholly 

on the equation (2.67) and this situation leads to the following four possibilities: 

dA(r) dB( ) 
Both and are finite constants; 

dv d 

dA(v) dB( ) 
Both and are zero; 

dv d 

dA(v) 
  0 but 

dB() 
 =o• 

dv d 

0 but 
dB() 

dv d 

Of those above four cases two important cases, namely Case A and Case B, will be 

discussed in detail in subsequent CHAPTER IV and CHAPTER V. 



CHAPTER III 

Numerical Calculation Procedure 

3.1 The Shooting Method 

To solve the boundary layer equations (4.12) - (4.13) with boundary conditions (4.14) and 

(5.9)—(5.10) with boundary conditions (5.10) by using shooting method technique, an 

extension of the Nachtsheim-Swigert iteration scheme to the system of equations and 

boundary conditions is straightforward. Since there are two asymptotic boundary 

conditions, hence two unknown surface conditions, namely, f"(0) and 9'(0) are to be 

assumed. Within the context of initial value method and Nachtsheim-Swigert iteration 

technique the outer boundary conditions may be functionally represented as 

f'('lmax) = f'(f'(0), 9'(0)) = (3.1) 

= 9'(f"(0),9'(0)) = 82 (3.2) 

with asymptotic convergence criteria given by 

f('7max) = f'1(f"(0), 9'(0)) = 83 (3.3) 

t9'07ma0 = t9'(f(0), L9'(0)) = 84 (3.4) 

Let us choose f"(0) = g1 , 9'(0) = 92 . 

Retaining only the first order terms from the Taylor's expansion from equations (3.1)—(3.4) 

we get 

f '(7max) f(h1max)+ + -1—Vg2 = 8 (3.5) 
092 

av 
2 (3.6) 

092 

op 
+---Vg2 = 83 (3.7) 

092 

25 
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—84 (3.8) 
8g1 092 

Where the subscripts 'c' indicates the value of the function at i7 determine from the 

trial integration. Solution of these equations in a least squares sense requires determining 

the minimum value of 

E = 2 + 82  + 83  + 84 -+ Error (3.9) 

with respect to g1  and 92 . 

Now differentiating E with respect to g1  and 92  we get 

o82  95 
(3.10) 

ag1  ag] ag,  ôg1  

431 
as1  as3  

(3.11) 
1392 ag2  092 a92  

Applying equations (3.5)—(3.8) in equation (3.10), we obtain 

If' 
1 2 1 fl 

 
2  + 12(a2
]

Agl 

 

t\ ag1 ) I 

 

ag, ) ag, ) Og1 ) 092 091 ag,ag1 092  091 

+ --']ig2  (3.12) 
092 ag, ag, ag, ag, ag, 

Similarly applying equations (3.5) - (3.8) in equation (3.11), we obtain 

[(af  

2 
+( i + 

2] 
af' af /  a9 a9 

—I Ig2 +l------1--- + 
092 ag2 ) ag2) 

+I

( 

ag2) ] ag, 092 (991 092 091 

f = - ,8f 
+ 

a9 // Ef 
-f-  t9 (3.13) 

Elg, El92 ) 092 092) 
-  

The equation (3.12) and (3.13) can be written as 

a11 Ag, +a12i92  =b, (3.14) 

a21 A9, +a22tg2  =b2 (3.15) 

Where 

(aj" 2 a' 2  
aii=I— 

)2+(00)2 +I+I (3.16) 
au, ag,) Elg,) 
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(3.17) 
392  091 092 091 392 091 092 091 

a21 = 1'Y +(--_I2  +1fl2 +1s)2  
(3.18) 

ôg2 ) ôg2 ) ôg2) g2) 

(3.19) 
ô91 092 091 092 091 092 091 092 

[f" (3.20) 

9 ' &9'] (3.21) 
092 092 092 092 

In matrix form, equations (3.14) and (3.15) can be written as 

(
a11 (3.22) 
a21  a22 )Ag2 ) b2 ) 

Now we will solve the system of linear equations (3.22) by Cramer's rule and thus we have 

Ag1 = 
det A1 det A2  

(3.23) 
detA' detA 

Where 

det A 
a11 a12  

= = (a11a22  - a12 a21 ) .\ (3.24) 
a21 a22  / 

det A = 1  =(b1 a22  —b2a12 ) (325) 
b2 a22  

detA 
a" b

= =(b2 a1  —b1a21 ) (3.26) 
a21 b2  

Then we obtained the (unspecified) missing g1  and 92  as 

g1  =g1  +Ag1 (3.27) 

92  =92  +A92 (3.28) 

Thus adopting this type of numerical technique described above, a computer program will 

be setup for the solution of the base nonlinear differential equations of our problem where 

the integration technique will be adopted as the sixth order Range-Kutta method of 

integration. Based on the integrations done with the above mentioned numerical technique, 

the obtained results will be presented in the appropriate section. 



CHAPTER 1V 

Similarity Solution: Study of Case A 

In this chapter we will discuss the similarity case, viz., Case A which is obtained in the 

similarity analysis as given in CI-[APTER II. 

4.1 Case A 

dAfr) dB( 
When and 

)
both are finite constants then from the equation (2.64) we have 

dv d 

Ue = u0  constant (4.1) 

From equation (2.64) we have 

dA(r)  

dv 
' Z. — Ue  a4  + a0  

here C1  is the constant of integration. Now differentiating the above equation with respect 

to r, we have 

dA(r) 

dv —_u
0 (a4 +2a0 ) (4.2) 

By virtue of (2.63) and (2.66) we obtain 

B()= a1—a2 

U0  

where C2  is also a constant of integration and will be found later in terms of C1 . 

Now by equation (4.1) the equation (2.63) become 

v 2u0  =a1 4+u0 (2a0 +a4 )+C1  

Hence r 2  is found to be 

y2 =(2a0 +a4 )+—
a1

+—
C1  

by(2.63) (A) 
U0 U0 
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Again from (2.65) 

,2  =2a0r+B(ç) 

= 2a0r+ a
1  a2 

by (2.66) and (4.1) (B) 
U0  

Comparing the equations (A) and (B) for r2  we have to set 

a2  = a4  =0, C2  = - 
U0  

Finally, in view of equation (4.1), the equation for r2  is 

2 (4.3) 
U0 U0  

The similarity requirements [equations (2.62)] furnish us with the relations between the 

constants (a's). These relations are: a0  and a1  are arbitrary, 

a3  = YVw  

or,a3 
a1 C1  

2a0r+ — + —v, 
U0 U0  

a5 = _flg ATI2a0r + a1+C1 

J L\
uO u2  

a6  =0 (since Ue = constant). 

Also by (v) of (2.62) 

AT 
a5u0  
2 weobtain 

I f-g 

a7 = y2  (log AT)r  

=r2log1_ a5u0 

J} or [ 1\   r2J3g 

6(—  = a2 
a5u0

)_ log(y2 f3g )} 
Or 

= y2 a5u0)_1og2 _log(pg)} 
Or 

PQ 



2 
=-r .---Iogy2  

uT 

=-r .—(2logy) 
ar 

_ 72Yr 

1 

= —2a0  

and a8  = y2u0  - j (logL\T) 

2 = I
~og(_a,U")_Iog r2

_
log(

,6,
g
"
)Ju0  

7 
2 
 uo 

ôí 
— (Y 21  ô  

=— )} 

0 a[ 

a1 c1  

a0 u0 ) 

= a1 . 

Hence the general equation (2.58) and (2.59) reduces to: 

(4.4) 

(4.5) 

Subject to the boundary conditionsf(0) = 1(0)= 0,JL,(oo)  =Iand 9(0)=1, L9()=0 (4.6) 

for the dimensionless stream function and the dimensionless temperature function 

respectively. 

Let us substitute f = a1 f and (P = CC2)7  in the above equations. Then as yet arbitrary 

constants a1 , a2  can be defined later so as to provide convenient simplifications in the 

above forms of equations. 

Here 

ô,7 alf  

a)7 a2&p a2 

30 
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- 52jôJafô,af a 
=--f00  TXP = - 

- 
aço - a2  a2a 77 a2  

-si- Similarly, 
- a 

-=--L9 
9' 17  8q' çoa2  

a2 9a9 I (39, ô17 I M, 1 
- 

I 
8 a2  aiaqa2  s3ia2a 'rn 

Thus the above equations are changed to: 

a1 
+ a 9 =0 

a1 a1a1a1 
ff,, v--f +(a0a2ii+a3)--f 

a2 a2 
+ 

2a 

Or, f +-(a0a2ii+a3 )fqq  +1-a ja2 ffq,, + 
a5a2 

9=0 (4.7) 
Va1  

and 

+I2a0 +_Ujf}9=O aa 
2a2 a2  

or,  +_(a277a0 +a3 )+_La1a2 f + I I+--f 
a2 a 2aoaU a1  a1 

ri }9=0 (4.8) 
Pr v 2v '1 v 2a0  a2  

Choosing a1  = 
a2, a0a2 

= I and writing -- = 2/3 the above equations are further 
V a0  

simplified to 

f +[77+)f +/3 +=O (4.9) 
a0  

and's a3 
+pf+2(1+flf)=o (4.10) 

Pr im j -;) 

Where = _ x/3rtT{2ubov + 2/3 + cd 
a0 a0 J it0 

cL=2(fl 0 + 00) 
it0 a0 
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- (say) 
U f  

Where U. = —gj3AT xcharacteristic 1engthL (L = 2{/3(+ o )+uo (r+ro )}) (4.11) 

As a
3a2 /1 1 

- ___ 

v 

a3  

\i j; 

v I a1 C1  
=- fl' I2aor+—+— 

...j-;;; 0 UO  

V 
_(2u0r+2/3+2u0ro +2/3 0 ) 

uo 

V a. 
f{fl(+o)+uo(r+ro)} 

V Uo  

- 
v faoL 

-j.  

= 
v, 

u0 ru  

- 
vL 

r10 

 

- v 

= - 
VL Re2 

= fw 

V - 

Thus in the Characteristic length(= 2{/3( + )+ u0( + r0 )}), u0 (z + r0 ) forms effectively 

another length in unsteady flow. The terms 9=1-4-9) and 
a3 

 in the momentum 
a UO ) Vaou 

equation indicates how important buoyancy effects are compared with the forced flow 
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effects. Hence the transformed equations to be solved with controlling parameters Pr,  

and f,,  are 
UO  

(4.12) 
UO  

'v +(77 +f +2(1+flf)=O 
Pr 

or, 9,,,, +Pr[(+L)9 +fif, +2(1+flf)9] = 0 (4.13) 

The boundary conditions are 

f(0)=fq(0)=O,fq (co)=l, D(0)=1, 9(co)=O (4.14) 

The similarity function f(i)  the similarity variable 77 the velocity components (= ii, v), 

the skin friction and heat transfer coefficients r14,, q,, associated with the equations (4.12) 

and (4.13) with the boundary conditions (4.14) are as follows: 

w= UF—yi(, 0, r) 

= yULf (.p)—y,(,  0, r) 

= yu0a2 f(i) + iii' (, 0, r) 

0, r) 
U0 U0  

0, r) 
UO ( ao ao ) 

= /.P(2u0r + 2/3 + 2u0r0  + 2/30)u0a2f(1)— w( 0, r) 
UO 

={fl(+0)+u0(r+ro)}u0a2f(7i)+w(, 0, r) 
UO 

=.jvu0Lf(i)+y(, 0, r),where L  =2{fl(c+ 0 )+u0(r+r0)} 

= u Re2  f(77 ) + 0, r), where Re2 = (4.15) 

Here Re is the dimensionless Renold's number based on free convection velocity U 

given by (3.11) and the local characteristic length L = 2{fl(+40 )+u0(r +r0)} 



a2  a2 y 

y 

VLC ) 

= FOL . Y 
L 

=Re2 Y 
L 

U=UF,,=ULfç  

= uOa2 fQ,(17) 

= u0a2.— f (ii) 
a2  

= u0 f) 

=yUF - w(,o, r) 

or, -v=(UF) 

= !-, F oL, PF
U y 0 f1- a2u0  ifq (ii)- Vw  

a u0a0 ) a2  

(VUOLVf
) 
.- 

a1  
uo.y.a2-71fr,(71)-vw 

a2  

= 16 
0

Ui7f(i7)V 
u0 /ZJao !7c-f  - 

= (1- i# (7 7))- 

34 

- nT 
/ 7 

(4.16) 

(Since =IL 
ô, Ô779 a2  '9 r7 a2 

(4.17) 
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-p Q"2-(f-77f)+  Re2  f 
" 4, 

=
Ll  
--Re2 [,6(f-f)+f] 

(Since f = _!L Re 2 ) 
'1 

(4.18) 

where 72 a1 
Cl 

 
= 2a0r + - + - 

U0 U0  

or, 2yy, a1 
 

U0  

- 
a1  1 

- 
a1  1 a1 

FaOL  
or, y 

- - 

'° 2r-~Q-L— uO 2u0 
FaO.:, 

I 
The skin friction coefficient r = 

au 
 

- 
auai7  

0=0 

ôu Re2  
=1'---ô,7 4, 

i=0 

Re2  
= 

FOV4 
AMO .foq (o) 

LC  

= /IUO F
ac -  

(0) 

4, 
_Re2 f(Ø) 

Since 
ôi7 Re 2  

(  

(4.19) 

c3T 
q, =—k— 

=-k1 
 aq 

1 . 
a 17 Oji =0 

(Since T = = ATmv(i) = =1) 
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=—k F T 

 y=O 

= —kAT'i.90(0) 

ÔT 
(Since —=AT9,(i7)=AT90 (0) atii=0) 

(4.20) 

(4.21) 

(4.22) 

respectively, where L (= characteristic length) is given by 

= 2{/3(x+x0)+uo(i +t0)} 

AT variation for this case is 

AT oc [2 {fl(x + x0 ) + u0  (t + t0 )}j' 

• Thus, we have ATcx' (4.23) 

4.2 Numerical Scheme and Procedure 

The set of ordinary differential equations (4.12) and (4.13) with the boundary conditions 

(4.14) are non linear coupled, which are difficult to solve. Therefore, the numerical 

procedure based on the standard initial-value solver, namely, the sixth order Runge-Kutta 

method in collaboration with the Runge-Kutta Merson method is adopted to obtain the 

solution of the problem. An extension of the Nachtsheim-Swigert shooting iteration 

technique (guessing the missing value) (Nachtsheim & Swigert (1965)) together with 

Runge-kutta sixth order integration scheme is implemented. The detailed descriptions of 

the procedure of numerical solution of the problems are given in CHAPTER III. It is clear 

that the numbers of initial conditions are insufficient to obtain the particular solution of the 

differential equations. So we require assuming additional missing/unspecified initial 

conditions. Thus, in this method, the initial conditions at the initial point of the interval are 

assumed and with all the initial conditions (given and assumed) the equations are 

integrated numerically in steps as an initial value problem to the terminal point. These are 

to be assumed that the solution of the outer prescribed points also matches. The accuracy of 

the assumed missing initial condition is checked by comparing the calculated value of the 

dependent variable at the terminal point with its given value there. If match is not found (a 

difference exists) at the outer end then another set of missing initial conditions are 

considered and the process is repeated. This trial and error process is taken care through 

Nachtsheim-Swigert shooting iteration technique and the process is continued until the 

agreement between the calculated and the given condition at the terminal point is within 
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the specified degree of accuracy. For this type of iterative approach, one naturally inquires 

whether or not there is a systematic way of finding each succeeding (assumed) value of 

missing initial condition. 

The boundary conditions (4.14) associated with the system are of the two-point asymptotic 

class. Two-point boundary conditions have values of independent variable specified at two 

different values of the independent variable, where the outer boundary conditions are 

specified at infinity. There are two asymptotic boundary conditions as well as two 

unknown surface conditions f,,,7  (0), 9,, (0) here. Specification of asymptotic boundary 

condition implies that the value of velocity approaches to zero and the value of temperature 

approaches from unity to zero as the outer specified value of the independent variable is 

approached. The governing differential equations are then integrated with these assumed 

surface boundary conditions. If the required outer boundary condition is satisfied, a 

solution has been achieved. However, this is not generally the case. Hence a method must 

be devised to logically estimate the new surface boundary conditions for the next trial 

integration. Asymptotic boundary value problems such as those governing the boundary 

layer equations are further complicated by the fact that the outer boundary condition is 

specified at infinity. In the trial integrations, infinity is numerically approximated by some 

large specified value of the independent variable. There is not a priori general method of 

estimating this value. Selection of too small a maximum value for the independent variable 

may not allow the solution to asymptotically converge to the required accuracy. Selecting a 

large value may result in divergence of the trial integration or in slow convergence of 

surface boundary conditions required satisfying the asymptotic outer boundary condition. 

Selecting too large a value of the independent variable is expensive in terms of computer 

time. Nachtsheim-Swigert developed an iteration method, which overcomes these 

difficulties. Extension of the Nachtsheim-Swigert iteration shell to above system of 

differential equations (4.12) and (4.13) is very straightforward. The effects of various 

parameters on the flow and temperature fields have been determined for different values of 

the suction/blowing parameter J, the driving parameter /3 (the ratio between the changes 

of local boundary-layer thickness with regard to position and time, i.e., -- (since Ue being 
Yt 

constant)), the buoyancy parameter (the square of the ratio between the fluid velocity 
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caused by buoyancy effects and external velocity for the forced flow) and the Prandtl 

number Pr. Since there are four parameters of interest in the present problem which can be 

varied, to observe the effect of one, the other three parameters are kept as constants. Under 

these conditions the solutions to the problem thus obtained finally by employing the above 

mentioned numerical technique are plotted and tabulated in terms of the similarity 

variables. 

4.3 Numerical Results and Discussion 

The effects of f, on the velocity and temperature profiles are plotted in Fig 4.1 and 

Fig. 4.2, respectively. From Fig. 4.1 we see that, for the case of suction (f, >0), the 

velocity profiles increase with the increase of )7 near the surface, become maximum and 

then decrease and finally become zero asymptotically. But for the case of blowing 

(f <0) the velocity decreases near the surface and then increases with the increase in i 

and finally leads to zero asymptotically. Further, velocity profiles decrease with increasing 

suction case, but the magnitude of the velocity decreases with the increase of blowing. The 

usual stabilizing effect of the suction parameter on the boundary layer growth is also 

evident from this figure. 

17 p 

Figure 4.1: Velocity profiles for different values of f, (with fixed values of LIF  = 0.3, 
UO  

/3 = —0.5 and Pr=0.72). 

From Fig. 4.2 we see that the temperature profiles increase close to the plate surface and 

away from the surface they decrease asymptotically and finally become zero with the 
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increase of i, for the case of suction (f, > 0). A reverse situation is found for the case of 

blowing (f%, <0), that is temperature profiles decrease first close to the plate surface and 

away from the surface they increase asymptotically and finally become zero with the 

increase of i. It is also observed that the temperature decreases with the increases of 

suction but increase with the increase of blowing. 

3 
—fw=O.5 I 
—fw=O.3 I  

Figure 4.2: Temperature profiles for different values of f (with fixed values of 

f =0.3, 8=-0.5 and Pr=0.72).
UO  

0.5 
___UFf2/uOA2=O.5 

0.4 
UF2/uOA2=0.3 

UF"2/uO'2 = 0.05 
0.3 

UF"2/uo"2 = -0.05 
0.2 

—UF'2/uO"2=-O.3 
0.1 

0.10 3 4 5 

Figure 4.3: Velocity profiles for different values of (with fixed values of /3 = —0.5, 
UO  

f=-0.5 and Pr=0.72). 
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Fig. 4.3 and Fig. 4.4 show the effects of bouncy parameter on the velocity and 
UO  

temperature profiles. Physically, the flow is said to be aided when 
2 

> 0 and is called an 
UO  

opposing flow when < 0. Further, when U <<u, the flow becomes a forced flow, 
UO  

whereas for u <<(J the flow becomes a free convection flow. We see from the Fig. 4.3 

that with the decrease of F  the maximum velocity reduces and thus the velocity 
UO  

becomes zero within short range for smaller values of 0. Further, for < 0, the 

(J2 
magnitude of the velocity profiles increase with the increase of the magnitude of - 

uo- 

The unusual shape of temperature profiles as shown in Fig. 4.4 indicates that the wall 

receives more and more heat from the fluid as the buoyancy parameter F  decreases. 
UO  

This is due to possessing an infinite source of heat at the leading edge, that is, AT cc!  at 

x=0, hence T.H, - 0 as r -+ 0 at leading edge. 

1.8 
1.6 
1.4 

1.2 

0.8 

0.6 

0.4 - 

0.2 -i 
0 I 

-0.20 1 2  

UFA2/uOA2 = 0.5 

UF'2/u0'2 = 0.3 
UFA2/u02=0.05 

UFA2/u0F2=0.05 

UF'2/u0"2=-0.3 

3 4 5 

Figure 4.4: Temperature profiles for different values of 
u2
-2- (with fixed values of 
U0  

/3=-0.5,f=-0.5 and Pr=0.72). 
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The effects of the controlling parameter /3 on the velocity and temperature profiles are 

observed in Fig. 4.5 and Fig. 4.6, respectively. Since AT (Lvi'  (as equation (4.23)), the 

parameter /3 controls the steadiness over unsteady effects in the additive form of 

characteristic length, caused by Ue and AT -variations. More precisely, as the boundary 

layer is characterized by AT -variation only (since lie being constant), the parameter 

/3 specifies the temperature variation (i.e., equation (4.22)). 

0.25 01- 

0.0 

-d 

0.05 

0.05i 
1 2 3 4 5 

Figure 4.5: Velocity profiles for different values of /3 (with fixed values of 
u2

= 0.3, 
U0  

=0.5 andPr=0.72). 

From Fig. 4.5 we observe that, velocity profiles become maximum at about 77  =0.8 and 

they become zero asymptotically at about ;7 = 3.25 for all values of /3. Here the maximum 

velocity also decreases with the increase of /3 

Fig. 4.6 exhibits the effect of /3 on the temperature profiles. Temperature first increases 

with the increase of i and then decreases again and reduces to zero asymptotically as 

= 3.5. In the range of i = 1.2 temperature increases with the increase in /3 and after 

that it decreases with the increase of /3. 
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-01 18 - 

- 13=0.5 
1.6 

0.6 

0.4 

Figure 4.6: Temperature profiles for different values of /3 (with fixed values of 

f=0.5 and Pr=0.72). 
UO  

0.25 

0.2 

-0.05 - 

1 

Figure 4.7: Velocity profiles for different values of Pr (with fixed values of 

Uj; 

—i- = 0.3, 6 = -0.5 and f=0.5). 
U0  

The last controlling parameter is the Prandtl number Pr1 ( 
I~P- = I 

which depends on the 

properties of medium. The velocity and temperature profiles exhibit remarkable changes 

with the variation of Pr as observed from Fig. 4.7 and Fig.4.8. It is observed from Fig. 4.7 

that with the increase in i for different values of Pr, the pick values of velocity shift a 

little but they decrease rapidly with the increase in Pr. 
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40 

Figure 4.8: Temperature profiles for different values of Pr (with fixed values of 

6=-0.5 andf0.5). 
UO  

Like before, temperature decreases faster with the increase of Pr as seen in Fig. 4.8. 

The values proportional to the coefficients of skin friction fh'(Ø)  and heat transfer - 9"(0) 

are tabulated in Table (4.1) - (4.4). 

From Table 4.1, it is seen that with the increase in f,, the coefficient of skin friction 

decrease but the coefficient of heat transfer increases for f, > 0 but when f, <0, the 

coefficient of skin friction increases with the decreasing but the coefficient of heat 

transfer decreases with decreasing J. Whereas both the coefficient of skin friction and the 

coefficient of heat transfer increase with increasing as seen in Table 4.2 
UO  

Table 4.1: Values proportional to the coefficients of skin-friction (f/I  (0)) and heat transfer 

(-9' (0)) with the variation of suction parameter f for fixed = 0.3, 
UO  

/3=-0.5 and Pr=0.72. 

fw f  11  (0) —9"(0) 
0.50 0.52341 -1.52677 
0.30 0.840835 -2.839873 
-0.30 -0.49478 3.80024 
-0.50 -0.38129 3.0243 



Table 4.2: Values proportional to the coefficients of skin-friction (f 11(0)) and heat transfer 

(-9 '(0)) with the variation of buoyancy parameter for fixed J, = 0.5, 
UO  

/3=-0.5 and Pr=0.72. 

U/u f'' (0)  

0.5 0.890985 -1.443896 
0.30 0.52341 -1.52677 
0.05 0.85423 -1.62055 
0.00 0.00218 -1.636134 
-0.05 -0.08465 -1.656793 
-0.30 -0.50013 -1.745835 

Table 4.3: Values proportional to the coefficients of skin-friction f"'(0) and heat transfer 
91(0) with the variation of driving parameter /3 for fixed f, = 0.5, 

u2  
-_f=0.3 and Pr=0.72. 
U0  

/3 f // (0) -91(0) 
-0.50 0.52340 -1.52677 
-0.30 0.517295 -1.571002 
0.00 0.510231 -1.639965 
0.30 0.503856 -1.70361 
0.50 0.500049 -1.744686 

The reverse condition is observed for /3 variation. Here both f"(0) and -9"(0) reduces 
with the increase of /3. 

Table 4.4: Values proportional to the coefficients of skin-friction (f/I  (0)) and heat transfer 

(-9'(0)) with the variation of Prandtl number Pr for fixed f, = 0.5, 

=0.3 and ,8=-0.5. 
UO  

Pr f"(0) -91(0) 
0.72 0.52341 -1.52677 
1.00 0.399258 -1.402672 
7.00 0.075913 1.50934 

Again f"(0) reduces and -9"(0) increases with the increase in Pr. Unfortunately, no 
experimental data is available to us to compare our numerical results. 
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CHAPTER V 

Similarity Solution: Study of Case B 

In this chapter we will discuss the similarity case, viz., Case B which is obtained in the 

similarity analysis as given in Chapter II. 

5.1 Case B 

dA(r) dB() 

d(r) 
Whenboth 

= d() 
=0,wehave 

A = constant and B = constant. 

In view of equation (2.63) and (2.65), r2  and Ue  are found to be 

2 =2a0r+B(4) (5.1) 

Ue = a
1 +A(r) 

(5.2) 
2a0r + B() 

Substituting (5.1) and (5.2) in the similarity requirements stated in equations (2.62) one 

may obtain the following relations between the constants (a's): 

a0 , a1  are arbitrary. 

From equation (2.64) 

ue(a4  + 2a0 ) = 0 

-01 

.. a4 =-2a0  

From equation (2.66) 

a1—a2 =0 

Ue  

:. a1  = a2  

From (iii) of equation (2.62) 

a3 = —7V 

= —2a0r + Bv, 

= —1Ja0 (2r + 2r0 )'' (Since 
B
—==2r0 ) 
a0  

=
r- 

Aj ao  XVIS,  .  where X = 2(r + r0 ) is the characteristic length. 



From (iv) of equation (2.62) 

a4  - ' 
(U 

- 

2 

 

Ue  

= (2a0 r + 
B)_(a1 + A) 

•_ 
2a0 (2a

0 r+ B) 
(2a0 +B) (a1 +A) 

= -2a0  

From (v) of equation (2.62) 

2 

a5 =L/3ATg 
Ue  

.01  
- 

(2a(,r+B)2  
_-/3ATg. (a1+A) 

From (vi) of equation (2.62) 

a6 2~~ tu,  ~ + U, (Ue 
Ue  

- 
(2a0  r + B)2 

J 
- 2a0  (a1  + A) 

+ 
a1  + A a1  

- a1  + A (2a0r + B)2 2a0r + B •  (2a0r + B) 

= a1  - 2a0  

:.a6 -a1 -2a0  

From (vii) of equation (2.62) 

-a5u -a5(a1  
a7 = '2 (log AT) (Since AT = = 

+A) 
) 

gJ3y g/37.(2a0r+B)2  

= (2a0r + B)- og(-a5 )+ 1og(a1  + A)- log(g)- logfl - log(2a0r + B)2 
} 

/ 

[ 

2 
=2a0r+Bj- 

(2a0r+B) 
 .2a0 
 

= -4a0  

From (viii) of equation (2.62) 

a8  = y2u (log 

Ue  
1( -a5 (a1 +A) 

= T 
J} 

46 
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= (a1  + A){log(-a5 ) + Iog((a1  + A))- log(gj37 )- 2log(a0r + B)} 

=(a1 +A)[_
a1  
+ A)j 

= a1  

a8  = a1  

Thus the general equation (2.58) and (2.59) takes the form 

vJ +(a0(p+a3)J, +a1ff, +ai  (1-])-2ao _1)+a5t9 = 0 (5.3) 

v9 +Pr[(ao 7+a3 )9 +a1J9  +(4a0  _a11,) }9 = 0 (5.4) 

with boundary conditions f(0) = f(,(0) = 0, f,(c) =1, 9(0) =1, 9(co) =0 (5.5) 

- a0a12  
As in case A, substituting f = a q 1 f, = a1 ij, choosing = I and letter writing 

V 

= 2,6, (4.3) and (4.4) with their attached boundary conditions (4.5) are simplified to 
a0  

f,,+(a0a1 +a3 )if +a1a1f1f,,,, +ai (1_)+2ao (f _I)+a5 =0  
a1 a1  

or,f,j+[a0a+

) 
Y7

f +2flffq,1+2(l_f)+2(f_l)+9=0 
V a0  

1 a3a1Jf 
+2fl  77 (ff 

- 
+1)+2(f _i)+ = 0 (5.6) 

V a0  

--9 +Pr[(aoai ll+a3 )1  ,+a1a1f_9,, +(4a0 _aifii )9]=o 
a1  

1 
+ 

a0a a3a1 "l a1a1 
ft9 + 

4 a0a 2 
• • 

v v ) [ (5.7) • i
Pr [( 

+-I9+ -a1a1 f,, 

Now a
3  = a3  = a3  _ -i'v 

a0  a1 
a0 /;;- - 

ao 

 

- 

j2a0r + Bv, 

-- 



- - 

j2r+2rO v%V  

- V 

= 
2r + 2 r0 

= J (say) 
V L) 

.'. Vw = 

FT" f  - 
- 

g/3AT(2a0r+B)2  

a0 a0 (a1 +A) 

g8AT(2r + 
B 

)

2  

a 

Ue  

- 
g. f3r AT12ue —ro )} 

Ue  

= (say) 
Ue  

By using the above relations the equation (5.6) and (5.7) are simplified to 

f +(+f)f +2fl(ff  -f +1)+2(fq  _i)+=o (5.8) 

Pr +(+f)9 +2flft9 +(4_2fiJ;,)=0 (5.9) 

and the boundary conditions are 

f(0) = f,7 (0) = 0; f,7(co) = 1; 9(0)=1; $(co)=0 (5.10) 

where U. = —gflr \T{2u (r + r )} (5.11) 

The parameters are again Pr, /3, f, and UF  but the last two convey different physical 
UO  

meanings from the previous case due to the difference in nature of AT and Ue  variations. 

Both AT and Ue,  upon which combined convection effects depend, may be specified from 

equations (5.2) and (5.11) as 

x + x0  
ATcic (5.12) 

t+to 
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Ue =/3 ° (5.13) 
1+to  

Thus the parameter /3 controls the degree of steady effects of the boundary layer equations 

(4.8) (4.9). If /3 =O no flow occurs as the characteristic length is 2Ue (T+ r0 ) or 

2/3(x + x0 ). The parameter tjF  is the ratio between the square of the free convection 
UO  

velocity UF  generated by AT variation (equation (5.12)) and the forcing velocity Ue.  The 

similarity function f(i), the similarity variable i, the velocity components (u ,v), the skin 

friction and heat transfer coefficients (r q) associated with the equations (5.8) - (5.9) 

are now calculated as; 

t'= yUF+4,O,r) 

(x+x0) 
r) =j2a0 (r+r0 )fi 

(+10 rao 
(,O, 

 

= Jj9(X+XO).Uef(77)+Y/(TO) 

(5.14) 

11 = = 
a1  ya1  

— y
kv-o- 

Y 

  - J2ao(t+to) 

 ft 
- [/3(x+x0 )Vv 

Ue  

y Ue 2  (5.15) 

u=UF,,=ULfq,(co) 

a,7  
e  a77  3(p 

=Ueci—fii(77) 



50 

=ueJ,(17) (5.16) 

- v = ('uF) - coreUFq, - v 

= 7(Ue ) f - vu, 

= 2aO (t+tO )
(1,)

f—v 

2ao  _8J ,. 
- a1fyi, v 

.Jt + (o 

W )2 

f 

 
(5.17) 

x + X0 

The skin fnction coefficient r = 
(.1)! 

ôzI 817 
=/.1--- 

Oii 8)) 

= {::XO )} 10  2,6 V( 
(5.18)  

The heat transfer coefficient q, = 
OT

= —k 
 aT 
— 
ai7  ay 

kAT( u. )2 

(0) (5.19) 

respectively. 

The problem represented by the equations (5.8) - (5.9) for forced convection [i.e. 
-J 

becomes that considered by Schuh (1953) and Yang (1958). Whereas Schuh obtained the 

solution for the momentum equation only, using integral methods, Yang obtained 

similarity solutions for both momentum and energy equations for the case of constant wall 

temperature. For constant wall temperature (i.e. a7  = a8  = 0), by the introduction of minor 

changes in the similarity function f(,7) and the similarity variable 77 as 



,01  
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and 

(jj=2fl(i) 

... j (11) = 4,82f #jj  (ii) 

and L9 
' 877 817817 

'9,717 (J, (,f 6 - ). ~~ 

The equation (4.8) - (4.9) will be reduced to those dealt with by Yang (1958). His 

parameter 'a' may be restored replacing /3 by - - only. The reduced type of equations 
a 

with their boundaiy conditions are 

4fl2 f() - vwJ2flf) + 4fl22fl(f()f () - 

/37(i)+2fl-2=0 

or,
(72,6 v ~2fl 

+ f (ii) + - - =0 

aij 
v.
)7 2  (7(,~)7 72 or, 

2  F2 ro a 

—af(i)—----=0 (5.20) 

and 2fl +Pr{[ +4fl2j()
Lq~ 0 

or, 0,,, + Pr v,, L% + 2,97 (ij),9jj 
+(2  + 2,64 (0)  19 0 

72~fl Fv T2,6= 16 

aij 
or, +Pr{[__ 

Ev 
vw J +() +_2a_ (ifl)}=O (5.21) 

j(o)=](o)=o, 4(00)=1, 9(0)=l, 9(co)=O (5.22) 
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The equations (5.20)—(5.22) are a special case of combined forced and free convection 

ordinary differential equations (5.8)—(5.9). When cr = 0, the momentum equation (5.20) 

becomes entirely the steady flow equation of Hiemenz (1911) for two dimensional 

stagnation point of flow. 

Since it is not possible to find analytical solutions of (5.8)—(5.9) in terms of the controlling 

parameters, numerical solutions are obtained for the particular values of ,  f. Pr, /3 and 

UO  

5.2 Numerical Scheme and Procedure 

The set of differential equations (5.8)—(5.9) with the boundary conditions (5.10) are solved 

on the same numerical procedure as stated in Case A, that is, using the Nachtsheim-Swigert 

shooting iteration technique (guessing the missing value) (Nachtsheim & Swigert (1965)) 

together with Rangue-Kutta sixth order iteration technique. Like Case A, here the velocity 

f,7 , temperature S are determined as a function of coordinate i. The skin friction 

coefficient f'rn(0)  and the heat transfer rate -0(0) are also evaluated for this case and 

numerical results thus obtained in terms of the similarity variables are displayed in graphs 

and tables for several selected values of the established parameters J,, /3, and Pr 
UO  

below. 

5.3 Numerical Results and Discussions 

To obtain the solution of differential equations (5.20)—(5.2 1) with the boundary conditions 

(5.22), a numerical procedure based on Nachtsheim-Swigert shooting iteration technique 

(guessing the missing value) (Nachtsheim & Swigert (1965)) together with Runge-Kutta 

sixth order integration scheme is implemented. The effects of suction parameterf,, 

driving parameter /3 (the ratio between the changes of local boundary-layer thickness with 

regard to position and time), the buoyancy parameter F  (the square of the ratio between 
UO  

the fluid velocity caused by buoyancy effects and external velocity for the forced flow) and 

the prandtl number Pr are plotted in Figs. (5.1) - (5.8). Also their effects on the coefficient 

of skin-friction and heat transfer coefficients are tabulated on Tables (5.1) - (5.4), 
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respectively. To observe the effect off, the other three parameters /3, Lk  and Pr are 
UO  

taken constants. Similarly, we observe the effect of the parameters/I, and Pr by 

taking the rest three parameters constant respectively. In all cases the constant values 

arefM, =-0.3,f=-0.3,fl=1.0 and Pr=0.72. Now for the variation off,1,, it varies 
UO  

only in the range of-0.5 :!~ J1, :!~ 0.34. Similarly /3 varies in the range of 0.967 :!~ /3 :!~ 1.01 

and in the range —1.1 < < —1.3.
UO  

The effect of,  f,,on the velocity and temperature profiles is plotted in Fig. 5.1 and Fig. 5.2. 

From Fig. 5.1, we observe that the velocity is increasing for the decreasing value off,,, in 

the region i :!-~ 1.02. The maximum velocity appears at17 = 1.0. Then the velocity profiles 

start decreasing and become negative when 77 > 1.59 again the velocities take the reverse 

direction and finally become zero at about q = 5.1. The magnitude of the velocities reaches 

the highest value when i 2.53. Further we conclude that the velocity profiles increase 

with the decreasing value of f in the region (0 :~ i :~ 2.53) and increasing with the 

increasing of f,, in the region (2.53 :!~ i :~ 5.1) for both suction and blowing. 

Again from Fig. 5.2, we observe the effect of f,,, on the temperature profiles. From this 

figure, it is observed that the wall lost its temperature to the fluid and after some times it 

receives the temperature from the fluid. In the region very close to the surface, the 

temperature falls sharply and decreases with the increase in J,,. When i 1.22, the 

temperature profiles take the reverse direction and increase with increasing f. Here the 

temperature again decreases with the increase of f,,, when i > 3.5 and finally approaches 

to zero when i > 5.06. 
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Figure 5.1: Velocity profiles for different values of .f (with fixed values of = —1.3, 
UO  

/1=1.0 and Pr  = 0.72). 

1.5 —fw0.34 

t 11  
I 0.5 fw-0.5 

17 

Figure 5.2: Temperature profiles for different values of f (with fixed values of 

u2  
—f =_1.3, ,8=1.0 and Pr=0.72). 
U0 
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Figure 5.3: Velocity profiles for different values of (with fixed values of 8 = 1.0, 
UO  

f, =-0.3 and J=0.72). 

Fig. 5.3 and Fig. 5.4 show the effects of on the velocity and temperature profiles. In 
UO  

this case we observe that the velocity profiles are increasing near the surface with the 

decreasing values of and obtained maximum value at i 0.99. Then the velocity 
UO  

profiles change their directions and obtained negative values at 7>1.65 and finally 

become zero at i = 6.5. The magnitude of velocity obtained its highest value when 

2.65 and after that a reverse characteristic is found. Here the magnitude of velocity is 

decreased with the increases of magnitude of 
UO  

Again the effects of on the temperature profiles show that, very close to the wall the 
U0  

temperature falls sharply in the region 0 :!~ q < 1.35. After that the temperature profiles 

changes their direction and become positive at i 2.71 and then goes to the reverse 

direction before reaching zero as is seen in Fig. 5.4. 
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Figure 5.4: Temperature profiles for different values of (with fixed values of 

/3=1.0, f=-0.3 and Pr=0.72). 

 

The unusual shape of the temperature profiles indicates that the wall rejects more and more 

heat to the fluid as the buoyancy parameter decreases. This is due to the plate 
UO  

possessing an infinite source of heat at the leading edge, that is, AT cc - at x = 0, hence 

T3 , —> oo as t —> 0 at the leading edge. 

Fig. 5.5 and Fig. 5.6 exhibit the effect of the driving parameter /3 on the velocity and 

temperature profiles. The possible values of /3 are restricted to 0.967 :!~ /3 :~ 1.01. Two 

different behaviors are executed in the range when 0.967 :!~ /3 <0.984 and 

0.984 :5 /3 :~ 1.01, respectively. In the range of 0.967 :~ /3 <0.984 the velocity is decreasing 

with the decreasing value of /3 and achieved the maximum magnitude at i 0.64, then 

changes its directions and become positive in the region 1.0 .5 i :-~ 3.51. After that they 

changes their directions and asymptotically become zero when i  10.0 . The opposite 

properties are exhibited in the range 0.984 :5 /3 :5 1.01 for the increasing value of ii.  In the 

range 0.967 < /3<0.984 the velocity profiles take the negative values when i :5  1.0. The 

magnitude of velocity increased with decreasing /3 and achieved a maximum value at 

0.64 . When i > 1.0, the velocity becomes positive and a maximum velocity appears 

at , 2.35 for minimum value of 6 = 0.967. After that the velocity profiles again change 
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their directions and become negative values when i ~: 3.25 and asymptotically approaches 

Aor 
zero far away from the plate surface. 

A reverse phenomenon is observed in the range of 0.984 :!~ /3 :!~ 1.01. Here the velocity 

profiles decreases with increasing /3. A positive velocity is observed when )7 <1.6 and 

after that the velocity become negative and approach to zero asymptotically. 

0.8 
0.7 

+ 0.6 
0.5 
0.4 

,- 0.3 - 
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I 0- 
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—13 = 1.01 
— 13=0.99 
—13=0.985 
- p = 0.984 
—13=0.983 

p = 0.98 
—13=0.967 

5 6 7 8 9 10 

Fig 5.5: Velocity profiles for different values of /3 (with fixed values of = — 1.3, 
UO  

0.3 and Pr=0.72). 
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Figure 5.6: Temperature profiles for different values of /3 (with fixed values of 

J=-0.3 and =0.72). 
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From the Fig. 5.6 we observe two different behaviors of temperature profiles in the region 

when 0.967 :!~ /3 <0.984 and 0.984 :~ /3 !~ 1.01 respectively. In the range of 

0.967 ::~ /3 <0.984 the temperature raises first very close to the surface and then falls 

sharply when i> 0.45. Temperature first increase with the decreasing values of /3 and 

then they again decrease with decreasing /3 (0.967 :!~ /3 <0.984). Further, in the region 

0.9 84 :~ /1 :!~ 1.0, we observe that the temperature falls sharply and become negative in the 

region 0.47 :!~ i  :5 2.86. Here temperature first decreases with increasing /3 in the range of 

0.984 :!~ /3 :5 1.0, where 77  <1.36. After that temperature profiles change direction and 

become increasing and in the region where i> 2.3 a reverse situation is observed. That is 

temperature again increases with decreasing /3 when i> 2.3 and asymptotically 

approaches to zero for all values of /3 for far away and then they are again increase with 

increasing /3. 

Fig. 5.7: Velocity profiles for different values of Pr (with fixed values of = —1.3, 
UO  

/3=1.0 and /= -0.3). 

From the Fig. 5.7 we observe that the velocity profiles decreases with the increase in Pr. 

The velocity is positive in the region 0 :!~ i :!~ 1.58 and become maximum at q = 0.97. After 

that the velocity profiles changes their directions and become negative in the region 

1.58 <i :~ 5.1 and finally reduced to zero asymptotically except for Pr = 7.0. For Pr = 7.0, 

velocity profile approaches zero directly from the positive side near i 3.0 without 
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changing its direction. This particular behave for Pr = 7.0 is observed may due to the 
lokr constituents of the fluid. 

Figure 5.8: Velocity profiles for different values of Pr (with fixed values of = —1.3, 
UO  

/3=1.0 and f,=-0.3). 

From the figure 5.8 we observe that the temperature profiles decreasing more with the 

decreasing in Pr close to the wall. For relatively higher values of )7  they changes there 

direction and become positive. Before reaching zero finally, the temperature become 

positive and never negative again. 

The values proportional to the coefficients of skin friction (f "(0)) and heat transfer 

(_9 '(0)) are tabulated in Table (5.1)—(5.4). From the table it is seen that with the increase 

in f,,, both the coefficients of skin friction and heat transfer increase. The coefficient of 

skin friction decreases whereas and coefficient of heat transfer increases with increasing 

UF Two different situations are observed for /3 variation. In the range of 
UO  

0.967 :5 /3 < 0.984, the skin friction decrease but the coefficient of heat transfer increases 

whereas in the range of 0.984 :!~ /3 :!~ 1.01 both the skin friction and heat transfer 

coefficients increase for the increase in /3. Again both the skin friction (f/I  (0)) and heat 

transfer (_9 '(0)) coefficients reduces with the increase in Pr. Unfortunately no 

experimental data is available to us to correspond our numerical results. 



Table 5.1: Values proportional to the coefficients of skin friction (fh'(o)) and heat 

transfer (-91(0)) with the variation of suction parameter for fixed 

8=1.0 and Pr=0.72. 
UO  

f. f'(0) 

0.34 0.64352 3.07080 
0.30 0.63844 3.01001 
0.00 0.545924 2.50976 

-0.30 0.63844 1.99617 
-0.50 0.446546 1.69337 

Table 5.2: Values proportional to the coefficients of skin friction (f"(°)) and heat transfer 

(-91(0)) with the variation of Buoyancy parameter for fixed f 0.3, 
UO  

fl=1.0 and Pr=0.72. 

U/u f''(0) -9'(0) 

-1.1 0.438147 2.1618 
-1.2 0.454657 2.0588 
-1.3 0.477470 1.99617 
-1.4 0.509787 1.96947 

Table 5.3: Values proportional to the coefficients of skin friction (f 
" (0)) and heat transfer 

(-91(0)) with the variation of driving parameter fi for fixed f1, 0.3, 

u 2  
and Pr=0.72. 

U0  

p f"(0) -9'(0) 
0.967 - 1.568036 -1.992520 
0.98 - 1.08877 -1.674788 

0.983 -1.006547 -1.621930 
0.984 0.268703 0.827137 
0.985 0.331071 1.17268 
0.99 0.41 1649 1.588687 
1.01 0.528188 2.457179 

M. 
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- Table 5.4: Values proportional to the coefficients of skin friction (["(0)) and heat transfer 

(-91(0)) with the variation of Prandtl's number Pr, for fixedf,4, =- 0.3, 

U2  
/3=1.0 and —f=-1.3. 

U0  

Pr f"(0) 91(0) 
0.72 0.47747 1.99617 
1.00 0.422092 2.09212 
7.00 0.4 0.3 
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CHAPTER VI 

Conclusions and Recommendations 

In this dissertation using the technique of similarity solutions, the governing boundary 

layer equations for the two-dimensional unsteady laminar combined free and forced 

convective flow over a semi infinite heated vertical porous plate have been analyzed in the 

present research works taking into account the effect of suction and blowing. Four different 

similarity cases arise with the choice of 
dA 

 and  
dB 

 either zero or constant. Similarity 
dr d 

solutions for two of the cases, namely, Case A and Case B have been studied in this 

dissertation. 

On the basis of the findings, it is observed for Case A that: 

Case A: 

Velocity profiles decrease with the increase of suction but the magnitude of the 

velocity decreases with the increase of blowing. 

Temperature decrease with the increase of suction but increase with the increase of 

blowing. 

With the decrease in the buoyancy parameter 
u2
--, the maximum velocity reduces 
uo  

and thus the velocity becomes zero within short range for the case of aided flow 

> but for the case of opposing flow Ll  < 0 the magnitude of the 
UO 

velocity profiles increase with the increase of the magnitude of f
UO 

 
2 

As the buoyancy parameter —i-- decreases, the wall receives more and more heat 
U0  

from the fluid. 

The maximum velocity decreases with the increase of /3. 

(t) Temperature increases with the increase of /3 very close to the plate surface and 

after that it decreases with the increase of /3. 

(g) Both velocity and temperature decrease rapidly with the increase of Pr. 
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Suction decreases the coefficient of skin friction but increase the heat transfer rate 

while blowing increases the skin friction but decreases the heat transfer rate. 

Both the coefficients of skin friction and heat transfer decrease with decreasing 

U 

u 

(j) Both the coefficients of skin friction and heat transfer reduces with reducing /3 and 

Pr. 

But in the study of Case B it is observed that this case is very case sensitive relative to the 

values of controlling parameters and no systematic relationships of controlling parameters 

on the flow variables are observed here. 

On the basis of findings, it is observed for Case B that; 

Case B: 

The possible values of f, are restricted to - 0.5 ::~ f,  :!~ 0.34. 

The velocity profiles increase with the decreasing value of f,,  in the region 

0 :!~i < 2.53 and increasing with the increasing of f in the region 2.53:!~27:!~5. 1 

for both suction and blowing. 

The wall lost its temperature to the fluid and after some times it receives the 

temperature from the fluid. 

Here we observe only the opposing flow LL  is restricted to - 1.4 ~ < - 1.1 and 

no add flow found. 

As the buoyancy parameter decreases the wall rejects more and more heat to the 

fluid. 

Here the possible flow of /3 are restricted to 0.967 :!~ /3 :5 1.01 the velocity profile 

decreased when 0.967 :5 /3 :~ 0.984 and increased when 0.984 :5 /3 :!~ 1.01. 

In the region 0.967 :!~ /3 :!~ 0.984 ,the temperature first increases and then decreases 

with the decreasing value of /3. 

The temperature first falls sharply in the region 0.984 :!~ /3 ::~ 1.01 and become 

negative in the region 0.47 :!~- 2.86. 

The velocity profile decreases with the increase in Pr in the region 0 :!~ Pr :5 2.4 and 

increase with the increasing value of Pr in the region 2.4 :~ Pr :!~ 5.0 and shows the 
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particular behave for Pr = 7.0. 

The temperature profile decreases more with the decreasing in Pr and for the 

relative higher values of 71 they changes there directions. 

(k) For f, ~: 0 both the coefficient of skin friction and heat transfer increases and for 

f,, <0 

both the coefficient of skin friction and heat transfer decreases. 

(1) For increasing of buoyancy parameter the coefficient of skin friction decreases 

and heat transfer increases. 

(m) Both the coefficients of skin friction and heat transfer reduces with reducing fi 

and increase with the reducing Pr. 

Therefore, our conclusion is that, study of Case A is more suitable than Case B. Further 

study is necessary to solve rest of the cases. 
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