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Abstract 

In this thesis, the transient free convection in micropolar fluid with heat generation and 

constant heat flux is discussed. The governing equations are set. To solve them two 

different techniques namely, the finite difference method and Laplace transform method, 

has been adopted. Before use of the finite difference method the governing equations are 

made dimensionless. The solutions obtained are plotted and discussed. The values 

proportional to the coefficient of skin friction and Nuselt number are also tabulated and 

discussed. The Laplace transform method is also used to the set of equations which are 

linearized by dropping the convective terms. For inverse Laplace transform Mathematica 

is used. The solutions of the linearized form of the equations are also plotted and 

discussed. 
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Chapter 1 

Introduction 

The concept of micropolar fluids introduced by Eringen [1] deals with a class of fluids 

which exhibit certain microscopic effects arising from the local structure and 

micromotions of the fluid elements. These fluids contain dilute suspensions of rigid 

macromolecules with individual motions which support stress and body moments and are 

influenced by spin-inertia. Zakaria [2] pointed that the theory of micropolar fluid and its 

extension to thermo-micropolar fluids [3] may form suitable non-Newtonian fluid models 

which can be used to analyze the behavior of exotic lubricants [4,5], colloidal suspensions 

or polymeric fluids [6], liquid crystals [7,8] and animal blood [9]. Some theoretical 

studies [7-9] have been compared and favorably agree with experimental measurement. 

Furthermore, Kolpashchikov et al. [10] have devised a way to measure micropolar 

parameters experimentally. However, more experimental and theoretical work is still 

required in this area. A thorough review of the subject and application of micropolar fluid 

mechanics was provided by Arman et al. [11,12].Crane [13] considered a moving strip the 

velocity of which is proportional to the local distance. Free convection in the boundary 

layer flow of a micropolar fluid along a vertical wavy surface was investigated by Chiu 

and Chou [14]. Hassanien and Gorla [15] studied the heat transfer to a micropolar fluid 

from a non-isothermal stretching sheet with suction and blowing. Mixed convection 

boundary layer flow of a micropolar fluid on a horizontal plate was derived by Gorla [16]. 

The theory of micropolar fluids as introduced by Eringen [1] can be used to explain the 

flow of colloidal fluids, liquid crystals, animal blood, paints, polymers, etc. in which the 

classical Newtonian fluids theory is inadequate. Ramachandran et al. [17] studied laminar 

mixed convection in two-dimensional stagnation flows around heated surfaces by 

considering both cases of an arbitrary wall temperature and arbitrary surface heat flux 

variations. They found that a reversed flow developed in the buoyancy opposing flow 

region, and dual solutions are found to exist for a certain range of the buoyancy parameter. 

This work was then extended by Hassanien and Gorla [18] to micropolar fluids. They also 

considered both assisting and opposing flows, but the existence of dual solutions was not 

reported. Devi et al. [19] extended the problem posed by Ramachandran et al. [17] to the 

unsteady case, and they found that dual solutions exist for a certain range of the buoyancy 

parameter when the flow is opposing. Recently, Lok et al. [20,21] studied the similar 



problem for steady and unsteady cases, for a vertical surface immersed in a micropolar 

fluid. As the previous investigations, the existence of dual solutions was reported in [20] 

only for the opposing flow regime. The flow through porous channels with expanding or 

contracting walls has become very important because of its applications in biophysical 

flows, e.g., pulsating diaphragms, filtration, blood flow, artificial dialysis, binary gas 

diffusion, and air and blood circulation in the respiratory system. Uchida and Aoki [22] 

first examined the viscous flow inside an impermeable tube with contracting cross 

sections. Ohki [23] investigated the unsteady flow in a porous semi-infinite tube, whose 

elastic wall had a varied length and a stable cross section. To simulate the laminar flow 

field in cylindrical solid rocket motors, Goto and Uchida [24] analyzed the laminar 

incompressible flow in a semi-infinite porous pipe, whose radius varied with time. 

Bujurke et al. [25] obtained a series solution to the unsteady flow in a contracting or 

expanding pipe. Majdalani et al. [26] obtained an exact similarity solution to the viscous 

flow with small wall contractions or expansions and weakly permeability. Dauenhauer 

and Majdalani [27] obtained a numerical solution and Majdalani and Zhou [28] got both 

numerical and asymptotical solutions for moderate to large Reynolds numbers. 

Physically micropolar fluids represent fluids consisting of randomly oriented particles 

suspended in a viscous medium, where the deformation of fluid particles is ignored It has 

found its applications specially, in lubrication theory. Soundalgekar [29] obtained 

approximate solutions for the two dimensional flow of an incompressible, viscous fluid 

flow past an infinite porous vertical plate with constant suction velocity normal to the 

plate. It was found that the difference between the temperature of the plate and the free 

stream is significant to cause the free convection currents. Natural convection driven by 

thermal dispersion and internal heat generation plays important role in the overall heat 

transfer. Natural convection with internal heat generation finds application in fire and 

combustion modeling. Gorla and Tornabene [30] investigated the effects of thermal 

radiation on mixed convection flow over a vertical plate with non-uniform heat flux 

boundary condition. Raptis [31] studied numerically the case of a steady two dimensional 

flow of a micropolar fluid past a continuously moving plate with a constant velocity in 

the presence of thermal radiation. Kim [32] studied the unsteady free convection flow of a 

micropolar fluid through a porous medium bounded by an infinite vertical plate. Kim and 

Fedorov [33] studied the transient mixed radiative convection flow of a micropolar fluid 

past a moving, semi-infinite vertical porous plate. El-Amin [34] studied the combined 
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effect of internal heat generation and magnetic field on free convection and mass transfer 

flow in a micropolar fluid with constant suction. El-Hakiem [35] studied the natural 

convection in a micropolar fluid with thermal dispersion and internal heat generation. 

1.1 Some Useful Dimensionless Parameters 

Reynolds number (RC ) 

The Reynold's number (Re),  the most important parameter of the dynamics of a viscous 

fluid, which represents the ratio of the inertia force to viscous force and is defined as 

R = 
Inertia force 

= 
pU 2  L2  - UL 

Viscous force pUL - v 

where U and L denotes the characteristic velocity and length respectively and v = is 
p 

the kinematic viscosity ( p and p are the density and coefficient of viscosity of the fluid 

respectively). When the Reynolds number of the system is small, the viscous force is 

predominant and the effect of viscosity with be felt in the whole velocity field. When the 

Reynolds number is large the inertial force is predominant and the effects of viscosity is 

important only in a narrow region near the solid wall or other restricted region which is 

known as boundary layer. If the Reynolds numbers is enormously large, the flow 

becomes turbulent. 

Prandtl number (P) 

The Prandtl number is the ratio of kinematic viscosity to thermal diffusivity and may be 

written as follows 

D - 
Kinematic vis cos ily v 

- Thermal diffusivity Ic/pu p  

where C,, is the specific heat at the constant pressure and k is the thermal conductivity. 

The value of --- is the thermal diffusivity due to the heat conduction. The smaller 
pcp  

value of that is, the narrower is the region which is affected by the heat conduction and it 

is known as the thermal boundary layer. The value of is the effect of viscosity of 
p 

fluid. Thus the Prandtl number shows the relative importance of heat conduction and 
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viscosity of a fluid. For a gas the Prandtl number is of order of unity. Evidently, Pr  varies 

from fluid to fluid, for air P,. = 0.71 (approx.), for water at 15.5° C, P. = 7.00 (approx.), 

for mercury P. = 0.044 (approx.), but for high viscous fluid it may be very large, e.g. for 

glycerin P = 7250 (approx.). 

Schmidt number (Se) 

Schmidt number is a dimensionless number defined as the ratio of momentum diffusivity 

(viscosity) and mass diffusivity and is used to characterize fluid flow in which there are 

simultaneous momentum and mass diffusion convection processes. It physically relates 

the relative thickness of the hydrodynamic layer and mass transfer boundary layer. 

Schmidt number is the mass transfer equivalent of Prandtl number. For gasses, S and Pr 

have similar values ( 0.7) and this is used as the basis for simple heat and mass transfer 

analogies. 

The ratio of the viscous diffusivity to the chemical molecular diffusivity and is defined as 

= 
Viscous diffusivity V 

chemical molecular dffusivity D01  

Grashof number (Gr ) 

It frequently arises in the study of situations involving natural convection. The volume 

expansion coefficient /3 is defined as /3 
= p ÔT,, 

The Grashof number Gr  is defined as 

Gr 
*fl(T —Ta ) 

and is a measure of the relative importance of the buoyancy forces and viscous forces. 

Eckert number (Ec ) 

The Eckert number E  is useful in determining the relative importance in a heat transfer 

situation of the kinetic energy of a flow. It is the ratio of the kinetic energy to the 

enthalpy(or the dynamic temperature to the temperature) driving force for heat transfer 
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E = U , U is the fluid velocity outside the boundary layer, c is the specific heat at 
cAT 

constant pressure and AT is the driving force for heat transfer (e.g. wall temperature 

minus free stream temperature). 

Dufour number (Dy ) 

The Dufour number D,,  is defined as 

D = Dk
r (CU, —C) 

k Thermal diffusion ratio, D, molecular diffusivity and 
C S C P (T%$. —T) 

c concentration susceptibility. 

Soret number (Sr ) 

The Soret number Sr  is defined as S = 
—T) 

, T, mean temperature. 
r cST,7?(CU,—C.,) 

Nusselt number (N1 ) 

Nusselt number is defined as the ratio of convection heat transfer to fluid conduction heat 

transfer under the same conditions 

N - 
h(TU — T) hL 

"kf (TU —T)/L k, 

k 1  thermal conductivity of the fluid, h convective heat transfer coefficient, L 

characteristic length. 

It can be also put in the form N = 
AT 

1.2 Heat and Mass Transfer 

Combined heat and mass transfer problems are of importance in many processes and have 

therefore received a considerable amount of attention. In many mass transfer processes, 

heat transfer considerations arise owing to chemical reaction and are often due to the 

nature of the process. In processes such as drying, evaporation at the surface water body, 

energy transfer in a wet cooling tower and the flow in a desert cooler, heat and mass 

transfer occur simultaneously. In many of these processes, the interest lies in the 
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determination of the total energy transfer, although in processes such as drying, the 

interest lies mainly in the overall mass transfer for moisture removal. Natural convection 

processes involving the combined mechanisms are also encountered in many natural 

processes, such as evaporation, condensation and agricultural drying, in many industrial 

applications involving solutions and mixtures, in the absence of an externally induced 

flow, and in many chemical processing systems. In many processes such as the curing of 

plastics, cleaning and chemical processing of materials relevant to the manufacture of 

printed circuitry, manufacture of pulp-insulated cables etc., the combined buoyancy 

mechanisms arise and the total energy and material transfer resulting from the combined 

mechanisms, has to be determined. 

The basic problem is governed by the combined buoyancy effects arising from the 

simultaneous diffusion of thermal energy and of chemical species. Therefore the continuity, 

momentum, energy and concentration equations are coupled through the buoyancy terms 

alone, if the other effects, such as the Soret and Dufour effects are neglected. This would 

again be valid for low species concentration levels. These additional effects have also been 

considered in several investigations, for example, the work of Caldwel [36], Groots and 

Mozur [37], Hurle and Jakeman [38] and Legros, et al. [39,40]. 

- Somers [41] considered combined buoyancy mechanisms for flow adjacent to a wet 

isothermal vertical surface in an unsaturated environment. Uniform temperature and 

uniform species concentration at the surface were assumed and an integral analysis was 

carried out to obtain results which are expected to be valid for P. and S values around 

1.0 with one buoyancy effect being small compared with the other. Gill et al. [42] and 

Lowell and Adams [43] also considered this problem, including additional effects such as 

appreciable normal velocity at the surface and comparable species concentrations in the 

mixture. Similar solutions were investigated by Lowel and Adams [43] and by Adams 

and Lowell [44]. Light foot [45] and Saville and Churchill [46] considered some 

asymptotic solutions. Adams and McFadden [47] presented experimental measurements 

of heat and mass transfer parameters, with opposed buoyancy effects. Gebhart and Pera 

[48] studied laminar vertical natural convection flows resulting from the combined 

buoyancy mechanisms in terms of similarity solutions. Similar analyses have been carried 

out by Pera and Gebhart [49] for flow over horizontal surfaces. 
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Mollendrof and Gebhart [50] carried out a similar analysis for axisymetric flows. The 

governing equations were solved for the combined effects of thermal and mass diffusion 

in an axisymetric plume flow. Tenner and Gebhart [51], Hubbell and Gebhart [52] and 

Boura and Gebhart [53] have studied buoyant free boundary flows in a concentration-

stratified medium. Agrawal et al. [54, 55] have studied the combined buoyancy effects on 

the thermal and mass diffusion on MHD natural convection flows, and it is observed that, 

for the fixed Gr  and P., the value of X, (dimensionless length parameter) decreases as 

the strength of the magnetic parameter increases. Georgantopoulos et al. [56] discussed 

the effects of free convective and mass transfer in a conducting liquid, when the fluid is 

subjected to a transverse magnetic field. Haldavnekar and Soundalgekar [57] studied the 

effects of mass transfer on free convective flow of an eclectically conducting viscous 

fluid past an infinite porous plate with constant suction and transversely applied magnetic 

field. An exact analysis was made by Soundalgekar et al. [58] of the effects of mass 

transfer and the free convection currents of the MHD Stokes (Rayleigh) problem for the 

flow of an electrically conducting incompressible viscous fluid past an impulsively 

started vertical plate under the action of a transversely applied magnetic field. They 

neglected the heat due to viscous and Joule dissipation and induced magnetic field. 

During the course of discussion, the effects of heating Gr <0 of the plate by free 

convection currents , and G,,1  (modified Grashof number), S and M on the velocity and 

the skin friction are studied. Nanousis and Goudas [59] have studied the effects to mass 

transfer on free convective problem in the Stokes problem for an infinite vertical limiting 

surface. Raptis and Kafoussias [60] presented the analysis of free convection and mass 

transfer of steady hydromagnetic flow of an electrically conducting viscous 

incompressible fluid through a porous medium, occupying a semi-infinite region of the 

space boundary by an infinite vertical and porous plate under the action of transverse 

magnetic field. Approximate solutions have been obtained for the velocity, temperature, 

concentration field and the rate of heat transfer. The effects of different parameters on the 

velocity field and the rate of heat transfer are discussed for the case of air (Prandtl number 

Pr = .71) and the water vapour (Schmidt number Sc  = .60). Raptis and Tzivanidis [61] 

consider the effects of variable suction/injection on the unsteady two dimensional free 

convective flow with mass transfer of an eclectically conducting fluid past a vertical 

accelerated plate in the presence of transverse magnetic field. Solutions of the equations 

VA 



governing the flow are obtained with the power series. An analysis of two dimensional 

steady free convective flow of a conducting fluid, in presence of a magnetic field and a 

foreign mass, past an infinite vertical porous and unmoving surface is carried out by 

Raptis [62], when the heat flux is constant at the limiting surface and the magnetic 

Reynolds number of the flow is not small. Assuming constant suction at the surface, 

approximate solutions of the coupled nonlinear equations are derived for the velocity field, 

the temperature field, the magnetic field and for their related quantities. Agrawal et al. [63] 

consider the steady free convection flow with mass transfer of an electrically conducting 

liquid along a plane wall with periodic suction. 

1.3 Free and Forced Convection 

In the studies related to heat transfer considerable effort has been directed towards the 

convective mode in which the relative motion of the fluid provides an additional 

mechanism for the transfer of energy and material, the later being a more important 

consideration in cases where mass transfer, due to a concentration difference, occurs. 

Convection is inevitably coupled with the conductive mechanisms, since, although the 

fluid motion modifies the transport process, the eventual transfer of energy from one fluid 

element to another in its neighborhood is through conduction. Also, at the surface the 

process is predominantly that of conduction because the relative fluid motion is brought 

to zero at the surface. A study of the convective heat transfer therefore involves the 

mechanisms of conduction and sometimes those of radiative processes as well, coupled 

with that fluid flow. These make the study of this mode of heat or mass transfer very 

complex, although its importance in technology and in nature can hardly be exaggerated. 

The heat transfer in convective mode is divided into two basic processes. If no externally 

induced flow is provided and flow arises naturally simply owing to the effect of a density 

difference, resulting from a temperature or concentration difference in a body force field, 

such as the gravitational field, the process is referred to the natural convection. On the 

other hand if the motion of the fluid is caused by an external agent such as the externally 

imposed flow of a fluid stream over a heated object, the process is termed as forced 

convection. In the forced convection, the fluid flow may be the result of, for instance, a 

fan, a blower, the wind or the motion of the heated object itself. Such problems are very 

frequently encountered in technology where the heat transfers to or from a body is often 

due to an imposed flow of a fluid at a different temperature from that of a body. On the 

other side, in the natural convection, the density difference gives rise to buoyancy effects, 



owing to which the flow is generated. A heated body cooling in ambient air generates 

such a flow in the region surrounding it. Similarly the buoyant flow arising from heat 

rejection to the atmosphere, and to other ambient media, circulations arising in heated 

rooms, in the atmosphere, and in bodies of water, rise of buoyant flow to cause thermal 

stratification of the medium, as in temperature inversion and many other such heat 

transfer process in our natural environment, as well as in many technological applications, 

are included in the area of natural convection. The flow may also arise owing to 

concentration differences such as those caused by salinity differences in the sea and by 

composition differences in chemical processing unit, and these cause a natural convection 

mass transfer. Practically some time both processes, natural and forced convection are 

important and heat transfer is by mixed convection, in which neither mode is truly 

predominant. The main difference between the two really lies in the word external. A 

heated body lying in still air loses energy by natural convection. But it also generates a 

buoyant flow above it and body placed in that flow is subjected to an external flow and it 

becomes necessary to determine the natural, as well as the forced convection effects and 

the regime in which the heat transfer mechanisms lie. When MHD became a popular 

subject, in was natural that these flows be investigated with the additional ponder for 

different body force as well as the buoyancy force. At a first glance there seems to be no 

practical applications for these MHD solutions, for most heat exchangers utilize liquids, 

whose conductively is so small that prohibitively large magnetic fields are necessary to 

influence the flow. But some nuclear power plants employ heat exchangers with liquid 

metal coolants, so the application of moderate magnetic fields to change the convection 

pattern appears feasible. Another classical natural convection problem is the thermal 

instability that occurs in a liquid heated from below. This subject is of natural interest to 

geophysicists and astrophysicists, although some applications might arise in boiling heat 

transfer. The basic concepts involve in employing the boundary layer approximation to 

natural convection flows are very similar to those in forced flows. The main difference 

lies in the fact that the pressure in the region beyond the boundary layer is hydrostatic 

instead of being imposed by an external flow, and that the velocity out side the layer is 

zero. However the basic treatment and analysis remain the same. The book by Schlichting 

[64] is an excellent collection of the boundary layer analysis. There are several methods 

for the solution of the boundary layer equations namely the similarity variable method, 

the perturbation method, analytical method etc. and their details are available in the books 

by Rosenberg [65] Patanker and Spalding [66] and Spalding [67]. 



1.4 MilD Micropolar Fluid 

The concept of micropolar fluid deals with a class of fluids that exhibit microscopic 

effects arising from the local structure and micromotions of the fluid elements. These 

fluids contain dilute suspension of rigid macromolecules with individual motions that 

support stress and body moments and are influenced by spin inertia. Micropolar fluids are 

those which contain micro-constituents that can undergo rotation, the presence of which 

can affect the hydrodynamics of the flow so that in can be distinctly non-Newtonian. It 

has many practical applications, for example analyzing the behavior of exotic lubricants, 

the flow of colloidal suspensions or polymeric fluids, liquid crystals, additive suspensions, 

human and animal blood, turbulent shear flow and so forth. 

The theory of micropolar fluids was first proposed by Eringen [1]. In this theory the local 

effects arising from the microstructure and the intrinsic motion of the fluid elements are 

taken into account. Physically, the micropolar fluid can consist of a suspension of small, 

rigid cylindrical elements such as large dumbbell-shaped molecules. The theory of 

micropolar fluids is generating a very much increased interest and many classical flows 

are being re-examined to determine the effects of the fluid microstructure. Peddision and 

McNitt [68] applied the micropolar boundary layer theory to the problems of steady 

stagnation point flow and steady flow over a semi-infinite flat plate. Eringen [3] 

developed the theory of thermomicropolar fluids by extending the theory of micropolar 

fluids. Gorla [69] investigated the steady boundary layer flow of a micropolar fluid at a 

two dimensional stagnation point on a moving wall and claimed that the micropolar fluid 

model is capable of predicting results which exhibit turbulent flow characteristics. 

Although it is difficult to see how a steady laminar boundary layer flow could 'appear' to 

be turbulent. Takhar and Soundalgekar [70] have studied the effects of suction and 

injection on the flow of a micropolar fluid past a continuously moving semi-infinite 

porous plate. Hossain and Ahmed [71] have studied the common effect of forced and free 

convection with uniform heat flux in the presence of a strong magnetic field. In their 

study, the effect of both viscous and Joule heating were neglected. Mohammadein and 

Gorla [72] analyzed the effects of magnetic field on the laminar boundary layer mixed 

convection flow of a micropolar fluid over a horizontal plate. However the work by Rees 

and Bassom [73] on the Blassius boundary layer flow over a flat plate suggests that much 

more information about the solution of boundary layer flows of a micropolar fluid can be 

obtained. 
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Rees [74] have studied free convection boundary layer flow of a micropolar fluid from a 

vertical flat plate. In this paper he showed the qualitative behaviour which was found in 

his previous work. This qualitative result was different from that given in his previous 

work, where Blasius boundary layer flow of a micropolar fluid was found to reduce to a 

self-similar form when s0.5, where s is a constant. In this work he has sought to analyze 

in detail the micropolar analogue of the classical vertical free convection boundary-layer 

flow. The presence of micropolar effects served to cause the boundary layer (i) to become 

non-similar and (ii) to form a well defined two-layer structure at a large distance from the 

leading edge. Finally it is of interest to query why two-layer asymptotic structure was not 

found in the mixed convection analysis of Gorla [69]. In that paper the authors showed 

- correctly that forced convection effects dominate near the leading edge, but that free 

convection effects dominates further downstream. The natural convection flow of 

micropolar fluids in a porous medium was studied by Mohammadein and Gorla [72]. 

They obtained the effects of Joule heating on the magnetohydrodynamic free convection 

of a micropolar fluid. 

El-I-Iakiem [35] has studied Joule heating effects on magnetohydrodynamic free 

convection flow of a micropolar fluid. Numerical solutions are obtained for the flow and 

temperature fields for several values of the material properties of the micropolar fluid and 

- the magnetic field strength parameter. El-Amin [75] has studied magnetohydrodynamic 

free convection and mass transfer flow in micropolar fluid with constant suction. 

Approximate solutions of the coupled nonlinear governing equations are obtained for 

different values of the microrotation parameter. 

Rahman and Sattar [76] have studied about magnetodynamic convective flow of a 

micropolar fluid past a continuously moving vertical porous plate in the presence of heat 

generation/absorption. In this works they have extended the work of El- Arabawy [77] to 

a magnetohydrodynamic flow taking into account the effect of free convection and 

microrotation inertia term which has been neglected by El-Arabawy [77]. They have also 

considered the heat generation/absorption effects to a porous plate with constant suction. 

In this work, the effect of the internal heat generation/ absorption on a steady two-

dimensional convective flow of a viscous incompressible micropolar fluid past a vertical 

porous plate has been investigated using Finite difference method iteration technique. 



Chapter 2 

The Basic Governing Equations 

In this chapter those equations governs the flow of micropolar fluids in presence of 

magnetic field or not will be put forward. 

The generalized Continuity equation, Momentum equation, Angular Momentum equation, 

Energy equation and Concentration equation together with the Ohm's law and Maxwell's 

equations from the basis of studying Magneto Fluid Dynamics (MFD). These equations 

are as follows: 

The continuity equation for a viscous compressible electrically conducting fluid in vector 

form is 

LP  +V.(pq)=O (2.1) 
at 

For incompressible fluid, the equation (2.1) becomes 

V.q=0 (2.2) 

In three dimensional Cartesian coordinate system the equation (2.1) becomes 

ôu ôv 3w 
—+—+--=O (2.3) 
&v ay az 

The momentum equation for a viscous compressible fluid in vector form is 

(2.4) 
di p 3 

For incompressible fluid, the equation (2.4) becomes 

9- = F_iVP+vV 2q  (2.5) 
di' p 

When the fluid moves through a porous medium, the equation (2.5) becomes 

(2.6) 
di' p K' 

When electrically conducting fluid moves through a magnetic field of intensity H 

( B = pH , where B is the magnetic field.), the equation (2.6) becomes as a 

magnetohydrodynaniic (MI-ID) equation in the following form 

(2.7) 
dt p p K' 
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where J A B is the force on the fluid per unit volume produced by the interaction of the 

electric and magnetic field (called Lorentz force). 

Due to the presence of micro particles having microrotation the viscosity effect on the 

momentum equation will be changed and the fluid velocity will also be influenced by 

microrotation. As a result the momentum equation for a viscous incompressible 

electrically conducting micropolar fluid is 

i= F1 (2.8) 
di p p p p K 

The equation (2.8) can be written in the following form 

= F_iVP+(v+)V2q +.(V AG)+--J AB-----q (2.9) 
at p p p p K 

dq ôq 
where we have used = - + (q.V)q 

di at 

The angular momentum equation for a viscous incompressible electrically conducting 

micropolar fluid is 

(2.10) 
di pj P1 P1 

The equation (2.10) can be written in the following form 

(2.11) 
at P1 P1 

where again 
dG 

= 
G 
 + (G.V)G is used 

di al 

The Energy equation for a viscous incompressible micropolar fluid with heat generation 

and constant heat flux can be put in the following form 

1+(q.V)T 
kr (2.12) 

at PCP  

The generalized Ohm's law is of the form 

J=o'(E+qAB)----(JAB)+---VJ (2.13) 
ene ene  

The Maxwell's equations are 

VAH=J (2.14) 

VAE=—
aB  

 (2.15) 
at 

V.B=0 (2.16) 
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where p is the density of the fluid, q is the fluid velocity, u, v and w are the velocity 

component in the x, y and z direction respectively, F is the body force per unit volume, P 

is the fluid pressure and i is the kinematic viscosity, K' is the permeability of the porous 

medium, J is the current density vector, B is the magnetic field vector, k is the thermal 

conductivity, G is the microrotation, y is the spin gradient viscosity, j is the microinertia 

per unit mass, T is the fluid temperature, k7. is thermal diffusion ratio, C,, is the specific 

heat at constant pressure, a' is the electrical conductivity, E is the electric field intensity, 

C, is the concentration susceptibility, n, is the number of electron, I is the pressure of 

the electron. Also denotes the dissipation function involving the viscous stress and it 

represents the rate at which energy is being dissipated per unit volume through the action 

of viscosity. In fact the energy is dissipated in a viscous fluid in motion on account of 

internal friction and for incompressible fluid, where 

all 
f2 (aw2l (ôv äu'Y (ow Ov'Y (Ou 

=(p

21 

+K) 
 (&) 

+1—I +1—I >+i —+— I +i—+-- I +1 —+------ I (2.17) 
5y) ôz) 

 J 
Ox Oy) 1\5Y Oz) z Ox) 

which is always positive, since all the terms are quadratic, where ji is the coefficient of 

viscosity. 

The generalized Ohm's law in the absence of electric field and neglecting the half-current 

is of the form 

J=a'(qAB) (2.18) 

The magnetic field is B = (Br , B ,B.) (2.19) 

where (B , B,,, B:)  be the components of magnetic field. 

I jk 

Then qAB= U v w =(VB: _WB)+(WBx _UB:)J+(UBy _VBx )k (2.20) 

B, B,, B:  

Therefore the equation (2.18) becomes 

J = a'(vB.. - wB,,)i+ a'(wB - tiff.) j+ a'(uB - vB)k (2.21) 

j k 

J A B = a'(vB.. - wB,,) a'(wB - uB:) a'(uB,, - vB) 

BT B,, B:  
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= - uB) - (uB - vBrBy)}i+a'{(uBxBy - yR ) —(vB WBv B: )}J 

+a'{(vB,B.. —wB)—(wB —uBB..)}k 

=(c7SvBB. —uB —aB +a\'BB)i +@BB  —avB 2  —c'B +OVBy B:)J 

+(o'BB. —cy'wB —a'wB +o'uBB.)k (2.22) 

Let F=(F,,F,F.) (2.23) 

where (Fr, F, F.) be the components of body force. 

The microrotation is 

G=(0,0,N) (2.24) 

where (0,0, N) be the components of microrotation and the component N is the angular 

velocity acting in z-direction (the rotation of N is in the x-y plane). 

I jk 
a a a ÔN .ÔN 

Then, VAG= — —=i —+j-- (2.25) 
ox Oy  a Oy Ox 
00 N 

I jk 
a a a Ow Ov. au Ow. Ov au 

V A q = — - = (— - —)i  + (— - —)j + (— - —)k (2.26) 
Ox Oy Oz ay Oz Oz Ox ax ay 
U V W 

Again from (2.21) we have 

= 2 (vB. - wB,) 2  + (wB, - uB. 2  +07,2(uB - vB )2 (2.27) 

In three dimensional Cartesian coordinate system the momentum equation (2.9) with the 

help of the equations (2.22), (2.23) and (2.25) becomes 

au au au au i OP K (O2u  02u a2u'i KON 
—+u--+v—+w--=F ----+(u+—)I —+--+--- 1+--- 
at ax Oy az X 

p ax p (Ox 2  0y2  0z2) ,° Oy (2.28) 

+-{(wBB. —uB)—(uB —vB,B)}--w 
p k 

ày Ov Oi' Oi' 1 ap K (O2v  O2v O2v')  icON 
—+u—+v—+w—=F ---+(v+—)I —+---+-- I----  

ox a Oz ' p p ax 2 2  az2 ) O Ox 
(2.29) 

+ - { (uB B - vB.) - (vB - wB B,) ) - - v 
p k 
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Sw Sw Sw Sw I SP K 
(2 

, 5 2 w 2  w 
—+u--+v—+w—= F. ----+(v+-)i 2 + 
at Sz - p Sz p Sx ONY 

(2.30) 

+•_{(VByB:  —wB)—(wB UBx B: )} 
p k' 

In three dimensional Cartesian coordinate system the angular momentum equation (2.11) 

with the help of the equations (2.24) and (2.26) becomes 

SN SN SN SN y(32N  52N 52 N K Si' Su K 
—+u—+v—+w--=—I -+---+--- i+—(----)-2—N (2.31) 
at Sx Sy Sz 2 2  5z2 ) pj Sx Sy p1 

In three dimensional Cartesian coordinate system the energy equation (2.12) becomes 

ST ST ST ST K' (52T  S2T 52T") 
- -+U-+V--+W--= I -+---+--- i+Q(T—T) (2.32) 

at  Sx Sy Sz pC,JSx2  Sy2  5z2 ) 

Thus in three dimensional Cartesian coordinate system the continuity equation, the 

momentum equation, the angular momentum equation and the energy equation become 

The Continuity equation 

Su Si' Sw 
—+--~—=0 (2.33) 
Sx Sy  Sz 

The Momentum Equations 

Su Su Su Su 1 SP K (52u  S2u  S2u KSN 
—+u—+v--+w--=F ----+(v+-)I -+--+--- 1+------ 
at Sx Sy Sz X 

p Sx p L av2 2  Sz2 ) p Sy 

+-{(wB,: B.. —uB)—(uB —vB,B)}--w (2.34) 
p k 

Si' Si' Si' Si' I oP K (S2v  S2v KON 
—+u—+v---+w—=F ----+(v+-)I -+--+-- I--- 
St Ox ay Sz p Sy p ( Sx 2  Sy2  Sz2 ) p Ox 

V 
+—{(uBj3—vB )—(vB —wB B)}--v (2.35) 

p kf 

Ow Sw Sw Sw 1 OP K (S2w  S2w S2w 
—+u—+v—+w--= F. ---+(u+-)l -+---+--- 
St Sx Sy Sz p Sz p Ox 2 2  Sz2 

+ .—{(vBB. - wB,)—(wB - uBB)} - --w (2.36) 
p k 
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The Angular momentum equation 

aN 8N oN ON y 82N 52N'\ K &v OU K )2N (2.37) 
Ot Ox Oy oz

(a'N 

ax2  

The Energy equation 

OT OT OT OT K' [02T  02T 52T 
= -W  -i~T aZ  2 

) 

(2.38) 
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Chapter 3 

The Calculation Technique 
Many physical phenomena in applied science and engineering when formulated into 

mathematical models fall into a category of system known as non-linear coupled partial 

differential equations. Most of these problems can be formulated as second order partial 

differential equations. A system of non-linear coupled partial differential equations with 

the boundary conditions is very difficult to solve analytically. For obtaining the solution 

of such problem numerical methods are adopted. The governing equations contain a 

system of partial differential equations that are transformed by usual transformation into a 

non-dimensional system of non-linear coupled partial differential equations with initial 

and boundary conditions. The Finite Difference Method may be adopted for solving the 

non-linear coupled partial differential equations numerically. 

When a partial differential equation contain both time and space derivatives sometimes a 

technique is adopted to transfer that to an Ordinary Differential Equation (O.D.E.) 

containing only space derivatives, as they are comparatively easy to handle. Laplace 

transform provides the opportunity to do that. When this method is adopted three steps 

are required to obtain the solution of the partial differential equation. 

Taking Laplace transform of the equation(s) along with the initial and boundary 

conditions (It will provide ODE with additional parameter that will come from 

the kernel of the transform). 

Obtaining particular solution of the ODE in terms of the position and the 

parameter. 

Use of Inverse Laplace Transform to get back the time variable in the obtained 

particular solution. 

In this research work the physical system considered has provided nonlinear coupled 

partial differential equations, in terms of time and space derivatives. Hence Finite 

Difference Method is adopted to solve those nonlinear partial differential equations 

numerically. Attempt has also been made to solve coupled partial differential equations 

analytically (to solve analytically the nonlinear terms present in the equations will not be 

considered). To do that Laplace Transform Method is adopted. It may be mentioned 

that convolution theorem has an important role in case of obtaining Inverse Laplace 

Transform. The integrals arising through convolution theorem are quite tedious and to 



integrate them Mathematica® is used. In the following subsections finite difference 

method, Laplace tramsform and inverse Laplace transform will be discussed. 

3.1 Finite difference method: 
In order to solve the governing partial differential equations by finite difference method, 

let us consider a two-dimensional region. It is covered by a rectangular grid formed by 

two sets of lines drawn parallel to the coordinate axes with grid spacing Ax and Ay in x 

and y directions respectively. 

The numerical values of the dependent variables are obtained at the points of intersection 

of the parallel lines, called mesh points, lattice points or nodal points. These values are 

obtained by discretizing the governing partial differential equations over the region of 

interest to derive approximately equivalent algebraic equations. The discretization 

consists of replacing each derivative of the partial differential equation at a mesh point by 

a finite difference approximation in terms of the values of the dependent variable at the 

mesh point and at the immediate neighboring mesh points and boundary points. In doing 

so, a set of algebraic equations arise. 

Let the temperature I at a representative point be a function of two spatial coordinate x, y 

and time t. We adopt the following notation. Let the subscripts i and j represent x and y 

coordinates respectively and superscript n represents time. Let the mesh spacing in x and 

y directions are denoted by Ax and Ay, also the time step by At. Thus T(x,y,t) can be 

represented by T (lAx, jAy, nAt) = T1 71 1  

With this notation, let the function T and its derivatives are continuous. Then from 

Taylor's series expansions, the finite difference approximations to derivatives can be 

obtained. For example, the Taylor's series expansion of 7 +  about the grid point (i, j) 

gives 

ÔT (Ax)2  ö2T (Ax)2  Ô3T (Ax)4  Ô4T 
= T + [Ax— + + + + higher order terms] (3.1.1) 

'4 ' 
ax 2! ax2  3! ax 4! ax 4  

+1
or, 

[aT] 
 = 

7 —T , j  
+[O(Ax)] is 

Ax 

derivative 
aT 
- with the truncation error of order Ax 

the forward difference approximation to the 

Similarly 
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1/ I, 
I' T" 

I ,  
/ 

/ 
/ 

At time t+At 

j+1 

At time t 

f—i 

=T — [Ax  a
T(AX) 

___ ___ 

a  4 T 
+ higher order 1ermsJ, (3.1.2) 

-' a 2! 2 3! ax3  4! a 

(aT ) T, 
or, +[O(Ar)] is the backward difference approximation to the = 

Ax 

 
aT  

 derivative with the truncation error of order & and both are first order accurate. 
ax 

t 
'.4 

/ 
Ax i i+1 i+2 

x 
IC 

Fig. 3.1: Space time distribution 

Subtracting equation (3.1.2) from equation (3.1 .1), we obtain 

(aT T. 1  — T. 
= 

1+ + [O(Ax)2  
2Ax 

This is a central difference approximation to the derivative 
aT 
- with the truncation error 
ax 

of order (Ax) 2  which is second order accurate. 

The central difference approximation to a second order partial derivative can be 

similarly obtained by adding the equations (3.1.1) and (3.1.2). 

(

a2 T T —2T..+T 1  
Thus I = '" " " 

I,) 

Similar expressions can be written for y derivatives. 
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(a2 T 
= 

- 2 + 
+ [O(Ay)2 ] which is also second order accurate. 

-, _______________ i,j 

For time it can be similarly written 

(aT 7'' —7' 
i I I = 

Ili + [0(N)] which s 1 order accurate. 
at At 

The expressions for mixed derivatives can be obtained by differentiating with respect to 

each variable in turn. Thus for example, 

aT 
- ir - 

- 
(7 +  - T) 

(a2T \) a a 
= 

Y ),+1,j ôy ) 
= 

2' 

- ox Oy " 2Ax 2Ax 

Therefore, 

(_OT_ = 
- - 

+ 

40x0y 

Proceeding in a similar manner, the central difference approximation to the third 

derivative is found to be 

- 
'+2,j —2T,11 27 -1,j -2,j 

aX  3 
)

- 2A 3  

Similar approximations can be obtained even to higher order derivatives. 

3.2 Laplace Transform. 
Let F(t) be an arbitrary function of the real variable t that has only a finite number of 

maxima and minima and discontinuities and whose value is zero for negative values of t. 

If g(s) —_feF(t)dt Res~!c O (3.2.1) 

then 

I 
F(t) = 

2

Jg(s)e'ds, where j2 = —1 (3.2.2) 

provided 

(t)dt converges absolutely. (3.2.3) 

This is also known as Fourier-Mellin theorem. 

It is generally used that 

g(s)L{F(t)} (3.2.4) 

To denote the functional relation between g(s) and F(t) expressed in (3.2.1) it is said that 

g(s) is the direct Laplace transform of F(t). The relation (3.2.2) is expressed 

conveniently by the notation 
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F(t)=L'{g(s)} (3.2.5) 

it is then said that F(t) is the inverse Laplace transform of g(s). 

3.3 Inverse Laplace Transform. 
The problem of computing the inverse transforms of a function g(s) by the use of the 

equation 

I F(i)=— Jg(s)estds 
2713 

will now be considered. 

(3.3.1) 

The line integral for F(t) is usually evaluated by transforming it into a closed contour and 

applying the calculus of residues. 

Let the closed contour F consists of the straight line parallel to the axis of imaginaries 

and at a distance c to the right of it and the large semicircle s0  whose centre is at (c, 0). 

Then 

c+R 

cJe'g(s)ds 
= f eg(s)ds + Jeg(s)ds (3.3.2) 

c—JR 

where c is chosen great enough so that all the singularities of the integral lie to the left of 

the straight line along which the integral from c - jciz to c + joo is taken. 

The evaluation of the contour integral along the contour F is greatly facilitated by the use 

of Jordan's lemma, which in this case may be stated in the following form: 

Let p(s) be an integrable function of the complex variable s such that 

limq(s) = 0 (3.3.3) 
Is -+) 

Then 

urn fe."V(s)ds = 0 t>0 and Re s :!~ 0 (3.3.4) 
SD  

It usually happens in practice that the function 

0(s) = g(s) (3.3.5) 

have such properties that Jordan's lemma is applicable. In such a case the integral around 

the large semicircle in (3.2.2) vanishes as R —* c,  and provides 

1 •+JDQ I 
F(t) = 

— f g(s)e51ds = lim___cJe'g(s)ds (3.3.6) 
2213 —JDO R—s 2713 

Now, by Cauchy's residue theorem, it follows that 

e'g(s)ds = 24residue of eg(s) inside F (3.3.7) 
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Hence by (3.3.6) 

F(t) = residue of e'g(s) inside F (3.3.8) 

when R is large enough to include all singularities. 

If the function e'g(s) is not single-valued within the contour F and possesses branch 

point within F, it may be made single-valued by introducing suitable cuts. 

For the computation of an inverse transform, consider the determination of the inverse 

transform of 

g(s) 
= 2 

= L{F(t)} (3.3.9) 
S +a ' 

This function clearly satisfies the condition imposed by Jordan's lemma. 

Hence F(t) is given by (3.2.8) in the form 

F(t)=>res_2e51 2 
(3.3.10) 

s +a 

The poles of e 51  I(s 2  +a2 )are at s = ±ja (3.3.11) 

For the above case the residue of the simple pole at s=ja is 

e 
rescja 2

st  

 
(3.3.12) 

s +a 2ja 

Similarly 

es
t 

- e 
res0 

= 
-.y:\ \  (3.3.13) 

2 2 
s+a 2ja 

Hence 

1 - e" sin at 
F(t) = -_________ = (3.3.14) 

a 2j a 

Again consider 

L 1{g(s)}= 2 

CO 
=F(t) (3.3.15) 

(s+a) +o 

This function also satisfies the condition of Jordan's lemma. To get F(t) one must 

compute the sum of the residues of 

SI ll 

2 
(3.3.16) 

(s+a) +& 

The poles of this function are at s = —a±jw (3.3.17) 

The sum of the residues at these poles is 
S. 
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e_alejt e -at  e' 
- =e°'sinU)t=F(t) (3.3.18) 

2jco 2ja 

It may be thus concluded that once the function g(s) is known, its inverse may be readily 

evaluated, provided g(s) satisfies the conditions of Jordan's lemma, by means of the 

residue theorem. Summarizing the results of the theory of residues as applied to (3.2.8) it 

may stated that if g(s) has a simple pole at s = s0  then 

rese' = Iim(s—s0)g(s)e' (3.3.19) 
SS()  

Or if g(s) has a pole of order n at s = s0 , then 

res g(s)e" = lim[1 /(n - 1)!](d' / ds' )(s - s0 )" g(s)e 5' (3.3.20) 

Thus these formulas may be used to evaluate the residues of g(s)esl  at all of its poles and 

through the application of (3.2.8) the inverse is found. 

Convolution theorem 

This theorem is known in the literature as the Faltung or convolution theorem. In the 

older literature of the operational calculus it is sometimes referred to as the superposition 

theorem. 

Let 

L{g1(s)}=F1(t) (3.3.21) 

L'{g2(s)} = F2(0 (3.3.22) 

then according to convolution theorem 

L 1 {g1 g2 } = JF1 (y)F2 (t—y)dy = JF2 (y)F1 (t—y)dy (3.3.23) 

To prove this, consider 

L{g1 (s)g2 (s)} = F3 (t) (3.3.24) 

Then, by the Fourier-Mellin formula, 

1 
F(i)=— J91(s)92(s)e'ds (3.3.25) 

2  

However, by hypothesis, 

92 (s) = 5eF2(y)dy (3.3.26) 

Therefore 
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1 

F (t) = JF (y)dy fg1 (s)e ° ds (3.3.27) 
24 0  

if no question is asked for reversing the order of integration. 

However 

I 
J91(s'ds = F1 (t—y) (3.3.28) 

24,  

Hence 

F3  (t) 
= :' (y)F1  (t-  y)dy (3.3.29) 

Now, by hypothesis, F1  (t) = 0 if t is less than 0. 

F1 (t—y)=Ofory>t (3.3.30) 

Consequently the infinite limit of integration may be replaced by the limit t. Therefore 

(3.3.29) can be written in the form 

F3  (t) = JF (y)F (t - y)dy (3.3.31) 
0 

and by symmetry, 

F3 (t)= JF1 (y)F(t—y)dy (3.3.32) 

6. 
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Chapter 4 

Numerical Solution of the Transient Free Convection in Micropolar 
Fluid with Heat Generation and Constant Heat Flux. 

4.1 Introduction. 
In this chapter the governing equations of the system will be solved numerically. To do 

that the equations will be transferred to their non-dimensional form. The non-dimensional 

equations will then be discretized to obtain their finite difference counterpart. As stability 

is a very important issue for finite difference method to converge, that will also be 

discussed. 

4.2 Non-Dimensionalization of the governing equations 
Let us consider the free convection of a micropolar fluid along the vertical plate. The 

temperature of the plate is held at constant value of T and the heat flux is considered as 

constant, the thermal dispersion effect is also included. We have considered x-axis along 

the plate in the vertical direction and y-axis perpendicular to the plate. The governing 

equations with the Boussinesq approximation can be put in the following form 

Massequation: 
au av 

 
Ox Oy 

Ou ôu av k 82u kON 
Momentum equation: -~ u—+v-- = (v+—)---+ gt /3(T-T )+--- 

at ax Oy pay2 pOy 
aN aN  aN y a2 N k au 

(2N+.--) Angular momentum equation: + u— + v— = — - - 

at Ox 5ypjOy2 ç 

OT OT aT k' 0 2T 
Energy equation: 

at  
—+u--  

ax 
 +v--  

Oy 
 =-----+Q(T-T) 

x1, Oy 

With the boundary conditions: u(x,O,t) = 0, N(x,0,1) = 0, T(x,O,t) = T 

u(x,c/.J,t) = 0, N(x,cr,t) = 0, T(x,co,I) = Ta  

Here u and v are velocity components associated with x and y directions measured along 

and normal to the vertical plate respectively, v the kinematic coefficient of viscosity, k 

the vortex viscosity, p the density of the fluid, g*  the acceleration due to gravity, /3 the 

coefficient of thermal expansion, T the temperature of the fluid in the boundary layer, 

Ta  the free steam temperature, N the angular velocity, y the spin gradient viscosity,] the 

microinertia per unit mass, k' the thermal conductivity, c,, specific heat at constant 

pressure and 0 the heat generation. 
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The variables are made dimensionless with the followi:g substitution. 

= 

N * = N 
U v 2 (T—Tj 

Along with them the following dimensionless quantities are introduced. 

Prandtl Number, P = 
V 

= VIXP 
Grashof number, Gr = 

- T) 
r k/pC,, k ' U 

(Dimensionless material parameter) 
pt-i pv 

au au a4 ka2u kN 
Momentum equation: —+u--+v— 

at ax ay pôy2 p5y 

or, 
a0u) 

+U0u 
 O(U0u) 

 +U0v' 
 a(U0u) 

= 
ô( /U0) E?(ty /U0 ) 

k a ô(Uou* ) Iv) 
(v+—) a(ty*/

Uo
)a(ty*/U

o
) p a(/U0) 

Uau u .au*  u .a k ua2u* 
+u +—v =(v+— 

v v ax* v )2  .2 

or, 
k U 3  8N 

pv 2  ôji•  

or, 

* * 2 * * 

au au * au k 1 a u v * k aN 
--+v --=(v+—)— 2  +--g /3(T—Tj+--.--- 

at ax ay pv U pvay 

or, 

au' .au .ôu' k a2u v * (TT)(Tc Tj k aN 
+U +V  

al*
(~—) 

a
2 + ,3 g 

(Iy —Tax pv  

* * * , * * 

au .au .au a-u aN 
or, 

at ax *2 —+u —+v —=(1+)---+Gr6+A-- 

After dropping the asterisks, we have 

au au au ô2u N 
—+u—+v--=(l+z)—+A +GO (4.1) 
at ax 2 

Oly 
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au 
Angular momentum equation: 

ON  
— + 

u aN 
— + 

v ON 
— = - - 

y82 N k 
—(2N + —) 

at ax ayay2pj ay 

or, 

a(N'U Iv)
+UOU 
 a(NU Iv) +U0v a(N*U Iv) 

= 

a(wIU) O(v'c./U0 ) a(yIU0 ) 

y 0 O(N*U/v)k{2N*U a(U0u
O 

 

a(Vy*/Uo ) O(y*I Uo ) v +a(*/U)} 

U aN*  U . aN*u aN rUa2 N*  kU * 

2N +—) or, -------+----u —+—v 
2 1,2 ax' v 2 

' 

- 4 V3 03)2 ,q v OYI  

or, 0N -+u 
. aN' V

. 
 . 
aN' 

(2N + y 02 N' kv au' 
— —~ -=- —) 
at ' 

'2 Upj ay' 

aN*  .ON' ION' 02N'kv2(2N* Ou' or, -- + u -- + v = 

at Ox ' 
pv Uj ay 

aN' * aN* aN*  - O2N' 
--(2N' 

Ou 
or, --+u —+v 

Ox' 0y' 
203,12 

After dropping the asterisks, we have 

aN aN  szv 2 N A au 
—+u—+v--2 (2N+—) (4.2) 
at Ox 0y0y2 j Oy 

aT aT aT k O2T 
Energy equation: 

at 
—+u-- 

ax 
 +v— a =--- 

çx,, 
 --- Oy2 +Q(T-T) 

We have, 
0= (T-7) 

(T -Tj 

or, T=(Tç T)0+7 

Putting this value at the above energy equation, we get 

O{(T1 _TG:)0+T}u*  O{(T.  _Tcc)O+Tcc}u*  O{(T. - Tje+T}I 
= 

a(14' IU) a(i' LU0 ) O(vy' LU0 ) 

k 0 O{(T,.-T)0+T,} +Q(T-T) 
PCP  O(y'IU0 ) a(ty'IU0 ) 

or, 

u2 00 UO 
  * ae u 00 k u (7' 

--(T-T,)-----+—u (T-Tj-----+—v (T-7)-----=------ 
v Ot v Ox v Oy 

pcv -T)-+Q(T-T) 

aO • 38 30 k 320 v (T-T,) 
or,  -- + -- + 

ax, ay vr13yU(T-T,) 

Owl 



09ao oe i a20 or, — +u — +v — =------+--Q.0 
5i 0x &y Pr OY 2  U 

09 .00 .00 1020 
or, —+u —+v —=------+a0 

01 Ox Y P.  Y 2  

where, a = 
--- Q 
U0  

After dropping the asterisks, we have 

—+u—+v-- =---+a9 
09 00 00 1029 

at Ox 8Y Pr OY 2 
(4.3) 

The transferred boundary conditions are: 

u(x,O,t) = 0, N(x,O,t) = 0, O(x,0,t) = I 

u(x,co,t) = 0, N(x,co,t) = 0, 0(x,i,t) = 0, 

4.3 Discretization 

For simplicity an explicit method will be used. Let u' N', 0' denote the values u, N and 0 

at the end of a time step. Then the appropriate finite difference equations corresponding 

to equations (4.1), (4.2), and (4.3) are 

u' —u . u —u u. 1 —u.. 
u" 

-2u. +u . 1 —N 
+ u ' + v = (1 + ) + z\ 

N. 
' + G 0 (4.4) 

Sr . ' SX 
'j bY (SY)2 bY 

N'—N N —N N.. —N N 1 -2N+N u 
+ w u t-1j + v '' 

= 2 ' 
- —(2N + 

If-f U  (4.5) 
Sr ' SX ' bY (5J)2 bY 

01j 'j +u r ' 'i +v 
0 

+9, +a0, (4.6) 
Sr ' SX SY (bY)2  

during any time step. The coefficients u1 , vij  appearing in (4.4), (4.5) and (4.6) are 

generally considered as constant. Then at the end of any time step Sr , the new 

temperature 9', the new angular momentum N' and the new velocity components u' at all 

interior grid points may be obtained by successive applications of (4.6), (4.5) and (4.4) 

respectively. This process is repeated in time and provided the time step is sufficiently 

small u, N, 0 should eventually converge to values which approximate the steady state 

solution of equations (4.1), (4.2) and (4.3). 
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4.4 Stability Analysis 

Since the explicit procedure will to be used, we wish to know the largest time-step 

consistent with stability. The stability analysis for simultaneous partial differential 

equations is outlined below. 

The general terms of the Fourier expansion for u, N, and 0 at a time arbitrarily called t=O 

are all e'e'1"' apart from a constant (here i = Ji). At a time r later, these terms will 

become 

u = y (r)et e1' ,  N= 4(r)ee"1  , 9 = (r) e'e'1 ' 

Substituting these values in (4.4), (4.5) and (4.6) regarding the coefficients U and V as 

constant over any one-time step, and denoting values after time-step by yi', ' and ç' gives 

- '(r)e''e'' '(r)e''e' - 

Sr SX 

+ 
- yJ(r)eb0 e '  - 

bY 

yi(r)e' e' - 2yi(r)e" e"6Y  + çti(r)e' Xe1/3(Y+bY) 
( 1+ ' (SY)2  

(r)e Xel/I(Y+5Y)  —c(r)e i/JY e ,ccX icc)' 
+G(r)e e 

by 

or, +U I(1_e )+ 
(e' —1) = (l+A)ctl(e —2+e'") 

Sr SX bY (5))2 

- p 
by 

or, 
- iif çi'(l - e') t'(e'' —1) 

- 
i(cosfl8Y —1) 

Sr 
2(1+) 

(8)7)2  

(e 

bY 

Mr 

= [1— {--(1—e') +--(e'' —1) + 
2(1 + ')(1 —cos/35Y)}Sr]qi + A - -(e' —1) + GrSz 

aX by (5)7)2 by 

or, yi'=Aqi+B+c (4.7) 

where, A = I —I)+ 
2(1+A) 

 (I —cos/JSY)}Sr 
SX by 

(5)7)2 

B = - I) and C = GrST 
by 
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From equation (4.5) we have 

j- :ccX 
(r)e e 

, ' _(r)e Xe' (r)e'°"e"' — (r)e' e''  

Sr OX 

+v 4 (r)e' e'5  - ç(r)eb0 'e' 
= 

by 

2 
(r)e XeIP(Y+bY) 

 - 2(z)e''e' + 

(SY)2  

_• 

(r) e Xe.O(Y+öY) —C(r)
e

:ccX eifil 2i :X 
(r)e CicY 

Sly J I 

or, ' - + 
4(1 - e) 

ipsy  —1) 
= 

2 (e'' — 2 + e ' ) 

Sr OX by (5})2 

çt'(e'°  _1)2A ;  
JOY I 

or, 

- 1) + 22 (1— cosflOY) + -.}Sr] + ---(1— 
OX SI' (SY)2 j 

or, '=Dçt'+E (4.8) 

where, D=i(1_et7) 
JOY 

and E = i —{ ' 
Lv 
--(l — e 

v 22 2A 
) + 

SY 
— (e''  —I) 

+ (SY)2 
(1— cos fi 

J 
SY) + —}Sr 

Again from equation (4.6) we get 

- (r)e''e"' +U 
(r)e'e'°' - 

Sr OX 

+ V 
(r)e  Xefl(Y +öY ) 

- 

(5Y 

=_L (r)ee' - 2(r)e'e'' + (r)eXe1 

(SY)2 
+ 

(in the previous equation H is used in place of a, the heat source parameter) 

or, +u 1 _ +vC'' —1) (e' _2+e'')+H 
Sr & bY P, (SY)2  

or, ' 
—1) cosflSY_l) + H 

Sr Ox SI' P (SI')2  
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65Y  - or, ' = [1- {--(1- e'") + -1) + _
2 

2 (1- cos/JSY) - H}8r] 
SX Pr (SY) 

or, ' = F (4.9) 

where, F = 1- {---(1- e') + -1) _
2 
 (1- cosflSY) - H}Sr 

P(SY)2  

Equations (4.7), (4.8) and (4.9) are then expressed in matrix form 

i '  ABCyi 

'=DEOç 

OOF 

That is t '  = sll 

where i is the column vector whose elements are w and 4. 

For stability each eigen value 2 2, and A1  of the amplification matrix s must not exceed 

unity in modulus. 

The eigen value equation will be I IA - 

or, (2- F)(2 - A)(2 - E) - BD =0 

But as Sr is very small and (Jr)' is too small and is thus negligible. So we can take 

(A. - A)(2 - E)(2 - F) =0 

A1=A,22=E and A1=F. 

Hence the stability conditions will be 

A:!~l, E:!~1 and IFI:5l forall aand,8. 

It is assumed that U is everywhere non-negative and that V is everywhere non-positive. 

That is to be expected, since the heated fluid rises in the positive X direction and fluid is 

drawn in from the positive Y direction to take its place. 

Let 

USr IV [Sr Sr 
a=—, b= and c= 

SX by (SY)2  

Hence, A = I - {a(l - e') + b(e'fl6y  - 1) + 2c(I + A)(I - cos/38Y)} 

or, A =l-{a+b+2c(1+A)}+ae' -be' +2c(1+A)cos/JSY 

Let 2c(1 + A) = L then 

A=1-(a+b+L)+ae'+be+LcosflöY 

UA 
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The coefficients a, b and c are all real and nonnegative. By representing A on an Argand 

diagram, we can demonstrate that the maximum modulus of A occurs when a5X = mz 

and /35Y = nr, where in and n are integer, and hence occurs when A is real. For Sr 

sufficiently large the value of J AI is greatest when both in and n are odd integers. In 

which case 

A= I -(a+b+L)-a-b-L 

or, A= 1 -2(a+b+L) 

i.e. A1-2{a+b+2c(1+A)} (Putting the value of L) 

which becomes increasingly more and more negative with the increase in Sr. To satisfy 

It Al :!~ 1, the most negative allowable value is A = —1. Hence the stability condition is that 

2{a+b+2c (l+A)}< 2 

USr VlSr Sr 
Thatis — + +2(1+A) <1 

SX SY (SY)2  

Again for the stability condition JEJ < 1 

E = 1 
- 

(1 - e + -f 22 - (e °'' - 1) + (1 - cos /381') + 2A 
—}Sr 

SX 81' 
(51')2 

or, E 1 - (l — e 1&V) + à'  —l)+ 
226r 2ASr 

(l—cos/35Y)+ } 
SX bY (SY)2  

(4.10) 

V Sr 
For all a and /3 defining a = 

USr 
, b  = I

V ISr 
= and d = -, we have 

bX SY ' 

Sr 

(SY)2 

- {a(1 - e) + b(e'' - 1) + 22c(1 - cos /3SY) + 2Ad} 

=I—(a+b+22c+2Ad)+ae" —be 113by  +22 cos ,8SY 

The coefficients a, b, c and d are all real and non-negative. By representing E on an 

Argand diagram, we can demonstrate that the maximum modulus of E occurs when 

= mr and /3SY = nr, where in and n are integer, and hence occurs when E is real. 

For Sr sufficiently large the value of JEJ is greatest when both in and n are odd integers. 

In which case E=I-2(a+b+22c+2id)—a—b-22c 

or, E=1-2(a+b+22c+Ad) 

which becomes increasingly more and more negative with the increase in Sr. To satisfy 

I El :!~ 1, the most negative allowable value is E = —1 . Hence the stability condition is that 

2(a+b+22c+Ad)<2 
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USr ni& Sr Sr 
- Thatis — + +22 +A <1 (4.11) 

SX 8)' (by)2  

Likewise, the third condition Fl  :!~ 1 will require that 

USr Vj8r 
+ + 

1 28r - J-fSr 
- ( )~1 

SX SY Pr(SY)2  2 
(4.12) 

In the present problem, with chosen value of Pr, we need only be concerned with satisfying 

(4.12) since (4.10) and (4.11) follows automatically. The co-efficient U and lvi, although 

treated as constants over any one-step, will vary from one time-step to the next in a manner 

which cannot be predicted a priori. That is, the maximum permissible time step consistent with 

stability is itself variable, but its value can always be checked, during computation if necessary. 

4.5 Skin —friction coefficient 
One of the quantities of chief physical interest is the skin friction coefficient. The 

equation defining the wall shear stress is 

18u 
= (p + k)I I + kN(y) 0  

Hence the skin-friction coefficient is given by 

2r 2(p+k)"ôu" 2 au 
C1 

= pU = pU 
= —[v + Avil I 

0 u2 0 
'a 

2
[ 

 
1+A]vl 

U0 '('~Yu  ) Y 0 

Thus we can say that the skin friction coefficient c1  is proportional to [ 1+ A]vl
—) v=0 U0  

4.6 Results and Discussion 

In this thesis, the effect of transient free convection on micropolar fluid with heat 

generation and constant heat flux has been investigated using the finite difference method 

technique. To study the physical situation of this problem, we have computed the 

numerical values of the velocity, temperature and angular momentum within the 

boundary layer and also the coefficients proportional to the skin friction coefficient and 

Nusselt number is calculated. It is seen that the solution will be affected by the parameters, 

namely heat source parametera, micro inertia per unit mass j, dimensionless material 

parameter A, the Grashof number Gr, dimensionless material parameter 2 and the 
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Prandtl number Pr. The values 0.2, 0.5, 0.71, 0.73, 1, 2, 5, 7.01 are considered for Pr (0.2, 

o.5, 0.71, 0.73 for air and 1, 2, 5, 7.01 for water). The values of other parameters are 

however chosen arbitrarily. 

Figures (4.1)-(4.3) show the velocity, temperature and angular momentum profiles for 

different values of heat source parameter a respectively. From figure (4.1) it is observed 

that with the increase of a the velocity is increasing rapidly. But the spreading of velocity 

squeezes with the increase in a and within a short distance the velocity is becoming zero. 

Figure (4.2) is expressing that with the increase in a the temperature is increasing 

rapidly. But the spreading of temperature squeezes with the increase of a and within a 

short distance the temperature is becoming zero, as in the case of velocity. In Figure (4.3), 

with the increase in a, the negative value of angular momentum increases. Also the 

magnitude of positive value of the angular momentum increases with the increase of a 

When a is large the negative zone of the angular momentum is small in comparison to 

the small a. For large value of a the angular momentum oscillates more from negative to 

positive. 

Figures (4.4)-(4.6) are showing the velocity, temperature and angular momentum profiles 

for different values of micro inertia per unit mass, J respectively. In figure (4.4), there is a 

very small change of velocity due to increase the value of J. The velocity spreads very 

small with the increase of J and within a short distance the velocity is becoming zero. In 

figure (4.5), there is again a small increase of temperature with the increase of J. In figure 

(4.6), with the increase of J the negative value of angular momentum decreases. Also the 

magnitude of positive value of the angular momentum increases with the increases of J. 

When J is large the negative zone of the angular momentum is large in comparison to the 

small J. 

Figures (4.7)-(4.9) are representing respectively the velocity, temperature and angular 

momentum profiles for different values of dimensionless material parameter A. In figure 

(4.7) here with the increase of A the velocity is decreasing. But the spreading of velocity 

is more for higher values of A though the velocity is becoming zero at the same distance 

from the plate. In figure (4.8), the temperature increases very slowly with the increase 

of A and like velocity becoming zero at the same distance. In Figure (4.9), with the 
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increase ofA, the negative value of angular momentum increases. Also the magnitude of 

positive value of the angular momentum increases with the increase ofA. When A is large 

the negative zone of the angular momentum is small in comparison to the small A. For 

large value of A the angular momentum oscillates more from negative to positive. 

0 

Distance from the plate 

Fig. 4.1: Velocity profiles for different values of heat source parameter, a 
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E 

Distance from the plate 

Fig. 4.2: Temperature profiles for different values of heat source parameter,a 

Or-i.00. Pr0.71. J1.0{).A.2, 0.5 

E 
20 

Distance from the plate 0 -2: 

.1 

-oil 

Fig 4.3: Angular Momentum profiles for different values of heat source parameter,a 
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> 

Distance from the plate 

Fig 4.4: Velocity profiles for different values of micro inertia per unit mass, J 
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3- 

CL 
E 

Distance from the plate 
Fig. 4.5: Temperature profiles for different values of micro inertia per unit mass, .1 
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Fig. 4.6: Angular momentum profiles for different values of micro inertia per unit mass, J 
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Fig. 4.7: Velocity profiles for different values of dimensionless parameter, z 
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Fig. 4.8: Temperature profiles for different values of dimensionless parameter, A 

Gr 1.00, Pr 0.71,J = 1.00,u=0.5, ).=0.2 
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Fig. 4.9: Angular momentum profiles for different values of dimensionless parameter, A 

CM 



For different values of Grashof Number Gr, The Profiles for velocily, Temperature and 

angular momentum are presented in Fig (4.1 0)-(4. 12). In fig (4.10), we observed that with 

the increase in Gr maximum of the velocity increases whereas the spreading of velocity 

decreases. 

From fig (4.11), it is found that the temperature decreases with the increase in Gr. Also 

the temperature is becoming zero far away from the plate for lower values of Gr. The 

angular momentum fluctuation from negative to positive increases with the increase in Gr 

and for lower values of Gr though the magnitude of angular momentum are less but its 

spreading is more. 

Fig(4. I 3)-(4. 15) represents the velocity, Temperature and angular momentum profiles 

respectively for different values of material parameter A. It is seen from fig (4.13) and 

(4.14) that the material parameter A has very little impact on velocity and temperature 

Infact the Curves for different values of X are not clearly distinguishable. But with the 

increase in X the magnitude of angular momentum decreases. 

The profiles for velocity, temperature and angular momentum for different values of 

Prandtl number Pr are shown respectively in fig.(4.16) - (4.18). The velocity is not only 

decreasing with the increase in Pr but also it is becoming zero within a short distance 

from the wall. The temperature profile squeezes with the increase in Pr but the pick value 

of the temperature rises sharply. Incase of angular momentum from fig. (4.18), it is seen 

that the negative value of angular momentum near the wall has no appreciable change 

with the increase in Pr. But positive values of angular momentum increases with Pr. 

Though with the increase in Pr. the effective zone of angular momentum decreases with 

the increase in Pr. 

Fig.(4. 19) - (4.21) representing the velocity, temperature and angular momentum profiles 

for different values of time t respectively. From fig.(4. 19) and (4.20) it is seen that both 

the velocity and temperature are primarily increasing with the increase in time but after 

sometime they decreases a little and remain almost same for different times. The angular 

momentum has the same time effect as that of temperature and velocity i. e. primary 

increase then decrease then remaining close with the increasing time. 
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C) 
0 
I) 

Distance from the plate 

Fig. 4.10: Velocity profiles for different values of the Grashof number, Gr 

I 

Distance from the plate 

Fig. 4.11: Temperature profiles for different values of the Grashof number, Gr 
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Fig. 4.12: Angular momentum profiles for different values of the Grashof number, Gr 
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Fig. 4.13: Velocity profiles for different values of dimensionless material parameter, 2 
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Fig. 4.14: Temperature profiles for different values of dimensionless material parameter, 2 

Or - 1.00, Pr 0.71, J = 1.00,x ='O.S, A = 0.5 
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Fig. 4.15: Angular momentum profiles for different values of dimensionless material parameter, 2 
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0 

Distance from the plate 

Fig. 4.16: Velocity profiles for different values of the Prandtl number, Pr 
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Fig. 4.17: Temperature profiles for different values of Prandtl number, Pr 
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Fig. 4.18: Angular momentum profiles for different values of Prandtl number, Pr 
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Fig. 4.19: Velocity profiles for different values of time, T 
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Fig. 4.20: Temperature profiles for different values of time, T 
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Fig. 4.21: Angular momentum profiles for different values of time, T 
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In the following the effect of different parameters on the coefficient of skin friction and 

Nusselt number are discussed which are tabulated in table (4.1) - (4.6). The values shown 

there are proportional to the coefficient of skin friction and Nusselt number. 

In Table (4.1), the values proportional to the coefficient of skin friction and Nusselt 

numbers for different values of a is tabulated with fixed values of the other parameters. 

From the table it is observed that with the increase in a the value proportional to the skin 

friction increases, whereas in the case of Nusselt number the situation is reversed. Also 

the rate of decrease in Nusselt number is far more than the rate of increase. 

In table (4.2), the same is tabulated as table (4.1), but different values of micro inertia J 

with the other parameters are kept fixed. From the table it is observed that the coefficient 

proportional to the skin friction increases primarily (from 1 to 4) then decreases. In both 

cases the rate of change is very small. Whereas the case of Nusselt number the rate of 

decreases is monotonous, although slow. Thus it may be considered that the microinertia 

has a very little impact on the coefficient of skin friction and Nusselt numbers. 

The effect of dimensionless material parameter, A on the coefficient of skin friction and 

Nusselt numbers cab be observed from table (4.3). In the table only the dimensionless 

material parameter A has been varying , keeping other parameters as fixed. It is 

observed that both the tabulated values are decreasing with the increase in A .and the rate 

of decrease has no significant difference. 

Table 4.1: Numerical values proportional to skin friction coefficient C1  and Nusselt 

number Nu for different values ofa, taking Gr = 1.00,Pr = 0.71,J = 1.00,2 = 0.2,A = 0.5 

as fixed 
a Values proportional to C1  Values proportional to Nu 

0.5 9.822492 -4.726112 
0.8 18.620130 -14.733240 
1.0 25.665870 -25.549920 
1.5 46.543100 -69.980420 
2.0 71.292650 -143.382300 
2.5 99.310490 -250.198700 
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Table 4.2: Numerical values proportional to skin friction coefficient C f  and Nusselt 

number Nu for different values of J, taking Gr = I .00,Pr = 0.71,a = 0.5,2 = 0.2,i\ = 0.5 

as fixed. 
J Values proportional to C f  Values proportional to Nu 

1.00 9.822492 -4.726112 
2.00 9.792691 -4.752003 
3.00 9.788363 -4.766579 
4.00 9.788019 -4.775903 
5.00 9.788466 -4.782364 
6.00 9.789032 -4.787105 

Table 4.3: Numerical values proportional to skin friction coefficient, C f  and Nusselt 

number Nu for different values ofA, taking Gr = 1.00,Pr = 0.71,.J = 1.00,a = 0.5,2 = 0.2, 

as fixed. 

A Values proportional to C f  Values proportional to Nu 

0.2 10.540360 -4.584459 
0.5 9.822492 -4.726112 
1.0 9.070086 -4.933964 
1.5 8.594524 -5.130653 
2.0 8.256192 -5.323051 
2.5 7.996166 -5.513247 

In table (4.4) the values proportional to the skin-friction coefficient and the Nusselt 

number are tabulated against the Grashhof number Gr. It is seen that both of them 

increases with the increase in Gr. For skin friction the rate of increase is almost same, but 

in the case of Nusselt number the rate slows down for higher values of Gr. 

Table (4.5) shows the values proportional to the skin-friction coefficient and the Nusselt 

number against the dimensionless material parameter A. It has the same effect on them 

as that of J. Also the rate of change here is similar to that in J. 

Finally the effect of Prandtl number, Pr on the coefficient of skin friction and Nusselt 

numbers are presented in table (4.6). Here again, as usual, the other parameters are kept 

as constant. It is seen that with the increase in Pr the value proportional to skin friction 

increases, whereas the Nusselt number decreases. 
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Table 4.4: Numerical values proportional to skin friction coefficient C1  and Nusselt 

number Nu for different values of Gr , taking Pr = 0.71,J = 1.00, a  = 0.5,2 = 0.2A = 0.5 

as fixed. 

Gr Values proportional to C Values proportional to Nu 

1.00 9.822492 -4.726112 
2.00 11.018580 -2.537850 
3.00 12.156370 -1.796058 
4.00 13.238690 -1.416348 
5.00 14.273790 -1.182411 
6.00 15.268690 -1.022038 

Table 4.5: Numerical values proportional to skin friction coefficient C,. and Nusselt 

number Nu for different values of X, taking Gr = 1.00 Pr = 0.71,.J = 1.00,a = 0.5,A = 0.5 

as fixed. 

2 Values proportional to C1  Values proportional to Nu 

0.2 9.822492 -4.726112 
0.4 9.748273 -4.742879 
0.5 9.735003 -4.748732 
0.6 9.727735 -4.753602 
0.8 9.722200 -4.761340 
1.0 9.722288 -4.767288 

Table 4.6: Numerical values proportional to skin friction coefficient C. and Nusselt 

number Nu for different values of Pr, taking Gr =1.00, J  = 1.00, a = 0.5,2 = 0.2A = 0.5 

as fixed. 

Pr Values proportional to C. Values proportional to Nu 

0.20 7.927539 -2.109994 
0.71 9.822492 -4.726112 
0.73 9.869625 -4.819553 
1.00 10.446450 -6.076511 
5.00 16.005450 -27.739200 
7.01 18.124500 -40.557210 

1-  
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Chapter 5 

Analytical solution of the Transient Free Convection in Micropolar 
Fluid with Heat Generation and Constant Heat Flux. 

5.1 Introduction. 
In this chapter the governing equations of the system will be solved analytically. To do 

that the non-dimensional forms of the governing equations obtained in the previous 

chapter will be considered. The non-dimensional equations are also non linear as their 

dimensional counterparts. To solve them they are made linear by dropping the non linear 

convective terms. For the solution purpose Laplace transform is to be used to transfer the 

partial differential equations to ordinary differential equations, as the time variable or 

derivatives with respect to time will not be there. After the introduction of Laplace 

transform the equations will contain additional parameter coming from the kernel of the 

transform. The ordinary differential equations will be solved including the additional 

parameter and then the inverse Laplace transform will be used to get back the solution 

that will also include time. 

5.2. Manipulation of the governing equations 

The non-dimensional equations of the system with the non-linear convective terms (that 

are developed in chapter 4) are 

au au (3U alu 
- + u - + v = (1 + A) --+A+G8 (5.2.1) 

ax (3)) 
(3N (3N SN 
- — + v — 2 --(2N+--) + u (5.2.2) 
at ax 2 j aly 

ac 9 ae la2o 
—+u--+v—=----+a6 (5.2.3) 
at 

The transformed boundary conditions are: 

u(x,O,t) = 0, N(x,0,1) = 0, 9(x,0,t) = 1 

u(x,co,I) = 0, N(x,,t) = 0, G(x,c',t) = 0, (5.2.4) 

To solve the above equations analytically the non-linear convective terms will not be 

considered and thus the equations will be linearized. Also as the non-dimensional velocity 

component u, angular momentum N and temperature 0 have no derivative in terms of x, 

the vertical distance, so it may be considered that uu(y,t), N=N(y,t) and 8 = O(y,t). 

51 



Hence equations (5.2.1)-(5.2.3) can be written as 

au a 2u 
+ G 0 (5.2.5) 

at 

(5.2.6) 
at ay 

2  j ay 

ao 1a29 ----+th (5.2.7) 
at 'r aY 

The transferred boundary conditions will be: 

u(0, t) = 0, N( c ,t)=E, 9(0, t) = 1 

u(co,t) 0, N(ci,t) = 0, 0(co,I) = 0, (5.2.8) 

where it has been assumed that near the plate the angular momentum is not zero and s is 

a very small number. 

5.3 Analytical solution. 
As mentioned earlier to solve the equations (5.2.5) - (5.2.7) with the boundary conditions 

(5.2.8) Laplace transform will be used. Laplace transform will transform the partial 

differential equations into ordinary differential equations and they will be solved usually. 

In the following subsection the use of Laplace transform and the solution of the ordinary 

differential equation will be discussed. 

5.3.1 Laplace transform and ordinary differential equation 
Taking the Laplace transform on the equations (5.2.5)-(5.2.8) on considering L{u}V, 

L{N}=ç, L{01=xV the following relations will be obtained: 

SVU(Y O ,0)=+A) 
d2V 

+A 
 dE 

 +GYI  
dy2 d 

r 
y 

A dV 
(2+—) (5.3.2) 

dy 2  j dy 

2  
si'-O(y,0)= 

1 d p' 
-----+açt' (5.3.3) 
Pr dy 2  
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with transferred boundary conditions: 

V(O,$)0, ,$) = yi(O,$) =1, 

V(00,$)=0, 0(00,$)=0, yi(cr,$)=O 

As initially there was no flow so u(y,O)0, N(y,O)0, 0(y,O)0. As a result (5.3.1), (5.3.2) 

and (5.3.3) become 

SV(1++A+GrY1 (5.3.4) dY2 dy 

s24—(2co+ 
 dV  
--) (5.3.5) 

dy j dy 

1 dyi 

Pr dy 
(5.3.6) 

Equation (5.3.6) can be written as 

=0 
Pr dy2  

whose solution is 

yi_—Ae'+Be , k 2  =Pr(s—a) (5.3.7) 

The boundary condition requires that A to be zero and B =--. 

Thus the solution of (5.3.6) is (5.3.8) 

To obtain the solution of equation (5.3.5) it is assumed that the microinertia per unit mass, 

in its non dimensional form, is quite large so that the second term on the right of equation 

(5.3.5) can be considered as zero and thus the equation will be of the fonn 

s=24 (5.3.9) 
dy 

whose solution is ço = C1 e + C2e' 

suggest that C1  be zero and C2  be E/s. 

- 
Thus the solution of (5.3.9) is , = E —e 2 

S 

2 ,where r = -. The boundary conditions 

(5.3.10) 
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dy VAs 

With the solutions already obtained, equation (5.3.4) will become 

dV S 
)V = ( )E I' e - 

Gr 

dy 2  l+ l+A VAs H-As 

whose complementary function be 

V = Te'' + He' where w 2  
l+A 

Boundary condition requires T to be Zero. 

:.V=He 

and the particular integral be 

EA-[i I e] 

[ 

Gr 

(1+A_ 2)L 
- {(1+A)Pr-1}s2 _Pra(l+A)skhl 

So the general solution is 

V = + 
EA-.f, e

( 

- r_
Gr

[e 11 
(1 + A - 2) L {(l + A) Pr— 1}s 2  - Pra(1 + A)s 

Applying boundary condition V(O,$)=O the following will be obtained, 

o - 
H EA[) 1 Gr 

- 

+ (1+A-2) {(l+A)Pr}s2  —Pra(1+A)s 

Kf- 
1 e H = -

EA[k 1 
+

Gr 

(1+A-2) ,.jJ {(l+A)Pr}s2  —Pra(1+A)s 

Hence 

e 
Gr 

- 

EA.IX 

] 

--(-:) 

[{(1+ A)Pr_l}s2 —Pra(l+A)s  

+ 
J. EA[X 1e 1 Gr 

1+A-2 
j 

{(1+A)Pr-1}s2  _Pra(l+A)s  k I 
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y ____ 
1 

e" I 
V=Gr[ - I 

[{l + t)Pr-1}s2  —Pra(1+ A)s (1+ A)Pr-1}s2  - Pra(l+ A)s] 

or, 

Ez\-..[i e 
_Y (.,[ )  1 
If 

(5.3.11) 

V 

The solutions so far obtained have no terms containing t. To get the solutions including 

the time t can be obtained by taking the inverse Laplace transform to the equations (5.3.8), 

(5.3.10) and (5.3.11). In the following subsection how the inverse Laplace transform can 

be obtained will be discussed. 

5.3.2 Inverse Laplace transform 

The non dimensional temperature can be obtained by taking inverse Laplace transform on 

,u in equation (5.3.8), i.e. 

6 = L{yi} = K' { 1e } 

Now, 

L {!} =1 .and K' e' 

2r t 2  

So using change of scale property and 1St shifting property it can be written as 

_______ yl p 
Pr at--- 

} = e 

2-Jt 

Hence by convolution theorem 

y2 PT 

K' { } J
FP 

 -e " du = 
2 

dz 

2u2 yW 

The result of last integral can be obtained from Mathematica® and is 

[ (J,2 Pr Pr_ 2t _ y2aPr)l [(y2 Pr_2t_y2aPr)l 
I +e2 2 Erfc[ 

4 2yPr 

] 

2yPr 

jJ 

(5.3.12) 
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CA 

The non dimensional angular momentum, N can be obtained by taking inverse Laplace 

transform on the equation (5.3.10). Thus 

N=L{ço}=K'{—e 2 

S 

As has been done earlier L 1 
= 

Ey 'e 4 'du = fe 2 dz 
Is J o 2 Ji 27 

/TErfI 1 
N=E* l 2i (5.3.13) 

Again the result of the integration is obtained through Mathematica®. 

To obtain the non dimensional velocity u the inverse Laplace transform of (5.3.11) is to 

be taken. Thus 

1 
1Gr[_________________  e 

I [{(1+A)Pr_l}s2  —Pra(1+A)s {(1+E)Pr-1}s2  Pra(1+A)s] 

[  
u = L{V}=L' 

LX- 
EA e  

1 

+ I I 
1+L_/%[  

I Gr LI 1 

Pra(1+A) s- 
I Pra(1+i) 

I I 
=L'1 [ Pr(1+A)-1 

1'[ 

(LX-) 

-e 1 --r 
Si Jj 

EAfi e * 
(-LX-) 1 

e I 
J;- 

To calculate the above one will require the following results: 

I 2J at- y2  Pr -- 
e 41 

2Jt 

( Y I;) 
____________ -°" L'{e }= -e  
2/r(1+A) 

1L 
L'{e'}= 

2 
_ ---e' 
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and L4 
i 

} 

i I 

{{(1+ A)Pr-1}s2  - Pra(1+ A)s = Pra(1+A) 
 

If one consider 

F1  (t) = L 1  { (s)} = L 1  {e 
I 

and 

1 G1 (t) = L{g1(s)} 
= L'{(l+A)pr l}s2  _Pra(I+A)s 

1
} 

then by convolution theorem one will obtain 

L' (f(s) * g1  (s)} = $F1  (u)G1  (u - t)du 
0 

[ Pra(1+i) Pr(I+) y2 - y2  

e' 1 - 

21+A)Pra(1+A) 0 
U 2 

0 ] 

4V1 + 
Pra(I+A)  

I e Je (Pr(I+)-I)42 

= 2Jr(l + A) Pra(l + A) y [ 2i 

dz— :se;1] 

2i 

I
Pra(I+) 1

2 H 
I I

e i '2 I
Pra(l+A) ] 

oo Pray2 2 00 

where, I = Je11)42 dz and 12  = Je 2 dz 
y y 

2+ 2/ijt 

Similarly on considering 

L' {f2 (s)} = F2  (I) = K' {e' } and 

1 
K' {92(s)} = G2 (1) = 

K' {{(1+ A)Pr-1}s2  - Pra(1+ A)s} 

by convolution theorem 

K' {f2  (s) * 92  (s)} = JF2  (u)G2  (t — u)du 
0 

Y 
Pra(1+) a y2  Pr y2  Pr 1 

— [ Pr I e (11 JPr(I+)_14udu - 

2Ja(1+A)[ 0 
U 2 

0 ] 
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[ Pra(l+) 
- 

Prqy2 22 1 
[e Pr(l+A)-I Je (Pr(I+)-I)4:2 dz - Je 

4 .2 dz 
= 2'jc(1 + I 

2i1 2\z J 

2 r Pra(I+) 1 

Pra(l+A)[ 
I _Jj 

- ____ _2 00 aPry2  2 

where, 13  = fe +1)4z2 dz and 14  = Je dz 

2V1 2V1 

Again considering 

and 

Lg3(s)}=G3(t)=L{e 
' } 

by convolution theorem 

r, 1 
__ 

y l  L{f(s)* g3(s)} = JF3  (t—u)G3 (u)du - JJi--e'du 
= 

5 

0 7r.J[o 
U 2 ] 

y2  

where 15  = J-%J-- -e 4 du 
0 

Lastly considering 

L{f 4 (s)} = F4 (t) = L{ }and L{g4 (s)}=G4 (t)=L{e } = 

by convolution theorem 

[1 2 1 
______ 

y 
L' (s) * 94  (s)} = fF4  (t - u)G4  (i)du = du 16  

2TJl+A + A[o 
j 

1  

where 16  = JJt - u --e 
0 

The results of the integrals 11  to 16 is obtained from Mathematica® and are as follows: 
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flyZp 

= -e 
4 I 

2T 
y 1apr 1y 2 _ 2t+ 1+a(1 

I + e \-I*a(I+)Pr 
- Ef 

+ A)Pr 
[ 

y2a Pr 

2y.jii-i-i) 

[2 + 2t(I + A) 
y 2a Pr 

- e -I+a(h.)Pr Ef[ 
-1 + a'(I + i\)Pr 

2yjt(1+A) 

'2 =Erfc[ ] 

[(Y2Pr2t[_y2aPr 
_1 

1+ a(1+ A) Pr 
__Erfc I 

_____ 

2yPr 
_ 

I 

+a(1+1)Pr L J 

V 
 + e Erfc 

-1+ a(1 + A) Pr 

I 3 =e 

(y2pr+2ty2aPr 

_1 

2yPr 

j 

I 

+ e2 rErfc  
Pr- 2t- y2a Pr) 2 

[ 
Pr+ 2t- y2a Pr)]] 

14 =e Y 2 Erfc[ 
2yPr 

j 

2yPr 

- 

15  = - + 2e 412 V7r 
 FT2 + 

 ir  Erfr 

L 

and 

- y2  
t (1+ A) 

16  = - + 2e 4z(I+) 11 
+Erf[ 

2 
2 

j 
Thus the value of u is 



Pra(I+) 

2Gre 
[I 131+ u= 

Pra(1+A) 

2Gr 
[14 '2] 

'JPra(l+A) (5.3.14) 

+ 
EAy EAyJ 

(16 ) 
(1+A-2)1+A 

5.4. Result and discussion 

The obtained velocity, temperature and angular momentum profiles are shown 

graphically in fig.(5.1)-(5.13), for different values of heat source parameter a 

dimensionless material parameter A, the Grashof number Gr, dimensionless material 

parameter 2, the Prandtl number Pr, time t and constant E. The values 0.71, 0.73, 1.00 

are considered for Pr, the values of other parameters are however chosen arbitrarily. 

In Fig.(5.1)-(5.3) the velocity profiles for different values for a , A and t are shown 

respectively. In these figures it is common that with the increase in the parameters the 

velocity also increases. The rates of increases in different parameters are different. For 

fixed t, with the increases in a or A though the velocity is increasing but where it is 

again becoming zero is not changing that much. But with the change in t, velocity is not 

only increasing but also it is spreading i.e. it is becoming zero again far away from the 

plate. 

The velocity profiles for different values of E, 2 and Gr are shown in figures (5.4)-(5.6) 

respectively. These figures show that the velocity has no appreciably change due to the 

change in the value of E, 2 and Gr. 

In fig.(5.7), the velocity profiles for different values of Pr are shown. It is seen that the 

velocity increases with the increase in Pr. The velocity is again not spreading with the 

increase in Pr. 
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Fig.5.1 Velocity profiles for different values of a (0.1, 0.2, 0.3) with 
Gr = 2.00,Pr = 1.0O,E = 0.1,t = 2,% = 0.4,A = 0.5 
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Fig.5.2 Velocity profiles for different values of A (0.5, 0.6, 0.8) with 
Gr=2.00,Pr=1.00,E=0.1,t=2,A=0.4,a=0.1. 
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Fig.5.3 Velocity profiles for different values oft (2, 4, 7) with 
Gr = 2.00,Pr =1.0O,E = 0.1,2 = 0.4,i = 0.5,a = 0.1 
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Fig.5.4 Velocity profiles for different values of E (.1, .2, .4) with 
Gr = 2.00,Pr =1.00,t = 2,2 = = 0.5,a = 0.1 
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Fig.5.6 Velocity profiles for different values of Gr (2, 3, 5) with 
Pr=1.00,E=O.1,t=2,,t=O.4,=O.5,a=O.1 
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Fig.5.5 Velocity profiles for different values of ..%(O.4, .6, .9), with 
Gr = 2.00,Pr = 1.00,E = O.1,t = 2,c = O.1, = 0.5 
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Fig.5.7 Velocity profiles for different values of Pr (0.71, 0.73, 1.00) with 
Gr=2.0O,E=0.1,t=2,2=0.4,z=O.5,a=0.1 

T[yL 

15 

1.0 

0.5 

Fig.5.8 Temperature profiles for different values of a (0.3, 0.5, 0.8) with Pr 0.71, t 3. 
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Fig.5.9 Temperature profiles for different values oft (4, 6, 8), taking a = 0.5, Pr = 0.71 
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Fig.5.10 Temperature profiles for different values of Pr (0.71, 1.00, 7.01), taking 
a = 0.2,: =4 as fixed. 
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In figures(5.8)-(5. 10) the temperature profiles for different values of the heat source 

parameter a, time t and Prandtl number Pr are shown respectively. From Fig(5.8) it is 

seen that the temperature is increasing with the increase in a and it is becoming zero 

near the same place away from the wall. Fig(5.9) shows that the temperature also 

increases with the increase in t, but the temperature is becoming zero at far away for 

higher values of t. From Fig(5.10) it is seen that the temperature is decreasing with the 

increase in Pr and it is not becoming zero at the same place away from the wall. The 

temperature is becoming zero at close to the wall for higher values of Pr. 

Figures (5.1 l)-(5. 13) represents the angular momentum profiles for different values of 

constant E, time t and material parameter ?. respectively. Figure (5.11) shows that E has 

no impact on angular momentum, it is just indicating the starting value near the wall, as a 

result all the curves are finishing at the same distance from the plate. Figure (5.12) shows 

that the angular momentum increases and spreads more with the increase in time t. The 

same is observed from Fig. (5.13) for different values of X. But the rate of increase or 

spreading are different for change in different parameters. 
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FigS. 11 Angular momentum profiles for different values of E (20, 25, 40), with A = 3,t = 2. 
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Fig.5.12 Angular momentum profiles for different values oft (1,2,3) with A. = 3,E =20 
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Fig.5.13 Angular momentum profiles for different values of 2( 2,3, 5), with E=20, t =2. 
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