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Abstract 

Many scientific phenomena are now investigated by experimental design. In the field of 

experimental design problems we consider maximin  in Latin Hypercube Designs (LH Ds). 

Problems are formulated as optimization ones. Optimal Latin 1-lypercube designs has good 

space-filling as well as non-collapsing properties, is widely used experimental design. Here, we 

consider Iterated Local search (ILS) heuristic approach to obtain optimized (maximin) I.HD in 

Euclidian distance measure. There is another important property required in experimental 

design is the inul/icollinearily. Since if two factors are correlated then it will not be possible to 

distinguish between the effects of the two factors based on this experiment. There are 

procedures to find good LHDs by minimizing the pair-wise correlation or maximizing the inter-

site distances. Several experiments are performed to compare our results with available ones in 

the literature. Many improvements, regarding maximin LI-ID. arc obtained. Extensive 

experiments have been also performed to analyze the inullicollinearity of the optimal LI-IDs. 

Some other structural information of the optimal (maximin) LI-IDs obtained by the ILS 

approach are analyzed. Finally experimentally it has been shown that the maximin LI-ID 

obtained by ILS is the state of arts regarding space-lIlting as well as non-collapsing properties 

and comparable regarding inulticollineariiv property. Moreover the dependency among the 

factors of the experimental design obtained by ILS approach is negligible for large value of 

design points. 

-a, 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

The design of computer experiments has much recent interest and this is likely to grow 

as more and more simulation models are used to carry out research. Computer 

simulation experiments are used in a wide range of application to learn about the effect 

of input variables x on a response of interest y [Butler (2001)]. In computer 

experiments, instead of physically doing an experiment on the product, mathematical 

+ models describing the performance of the product are developed using laws of 

engineering/physics and solved on computers through numerical methods. As 

simulation programs are usually deterministic so the output of a computer experiment is 

not subject to random variations, which makes the design of computer experiments 

different from that of physical experiments [Fang et al. (2006)1. Many simulation 

models involved several hundred factors or even more. It is desirable to avoid replicates 

when projecting the design on to a subset of factors. This is because a few, out of the 

numerous factors in the system, usually dominate the performance of the product. Thus 

a good model can be fitted using only these few important factors. Therefore, when 

projecting the design on to these factors, replication is not required. 

As is recognized by several authors, the choice of the design points for computer 

experiments should at least fulfill two requirements (details can be found in [Johnson et 

al. (1990), Morris and Mitchell (1995)]. First of all, the design should be space-filling 

in some sense. When no details on the functional behavior of the response parameters 

are available, it is important to be able to obtain information from the entire design 

space. Therefore, design points should be evenly spread over the entire region. 

Secondly, the design should be non-collapsing. When one of the design parameters has 

(almost) no influence on the function value, two design points that differ only in this 

parameter will collapse, i.e., they can be considered as the same point that is evaluated 

twice. For deterministic functions this is not a desirable situation. Therefore, two design 

points should not share any coordinate value when it is not known a priori which 

parameters are important. There is another important property for the design of 



experiments - the inulticollincarity property. That is the factors /coordinates should be 

uncorrelated or they are mutually (approximately) orthogonal. The mullicollinearily 

property is also important, because if two factors are correlated then it will not possible 

to distinguish between the effects of the two factors based on this experiment. 

For the design of computer experiments Latin Hypercube Designs (LHDs), first 

introduced by McKay and his co-authors in 1979, fulfill the non-collapsing property. 

LHDs are important in the design of computer-simulated experiments [Fang et al. 

(2006)]. 1-lere LHD is defined a bit different than McKay et al. (1979) but similar to 

Johnson et al. (1990), Husslage et al. (2006), Morris and Mitchell (1995), Grosso et al. 

(2008). It is assumed that there are iVdesign points have to be placed and each point has 

k distinct parameters. The points are placed such a way that they are uniformly spread 

when projected along each single parameter axis. It will be assumed that each 

parameter range is normalized to the interval [0, N-i]; Then, a LHD is made up by N 

points, each of which has k integer coordinates with values in 0,1, . . . , N-i and such 

that there do not exist two points with one common coordinate value. This allows a 

non-collapsing design because points are evenly spreaded when projected along a 

single parameter axis. Note that the number of possible LHDs is huge: there are (N!)k 

possible LHDs (where N is number of design point and k is number of factors). A 

configuration 

xo xoi . X0  

X = = 

X(N_I)l X 

with all x11  ={o,1,...iV-1} is a LHD if each column has no duplicate entries. This one- 

dimensional projective property ensures that there is little redundancy of design points 

when some of the factors have a relatively negligible effect (sparsity principle). 

Unfortunately, randomly generated LIlDs almost always show poor space-JIlting 

properties or / and the factors are highly correlated. On the other hand, maximin 

distance objective based designs have very good space-filling properties but often no 

good projection properties under the Euclidean (L2) or the Rectangular (L) distance. 

To overcome this shortcoming, Morris and Mitchell (1995) suggested for searching 

maximin LHDs which has both the important properties when looking for "optimal" 

2 



designs. The definition of optimal LHDs through the maximin criterion has been 

proposed in Johnson et al. (1990): given a point-to-point distance metric d(x,, x,); 1,1 E / 

(I is the index set), then the maximin LHD problem is to find a LHD such that the 

minimum point-to-point distance occurring in such configuration is maximized (as 

large as possible). In the literature the optimal criterion for maxiinin LHD are defined 

in several ways [Grosso et al. (2009)] but the main objective is identical i.e. searching 

the LHD with the maximizing the minimum pair-wise distance. Also different 

definitions for the distance d(x1,x) are considered in literature; in this work d will be 

considered in the Euclidean distance, which is one of the most frequently used distance-

measure in the applications. 

For the presence of combinatorial nature, the number of possible LHDs is very high - 

(N!)k. For example, to optimize the location of 20 samples in two dimensions, the 

algorithm has to select the best design from more than 1036  possible designs. If the 

number of variables is increased to 3, the number of possible designs is more than I 0. 

Consequently, when number of factors and/ or number of design points are large then it 

requires hundreds of hours by the brute-force approach to find out the optimal design. 

So researchers choose heuristic approaches to find out optimal designs. 1-lere, Iterated 

Local search (ILS) heuristic approach will be considered to find the optimal (maximin) 

LHD [Grosso et al. (2009)]. For the optimal criterion the following maximin optimal 

criteria in Euclidean distance measure will be considered which is similar to Johnson et 

al. (1990) but a quite different regarding computational effort: 

(X) = 

Where d,,, = d(x ,x1) the Euclidian distance between points x and x, and p is a positive 

integer parameter and which can be computed without the need of detecting and 

ordering all D (pair-wise inter side distance) values which is required in Johnson et al. 

(1990). 'T'his optimal criterion will be denoted as Opt(p). Under this criterion, LHD Y 

is better than X if 

(Y)< ID P  (X) (1.2) 

In Johnson et al. (1990) the definition of maximin optimal criterion is as follows 

S 
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R j J(X) in 
1 

r=I [D(x)" I 
' (1.3) 

where D(X)<D2 (X) ........ D,(X) (pair-wise inter side distances), R is the number of 

different distances in X. When as authors in Grosso et al. (2008), Grosso et al. (2009) 

considered another maximin optimal criterion denoted as Opt (Dl), which is also 

considered in Johnson et al. (1990), is given below. 

max J)1 X) such that 

D1 =D1 (X)=mind(x,,x1) i#j;XELHD (1.4) 

with in in J=I(i,j)I:d(x1,x,)=D(X) 

Under this criteria, LI-ID Y is better than X if 

D1 (Y)>D(X) or 
D1 (Y)> D1 (X) and J(Y)<11 (X) (1.5) 

and so on. 

An apparent drawback of the Opt(p) criterion, for maximin values (maximum D value), 

is that LI-IDs with smaller (better ) p, may have a worse (smaller) D value, i.e. for X 

and Y, though p(X) <p(Y) but Di(X) <Di(Y). This phenomenon has been frequently 

observed in the computational experiments [Grosso et al. (2009)]. Nevertheless, a 

profitable choice is to work in order to minimize the (pfunction, but at the same time, 

keep track of the best (D,, J,) values observed during such minimization. This way the 

search in the solution space is guided by a kind of heuristic function. Such a mixed 

approach might appear strange but, as it will be demonstrated experimentally, it can be 

extremely effective. Such objective will be denoted as Opt(p, Dl). 

Anyway in multiple regression problems, there is an expectation to find dependencies 

between the response variable y, and the regressor variables x, (factors of the design 

points). In the most regression problems, however, it is found that there are also 

dependencies among the factors of the designed points x( . In the situations where these 

dependencies are strong, it is said that multicollinearity exists. Multicollinearity can 

have serious effects on the estimates of the regression coefficients and on the general 
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applicability of the model. As multicollinearity measures the linear dependency among 

the factors of the design points, so niulticollinearity can be measured by the partial pair-

wise correlations among the factors. There are several ways available in the literature to 

measure the pair-wise correlations i.e. multicollinearity. 1-lere, the following measure of 

average pair-wise correlations is considered 

k i-I 

,=2 j=1 

' k(k-1)I2 
(1.6) 

1-lere piJ denote the partial-correlation between the factors i and j and k denotes the 

number of factors in the design considered. Note that this definition is frequently used 

in literature like Fang et al. (2000b). Also definition of maximum pair-wise correlation 

is given below: 
N En.. 

Pmax =maxp, (1.7) 

1.2 Literature Review iLb3i 

1.2.1 Experimental Designs 

Since physical experiments are inevitably very expensive and time consuming, 

computer experiments are widely used for simulating physical characteristics and for 

the design and development of products (for examples, [Fang et al. (2006)]). A 

computer experiment is modeled as a realization of a stochastic process, often in the 

presence of nonlinearity and high dimensional inputs. In order to perform efficient data 

analysis and prediction and in order to determine the best settings for a number of 

design parameters that have an impact on the response variable(s) of interest and which 

influence the critical quality characteristics of the product or process, it is often 

necessary to set a good design as well as to optimize the product or process design. In 

computer experiments, instead of physically doing an experiment on the product, 

mathematical models describing the performance of the product are developed using 

laws of engineering/physics. Then the mathematical models are solved on computers 

through numerical methods such as the finite element method. A computer simulation 

of the mathematical models is usually time-consuming and there is a great variety of 

possible input combinations. For these reasons meta-models, Barthelemy and I-laftka 

(1993), Sobieski and Haftka (1997) model with the quality characteristics as explicit 

Wi 



functions of the design parameters, are constructed. Such a meta-model, also called a 

(global) approximation model or surrogate model, is obtained by simulating a number 

of design points. Since a meta-model evaluation is much faster than a simulation run, in 

practice such a meta-model is used, instead of the simulation model, to gain insight into 

the characteristics of the product or process and to optimize it. Therefore, a careful 

choice of the design points at which performing simulations in order to build the meta-

model is of primary importance. 

As it is recognized by several authors, the choice of the design points for computer 

experiments should at least fulfill two requirements (details can be found in Johnson et 

al. (1990) and Morris and Mitchell (1995)). First of all, the design should be space-

filling in some sense. When no details on the functional behavior of the response 

parameters are available, it is important to be able to obtain information from the entire 

design space. Therefore, design points should be evenly spread over the entire region. 

Secondly, the design should be non-collapsing. When one of the design parameters has 

(almost) no influence on the function value, two design points that differ only in this 

parameter will collapse, i.e., they can be considered as the same point that is evaluated 

twice. For deterministic functions this is not a desirable situation. Therefore, two design 

points should not share any coordinate value when it is not known a priori which 

parameters are important. 

- 
The latter requirement is fulfilled by employing Latin 1-lypercube Designs (LI-IDs). 

Such designs, proposed by McKay and his co-authors (1979), are evenly distributed in 

each one-dimensional projection and are thus non-collapsing. Unfortunately, randomly 

generated LHDs almost always show poor space-filling properties. On the other hand, 

maximin distance designs, proposed by Johnson, Moore and Ylvisaker (1990), have 

very good space-filling properties but often no good projection properties under the 

Euclidean or the Rectangular distance. To overcome this shortcoming, Morris and 

Mitchell (1995) suggested searching for maximin LI-IDs when looking for 'optimal" 

designs. Although the search for maximin LI-IDs will be one of the problems discussed 

in this thesis, it will be important to point out that also other definitions of"optimality" 

for designs exist in the literature. These are not discussed in detail throughout the thesis 

(detail can be found in Santner et al. (2003)), but, for the sake of completeness, in the 

following literature review some of them will be mentioned, together with a short 
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discussion of the methods employed to return "optimal" (according to the selected 

1 definition) designs. 

Fang et al. (2000a); Fang et al. (2000b) defined a uniform design as a design that 

allocates experimental points uniformly scattered on the domain. Uniform designs do 

not require being orthogonal. They considered projection uniformity over all sub 

dimensions. In Fang et al. (2000b) they classified uniform designs as space-filling 

designs. 

Lee and Jung (2000) proposed maximin eigen value sampling, that maximizes 

minimum eigen value, for Kriging model where maximin eigen value sampling uses 

eigen values of the correlation matrix. The Kriging model is obtained from sampled 

points generated by the proposed method. The Kriging model is used to compare the 

characteristics of proposed sampling design with those of maximum entropy sampling. 

The maximin design problem has also been studied in location theory. In this area of 

research, the problem is usually referred to as the max-min facility dispersion problem; 

facilities are placed such that the minimal distance to any other facility is maximal. 

Again, the resulting solution is certainly space-filling, but not necessarily non-

collapsing. 

- In statistical environments Latin 1-lypercube sampling is often used. In such an 

approach, points on the grid are sampled without replacement, thereby deriving a 

random permutation for each dimension (detail can be found in McKay et al. (1979)). 

Giunta and his co-authors (2003) gave an overview of pseudo- and quasi-Monte Carlo 

sampling, Latin hypercube sampling, orthogonal array sampling, and Hammerslcy 

(1960) sequence sampling. 

McKay and his co-authors (1979), Stein (1987) and Owen (1994) had shown that LHDs 

perform much better than completely randomized designs. More recently, algorithms 

have been used to construct systematic LHDs under various optimality criteria. A LI-ID 

always has non-collapsing properties but not necessarily good space-filling property. In 

particular, as already remarked, randomly generated LHDs often show poor space- 
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filling properties. Therefore, the search for "optimal" LHDs has attracted attention 
-11 (detail can. be  found in Morris and Mitchell (1995), Park (1994), Ye (1998), Ye et al. 

(2000)). Different optimality criteria for LI-IDs have been proposed, including 

maximum entropy designs Shewry and Wynn (1987), Currin et al. (1991)], Integrated 

Mean Squared Error (IMSE) of prediction and minirnax and maximin distance designs 

[Johnson et al. (1990)]. 

Lin and Steinberg (2006) proposed several methods for extending the uniform sampling 

to higher dimensions. The method has also been used to construct LHDs with low 

correlation of first-order and second-order terms. It generates orthogonal LHDs that can 

include many more factors than those proposed by Ye (1998). 

Cioppa (2002) in his dissertation developed a set of experimental designs by 

considering orthogonal Latin hypercube and uniform designs to create designs having 

near orthogonality and excellent space-filling properties. Multiple measures were used 

to assess the quality of candidate designs and to identify the best one. 

Morris (1991) made it clear that many simulation models involve several hundred 

factors or even more. Consequently, factor screening is useful in computer experiments 

for reducing the dimension of the factor space before carrying out more detailed 

experiments. Butler (2001) proposed optimal and orthogonal LHDs which is suitable 

for factor screening. 

Olsson (2003) suggested Latin 1-lypercube sampling as a tool to improve the efficiency 

of different importance sampling methods for structural reliability analysis. Liefvendahl 

and Stocki (2006) proposed probabilistic search algorithm, namely Column-wise Pair-

wise (CP) search algorithms and Genetic algorithms to construct optimal LHDs. For the 

optimal criterion they considered energy function (the sum of the norms of the 

repulsive forces if the samples are considered as electrically charged particles) as 

proposed by Audzc and Eglais (1977). To improve the reliability, Stocki considered the 

pairwise correlation. Liefvendahl and Stocki (2006) also compared the performance of 

the CP and genetic algorithms for optimal LHDs. 



By using the Latin Hypercube sampling method, Hwan Yang performed the uncertainty 
1 

and sensitivity analysis for the time-dependent effects in concrete structure. The results 

of the Latin Hypercube simulations were used to determine which of the model 

parameters are most significant in affecting the uncertainty of the design. For each 

sample, a time-dependent structural analysis was performed to produce response data, 

which were then analyzed statistically. 

Wang (2003) used the Latin Hypercube Design (LIID) instead of the Central 

Composite Designs (CCD), for improvement of Adaptive Response Surface Method 

(ARSM). Note that ARSM was developed to search for the global design optimum for 

computation-intensive design problems. Also note that Response Surface Method 

(RSM) plans a group of design alternatives and performs the design analysis and 

simulation simultaneously on these design alternatives. Then an approximation model, 

called a response surface, is constructed. 

1.2.2. Optimal Criteria and Approaches 

Some literature reviews will be presented here regarding optimal criteria as well as the 

solution approaches regarding experimental design. As the complexity of the problem is, 

to the authors' knowledge, open (but suspected to be NP-complete [Grosso et al. 

(2008)]. So several heuristics approaches (rather than exact optimization methods) have 

been proposed in the literature to detect optimal experimental designs. 

Fang and his co-authors (2000a) considered Simulated Annealing approach to detect 

maximin LIID. Li and Wu (1997) proposed a class of algorithms based on column pair-

wise exchange to build supersaturated designs. In Ye et al. (2000) an exchange 

algorithm for finding approximate maximin LI-IDs has been proposed with the further 

restriction to Symmetric LI-IDs (SLHDs). A general formulae for maxirnin LHDs with 

k = 2 are given by Dam and his co-authors (2007a) with the 1-norm (1,5 and infinite 

norm (L) distances. Morover, for the Euclidean distance maximin LI-IDs up to N = 

1000 design points are obtained by (adapted) periodic designs, while, using a branch-

and-bound algorithm, exact solutions have been obtained for N up to 70. Inspired by 

Dam et al. (2007a), 1-lusslage et al. (2006) proposed (adapted) periodic designs and 
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simulated annealing to extend the known results and construct approximate maximin 

latin hypercube designs for k up to 10 and N up to 100. All these designs are available 

in the website http:// www.spaceiillingdcsigns.nl. In 1-lusslage et al. (2006), it has been 

shown that the periodic heuristic tends to work when the number N of design points 

gets above some threshold which depends on the dimension k of the design (more 

precisely), such threshold increases with k. Viana and his co-authors (2010) proposed 

the translational propagation algorithm, a new method for obtaining optimal or near 

optimal Latin hypercube designs (LHDs) without using formal optimization. For the 

optimal criterion they also considered Opt(4) to maxirnin LHD. Monte Carlo 

simulations were used to evaluate the performance of the algorithm for different design 

00 configurations where both the dimensionality and the point density were studied. Gross 

and his co-authors (2008) successfully implemented Iterated local search (ILS) 

approach for finding maximin LHDs for k = 3, 4, . .10, and N = 3, ..., 100. For the 

optimal criterion they considered maximin LI-IDs with Opt(D1, Ji) and Opt(4) optimal 

criteria with Euclidian distance measure (Eq. (1.1) to . Eq. (1.4)). 

Darn and his co-authors (2007b) proposed some bounds, for the separation distance of 

certain classes of maxirnin Li-IDs, which are useful for assessing the quality of 

approximate maximin LHDs. By using some of the special properties of LI-IDs, they 

were able to found new and tighter bounds for maximin LI-IDs. Besides these bounds, 

they presented a method to obtain a bound for three-dimensional LHDs that is better 

than Baer's bound for many values of N. They also constructed maximin Li-IDs 

attaining Bacr's bound for infinitely many values of N in all dimensions. 

Morris and Mitchell (1995) proposed the maximin distance criterion which maximizes 

the minimum distance between design points. Morris and Mitchell (1995) adopted a 

simulated annealing to find approximate maximin LI-IDs for up to five dimensions and 

up to 12 design points, and a few larger values, with respect to the -e'- and C2-distance 

measure. In Morris and Mitchell's algorithm, a search begins with a randomly chosen 

LHD, and proceeds through examination of a sequence of designs, each generated as a 

perturbation of the preceding one. A perturbation D1, of a design D is generated by 

interchanging two randomly chosen elements within a randomly chosen column in D. 

The perturbation Diry will replace D if it leads to an improvement. Otherwise, it will 

replace D with probability it = exp[—{ -J(D,) - q5 (D)} It], where t is the preset 
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parameter known as the "temperature "and is some measure of the quality of the 

design. Li and \Vu (1997) considered a class of Column-wise Pair-wise (CP) algorithms 

in the context of the construction of optimal supersaturated designs. A CP algorithm 

makes exchanges on the columns in a design and can be particularly useful for designs 

that have structure requirements on the columns. Note that each column in a LHD is a 

permutation of {0, . . . , N— l}. At each step, another permutation of {0, . . ., N— l} is 

chosen to replace a column so that the LHD structure is retained. 

Husslage et al. (2005) constructed nested maximin designs in two dimensions. They 

showed that different types of grids should be considered when constructing nested 

designs and discussed how to determine which grid is the best for a specific computer 

experiment. 

Using (adapted) periodic designs and simulated annealing, Husslage et al. (2006) 

extended the known results and construct approximate maximin Latin hypercube 

designs for up to ten dimensions and for up to 100 design points. All these designs can 

be downloaded from http://wv.spacefillingdesigns.nl. Inspired by the paper of Morris 

and Mitchell (1995), in which authors show that LI-IDs often have a nice periodic 

structure, Husslage et al. (2006) developed adapted periodic designs. By considering 

periodic and adapted periodic designs, approximate maximin LilDs for up to seven 

dimensions and for up to 100 design points are constructed. They have shown that the 

periodic heuristic tends to work well even for a small number iV of design points at low 

values of the dimension k, but as k increases the periodic heuristic tends to get better 

than other approaches like simulated annealing only at large N values. 

In the simulated annealing algorithm, Husslage et al. (2006) considered four different 

neighborhoods. In all four neighborhoods the main idea is to change two points of the 

current LHD by exchanging one or more coordinate values. In three of the four 

neighborhoods, one point is required to be a critical point (a critical point is a point 

which is at separation distance, i.e., at a distance eclual to the minimal one, from one of 

the other points). In the first neighborhood, one point j I  is selected randomly from all 

critical points and the other point j2  randomly from all remaining points. This implies 

that the second point can either be a critical or noncritical point. Once the points are 

selected, the number of coordinates to change is randomly selected. Due to symmetry, 



at most [k121 coordinates are changed. Subsequently, the coordinates to change are 

randomly selected. The values of the two points in these coordinates are then 

exchanged, which results in a new LHD. The second neighborhood is very similar to 

the first. The only difference is that always one coordinate is selected instead of a 

random number of coordinates. Note that for k = 3 the two neighborhoods are the same. 

In the third neighborhood, also one coordinate is changed, however, now the coordinate 

is not randomly selected. Instead, all coordinates are tried and the one which results in 

the neighbor with the largest separation distance is selected. If more coordinates result 

in the same separation distance, the one with the lowest index is selected. The fourth 

neighborhood is again very similar to the second neighborhood. The difference is that 

the first point is randomly selected from all points, instead of only the critical points. 

Although simulated annealing algorithms have been used before to deal with this type 

of problem, this adapted neighborhood structure, which is based on critical points, and 

the use of a different objective function, turned out to work well. 

Jin [Jin Ct al. (2005)] proposed an enhanced stochastic evolutionary algorithm for 

finding maximin LilDs. They also applied their method to other space-filling criteria, 

namely the optimal entropy and centered L2  discrepancy criteria. 

Dam et al. (2007a) derived general formulas for two-dimensional maximin LHDs, 

when the distance measure is C or while for the e2-distance measure (approximate) 

maximin LHDs up to 1000 design points are obtained by using a branch-and-bound 

algorithm and constructing (adapted) periodic designs. 

Stinstra and his coauthhors (2003) proposed sequential heuristic algorithms for 

constrained maximin designs by considering high number of design sites with small 

volume of feasible design space and other constraints. They also used their methods in 

many practical situations. 

It is remarked that the maximin criterion is not the only one used in the literature. Other 

criteria are the maximum entropy [Shewry and Wynn (1987)], the integrated mean 

squared error, the minimum correlation between components [Owen (1994)] and a 

mixed criterion involving both maximin distance and correlation [Joseph and Hung 
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(2008)]. For more details the book [Saniner et al. (2003)] will be referred but for the 

completeness, in the following literature review, some articles will be mentioned in 

which criteria related to correlation are considered. 

Darn van (2005) derived interesting results for two-dimensional minimax LHDs. Bates 

Bates and• his co-authors (2004) proposed a permutation genetic algorithm to find 

optimal Audze-Eglais LHDs. Crary and his co-authors (2000) developed I-OPTTMto 

generate LHDs with minimal IMSE. 

Jman and Conover (1982a) proposed a design by minimizing a linear correlation 

criterion for pairwise factors. This is modified into a polynomial canonical correlation 

criterion by Tang (1998). Tang (1998) proposed a LI-ID by the extension of the concept 

of Iman and Conover (1 982a), namely minimizing a polynomial canonical correlation 

criterion for pair-wise factors. 

Park (1994) constructed optimal LHDs in which IMSE and entropy optimization 

criteria were considered. To construct optimal LHDs, Park presented an approach based 

on the exchanges of several pairs of elements in two rows. His algorithm first selects 

some active pairs which minimize the objective criterion value by excluding that pair 

from the design. Then, for each chosen pair of two points 11  and 12, the algorithm 

considers all possible exchanges Xiii I '' Xi2j1 , ... , Xi '' XJkil for k 1 and find the best 

exchange among them. 

Ye (1998) constructed orthogonal LI-IDs in order to enhance the utility of LHDs for 

regression analysis. Ye defined an Orthogonal Latin Hypercuhe (OLHC) as a Latin 

1-lypercube for which every pair of columns has zero correlation. Furthermore, in Ye's 

OLI-IC construction, the element-wise square of each column has zero correlation with 

all other columns, and the element-wise product of every two columns has zero 

correlation with all other columns. These properties ensure the independence of 

estimates of linear effects of each variable and the estimates of the quadratic effects and 

bilinear interaction effects are uncorrelated with the estimates of the linear effects. 

Joseph and Hung (2008) proposed a multi-objective optimization approach to find good 

LIIDs by combining correlation and distance performance measure. They proposed a 
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modified simulated annealing algorithm with respect to Morris and Mitchell (1995). 

Ir Instead of randomly choosing a column and two elements within that column, Morris 

and Mitchell (1995) chose them judiciously in order to achieve improvement in their 

multi-objective function. 

Ye and his co-authors (2000) and Li and Kenny (2009) proposed an exchange 

algorithm for finding approximate optimal LI-IDs, but they consider symmetric Latin 

hypercubc designs (SLI-IDs). The symmetry property is used as a compromise between 

computing effort and design optimality. 1-Jowever, one important change had made to 

accommodate the special structure of SLHD. For a SLHD two simultaneous pair 

exchanges were made in each column to retain the symmetry. Ye and his co-authors 

(2000) considered maximin as an optimal criterion, whereas Li and Kenny (2009) 

considered both the maximin and the entropy optimal criterion. 

Fang and his co-authors (2000a) proposed threshold accepting heuristic approaches for 

optimal LI-IDs to produce low discrepancy designs compared to theoretic expectation 

and variance. They considered centered L2-discrepancy for optimizing the designs. 

Sebastiani and Wynn (2000) considered maximum entropy sampling criterion for the 

optimal Bayesian experimental design. The main contribution of this paper is the 

extension of the MES principle for the estimation of the problems. Currin and his co-

authors (1991) also considered an entropy-based design criterion for Bayesian 

prediction of deterministic functions. Crombecq and his co-authors (2011) considered 

space-filling and non-collapsing sequential design strategies for simulation based 

modeling. 

Xu I-longquan (1999) introduced the concept of universal optimality from optimum 

design theory into computer experiments, and then exhibited some universally optimal 

designs with respect to different distance measures. He showed that Latin Hypercube 

and saturated orthogonal arrays are universally optimal with respect to Hamming 

distance, and that universally optimal designs with respect to Lee distance are also 

derived from Latin Hypercubes and saturated orthogonal arrays. 
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Recently Jourdan and Franco (2010) proposed a space-filling LHD design, where they 
V 

considered a new optimal criterion called Kuliback—Leibler criterion. This Kuilback— 

Leiblcr criterion is relatively very new proposed by Jourdan and Franco (2009). The 

new designs are compared with several traditional optimal Latin hypercube (leSigflS. 

Leary et al. proposed orthogonal-array-based LHDs for obtaining better space-filing 

property. As an optimal criterion, they considered the sum of (square of) reverse inter-

site distances. Ye (1998) constructed orthogonal LHI)s in order to enhance the utility of 

LHDs for regression analysis. Author defined an Orthogonal Latin Flypercube (OLI-iC) 

as a Latin 1-lypercube for which every pair of columns has zero correlation. 

Furthermore, in Ye's OLJ-IC construction, the element-wise square of each column has 

zero correlation with all other columns, and the element-wise product of every two 

columns has zero con-elation with all other columns. These properties ensure the 

independence of estimates of linear effects of each variable and the estimates of the 

quadratic effects and bilinear interaction effects are uncorrelated with the estimates of 

the linear effects. 

Steinberg and Dennis (2006) constructed LHDs in which all main effects are 

orthogonal. Their method can also be used to construct LilDs with low correlation of 

first-order and second-order terms. It also generates orthogonal LHDs that can include 

many more factors than those proposed by Ye (1998). Butler (2001) proposed optimal 

and orthogonal LHDs which are suitable for factor screening. Fang and his co-authors 

(2000a) proposed threshold accepting heuristic approaches for optimal LHDs to 

produce low discrepancy designs compared to theoretic expectation and variance. They 

considered centered L2-discrepancy for optimizing the designs. 

On the other hand Joseph and Hung (2008) shew that maximization of inter-site 

distances criteria and minimizing the pair-wise correlation criteria need not necessarily 

agree with each other. In fact, maximization of inter-site distances can result in LHDs 

where the variables are highly correlated and vice versa. But it has been already 

discussed above that for the present of highly correlation, the design has failed to 

analysis individual effect of the factors. 
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1.3 Goals of the Thesis 

After the invention of hi-speed computer the design of computer experiments is likely 

to grow as more and more simulation models to carry out research. Many simulation 

models involve several hundred factors or even more. It is desirable to avoid replicates 

when projecting the design on to a subset of factors. This is because a few, out of the 

numerous factors in the system, usually dominate the performance of the product. Thus 

a good model can be fitted using only these few important factors. Therefore, when 

projecting the design on to these factors, replication is not required. The experimental 

design should fulfill three important properties - Non-collapsing, Space-filling, and 

non-multicollinearity. Latin Hypercube Design (LFID) has good non-collapsing 

property. But randomly generated LI-ID often has poor space-filling. So researchers 

seek LI-ID with good space-filling property. Many researchers have shown that optimal 

Li-ID mainly maximin LI-ID has good space-filling including non-collapsing property. 

But recently some researchers have shown that maximin LI-ID are highly correlated 

among the factors i.e. there exist multicollinearity. As it is mentioned earlier that the 

multicollinearity property is also important, because if two factors are correlated then it 

will not possible to distinguish between the effects of the two factors based on this 

experiment. Several approaches existed in literature to find out the maximin LHD such 

as Simulated annealing. Tabu search, Iterated Local Search (ILS) etc. In the paper of 

Grosso et al. (2008), authors have shown that ILS approach able to find out a 

remarkable improved optimal experimental design (maximin LI-ID) regarding available 

one in the literature. As multicollinearity can have serious effects on the estimates of 

the regression coefficients and on the general applicability of the model. In this study, 

the multicollinearity among the factors of the design obtained by the ILS approach is 

investigated. The main goal of the study is pointed out as follow: 

Implements the ILS approach in windows environments. Note that the 

approaches are successfully implemented in Sun Operating environment. 

Compare experimental results regarding maximin distance with available one in 

the literature in Euclidian distance measure (L2- measure). 

Compare experimental results regarding maximin distance with available one in 

the literature in Rectangular distance measure (L'- measure). 

Analysis the average correlation among the factors of the design regarding 

Euclidian distance measure (L2- measure). 
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Analysis the maximum correlation among the factors of the design regarding 

Euclidian distance measure (L2- measure). 

Analysis the average correlation among the factors of the design regarding 

Rectangular distance measure (L1 - measure). 

Analysis the maximum correlation among the factors of the design regarding 

Rectangular distance measure (L'- measure). 

Compare the several properties of the design regarding good experimental 

design with available one in the literature. 

1.4 Structure of the Thesis 

After the introduction which is in this Chapter, the remaining thesis is organized as 

follows: 

Chapter 2 will present the overview of experimental design. Mainly this 

chapter will point out the roll of statistics, experimental error, basic principles of 

experimental design, sample design versus experimental design etc. Moreover this 

chapter will mention briefly the requirements of a good experiment as well as discusses 

several types of the experimental design issues. 

Chapter 3 will also present an overview of correlation. This áhapter will point 

out several types of correlations and how they measure. 1-Jere the effects of 

multicollinearity on the model as how the occur has mentioned here briefly. 

In Chapter 4 the heuristic approach mainly Iterated Local Search (ILS) 

approach will be discussed. ILS approach for optimizing LHD is elaborately presented 

here as well as the several optimal criteria for maximizes the minimum inter-site 

distance of the design point. 

In Chapter 5, the experimental analyses will be performed extensively 

regarding Euclidian distance measure. At first the performance of the algorithm is 

compared with available one in the literature regarding inter-site Euclidian distance 
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measure. From the experimental design it is shown that the algorithm is state-of-arts 

regarding maximin LI-ID. Then these optimal designs are considered for the 

multicollinearity analysis of the factors of each design. 

In Chapter 6 there several experiments will be performed regarding 

Rectangular distance measure. Then several characteristics of the designs are compared 

with available one in the literature. The coefficient of correlations are compared 

multicollinearity analysis are discussed in this chapter. 

Finally Chapter 7 will contain the detail discussions, concluding remarks and 

recommendations for possible future extensions of the present works. 

References will be included last of the thesis as well and publications are 

mentions before the index of the thesis. 
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CFIAPTER 2 

OVERVIEW OF EXPERIMENTAL DESIGNS 

2.1 introduction 

An experiment is a well defined act or an investigation conducted to discover the 

underlying facts about a phenomenon which are utilized to test some hypotheses of 

interest, to verify the results of pervious investigation or to study the effect of new 

conditions on the system. Mainly an experiment is the process of data collection from a 

non-existent population to get answer to certain problems under investigation. 

Experimental methods are widely used in research as well as in industrial settings, 

however, sometimes for very different purposes. The primary goal in scientific research 

is usually to show the statistical significance of an effect that a particular factor exerts 

on the dependent variable of interest. In general, every machine used in a production 

process allows its operators to adjust various settings, affecting the resultant quality of 

the product manufactured by the machine. Experimentation allows the production 

engineer to adjust the settings of the machine in a systematic manner and to learn which 

factors have the greatest impact on the resultant quality. Using this information, the 

settings can be constantly improved until Optimum quality is obtained. 

Computer modeling is having a profound effect on scientific research. Many processes 

are so complex that physical experimentation is too time consuming or too expensive; 

or, as in the case of weather modeling, physical experiments may simply be impossible. 

As a result, experimenters have increasingly turned to mathematical models to simulate 

these complex systems. Advances in computational power have allowed both greater 

complexity and more extensive use of such models. Computer models (or codes) often 

have high- dimensional inputs, which can be scalars or functions. The output may also 

be multivariate. in particular, it is common for the output to be a time-dependent 

function from which a number of summary responses are extracted. For simplicity here, 

it will be assumed that interest is focused on a relatively small set of scalar inputs, x, 

and on a single scalar response, y. Makin- a number of runs at various input 

configurations, which is called a computer experiment. The design problem is the 

choice of inputs for efficient analysis of the data. 
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In the design of complex systems, computer experiments are frequently the only 

practical approach to obtaining a solution. Typically, a simulation model of system 

performance is constructed based on knowledge of how the system operates. 

Performance measures are specified to be incorporated into optimization criteria and 

constraints, and the design parameters which affect performance are identified. The 

design solution method depends on the computational demands of the simulation 

model. In the simplest case, the simulation model may be used directly to calculate 

performance measures and optimize the system. If a performance measure is not 

straightforward to calculate, such as one that involves an integral, then sampling via 

computer experiments may be employed to estimate the measure. If the simulation 

model is computationally expensive, then the optimization may instead rely on a meta-

model, i.e., a mathematical model surrogate of system performance, to approximate the 

relationship between system performance and the design parameters. In meta-inodeling, 

there are two basic tasks that must be conducted: (1) select a set of sample points in the 

design parameter space (i.e., an experimental design); (2) fit statistical model(s) of 

performance to the sample points. Methods for the first task may be used to conduct 

sampling in general. 

Typically, a ineta-model is constructed based on data generated from a complex 

deterministic simulation of the system in which the random variation that exists in the 

real system is not represented. The uncertainty in the system is modeled by simulating 

external noise and internal variation in the input variables. Design decisions, then, are 

based on system analysis and evaluation by approximating the system performance 

using the constructed meta-model. The primary objectives of meta-modeling are to 

obtain an accurate estimate of the response and to minimize the required computational 

effort. This includes minimizing the necessary number of sample points and utilizing a 

computationally efficient modeling method. In addition, an important item underlying 

both tasks is the issue of performance evaluation and optimization of the system. 

When the simulation of the system is stochastic, then performance measures may be 

considered that involve expected values (means) and/or variances. If the stochastically 

is over a finite set of elements, then exact calculations of these types of measures is 

Jl possible (as in the case of a deterministic simulation). However, if the stochastic 
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components are continuous (or infinite), then a measure requires evaluation of an 

integral and is, thus, difficult to compute. In this case, a sampling approach, such as via 

Monte Carlo simulation is wananted. 

2.2 The Roll of Statistics 

These deterministic computer experiments differ substantially from the physical 

experiments performed by agricultural and biological scientists of the early 20th 

century. Their experiments had substantial random error due to variability in the 

experimental units. Relatively simple models were often successful. The remarkable 

methodology for design of experiments introduced by Fisher (1935) and the associated 

analysis of variance is a systematic way of separating important treatment effects from 

the background noise (as well as from each other). Fisher's stress on blocking, 

replication and randomization in these experiments reduced the effect of random error, 

provided valid estimates of uncertainty, and preserved the simplicity of the models. 

The above, deterministic examples also differ from codes in the simulation literature, 

which incorporate substantial random error through random number generators. It has 

been natural, therefore, to design and analyze such stochastic simulation experiments 

using standard techniques for physical experiments. 

Apparently, McKay, Beckman and Conover (1979) were the first to explicitly consider 

experimental design for deterministic computer codes. They introduced Latin 

hvpercube sampling, an extension of stratified sampling which ensures that each of the 

input variables has all portions of its range represented. Latin hypereubes are 

comnputationally cheap to generate and can cope with many input variables. 

Despite some similarities to physical experiments, then, the lack of random (or 

replication) error leads to important distinctions. In deterministic computer 

experiments: 

• The adequacy of a response-surface model fitted to the observed data is 

determined solely by systematic bias. 

• The absence of random error allows the complexity of the computer model to 

emerge. 
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• Usual measures of uncertainty derived from least squares residuals have no 
JW 

obvious statistical meaning. Though deterministic measures of uncertainty are 

available (e.g., max 5' (x) 
- 

y (x) I over x and a class of y's), they may be very 

difficult to compute. 

• Classical notions of experimental unit, blocking, replication and randomization 

are irrelevant. 

While the pioneering work of Box and Draper (1959) has relevance to the first of these 

points, it is unclear that culTent methodologies for the design and analysis of physical 

experiments are ideal for complex, deterministic computer models. Lest the reader 

wonder whether statistics has any role here, it is asserted that: 

• The selection of inputs at which to run a computer code is still an experimental 

design problem. 

• Statistical principles and attitudes to data analysis are helpful however the data 

are generated. 

• There is uncertainty associated with predictions from fitted models, and the 

quantification of uncertainty is a statistical problem. 

• Modeling a computer code as if it were a realization of a stochastic process, the 

approach taken below, gives a basis for the quantification of uncertainty and a 

statistical framework for design and analysis. 

2.3 Experimental Error 

Experimental error refers to the variation among the observations of the experimental 

units treated alike. Since the results of an experiment are affected both by the action of 

treatments under study and by various extraneous variation, so all out efforts are made 

to control or remove the effects of all external and extraneous factors. In spite of best 

precaution, there is some amount of uncontrolled variation in experimental results, 

which are caused by factors which have not been or cannot he controlled by the 

experimenter. This variation which is unexplained is called experimental error and the 

unexplained factors are called uncontrolled nuisance factors. In fact, experimental error 

represents the variation due to uncontrolled factors and random chance factors. In other 

words, the variation which is not controlled in an experiment is called experimental 

error. Experimental error arises from two main sources: 
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Inherent variation exists among the experimental units to which the 

treatments are applied such as soil fertility varies from one part of land to 

another, raw materials vary in quality, merit and intellectual capacity differs 

from person to person of same age, observers and measuring devices vary, 

change occurs in day to day in a week or other environmental condition. 

1-lence some inevitable variation exists among the results of an experiment. 

Variation also arises from any lack of uniformity in the physical conduct of 

experiment. 

However experimental error is composed of (a) observation errors, (b) measurement 

errors, (c) errors of experimentation (d) Inherent variation among the experimental 

units (e) joint effects of all other influencing factors which have been ignored in the 

investigation. Experimental error is used as yardstick in test of hypothesis whether 

observed treatment differences are real or apparent. In an agricultural experiment 

variation in yield arises from the difference in soil fertility and amount of irrigation, the 

type of manure, method of cultivation can be kept constant, the difference in fertility 

cannot be controlled beyond certain extent. 

It is essential to consider the manner in which experimental data are collected as the 

choice of proper technique of data analysis considerably depends on the method of data 

collection. Thus it is highly desirable to use proper experimental design which will 

enable us to separate the effects of interest from the uncontrolled variation. An 

experiment without proper planning often provides useless and irrelevant data. So 

emphasis is given on proper planning and design of experiment in order to ensure valid 

inferences. 

2.4 Experimental Design 

Experimental design is the plane used in experimentation. More specifically, 

experimental design is the formulation of a set of rules and principles according to 

which an experiment is to be conducted to collect appropriate data whose analysis will 

lead to valid inferences for the problem under investigation. In fact, experimental 

design consists of the following steps: ,< 

KLJfi 
i) Choosing a set of treatments for comparison BangIucesh 

\* * 
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Selection of experimental units to which chosen treatments will be applied 

Specification of the number of experimental units for inclusion in the 

experiment. 

Specification of the method of allocating the treatments to the experimental 

unit. 

Specification of the grouping of experimental units to control extraneous 

sources of variation. 

The design of deterministic computer experiments has been partly addressed in the 

literature. For example, Welch (1983) and references mentioned therein have 

considered nonparametric systematic departures from regression models. Random error 

is also included, but the resulting sampling-variance contribution to mean squared error 

can be set to zero, and these approaches have helped shape our formulation. For the 

most part, however, the designs used for fitting predictors have been those developed 

for physical experiments. Such designs typically have appealing features of symmetry 

and are often optimal in one or more senses in settings which include random noise. 

Their appropriateness for computer experiments, however, is by no means clear. Latin 

hypercube sampling is aimed at objectives different from those we have in mind. 

There has also been some work in design for numerical integration, where function 

evaluations can be viewed as a computationally cheap computer experiment. Much is 

knwn about design for one dimensional quadrature. In particular, Sacks and Ylvisaker 

(1970) constructed good designs (finite n) from asymptotically (n 
- ) optimal 

designs. These methods, however, do not carry over to d > I dimensions [Ylvisaker 

(1975)]. Similarly in the numerical analysis literature, results for d = loffcr little guide 

tod> 1. 

2.5 Basic Principles of Experimental Design 

According to Prof. R. A. Fisher basic principles of experimental design are: 

i) Replication ii) Randomization and iii) Local control 
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Replication: 

Replication means repetition of basic treatment under investigation. Thus replication is 

the repetition of same treatment on several experimental units. In fact, an experiment in 

which each treatment is allocated that even if same treatment is assigned to all 

experimental units. So it is essential to replicate the treatment to study the variation in 

the yields of each variety. Moreover, the average of differences in yields of two 

treatments is a reliable measure of difference in performance of the two treatments. 

Randomization: 

Professor R. A. Fisher introduced the principle of randomization in modern 

experimental design. Randomization is the process of distributing the treatments to the 

experimental units purely by chance mechanism is such a way that any experimental 

unit is equally likely to receive any treatment. Then randomization ensures that no 

treatment is unduly favored or handicapped in the experiment. The purpose of 

randomization is to reduce as far as possible any systematic effect of uncontrolled 

factors in the experiment and to give increased justification for the application of 

statistical theory so that bias is avoided from treatment comparisons. Separate 

randomization is necessary in separate replication. 

Local control: 

Local control is the procedure of reducing and controlling error variation by arranging 

the experimental units in blocks. By blocking variation among the blocks is eliminated 

from the experimental error. Thus error variation is reduced to a considerable extent 

and precision of experiment is increased. Thus local control makes the experimental 

design more efficient and test procedure more powerful by the reduction of error 

variation. Further such arrangement in blocks provides information about the difference 

between the blocks. It is important to note that while experimental error can only be 

estimated because of replication. This is sufficiently controlled by the principle of local 

control. In fact local control aims at eliminating all extraneous sources of variation 

from treatment comparisons. Thus local control leads to adequate reduction of error 

variation without unduly increasing the number of replication. So that real differences 

among the treatments can be detected significant. 
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2.6 Requirements of a Good Experiment 
, 

The object of a comparative experiment dealing with a set of alternating treatments is to 

separate the treatment effects from the uncontrolled variations. Once the treatments, the 

experimental units and the nature of observations have been decided upon a good 

experiment should satisfy the following conditions. 

Absence of bias or free from systematic errors: It is essential to plan an 

experiment so that unbiased estimates of treatment differences and treatment 

effects can be obtained from the data of the experiment. This requires that 

experimental units receiving different treatments differ in no systematic way 

from one another. The absence of bias is achieved by the principle of 

randomization. 

Measure of experimental error: Since the treatments under comparison 

apparently produce differences. hence an experiment should furnish a 

measure of experimental error, which is employed as a measuring stick in 

test of significance about treatment differences. Replication provides an 

estimate of experimental error and thus makes a test of significance 

possible. 

Precision: Precision refers to the closeness with which different effects are 

estimated. Estimates of treatment effects and of treatment differences should 

be precise and precision is measured by the reciprocal of variance which in 

turn depends on experimental error. In fact, a small valucol standard error 

• indicates increased precision of the experiment. Important methods of 

increasing precision are increased replication, refinement of experimental 

technique, blocking in various efficient designs, use of confounding in 

factorial experiments, use of auxiliary observations in analysis of 

• covariance. 

Clearly defined objective: Every experiment should have clearly defined 

objective on which the design and analysis of data considerably depend. 

Simplicity: Experimental design should be \'ery simple and consistent with 

the objective on which the design and analysis of data. 

Scope or range of validity: The conclusions drawn from experimental data 

should have a wide range of validity. 
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2.7 Sample Design versus Experimental Design 

Sample design deals with collection of samples from existent populations while 

experimental design deals with the collection of data from nonexistent population. 

Sample design is usually concerned with collection of samples from finite 

population. But design of experiments is concerned with data collection from infinite 

population. 

In sampling theory, information is obtained from sample units under the assumption 

that the sample can adequately represent the population. But in experimental study, data 

have to be manufactured by proper experimentation where the experimenter controls 

and modifies certain factors of interest and then he observes the effect of the 

modification. 

Sample design is concerned with absolute experiment whereas design of experiment 

is concerned with comparative experiments often called control led experiments. 

2.8 Experimental Design Issues 

2.8.1 Classical Designs and Computer Experiments 

Below some classical designs are reviewed, including factorial designs, RSM designs, 

and optimal designs, and their design criteria. These designs were originally developed 

for planning physical experiments where the experimental data are subject to 

experimental (replication) error. Nevertheless, these designs can be used to plan 

computer experiments and can sometimes have good performance [Sacks et al. (1989)]. 

2.8.2 Full and Fractional Designs 

Fisher observed that in (full) factorial designs each experimental run contains 

information on many factors (input variables) and thus allows great flexibility and 

efficiency for studying marginal effects (main effects and interaction effects) in 

ANOVA decomposition. Full factorial designs include all possible combinations of 

factors with multiple levels. For example, two factors with an I-level and J-levcl full 

factorial include IJ combinations. As a result, full factorial designs of multiple factors 

and multiple levels can result in experiments with many combinations (design points), 

which may be too expensive in practice. 

Finney (1945) developed fractional factorial designs to improve design economy by 

considering selected fractions (subsets) of the full factorial. These designs require far 

Ir 
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fewer runs than the full factorial designs to study the main effects and low-order 

interactions of some factors by sacrificing the ability to estimate higher-order 

interactions. For example, a saturated seven factors 2-level fractional factorial design 

only requires eight combinations while a seven factors 2-level full factorial design 

requires 128 combinations. Plackett and Burman (1946) developed additional fractional 

factorial designs to achieve further savings. Some further work in factorial designs 

considered blocking, asymmetric factorials, incomplete replications, and different 

design criteria [Wang and Wu (1991)]. 

Fractional factorial designs are very efficient for fitting first order models or for 

screening out important factors, but may have complex confounding problems for 

fitting second or higher order polynomial models. For fitting second or third order 

polynomial models, experimental designs developed for response surface methodology 

(RSM) have been found to be quite efficient. 

2.8.3 RSM Designs 

Box and Wilson (1951) developed RSM to explore relationships between chemical 

process yield and process variables, such as ambient temperature and pressure. Box and 

Draper (1969) applied RSM for process improvement which is referred to as 

evolutionary 2peration (EVOP). EVOP involves two stages of empirical optimizations. 

In the first stage, a first-order empirical model approximation and the steepest ascent 

method are used to move toward the (local) optimum. In the second stage, the optimal 

conditions are obtained via statistical and graphical analyses of a second-order model 

approximation over the region which is suspected to contain the (local) optimum. Both 

the RSM and EVOP methods have been shown to be very effective for process 

characterization and optimization in industry. Excellent reviews of the methods and 

applications can be found in the papers of Hill and 1-lunter (1966) and Myers and 

Montgomery (1995). 

Common first-order RSM designs include fractional factorial designs (discussed above) 

and simplex designs [Myers and Montgomery (1995)] which refer to the vertices of a 

simplex. Common second-order designs include the central composite design [CCD, 

Box and Wilson (1951)]. CCDs are basically fractional factorial designs augmented by 

center points and facial points so that the quadratic effects can be estimated. The Box-

Behnken designs are combinations of incomplete block designs that require fewer 

levels than CCDs. 
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Both CCDs and Box-Behnken designs maintain a good balance between design 
le 

efficiency (small prediction variation) and design properties (orthogonality, rotabilitiy, 

and robustness). Some alternative RSM designs focus on design efficiency (e.g., 

optimal design) by sacrificing design properties while other research focuses on design 

properties solely. 

2.8.4 Optimal Designs 

Early work in optimal designs can be found in the papers of Kiefer and Wolforitz 

(1960). Optimal designs are motivated by optimizing the statistical inference 

possibility, such as estimation or prediction capability, which are critically dependent 

on the underlying model. For example, consider a linear model: 
p 

,n, (2.1) 

where Y1  is the i-th response variable, x1  is the i-Ui vector of input variables. b1 (.), . 

are known functions, P1, . . . ,  Pm   are unknown coefficients, and € represents the 

experimental error and is identically and independently distributed with mean zero and 

variance a2  

In terms of estimation, it is important to minimize the variance of the estimates of the 

is. It follows that the variance-covarianee matrix of the least squares estimates of 

is 

(2.2) 

where XT = (b(x1), ..., b(x,1)T),  with h(x1 ) = (bj(x)...... h(x)) 

In terms of prediction, it is important to have high accuracy in the predicted response at 

any given value of the input variable (xo), Y Ixo.  It Ibliows that the prediction variance 

is 

v(xo) = VAR(Y Ixo) = a2  b(xo)T (XTX)-Ih(xo). (2.3) 

As the variance-covariance is a matrix which depends on X'X only and the prediction 

variance is a function of the value x0  and X'X, the following criteria have been 

proposed for optimal designs: 
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D-Optimal: minimizing determinant of XTX, 

A-Optimal: minimizing trace of XTX, 

G-Optimal: minimizing maximal value of v(xo) over all possible XO, 

Q- or IV-Optimal: minimizing the average value of v(xo) over all 

possible xo.  

Reviews on some optimal designs include St. John and Draper (1975) and Steinberg 

and Hunter (1984). Note that criteria (i) and (ii) focus on estimation error and criteria 

(iii) and (iv) focus on prediction error. Some of these criteria can be shown to be 

asymptotically equivalent [Kiefer and Wolforitz (1960)]. Obviously, many other 

alternatives can be considered. The primary disadvantage of optimal designs is their 

dependence on the underlying model, an issue which has created controversy. 

Nevertheless, optimal designs have been very popular in applications, including RSM 

optimal designs, due to their clear and simple objectives. Similar optimal criteria have 

been extended to model-independent designs, which are less sensitive to underlying 

modes. 

2.8.5 Orthogonal Array Designs 

The most well known orthogonal array (OA) design is the Latin square design, and 

both are special forms of fractional factorial designs. A complete factorial design for p 

variables, each at q levels, contains all qt)  level combinations. A Latin square is an 

experimental design for three variables, each at q levels, with q2  design points chosen 

so that all possible level combinations for every pair of variables appears in the design 

exactly once. Spatially, if the q2  design points are projected onto any two variables, the 

two-dimensional complete factorial is fully represented. By overlaying two independent 

Latin squares in a manner that preserves orthogonality, a Graeco-Latin square for four 

variables is constructed. The extension to higher dimensions is called a hyper-Graeco-

Latin square and is equivalent to an OA of strength two. 
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2.8.6 Latin Hypercube Designs 

Latin hypercube designs (LI-IDs) are a particular class of non-collapsing designs. For 

LI-IDs on the [0,n- 1]k  hypercubc, the values of the input parameters are chosen from the 

set {0,l,. . .,n-1} and for each input parameter each value in this set is chosen exactly 

once. More formally, a k-dimensional LI-ID of n design points can be described as a set 

of n points x= (x 1 , x12, . . . , x) : i = 0, 1, . . . ,n-1, is given by a nxk matrix (i.e. a 

matrix with n rows and k columns) X, where each column of X consists of a 

permutation of integers 0,1, . . . , n-i. Each row of X will be referred as a design point 

and each column of X as a factor of the design points. X can be represented as follows 

X 0 X01 X0 ,<  

x = = 

XN_I X_ 

such that for eachj E { 1 ' . . k} and for all p,q E {0, 1, . . . , n—i } with p :# q , x,,j # 

xq j holds. 

An important issue in generating a Li-I design is that the LH balance does not guarantee 

low correlations between input variables. In fhct, perfect correlation between two input 

variables is possible. In practice, several LH designs are generated and input variable 

correlations are used to select the "best" one. Owen (1994) addressed the controlling of 

correlations in LH designs and the rank correlation method of Iman and Conover 
J. 

(1982b) is also applicable. Ye (1998) presented a method to construct orthogonal LI-I 

designs, however, only for certain restrictive samples sizes. 

McKay and his coauthors (1979) introduced LI-I sampling, in which the continuous 

range of each variable is partitioned into n intervals (strata), each interval for each 

variable is sampled exactly once, and the univariate sample values are randomly 

matched across all the variables to form the n sample points. 

If the n distinct levels are assumed for a LI-I design are the midpoints of the n intervals 

utilized by the LH sampling scheme, then LI-I sampling may be viewed as a random 

perturbation of the LH design points, using a uniform distribution over each interval. 

A hybrid OA-LH design, for which a LI-I design is created from an OA structure, was 

jp- introduced by Tang (1993). Starting with, say, a q-level OA of strength two and index 
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unity, there will be n = q2 points. The set of integer values { I, . . . , n} is partitioned 

into the q groups: 

{l,. . . , q}; {q + 1,.. . , 2q};...; {q(q - 1) + 1,.. . , n}. 

Within the OA, the levels labeled (O, 1, . . . , q —1) correspond (in order) to the q 

groups. For a given dimension, each OA-level appears q times in the OA design. To 

create the OA-LH design, the q appearances of each OA-level are replaced by distinct 

integer values that are sampled without replacement from the corresponding group. 

Finally, the OA-LH sampling scheme utilizes random perturbations (within intervals). 

Both designs attain only the LI-I properties, except that balance is maintained in 

bivariate margins (with a strength two OA or higher). 

2.8.7 Integrated Mean Squared Error Based Design 

For a fixed number of runs, n, and for specified correlation structure R, a criterion will 

be necessary for choosing a design that predicts the response well at untried inputs in 

the experimental region X 1-lere functional of the MSE matrix or kernel is considered 

M = {E{Y(w) - 5'(w)][Y(x) - 

for all wand x inXThe diagonal elements are the MSE [(x)]. In the Bayes case when 

the fts in (1) are known constants, M is just the posterior covarialice matrix of the 
0- 

process. When the f3's have prior variances that tend to infinity, M is the limiting 

posterior covariance matrix of Y(w). Now Integrated Mean Squared Error (IMSE) 

based on M is discussed. The IMSE criterion chooses the design S to minimize 

J MSE,  [5'(x)}b(x)cIx 

for a given weight function p(x). The IMSE can be written as 

0 ,2  1—trace
[(F 

 
ç(f(x)f'(x) 

R) r(x)f'(x) 

1 
q$(x)dxI  r(x)r (x)) j 
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These integrals simplify to products of one-dimensional integrals if X is rectangular and 

it the elements of f(x) and r(x) are products of functions of a single input factor. Thus, 

polynomial regression models and product correlations can be numerically convenient. 

The IMSE criterion is essentially the trace of M (suitably normalized). It is assumed 

that 0(x) is uniform, though other weights cause no real difficulty. This criterion has 

proved to be effective in terms of actual squared error of prediction in test examples 

reported by et al. (1989). 

S 

* 
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CHAPTER 3 

OVERVIEW OF CORRELATION 

3.1 Introduction 

There are many situations in which the objective in studying the joint behavior of two 

set of variables is to see whether they are related, rather than to use one to predict the 

value of the other. Correlation is a widely used statistical technique. Correlation 

coefficients are the index of the measurement of the relationship among the sets of 

variables. There are several kinds of correlation coefficients regarding the number of 

a variables considered. They are (i) Simple correlation (ii) Multiple correlation and (iii) 

Partial correlation. The correlation may be linear or nonlinear. Below they will be 

discussed briefly. 

(i) Simple correlation: If there are only two variables, then the measure of the relation 

is called simple correlation. In order to compute simple correlation, two variables must 

be needed, with values of one variable (X) paired in some logical way with values of 

the second variable (Y). Such an organization of data is referred to as a bivariate (two-

variable) distribution. Two variables may be positively correlated, be negatively 

correlated, or have no relationship to each other (zero correlation). 

In the case of a positive correlation between two variables, high measurements on one 

variable tend to be associated with high measurements on the other and low 

* measurements on one with low measurements on the other. With negative correlation, 

high scores of one variable are associated with low scores of the other. The two 

variables thus tend to vary together but in opposite directions. A zero correlation means 

that there is no relationship between the two variables. High and low scores on the two 

variables are not associated in any predictable manner. 

A simple correlation coefficient is a measure of the relationship between two variables. 

It describes the tendency of two variables to vary together (co-vary); that is , it 

describes the tendency of high or low values of one variable to be regularly associated 

with either high or low values of the other variable. The linear correlation coefficient of 

Pearson product moment (Blanched formula) formula [Ross (2005)]: 

sx  

J S) (S) (3.1) 
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where X and Y are paired observations, 

- 
- 

Multiple Correlation: 

The degree of relationship existing among three or more variables is called multiple 

correlation. To allow for generalizations to large numbers of variables, it is convenient 

to adopt a notation involving subscripts. 

Llet Xi, X2, X3, . . . X, denote the variables (factors of the design) under consideration. 

Then the partial correlation between the factors i and j are given by Pu,  where each pij  

are computed as Eq. (3.1). 

Then the measure the multicollinearity among the factors can be defined by the 

following measure of average pair-wise correlations 

k i-I 

- 
i=2 j=l 

k(k-1)/2 
(3.2) 

Note that this definition is frequently used in literature [Fang et al. (2000b), Joseph and 

I-lung (2008)]. Whereas the definition of maximum pair-wise correlation is given 

below: 

Prnax = max 
1:gi,15k 

(3.3) 

Partial Correlation: 

It is often important to measure the correlation between a dependent variable and one 

particular independent variable when all other variables involved are kept constant; that 

is, when the effects of all other variables are removed (often indicated by the phrase 

"other things being equal"). This can be obtained by defining a coefficient of partial 

correlation, except that the explained and unexplained variations must be considered 

that arise both with and without the particular independent variable. 
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If r12,3  is denoted the coefficient of partial correlation between X1  and X2  , keeping X3  

40 constant, it is found that 

= 

J(i- r13D(1— ?3) (3.4) 

Now some important issues regarding the analysis among the observed variables will 

be discussed. 

3.2 Coefficient of Deter!nination: 

• A statement that specifies corresponding values on.. the two variables is a common way 

to express a relationship between two variables. To predict about one variable, a value 

on the second variable must be needed. A more complicated method of expressing the 

relationship between two variables will be learnt. It is widely used because it gives, 

with one number, an overall index that specifies the proportion of variance the two 

variables have in common. The name of this index is the coefficient of determination. It 

is easy to calculate 

At first the linear regression model has been defined by the relationship 

Ya--f3X+. (3.5) 

Then the quantities Y,  - a i = 1,2,", N are called residuals, where 6 and /3 

are the estimators of a and G. They represent the differences between actual and 

predicted responses. SSR  will be considered the sum of squares of these residuals. Then 

SSR  can be represented as [Ross (2005)] 

- sxxSSR s7-sk 
sxx 

Then the coefficient of determination denotes by R2  is defined by 

= 

Sry 

(3.6) 

(3.7) 

n 
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It can be shown that the absolute value of the sample correlation r can be expressed as 

I r = 

N 
(3.8) 

It is worthwhile not mention here that this relation is hold for the case of simple linear 

correlation. 

3.3 Multicollinearity: 

In multiple regression problems, it is expected finding dependencies between the 

response variable y, and the regressor variables (titctors of the designed points x,). In 

the most regression problems, however, it is found that there are also dependencies 

among the factors of the designed points x,. In the situations where these dependencies 

are strong, it is said that multicollinearify exists. Multicollinearity can have serious 

effects on the estimates of the regression coefficients and on the general applicability 

o f the model. 

The effects of rnulticollinearity may be easily demonstrated. The diagonal elements of 

the matrix C = (X'X)' can be written as 

Cii = 11(1- R2 1) i = 1,2, ..., k (3.9) 

where R21  is the coefficient of multiple determination resulting from regressing x1  on 

the other k-i regressor variables. Clearly, the stronger the linear dependency of xi on 

the remaining regressor variables, and hence the stronger the multicollinearily, the 

larger the value of R21  will be. 

3.3.1 The effect of Multicollinearity 

Multicollinearity can result in several problems. These problems are as follows: 

The partial regression coefficient due to multicollinearity may not be estimated 

precisely. Due to multicollinearity, the standard errors are likely to be high. 

Multicollinearity results in a change in the signs as well as in the magnitudes of 

the partial regression coefficients from one sample to another sample. 
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Multicollinearity makes it tedious to assess the relative importance of the 

indepcndent variables in explaining the variation caused by the dependent 

variable, 

3.3.2 The Cause of Occurrence of Muliticoilinearity 

There arc some reasons the occurrence of inulticollincarity are point out below: 

• Multicollinearity is caused by an inaccurate use of dummy variables. 

• Multicollinearity is caused by the inclusion of a variable which is computed 

from other variables in the equation. 

• Multicollinearity can also result from the 1'epctition of the same kind of 

variable. Practical examples of this include a iVokia iV Series user and Nokia 

1101 user,' the height of the person in feet and the height of the person in 

inches, etc. In other words, multicollinearity is caused by the inclusion of an 

almost identical variable twice. 

• Multicollinearity generally occurs when the variables are highly and truly 

correlated to each other. 

In the presence of high multicollinearity, the confidence intervals of the coefficients 

tend to become very wide and the statistics tend to be very small. It becomes difficult to 

reject the null hypothesis of any study when multicollinearity is present in the data 

under study. 

Multicollincarity is not something that can be counted. 

Multicollinearity is not discrete in nature; rather, it is continuous. 

• Multicollinearity is nothing but a matter of degree. 

The presence of multicollinearity can be detected in several ways. 

3.3.3 Detection of Multicollinearity 

(i) Multicollinearity can be detected with the help of tolerance and its reciprocal, 

called variance inflation factor (VIF). Some authors have suggested a formal detection-

tolerance or the variance inflation factor (VIP) for multicollinearity: 



tolerance = 1 - R , VIF = 
1 

OF to1 -ranc9 

where is the coefficient of determination of a regression of explanator I on all the 

other explanators. A tolerance of less than 0.20 or 0.10 and/or a VIF of 5 or 10 and 

above indicates a multicollinearity problem. 

Multicollinearity can also be examined with the help of a condition number. 

The standard measure of ill-conditioning in a matrix is the condition index. It will 

indicate that the inversion of the matrix is numerically unstable with finite-precision 

r numbers (standard computer floats and doubles). This indicates the potential sensitivity 

of the computed inverse to small changes in the original matrix. The Condition Number 

is computed by finding the square root of (the maximum eigcnvalue divided by the 

minimum eigcnvalue). If there is no multicollinearity, then the condition number will 

give the value of one. If the multicollinearity increases, then the cigcnvalues will be 

greater and smaller than one. If the eigenvaluc becomes close to zero, then there is a 

serious multicollinearity problem. Basically, if the condition number is 15, then 

multicollinearity is a concern. If it is greater than 30, then multicollinearity is a very 

serious concern for the researcher performing the study. If the Condition Number is 

above 30, the regression is said to have significant multicollinearity. 

Insignificant regression coefficients for the affected variables in the multiple 

regression, but a rejection of the joint hypothesis that those coefficients are all zero 

(using an F-test). 

Large changes in the estimated regression coefficients when a predictor variable 

is added or deleted. 

Farrar-Glauber Test: [Farrar and Glauber (1967)] If the variables are found to be 

orthogonal, there is no multicollinearity; if the variables are not orthogonal, then 

rnulticollinearity is present. 

As inulticollinearity measures the linear dependency among the factors of the 

design points, so inulticollineariry can be measured by the partial pair-wise correlations 

among the factors. There are several ways are available in the literature to measure the 
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pair-wise correlations i.e. multicollinearity. Here, the following measure of average 
fr' pair-wise correlations is considered which described above 

- k i-I 

= 
1=2 j=1 

k(k-1)I2 

Or maximum pair-wise correlation: 

Pmax =  max P 11  

I e-' 
Ic 

\_;• 
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CI-IAPTER 4 

ITERATED LOCAL SEARCH APPROACH FOR MAXIMIN LATIN 
HYPERCUBE DESIGNS 

4.1 Introduction 

The Latin hypercube design is a popular choice of experimental design when computer 

simulation is used to study a physical process. These designs guarantee uniform 

samples for the marginal distribution of each single input. A number of methods have 

been proposed for extending the uniform sampling to higher dimensions. How to 

construct Latin hypercube designs in which all main effects are orthogonal is shown 

F- 
here, that ILS method can also be used to construct Latin hypercube designs with low 

correlation of first-order and second-order terms. ILS method generates orthogonal 

Latin hypercube designs that can include many more factors than those proposed by Ye 

(1998). 

4.2 Iterated Local Search 

The importance of high performance algorithms for tackling difficult optimization 

problems cannot be understated, and in many cases the only available methods are 

metaheuristics. The word metaheuristics contains all heuristics methods that show 

evidence of achieving good quality solutions for the problem of interest within an 

acceptable time. Metaheuristic techniques have become more and more competitive. 

When designing a metaheuristic, it is preferable that it be simple, both conceptually and 

in practice. Naturally, it also must be effective, and it' possible, general purpose. The 

main advantage of this approach is the ease of implementation and the quickness. 

As metaheuristics have become more and more sophisticated, this ideal case has been 

pushed aside in the quest for greater performance. As a consequence, problem-specific 

knowledge (in addition to that built into the heuristic being guided) must now be 

incorporated into metaheuristics in order to reach the state of the art level. 

Unfortunately, this makes the boundary between heuristics and metaheuri sties fuzzy, 

and also it makes the risk of loosing both simplicity and generality. 

1-lere a well known metaheuristics approache, namely general Iterated Local Search 

(ILS) has been discussed. Iterated Local Search is a metaheuristic designed to embed 
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another, problem specific, local search as if it were a black box. This allows Iterated 

Ir Local Search to keep a more general structure than other metaheuristics currently in 

practice. 

The essence of metaheuristic - the iterated local search - can be given in a nut-shell: one 

iteratively builds a sequence of solutions generated by the embedded heuristic, leading 

to far better solutions than if one were to use repeated random trials of that heuristic. 

This simple idea has a long history, and its rediscovery by many authors has lead to 

many different names for iterated local search like iterated descent [Baum (1986)], 

large-step Markov chains, iterated Lin-Kernighan, chained local optimization [Martin 

and Otto (1996)], or combinations qf these. There are two main points that make an 

algorithm an iterated local search: (i) there must be a single chain that is being followed 

(this then excludes population-based algorithms); (ii) the search for better solutions 

occurs in a reduced space defined by the output of a black box heuristic. In practice, 

local search has been the most frequently used embedded heuristic, but in fact any 

optimizer can be used, be-it deterministic or not. 

The purpose of this review is to give a detailed description of iterated local search and 

to show where it stands in terms of performance. So far, in spite of its conceptual 

simplicity, it has lead to a number of state-of-the art results without the use of too much 

prOl)lem-Specific knowledge; perhaps this is because iterated local search is very 

malleable, many implementation choices being left to the developer. In what fbllows a 

formal description of ILS and comment on its main components will be given. 

Procedure Iterated Local Search 

So = Generate Initial Solution 
* 

= Local Search(s0) 

repeat 

5' = Pcrturbation(s; history) 

s = Local Search(s) 

S.  = Acceptance Criterion (s; srn', history) 

until termination condition met 

end 
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ILS involves four main components: 

creating an initial solution; 

a black-box heuristic that acts as a local search on the set S. 

the perturbation operator, which modifies a local solution; 

the acceptance criterion, which determines whether or not a perturbed solution 

will become the starting point of the next iteration. 

Local search applied to the initial solution s0 gives the starting point s" of the walk in 

the set S. Starting with a good s" can be important if high-quality solutions are to be 

reached as fast as possible. The initial solution s0 used in the ILS is typically found one 
Ir 

of two ways: a random starting solution is generated or a greedy construction heuristic 

is applied. A "random restart" approach with independent samplings is sometimes a 

useful strategy (in particular when all other options fail), it breaks down as the instance 

size grows because in that time the tail of the distribution of costs collapses. A greedy 

initial solution So has two main advantages over random starting solutions: (i) when 

combined with local search, greedy initial solutions often result in better quality 

solutions s; (ii) a local search from greedy solutions takes, on average, less 

improvement steps and therefore the local search recluircs less CPU time. 

The current s, first a change or perturbation is applied that leads to an intermediate 

state s' (which belongs to 5. Then Local Search is applied to s' and reaching a solution 

s' in S. If s' passes an acceptance test, it becomes the next element of the walk in S 

otherwise, one returns to s. The resulting walk is a case of a stochastic search in S but 

where neighborhoods are never explicitly introduced. This iterated local search 

procedure should lead to good biased sampling as long as the perturbations are neither 

too small nor too large. If they are too small, one will often fall back to s and few new 

solutions of S*  will be explored. If on the contrary the perturbations are too large, s' will 

be random, there will be no bias in the sampling, and a random restart type algorithm 

will be recovered. 

In practice, much of the potential complexity of ILS is hidden in the history 

- dependence. If there happens to be no such dependence, the walk has no memory: the 
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perturbation and acceptance criterion do not depend on any of the solutions visited 
p previously during the walk, and one accepts or not s with a fixed rule. This leads to 

random walk dynamics on S that are "Markovian", the probability of making a 

particular step from s to s2'dcpendling only on s1  and 2.  Most of the work using ILS 

has been of this type, though recent studies show unambiguously that incorporating 

memory enhanccs performance [Stutzle (1998)]. 

The main drawback of any local search algorithm is that, by definition, it gets trapped 

in local optima that might be significantly worse than the global optimum. The strategy 

employed by ILS to escape from local optima is represented by perturbations to the 
F 

current local minimum. The perturbation scheme takes a locally optimal solution, s, 

and produces another solution from which a local search is started at the next iteration. 

hopefully, the perturbation will return a solution outside the basins of attraction of 

previously visited local minima. That is, it will be "near" a previously unvisited local 

optimum. Choosing the correct perturbation scheme is of primary importance, because 

it has a great influence on the intcnsiiication/diversification characteristics of the 

overall algorithm. Generally, the local search should not be able to undo the 

perturbation; otherwise one will fall back into the local optimum just visited. 

Perturbation schemes are commonly referred to as "strong" and "weak", depending on 

how much they affect the solution that they change. A perturbation scheme that is too 

strong has too much diversity and will reduce the ILS to an iterated random restart 

heuristic. A perturbation scheme that is too weak has too little diversity and will result 

in the ILS not searching enough of the search space. The perturbation scheme should be 

chosen in such a way that it is as weak as possible while still maintaining the following 

condition: the likelihood of revisiting the perturbed solution on the next execution of 

Local Search should be low [Lourenco et al. (2002)]. The strength should remain as 

low as possible to speed up execution time. The desired perturbation scheme will return 

a solution near a locally optimal value. If this is the case, the local search algorithm 

should take less time to reach the next locally optimal value. Components from other 

meta-heuristics can sometimes be incorporated into the perturbation phase. Battiti and 

Protasi (1997) use memory structures to control the perturbation. In doing so, one can 

force intensification when globally good values are reached and force diversification 

when the search stagnates in an area of the search space. Borrowing from Simulated 
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Annealing [Kirkpatrick et al. (1983)], temperature controlled techniques have been 

used to force the perturbation to change in a deterministic manner. Basic variable 

neighborhood search employs a deterministic perturbation scheme. Just as perturbation 

can range from too much intensification (no perturbations) to too much diversification 

(perturb all elements of the solution), acceptance criterion choices affect the search in a 

similar way. The most dramatic acceptance criterion on the side of diversification is to 

accept all perturbed solutions. This type of practice can undermine the foundations of 

ILS, since it encourages a "random-walk" type search. Contrasting with this, the 

algorithm accepts only solutions that are improvements to the globally optimal value (a 

sort of greedy strategy). Many implementations of ILS employ this type of acceptance 

strategy. This type of criterion, especially with a weak perturbation scheme, can restrict 

the search from escaping the current basin of attraction. Moreover, with this type of 

scheme the probability of reaching the same locally optimal value increases a trait that 

reduces the algorithm's overall effectiveness. In this case random restart when the 

search stagnates is a good way to ensure some diversification and to counterbalance the 

(possible) negative effects of too greedy a search. Large perturbations are only useful if 

they can be accepted. This only occurs if the acceptance criterion is not too biased 

toward better solutions [Lourenco et al. (2001)]. In the paper of St"utzlc (1998) author 

show that acceptance criteria that accept some worse solutions outperform their best-

only counterparts. 

For what concerns the stopping rule, generally the algorithm executes until one of the 

following conditions is met: 

a predetermined number of cycles have occurred; 

• the best solution has not changed for a predetermined number of 

cycles; 

• a solution has been found that is beyond some predetermined 

threshold. 

ILS has many of the desirable features of a metaheuristic: it is simple, easy to 

implement, robust, and highly effective. The essential idea of ILS lies in focusing the 

search not on the full space of solutions but on a smaller subspace defined by the 

solutions that are locally optimal for a given optimization engine. The success of ILS 
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lies in the biased sampling of this set of local optima. how effective this approach turns 

out to be depends mainly on the choice of the local search, the perturbations, and the 

acceptance criterion. Interestingly, even when using the most naive implementations of 

these parts, ILS can do much better than random restart. But with further work so that 

the different modules are well adapted to the problem at hand, ILS can often become a 

competitive or even state of the art algorithm. This dichotomy is important because the 

optimization of the algorithm can be done progressively, and so ILS can be kept at any 

desired level of simplicity. This, plus the modular nature of iterated local search, leads 

to short development times and gives ILS an edge over more complex metaheuristics in 

the world of industrial applications. As an example of this, recall that ILS essentially 

treats the embedded heuristic as a black box; then upgrading an ILS to take advantage 

of a new and better local search algorithm is nearly immediate. Because of all these 

features, it is believable that ILS is a promising and powerful algorithm to solve real 

complex problems in industry and services, in areas ranging from finance to production 

management and logistics. Finally, notice that although all of the present review was 

given in the context of tackling combinatorial optimization problems, in reality much of 

what is covered can be extended in a straight-forward manner to continuous 

optimization problems. 

4.3 Maximin Latin flypercube Designs 

The s-norm distance between two points x, and xi., V i, / = 1, 2, ,IV will be denoted 

as follows: 

d= (4.1) 

Unless otherwise mentioned, we will only consider the Euclidean distance measure (s = 

2). In fact, the squared value of d, will be usually considered (in brief d), i.e. d2  (saving 

the computation of the square root). This has a noticeable eftect on the execution speed 

since the distances d will be evaluated many times. 
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4.4 Definition of LHD 

A Latin 1-lypercube Design (LHD) is a statistical design of experiments, which was first 

defined by McKay and his coauthors in (1979). An LHD of k-factors (dimensions) with 

N design points, x1 = (x11, x 2 x) : i = 0, 1.....N-1 , is given by a Nxk-  matrix (i.e. 

a matrix with N rows and k columns) X, where each column of X consists of a 

permutation of integers 0, 1, ,N-1 (note that each factor range is normalized to the 

interval 0,iV —1] so that for each dimension] all x , i = 0, 1, ,N —1 are distinct. 

Each row of X will be referred as a (discrete) design point and each column of X as a 

factor (parameter) of the design points. 

X can be represented as follows 

Jr 

xo xoi . X 0  

X= : = (4.2) 
XIv _l X_11 X_ 

such that for each] E { 1, 2 . , k} and for all p, q E { 0, 1, ,N - 1 } with p ~ q; x1, :~ 

xqj  holds. 

Given a LI-ID Xand a distance d, let 

D = {d(x1, xi): I < i <j iV}. 

Note that IDI 
<J. 

Dr is defined as the r-th minimum distance in D, and .Jr as the 

number of pairs {x1, x} having d xj) = Dr X) in X. 

The maximin LHD problem aims at finding a LHD X' such that D1 X) is as large as 

possible. However, a search which only takes into account the D values is certainly not 

efficient. Indeed, the landscape defined by the D1  values is "too flat". For this reason 

the search should be driven by other optimality criteria, which take into account also 

other values besides D 1 . 
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Fig. 4.1: Some LHDs and their corresponding (D1, J1 ) values. 
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43 Optimality Criteria 

A criterion is necessary in order to drive the search through LI-IDs. Some of the criteria 

employed in the literature are given below. 

OptD1, J1) Optimality Criterion: Under this criterion a LHD Y can be considered 

better than another one X if a lexicographic ordering holds: 

D1(Y)>f)1(X) or 

t)1(Y) = I)1(X) and 11(Y ) <J1(X). (4.3) 

This optimality criterion is illustrated as follows. In Figure 4.1(a) X is a randomly 

generated LHD with (N, k,) -=(9,2) where D1(.) =2 and .J(X.) = 4; Figure 4.1 (b) 

presents an improved configuration X  where D1(X,) = 8 with J(X  ... ) = 4. A third 

LHD Xv is given in Figure 4.1(c) where D1(X) = 8 and J1X.i) = 2; by the Opt(D i, .J) 

criterion this is the best configuration among the three. 

By generalizing this approach, the problem like a multi-objective problem can be 

considered with priorities: maximize the objective with highest priority [); within the 

set of optimal solutions with respect to D1, minimize the objective with second highest 

priority J1. Note that Johnson and his coauthors (1990) first proposed this optimality 

criterion. 
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Opt(p) Optimality Criterion : As previously remarked, if there exist different LHDs 

with equal D 1  and J1  values, i.e. in case there exist at least two LHDs X, Y such that 

D1 (X) = D1 (1) = D1  and J1 (X) = 11 (Y) = ,J, further the objective D2  could be considered 

and maximized D2 X, the second smallest distance in X and, if equality still holds, 

minimize J2 X), the number of occurrence of D2(X), and so on. Then an optimal design 

Xscquentially maximizes Di., and minimizes J,, in the following order: D1, J1 ; D2, J2, 

• ,D,, J,,. Morris and Mitchell (1995) have used all the above measures to define a 

family of scalar-valued functions (to be minimized), which can be used to rank 

competing designs in such a way thata maxirnin design receives the highest ranking. 

This family of functions, indexed by1, is given by 

F 

(4.4) 

wherep is a positive integer parameter. Under this criterion, LI-ID Yis better thanXif 

q$(Y) < 0(X). 

Note that for large enough p, each term in the sum in (4.4) dominates all subsequent 

terms. Through p the impact of the different Dr distances can be controled: as p 

increases, the impact of distanceD1  becomes more and more relevant. In the form (4.4), 

the evaluation of 01, would be computationally costly. 1-lowever, it has a 

computationally cheaper form Jin et al. (2005). Indeed, (4.4) can be simplified as 

N V 

01,(X)= .-;;;- (4.5) 

which can be computed without the need of detecting and ordering all the D, values. 

An apparent drawback of the Opt( ) criterion, if there is an interest in maximin values 

(maximum D1  value), is that LHDs with smaller (better ) 01, can have a worsc(smaller) 

D1, i.e. there are X and Y such that ,(X)< 0,()') and D1 X) < D1(Y). This 

phenomenon has been frequently observed in our computational experiments. 

Nevertheless, a profitable choice is to work in order to minimize the 0 ,, function but, at 

- the same time, keep track of the best (D1 , J1 ) values observed during such 
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minimization. This way the search in the solution space is guided by a kind of heuristic 

function. Such mixed approach might appear strange but, as it will be demonstrated 

experimentally, it can be extremely effective. 

While the two criteria above are strictly related to maximin values and they will be 

widely employed in the definition of approaches for detecting niaximin solutions, for 

the sake of completeness, it is also mentioned that other optimality criteria, not 

necessarily related with maximin values, are available in the literature. A couple of 

them is presented below. 

Correlation Optimnality Criterion: Iman and Conover (1982a), Owen (1994), and 
10, 

Tang (1998) proposed to choose designs by minimizing correlations among factors 

within the class of LHDs. Owen (1994) used the following per!brmance measure for 

evaluating the goodness of the LHD with respect to pairwise correlations. It is defined 

as follows 

= 

y1py, 

k(k-1)/2 
(4.6) 

For calculating the correlation between each single pair of factors (say column q and 

column r), here Pearson's formula is used: 

iVx 
iq ir 

x — 
iq x• : x jr 

(4.7) qr 
=
V 

2 
- VNZ x2x )2 

- 
x. )2 iq iq ir 

where the sums are over i = 1, N. 1-lere Y is better than X if p2  (10 <p2  (X). 

4.6 ILS heuristic for maximnin LiID 

A general scheme for ILS-based algorithms has been discussed in Section 4.1. Now the 

ILS based procedure will be presented here for maximin Latin hypercube design. It is 

mentioned earlier that, the main components of ILS heuristic approaches are 

Initialization (Ii), LocalSearch (LM , Perturbation Move (1'4, and the Stopping Rule 

(SR). Now the pseudo-code of the proposed ILS heuristic for maximin is given bellow 
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LHD problems is the following: 

Step 1. Initialization : X = Is'{O 1,...,N -- 1}) 

Step 2. Local Search : X* 
= L11(X) 

while SR not satisfied do 

Step 3. Perturbation Move :X' = P1w2Q 

Step 4. Local Search : = L1 (X) 

Step 5. Improvement test : if X is better thanX 

setX=X' 

end while 

ReturnX 

In order to fully specify the algorithm the components are detailed below. 

4.6.1 Initialization (is) 

The initialization (I procedure embedded in the algorithm is cxtremely simple: the 

first initial solution is randomly generated. In particular, the first initial solution 

generation is built as follows. For each component h { 1, . . . , k} a random 

permutation v0,. . . , vJJ  of the integers 0, 1, . . . ,N - I is generated and set 

Xr/i = Vr for all r E {O, . . . ,N— I }. 

Although more aggressive procedures could be designed, we chose random generation 

because it is fast and unbiased. 

4.6.2 Local Search Procedure (Ls) 

In order to define a local search procedure (L3), it is necessary to define a concept of 

neighborhood of a solution. Given a LHDX = (xj, . . . , XN), its neighborhood is made of 

all other LilDs obtained by applying local moves to X. Before introducing some local 

moves, first the notion of critical point is introduced. 

Critical point: It is said that xi is a critical point for X, if 

mm d(x1, x) = D1 (X), 
I ,.,  
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i.e., the minimum distance from xi to all other points is also the minimum one among 
p all the distances in X. 1(X) { 1, . . . ,iV} the set of indices of the critical points in X is 

denoted. 

Local moves (L j): A local move is an operator that applies some form of slight 

perturbation to a solution X in order to obtain a different solution. Different local 

moves define different neighborhoods for local search. In the literature two different 

local moves are available: Rowwise-Pairwisc (RP) exchange [Park (1994)] and 

Columnwise-Pairwise (CP) exchange [Morris and Mitchell (1995)]. In Park's algorithm 

[Park (1994)] some active pairs (pairs of critical points, in the terminology) are 

p selected. Then, for each chosen pair of two active-rows, say i 1  and i2,  the RP exchange 

algorithm considered all the possible exchanges olcorresponding elements as follows: 

X1t X,2,q V p,  q = 1, 2,. . . , Ic : p:L- q, 

and found the best exchange among them. The CP algorithm proposed by Morris and 

Mithchell (1995) exchanges two randomly selected elements within a randomly chosen 

column. But Li and Wu (1997) defined the CP algorithm in a bit different way: they 

randomly chose a column and replaced it by its random permutations if a better LHD is 

obtained. 

Ills observed that the effect of CP based local search and RP based local search is not 

significance [Jamali (2009)]. So, here, RP based local move is considered as defined in 

Jarnali (2009) which is a bit different than that of Park (1994). For optimal criteria, 

Opt( 0) optimal criteria is considered. 

The definition of Rowwise-Pairwise Critical Local Moves (it is called LMJ.?,,Dl) as 

fbllows. The algorithm sequentially chooses two points (rows) such that at least one of 

them is a critical point, then exchanges two corresponding elements (factors) of the 

selected pair. If I 1(X), 1, j E  { 1, . . . ,N}, h, I { 1, . . . , k}, swapping the •C-th 

component gives the neighbor Y defined by 

Xr ii  if r # i or Ii ~ £ 

Yrh Xlh ifr=j  and h = (4.8) 

x11, ifr=i and h=P 
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it is remarked that, if Opt(I)1, .J) be the optimality criterion, it perfectly makes sense to 

avoid considering pairs xi and Xj such that 1(X) fl {x, x1) = 0 since any swap involving 

two non-critical points cannot improve the J)  value of the current LHD. 

When Opt( 0) is adopted as optimality criterion, any exchange can, in general, lead to 

an improved value of 0 . The RI? local move for Opt(0)  optimality criterion is denoted 

by Llvlppçband is also defined as Eq. (4.8), the only difference being that the 

requirement is dropped that at least one point must be critical. 

Now the RI? based local moves are illustrated by considering a randomly generated 

initial design A : (Nk) = (7,2) (see Figure 4.2(a)). Then a neighbodiood solution of A, 

by considering points (0,2), (4,4) (here both are critical points), is LHD B, obtained 

afler swapping the second coordinate of the points (0, 2) and (4,4) (Figure 4.2 (b)). 

lthial zuhtjon - LiJUA .A.fier sIuale Local Move. ib1 A. LIII) 13 MALY complete LS - LHD C 

40 

Fig: (a) I)(X,)2. Ji(X,)r3 Fig: (h) D1(X2, J1(X)l Fig. (c) D(X8, J(X=-1 

Fig. 4.2: Illustration of Neighborhood solutions for LMRPDI based local search (LS) 
procedure 

Also note that LHD B is an improving neighbor of LHD A, since (I), J1XB) = (2,1) 

whereas (D1. .11 )(A) = (2,3). Finally Figure 42 (c) shows the maximin LHD produced 

by the Local search procedure. 

Acceptance Rule: Between the two type of local moves [Jamali (2009)], Best Improve 

(BI) acceptance rule is considered as there are no significant difference regarding 

output [Jamali (2009)]. For the B! acceptance rule, the whole neighborhood of the 
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culTent solution is searched for the best improving neighbor. The reader was warned 
141- again that the meaning of "Y is better than X' can be defined accordingly with the 

Opt(Di, J1) or Opt( 0) optimality criterion. So for the Opt(Di , J1) optimality criterion: 

"Y is better than X' if 

Di(Y)>Dj(X)or(D1(X)=Dj()) and J1 (X')>11 (Yj). 

On the other hand for Opt(Ø) optimality criterion : "Y is better than X" if 

Ø(Y) <Ø,(X), 

where Op  is defined by (5). 

p.  

4.6.3 Perturbation Move (P.) 

Perturbation is the key operator in ILS, allowing the algorithm to explore the search 

space by jumping from one local optimum to another. Basically, a perturbation is 

similar to a local move, but it must be somehow less local, or, more precisely, it is a 

move within a neighborhood larger than the one employed in the local search. Actually 

the perturbation operator produces the initial solutions for all the local searches after 

the first one. Between the two types of perturbation operators, say, (i) Cyclic Order 

Exchange (COE) and (ii) Pairwise Crossover (PC) proposed in Jamali (2009), COE is 

considered. 

L.  Cyclic Order Exchange (COE): First perturbation move procedure is Cyclic Order 

Exchange (COE). The operator COE produce a cyclic order exchange upon a randomly 

selected single component (column) of a randomly selected portion of the design points 

(rows). Among the three variant of COE perturbation move techniques: Single Cyclic 

Order Exchange (SCOE) perturbation operation, Multiple Components Cyclic Order 

Exchange (MCCOE), and Multiple Single Cyclic Order Exchange (MSCOE) [Jarnali 

(2009)], only SCOE technique is considered. 

Single Cyclic Order Exchange (SCOE): Two different rows (points) are randomly 

chosen, say xi  and x•, such that I <j andj - i? 2. Then, a colunm (component), say C is 

randomly choosen. Finally, the value of component C is swapped in cyclic order from 

point x1 to point x. The pseudo-code structure for SCOE is the following. 
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Step 1: randomly select two different points x, and x 
r such that i <j andj - i> 2 

Step 2: Randomly choose a component - 

Step 3a: set tcmporarilyx xj ,i 
fort=j,j-1,...,i+ldo 

Step 3b: Replace the component x(t)C by x(t-1 

end for 

Step 3c: and replace x1  by xtj I 

Note thatj - i > 2 is required otherwise the perturbation would be a special case of the 

local move employed in the local search procedure. The SCOE perturbation is 

illustrated by an example. Let the current LI-ID X with N = 6 and k = 8 is 

pX1  05315244 
1x2 10424335 

= = 
2 1 5 3 3 4 2 0 

(49) 32042 S  1  1 
43151002 
54200 153' 

Now two rows (points), say X2 and x5  and the column (component), say ? = 4 are 

randomly chosen. Then, after the SCOE perturbation the following LI-ID X' (bold faces 

denote the values modified with respect to X*)  is obtained, 

05315244 
xz  10454335 

= 2 1 5 2 3 4 2 0 (4.10) 32032511 
43141002 

sX 6  542 00153' 

Note that SCOE only slightly modifies the current LI-ID X*  but this exactly follows the 

spirit of ILS, where the perturbation should keep unchanged large portions of the 

current solution and should not completely disrupt it structure. 
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4.6.4 Stopping Rule (SR) 

A very simple stopping Rule (SR) is used here. An integer parameter called 

MaxNonlmp (MNI) is introduced and the algorithm will stop if the currently best local 

optimizer X cannot be improved for MaxNonlmp consecutive perturbations. 

7- 
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CHAPTER 5 

COMPUTATIONAL EXPERIMENTS AND DISCUSSION 
REGARDING EUCLIDEAN DISTANCE 

5.1 Introduction 

In the study two kinds of distance measure have been considered, one is Euclidean 

distance measure (L2) another one is Rectangular distance measure (1-1 ). If x = (x1, x2, 

x,1) and y = (Yj y, y ..........yfl) be two points, then the distance of the two points 

in Rectangular distance measure is defined by 

d(xy:R) = Ix — yj (5.1) 

Whereas the distance in Euclidian distance measure is gives as follows 

dx,y.E (x, _ y )2 (5.2) 

For simplicity square of the distance is considered i.e. 

d2(x,y:E) = (x, —y)2 (5.3) 

In what follow, in this chapter, only Euclidian distance measure is considered but 

square. D1  is also denoted as a minimum inter-site square distance of the design points 

in Euclidian distance measure. 

5.2 Comparison of ILS with the existing literature 

At first several experiments have been performed to find out the maximin LI-IDs. For 

the experiments following parameter setting is considered: 

r 
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Table 5.1: Parameter setting for the experiments of ILS approach 

Experimental design LHD 

Method ILS 

Optimal Criteria Opt( ) 

Local Move RI> 

Acccptance Rule BI 

Perturbation Technique SCOE 

Stopping Rule MaxNonlrnp parameter value 

MaxNonlrnp setting 100 

Pararneter,p 20 

Table 5.2: The setting of number of runs for the ILS approach 

k N R 
3-10 2-25 500 
3-10 26-50 100 
3,4,5 51-100 50 
6-10 51-100 10 

Now the results are compared with available ones in the web site 

www.spacefillingdcsigns.nl/ and the literatures. It is worthwhile to mention here that 

this websitc is frequently updated. The best results also uploaded here. The 

- comparisons of the experimental results are reputed in the table 5.3 and table 5.4. 

Several computational experiments are performed to test the ILS heuristic in Euclidian 

measure (L) and compared it with available ones in the literature. The summary of the 

experimental results are given in Table 5.3 and Table 5.4. Note that D1  values are 

given in square of the actual values in Euclidian distance measure in order to avoid the 

fractional terms. In the table the results for PD (Periodic Design) and SA (Simulated 

Annealing) algorithms are taken from the paper of 1-lusslage et al. (2006). The results of 

SA_M (Simulated Annealing proposed by Morris and Mitchell) are taken from Morris 

and Mitchell (1995). 

FA- 
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Table 5.3: Comparison among several approaches of finding maximin LHDs for 
N=2 to 100 

Number of best solutions (maxirnin LI-ID) Identical 
solutions 

Worse 
Solution 

k PD SA SA M Web MS ILS ILS ILS 
3 61 0 0 65 0 14 20 65 
4 02 0 0 47 0 34 18 47 
5 00 0 0 11 0 78 10 11 

00 0 0 00 0 90 09 00 
7 00 0 0 00 0 1 92 07 00 
8  0 0 00 0 93 06 00 
9  0 0 00 0 93 06 00 
10 1  0 0 00 0 92 07 00 

Notice that in the paper of Morris and Mitchell (1995) few points were considered with 

Euclidian distance measure, whereas results for the column Web are taken from the 

"Archived results for 3-10 dimensional L2  -maximin Latin hypercube designs - 

14/3/2006" of the web wv.spacefillingdesians.n1. Note that this web portal is updated 

later by Grosso et al. (2009) for maxirnin LI-IDs, where updated values are obtained by 

the proposed ILS approach. The results of MS (MultiStart) are taken form Grosso et al. 

(2008). The results in column ILS are obtained by the proposed Iterated Local search 

approach with Opt () criterion. Note that in the column "Identical solution" means the 

solution of ILS is identical of the Web value. 

It is observed in the Table 5.3 that the approach is able to obtain 14 improved maximin 

LHDs for k=3; 34 improved solutions for k = 4; 78 improved solutions for k = 5; 90 

improved solutions for k = 6; 92 improved solutions for k = 7; 93 improved solutions for 

k = 8; 93 improved solutions for k = 9; 92 improved solutions for k = 10. It is observed 

that the performance of the ILS approach outperform the SA, SAM and MS approaches 

for all dimension considered here. It is also observed (the detail results are not reputed 

here) that ILS approach is also better compare to PD approach accept k = 3 and 4 when N 

is large. It is remarked that the increasing of k or/and N, the performance of the proposed 

ILS approaches is rather better. Note that, for k = 8. 9, 10, there are no value available in 

literature for the PD approach and very few values are available in SA_M [Morris and 

Mitchell (1995), Grosso et al. (2008)]. 

F 

r 

59 



Table 5.4: Comparison of computational cost 
p 

Total Elapsed Time (hrs) 

k PD SA ILS 

3 145 500 164 

4 61 181 507 

5 j 267 152 767 

6 108 520 1235 

7 232 246 698 

8 -- 460 j 846 

9 -- 470 1087 

10 -- 470 1166 

The computational cost of the approaches is reported in the table 5.4. 

It is still needed to comment about the computation times. As already remarked there is 

no information regarding times to obtain the Web's results. It is however quite clear 

that ILS is more computationally demanding with respect to PD and SA. Such higher 

costs are clearly rewarded in terms of quality of the results but the quality of the results 

might be wondered if the time restrictions are imposed on ILS. According to some 

further experiments that were performed, it would be realized that. especially at large k 

values, equivalent or better results with respect to the PD and SA ones, could quickly 

be reached by ILS. Therefore, it seems that at large k values even few and short runs of 

ILS are able to deliver results better than those reached by PD and SA. 

Now several experiments are performed for analysis the multicollinearity among the 

design points obtained by the ILS approach. The correlation will be investigated among 

the design points obtained by ILS approach. For the analysis, both the pair-wise 

correlation and maximum correlation are considered. The experimental results are 

compared with literature namely SA approach regarding D1  values, It is worthwhile to 

mention here that both the approaches (ILS as well as SA) optimized D1  values rather 

than p (average correlation) value. Here it is considered that the number of factors k 

3, ... 10 and for each k factor the number of points N = Si; i = 1, 2,..., 20. 
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Table 5.5: Multicollinearity analysis of the design obtained by ILS approach and 
comparison of maximin LiID for k = 3, 4, 5 

A' Ic=3 k=4 k=5 
p  P D1   P 

ILS ILS SA ILS ILS SA ILS ILS SA 

5 0.200 11(6) 11 0.261 15(4) 15 0.255 24(5) 24 

10 0.127 27(3) 27 0.163 50(12) 50 0.006 82(20) 82 

15 0.043 48(8) 48 0.046 89(2) 83 0.073 131(3) 124 

20 0.077 66(12) 62 0.023 137(8) 123 0.036 210(3) 184 

25 0.280 91(48) 81 0.06 181(1) 162 0.080 286(1) 255 
30 0.073 109(1) 102 0.051 234(1) 209 0.020 403(2) 335 
35 0.040 129(1) 122 0.035 289(2) 255 0.022 482(I) 418 

40 0.025 161(3) 146 0.029 345(1) 301 0.019 590(1) 505 
45 0.189 186(47) 166 0.039 412(1) 362 0.024 706(1) 615 
50 0.141 213(33) 185 0.031 480(1) 414 0.03 834(1) 699 
55 0.068 243(35) 214 0.041 550(1) 477 0.026 966(1) 805 

60 0.108 273(41) 237 0.033 624(l) 530 0.019 1101(1) 928 
65 0.085 314(43) 260 0.021 705(1) 582 0.023 1239(2) 1035 
70 0.006 321(1) 285 0.032 779(2) 658 0.013 1439(1) 1135 

75 0.018 353(1) 310 0.039 867(3) 714 0.015 
- 

1571(1) 1282 
80 0.142 403(52) 344 0.026 949(5) 786 0.015 1702(1) 1430 
85 0.037 426(29) 369 0.035 1043(6) 877 0.017 1871(1) 1566 
90 0.028 481(180) 384 0.022 1134(7) 940 0.016 2032(1) 1696 
95 0.011 482(4) 413 0.030 1223(1) 1010 0.031 2206(2) 1846 
100 0.054 554(4) 451 0.016 1313(l) 1074 0.019 2401(3) 197j 

It is observed in the table 5.5 that for k = 3, 4, 5, except few designs (in the table see the 

p values in bold face), the average pair-wise correlations are less than 0. 1. Similarly it is 

also noticed in the table 5.6 and 5.7 that for k = 6,7, 8, 9, 10, except few designs (the p 

values are shown in bold face in these tables) the average pair-wise correlations are 

less than 0.1. Moreover it is observed in the tables that accept the designs (k, N) = 

{(3,5); (3,25); (4,5); (5,5); (6,5); (7,5); (8,5); (9,5); (10.5),} the average correlation are 

less than 0.2. It is remark that accept the design (3,5), the average correlations are 

greater than 0.2 when the number of design point Al = 5. Perhaps the design points N = 

5 has inherent muliticollinearity property. From the above experiments it may be 

concluded that the average pair-wise correlation among the factor of design points are 

tolerable and the average pair-wise correlations among the factors of each design are 

decreasing (though not strictly monotone) as increasing the number of design points N 
-411 
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and/or factors k. On the other hand it is also observed that regarding D1  values 
fir 

(maximin LHD value) the ILS approach able to obtain, accept N = 3,4, better solutions 

for all dimension as well as design points. It is also observed that the ILS approach 

performed better regarding D1  values. For N = 3, 4, the ILS approach able to identical 

value compare to SA approach. 

Table 5.6: Multicollinearity analysis of the design obtained by ILS approach and 
comparison of maximin LI-ID for k = 6, 7, 8 

N k=6 k=7 k =8 

P D  p D1  p 
ILS ILS SA ILS ILS - SA ILS ILS SA 

5 0.342 27(3) 27 0.357 32(2) 32 0.395 40(10) 40 
10 0.110 93(3) 91 0.146 112(4) 110 0.127 1 133(4) 130 
15 0.102 175(2) 167 0.054 224(1) 211 0.075 280(I) 257 

20 0.042 285(1) 260 0.113 327(3) 332 0.061 434(1) 403 
25 0.037 408(1) 368 0.023 531(2) 467 0.051 637(1) 583 
30 0.044 545(1) 473 0.045 725(1) 620 0.014 897(1) 787 
35 0.059 697(3) 601 0.016 936(1) 811 0.048 1151(2) 1002 

40 0.029 886(1) 739 0.035 1162(1) 970 0.021 1459(1) 1224 
45 0.030 1065(1) 891 

- 

0.032 1408(1) 1192 0.026 1755(1) 1480 
50 0.024 1218(1) 1042 0.033 1707(1) 1397 0.026 2089(1) 1772 

55 0.018 1432(1) 1198 0.012 2043(1) 1639 0.036 2462(1) 2084 

60 0.019 1647(1) 1381 0.018 2284(2) 1899 0.032 2888(1) 2393 

65 0.020 1884(1) 1565 0.025 2579(1) 2132 0.025 3321(1) 2723 
70 0.018 2116(1) 1759 0.032 2895(1) 2417 0.013 3779(1) 3130 
75 0.018 2365(1) 1963 0.027 3230(1) 2703 0.013 4228(1) 3513 
80 0.015 2597(1) 2152 0.029 3641(1) 2979 0.018 4695(1) 3877 
85 0.017 2877(1) 2399 0.016 4023(1) 3299 0.016 5110(1) 4324 
90 0.013 3134(1) 2633 0.021 4400(2) 3661 0.016 5608(1) 4699 
95 0.015 3455(1) 2817 0.017 4844(1) 3940 0.022 6148(1) 5154 
100 0.015 3710(1) 3117 0.017 5206(1) 4335 0.013 6692(1) 5597 

p.  
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Table 5.7: Multicollincarity analysis of the design obtained by ILS approach and 
comparison of maximin LI-ID for k = 9, 10 

k=9 k=1O 

p  p  

ILS ILS SA ILS SA 

5 0.404 43(2) 43 0.411 50(10) 50 
10 0.043 157(4) 154 0.121 174(5) 172 
15 0.098 318(1) 296 0.115 358(1) 337 
20 0.062 517(1) 472 0.016 645(6) 542 
25 0.066 752(1) 688 0.040 875(2) 792 
30 0.035 1041(1) 925 0.0410 1210(1) 1086 

35 0.012 1398(1) 1190 0.036 1595(1) 1398 
40 0.043 2102(1) 1489 0.008 

- 
2102(1) 1742 

45 0.028 2126(1) 1820 0.028 2466(1) 2130 

50 0.015 2569(1) 2179 0.028 2991(1) 2556 
55 0.016 2996(1) 2570 0.018 3530(1) 3054 
60 0.021 3446(1) 2939 0.017 4109(1) 3500 

65 0019 3991(1) 3357 0.018 4695(1) 4034 

70 0.019 4516(1) 3841 0.016 5366(1) 4539 

75 0.027 5141(1) 4298 0.018 6015(1) 5171 

80 0.025 5792(1) 4807 0.018 6733(1) 5773 

85 0.013 6479(1) 5340 0.026 7508(l) 6397 

90 0.008 7152(1) 5832 0.023 8325(1) 7040 
95 0.010 7765(1) 6396 0.020 9252(1) 7741 

100 0.011 8520(1) 6983 0.014 10233(1) 8450 

Now experiments are performed for analysis the maximum pair-wise correlation, Prnax, 

as well as average pair-wise correlation, p, of the maximin LI-ID designs. For this 

experiments the design points N = 3....., 100, and the dimensions k = 4, 6, 8,10 are 

considered. All the other settings remain unchanged. The experimental results are 

reputed in the Figure 5.1 and 5.2. It is observed that, accept for low value of N the 

average pair-wise correlations are less than 0.2 among the factors of each experimental 

design. Figure 5.2 shows that the maximum pair-wise correlations decreasing but not 

strictly monotonic as increasing the number of design points. 
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From these above primary experiments it can be concluded that the proposed ILS 

approach able to find out the optimal (maximin) LHDs which are state-of-the-arts 

regarding space-filling as well as non-collapsing properties and have tolerable 

Multicollinearity property. Particularly it can be remarked that when numbers of design 

points are large, the linear dependency among the factors of the proposed maximin 

LHDs are insignificant. 
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CHAPTER 6 

COMPUTATIONAL EXPERIMENTS AND DISCUSSION 

REGARDING RECTANGULAR DISTANCE 

6.1 Introduction 

In the Previous chapter the experiments in which distances are measured in [uclidian 

distance measure have been performed. In this chapter Rectangular distance measure will be 

considered. It is known that for any two points x = (x1, ,t2.  x3  ...... .r,,) and y = (yi.y2.Y3. yn), 

the distance between this points, in Rectangular measure (L'), be 

d(x,v:R) 
= Ic. —I (6.1) 

It is noted that for the 1-1 -distance measure, to find optimal LI-ID is more complicated. 

Anyway the purpose is not to perform experiments to optimize LHD by ILS in Rectangular 

distance measure; rather the rnaximin LI-ID in Rectangular distance measure will be studied 

where the designs are optimized by ILS approach regarding Euclidian distance measure. 

6.2 Experimental Result and Discussion 

Actually in this study, the optimal LHD namely maximin LHD obtained by the proposed ILS 

approach (MLH-ILS) will be considered in which distance is measured in Euclidian distance 

measure (L2). Then the minimum inter-site distance will be measured among the design 

points of the MLH-ILS design by Rectangular distance measure, (L). In what follow D1 

denotes the minimum inter-site distance measured by the Rectangular distance measure. At 

first two experimental design namely (A k) = (5, 3); (9, 4) are considered. Two experiments 

are performed to optimize (maximin LI-ID) by ILS approach in L2  measure and lind out 

several importance characteristics. The outputs are reputed in the Table 6.1 and 6.2 at 

columns 4 and 5 respectively. Now these characteristics of the designs are compared with 

that of literature. The comparisons are mentioned in the Tables 6.1 and 6.2 

,01 
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Table 6.1: The comparison of MLII-ILS vs MLH-SA and OMLH MSA for 
(N, k)=(5,3) 

Method - MLFI-SA OMLH-MSA MLH-ILS 
Optimal Latin Hypercube 

Design Matrix - 

1 1 2 
2 5 3 
325 
431 
544 

1 2 3 
2 4 5 
351 
412 
534 

1 3 5 
2 2 2 
351 
444 
513 

Optimal Criteria - (J 
1)2 ((I), 1)  1) 

Distance measure - L L' L2  
PROPERTIES j  

p - 0.265 0.0816 0.200 
Pmax 0.4 0.1 0.200 

D1 (J1 )' - 5(3) 5(4)  5(6) 
j(LU 0.2170 .2201 0.21879 

D1 (J1 ) 2 - 9(1) 9(2) 11(6) 
b(L2) 

- 0.1113 0.1151 0.09956 

In the tables MLH-SA denotes maxirnin LI-ID obtained by Simulated annealing approach 

proposed by Morris and Mitchell (1995), OMLII-MSA denotes Orthogonal-maximin LHD 

obtained by the Modified Simulated annealing approach proposed by Joseph and Hung 

(2008) in which paper multi-objective criterion is considered and MLI-1-ILS denotes maximin 

LHD obtained by ILS approach as mentioned earlier which is proposed by Grosso et al. 

(2008) and also proposed here. In the Table 6.2 another design denoted by OLH- Y is also 

mentioned. Here OLH-Y denotes Orthogonal LI-ID obtained by the approach proposed by Ye 

(1998). In the tables p denotes average pair-wise correlation, Prnax  denotes maximum pair-

wise correlation (Eq. 3.2 and Eq. 3.3). The optimal criterion, cb is given by the Eq. (4.5), the 

optimal criterion 
, 

p2  denotes the multi-objective function where the algorithm optimized 

1 p2± (02 O p criterion [Joseph and I-lung (2008)1 where p is given by Eq. (3.2) whereas 

(I) )  is also given by Eq. (4.5) and Wj, 0)2 are weight factors (optimized both minimum 

distance criterion as well as correlation criterion). On the other hand the optimal criterion 

(b, DI) is also given by Eq. (4.5) but the algorithm track the best D1  value. Maximized 

minimum inter-site distance is indicated by D1 (J 1 ). In the tables. Rectangular distance 

A. 
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measure is indicated by the superscript (Li) whereas superscript (1,2) indicates Euclidian 

distance measure. The 11 , in D1 ( J 1 ), indicates number of site separated by the distance D1 . 

in the Table 6.1, it is noted that the designs MLI-i-SA and OMLI-l-MSA are optimized 

regarding Rectangular distance measure (L') whereas the proposed design of this thesis - 

MLH-ILS is optimized regarding Euclidian distance measure (L2). It is observed in the table 

that though in MLH-iLS, considered L2  distance measure, the D1 (i1)'1  and (LI) values of 

MLH-ILS design is comparable of the other two designs. On the other hand the D1 (J1 ) 2  and 
(1,2) 

values of MLH-ILS design is sigmficantly better than those the other two designs. Now 

it is observed that the design OMLH-MSA is best than the other two regarding 

multicollinearity, since the designs are optimized regarding average correlation p value. But 

MLH-ILS design is better than the design MLH-SA regarding both the correlation measure p 

and Pmax 

Table 6.2: The comparison of MLH-JLS vs MLH-SA, OMLH - MSA and 
OLH-Y for (N, k) = (9, 4) 

Method - MLH-SA OMLH - MSA OLH- Y MLl-l- ILS 
Optimal Latin I1ypercube 1 3 3 4 1 5 3 3 1 2 6 3 1584 

Design Matrix - 2 5 8 8 2 2 5 8 2 9 7 6 2 7 4 9 
3862 3975 3429 3216 
4716 4381 4712 4833 
5293 5717 5555 5151 

• 6959 6699 6398 6378 
7147 7124 7681 7692 
8421 8842 8134 8967 
9675 9466 9847 9425 

Optimal Criteria - b,, , p2  p = 0 D 

Distance measure - L' I) L1  L2  
PROPERTIES  

p - 0.108 0.063 0.000 0.151 
Pmax 0.217 0.117 0.000 0.233 

11(3) 11(4) 10(8) 10(4) 
J) (LI) 

- 0.105 0.105 0.115 - 0.108 
D1(J1) 2 - 33(2) 31(1) 30(8) 42(63 

0.031 0.033 4 0.037 0.026 

/•:, 
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Again in the Table 6.2, it is observed that the designs MLII-SA, OMLI-l-MSA and OLH-Y are 

optimized regarding Rectangular distance measure (L) whereas the proposed design - MLI-l-

ILS is optimized regarding Euclidian distance measure (L2). It is observed in the table that 

though L2  distance measure is considered in MLH-ILS design, the D1 (J1 )' and (LI) values 

of MLFI-ILS design are comparable with respect to the other three designs. On the other hand 

D1(J1) 2)  and (D 2) 
 values of MLI-I-ILS design are significantly better than the other three 

designs considered. It is also noticed that regarding correlation parameters p and Pmax.  OLH-Y 

design is better comparing with the other three designs but regarding D1(J1) 2),  0L11-Y design 

is worst one. It is noted that in the design OMLH-MSA, correlation criterion p is partially 

minimized and in the OLH-Y design, designs are chosen so that p be zero. On the other hand 

MLI-l-ILS design is comparable with both the designs MLH-SA and OMLI I-MSA with 

respective to correlation parameter p and Pinax. 

Now some experiments will he performed to compare D1  values (minimum inter-site distance) 

measured in Rectangular distance measure of the designs available in the web 

www.spacefillingdesigns.nl. The L' based maxirnin LHDs, available in the web, are denoted 

by MLH-Weh. Note that the maximin designs, considered here from the web, are optimized 

regarding Rectangular distance measure. On the other hand it is mentioned here again that the 

proposed designs MLI-l- ILS is optimized regarding Euclidian distance measure. So in this 

experiments the D1 t  values are just calculated from the MLJ-T-ILS designs which is optimized 

regarding L2  distance measure. Note that in the Table 6.3 the symbol D1 ' denotes minimum 

inter-site distance among the points of a design in which distance is measured in Rectangular 

distance measure. For this experiments factors k = 3, 4, . . . , 6 and number of points N = 4, 5, 

,25 are considered. It is noted that there are few values available in the literature for L' 

measure. It is observed in the Table 6.3 that, though the designs MLI-I-ILS are optimized 

regarding L2  measure but the D1 t  values of MLH-ILS designs are comparable with that of 

MLI 1-Web designs in which designs are optimized regarding L1  distance measure. 

Again some experiments will be performed to find out the D1 2  (minimum inter-site distance 

in Euclidian distance measure) values of the MLH-Web designs considered in the previous 

experiment. Note that, the designs MLH-Wcb are optimized in Rectangular distance measure 
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L' rather than L2  distance measure which are available in the web 

\v.spacefiuingdesigns.nl, Now regarding D1 2  values of MLH-ILS which is optimized in 

L2  measure are compared with MLI1-Web, which is optimized in L1  measure. The 

experimental results are reputed in the Table 6.4. Note that there are few designs are 

available in the web regarding MLH-Web as mention earlier. It is noticed that the designs 

MLI-i- ILS outperform the designs MLH-web regarding L2. It is remarked that when number 

of design points N and/ or k are large, the performance of ILS approach is much better. 

Table 6.3: The comparison of MLH-ILS vs MLH-Web regarding rectangular distance 
measure (L b) fork = 3.4. 5. 6 

k=3 k=4 K=5 K=6 
MLH- 

ILS 
(D1 ') 

MLH- 
Web 

(D1 ') 

MLH- 
ILS 

(Dt') 

MLH- 
Web 

(D1 '') 

MLH- 
ILS 

(D1 M) 

MLH- 
Web 

(D)  

MLI-I-ILS 
D1 

MLH-Wcb 
(D1) 

4 4 4 6 6 8 8 10 10 
5 5 5 7 7 10 10 11 12 
6 6 6 8 8 10 11 14 14 
7 6 6 8 10 12 12 14 16 
8 7 7 10  13  16  

8 8 10  13  17  

10 7 8 12  15  19  

11 8 8 11  15  19  

12 8 9 13  17 23  

21.  
13 - 9 10 12  17 - 

14 9 10 14  19  24  

15 10 11 14  17  22  

16 9 Ii 14  19  24  

17 10  14  19  26  

18 10  16 19  27  

19 10  16  21  26  

20 10  18  21  29  

21 11  20  25  29  

22 11  17  23  31  

23 11 18  26  32  

24 11  19  26  33  

25 13  19  27  
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Table 6.4: The comparison of MLH-ILS vs MLH-Web regarding Euclidian distance 
measure (L2) for k = 3. 4. 5. 6 

N k=3 k=4 K=5 K=6 

MLH-ILS 
2  (D1) 

MLH-Web 
(D12) 

MLI-1- 
ILS 

(D1 '2 ) 

MLH- 
Web 

(D1 '2 ) 

MLH- 
ILS 

(D1 2 ) 

MLH- 
Web 

(D12) 

MLH-ILS 
(D1 2 ) 

MLH-Web 
(D'2 ) 

3 6 6 7 7 8 8 12 8 
4 6 6 12 12 14 14 20 18 
5 11 9 15 13 24 22 27 24 
6 14 14 22 18 32 27 40 36 
7 17 12 28 26 40 32 52 52 
8 21 21  - 

9 22 22  

10 27 22  

11 30 22  

12 36 27  

13 41 36  

14 42 34  

15 48 41  

16 50 41  

r 
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CHAPTER 7 
r 

DISCUSSION, CONCLUSIONS AND RECOMMENI)ATIONS 

7.1 Introduction 

The designs of experiments are used in a wide range of application to learn about the 

effect of input variables on a response of interest and also finding out the redundancy of 

the factors. As it is recognized, the choice of the design points for computer 

experiments should fulfill at least two properties - space-JIlling and non-collapsing. 

The inullicollinearty, another property, is also important, because if two factors are 

Ir- correlated then it will be not possible to distinguish between the effects of the two 

factors based on this experiment. Latin I-Jypercuhe Designs (LI-IDs), a widely used 

experimental design, fulfilled the non-collapsing property. The experimental design 

namely Maximin LI-ID obtained by ILS approach has nice space-filling as well as by 

default non-collapsing property. The main goal of this thesis was to analyze the 

multicollincarty of the designs obtained by the ILS approach. Another goal was to 

observe the evenly distribution of the design points regarding rectangular distance 

measure. 

7.2 Discussions 

The importance of high performance algorithms for tackling difficult optimization 

problems cannot be understated. In many cases the only available methods are 

metaheuristics. The word nietaheuristics contains all heuristics methods that show 

evidence of achieving good quality solutions for the problem of interest within an 

acceptable time. Metaheuristic techniques have become more and more competitive. 

When designing a metaheuristic, it is preferable that it be simple, both conceptually and 

in practice. Naturally, it also must be effective and if possible for general purpose. The 

main advantage of this approach is the ease of implementation and the quickness. 

In this thesis Iterated Local Search (ILS) approach, a well known metaheuristics 

method has been considered, for finding optimal solution in the discrete space. For the 

initial solution (design), randomly generated Latin Hypercube Design has been 

considered which has very good non-overlapping property. For optimal criteria, it is 
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considered that maximize the minimum inter-site distance of the design points in 

Euclidian distance measure. 

In Chapter 2, an attempt has been made to overview the basic constituents and 

properties of experimental design. As in the introduction the necessity of the 

experimental design has been discussed, so chapter 2 has argued about basic principles 

of experimental design, experimental error etc. Moreover in this chapter the 

requirements of a good experiment have been mentioned in brief Also the several type 

of the experimental designs have been discussed. 

In Chapter 3, another attempt has been rnde to overview the basic constituents 

and properties of correlation and multicollincarity. Mainly an overview of colTelation is 

discussed in this chapter. This chapter is pointed out several types of correlations. How 

they are measured is also discussed here. Here the effect of multicollinearity on the 

model is also briefly discussed. 

In Chapter 4, the heuristic approach mainly Iterated Local Search (ILS) 

approach has been discussed and presented in brief ILS approach for optimizing LI-ID 

is elaborately presented here as well as the various optimal criteria for maximizing the 

minimum inter-site distance of the design point. The definition of maximin LI-ID is 

also given here for the proposed ILS approach. 

In Chapter 5, the experimental analysis is performed extensively regarding 

Euclidian distance measure. At first the performance of the algorithm is compared with 

available one in the literature regarding inter-site Euclidian distance measure. From the 

experimental design it is shown that the algorithm is state-of-arts regarding maximin 

LHD. Then these optimal designs are considered for the rnulticollincarity analysis of 

the factors of each design. 

In Chapter 6 several experiments performed regarding Rectangular distance 

measure have been presented. Then several characteristics of the designs are compared 

-a.- 
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with available ones in the literature. Mainly average correlation coefficients as well as 

maximum correlation coefficients are considered for the comparison. 

7.3 Concluding Remarks 

Essentially, the credibility of Iterated Local Search (ILS) algorithms relies on their 

ability to solve difficult, real-world problems with the minimal amount of human effort. 

If it cannot make the successful transition from academic exercise to physical 

application it will be abandoned in favor of other techniques. 

One of the goals of this thesis was to implement the ILS approach in PC window 

environment. It is worthwhile to mention here again that the ILS approach is 

successfully implemented in a Sun-Cluster with Solar OS for maximin LHD. Some 

time it is very difficult to implement algorithms from one environment to another 

environment. Here the algorithms have been implemented in windows PC environment 

(Windows visual C++) by considering some modification. 

In this thesis two kinds of distance measure namely Euclidian distance measure (L2) 

and Rectangular distance measure (L') to calculate the inter-site distance of each two 

design points are considered. But in the experiments for optimization (maximization) 

the minimum inter-site distance, only the Euclidian distance measure was considered. 

Then the L' distance of the optimized points was also calculated. It is shown that ILS 

approach able to obtain a large amount of best experimental design compared to 

available one in the literature. 

It is mentioned earlier that a good experimental design should have space-filling, non-

collapsing and non-correlation (poor multicollinearity) property. It is known that LHD, 

by default, has good non-collapsing property. On the other hand for the achievement of 

space-fIlling property, one should optimize the experimental design like LHD in some 

criteria so that design points spread over the design space evenly. Maximnin 

(maximization of the minimum inter-site distance) is one of the criteria which is 

frequently. used to optimize experimental design regarding fulfilling the space-filling 

properties. It is also mentioned earlier that maximin LHD problem is discrete 
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optimization problem. That is the search space is discrete and number of search points 

is huge namely (N!)'. It is also known that the optimal experimental design does not 

need necessarily exact optimal one regarding optimal criteria; rather it should cover 

three above mentioned criteria. Therefore meta-heuristic approaches are frequently 

used in the real world problems like finding experimental design. In this thesis Iterated 

Local search (ILS) approach, which is a meta-heuristic approach, considered for the 

maximin LHD. For the distance measure, Euclidian distance measure is considered. 

ILS approach has the ability to obtain a huge number of improved optimal designs 

comparable to the literature, regarding space-filling criteria. That is ILS approach is 

r able to find out an experimental design which is both space-tilling and non-collapsing, 

when it is applied on LHDs. 

Another main interest of this thesis was to analyze the experimental design regarding 

another important property namely muiticollinearity property. The final goal was to 

find out the tolerance of the designs regarding non-correlation property. For the 

measure of the multicollinearity property, average pair-wise correlation as well 

maximum pair-wise correlation was considered. For the calculation of average pair-

wise correlation the following well known formula (see section 4.5) is used 

k k 

2 =  1=1 j=i+I 
- 

k(k-1)/2 

Where p, denotes the single pair simple correlation between the factors p and r. For 

calculating the correlation between each single pair of factors (say column q and 

column r), the well known Kearl Pearson's product moment formula is used: 

iVx. 
ir  x —>x i x iq q ir 

Nx2  —(ix )2 /V 2  ( X )2  
iq iq ir 

where the sums over i = I, ' N. Here Y is better than X if p2  (Y) <p2  (X) 
A.. 
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and the maximum correlation is defined as follow 

p.  - 

Prnax = max 

At first several experiments were performed to analyze the average pair-wise 

correlation among the factors of each optimal design obtained by ILS approach. For the 

experiments number of factors (dimensions) k= 3,..., 10 and number of design points 

(rows) M = S x 1;  j = ,20 are considered. For the measure of the inter-site distance 

is considered in Euclidian distance measure (L2). Experimentally it is shown that most 

of the designs have tolerable average pair-wise correlation as well as maximum 

correlation. It is remarkable that when number of design points is large then average 

pair-wise correlation is less than 0.1. It is also worthwhile to mention here again that 

the maximin LI-IDs, obtained by ILS approach, arc compared with available ones in the 

literature. The maximin LI-IDs obtained by the ILS approach are comparable with those 

available in the literature even in term of non-collincarity they perform much better 

when number of design points and /or arc large. 

Several experiments regarding Rectangular distance measure (L) also have been 

performed. Several designs with fix number of factors as well as points are considered, 

and then the designs are analyzed in several aspects. It is noted that the designs are 

optimized regarding Euclidian distance measure but also measuremeth of inter-site pair 

of points in rectangular distance measure along with Euclidian distance measure is 

denoted. Though the algorithms maximized the minimum inter-site distance of the 

design in Euclidian distance measure, the design also evenly spread over the design 

space with respect to Rectangular distance measure. It is also noted that all the 

properties considered are comparable with that of literature. 

Finally it may be concluded that the proposed ILS algorithm is state-of arts regarding 

maximin LI-ID in Euclidian distance measure. l'liough the algorithm considered 

Euclidian distance measure and optimized maximin LI-ID, the designs have tolerable 

correlations among the factors. Moreover though the algorithm optimized the design 

space regarding space-riling criterion in Euclidian measure, the design space is almost 

evenly spread over the space in Rectangular distance measure too. 
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