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Abstract 
Viscous dissipation and Joule heating effects on MHD combined heat and mass transfer flow 

through a porous medium in a rotating system has been studied numerically. Nacthsheiin-Swigert 

iteration technique is used as the main tool for the numerical approach. 

The studies of the flow features mentioned above are made in different sections taking different 

aspects of the flow that are of practical importance. These studies are mainly based on the similarity 

approach. The similarity solutions have been obtained for the one dimensional unsteady MHD 

combined heat and mass transfer flow past an infinite vertical porous plate in a rotating system 

taking into account the viscous dissipation and Joule heating effects. Impulsively started plate 

moving in its own plane is considered. Similarity equations of the corresponding momentum, energy 

and concentration equations are derived by introducing a time dependent length scale which in fact 

plays the role of a similarity parameter. The suction velocity is taken to be inversely proportional to 

this parameter. The momentum, energy and concentration equations are solved numerically by 

applying the method of Swigerl iteration technique. The above flow problem has further been 

considered in a steady two dimensional problem. The similarity solutions of the governing equations 

are obtained by employing the usual similarity technique based on large suction. The effects of the 

various important parameters, entering into the problems on the velocity, temperature, 

concentration, skin-friction, Nusselt and the Shenvood numbers are separately discussed for each 

problem with the help of graphs and tables. 
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Introduction 
The aim of this dissertation is to make some numerical calculations on MHD combined heat and 

mass transfer flow which is of interest to the engineering community and to the investigators dealing 

with the problems in geophysics and astrophysics. The analyses so produced in fact arouse out of the 

natural tendency to investigate a subject that may be said to relate to some academic types of 

problems of solving the equations of the fluid mechanics. The results of this investigation may not 

have direct practical applications but are relevant to the problems mentioned above. It is however to 

be mentioned that the thermal instability investigations of MHD natural convection flows have 

direct application to problems in geophysics and astrophysics. The natural convection process 

involving the combined mechanism of heat and mass transfer are encountered in natural process, 

industrial applications and chemical processing systems. In our analyses the combined buoyancy 

effect arising from the simultaneous diffusion of thermal energy and chemical species are 

considered on the flow of electrically conducting fluid under the action of transversely applied 

magnetic field. 

Considering various aspects of on MHD combined heat and mass transfer flow, the analyses 

presented here, as mentioned above, is classified mainly as SivigerI iteration technique for solving 

the nonlinear ordinary differential equations. 

In Chapter 1, literature review regarding MHD combined heat and mass transfer flows along with 

various effects are summarized and discussed from both analytical and numerical point of view. In 

Chapter 2, the basic governing equations related to the problems considered thereafter are shown in 

standard form. In Chapter 3, the calculation technique is discussed. In Chapter 4, a specific 

problem of the one dimensional unsteady MHD combined heat and mass transfer flow through a 

porous medium near an infinite vertical porous plate in a rotating system taking into account the 

viscous dissipation and Joule heating effects are considered. In Chapter 5, we have considered a 

steady two dimensional problem of the MHD combined heat and mass transfer flow through a 

porous medium near semi-infinite vertical porous plate in a rotating system taking into account the 

viscous dissipation and Joule heating effects based on large suction. 
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Chapter 1 

Physical Basis 

1.1. Magnetohydrodynamics 

Magnetohydrodynamics (MHD) is that branch of continuum mechanics which deals with the 

flow of electrically conducting fluids in electric and magnetic fields. Probably the largest 

advance towards an understanding of such phenomena came from the field of astrophysics. 

It has long been suspected that most of the matter in the universe is in the plasma or highly 

ionized gaseous state, and their studies provide much of the basic knowledge in the area of 

electromagnetic fluid dynamics. 

As a branch of plasma physics, the field of MHD consists of the study of a continuous, electrically 

conducting fluid under the influence of electromagnetic fields. Originally, MHD included only 

the study of strictly incompressible fluid, but today the terminology is applied to studies of 

partially ionized gases as well. The essential requirement for problems to be analyzed under 

the laws of MHD is that the continuum approach be applicable. 

Many natural phenomena and engineering problems are susceptible to MHD analysis. It is useful 

in astrophysics. Geophysicists encounter MHD phenomena in the interactions of conducting 

fluids and magnetic fields that are present in and around heavenly bodies. Engineers employ MT-ID 

principles in the design of heat exchangers, pumps and flow meters, in space vehicle propulsion 

control and re-entry, in creating novel power generating systems, and in developing confinement 

schemes for controlled fusion. 

The most important application of MHD is in the generation of electrical power with the flow of 

an electrically conducting fluid through a transverse magnetic field. Recently, experiments with 

ionized gases have been performed with the hope of producing power on a large scale in 

stationary plants with large magnetic fields. Cryogenic and superconducting magnets are 

required to produce these very large magnetic fields. Generation of MHD power on a 

smaller scale is of interest for space applications. 

It is generally known that, to convert the heat energy into electricity, several intennediate 



transformations are necessary. Each of these steps mean a loss of energy. This naturally limits 

the overall efficiency, reliability and compactness of the conversion process. Methods for 

direct conversion to energy are now increasingly receiving attention. Of these, the fuel cell 

I. 
converts the chemical energy of fuel directly into electrical energy, fusion energy utilizes 

the energy released when two hydrogen nuclei fuse into a heavier one and thermoelectrical 

power generation uses a thermocouple. Magnetohydrodynamic power generation is another 

important new process that is receiving worldwide attention. 

Faraday (1832) carried out experiments with the flow of mercury in glass tubes placed 

between poles of a magnet, and discovered that a voltage was induced across the tube due 

to the motion of the mercury across the magnetic fields, perpendicular to the direction of 

flow and to the magnetic field. He observed that the current generated by this induced voltage 

interacted with the magnetic field to slow down the motion of the fluid and this current 

produced its own magnetic field that obeyed Ampere's right hand rule and thus, in turn 

distorted the magnetic field. 

The first astronomical application of the MHD theory occurred in 1899 when Bigalow 

suggested that the sun is a gigantic magnetic system. Aifren (1942) discovered MHD waves in 

the sun. These waves are produced by disturbances which propagate simultaneously in the 

conducting fluid and the magnetic field. 

1.2. The Dimensionless Parameters 

Reynolds number R 

It is the most important parameter of the fluid dynamics of a viscous fluid. It is defined 

as the ratio of the inertia force to viscous force and is represented as 

R = 
Inertia force 

= 
pU2/L =.Z:? 

Viscous force pUlL2 v 

where U, L, p and p are the characteristic values of velocity, length, density and 

coefficient of viscosity of the fluid respectively. When the Reynolds number of the 

system is small the viscous force is predominant and the effect of viscosity is important in 

the whole velocity field. When the Reynolds number is large the inertia foree is predominant, 

and the effects of viscosity is important only in a narrow region near the solid wall or other 

restricted region which is known as boundary layer. If the Reynolds numbers is enormously 

large, the flow becomes turbulent. 



Prandtl number P, 

The Prandtl number is the ratio of kinematics viscosity to thermal diffusivity and may 

be written as follows P,.  = 
Kinematic viscosity v 

Thermal diffusivity - k 

pcp  

The value of v shows the effect of viscosity of the fluid. The smaller the value of v 

is, the narrower is the region which is affected by viscosity and which is known as 

the boundary layer region when v is very small. The value of 
k

shows the thermal 
pcp  

diffusivity due to heat conduction. The smaller the value of k 
 is, the narrower is 

pcp  

the region which is affected by the heat conduction and which is known as thermal 

boundary layer when is small. Thus the Prandtl number shows the relative im- pcp  

portance of heat conduction and viscosity of a fluid. For a gas the Prandtl number is of order 

of unity. 

Schmidt number S 

This the ratio of the viscous diffusivity to the chemical molecular diffusivity and is defined as 

- 
Viscous diffusivity v 

- Chemical molecular diffusivity - 

Nusselt number N 

The local dimensionless coefficient of heat transfer is known as Nusselt number and is defined as 

N.  = -  I 
 
-(
U)

Y=~ 
1

ATôy 

Sherwood number S, 

The local dimensionless coefficient of mass transfer is known as Sherwood number and is defined as 

Sh  ----1_i 
AC 3y )= 

Local Grashof number G,. 

This is defined as Gr = 
2x3gfl(, 

and is a measure of the relative importance of the 

- buoyancy forces and viscous forces. 
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Local Modified Grashof number Gm  

Soret number S0  

Dufour number D1  

Eckert number E 

Magnetic parameter M 

fl* (  
This is defined as G 

3g 

m  =  

V2 

—C,) 

 

This is defined as S - 
kT  (T - 7) 

° Tm (Cw C) 

This is defined as D = 
DmkP (C - Cm) 

c5K (Tw Ta ) 

This is defined as Ec U01  

2 ' 
This is defined as 

M = 2xB0 

pU0  

Rotation parameter R 

Permeability parameter K 

Suction number f  

This is defined as R = 
V 

This is defined as 
K = 2xv 

K'U0  

This is defined as fw =vo\fii  

1.3 Suction and Injunction 

For ordinary boundary layer flows with adverse pressure gradients, the boundary layer flow will 

eventually separate from the surface. Separation of the flow causes many undesirable features over the 

whole field; for in.stance if separation occurs on the surface of an airfoil, the lift of the airfoil will 

decrease and the drag will enormously increase. In some problems we wish to maintain laminar flow 

without separation. Various means have been proposed to prevent the separation of the boundary layer 

flows, suction and injection are two of them. 

The stabilizing effect of the boundary layer development has been well known for several years and it 

is still the most of efficient, simple and common method of boundary layer control. Hence, the effect of 

suction on hydromagnetic boundary layer is of great interest in astrophysics. It is often necessary to 

prevent separation of the boundary layer to reduce the drag and attain high lift values. 

Many authors have made mathematical studies on these problems, especially in the case of steady flow. 
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Among them the name of Cobble (1977) may be cited who obtained the conditions under which 

similarity solutions exist for hydromagnetic bounder layer flow past a semi-infmite vertical plate with 

or without suction. Following this, Soundalgeker and Ramanamurthy (1980) analyzed the thermal 

boundary layer. Then Singh (1980) studied this problems for large values of suction velocity employing 

asymptotic analysis in the spirit of Nanbu (1971). Sing/i and Diks'hit (1988) have again adopted the 

asymptotic method to study the hydromagnetic effect on the boundary layer development over a 

continuously moving plate. In a similar way Bestman (1990 a) studied the boundary layer flow past a 

semi-infinite heated porous plate for a two component plasma. 

On the other hand, one of the important problems faced by those who are engaged in high speed flow is 

the cooling of the surface to avoid the structural failures as a result of frictional heating and other 

factors. In these respect, the possibility of using injection at the surface is a measure to cool the body in 

the high temperature fluid. 

Injection of secondary fluid through porous walls is of practical importance in film cooling of turbine 

blades in combustion chambers. In such applications injection usually occurs normal to the surface and 

the injection fluid may be similar to or different from the primary fluid. In some recent applications, 

however, it has been recognized that the cooling efficiency can be enhanced by vectored injection at an 

angle other than 900  to the surface. A few workers including Inger and Swearn (1975) have 

theoretically proved this feature for a linear boundary layer. In addition, most previous calculations 

have been limited to injection rates ranging from small to moderate. Rapits et al. (1980) studied the free 

convection effects on the flow field of an incompressible viscous dissipative fluid past an infmite 

vertical porous plate which is accelerated in its own plane. The fluid is subjected to a normal velocity of 

suction/injection proportional to time 
,=J, 

and the plate is perfectly insulated, i.e. there is no heat 

transfer between the fluid and the plate. Hasimoto (1957) studied the boundary layer growth on an 

infinite vertical plate. Starting at time t = 0, with uniform suction or injection, exact solutions of the 

Navier-Stokes equations of motion were derived for the case of uniform suction and injection which 

was taken to be steady or proportional to time(). Numerical calculations are also made for the case 

of impulsive motion of the plate. In the case of injection, velocity profiles have injection points. The 

qualitative natures of the flow in both the suction and injection cases are the same which are obtained 

from the results of the corresponding studies on steady boundary layer, so far obtained. 

1.4. Free and Forced Convection 

In nature a number of practical situations involve convective heat transfer which is neither 

"forced" nor "free". The circumstances arise when a fluid is forced to flow over a heated 
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surface at a rather low velocity. Coupled with the forced flow velocity there is a convective 

velocity which is generated by the buoyancy forces resulting from a reduction in fluid density 

near the heated surface. The heating of rooms and building by the use of radiators is a familiar 

example of heat transfer by free convection. Heat losses from hot pipes, ovens etc., surrounded 

by cooler air, are at least in part, due to free convection. However, the mixed types of problems 

are very important and have many industrial and technological applications. 

Pohlhausen (1921) first studied the steady thermal boundary layer flow past a semi infinite 

vertical plate using the momentum integral method. Similarity solution to this problem was 

given by Ostrach (1953). Siegel (1958) first studied the transient free convective flow past a 

semi-infinite vertical plate by an integral method. 

A summary of the combined free and forced convection effects in tubes has been given by 

Metals and Eckert (1964). Since then many papers have been published on forced and free 

convection flow past a semi infinite vertical plate. Some of them are due to Sparrow and 

Gregg (1959), Szewczyk (1964), Merkin (1969), Mon (1961), Eshghy (1964) and Acrivos 

(1958). Sparrow and Gregg, Szewczyk, Merkin and Mori all have used numerical solutions to 

the similarity equations, whereas Eshghy and Acrivos both used an integral method for solving 

the forced and free convection problem. In recent past Soundalgekar et. al. (1981) studied the 

combined free and forced convection flow past a vertical porous plate. 

On the other hand the flow through very porous media is very prevalent in nature and therefore 

the study of flow through porous medium has become of principal interest in many scientific 

and engineering applications. The investigation of flow streaming into a porous and permeable 

medium with arbitrary but smooth surfaces was done by Yarnamoto and Iwamura (1976). 

- 
Further analysis for a free convection in a porous medium bounded by an infinite plate was 

made by Raptis (1983, 1985), Raptis and Perdikis (1982, 1985a,b),Raptis et.al. (1981). Latter, 

Bestman (1990 a,b) made analytical efforts to study the free- convection flow in a very porous 

medium, respectively, with mass transfer and chemical reaction with finite Arrhenius 

activation energy. However, Raptis and Perdikis (1988) made a numerical study of the 

combined free and forced convective flow through a very porous medium bounded by a semi-

infinite vertical porous plate. In addition to other effects their results display the effect of the 

permeability parameter on the velocity and temperature field. Although the analytical solutions 

of Bestman (1990 a), a complement to the work of Raptis and Perdikis (1988), are valid for 

large suction. 

Following the work of Raptis and Perdikis (1988), Sattar (1992) obtained an analytical 

solution to the same problem by perturbation technique adopted by Singh and Dikshit (1988). 

The solutions of Sattar are however concise. He obtained the solutions in the form of zeroth 
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order and first order respectively for temperature and velocity distributions. These solutions are 

valid for the Prandtl number ] other than one. 

1.5. MHD Boundary Layer 

Boundary layer phenomena occurs when the influence of a physical quantity is restricted to 

small regions near confining boundaries. This phenomena occurs when the non- 

dimensional diffusion parameters the Reynolds number, and the Peclet number or the 

magnetic Reynolds number are large. The boundary layers are then the velocity and thermal or 

magnetic boundary layers and each thickness is inversely proportional to the square root 

of the associated diffusion number. Prandtl fathered classical fluid dynamic boundary 

theory by observing, from experimental flows, that for large Reynolds number, the viscosity 

and thermal conductivity appreciably influenced the flow only near a wall. When distant 

measurements in the flow direction are compared with a characteristic dimension in that 

direction, transverse measurements compared with the boundary layer thickness, and 

velocities compared with the free stream velocity, the Navier-Stokes and energy equations 

can be considerably simplified by neglecting small quantities. The number of component 

equations is reduced to those in the flow direction and pressure changes across the 

boundary layer are negligible. The pressure is then only a function of the flow 

direction and can be determined from the inviscid flow solution. Also the number of viscous 

term is reduced to the dominant term and the heat conduction in the flow direction is 

negligible. 

MHD boundary layer flows are separated into two types by considering the limiting cases 

of a very large or a negligible small magnetic Reynolds number. When the magnetic 

field is oriented in an arbitrary direction relative to a confining surface and the magnetic 

Reynolds number is very small, the flow direction component of the magnetic interaction 

and the corresponding Joule heating is only a function of the transverse magnetic field 

component and local velocity in the flow direction. Changes in the transverse magnetic field 

component and pressure across the boundary layer are negligible. The thickness of the 

magnetic boundary layer is very large and the induced magnetic field is negligible. 

However, when the magnetic Reynolds number is very large, the magnetic boundary layer 

thickness is small and is of nearly the same size as the viscous and thermal boundary layers 

and then the MHD boundary layer equations must be solved simultaneously, in this case, the 

magnetic field moves with the flow and is called frozen mass. 
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1.6. Heat and Mass Transfer 

Combined heat and mass transfer problems are of importance in many processes and have 

therefore received a considerable amount of attention. In many mass transfer processes, heat 

transfer considerations arise owing to chemical reaction and are often due to the nature of the 

process. In processes such as drying, evaporation at the surface of water body, energy transfer in a 

wet cooling tower and the flow in a desert cooler, heat and mass transfer occur simultaneously. 

In many of these processes, the interest lies in the determination of the total energy transfer, 

although in processes such as drying, the interest lies mainly in the overall mass transfer for 

moisture removal. Natural convection processes involving the combined mechanisms are also 

encountered in many natural processes, such as evaporation, condensation and agricultural 

drying, in many industrial applications involving solutions and mixtures in the absence of an 

externally induced flow and in many chemical processing systems. In many processes such as the 

curing of plastics, cleaning and chemical processing of materials relevant to the manufacture 

of printed circuitry, manufacture of pulp-insulated cables etc., the combined buoyancy 

mechanisms arise and the total energy and material transfer resulting from the combined 

mechanisms, has to be determined. 

The basic problem is governed by the combined buoyancy effects arising from the 

simultaneous diffusion of thermal energy and of chemical species. Therefore the continuity, 

momentum, energy and concentration equations are coupled through the buoyancy terms alone, if 

the other effects, such as the Sore! and Dufour effects are neglected. 

Mathers et al. (1957) treated a problem in which uniform temperature and uniform species 

concentration at the surface be assumed and the obtained results are expected to be valid for 

P. and S values around 1.0 with one buoyancy effect being small compared to each other as a 

boundary layer flow for low species concentration, neglecting inertia effects. Results were 

obtained numerically for P = 1.0 and S  varying from 0.1 to 10. Lowell and Adams (1967) 

and Gill et al. (1965) also considered this problem, including additional effects such as 

appreciable normal velocity at the surface and comparable species concentrations in the mixture. 

Similar solutions were investigated by Lowe! and Adams (1967) and by Adams and Lowell 

(1968). Light foot (1968) and Saville and Churchill (1970) considered some asymptotic 

solutions. Adams and McFadden (1966) presented experimental measurements of heat and 

mass transfer parameters, with opposed buoyancy effects. Gebhart and Pera(1971) studied 

laminar vertical natural convection flows resulting from the combined buoyancy mechanisms in 

terms of similarity solutions. Similar analyses have been carried out by Pera and 

Gebhart(1972) for flow over horizontal surfaces and by Mollendrof and Gebhart(1974) for 
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axisymetric flows, particularly for the axisymetric plume. 

Boura and Gebhart (1976), Hubbell and Gebhart (1974) and Tenner and Gebhart (1971) 

have studied buoyant free boundary flows in a concentration-stratified medium. Agrawal et 

aL(1977,1980) have studied the combined buoyancy effects on the thermal and mass diffusion 

on MHD natural convection flows, and it is observed that, for the fixed G,. and P the value of 

Xt ( dimensionless length parameter) decreases as the strength of the magnetic parameter 

increases. Georgantopoulos et al. (1981) discussed the effects of free convective and mass 

transfer in a conducting liquid, when the fluid is subjected to a transverse magnetic field. 

Haldavnekar and Soundalgekar (1977) studied the effects of mass transfer on free convective 

flow of an electrically conducting viscous fluid past an infinite porous plate with constant suction 

and transversely applied magnetic field. An exact analysis was made by Soundalgekar et 

al. (1979) of the effects of mass transfer and the free convection currents on the MHD Stokes 

(Rayleigh) problem for the flow of an electrically conducting, incompressible viscous fluid past 

an impulsively started vertical plate under the action of a transversely applied magnetic field. 

The heat due to viscous and Joule dissipation and induced magnetic field are considered. During 

the course of discussion, the effects of heating G,. <0 of the plate by free convection currents, 

G, (modified Grashof number), S,. and M on the velocity and the skin friction are studied. 

Nanousis and Goudas (1979) have studied the effects of mass transfer on free convective 

problem in the Stokes problem for an infinite vertical limiting surface. Georgantopolous and 

Nanousis (1980) have considered the effects of the mass transfer on free convection flow of an 

electrically conducting viscous fluid (e.g of a stellar atmosphere) past an impulsively started 

infinite vertical limiting surface(e.g of star) in the presence of transverse magnetic field. Solution 

for the velocity and skin friction in closed form are obtained with the help of the Laplace 

transform technique, and the results obtained for the various values of the parameters (St , P. 

and M) are given in graphical form. Raptis and Kafoussias (1982) presented the analysis of 

free convection and mass transfer steady hydromagnetic flow of an electrically conducting 

viscous incompressible fluid, through a porous medium, occupying a semi-infinite region of the 

space bounded by an infinite vertical and porous plate under the action of transverse magnetic 

field. Approximate solution have been obtained for the velocity, temperature, concentration field 

and the rate of heat transfer. The effects of different parameters on the velocity field and the rate 

of heat transfer are discussed for the case of air ( Prandtl number F,. = 0.71) and the water vapour 

(Schmidt number S = .60). Raptis and Tzivanidis (1983) considered the effects of variable 

suction /injection on the unsteady two dimensional free convective flow with mass transfer of an 

electrically conducting fluid past a vertical accelerated plate in the presence of transverse 



magnetic field. Solutions of the governing equations of the flow are obtained with the power 

series. An analysis of two dimensional steady free convective flow of a conducting fluid, in the 

presence of a magnetic field and a foreign mass, past an infinite vertical porous and unmoving 

surface is carried out by Raptis (1983), when the heat flux is constant at the limiting surface 

and the magnetic Reynolds number of the flow is not small. Assuming constant suction at the 

surface, approximate solutions of the coupled nonlinear equations are derived for the velocity 

field, the temperature field, the magnetic field and for their related quantities. Agrawal et al. 

(1987) consider the steady laminar free convection flow with mass transfer of an electrically 

conducting liquid along a plane wall with periodic suction. 

1.7. Rotation 
In 1950's, considerable progress has been made in the general theory of rotating fluids because of 

its application in cosmic and geophysical sciences as pionted out by Greenspan (1968). The 

steady and unsteady Ekman layers of an incompressible fluid have been investigated as basic 

boundary layers in a rotating fluid appearing in the oceanic, atmospheric, cosmic fluid 

dynamics and solar Physics or geophysical problems. It is well known that, in a rotating fluid 

near a flat plate, an Ekman layer exists where the viscous and Coriolis forces are of the 

same order of magnitude. The Ekman layer flow on a horizontal plate has been studied 

by Batchelor(1970). Greenspan and Howard(1963) have analyzed an unsteady 

rotating flow past an impermeable or permeable plate under the assumption of rigid 

body rotation. The effect of a uniform transverse magnetic field on such a layer was 

investigated by Gupta(1972). Mazumder et al.(1976a, b)have studied the flow and heat 

transfer in a hydromagnetic Ekman layer on a porous plate with Hall effects. It was 

- observed that, with increasing Hall parameter, axial shear stress decreases and the 

transverse shear stress reaches a maximum and then decreases when M is constant. For M 

fixed, the Ekman layer thickness increases with increase of Hall parameter and decreases 

with increasing M when Hall parameter is constant. The energy equation has also been solved, 

and it has been observed that the asymptotic solution is possible for the case of suction 

only. Without Hall current, this problem has been solved by Gupta and 

Soundalgekar(1975). These studies ware concerned with channel flow. Debnath(1972, 1975) 

has made a major contribution to the study of unsteady hydromagnetic and hydrodynamic 

boundary layer flows in a rotating viscous fluid system. Soundalgekar and Pop(1979) have 

studied the free convection effects in rotating viscous fluid past an infinite vertical porous plate. 

Murty and Ram(1978) have studied a steady asymptotic solution for the temperature 

distribution in the case of flow past a porous plate in a rotating frame of reference. In particular, 
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the temperature distribution for an MHD Ekinan layer on a porous plate is obtained. It was seen 

that a steady asymptotic solution is possible for suction, but no steady temperature field is 

possible for blowing. Further, it was observed from the results that suction and magnetic field 

have opposing influences on the rate of heat transfer. Debnath and Mukherjee (1977) obtained the 

solution for Ekman and Hartmann layers on a porous plate with variable suction or blowing. 

Mazumder(1977) studied the combined effects of Hall current and rotation on hydromagnetic 

flow over an oscillating porous plate. Bathaiah(1978) considered forced oscillations of an en-

closed rotating fluid under a uniform magnetic field. Bhattacharya and Jain(1977) discussed the 

stability of an infinite horizontal layer of electrically conducting incompressible fluid which lost 

heat throughout its volume, and at constant rate, when the fluid was in a state of uniform rotation 

and in the presence of a magnetic field. The value of the critical Rayleigh number R0  was found to 

decrease with an increase in the rate of heat loss, showing that the layer becomes less stable. It 

was observed that the destabilizing effect of the heat source parameter is more prominent for 

small values of the magnetic field parameter and the Taylor number. Debnath et at. (1979) 

studied the effect of Hall current on unsteady hydromagnetic flow past a porous plate in a 

rotating fluid system. 

Raptis et al. (1981) studied the effects of a transverse magnetic field on the hydromagnetic free 

convective flow in a rotating fluid system. Exact solutions for the velocity and temperature field 

have been derived. The effects of M on the flow characteristics were discussed. An exact 

solution of the temperature profile in the MHD flow in a rotating straight channel is derived by 

Bhat (1982). It was observed that the rate of heat transfer decreases with increasing magnetic 

parameter M when k is small, but at large values of k it increases with increasing M. Unsteady 

hydromagnetic flow of an electrically conducting viscous incompressible fluid in a rotating 

- system under the influence of a transverse magnetic field was investigated by Seth et al. 

(1982). It was found that the shear stress components due to the primary flow to decreases 

whereas that due to the secondary flow to increase with the increase in rotations parameter. 

Seth and Jana(1981) have studied the unsteady hydromagnetic flow past a porous plate in a 

rotating medium with time independent free stream. 

1.8. Thermal and Mass Diffusions 

In the above mentioned studies, heat and mass transfer occur simultaneously in a moving fluid 

where the relations between the fluxes and the driving potentials are of more intricate nature. In 

general, the thermal diffusion effects is of a smaller order of magnitude than the effects described 

by Fourier's or Fick's laws and is often neglected in heat and mass transfer process. However, 

exceptions are observed therein. The thermal diffusion (Soret) effect, for instance, has been 



utilized for isotope separation and in mixtures between gases with very light molecular weight 

(H2, He ) and of medium molecular weight (N2,air), the diffusion- thermo (Dufour) effect was 

found to be of order of considerable magnitude such that it cannot be ignored (Eckert and 

Drake, 1972). 

In view of the importance of above mentioned effects, .Jha and Singh (1990) and Kafoussias and 

Williams (1995) studied Soret and Dufour effects on mixed free-forced convective and mass 

transfer boundary layer flow with temperature dependent viscosity. Anghel et al. (2000) 

investigated the Dufour and Soret effects on free convection boundary layer flow over a 

vertical surface embedded in a porous medium. Recently, Postelnicu(2004) studied 

numerically the influence of a magnetic field on heat and mass transfer by natural 

convection from vertical surfaces in porous media considering Soret and Dufour effects. 

Quite recently, Alam and Rahman (2006) investigated the Dufour and Soret effects on 

mixed convection flow past a vertical porous flat plate with variable suction. 
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Chapter 2 

The Basic Governing Equations 

The Navier-Stokes equation, energy equation and concentration equation, together with the 

Maxwell equations, form the basis for studying Magnetofluid Dynamics (MFD). In MFD, we 

consider a conducting fluid that is approximately neutral; the charge density in the Maxwell 

equations must then be interpreted as an excess charge density which is not large. If we disregard 

the excess charge density, then we must disregard the displacement current. In most problems, 

the displacement current, excess charge density, excess charge body force and the current due to 

convection of the excess charge are small. The electrodynamics equations to be used are then 

pre-Maxwell equations and the complete set becomes 

(2.1) 

v.J=o (2.2) 

V.BO (2.3) 

VAH=J (2.4) 

VAE=- 
 aB 
-- (2.5) 
at 

D=eE (2.6) 

B=uH (2.7) 

J=a'(E+qAB) (2.8) 

where D is the electric displacement, J is the current density, B is the magnetic induction, H 

is the magnetic field strength, E is the electrostatic field, s is the electrical permeability, a' is 

the electrical conductivity, q is the velocity, p is the magnetic permeability. 

The continuity equation for a viscous compressible electrically conducting fluid in vector form is 

(2.9) 
at 

where p is the density of the fluid and q is the fluid velocity. 

For incompressible fluid, the equation (2.9) becomes 

(2.10) 
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In three-dimensional Cartesian coordinate system the equation (2.10) becomes 

0u 8v 8w 
(2.11) 

a 8y 8z 

where u, v and w are the velocity components in the x, y and z direction respectively. 

The Navier-Siokes equation for viscous compressible fluid in vector form is 

dq  = F - 1V? + V(V.q) + v V2q (2.12) 
di p 3 

where F is the body force per unit mass, P is the fluid pressure and v is the kinematic viscosity. 

For incompressible fluid, the equation (2.12) becomes 

i=F_IVP+vV2q (2.13) 
di p 

When the system rotates with constant angular velocity 12 , the equation (2.13) becomes 

=F_IVP+vV2q _20 Aq  (2.14) 
di p 

When the fluid moves through a porous medium, the equation (2.14) becomes 

=F_IVP+vV2q _2c Aq _- q,  
di 

(2.15) 
p K 

where K' is the permeability of the porous medium. 

When electrically conducting fluid moves through a magnetic field of intensity H (B 

where B is the magnetic field), then the equation (2.15) becomes the MHD equation in the 

following form, 

=F_IVP+vV2q _2c Aq _- q+IJA B ,  (2.16) 
di p K p 

where J A B is the force on the fluid per unit volume produced by the interaction of the electric 

and magnetic field (called Loreniz force). 

Wehave.i=.i+(q.V)q (2.17) 
di at 

then the equation (2.16) becomes 

aq I +(q.V)q =F_VP+vV2q _2 Aq _ q+LJ A H ,  (2.18) 
at p A p 

where B = 

The MHD energy equation for a viscous incompressible electrically conducting fluid with 

viscous dissipation, mass diffusion and Joule heating term in vector form is 

_ + ''V2C (2.19) 
at pci, pc poc c5c, 
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where k is the thermal conductivity of the medium, p is the density of the fluid, c,, is the 

specific heat at constant pressure, D. is the coefficient of mass diffusivity, kT  is the thermal 

J 2  
diffusion ratio and c is the concentration susceptibility, T is the fluid temperature, 

-- 
is the 

0• 

Joule heating term, where J 2  = o' 2 i(vH. —wH)2  +cr' 2p(wH —uH)2  +o-' 2 p(uH —vH)2 , 

a' is the electrical coductivity, C is the species concentration variable, 0 denote the dissipation 

function involving the viscous stress and it represents the rate at which energy is being dissipated 

per unit volume through the action of viscosity. In fact the energy is dissipated in a viscous fluid 

in motion on account of internal friction and for an incompressible fluid 

aU )2
+1 I +1 - +1 —+— +1 —+ I +1 —+— 

(
,

S\ 2 
ajV

2' 
3v 5u"2 ( aw ôuv"' 2  "au &w 

2  

) az)j ôX ) ÔZ) ôZ 
(2.20) 

which is always positive, since all the terms are quadratic, where p is the coefficient of 

viscosity. 

The MHD concentration equation for a viscous incompressible electrically conducting fluid with 

thermal diffusion in vector form is 

= D1V2C+ 
Dmk 

 V2 T (2.21) 

where Tm  is the mean fluid temperature. 

The generalized Ohm's law in the absence of electric field (Maye, 1958), is of the form 

J+JAH=a'IpqAH+V (2.22) 
H0 efl, ) 

where v, is the cyclotron frequency, r is the electron collision time, e is the electric charge, 

is the number density of electron, I is the pressure of electron, J is the current density 

vector, H is the magnetic field intensity, H0  is the applied constant magnetic field, ,u, is the 

magnetic permiablity, a' is the electric conductivity, q = (u, v, w) is the velocity vector. 

Neglecting the Hall-current, we have from equation (2.22) 

J =a'(uqAH) [: wr, =0andP =0] (2.23) 

Let H = (i's, H, H:), (2.24) 

where H, H, H. be the components of magnetic field strength. 
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15 
Then q A H = u v w = (vi-12  - wHy ) 1 + (wHy - uH) 5+ (uH f  - vHs ) k (2.25) 

HX  NY  H. 

Therefore the equation (2.23) becomes 

j = ouJvH. - wH )i + cru (wHy - uN:)) + a',ue  uH - vH (2.26) 

I S / 
Then J A H = (vH: - wHy ) OUe  (wi-IT  - UH) 'iLte  (uH - vH 

FI H H2  

= OL1e  {(WHXHZ - uH ) - (uH —vHH )} 1 +crU. {(UHXHY - vH ) _(vH - WHH2 )} 5 

+OUe{(VHyH: - wH ) _(wH - uHH2 )} k 

= ( eWHx  i-i: - a'PeU''z - cr'puH + eViT'xNy ) I 

+(O'iieUHxHy —cr',uvH —auevH +O'/IWHH2 )J 

+(Y',Li,VHH2  —cr'pewH 0'/IeWIIx2  +cT'utcUHxH:)k (2.27) 

From equation (2.26) 

J 2  =J.J =[a'p(vi-i. _WHy)l+OLJe(WHx _UH:)J+O'I1e(UHY  —vH)k] 

[o-:u,, (VH - wH ) 1+ °Pe (WHX  - UN:) 5 (ui-i f  - vH ) i] 

= 0712/i(vH. —wH)2  +o-' 2 p(wH —UN:)2  +a' 2 u(uH —vH)2 (2.28) 

Let1 =(Q x ,Qy'Q:) and q =(u,v,w). (2.29) 

15 i 
ThenAq=Q K2 c (2.30) 

U V W 

Let F=(F,F,F..), (2.31) 

where F,  F, F. be the components of bOdy force. 

With the help of the equations (2.27), (2.29)- (2.31), the equation (2.18) becomes 

au au au au 1 oP (02u 02u O2 u I \ V —+u—+v--+w—=F ---+v —+----+--- i2(w _VQ)__U 
01 0y Oz pOx 8x 2  0y2  0z2 ) K' 

+ 
e2 

{ WHX H. - uH - uN + vNH } (2.32) 
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Sv 
—+u—

Sv  
+v—

Sv  
+w-

5v  
=F

' 
 —

I p 
+

(ev 
— 

 
+

a2v 
+—

a
-
2v  

 i-2(uQ —w )__
v 
 v 

K' at Sx 5) Sz y  

+e2 {uHH— vH —vH +wHH.} (2.33) 
p 

5w Sw Ow Sw 1 SP (52w 52w 52' / L) 
—+u—+v—+w----F.---+vl —+----+-- i-2vQ —u 
St Ox Sy Sz pSz (\ Ox 2 5y2 5z2 ) K' 

2  
+ 

a VHH - wH 2 — wH + UHxH: 
} 

(2.34) 

In three-dimensional Cartesian coordinate system the equation (2.19) with the help of equation 

(2.20), (2.28) becomes 

ST ST ST ST k (52T 52T S2 T 1 D k (a2c S 2C o2c TI —+u+v—+w—=—I I+—~+ _ 
 

at Ox Sy Sz pc1,Sx2 5),2 Sz2 ) pc c5c I&v2 Sy2 5z2  

+ a 
[(vH - wH)2  + (wHy - uH)2  + (ttH - vH)2 ] (2.35) 

pcp  

where 0 is defined in equation (2.20). 

In three-dimensional Cartesian coordinate system the equation (2.21) becomes 

ac ac ac Sc (52C S 2C SC' DflkT (52T 52T S2T" 
—+u--+v--+w—=D l (2.36) 
at Ox Sy Sz x 2 5y 2 Sz 2 ) Tm Sx 2 Sy2 5z 2 ) 

Thus in three-dimensional Cartesian coordinate system the continuity equation, the momentum 

equations, the energy equation and the concentration equations become 

The continuity equation: 

all Sv Sw 
—+—+—=0 (2.37) 
Ox Sy Sz 

The momentum equations: 

all all all all 1 SP (52u S2u S2 z ,/ \ V 
—+u--+v--+w--=F ---+v -+---+--- —zw —vq ,j—_u X 
St Sx Sy Sz pSx Sx2 5),2 5 2 ) 

- K' 

p2 

 {wHH— uH —uH +vHH} (2.38) 

Sv Sv Sv Si' I SP (S2v S2v 52 v 
—+u—+v---+w—=F ------I-ui —+—+— i-2(uQ—w )__v 2) X 
at Ox Sy Sz p Sy t 5x2 5),2 K' 

2  
+ e  {uHH —vH —vHf +wH).H.} (2.39) 

Sw Ow Ow Ow 1 OP (S21V 52w 52w' v 
—+u—+v--+w—=F.----+vI —+--+-- i-2(vQ —uQ ---w X 
at Sx Sy Sz - p Sz Ox 2 Sy2 5z2) 

' -" K' 
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{VHY HZ —WH — WHX +UHX HZ } (2.40) 

The energy equation: 

aT aT 3T aT =  k (a2T a2T Ô2T 
+ D /c (a2c a2c ä2C 

at ax ay az pc,,(5x2
++ 

 azJ  cc 

2 v 
(2  (a21 V ôu'2 5w 5v'2 V 

 

[2 (al I +1 I +1  I 

(
+ + —+— 

(
o 

±1 —+— I ± —+— 
)2 

c,, axj ') az  ) 
J 

5x Sy)  f3y az  ) 5z 5x 

+ [(VH: — wH)2  + (wHy - uH.)2  + (uH f vH)2 ] (2.41) 
pcp  

The concentration equation: 

—+u—+v--+w--- =D + 
ac ac ac ac 

+
f

+
D 1 kr (52T 52T a2T"l 

at ax a az m  ax 2 2 3z2 J Tm 
(2.42) 

The next section thus deals the specific problems. 

Case I 

Let us consider an unsteady MHD free convection and mass transfer flow of an electrically 

conducting viscous fluid through a porous medium along an infinite vertical porous plate y = 0 

with viscous dissipation and Joule heating in a rotating system. The flow is also assumed to be in 

the x -direction which is taken along the plate in the upward direction and y -axis is normal to it. 

Initially the plate is at rest, after that the whole system is allowed to rotate with a constant 

angular velocity Q about the y -axis. Since the system rotates about y -axis, so we can take 

= (o,—c,o). The temperature and the species concentration at the plate are instantly raised 

from T. and C, to T. and C. respectively, which are thereafter maintained constant, where 

T and C.  are the temperature and species concentration of the uniform flow respectively. A 

uniform magnetic field of magnitude B0  is imposed to the plate y = 0, to be acting along the 

y— axis which is assumed to be electrically non-conducting. We assumed that the magnetic 

Reynolds number of the flow is taken to be small enough so that the induced magnetic field is 

negligible in comparison with applied one (Pal, 1962), therefore the magnetic field is of the form 

B = (0, B0  , 0) and the magnetic lines of force are fixed relative to the fluid. The equation of 

conservation of charge \7J = 0 gives J = constant, where the current density J = (J J J.). 

The direction of propagation is considered only along the y-  axis and does not have any 

variation along the y -axis and the derivative of J with respect to y namely = 0. Thus 
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J = constant and since the plate is electrically non-conducting, this constant is zero and hence 

J = 0 at the plate and hence zero everywhere. 

The x - component momentum equation reduces to the boundary layer equation if the only 

contribution to the body force is made by gravity, the body force per unit mass is F = —pg 

where g is the local acceleration due to gravitity, further no body force exists in the direction of 

y, i.e. 
ap 

= 0, F = 0 . Hence x - component of pressure gradient at any point in the boundary 
ay ) 

layer must equal to the pressure gradient in the quiescent region outside the boundary layer. 

However in this region u = v = 0. Therefore x - component of the momentum equation become 

ap 
  = —pg, where p,  is the density of the surrounding fluid at temperature T. For small 

ax 

difference in density, (p—pa,) is related to the temperature and mass differences (T—T,,) and 

(C - C) respectively through the thermal volume expansion coefficient 8  and mass volume 

____— expansion coefficient 8 by the relation - 

p 
—/3(T—T,)- 1iT (C—C). 

Therefore F ---  = gfl(T—T)+g/Y(C—C,)  
pOx 

With reference to the above assumptions, the continuity equation (2.37), the momentum 

equations (2.38)-(2.40), the energy equation (2.41) and the concentration equation (2.42) can be 

written as follows: 

The continuity equation: 

all Ov Ow 
0 (212) 

Ox Oy Oz 

The momentum equations: 

Ou Ou Ott au (02u 02u  02u') 
—u—+v--+w--= vl ± ±-- ±g,5(T—T,,)±g/3(C—C) 
at  Ox Oy 8z 1 oz) 

(2.1.3) 
K' p 

Ov Ov 8v Ov (82v  Ov O2v'1  V 
—±---±— --v (2.1.4) 

at  Ox Oy Oz a2 0y2  Oz) K' 

Ow Ow Ow Ow (021V 0 2w O2 w" v crB0  w 
20u w—  

Or Ox Oy Oz Ox2  0y2  0z2 ) K' p 

The energy equation: 
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ÔT ÔT ÔT ÔT k (a2T  02T a2T'l  D kT (a2c a2c a2c 
—+u--+v—+w—=----I —+--+----- 1+_m ++ 
at &v ôy az pc,Lax2 

 ,2  az2 ) iav2  2 2 

o (aU,
(
aV

2 (
a~V

2 ]
(ôv 8 2 ( 

2
(au 2 

 2—i +i +I ++j ++ ++c 5x) y) ôz} 
J 

ftx ay) ôy az

) 

'.ôz ox 

a'B [22] 
(2.1.6) 

pc p  

The concentration equation: 

ac ac ac ac (a2c 02C a2C' DmkT (a2T a2T a2T 
—+u--+v—+w—=D i—+---+--i+ (2.1.7) 
a Ox Oy az m &.2 2  0z2 ) Tm  L2 

ay  2 az-) 

Since the plate occupying the plane y = 0 is of infinite extent and the fluid motion is unsteady, 

all physical quantities will depend only upon y and t. Thus mathematically the problem 

reduces to a one dimensional problem. Then the equations (2.1.2)-(2.1.7) become 

(2.1.8) 
ay 

±+v=g/3(T_T)+g/3(c_cj+v4 +2c w _ u _0U (2.1.9) 

Ov Ov 02v v —+—=------ (2.1.10) 
31 & 2  K' 

Ow Ow Ow 
=v— -— 

B0w 
—+v— Quw 
at 

 
K' 

Dmki 
+-[u2+w2]+- 21'. 1) +1Y 

(2 

(2.1.12) 
at Oy  pc Oy Oy pc c Oy) l ôy) l 3y) 

ac ac a 2c Dk a27 
—+v=D m T (2.1.13) 
at ay T 2 

Let the viscosity of the fluid be small and S be the small thickness of the boundary layer. Let 

<<1 be the order of magnitude of 5, i.e., 0(5) = s. Let the order of magnitude of u, w are 

one, i.e. 0(u) = 1, 0(w) = 1. Then the order of magnitude of v and y are s and the order of 

magnitude of t is one, i.e., 0(v) = s, 0(y) = s and 0(t) = 1. 

Hence O(=1, 1')=I, 01-')=--- and O( ')=e, oI'1=i, o1_')=i within 
LOt) y2 ) 2 3t) 2) 

. 

the boundary layer. 

On considering the above mentioned order the equations (2.1 .8)-(2. 1.11) become; 
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OV 

ay 

1 

(2.1.14) 

0u OU OU 
(2.1.15) —+v—=g/3(T—Tj+g,8(C—Cj+v---- 

K' at 0;' 

1 
1 

1 1 1 

au 0v a 2v 
—+v—=v-----v (2.1.16) 
at ay ôy2  K' 

1 

6 

Ow Ow 0214, 
—+v— = v-2Qu—w— aB0W _____ 

at 13y ay2 K' p 
(2.1.17) 

1 1 

S 

Since the viscous boundary layer and thermal boundary layer are both small in this case, so let 8 

be the thermal boundary layer thickness and let e <<1 be the order of magnitude of 8, i.e., 

0(8) = s. Let the order of magnitude of Tand C be one, i.e., 0(T) = land 0(C) = 1. 

IT ) 

aT i ( a2T 1 (ac ~ac )  1 
Hence 01,0 11=—, 0i=— and 011=1,0 =, 

Lay) ay2) 6 2 at 0y s 

(a2C) I  
0 = 

---- within the boundary layer. ay2 62  

Then the equations (2.1.12) and (2.1.13) with order become 

OT ar k 52T Dmk 2C a'B 2 2 v 2 (aV2
+__[u +w 1+—I 21 - I + at ay c[ ) ) J] 

 

1 1 1 1 1 
62 62 52 

ac aC 02C D kT  02T 
- + v— = D (2.1.19) 

ay T, 

1 1 1 
1 - - - 

Equations (2.1.14)-(2.1.19) require that 0(g/3(T—T,.)) = I ,o(g /3 (C—C.)) = 1, 0(2Q) = 1, 

0(aFB02 

) 
1 0It52, o1kTts2, 0(Dm)=62, 

o(DmkT)=62 and 
p pc) c5c) 
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0( 

 1)  ) = __2
. 

 

cj 

Since the viscosity is very small, so neglecting the small order terms, then quations (2.1.14)- 

(2.1.19) become 

av 
(2.1.20) 

OY 

Su Su S2u+v V 2Q vo-'BO 2u —— -+g/3(T-T,)+g/3(C-C,) (2.1.21) 
i,_ K' p 

SW Sw SW V CTB0 W 
—+v--=v----2Qu w at 5i, Sy 2  

(2.1.22) 

ST ST k S2T D,,JkT  S2C a'B 2 2 2 
v [(aU)2 (5W)2

-= + +V + u +w+—--- +I— St pcSi,2 pc c Sy] 
(2.1.23) 

SC SC S 2CDPI kT S 2T —+v— D (2.1.24) 
at Si, tm 5y2 Tm 5i, 2  

The boundary conditions for the problem are 

t :!~ 0,u = 0,v = 0,w = 0,T = Tm ,C = C.  forailvaluesofy 
t>0, u=0,v=v0 (t),w=0,T=T,C=C at y° 
t>0, u-+U0, w0,T-Tm ,C--->C at y -Dj 

(2.1.25) 

The fluid is assumed to be moving in the upward direction with a velocity U0  and then equations 

(2.1.21)-(2. 1.24) become 

(2.l.20a) 
Si, 

all Su 82u a'B0 2  — +v--=V + —Oy i- (U0 -u) (2.1.21a) 
5 

, 2 5w Sw S2w 
(U0 u) v a B0  14 —+v--=u----2~ - --w- 

, 5i, 2 K' p 
(2.1.22a) 

'  

+

~
&V

)2 ST ST k S2T DkT S2C v 
r
(Sui + a [(U

0  _
U)2  + +V +

_- 

W2 
cc 

(2.1.23a) 

SC SC S 2C S 2T —+v--=D -+ Si m i, T, 
(2.1.24a) 

and the boundary conditions for the problems are 

t>0, u=0, v=v0 (t),w=0, T=T, C=C, at y° 
t>0, u-+U0 , w-0, T->T0,,C-*C,, as y_coJ 

(2.1.25a) 
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where u, v are the velocity components in the x, y directions respectively, v is the kinematic 

viscosity, g is the acceleration due to gravity, p is the density, /3 is the thermal volumetric 

coefficient expanssion, /3' is the volumetric coefficient of expanssion for concentration, 

T, T, T. are the temperature of the fluid inside the thermal boundary layer, the plate temperature 

and the fluid temperature in the free stream respectivly while C, C, C are the coressponding 

concentrations, K' is the permiability of the porous medium, k is the thermal conductivity of 

the medium, k  is the thermal difusion rato, c,, is the specific heat at constant pressure, D, is the 

coefficient of mass diffusivity, 1,, is the mean fluid temperature, c is the concentration 

susceptibility, a-' is the electric conductivity. 

Case II 
Let us consider a steady MHD free convection and mass transfer flow of an electrically 

conducting viscous incompressible fluid through a porous medium along a semi-infinite vertical 

porous plate y = 0 in a rotating system. The detailed descriptions of the present problem are 

similar to those of case-I, and thus are not repeated here for brevity. 

The continuity equation is: 

auavaw 
—+—+--=0 (2.2.1) 
ox ô) Oz 

The momentum equations are: 

all all all (02u 32u a2u 

u — +v--+w--= vi —+----+-- I -i-g/3(T—T )+g/3 (C—C ) 
Ox Oy Oz ax2 3y2 8z 2 ) 

(2.2.2) 
K' p 

, , (52w 02v a 2 v V 
u+v—+w=vi —+----+—l---v 

2  (2.2.3) 
Ox Oy Oz Ox 2 0z 2 ) K' 

Ow Ow Ov 
-

(a2 a 2 02 w w 
-- -- 

v
iv— 

 a-B 0 2  
u-+v-+w —-2u—- 

 
Ox a Ox 2 y ) K' p 

(2.2.4)  

The energy equation is 

OT OT OT k (02T 

 

02T O2T 02C 0 
 2
c Dm   kT 

 (
1  

_

0

ax

_

2C

_ 

 
_ ---- 

 
 
) 

u ax +v a) +w
Oz
=- -+—+—

c3c 2 _ 

pcLO2 p 

 

3z 2  

(2 (a%v2 (Ov5u'2(OwOv'2 (Ozt Ow'\2 
 

v  (all
), 

2— +1 — i +lI+I+I +I+I +I+
c,, LOx Oy) Oz) 

 J 
Ox Oy) Oy Oz) Oz Ox 
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+ 
a'B 

[u2  + w2 ] (2.2.5) 
pcp  

The concentration equation is 

ac ac ac (a2c a 2c a 2c D k, (52T à2T a2T' 
m u—+v--+w--=D 

ax ày &- ax 2 ày2 
6

z 2 ) Tm ( \ ax2 ày2 5z 2 ) 
(2.2.6) 

Since the plate occupying the plane y = 0 is of semi-infinite extent and the motion is steady, all 

physical quantities will depend only upon x and y. Thus mathematically the problem 

reduces to a two dimensional problem. 

Then the equations (2.2.1)-(2.2.6) become 

(2.2.7) 

u+=v [ +J +g (T - + 
gfl* 

(C - C) +2w - u - 
aBOu 

ax ày ax2 ay2 K' 

( \ àw ow rO
2
w à

2
wi v oB0 w 

U+V—=VI —+--- —2u--w— 
ax ày àx2 ày2 ) K' p 

(2.2.10) 

OT OT k (a2T
+

a2T)
+ D,"kT (a2c 02C"i ci'B r 2 2 

U—+v------ _ I -+-- I  + I U +W 
Ox ày pc,, ax2 ày2 c5c (\ Ox ày2 ) pc,, L 

v 1(au 2 (21 (Oy au2 
(2 (

&W
2]

+ -2i — i +i—i >+p—+---i+i----i +—i 
c LOx) ày) 

J 
Ox ày) ày) Ox) 

(2.2.11) 

ac ac a 2C Dc (82 T 
+

à 2T 
u—+v-=D

m
—+-   

  

(a2C 

ax ày Ox 2 ày2 T 0x 2 ày2) 
 

)
+ (2.2.12) 

Let the viscosity of the fluid be small and 8 be small thickness of the boundary layer. Let 

a <<1 be the order of magnitude of 8, i.e., 0(8) = e. Let the order of magnitude of u, it,  and 

x are one, i.e. 0(u) = 1, 0(w) = 1 and 0(x) = 1. Then the order of magnitude of v and y are s, 

i.e., 0(v) = e and 0(y) =  c. 

au 
Hence o(')=i, 01'-.')=l , 0

(o'y )=_
, and 01-L, 01-'L, 

Ox Lax2 ) ày 2 ) 2 àx) Lax 2 ) 

o(J= 1, o[4'J=! within the boundary layer. 

Then the equation (2.2.7)-(2.2.10) become 
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Ou Ov 
(2.2.13) 

aay 

11 

Ou Ou = 
 (02u O2u  

(2.2.14) 2 2) K' p 

11 s 1 1 1 1 

av ôv (02 v 02 v ' \ 
u—+v---=vi —+-- --v 
a Oy 3x2 2) K' 

(2.2.15) 

1 
is si s — C 

S 

Ow Ow (02 w O 2 w v o'B0 2w 
u—+v—=v l —+----I-2c~u---w— (2.2.16) 

2 
2 Ox Oy t ,) K' 

1 1 1 1 

Since the viscous boundary layer and the thermal boundary layer thickness are same in this case, 

so let S be the thermal boundary layer thickness and let s <<1 be the order of magnitude of 8, 

i.e., 0(8) = s. Let the order of magnitude of Tand C be one, i.e. 0(T) = I and 0(C) = I. 

Hence o 'i"L=1, o-Zi"=i, 0 
(aT) i 

and 
ac 

Ox) 2) 2J - 2 LOx) 

= 1, 0 
( 1 ) 

= 
1 (a2C 

--- within the boundary layer. 2) 
'°J 2 

Then the equations (2.2.11) and (2.2.12) become 

OT OT k (a2 T
+

a2T )+
D 
 ,kr (O2C 02C'\ 

+ o'B 
+ 2 I [u2 +w2 ] 

CcCp 0x2 ,2) 
pc 

2 62  
i 1 1 

&  

J
+—I 2— 

(
aji
)2

+
(

&V
)2 

_ 

Ov 0u 2 'Ow' 2 0w 21 
+-+_ +i_i+(

_) 
(2.2.17) 

C[   J Ox j 
21 I 

1 1 s — — I 

OC OC (02C 82C" Dmk(O2T O 2T" 
u—+v-- D - 

Oly  -_-.- -- +J 
(2.2.18) 
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1 1 

S 
2 

Equations (2.2.14)-(2.2.18) requires that 0(g/3(T—T)) = 1, 0(g/3(C—C)) = 1, 0(2) = 1, 

oJ=i o1'B0fl=1, 01=g2, 0I,kT=52, 
K p ) pC) CSCP ) 

OIDmkT= S 2 O1=S 2 

T.  ) (c) 

Since the viscosity is very small, so neglecting the small order terms, we have from equations 

(2.2. 13)-(2.2. 18) 

8u ôv —+—=o (22.19) 
ôx 8y• 

ôu ôu 82u 
= V )+2Qw— 

v a'B0 2u 
--u— (2.2.20) 
K' 

3w 8w 82w v a'B0 2w 
2 K' p 

8T 0T k 02T Dmk82C O-'B 2 2 V Va 
(2] 

= +w 
av 8' 2 cc 8y2 pc 

— i +1 
c (ay) ayJ 

(2.2.22) 

ÔC02C Dmk 82T u-
8C

+ v—=D —+ 
a aJI Tm 5))2  (2.2.23) 

The boundary conditions for the problem are 

u=0,v=v0 (x),w_-0, T=T, C=C, at y=0 

uU0, w0, CCm at 
(2.2.25) 

The fluid is assumed to be moving in the upward direction with a velocity U0  and then equations 

(2.2.20)-(2.2.22) become 

ôu 8v —+—=o (2.2.19a) 
oxay 

ôu 8u 82u 
u—+v--=V + g/3(T-7) +gff(C—Cj+2c~w+---(U0  

, 2 

—u)+ 
°'° 

(U0 .) (2.2.20a) aY2 K p 

8w 0w 82w 
U B0w — + v — = v + 2 2 

(U
O _ u)_ }v _ (2.2.21a) 

ôx 

8T OT k 82T DmkT82C V[(
,,U

) 2 ( 
U — +v— =---+ -  +1 21 a' 

{(u0 —u)2  +w2 (2.2.22a) ___ 

Ox 2 
cccp 

2 cay 8y)] jx p  
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u- +v -D 3C ac Ô 2C Dmk 2T --— 
a 8 

-+ 
y T. a)'2  

The boundary conditions for the problem are 

-. u=O, v=v0 (x), w=O, T=T,  C = C,,,  aty=O 
w->O,T-*Tm,C--*C, aty ->co 

The symboles were discussed as earlier. 

(2.2.23a) 

(2.2.24a) 
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Chapter 3 

The Calculation Technique 

3.1. The Shooting Method 

To solve the boundary layer equations by using Shooting method technique, there are two 

asymptotic boundary condition and hence two unknown conditions f"(0) and O'(0) are to be 

assumed. Within the context of initial value method and Nachtsheim-Swigert iteration technique 

the outer boundary conditions may be functionally represented as 

f'7max ) = f'(f(0),0'(0)) = 6  

(77max)= e(f"(o),e'(o))= 62 . (3.2) 

With asymptotic convergence criteria given by 

) = f#(fff(o)91(o)) = 63 (3.3) 

8'(17max) =  e'(p(o),e'(o))= 84 . (3.4) 

Let us choose f"(0) = g1 , 8'(0) = 92 . 

Retaining only the first order tenns from the Taylor's expansion from equations (3.1)-(3.4) we get 

f + a =8 (3.5) 
ag2  

+ 
ao  
—Ag, =62 (3.6) 

ag, ag2  

+Ag2  = 83 (3.7) 
ôg, ôg2  

50' 
_84 (3.8) 

ag, ôg2 
A92 

where the subscript 'c' indicates the value of the function at '7m<  determine from the trial 

integration. Solution of these equations in a least squares sense requires determining the 

minimum value of 

E = 8, 2  +62 2  +63 2  +64 2 0 Error (3.9) 
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with respect to g1  and g2 . 

Now diferentiating E with respect to g1  and 92  we get 

SI2 83 _+84 _0 (3.10) 
ag, ag, ag, ôg, 

ag, 
 

(51 a<52 (3.11) 
a92 092 092 

Applying equations (3. 5)-(3. 8) in equation (3. 10), we obtain 

1s)2  +1)2 +1 
fl2  +1i 

ôg,) I8g1 ) ag, ) ag, ) iag2  391 092 ag, 092  ôg, ôg, ag,) - 

(3.12) 
ag, ag, ag, 

Similarly applying equations (3. 5)-(3.8) in equation (3.11), we obtain 

(-

2 

 +
1--)2  +1i)2 +1)2

]A92 ôg2 )Iôg2 ) g2 ) \ ag2 ) I8g, a92 ag, 092 091 592 ôg, 092

ao 

) 

= _[ f;i+e+p  . i+ i . i] 
 

09 2 ag2 ag2  

The equations (3. 12) and (3. 13), can be written as 

a,,Ag, +a12A92 =b, (3.14) 

a2,A9, +a22 L\g2  =b2 , (3.15) 

where 

a,,  =

(
2 

-fl2 +
1i2  

ôg,) ag, ) ag,) ôg,) 
(3.16) 

 ao, a,, = -'- + -- -- + - — + --- ôg, 591 092 ôg 092 ag, 092  ag, 
(3.17) 

a,, 
- ag, 092 ag,  092 ôg,  092 ôg, 092 

(3.18) 

,f 

a22
=

[( 
+1--- +1i +

(
i2  

g2 ) g2 ) g2 ) ag2 ) 
(3.19) 

b, —[
f, ~ E + (3.20) ag, ag, ag, agi 

b2  ao'] (3.21) 
092 ag2 a92  
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In matrix form, equations (3.14) and (3.15) can be writen as 

Ia11 a12 491 (b1 
(3.22) 

La2i  a22)Ag2)  Lb2 ) 

Now we will solve the system of linear equations (3.22) by Cramers rule and thus we have 

detA detA 
Ag1  = , Ag2 = 2 

, (3.23) 
detA detA 

where 

detA = JaH 
a,2( 

— a12a21) (3.24) 
a21 a22 j 

detA1 
lb1  a121 

- 01a22 — (3.25) 
b2  a22  

a11 b1  
detA2 

1 
(b2a11  —b1 a21 ). (3.26) =i 1= 

Ia21 b2  

Then we obtain the (unspecified) missing values g1  and g2  as 

91 91  + Ag1 (3.27) 

9292+A92. (3.28) 

Thus adopting this type of numerical technique described above, a computer program will be 

setup for the solution of the basic nonlinear differential equations of our problem where the 

integration technique will be adopted as the six order Runge-Kutla method of integration. Based 

on the integrations done with the above numerical technique, the obtained results will be 

presented in the appropriate section. 

-r 
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Chapter 4 

Viscous dissipation and Joule heating effects on unsteady 
MHD combined heat and mass transfer flow through a 
porous medium in a rotating system 

4.1. Introduction 
In a rotating system, the Coriolis force is very significant as compared to viscous and inertia 

11 forces occurring in the basic fluid equations. In stellar studies it is generally admitted that 

the Coriolis force due to Earth's rotation has a strong effect on the hydromagnetic flow in 

the Earth's liquid core. Considering this aspect of the rotational flows, model studies were 

carried out on MHD free convection and mass transfer flows in a rotating system by many 

investigators of whom the names Debnath(1975), Debnath ef al.(1979), Raptis and 

Perdikis (1982) are worth mentioning. 

In the above mentioned work, the Soret and Dufour effects were neglegted on the basis that 

they are of a smaller order of magnitude than the effects described by Fourier 's and Fick 's 

laws. However, exceptions are observed therein. The thermal diffusion (Sore!) effect, for 

instance, has been utlized for isotope separation and in mixture between gases with very 

light molecular weight (H2 , H)and  of medium molecular weight (N2 , air), the diffusion- 

thermo (Dufour) effect was found to be of order of considerable magnetude such that it cannot be 

ignored (Eckert and Drake, 1972). In veiw of the importance of above mentioned effects, 

Kafoussias and Williams (1995) studied Soret and Dufour effects on mixed free-forced 

convection and mass transfer boundary layer flow with temperature dependent viscosity. Anghel 

et al. (2000) investigated the Dufour and Soret effects on free-convection boundary layer flow 

over a vertical surface embedded in a porous medium. Recently, Postelnicu (2004) studied 

numerically the influence of a magnetic field on heat and mass transfer by natural convection 

from vertical in porous media consedering Sorer and Dufour effects. Quite recently, Alam and 

Rahman (2006) investigated the Dufour and Soret effects on mixed convection flow past a 

vertical porous flat plate with variable sucction. The effect of Joule heating on MHD combined 

heat and mass transfer flow of an electrically conducting viscous incompressible fluid past an 
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infinite plate was, however considered by Hossain (1990). 

Hence, our objective is to investigate the unsteady MHD combined heat and mass transfer flow 

through a porous medium past an infinite vertical porous plate with viscous dissipation and Joule 

heating effects in a rotating system. 

4.2. The Governing Equations 

Let us consider an unsteady MHD combined heat and mass transfer flow of an electrically 

conducting viscous fluid through a porous medium along an infinite vertical porous plate y = 0 

in a rotating system. The flow is also assumed to be moving in the x -direction with a uniform 

velocity U0  which is taken along the plate in the upward direction and y -axis is normal to it. 

Initially the plate is at rest, after that the whole system is allowed to rotate with a constant 

angular velocity Q about the y -axis. Since the system rotates about y -axis, so we can take 

.4 

12 = (o,—Q,o). The temperature and the species 

concentration at the plate are instantly raised from 

T. and C, to T, and C.  respectively, which are 

thereafter maintained as constant, where T. and 

C, are the temperature and species concentration 

of the uniform flow respectively. A uniform 

magnetic field B is taken to be acting along the 

y - axis which is assumed to be electrically non-

conducting. Following Pal (1962), it is assumed 

that the magnetic Reynolds number of the flow be 

small enough so that the induced magnetic field is 

I_ 
L/w

u 
 

BO 

71 
-Y 

Fig. 1 Physical configuration and coordinate system 

negligible in comparison with applied one, so that the magnetic lines of force are fixed relative to 

the fluid. The equation of conservation of charge V..! = 0 gives .J, = constant, where thecurrent 

density J = (J .J 
Y. J:)• Since the plate is electrically non-conducting, this constant is zero and 

hence J = 0 at the plate and hence zero everywhere. The physical configaration considered 

here is shown in Fig. 4.1. With reference to the generalized equations described in case-I of 

Chapter 2, the one dimensional problem for MHD combined heat and mass transfer flow under 

the above assumptions can be put as: 

- 

ay (4.1) 
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-u)+ c'B02 ((Jo -u) (4.2) 
at ay K'

Sw Sw 52w v a'B0 2w 
—+v--=v---+2(U0 -u)--w- (4.3) at K' p 

ST ST k S2T D kT  a2c v 
5w 2 

i 2 2
--i--

[(
aU

)2 

+ E(u0 -u)+w (4.4) 
St Sy ps',, Sy' cç cp c,, y Sy) jx 

+ v = D + 
Dm  kT 

(4.5) 
at  Sy Tm  Sy2  

and the boundary conditions for the problem are 

t>0, u=0, v=v0 (t),w=0, T=T., C=CH, at y=O 
(46) 

1>0, u=U0 , w=0, T-T,,C--->C, as y—>ccj 

Following the work of Sattar (1993), a transformation is now made as; 

U0 -u=u1  

So the equations (4.2)-(4.5) and boundary condition (4.6) respectively transform to 

(4.7) 

Sw Sw Sw o oB0 w 
—+v--=v----Qu1  +2---w- (4.8) at  Sy Sy2 K' 

ST ST k S2T D k 2c (Su12 
(5w\2 

aB0  2 21 
I — i +— + u1  +wj (4.9) 

at Sy ix,, Sy' c5 c Sy' ci,, Sy) I  Sy) jx, 

--+v2=D S2CDR,kT S 2T 
(4.10) 

at Sy tm Sy 2 T, 2 

1>0, u1 =U0 ,v=v0 (t),w=0, T=T, C=C, at y =0 
(411) 

1>0, u1 =0, w=0, T*Tm as y ->ctDf 

where u, v are the velocity components in the x, y directions respectively, v is the kinematic 

viscosity, g is the acceleration due to gravity, p is the density, /1 is the thermal volumetric 

coefficient expanssion, ,13 is the volumetric coefficient of expanssion for concentration, 

T,T,,,,T.  are the temperature of the fluid inside the thermal boundary layer, the plate temperature 

and the fluid temperature in the free stream respectivly while are the coressponding 

concentrations, K' is the permiability of the porous medium, k is the thermal conductivity of 

the medium, k  is the thermal difusion rato, c,, is the specific heat at constant pressure, D, is the 

coefficient of mass diffusivity, ] is the mean fluid temperature, c IS the concentration 
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susceptibility, Cr' is the electric conductivity. 

4.3. Mathematical Formulations 

In order to obtain similar solutions we introduce a similarity parameter a as 

ci = a(t) (4.12) 

such that a is the time dependent length scale. In terms of this length scale, a convenient 

solution of equation (4.1) is considered to be 

C(t) 
(4.13) 

Here the constant v0  represents a dimensionless normal velocity at the plate which is positive for 

suction and negative for blowing. 

We now introduce the following dimensionless variables 

(4.14) 

OK 

(4.15) 
UO  

UO 

14' 
(4.16) 

UO  

(4.17) 

(4.18) 

From the equation (4.15), we have 

u, =uj() (4.19) 

From the equation (4.19), we have the following derivatives 

u fS aCr 
at 

(4.20) 

(4.21) 3)) ci 

81 
= (4.22) 

Again from the equation (4.17), we have 

(T — Tj=(T—T)9(,7) (4.23) 
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Also from the equation (4.18), we have 

(C - c ) = (C,4, -  C.  )Ø(i) (4.24) 

Substituting the equations (4.13), (4.16) and (4.1 9)-(4.24) into the equation (4.7), we get 

fM+T71+vo)f_Gro_Gm_2Rgo 
—(K+M)f= 0 (4.25) 

whereGr = 
gfi(T —T2 

is the local Grashof number,Gm = 
gfl(C 

is the local 
U0u U0u 

modified Grashof number, K 
= is the permeability parameter, M = is the Magnetic 

K pu 

parameter and R = is the rotational parameter. 

Again, from the equation (4.16), we have 

w = U090 0) 

From the equation (4.26), we have the following derivatives 

aw U0 aa 
= ---77g0 (17) 

of ciOt 

Ow UO  - g) 
Oya 

02w 
= 72 

Substituting the equations (4.13), (4.19), (4.26)-(4.29) into the equation (4.8), we get 

1 

g0 + ----7+v0  Ig0 +2Rf—(K+M)g0 =0 

Again, from the equation (4.17), we have 

T=T,, +(r —T(i7) 

From the equation (4.31), we have the following derivatives 

= - ( 

OT (TW — Tj 
e() 

0); 0 

?i- (T 
2 

O\Y Cr 

Further, from the equation (4.18), we have 

c=ç +(c -c)Ø() 

(4.26) 

(4.27) 

(4.28) 

(4.29) 

(4.30) 

(4.31) 

(4.32) 

(4.33) 

(4.34) 

(4.35) 
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From the equation (4.35), we have the following derivatives 

ac 
= 

(c _Ciac Ø(,7) 
(4.36) 

a at 

ac (c 
(437) 

OY a 

ac (c 
(4.38) 

a 

Substituting the equations (4.13), (4.19), (4.21), (4.26),(4.28), (4.32)-(4.34) and (4.38) into the 

equation (4.9), we have 

0"()
(V at 

+vo J0'()+ D10"()+ E {(f')2 + (g
)21 + EM{(f)2 (g)2} 

= 0 
(4.39) 

where Pr 
=P

Vc
P  is the Prandit number and D = 

D,kp (Cu. c) 
is the Dufour number, 

k ' c1K' (I,—T) 

u2  
E = ° is the Eckert number. 

Again substituting the equations (4.13), (4.34), (4.36)-(4.38) into the equation (4.10), we get 

( 0 at 
+ vo JSO'(i7)+ S00"(i7) = 0 (4.40) 

k..  
where Sc  = 

v 
is the Schmidt number and S0 = is the Soret number. 

Dm Tjc —  c,) 

The corresponding boundary conditions for the above mentioned problem are 

f=1, g0 =0, 0=1, 0=1 at 7=0 

f=0,g0 =0, 0=0, 0 = 0 as i- 

aôcr The equations (4.25), (4.30), (4.39) and (4.40) are similar except for the term - where time 
V  at 

(0 aôa i 
appears explicitly. Thus the similarity condition requires that -- n the equations (4.25). 

1) at 

(4.30), (4.39) and (4.40) must be a constant quantity. Hence following works of Sattar and Alarn 

(1994) one can try a class of solution of the equations (4.25), (4.30), (4.39) and (4.40) by 

assuming that 

r3o- 
- = c (a constant) (4.42) at 

Now integrating (4.42) one obtains 

a = -J2cvt (4.43) 

where the constant of integration is determined through the condition that a = 0 when t = 0. It 
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thus appears from (4.43) that, by making a realistic choice of' c' to be equal to '2' in (4.43) the 

length scale a becomes equal to a = 2Nrot which exactly corresponds to the usual scaling 

factor considered for various unsteady boundary layer flows (Schlichting, 1968). Since a is a 

scaling factor as well as a similarity parameter, any value of 'c' in (4.43) would not change the 

nature of the solution except that the scale would be different. Finally, introducing (4.43) with 

c = 2 in equations (4.25), (4.30), (4.39) and (4.40) we respectively have the following 

dimensionless ordinary coupled non-linear differential equations 

f"+2f'—GO—G,çi--Kf—Mf-2Rg0  = 0 (4.44) 

g"+2g —Kg0  —Mg0  +2Rf=0 (4.45) 

+ 2IO'()) + D1Ø"(i) + PrEc Jw)2 + 
(g)2} 

+ Pr EC M {(f)2  + (g0 
)2 

} 
=0 (4.46) 

+ 2SØ' + s0e" =0 (4.47) 

where = ii + vo  -. 

The corresponding boundary conditions are 

f=l, g0 =0, 81, 01 at i=0 
(448) 

f=0,g0 =0,9=0,Ø=0 as i—>coJ 

In all the above equations primes denote the differentiation with respect to ii. 

The next section deals the Skin-friction, the Nusselt number and the Sherwood number of the 

problem. 

4.4. Skin-friction coefficients, Nusselt number and Sherwood 
number 

The quantities of chief physical interest are the skin friction coefficients, the Nusselt number and 

the Sherwood number. The equation defining the components of wall skin frictions are 

all (&w" . . (ôg0  
V = ,uJ 

)Y=o  
and 1: = 1 - I which are proportional to I I and I X

5Y o1/) =o ai7  

The Nusselt number is denoted by N =
(H)  
 ; which is proportional to 

At c-), j  =0 (a17 

hence we have N 

The Sherwood number is denoted by Sh  = --- which is proportional to -
) 71=0 

 
At öY11C  )Y=o  

hence we have S. 

The numerical values proportional to the skin-friction coefficients, the Nusselt number and 
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the Sherwood number are sorted in Tables 4.1-4.5. 

4.5. Numerical Solutions and Calculation Procedure 

Equations (4.44)-(4.47) with boundary conditions (4.48) are solved numerically by a standard 

initial value solver, i.e., the shooting method. For this purpose, we have applied the Nacthsheirn-

Swigert iteration technique. 

In shooting method, the missing (unspecified) initial condition at the initial point of the interval 

is assumed and the differential equation is integrated numerically as an initial value problem to 

the terminal point. The accuracy of the assumed missing initial condition is then checked by 

comparing the calculated value of the dependent variable at the terminal point with its given 

value there. If a difference exists, another value of the missing initial condition must be assumed 

and the process is repeated. This process is continued until the agreement between the calculated 

and the given condition at the terminal point is within the specified degree of accuracy. For this 

type of iterative approach, one naturally inquires whether or not there is a systematic way of 

finding each succeeding (assumed) value of the missing initial condition. 

The boundary conditions (4.48) associated with the ordinary nonlinear differential equations 

(4.44)-(4.47) of the boundary layer type is of the two-point asymptotic class. Two-point 

boundary conditions have values of the dependent variable specified at two different values of 

the independent variable. Specification of an asymptotic boundary condition implies the value of 

velocity approaches to unity and the value of temperature approaches to zero as the outer 

specified value of the independent variable is approached. The method of numerical integration 

of two-point asymptotic boundary value problem of the boundary layer type, the initial value 

method, requires that the problem is to be recast as an initial value problem. Thus it is necessary 

to set up as many boundary conditions at the surface as there are at infinity. The governing 

differential equations are then integrated with these assumed surface boundary conditions. If the 

required outer boundary condition is satisfied, a solution has been achieved. However, this is not 

generally the case. 1-lence a method must be devised to logically estimate the new surface 

boundary conditions for the next trial integration. Asymptotic boundary value problems such as 

those governing the boundary layer equations are further complicated by the fact that the outer 

boundary condition is specified at infinity. In the trial integration infinity is numerically 

approximated by some large value of the independent variable. There is no a priori general 

method of estimating this value. Selection of too small a maximum value for the independent 

variable may not allow the solution to asymptotically converge to the required accuracy. 

Selecting a large value may result in divergence of the trial integration or in slow convergence of 

surface boundary conditions required satisfying the asymptotic outer boundary condition. 

Selecting too large a value of the independent variable is expensive in terms of computer time. 
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Nachtsheim-Swigert developed an iteration method, which overcomes these difficulties. 

Extension of the Nachtsheim-Swigert iteration shell to above equation system of differential 

equations (4.44)-(4.47) is straightforward. In equation (4.48) there are four asymptotic boundary 

conditions and hence four unknown surface conditions [(0) , g (0), 9'(0) and 0'(0) is required. 

4.6. Results and Discussion 

In this thesis viscous dissipation and Joule heating effect on unsteady MI-ID combined heat and 

mass transfer flow through a porous medium in a rotating system have been investigated using 

the Nachtsheim-Swigert shooting iteration techneque. To study the physical situation of this 

problem, we have computed the numerical values of the velocity, temperature and concentration 

within the boundary layer and also find the skin friction coefficients, Nusselt and Sherwood 

numbers at the plate. It can be seen that the solutions are affected by the non dimensional 

parameters and numbers namely suction parameter v0 , local Grashof number G,  local modified 

Grashof number Ga,, permiability parametr K, Magnetic parameter M, Prandtl number P, 

Eckert number E,  Dufour number D, Schmidt number S, Soret number S0  and rotation 

parameter R. The value of Gr  and G 7  are taken to be large, since these values correspond to a 

cooling problem that is generally encountered in nuclear engineering in connection with the 

cooling of reactors. For Prandil number Pr  six values 0.2, 0.5, 0.71, 1.0, 2.0 and 5.0 are 

considered (0.2, 0.5 and 0.71 for air at 20° C and 1, 2, 5 for water). The values 

0.1, 0.5, 0.6, 0.95, 5.0 and 10.0 are also considered for the Schmidt number S which represents 

specific conditions of the flow (0.95 for CO. and 0.1, 0.5, 0.6, Sand 10 for water). In 

particular, S = 0.6 corresponds to water vapor that represents a diffusive chemical species of 

most common interest in air. The values of other parameters are however chosen arbitrarily. 

With the above mentioned parameters, the primary (u / U0 ) and the secondary (g0 ) velocity 

profiles are presented in Figs. 4.2-4.19, the temperature fields are presented in Figs. 4.20-4.28 

and the concentration fields are presented in Figs. 4.29-4.37. 

Fig. 4.2 shows the primary velocity fields for different values of Suction parameter Vo l It is 

observed from this figure that the velocity decreases with the increase of suction parameter v0 . 

For both v0  > 0 and v0  <0 indicating the usual fact that the suction stabilizes the boundary 

layer growth. The free convection effect is also apparent in this figure. For 77 = 1.2, the velocity 

profile is found to increase and reaches maximum value in a region close to the leading edge of 

the plate, then gradually decrease to one. Fig. 4.3 shows the primary velocity field for different 
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values of Magnetic parameter M. We see from Fig. 4.3 that the velocity field decreases with 

the increase of Magnetic parameter M. These effects are much more stronger near the surface of 

the plate. In Fig. 4.4, the effects of rotation parameter R on the primary velocity is shown. It is 

observed from this figure that rotation parameter has a negligible minor decreasing effect on the 

primary velocity with the increase of R. In Figs. 4.5- 4.7, the effects of Soret number S. 

Dufour number D f  and Eckert number E  on the primary velocity are shown respectively. It is 

observed from Fig. 4.5 that the primary velocity increases with the increase of Sore! number 

S0 . Fig. 4.6 shows that the velocity field increases with the increase of Dufour number D1  and 

maintain uniform increasing behaviour. Fig. 4.7 shows that the primary velocity field increases 

with the increase of Eckert number E. To increase the fluid motion we need to consider viscous 

dissipation. From viscous dissipation term we obtained dimensionless parameter E.  This 

prameter is called the fluid motion controling parameter. Fig. 4.8 shows the primary velocity 

field for different values of Prandtl number Pr  It is seen from this figure that magnitude of the 

primary velocity has a overshoot behaviour for small Prandtl number But for larger values 

of 1. (P. = 5), the primary velocity is found to decerease monotonically and hence there appears 

a thin boundary layer indicating the decerease of the free convection. In Figs. 4.9 and 4.10 the 

effect of Schmidt number S and permeability parameter K on the primary velocity are shown 

respectively. Fig. 4.9 shows that the primary velocity field decreases with the increase of 

Schmidt number S. The same is the case for permeability parameter K as dipicted in Fig. 4.10. 

The effects of various parameters on the secondary velocities are shown in Figs. 4.11 -4.19. The 

effect of the Suction parameter v0  on the secondary velocity is shown in Figs. 4.11. It is 

observed from this figure that the secondary velocity increases with the increase of Suction 

parameter v0  for both v0  > 0 and v0  <0, indicating the usual fact that suction stabilizes the 

boundary layer growth. The free convection effect is also apparent in this figure. For 77 = 1, the 

velocity profile is found to increase from —0.land reaches maximum value in a region close to 

the leading edge of the plate, then gradually increase to zero. Fig. 4.12 shows the secondary 

velocity field for different values of Magnetic parameter M. We see from this figure that the 

secondary velocity field increases with the increase of Magnetic parameter M. These effects 

are much more stronger near the surface of the plate. Fig. 4.13 shows the secondary velocity for 

different values of Rotation parameter R. It is observed from this figure that rotation 

parameter has a larger decreasing effect on the secondary velocity with the increase of R. In 

Figs. 4.14- 4.16, the effects of Soret number S, Dufour number D1  and Eckert number E  on 
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the secondary velocity are shown respectively. It is observed from Fig. 4.14 that the secondary 

velocity decreases with the increase of Soret number S0  while for large values of S0 , the 

secondary velocity decrease much more. Fig. 4.15 shows that the velocity increases with the 

- increase of Dufour number D1  and maintain uniform decreasing behaviour. Fig. 4.16 shows 

that the secondary velocity increases with the increase of Eckert numberE.  Fig. 4.17 shows the 

secondary velocity for different values of Prandil number Pr • We see from this figure (Fig. 

4.17) that magnitude of the velocity has a overshoot behaviour for small Prandtl number 

But for larger values of I (I. = 5), the velocity is found to inecerease monotonically and hence 

there appears a thin boundary layer indicating the incerease of the free convection. In Figs. 4.18 

and 4.19 the effect of Schmidt number S and Permeaability parameter K on the secondary 

velocity are shown respectively. Fig. 4.18 shows that the secondary velocity increases with the 

increase of Schmidt number S. Fig. 4.19 shows that the secondary velocity field increases with 
.1 

the increase of permeability parameter K and maintain a uniform increasing behaviour. 

The effect of Suction parameter (v0 ) on the temperature field is shown in Fig. 4.20. It is 

observed from this figure that the temperature field decreases with the increase of suction 

parameter v0 . The effects of Magnetic parameter M and rotation parameter R on the 

temperature field are shown in Figs. 4.21 and 4.22 respectively. We see from the Fig. 4.21 that 

there is a minor increasing effect on the temperature field for the increase of Magnetic parameter 

M and where as there is minor decreasing effect on the temperature field for increase of rotation 

parameter R. Fig. 4.23 shows the temperature field for different values of Soret number S0 . It 

is seen from this figure that the temperature field decreases with the increase of Soret number 

S0 . Figs. 4.24 and 4.25 show the temperature field for different values of Dufour number D1  

and Eckeri number E. We see from these figures (Figs. 4.24-4.25) that the temperature field to 

increase with the increase of D, E  and D maintain a uniform increasing behaviour. Fig. 4.26 

shows the temperature field for different values of Prandil number P. We see from this figure 

that the temperature field has a large decreasing effect with the increase of Prandtl number P. 

Fig. 4.27 shows the temperature field for different values of Schmidt number S. We see from 

Fig. 4.27 that the temperature field has inecreasing effect with the increase of Schmidt number 

Sc . Fig. 4.28 shows the temperatue field for different values of permeability parameter K. We 

see from Fig. 4.28 that temperatue field has a minor decreasing effect with the increase of 

permeability parameter K. 
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The effects of various parameters on the concentration field are shown in Figs. 4.29-4.3 7. Fig. 

4.29 shows the concentration field for different values of suction parameter v0 . We see from 

Fig. 4.29 that the concentration field decreases with the increase of suction parameter v0  and 

maintain a uniform decreasing behaviour. Figs. 4.30 and 4.31 show the concentration field for 

different values of Magnecting parameter M and Rotation parameter R. We see from these 

figures that there are negligible increasing efffct in concentration field for increase in both of the 

Magnectic parameterM and rotation parameterR. Figs. 4.32 and 4.33 show the concentration 

field for different values of Soret number S0  and Dufour number D1. It is observed from these 

figures that the Soret number S, has a large increasing effect while the Dufour number D has a 

minor decreasing effect on concentration. Fig. 4.34 shows the concentration field for different 

values of Eckert number E.  Fig. 4.34 shows that there is negligible decreasing effect in 

concentration field with the increase of Eckert number E.  Fig. 4.35 shows the concentration 

field for different values of Prandtl number P.. Fig. 4.35 shows that there is an increasing 

effect on concentration field with the increase of Prandtl number Fig. 4.36 shows the 

concentration field for different values of Schmidt number S. It is observed from this figure 

that the concentration field has a large decreasing effect with the increase of Schmidt number 

S. Fig. 4.37 shows the concentration field for different values of permiability parameter K. 

We see from this figure that there is a negligible increasing effect on the concentration field with 

the increase of permiability parameter K. 

A 
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Finally, to identify the effects of various parameters on the components of skin friction z-

and r, the Nusselt number N  and the Sherwood number Sh,  numerical values proportional to 

these quantites are tabuleted in n Tables 4.1-4.5. 

From Table 4.1 we observe that the skin friction component r decreases while the skin friction 

component r., the Nusselt number N and the Sherwood number Sh  increase with the increase 

of the suction parameter v0 . From table 4.2 we observe that the skin friction component r and 

the Nusselt number N  decrease while the skin friction component r. and the Sherwood 

number Sh  increase with the increase of Magnetic parameter M. It is also seen from this table 

that the skin friction components r, r. and the Nusselt number N  increase while the 

Sherwood number S,1  decreases with the increase of rotation parameter R. From table 4.3 we 

observe that the skin friction components r, rz  and the Sherwood number 5h  decrease while 

the Nusselt number N. increases with the increase of Soret number S. It is also seen from this 

table that the skin friction components r, r. and the Nusselt number A decrease while the 

Sherwood number 5h  increases with the increase of Dufour number D1. From table 4.4 we see 

that the skin friction components r., rz  and the Nusselt number N  decrease while the 

Sherwood number S, increases with the increase of Eckert number E.  It is also seen from this 

table that the skin friction components 'ç, r.. and the Nusselt number Nu  increase while the 

Sherwood number 5h  decreases with the increase of Prandil number P.  From table 4.5 we see 

that the skin friction components r, r and the Sherwood number S, increase while the 

Nusselt number Nu  decreases with the increase of Schmidt number S. It is also seen from this 

table that the skin friction component r and the Sherwood number 5h  decrease while the 

Nusselt number Nu  and the skin friction component r.. increase with the increase of 

permeability parameter K. 
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Table 4.1. Numerical values proportional to r, T:  N. and Sh  taking So = 0.2, Pr  = 0.71, 

Gr =4.0,M=0.5,Gm =2.OR=0.2,Sc =0.6,Dj =0.2, and K=0.5WithVo toVdIY. 

V0  T N Sh  

-2.5 -2.6032464 .0014727 .1673914 .2104289 

-2.0 -2.8947463 .0021206 .2555351 .2944314 

-1.5 -3.1834914 .0024919 .3695305 .3953901 

-1.0 -3.4635933 .0026889 .5090191 .5122146 

-0.5 -3.7319032 .0052704 .6729678 .6443044 

0.0 -3.9932877 .0101798 .8583514 .7897933 

0.5 -4.2507479 .0164058 1.0629937 .9479664 

1.0 -4.5132391 .0224362 1.2831548 1.1165286 

1.5 -4.7820944 .0280299 1.5172842 1.2951847 

2.0 -5.0656228 .0323564 1.7616756 1.4812378 

2.5 -5.3630997 .0356604 2.0152589 1.6743904 

Table 4.2. Numerical values proportional to r, T:  N and  Sh  taking v0  = 0.5 , F, = 0.71, 

Gr  =4,G,,, =2,E =0.01, S0  = 0.2, S = 0.6, D = 0.2, and K=0.5 with M 

and R to vary. 

M R T: N, S,, 

0.0 0.2 -4.2344149 .0081242 1.0629978 .9479650 

0.5 ,, -4.2507479 .0164058 1.0629737 .9479664 

1.0 -4.2756963 .0224165 1.0629457 .9479731 

1.5 -4.3069663 .0268456 1.0628202 .9479950 

2.0 ,, -4.3429325 .0301456 1.0626362 .9480284 

2.5 -4.3824178 .0326225 1.0624076 .9480706 

0.5 0.2 -4.2507479 .0164058 1.0629937 .9479664 

0.4 -4.2424756 .0342374 1.0630951 .9479461 

0.6 -4.2293755 .0547700 1.0632559 .9479139 

0.8 -4.2123720 .0790073 1.0634654 .9478719 

1.0 -4.1925757 .1076129 1.0637104 .9478227 

1.2 -4.1711530 .1408961 1.0639772 .9477690 

52 



Table 4.3. Numerical values proportional to r, r.., N  and  Sh  taking G,. =4, Gm  = 2, R = 0.2, 

P. = 0.71, M = 0.5, E, 0.01, D1  = 0.2 and K 0.5 with S0  and Df to vary. 

S0  D,- rx  T: N Sh  

0.0 0.2 -4.2025309 .0208051 1.0428578 1.0737806 

0.2 -4.2507479 .0164058 1.0629937 .9479664 

0.4 -4.3014694 .0117596 1.0841053 .8138759 

0.6 -4.3518490 .0072496 1.1071507 .6714501 

0.8 -4.4031363 .0027171 1.1320007 .5192737 

1.0 -4.4553906 -.0018386 1.1588972 .3560743 

2.0 -4.7357468 -.0252839 1.3364527 -.6919651 

0.2 0.0 -4.1591154 .0243176 1.1677855 .9303618 

55 0.2 -4.2507479 .0164058 1.0629937 .9479664 

59 0.4 -4.3440604 .0084581 .9514506 .9668413 

0.6 -4.4417967 .0001190 .8315179 .9866385 

0.8 -4.5396087 -.0080151 .7036162 1.0084741 

31 1.0 -4.6395221 -.0161977 .5660337 1.0321457 

1.2 -4.7416906 -.0244308 .4174119 1.0579172 

Table 4.4. Numerical values proportional to r, v.., N.  and S, taking v0  = 0.5 , Gr  = 4 '  

G 1 =2.0,D =0.2,R=0.2, M=0.5,S0 =0.2,K=0.5 and S =0.6 with 

E and 'r  to vary. 

E r N,, 

0.01 0.71 -4.2507479 .0164058 1.0629937 .9479664 

0.05 -4.2673767 .0155146 .9737796 .9650861 

0.10 -4.2885688 .0143770 .8602184 .9868772 

0.15 -4.3102339 .0132118 .7442928 1.0091210 

0.20 -4.3323969 .0120176 .6258948 1.0318381 

0.25 -4.3550848 .0107925 .5049080 1.0550507 

0.01 0.2 -5.0958795 -10736414 .4131745 1.0478780 

0.5 -4.469545 0 -.003 0727 .8289705 .9862668 

0.71 -4.2507479 .0164058 1.0629937 .9479664 

1.0 -4.0524785 .0317635 1.3501521 .8982374 

2.0 -3.6983730 .0540075 2.1914565 .7447885 

5.0 -3.3345954 .0699603 4.2541584 .3487130 
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Table 4.5. Numerical values propirtional to v, T:  N. and Sh  taking v0  = 0.5 , G,. = 4'  

G. =2, D1  =0.2,R=0.2,M=0.5, S0  =0.2, E  =0.01,and S =0.6 with 

St and K to vary. 

Sc  K T r.. N. Sh  

0.1 0.5 -4.8288756 -.0586941 1.1579655 .2091358 

0.5 -4.3030211 .0112868 1.0808105 .8306082 

0.6 -4.2507479 .0164058 1.0629937 .9479664 

0.95 ,, -4.1317398 .0267169 1.0026651 1.3134241 

5.0 -3.8196615 .0455131 .4351708 4.3254822 

10.0 -3.7436779 .0480643 -.1818954 7.3924571 

0.6 0.0 -4.2345562 .0081132 1.0625083 .9480607 

0.5 -4.2507479 .0164058 1.0629937 .9479664 

1.0 -4.2756023 .0224224 1.0633463 .9478972 

1.5 -4.3068075 .0268546 1.0636004 .9478465 

2.0 -4.3427274 .0301562 1.0637800 .9478101 

2.5 -4.3821786 .0326339 1.0639021 .9477847 
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Chapter 5 

Viscous dissipation and Joule heating effects on Steady 
MHD combined heat and mass transfer flow through a 
porous medium in a rotating system 

5.1. Introduction 
The steady and unsteady thermal boundary layer of an incompressible fluid have been 

investigated as basic boundary layers problems in a rotating fluid which generally appear in 

Oceanic, Atmospheric and Cosmic fluid dynamics and in Solar Physics or Geophysics. 

Soundalgekar and Pop (1979) studied the free convective effects in a rotating viscous fluid 

past an infinite vertical porous plate. Raptis and Perdikis (1982) studied the effect of mass 

transfer on a free convective flow past an infinite porous plate in a rotating fluid. 

The Soret and Dufour effect have been discussed clearly in (Chapter 2) and we are not 

repeating that again. In view of the importance of Soret and Dufour effects, Kafoussias and 

Williams (1995) studied thermal-diffusion and diffusion-thermo effects on mixed convective 

mass transfer boundary layer flow with temperature dependent viscosity. Anghel et 

al.(2000) investigated the Dufour and Soret effects on free convection boundary layer flow 

over a vertical surface embedded in a porous medium. Recently, Postelnicu (2004) studied 

numerically the influence of a magnetic field on heat and mass transfer flow considering 

Soret and Dufour effects. Quite recently, Alam and Rahman (2006) investigated the Dufour 

and Soret effects on mixed convection flow past a vertical porous flat plate with variable 

suction. The effect of of Joule heating on MHD free convection flow of an electrically 

conducting semi-infinite vertical plate was however, considered by Hossain (1990). Hence, 

our objective is to investigate the steady MHD combined heat and mass transfer flow 

through a porous medium past a semi-infinite vertical porous plate in a rotating system with 

Soret, Dufour and permeability effects along with viscous dissipation and Joule heating. 



5.2. The Governing Equations 

Let us consider an steady MHD combined heat and mass transfer flow of an electrically 

conducting viscous fluid through a porous 

medium along a semi-infinite vertical porous 

plate y = 0 in a rotating system. The fluid is 

also assumed to be moving with a uniform 

velocity U0  in the x -direction which is taken 

along the plate in the upward direction and y - 

axis is normal to it. Initially the plate is at rest, 

after that the whole system is allowed to rotate 

with a instantly angular velocity ) about the 

y -axis. Since the system rotates about 

x 

w 

T.  

V0 
• / 

B0 
/ 

9 .y. 

y -axis, so we can take = (o,-Q,o). The Fig. I. Physical configuration and coordinate sysrem 

temperature and the species concentration at the plate are instantly raised from T and C to T. 

and C 0  respectively, which are thereafter maintained as constant, where T. and C are the 

temperature and species concentration of the uniform flow respectively. A uniform magnetic 

field B is taken to be acting along the y- axis which is assumed to be electrically non-

conducting. We assumed following Pai (1962) that the magnetic Reynolds number of the flow 

be small enough so that the induced magnetic field is negligible in comparison with applied one 

and the magnetic lines of force are fixed relative to the fluid. The equation of conservation of 

charge V.J = 0 gives Jy  = constant, where the current density J = (J J)  I.). Since the plate is 

electrically non-conducting, this constant is zero and hence J = 0 at the plate and also zero 

everywhere. The physical configuration considered here is shown in Fig. 5.1. With reference to 

the generalized equations described in case-If of Chapter 2, the two dimensional problem for 

combined heat and mass transfer under the above assumptions can be put as 

ôu ON 
- —+=o (.1) 

xay 

E' u 
u—+v---v 

u ou 
+ g/3(T-T) 

6,2 

+gfl(C-c)+2c%v+---(u0  -u)+ 
B0 

 (U0  -z) (5.2) 

3w ow 52w 
2  +2Q(U0  -u)--w- 

V U 'B0 2w 
(5..3) 

Ox Oy Oy K' p 

OT 
U 

OT 
+V-  

K 02T + DflJkT  
2 'l 

' 2 Ou (aw 1a B0 
[(U0  -u)2 +w2 ] (5.4) _____ 

02C v 

[(ay) Ox  Oy pc5y2 cc --- L-) J pcj,, 
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u— +v =D 
ac ac a2c Dm  k a2r (55) — - 

Oax 
 , Ta 2  

The boundary conditions for the problem are 

u=0,v=v0 (x), w=0,T=T, C=C,, aty=O 
(56) 

u=U0 , w=0,TT,,C-*C asy -*cJ 

Following the work of Sattar (1993), a transformation is now made as; 

U0  -u--u1  :.u-U0 -u, 

So the equations (5.1)-(5.5) and the boundary conditions (5.6), respectively transform to, 

1111, 
av 

----+----=o (5.7) 
ax ay 

(U0  -u,)-+v-=v'_gJ3(T-Tm ) -g,8(C-C,)-2Qw--7u, 
CB 

 u, (5.8) 

- aw aw a2w v cr'B0 2w 
(UO-u,)—+v—=v--+2Qu --w- (5.9) 

a 2 'K' p 

ar T k a2T a2c r 2 
)VV

21 cr'B 2 2 
(Uo —ul)--+v--=---+ +—II I 

(

- I 1+ [u, +w ] (5.10) 
pc 2 cc 5? c L ay) 5y)] pc,, 

ac ac a2c D,k1  32T 
(5.11) 

ox m 
+ 2 

ii, =U0,v=v0(x),w=0,T=7,,C=C at y=O 
(5.12) 

it, =0, w=0,T->Tm,C--C z, as y —+coJ 

where u,v are the velocity components in the x, y directions respectively, v is the kinematic 

viscosity, g is the acceleration due to gravity, p is the density, 8 is the thermal volumetric 

coefficient expanssion, 
fl 

is the volumetric coefficient of expanssion for concentration, 

T, Tn., T.  are the temperature of the fluid inside the thermal boundary layer, the plate temperature 

and the fluid temperature in the free stream respectivly while are the coressponding 

concentrations, K' is the permiability of the porous medium, k is the thermal conductivity of 

the medium, kT  is the thermal difusion rato, ci,, is the specific heat at constant pressure, Dm  is the 

coefficient of mass diffusivity, Tm  is the mean fluid temperature, C5  is the concentration 

susceptibility, a' is the electric conductivity. 

5.3. Mathematical Formulations 

In order to solve the above system of equations (5.8)-(5.11) with the boundary conditions (5.12), 

we adopt the well defined similarity analysis to attain similarity solutions.For this purpose, the 
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following similarity transformation are now introduced; 

r-2io;—x 
(5.13) 

g0 (i)=-. (5.14) 
UO  

T—T 
(5.15) 

T.  

c-c 
q5(i )=  (5.16) 

- cj 

= .J2vxU0 f(r,i) (5.17) 

U I  =.-=U0 f'(i) (5.18) 
ay 

UO 

Now for reasons of similarity, the plate concentration is assumed to be 

C(x)=C +.(c0  -cj, (5.19) 

where Co  is considered to be mean concentration and x = 
xU0 

 

V 

The continuity equation (5.7) then yields 

v=  av  =_f VUO.i [77f'(71) — f()] (5.20) 

From the equation (5.18), we have the following derivatives 

(5.21) 

Uf) (5.22) 

ô21 
= (5.23) 

y 2t 

Again from the equation (5.15) we have 

(T—Tj=(T—T(,i) (5.24) 

Also from the equation (5.16), we have 

(c—cj=-(Co  —C)xØ(i) (5.25) 

Thus, on introducing equations (5.14), (5.18), (5.20)-(5.25) in equation (5.8), we obtain 
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fm +()7-1)f"—GrO—GmØ—Rgo  —(K+M)f'=O (5.26) 

gfl(T —T )2x3 gfl (c— Cm  ) where G is the local Grashof number, G. = is the local 

p 2 
2xcrB0  

modified Grashof number, K = 
2vx 

is the permeability parameter, M = is the 
KU0 pU0  

4Qr 
Magnetic parameter and R = is the rotational parameter, f = v0

F2

0

x
is the Suction 

U0   

parameter. Here f is the dimensionless velocity. fH > 0 indicates the suction and f <0 the 

injection. 

Again from the equation (5.14), we have 

w=U0g0 (ii) (5.27) 

From the equation (5.27), we have the following derivatives 

= ---U0gi) (5.28) 

=U0 fuo  g) (5.29) 
by 

(5.30) 
ay 2vx 

Substituting the equations (5.18), (5.20), (5.27) -(5.30) into the equation (5.9), we get 

g'+(i—f)g+Rf'—(K+M)g0  =0 (5.31) 

Now from the equation (5.15), we have 

T=Tm  +(T. —Tj8(ii) (5.32) 

From the equation (5.32), we have the following derivatives 

IT  
i=JL(T -T)8'() (5.33) 

IT 
U 

- 
F-~~—o  (T — T )0'(17) (5.34) 

= (TIII - Tm (17) (5.35) 

Again from the equation (5.16), we have 

C=Cm  +-(co  —CjxØ(ii) (5.36) 

From the equation (5.36), we have the following derivatives 
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ac   i=-{--(c0  -cø'- 15) (5.37) 

ÔCUØ 
(5.38) 

ayv\I2vx 

a 2c u20 
Cy 

2  = 
202  

(Co -c)r() (539) 

Substituting the equations (5.18), (5.20), (5.22), (5.27), (5.29), (5.33)-(5.35) and (5.39) into the 

equation (5.10), we get 

9"+ J (ii —f)8'+ D1Ø"+ FEC jw')2 
+(g)2} 

+ FEM{(fl)2 (g)21 
 = 0 (5.40) 

PVC 
= 

111 k1p (Cu. —C) 
where ] = " is the Prandil number, D D is the Dafour number, 

K cK' (T—T) 

U 2xa'B2  
E = is the Eckert number, M = is the Magnetic parameter, 

c(T—T,,) vU0  

=-°-, (c0 -ç)=c-c 

Again substituting the equations (5.18), (5.20), (5.35), (5.37)-(5.39) into the equation (5.11) we 

get 

0"+S(i7—f)Ø'+2S(f'_1)q+S09 = 0 (5.41) 

v k  
where Sc i = - s the Schmidt number and S0  = is the Soret number. 

D, T. (c,-c) 
Thus the equation (5.8)-(5.1 1), reduces to the following dimensionless ordinary nonlinear 

coupled differential equations: 

f+(i7 _1)f"_Gr9_G,Ø_Rgo  —(K+M)f' = 0 (5.42) 

g"+(i7—f)g+Rf'—(K+M)g0 =0 (5.43) 

9" + 1 (i —f)8'+ DJØ" +IE I(f 2 
+(gi)2} + PrEcM{(ff)2 +(g)2} 

0 (5.44) 

" + S(,j —f)çY+ 2S (f'—l)Ø+ SOO" = 0 (5.45) 

The corresponding boundary conditions are 

f=L,f'=l, g0 =0, 9=1, 0=1 at 77=0 
(546) 

f'=O, g0 =0, 9=0, 0 = 0 at 77—*coj 

The next section deals with the skin-friction coefficents, the Nusselt number and the Sherwood 

number of the problem. 
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5.4. Skin-friction coefficients, Nusselt number and Sherwood 
number 

IV The quantities of chief physical interest are the skin friction coefficients, the Nusselt number and 

the Sherwood number. The equation defining the wall skin frictions are 

all  
= p1 
- I 

 Y=o
r.. = p which are proportional to I and 

[IWJ . . 

[ a2f  y=0 ) (1190)811 

The Nusselt number is denoted by N = _ 

(ao 
which is proportional to 

hence we have N cc O'(0). 

1 (3C 

) 
; which is proportional to The Sherwood number is denoted by h = - 

yO \ )q=o 

- hence we have S,, cc Ø'(0). 

The numerical values proportional to the skin-friction coefficients, the Nusselt number and the 

Sherwood number are sorted in Tables 5.1-5.5. 

5.5. Numerical Solution 

Equations (5.42)-(5.45) with boundary conditions (5.46) are solved numerically by a standard 

initial value solver, i.e., the shooting method. For the purpose, we have applied the Nacthsheim-

Swigert iteration technique. The same is discussed in the earlier case and we are not going to 

discuss that here again. 

5.6. Results and Discussion 

- In this thesis, the effects of viscous dissipation and joule heating on steady MHD combined heat 

and mass transfer flow through a porous medium in a rotating system have been investigated 

using Nachisheim-Swigerts shooting iteration technique. To study the physical situation of this 

problem, we have computed the numerical values of the velocities, temperature, concenteration, 

within the boundary layer and also find the skin friction coefficients, Nussel and Sherwood 

number at the plate. It can be seen that the solutions are affected by the nondirnensional 

parameters and numbers, namely suction parameter f,,, local Grashof number Gr  local 

modified Grashof number Ge,, perrniability parameter K, Magnetic parameter M, Franc/ti 

number I., Eckert number E, Dufour number D1, Schmidt number S, Soret number S0 , 

rotation parameter R. 

The values of Gr , G, are taken to be large, since these values corresponds to a cooling 



problem, that is generally encountered in nuclear engineering in connection with the cooling of 

reactors. 

(UO 

u'
The result of numencal calculations are presented in the form of panmary - and secondary 

- j 

(g0 ) velocities in Figs. (5.2)-(5.19) for different values of M, R, S0 , D, E P, Sc  and K. 

The values 0.2,0.5, 0.71,1,2and 5 are considered for Prandtl number F,. (0.2,0.5,0.71 for air 

and 1.0, 2.0, 5.0 for water). The values 0.1, 0.5, 0.6, 0.95, Sand 10 are also considered for 

Schmidt number S, which represent specific conditions of the flow (0.95 for CO2  and 

0.1, 0.5, 0.6, 5and10 for water). The values of other parameters are chosen arbitrarily. The 

effects of various parameters on the primary velocity are shown in Figs. 5.2-5.10. From Fig. 5.2, 

it can be seen that the primary velocity field increases with the increase of suction parameter  

for both f > 0 and f < 0 , indicating the usual fact that suction stabilizes the boundary layer 

growth. The free convection effect is also apparent in this figure. For '7 = 1.5, the velocity field 

is found to increase and reaches a maximum value in a region close to the leading edge of the 

plate, then gradually decreases to one. Fig. 5.3 shows the primary velocity for different values of 

Magnetic parameter M and has a decreasing effect with increase of M. The magnetic field can 

therefore be used to control the flow characteristics. The variation of the primary velocity for 

different values of rotation parameter R is shown in Fig. 5.4. It is seen that the Rotation 

parameter R has a minor decreasing effect on the primary velocity. In Figs. 5.5-5.7 the 

variations of the primary velocity for different values of Soret number S0 , Dufour number D1  

and the Eckert number E  are shown respectivly. From these figures it is observed that the 

primary velocity uniformly increases with the increase of Soret number 5,., , Dufour numberD 

and the Eckert number E.  In Figs. 5.8-5.10, the variations of the primary velocities for different 

values of Prandtl number F,., Schmidt number S, Permeability parameter K are shown 

respectively. Fig.5.8 and 5.9 show that the magnitude of the primary velocities have a overshoot 

behaviour for small Prandtl number P. and Schimdt number S. But for larger values of 

J. (F,. = 0.5) and 5, the velocities are found to decrease monotonically and hence there appears 

a thin boundary layer indicating the decrease of the free convection. Also the parimary velocity 

decreases with the increase of Permeability parameter K. 

The effects of various parameters on the secondary velocity (g0 ) are shown in Figs. 5.11-5.19. 

From Fig. 5.11, it can be seen that the secondary velocity field decreases with the increase of 
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suction parameter f,  for both f > 0 and f',,, < 0 , indicating the usual fact that suction 

stabilizes the boundary layer growth. The free convection effect is also apparent in this figure. 

For 77 = 1.8, the velocity field is found to decrease and reaches a minimum value in a region 

close to the lading edge of the plate, then gradually inecreases to zero. Fig. 5.12 shows the 

secondary velocity for different values of Magnetic parameter M and shows a large increasing 

effect with increase of M. In Figs. 5.13-5.16 the variations of the secondary velocity for 

different values of rotation parameter R, Soret number S0 , Dufour number D and the Eckert 

number E,  are shown respectivly. From these figures it is observed that the secondary velocity 

decreases with the increase of rotation parameter R, Soret number So  , Dufour number D and 

the Eckert number E.  In Figs. 5.17-5.19, the variations of the secondary velocities for different 

values of Prandtl number Schmidt number S and Permeability parameter K are shown 

respectively. It is observed from these figures that the large increasing effects are occurred on 

the secondary velocity with the increase of Prandtl number P, Schmidt number S and 

Permeability parameter K. 

The effects of various parameters on non-dimensional temperature are shown in Figs. 5.20-5.2 8. 

In Figs. 5.20 and 5.21, the temperature profiles for different values of the Suction parameter f, 

Magnetic parameter M are shown respectively. It is observed from these figures that the 

temperature increases uniformly with the increase of Suction parameter f, and minor increasing 

effect is found with the increase of Magnetic parameter M. In Figs. 5.22 and 5.23, the 

temperature field for different values of rotation parameter R and Soret number S are shown 

respectively. It is observed from these figures that the Rotation parameter R has a negligible 

minor decreasing effect on the temperature while Soret number S(, has a minor decreasing effect 

on the temperature. In Figs. 5.24 and 5.25, the temperature fields for different values of Dufour 

number D and Eckert number E  are shown respectively. It is observed from these figures that 

the temperature field increases uniformly with the increase of Dufour number D and Eckert 

number Ec  The temperature field is shown in Fig. 5.26, for different values of Prandtl number 

?,.. It is observed from Fig. 5.26 that the Prandtl number F, has a large decreasing effect on 

temperature. In Figs. 5.27 and 5.28, the temperature profiles for different values of Schmidt 

- 
number S, and both Permeability parameter K are shown respectively. It is observed from these 

figures that both the Schmidt number Sc  and Permeability parameter K have increasing effect 

on temperature though the effect of permeability parameter K is minor. 
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The effects of various parameters on the concentration field are shown in Figs. 5.29 - 5.37. In 

Figs. 5.29 and 5.30, the concentration profiles for different values of Suction parameter f,,. and 

Magnetic parameter M are. shown respectively. It is observed from these figures that the 

concentration increases uniformly as the suction parameter f increases while Magnetic 

parameter M has a minor increasing effect on the concentration with the increase of M . In 

Figs. 5.31 and 5.32, the concentration profiles for different values of Rotation parameter R and 

Soret number S0  are shown respectively. It is observed from these figures that the Rotation 

parameter R has a minor increasing effect on the concentration while Soret number S0  has 

decreasing effect on the concentration. Figs. 5.33 and 5.34 represents the concentration profiles 

for different values of Dufour number D1  and Eckert number Ec  respectively. It is observed 

from these figures that the concentration decreases as the Dufour number Df  increases while 

the concentration decreases as the Eckert number Ec  increases. In Figs. 5.35-37, the 

concentration profiles for different values of Prandtl number P,  Schmidt number S and 

Permeability parameter K are shown respectively. It is seen from these figures that the Prandtl 

number F,. has increasing effect on the concentration as the Franc/ti number F, increases while 

the concenteration field rapidly decreases with the increase of Schmidt number S. It is also 

seen from Fig. 5.37 that the permeability parameter K has a minor increasing effect on the 

concentration field. 
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Finally, the values proportional to skin friction coefficients r,  r,, the Nusselt number N  and 

the Sherwood number S,, are tabulated in Tables 5.1-5.5 to indentify the effects of various 

nondimensional parameters and numbers on them. From Table 5.1, we observe that the skin 

friction component r increases whereas the Nusselt number N,  the Sherwood number Sh  and 

the skin friction component r decreases with the increase of suction parameter f. From Table 

5.2, we observe that the skin friction component , the Nusselt number N  and the Sherwood 

number Sb  decreases while the skin friction component rz  increases with the increase of 

Magnetic parameter M. It is also observed from this table that the skin friction component T, 

the Nusselt number N  and the Sherwood number Sb  decreases on the other hand the skin 

friction component r increases with the increase of rotation parameter R. We observe from 

Table 5.3 that the skin friction components r, and the Nusselt number Nu  decreases while 

the Sherwood number S1  increases with the increase of Sore! number Se,. It is also seen from 

this table that the skin friction components r, T:  and the Sherwood number S1, increases while 

the Nuselt number Nu  decreases with the increase of Schmidt number S. From Table 5.4, we 

observe that the skin friction components v, T.., and the Nusselt number Nu  decreases while 

the Sherwood number 5h  increases with the increase of DuJ'our number D. It is also observed 

from this table that the skin friction components r, T: and the Nusselt number N 1  increases 

while the Sherwood number S,  decreases with the increase of Prandtl number P. From Table 

5.5, we observe that the skin friction component r, the Nusselt number Nu  and the Sherwood 

number S,, decreases and the skin friction component r. increases with the increase of 

permeability parameter K. It is also observed from this table that the skin friction components 

T, r, the Nusselt number N decreases and the Sherwood number Sb  increases with the 

increase of Eckert number E. 
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Table 5.1. Numerical values propotional to r, v,  N. and Sh  taking G = 4 , G = 2, R = 0.2, 

M=0•5Pr  =0.7l,S0 =0.2,S =0.6,D1  =0.2,K=0.5 and E=O.0l with f tovary. 

f r. N Sh  

-2.5 -5.3970229 .0095642 1.6758812 1.8607977 

-2.0 -5.1216523 .0052565 1.4084526 1.6964478 

-1.5 -4.8538308 .0003204 1.1544840 1.5418072 

-1.0 -4.5853473 -.0046324 .9184907 1.3960458 

-0.5 -4.3070914 -.0086552 .7053785 1.2573834 

00 -4.0104591 -.0105361 .5201109 1.1232665 

0.5 -3.6917408 -.0113294 .3663491 .9914265 

1.0 -3.3536806 -.0137340 .2458710 .8607047 

1.5 -3.0067006 -.0155478 .1577621 .7319121 

2.0 -2.6667044 -.0179716 .0983641 .6079297 

2.5 -2.3505682 -.0187566 .0618422 .4930417 

TabJe5.2. Numerical values propotional to r, T:  N and Sh  taking f = 0.5, G. = 4, G = 2, 

P. = 0.71 , S0  = 0.2, S = 0.6, D = 0.2, K = 0.5 and E = 0.01 with M and R to vary 

M R T,  N Sh  

0.0 0.2 -3.5022917 -.0220123 .3742230 1.0036013 

0.5 ,, -3.6917408 -.0093294 .3663491 .9914265 

1.0 -3.6980711 -.0008342 .3597538 .9818533 

1.5 -3.7164723 .0050039 .3541684 .9742727 

2.0 -3.7435833 .0091054 .3493845 .9682283 

2.5 -3.7770366 .0120398 .3452420 .9633798 

0.5 0.2 -3.6917408 -.0093294 .3663491 .9914265 

0.4 -3.6860095 -.0179782 .3658385 .9904204 

0.6 -3.6766617 -.0252933 .3650000 .9887717 

0.8 -3.6639933 -.0306751 .3638521 .9865216 

1.0 -3.6483983 -.0336014 .3624201 .9837260 

1.2 -3.6303484 -.0336476 .3607351 .9804528 

74 



Table 5.3. Numerical values propotional to r, r2 , N and Sh  taking f = 0.5 , G,. = 4, Gm  = 2, 
P. =0.71,R=0.2, M=0.5, D1 =0.2,E =0.01 and K =0.5 with S0 and S  to vary. 

5o Sc  A.  Sh  

0.0 0.6 -3.6863470 -.0087116 .3686189 .9793709 

0.2 -3.6917408 -.0093294 .3663491 .9914265 

0.4 ,, -3.697067 1 -.0099420 .3637905 1.0049244 

0.6 -3.7023847 -.0105583 .3608885 1.0200427 

0.8 -3.7075551 -.0111624 .3576506 1.0369413 

1.0 -3.7126155 -.0117608 .3540188 1.0558461 

2.0 -3.7355230 -.0146655 .3280050 1.1907625 

0.2 0.10 -3.9076176 -.0253921 .4499665 .5033741 

0.50 -3.7102878 -.0104183 .3754558 .9377720 

0.60 -3.6917408 -.0093294 .3663491 .9914265 

0.95 -3.6490389 -.0070213 .3439702 1.1239821 

5.00 -3.5444672 -.0024614 .3052763 1.3840714 

10.00 -.3.267398 -.0010966 .2906047 1.5218182 

Table5.4. Numerical values propotional to r, T: N. and 5h  taking f = 0.5 , G, = 2, G,. = 4, 
K=0.5,R=0.2, M=0.5,50  =0.2, E =0.01 and Sc  =0.6 with D and F, to vary. 

D1  F,. rx  N.  

0.0 0.71 -3.6099163 -.0049333 .4575134 .9688530 

0.2 -3.6917408 -.0093294 .3663491 .9914265 

0.4 -3.7758098 -.0136408 .2693714 1.0144665 

0.6 -3.8622569 -.0178842 .1662347 1.0380500 

0.8 -3.9510433 -.0220521 .0566285 1.0622193 

1.0 -4.0423218 -.0261582 -.0598571 1.0870546 

1.2 -4.1362128 -.0302091 -.1836539 1.1126291 

0.2 0.2 -4.0427357 -.0372245 .2040620 1.0529437 

0.5 -3.7811806 -.0160653 .3275896 1.0068981 

0.71 -3.6917408 -.0093294 .3663491 .9914265 

1.0 -3.6124076 -.0035178 .3938730 .9787620 

2.0 -3.4827098 .0058550 .3973896 .9651949 

5.0 -3.3913691 .0134775 .3994546 .9543460 
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Table 5.5. Numerical values propotional to v, r, N and Sh  taking f = 0.5 , G =4, Gm  = 2, 
0.7 1 , R = 0.2, M = 0.5, S0  = 0.2, D = 0.2 and S = 0.6 with K and E to vary. 

K E N. Sh  

0.0 0.01 -3.6831492 -.0220644 .3732633 1.0038458 
0.5 -3.6917408 -.0093294 .3663491 .9914265 
1.0 -3.6975916 -.0008105 .3605262 .9816772 

1.5 -3.7157276 .0050371 .3555876 .9739627 

2.0 -3.7426961 .0091411 .3513642 .9678111 
2.5 -3.7760778 .0120748 .3477206 .9628722 

0.5 0.01 -3.6917408 -.0093294 .3663491 .9914265 

0.05 -3.7218309 70105303 .2683589 1.0117531 

0.10 -3.7612753 -.0120986 .1403502 1.0382299 

0.15 -3.8029588 -.0137484 .0055945 1.0660079 

0.2 -3.8471337 -.0154884 -13666883 1.0952283 

0.25 -3.8940949 -.0173282 -.2873339 1.1260564 

1 
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