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Abstract 
I. 

In this thesis the nature of Complemented lattice and Boolean function is studied. Lattice 

theory is a part of Mathematics. In Modern algebra, Abstract algebra and Boolean 

function are Lattice theory play important role. A non empty set P together with a binary 

relation R is said to form a partially ordered set or a posel if the following conditions 

hold: 

Reflexivity 

Anti-symmetry 

Transitivity 

A poset (L. < ) is said to form a lattice if for every a, b E L if Sup {a,b} and Inf 

-v a,b}exist in L. A lattice is said to be complemented lattice if every element has 

complement. In this thesis we give several results on complemented lattice, Boolean 

function and Boolean algebra which will certainly extend and generalize many results in 

lattice theory. The thesis contains four chapters. 

Chapter one: We have discussed the basic definition of set, partially order set, relations, 

functions etc. 

Chapter two: We have discussed lattice, sublattice, convex sublattice, complemented 

lattice, ideal, Filter, Prime ideal, Principle ideal and Principle Dual ideal. We have proved 

that two bounded lattices A and B are complemented if and only if AxB is 

complemented. In this chapter we have also discussed the definition of upper bound, least 

upper bound, lower bound, greatest lower bound and relatively complemented lattice, and 

established relation among them. We also studied some other properties of these concepts 

and we have showed that two lattices A and B are relatively complemented if and only if 

the cross product of two lattices A and B is relatively complemented. 

Chapter three: We have discussed Boolean algebra, Boolean lattice and Boolean function. 

Let (A,A,v,',O,I) be a Boolean algebra. Expressions involving members of A and the 

operations A,V and complementation are called Boolean expressions or Boolean 

polynomials. For example, x v y', x, x A 0 are etc. all Boolean expressions. Any function 

vi 



specifying these Boolean expressions is called a Boolean function. Thus if/(x,y) =X A y 

then f is the Boolean function and x A y is the Boolean expressions (or value of the 

function f). Since it is normally the functional value (and not the function) that we are 

interested in, we call these expressions the Boolean function. 

We will denote least and greatest elements of a Boolean algebra by 0 and 1 respectively. 

In fact, most of the times we will confine ourselves to Boolean algebras that contain only 

these two elements. We also discus in this chapter Disjunctive Normal form (DN form), 

Conjunctive Normal form (CN form), Length and Cover. A Boolean function is said to be 

in DN form in n variables x , ................. if it can be written as join of terms of the 

type I(x)Af2 (x,)A ........Af,) (x,2 ) where f.(x1 )=x, or X?  for all i =1,2,3,------,n 

and no two terms are same. Also 1 and 0 are said to be in DN form. We also prove the 

theorem: 'Every Boolean function can be put in DN form'. Here we give several results 

on DN form, CN form, Homomorphisom, Iso-morphisom and Indomorphisom. 

Chapter four : In this chapter we have studied series combination, parallel combination, 

don't care condition and Bridge circuits. By a switch we mean a contact or a device in an 

electric circuit which lets the current to flow through the circuit. The switch can assume 

two states 'closed 'or 'open '(ON or OFF). In the first case the current flows and in the 

second the current does not flow. We will use a,b,c, . . ..... .....x,y,z........etc. to denote 

switches in a circuit. Two switches a,b are said to be connected 'in series' if the current 

can pass only when both are in closed state and current does not flow if any one or both 

are open. Two switches a, b, are said to be connected 'in parallel' if current flows when 

any one or both are closed and current does not pass when both are open. In this chapter 

we also solve some circuit problems. 
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CHAPTER 1 

Set, Relation and Function. 

Introduction : In this chapter we have discussed the basic definition of sets. We also 

discussed the definition of Relations and Functions. 

1.1: The basic definition of sets: 

Definition (Set): Any collection well defined of objects or list is called a set and its 

objects are called elements or members [I]. 

Note: The terms well defined means whether any given object belongs to or does not 

belong to the set. 

Notation of sets: Sets are usually denoted by capital letters A, B, C etc. and the elements in 

sets are usually denoted by small letters a, b, c etc. 

Example 1.1.1: Let A = {a, e, i, o, u} 

Here the set is read "A is the set whose elements are a, e, i, o, u". This type denoting 

is termed as Roaster method. 

Example 1.1.2: Let A = { x: x is odd) 

Here the set is read "A is the set of numbers x such that x is odd". This type 

denoting is termed as Set Builder method. 

Definition (Subset): A set 'A' is said to be a subset of a set B if each element of A is also an 

element of B and is written A c B (to be read A is a subset (?/B or A /s coinained in B) 

Example 1.1.3: Let A= { 1,2,3,5,61 ,B= {1,2,3},C{1,5,6) andD= {l,6,7} 

Here B ciA ,CciAbutDcrA 

• 
'Tentn 

I] 
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Definition (Null set or void set or empty set): A set that contains no elements is called the 

empty set or void set or null set and it is denoted by the symbol 4). 

Example 1.1.4 : Let A '(x: x2=5, x is even} 

Here A= 4) = {}. 

Note: The empty set 4) is a subset of every set, 4) A,  4) c:B,  4) C,  4) c:D. 

Definition (Union of two sets) : Let A and B be two sets. Then the union of A and B is the 

set of all elements which belong to A or to B or to both A and B and it is denoted by 

AB which is read "A union B" oras A cup B. 

Thus AB= tx : xEAorxEB}. 

Example 1.1.5: Let A={1,2,3}, B={1,3,5,7} Then A.B={1,2,3,5,7}. 

Definition (Intersection of two sets) : Let A and B be two sets. Then the intersection of A 

and B is the set of all elements which belong to both A and B and it is denoted by 

An B which is read " A intersection B' or A cap B" 

ThusAnB={x:xEAandxEB) 

Example 1.1.6 : Let A = {1,2,5}, B= {1,7) and C = {2,3,5} 
aangiadesh  

I. 
ThusAnB={1),AnC={2,5} and BnC=4). 

4 

Definition (Difference of sets): Let A and B be two sets. Then the difference of A and B is 

the set of all elements which belong to A but which do not belong to B and it is 

denoted by A-B. Here A-B is read "A minus B" or "A difference B". 

Example 1.1.7: Let A=11,6,7,8 and B=f 1,2,6,9, 101 then A-Bj7,81 and B-A{2,9,lO}. 

-d 
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Definition (Universal set): For many purposes all sets under investigation are considered 

subsets of a fixed set and we call this fixed set the universal set or universe of 

discourse. For convenient sometimes we will denote this set by U. 

Example 1.1.8: In space geometry, the universal set consists of all the points in space. 

Definition (Complement) : Let A be a set. Then the complement of A is the set of elements 

which do not belong to A, i.e. U-A where U is the universal set and it is denoted by 

A or A;. Thus A={x: x c U,x v A}=U — A 

Simply we can write A'{x: x A 

Example 1.1.9: Let U={l,2,3,4,5,6,7}, A={2,4,6}, Then A=U-A={l,3,5,7} 

Definition (Equal set) : Two sets A and B are said to be equal if and only if they have the 

same elements and is written A=B 

Examplel.1.lO: Let A={1,2,3} ,B={l,2,l,3},C={1,1,2,2,3,3} and D=(l,2,3,l,2,3} 

Then A=B=C=D. 

Note: A set is not changed by repeating its elements or if its elements are rearranged. 

Problem 1.1.11: Which of these set are equal: {r,s,t) , {r,t,$) , {s,t,r,s} , {t,s,t,r}, (s,r,s,t) 

Ans : These sets are equal as reordering and repetition does not change a set. 

Definition (Ordered pair) : An ordered pair consists of any two elements a and b is 

denoted by (a,b) where a is designated as the first element and b is designated as the 

second element. 

Two ordered pairs (p,q) and (r,$) are equal if and only if p=r and q=s. 

Example 1.1.12: Here (1,2),(3,1 I ),(1 ,l ),(2,2) etc. are all ordered pairs. 

1 

Fj 
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Definition (Product sets): The product set of two sets A and B, written A x B, consists of 

all ordered pairs (a,b) where ae A and bE B. 

Thus Ax B={(a,b): aeA, bEB.} 

A x B is also called the Cartesian product of A and B. 

Example 1.1.13: Let A={a,b} and 13={1,2}, then 

A x B= {(a, I ),(a,2),(b, I ),(b,2)} and 

B x A={(1,a),(I,b),(2,a),(2,b). 

Definition (Proper subset) : If A is a subset of B and A# B, then A is called a proper 

subset of B. 

1.2: Relations: 

Definition (Relation) : Let A and B be sets. A binary relation or, simply, a relation from 

A to B is a subset of Ax B. 

Suppose R is a relation from A to B. Then R is a set of ordered pairs where each first 

element comes from A and each second element comes from B. That is, for each pair a e A 

and bE B, exactly one of the following is true; 

(a,b) (=-R; we then say "a is R-related to b", written aRb. 

(a,b)R; we then say "a is not R -related to b", written aR b. 

The domain of a relation R from A to B is the set of all first elements of the ordered pairs 

which belong to R, and so it is a subset of A.  and the range of R is the set of all second 

elements, and so it is a subset of B. 

Sometimes R is a relation from a set A to itself, that is R is a subset of A =A x A 

In such a case, we say that R is a relation on A. 

.1 
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Example 1.2.1 : Let A{1,2,3},and B={x,y,z}, and let R {(l,y), (1,z), (3,y)}. 

Then R is a relation from A to B. Science R is a subset of A x B. with respect to this 

relation 1 Ry, 1 Rz, 3Ry,but I R x, 2 R x, 2 R y, 2 R z, 3 R x, 3 R z. 

The domain of R is (1 ,3}, and the range is {y,z}. 

Definition (Reflexive Relation): A relation R in a set A is called a reflexive relation 

if, VaA, (a,a)ER. 

Example 1.2.2: Let A= { 1,2,3 } then R= {(1 ,  1 ),( ]  ,2),(2,2),(3 ,3 )} is a reflexive relation. 

Definition (Symmetric Relation): Let R be a subset of A x A i.e., let Rbe a relation of in A. 

Then R is called a symmetric relation if(a,b) e R. implies (b,a) e R 

Examplel.2.3: Let S={ I ,2,3} and let R={(1,2),( 1,3),(2,3),(2,l), (3,1),(3,2)}. 

Then R is a symmetric relation. 

Definition ( Anti-Symmetric Relation): A relation R in a set A i.e. a subset of A x A is 

called an anti- symmetric relation if (a,b) E R and (b,a) e R implies a=b. In other 

words, if a # b then possibly a is related to b or possibly b is related to a but never 

both. 

Example 1.2.4: Let A be a family of sets, and R be the relation in A defined by "x is a 

subset of y". Then R is anti- symmetric since C c I.) and D ç C 

implies ('—D. 

Definition (Transitive Relation): A relation R in a set A is called a transitive relation if 

(a,b)eR and (b,c)E R implies (a,c)E R In other words, if a is related to band b is 

related to c, then a is related to c. 

/ 
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Example 1.2.5: Let B={a,b,c} and let R=((a,b),(c,b),(b,a),(a,c)}. Then R is not a transitive 

relation since (c,b) E R and (b,a) e R but (c,a) R. 

Definition ( Equivalence Relation): A relation R in a set A is an equivalence relation if 

R is reflexive, that is, for every a E A, (a,a) e R. 

R is symmetric, that is, (a,b) E R implies (b,a) E R. 

R is transitive, that is, (a,b) E R and (b,c) (=- R implies (a,c) E R. 

Example 1.2.6: Let X= {a,b,c} be a set and let 

R={(a,a),(a,b),(a,c),(b,a),(b,b),(b,c),(c,a),(c,b)(c,c)} be a relation of AxA then the 

relation R is an equivalence relation, since 

I) R is reflexive, as (a,a),(b,b),(c,c) E R 

R is symmetric, as (a,b),(a,c),(b,c) e R also (b,a), (c,a), (c,b) e R and tn 

R is transitive, as (a,c),(c,b) € R also (a,b) e R. 

i( K UE7 
Bnqadesh 

13: Functions: 

Definition (Function): Suppose that to each element of a set A we assign a unique element 

of a set B; the collection of such assignments is called a function from A in to B. The 

set A is called the domain of the function, and the set B is called the target set. 

Functions are ordinarily denoted by symbols. For example, let f denote a function 

from A in to B. Then we write f: A —> B. 

Which is read, 'f is a function from A into B." or 'f takes A into B." or 'f maps A 

into B. 

Example 1.3.1 : consider the function f(x) = x 3  i.e. f assigns to each real number its cube. 

Then the image of 2 is S and so we may write f(2)=8. Similarly, 

f(-3) -27, and f(0) = 0. 

F 

4 
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Example 1.3.2 : Figure 1.1 defines a function/from A ={a,b,c,d}, into B= {r,s,t,u} in the 

obvious way. That isf(a)=s,t(b)=u,j(c)=r,j(d)=s.  The image off is the set {r,s,u}. 

Note that t does not belong to the image off because t is not the image of any 

element of A underf 

Fig:l.l 
A B 

Definition (Identity Function): Consider any set A. Then there is a function from A into A 

which sends each element into itself It is called the identity function on A and it is 

usually denoted by 'A  or simply I. In other words, the identity function I, : A—>A is 

defined by I, (a) = a for every element ae A 

Definition (Composition of functions): Consider, the functions/f A ->B and g:B —*C that 

is, where the target set B of is the domain of g. This relationship can be pictured by 

the following diagram: 

A 1 >B C 

Let a A; then its image /(a) under/is in B which is the domain of g. Accordingly, we can 

find the image of/(a) under the function g, that is, we can find g(f(a)). Thus we have a 

rule which assigns to each element a in A an element g(f(a)) in C or, in other words, /and 

g give rise to a well defined function from A to C. This new function is called the 

composition of g, and it is denoted by gof 

More briefly, if /fA ->B and g:B->C, then we define a new function 

go/A -* C by (go,f)(a)g'/a)). 

/ 
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Here is used to mean equal by definition. Note that we can now add the function gq/to the 

above diagram off and gas follows; 

A t >B C 

We emphasize that the composition of f and g is written gof, and not fog; that is, the 

composition of functions is read from right to left, and not from left to right. 

Definition (One-to-one function) A function .1. : A — Bis said to be One-to-one if 

different elements in the domain A have distinct images. Another way of saying the 

same thing follows: 

.tis one-to-one if j(a)=t( a') implies a = a 

Definition (Onto function) :A function f : A —> B is said to be an onto function if every 

element of B is the image of some element in A or in other words, if the image off is 

the entire target set B. In such a case we say that fis a function of A onto B or that/ 

maps A onto B. That 1sf maps A onto B if v b e B. 3 a E A such that /(a)=b. 

Definitioii (Inverse Function) : A function f : A —> B is said to be invertible if its inverse 

relaton i m i i ini ii f  there 

exists a function 

.f'': :B — >A, called the inverse off,  such thatf' 0./'=IA  and •fo.t/n. 

) 
I. 

/ 
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1' 

Example 1.3.3 Consider functions f1 :A —>B, f2:B -* C, f3:C —>D and f4:D —*E defined 

by fig-I .2. Now f1  is one to one since no element of B is the image of more than 

one element of A. Similarly, f2  is one-to-one. However, neither f3 nor f4  is one-to-one 

since f3(r)f(u) and f4(v) = f4(w). 

I 

 

A B C D E 

Fig: 1.2 

As far as being on to is concerned, f2  and f are both onto functions since every 

element of C is the image under f2  of some element of B and every element of D is 

the image under f3  of some element of C. 1.e.f2(B)C and 6(C) = D. On the 

other hand f1  is not onto since 3 E B but 3 is not the image under f1  of any 

element of A, and f4  is not onto since, for example, XE E but x is not the image 

under f4  of any element of D. 

Thus f1  is one-to-one but not onto, 6 is on to but not one to one, and f4  is neither 

one-to-one nor onto. However, f2is both one to one and onto i.e.- f2  is a one to 

one correspondence between A and B. Hence f2  is invertible and f2 ' is a function 

fromCtoB. 
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Example 1.3.4 : Let f:A ->B and g:B -*C be the function defined by fig-I .3 

 

A B C 

Fig: 1.3 

We compute gof A ->C by its definition: (gofl(a) g(f(a))=g(y)=E, (go(b) 

g(f(b))=g(z)=r, (gof)(c) g(f(c))=g(y)=t observe that the composition gof is 

equivalent to "following the arrows" from A to C in the diagrams of the functions f and 

EI 

Example 1.3.5: Let f:R-*R and g:R->R be defined by f(x)=x2  and g(x)=x+3. Then 

(gof) (2) g(f(2))g(4)7: (f6g)(2) f(g(2))=f(5)=25 

Thus the composition functions gof and fog are not the same function. We compute a 

general formula for these functions: 

(gof)(x) g(f(x))g(x2)x2+3 

(fog)(x) f(g(x))=f(x+3 )=(x+3)2=x2+6x+9. 



Chapter 2 page 11 

CHAPTER 2 

Lattice, Sublattice and Complemented Lattice 

Introduction: 

In this chapter we discuss Ideals, Complete lattices and Relatively Complemented 

lattices along with the Lattice, Sublattice and Complimented Lattice. Complete 

lattices and semi lattices have been studied by several authors e.g. Papert [12], 

Rozen [14], Varlet [15]. A lattice L is called complete lattice if for every non 

empty subset of L has its Sup and Inf in L. In this chapter we also proved "Two 

bounded lattices A and B are complemented if A x B is complemented". 

2.1: Poset, Greatest element, Least element, Bounded Poset, tipper bound, Least 

upper bound, Lower bound, Greatest lower bound, Chain. 

Definition(Poset): A non empty set P, together with a binary relation R is said to form a 

partially ordered set or a poset if the following conditions hold: - 

Reflexivity: aRa, for all a E P 

Anti-symmetry: If aRb, bRa then a=b (a,h e I') OWE,  
BangIeS )- 

Transitivity : if aRb, bRc then aRc 

Example 2.1.1: The set N of natural numbers under divisibility forms a poset. Thus here, 

a :!~ h means al b (a divides b). 

Definition (Greatest element): Let P be a poset. If 3 an element a E P then a is called 

greatest or unity element of P. Greatest element if it exists, will be unique. 

Definition (Least element): An element h E P will be called least or zero element of P 

if h :!~ x V x c P. It is denoted by 0. Least element if it exists, will be unique. 

Example 2.1.2: Let A=(i,2,3. Then (I'(A),) is a poset. 

Let B=(p, { 1,21, {21, {3}} 

Then (B, c) is a poset with p as least element. B has no greatest element. 

4 Let C={{l,2}, {2, {3}, f 1,2,3}} 

/ 
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Then C has greatest element { 1,2,3} but no least element. 

If D={ q', {i}, {2}, {1,2} .Then D has both least and greatest elements namely p and 

{l,2}. 

Again E={ (1 },{2),{ 1,3)) has neither least nor greatest element. 

Definition (Bounded Poset): if a poset has least and greatest element we called it 

/ 

a< 

C 

Fig: 2.1 

bounded poset. Ex. P=(x:o :!~ x :!~ u  If  

Definition (Upper bound): Let S be a non- empty subset of a poset P. An element 

a e P is called an upper bound ofSifx:!~a XE S. 

Definition (Least upper bound) : If a is an upper bound of S such that a b for all 

upper bounds b of S then a is called least upper bound (l.u.b.) or supremurn of S. 

We write Sup S for Supremurn S. 
FA 

it is clear that there can be more than one upper bound of a set. But Sup, if it exists, will 

be unique. 

Definition (Lower bound): An element a E P is called a lower bound of S if a:!~ x. 

XE S. 

Definition (Greatest Lower bound): If a is a lower bound of S then a will called 

greatest lower bound (g.l.b) or infimum of S (ml 5) if b a for all lower 

bounds b of S. 
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Example 2.1.3 :Let (z,:!~)be the poset of integers. Let S= {-- -2, -1, 0,1,21then 2=Sup S 

Again in the poset (R, ) of real numbers ifS=xE R: x <O} then 

Sup S= 0 (and it does not belong to S). 

Definition (Chain): If P is a poset in which every two members are comparable then P 

is called a totally ordered set or a toset or a chain. 

The greatest element is comparable with all elements of the poset. 

2.2 Lattice, Sublattice, Convex Sublattice. 

Definition (Lattice): A poset (L,:~) is said to form a lattice if for every a,bEL, Sup{a,b} 

and lnf {a,b}exist in L 

In that case, we write 

Supa,b}=avb (read ajoin b) 

Inf{a,b}=aAb (read a meet b) 

Other notations like a+b and a.b or ab and a n b are also used for Sup{a,b} and 

Infa,b } ([3],[7],[ 10], [13]). 

Example 2.2.1: Let X be a non empty set, then the poset (P(X),(--) of all subset of X is a 

VA 

-r 

lattice. Here for A,B E P(X) 

we will have A A B=A n B and A v B=A u B 

As a particular case, when X=J 1,2,3 }. 

following figure (Fig-2.2). 

{1,2 

Fig: 2.2 

is represented by the 

(2,3) 

{3} 
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Definition (Sublattice): A non empty subset S of a lattice L is called a sublattice of L if 

a,bES, Sup{a,b}and lnf {a,b}exist in S. 

(It is understood that A and vare taken in L) 

Example2.2.2: Let L={O, a, b, c,1}, S= {O, a, b, c} S1 ={O, a, b, I 

S is sublattice. (Fig-2.4) 

al c"b  
a b  

Fig: 2.3 Fig: 2.4 

S1 (in Fig: 2.5) is not sublattice. 

a,(: 

SI 

Fig: 2.5 

Definition (Convex Sublattice): A sublattice S of a lattice L is called a convex 

sublattice if for all a, b c S 

Ia A b.a v h] c S 

Example 2.2.3: In the lattice ( 1,2,3,4,6,12) under divisibility I,6) is a 

sublattice which is not convex as 2,3 E [1,6] but 2,3 1,6) 

Thus [1,6]cz { 1,6). 
1 

2.3: Ideal, Filter or Dual ideal, Prime ideal, Principle ideal, Principle dual ideal. 

Definition (Ideal): A non empty subset I of a lattice L is called an ideal of L 

jf(i) a.I e I => a V h € I 

(ii) a e I a n d x E L => xAae1(III1). 

I  

Bnglad 

I- 0 
•1 

Fig: 2.6 
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Here in Fig:2.6, Let I{O,a}, Ova=a€I, Again OEI and bEL 

-41 =OAb=OeI 

So, I{O,a} is an ideal. 

10 

2(5 

Infig:2.7: Letl={2,1O} 
Fig: 2.7 

2v 10 = JOEL 

But 2 c I and 5 € L 

2A5=ll 

Here I=2,1O} is not an ideal. 

But 1=( 1,2}and I2={ 1,5} are ideal. 

Definition (Filter or Dual ideal): A subset D of a lattice L is said to be filter or dual 

ideal. 

If (i)a,bE D => aAbe D 

(ii) a e D and x E L then a v x E D 

In the following figure (Fig: 2.8), (a,l } and {b, 1 } are filter or dual ideal. 

)Wb 

 

Fig: 2.8 

1 
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Definition (Prime ideal): An ideal P is said to be Prime ideal. If P c L and 

a 

14 

0 

Fig: 2.9 
I) aAbEP 

ii) either a e P or b P ([9]). 

In Fig:2.9, we get I={0} is not prime ideal. 

aAh=O€J 

I{0,a} is a prime ideal. /1 
I U1 

O, a} and {0,b} are prime ideal. 

I={a,1} is not prime ideal. 
•N.tIII t)' 

Definition:(Principal ideal): Let L be a lattice and a E L be any element. 

Fig: 2.10 
Let (a]= IX E  Lix :!~ a} then (a]forms an ideal of L. It is called principal ideal 

generated by a ([8]). 

In Fig:2. 10: (a] = {O,a, b,c,d} and (dl = {O, d} be two principal ideal. 

0 



Chapter 2 page 17 

Definition(Principal DL1al ideal): Let L be a lattice and a E L be any element. The 

set [a) = {x c L, x ~! a} forms a dual ideal of L, called the principle dual ideal 

generated by a. 

Problem 2.3.1: Show that the union of two sublattices may not be a sublattice. 

Proof.: Consider the lattice L ={ 1,2,3,4,6,12} of factor S of 12 under divisibility. 

Let S= { l,2}, S1 ={ 1,3 } are sublattices of L. But S j  S, ={l,2,3} is not sublattice. 

Because 2,3} ES uS 

But 2 v 3 = 6 S u S 

Hence the union of two sublattices may not be a sublattice. 

Problem 2.3.2 : If A is an ideal and A' is a dual ideal of a lattice L such that 

A n A' d ,then show that A n A 'is a convex sublattice of L. 

Proof.: Since A and A are sublattices 

A n A'is a sublattice. 

Let a, b € A n A'where a < b 

a,bEA and a,bEA' 

[a,b]cA and [a,b]cA' 

As A and A will be convex sublattices. 

Thus [a, b]c An A', so A n A' is a convex sublattice of L. 
.4 

Problem 2.3.3 : Prove that intersection of two ideal is an ideal. 

 

Proof: Let I1 ={0,a} and 12= {O,b} be two ideal. 

11 n1. = to }= i, 
Here j E L,O G 1 3  

/AO=OEI, a 

Hence intersection of two ideal is an ideal. 

me 

 

0 
Fig: 2.1! 
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2.4: Complement and Relatively Complemented Lattice. 

Definition (complements): Let [a,b] be an interval in a lattice L. 

Let x[a,b] be any element. If 3 yEL st., 

xAya, xvyb. 

then y is a complement of x relative to [a,b], or y is a relative complement of x in 

[a,b]. 

Observations: 

Ifsucha y exists then y lies in [a,b] as axAy:!~y~xvy=h. 

If y is relative complement of x, x will be relative complement of y. 

An element x may or may not have a relative complement. A relative 

complement may or may not be unique. 

Let us consider the pentagonal lattice as in the Fig- 2.12 

4 

a C 

LI 

Fig-2.12 

b has no complement relative to [0,a] where as a and b are both complement of c 

relative to [0, 1] and b has only one complement c relative to [0,1] 

iv) If a, b are unique complements of each other relative to [a,b] then aAba 

av b=b. Thus a, b are each others complement. 

Let x be any other complement of a relative to [a, b] 

Then aAb=a =ax 

avb = b = avx 

Now b = a v x = ( aAx )vx = x 
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Definition (Complemented interval ): If every element x of an interval [a, b] has at 

least one complement relative to [a, b], the interval [a, b] is said to be 

complemented. 

Definition (Relatively Complemented Lattice): If every interval in a lattice is 

complemented the lattice is said to be relatively complemented. Suppose now L 

is a bounded lattice. If for any xE L, I y e L st., xAy=0, xvy=1, y is called 

complement of x (we need not say relative to [0,1]). Further, if every element of 

L has a complement, we say L as complemented. Thus a bounded lattice is 

complemented if the interval [0,1] = L is complemented. If L is bounded lattice 

and is relatively complemented then L is complemented but not conversely. 

Let us again consider the pentagonal lattice as shown below, 

E] C 

U U' 

Fig-2.13 

[0, 1] is complemented as a and c are each others complement; b and c are each 

others complement and of course, 0 and 1 are each others complement. This lattice 
J 

is not relatively complemented as b has no complement relative to [0,a] and so 

[0,a] is not complemented. The lattice given by the following diagram (Fig.-2. 14) 

is not complemented as a has no complement (relative to [0, 1]). 

ab 

fe Fig :2. 14 
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The lattice given by the figure below is both relatively complemented as well as 

complemented. 

a c 

Fig :2.15 

Definition (Complemented lattice) : A lattice is said to be complemented lattice if 

every element has complement. 1 

In Fig:2.16, we have 

o is the complement of 1 a 
b 

a is the complement of b 
0 

Fig: 2.16 

1! 

91 

0 I.) 

Fig-2.17 

This lattice (Fig:2. 1 7)is not relatively complemented as b has no complement in 

[O,a] and so [O,a] is not complemented. 

-e 

y 
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Problem 2.4.1 : Let S = {a,b,c,d,e,f,g}be ordered as in fig. 2.18 and let X = {c,d,e. 

Find the upper and lower bounds of X. 

Identify sup (X) (the supremum of X) and inf(X) (the infimum of X), if either 

exists. 

Solution: 

The elements e, f and g succeed every element of X; hence e, f and g are the 

upper bounds of X. The element 'a' precedes every elements of X, hence it is the 

lower bound of X. Note that b is not a lower bound since b does not precede c, in 

fact, b and c are not comparable. 

/g 

\d 

C .. 

a b 

Fig: 2.18 

Since e precedes both f and g, we have e = sup (X). Likewise, since 'a' 

precedes (trivially) every lower bound of X, we have a = inf(X). It may be noted 

that sup (X) belongs to X but inf(X) does not belong to X. 

Problem 2.4.2: Let S = { 1,2,3.....,8} be ordered as in Fig. 2.19 and let A = {2,3,6} 

(a) Find the upper and lower bounds of A. 

1 /2  

/3 

4/

5

7 

 

6/ 

Fig: 2.19 
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(b) Tdentify sup(A) and inf(A) if either exists. 

Solution: 

The upper bound is 2, and the lower bounds are 6 and 8 

Here sup(A)= 2 and inf(A) = 6 

Problem 2.4.3: Repeat problem 2.4.2 for the subset B= (l,2,5} of S 

There is no upper bound for B since no element succeeds both 1 and 2. The 

lower bounds are 6, 7, 8. 

Trivially, sup(A) does not exist since there are no upper bounds. Although A 

has three lower bounds, inf(A) does not exist since no lower bound succeeds both 

6 and 7. 

Problem 2. 4. 4: Consider the ordered set A = a,b,c,d,e} in fig. 2.20(a). Find the Hasse 

diagram of the collection p(A) of predecessor sets of the elements of A ordered 

by set inclusion. 

The elements of p(A) follow: 

p(a) = {a, c, d, e, p(b) = b, c, d, e}, p(c) = {c, d, e}, p(d) = {d}, p(e)=e} 

Fig. 2.20(b) gives the diagram of p(A) ordered by set inclusion. Observe that the 

two diagrams in fig. 2.20 are identical except for the labeling of the vertices. 

b.c.d.c \ ,// a.c.cLe} 
b 

C\ 
 c.d.c1  

d 
NN 

{c} 
Fig: 2.20(a) 

Fig: 2.20(b) 

Y 
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Problem 2.4.5 :Suppose the set P={1,2,3 ...... }of positive integers is ordered by 

divisibility. Insert the correct symbol. , > or 11 (not comparable). between each 

pair of numbers: 

(a) 28, (b) 1824, (c) 93, (d) 515 

Solution: 

Since 2 divides 8, 2 precedes 8, hence 2 -< 8. 

18 does not divide 24, and 24 does not divide 18; hence 181124 

Since 9 is divisible by 3, 0-3. 

Since 5 divides 15, 5 < 15 

Problem 2.4.6 : Let P = 1,2,3...... } be ordered by divisibility. State whether each of the 

following is a chain (linearly ordered subset) in P. 

(a) A = {24, 2,61 (c) C = {2,8,32,4} (e)E= { 15, 5, 30} 

(b)B=(3,15,5) (d)D={7} (f) Ptl,2,3  ....... 
 
} 

Solution: 

Since 2 divides 6 which divides 24, A is a chain in P. 

Since 3 and 5 are non comparable, B is not a chain in P. 

C is a chain in P since 2 - 4 - 8 -< 32, that is 21 41 81 32  

where I means divides. 

Any set consisting of one element is linearly ordered; hence D is a chain in P. 

Here 5 -< 15 -< 30; hence E is a chain in P. 

P is not linearly ordered e.g. 2 and 3 are non comparable; hence P itself is not 

a chain in P. 

Problem 2.4.7 : Let A = 1,2,3,4,51 be ordered by the diagram in Fig. 2.21. Insert the 

correct symbol, -, >- or 11 (not comparable). between each pair of element: 

(a)15(b)2 3(c)4 I (d)3 4 

Solution: 

(a) Since there is a "path"(edges slanting upward) from 5 to 3 to 1, 5 precedes 

I; hence 1>-S. 
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{11 

{ 51 

Fig: 2.21 
There is no path from 2 to 3, or vice versa; hence 2113. 

There is a path from 4 to 2 to 1; hence 4-< 1. 

Neither 3 -<4 nor 4 -<3; hence 3114. 

Problem 2.4.8: Let A=11,2,3,4,5}be  ordered as follows in Fig. 2.21 

Find all minimal and maximal element of A. 

Does A have a first element or a last element? 

Solution: 

No element strictly precedes 4 or 5, so 4 and 5 are minimal elements of A. 

No element strictly succeeds 1, so 1 is a maximal element of A. 

A has no first element. Although 4 and 5 are minimal elements of A, neither 

precedes the other. However, I is a last element of A since I succeeds every 

element of A. 

A Problem 2.4.9 : Consider the ordered set A in Fig. 2.21. For each a€ A. Let p(a) denote 

the set of predecessors of a, that is, p(a) = {x : x ~ a} 

Solution: 

Let p(A) denote the collection of all predecessor sets of A, and let p(A) be 

ordered by set inclusion. Draw the Hasse diagram of p(A). 

The elements of p(A) follow: 

p(l) = I,2,3,4,51, p(2) = {2,4,5}, p(3) = {3, 5} 
, 

p(4) = {4, p(5) = {5} 

Fig. 2.22 gives the Hasse diagram of p(A) ordered by set inclusion. [Observe that 

the diagrams of A and p(A) are identical except for the labeling of the vertices. 
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1 
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{1.2.3.4.5} 

{2.4.5}

4 1 \ 
{} 

Fig: 2.22 

2.5: Modular Lattice, Jordan-Dedekind condition, Atoms and covers. 

Definition (Modular Lattice):A lattice L is called a modular lattice if a,b,c c L, 

witha~!b 

aA(bvc)=(aAb)v(aAc) [=bv(aAc)] 

Example 2.5.1 : The lattice given by the following diagrams are modular 

Fig: 2.24 

In the first we cannot find any triplet a, b, c s.t., a>b  and c is not comparable with 

a or b. Hence it is modular. 

By similar argument the second lattice is also seen to be modular. 

V 
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The following theorems are generalization of some theorem of[13]. 

Theorem 2.5.2 : Homomorphic image of a modular lattice is modular. 

Proof: Let 8 : L —> M be an onto homomorphism and suppose L is modular. 

Let x, y, z€ M be three elements with x > y. 

Since 0 is onto homomorphism a, b, c €L s.t., 0(a) = x, 0(b) = y,o(c) = z 

where a>b 

Now L is modular a, b, c E L, a> b thus we get a A (h v c) = h v (a A c) 

Now 

A (y v z)= 8(a)A (O(b)v 0(c)) 

= O(a)A (O(b v c)) = 0(a A (b V c)) 

= 0(b v (a A c)) = 0(b)v 00 A c) 

=8(b)v[0(a)AO(c)]= yv(xAz) 

Hence M is modular. 

Theorem 2. 5. 3: Two lattices L and M are modular if and only if L x M is modular. 

Proof. : Let L and M be modular 

Let (a t, b1), (a2, b2), (a3, b3) GL x M be three elements with (a1 , b1 ) ~!(a2, b2) 

Then a, a2, a3 eL, ai ~!a2 

b1 b2,b3  EM,b1 ~!b2  

and since L and M are modular, we get 

a1  A(a7  va3)=a, v(a1  Aa3 ) 

bi  A (h., V 1)3 ) = v (h1  A b3 ) 

Thus 

(a1 ,b,) A [(a2,b2  )v (a 3,b3 )} 

=(a1,b1 )A(a2  va3,b2  vb3) 

=(a1  A(a2  va3),b1  A(b2  vb3 )) 

=(a, v(a1  Aa3 ),b2  v(b1  Al)3 )) 

=(a2,b2)v(a1  Aa3,b1  Al)3) 

= (a2, b2)v [(a1, b1 ) A (a 
, b3 )] 
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Hence L x M is modular. 

Conversely, Let L x M be modular. 

Let ai, a2, a3 EL, ai ~!a2 

b1.b2, b3  EM, b,~!b2  

Then (a1 , b1), (a2, b2), (a3, b3) E Lx M and (a t , b1 ) ~!(a2, b2). 

Since L x M is Modular, we find 

(a,, b,)A [a2 ,b2 )v (a3 , b3 )}= (a 2 ,b2 )v a1 ,b1 )A a 3 , b 3 )} 

Or,(a1 ,b1 )A(a2  va3,b2  v b3 )= (a 2 ,b2 )v(a1  A a 3 ,b1  A b3 ) 

Or,(a,A(a2 va3),b1 A(b2 vb3))=(a2 v(a1 Aa3),b2 v(b1 Ab3)) 

a1 A(a2 va3)=a,v(a1 Aa3) 

b1  A(b2  v b3 )= b2  v(b1  Ab3) 

L and M are Modular. 
0- 

Remark :It is important to point out here that in the above theorem, the assertion is that 

a non modular lattice contains a pentagonal sublattice and not only a pentagonal 

subset. In other words, it is possible that we may have a modular lattice which 

contains pentagonal subset. Consider, for instance, the lattice L of factors of120. 

The lattice is given by the diagram. 

120 

AO 

24 

5 

We notice S = { 2, 6, 10, 12, 60} is a pentagonal subset of L but not a 

sublattice. For, in L, l0v6=30S. Again L is modular, as it is cardinal 

product of three chains A =(0<1<2<3}, B= {0<I}, C ={0<l and a chain being 
V 

modular gives product of chains to be modular. 
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Definition (Jordan-Dedekind condition) : Let L be a lattice of finite length. We say L 

satisfies the Jordan-Dedekind condition if all maximal chains between same end 

points have same (finite) length. 

Definition (Atoms and Covers) :Let L be a lattice of finite length with least element o. 

An element XEL is said to have height or dimension ii if! [o,x]=n and, in that 

case, we write h(x)=n. 

An element a in a lattice L is called an atom if it covers o. In other words, a is an 

atom iffa 0 and xAa=a or xA a= 0 VxE L 

Clearly then h(a)=z 1. 

An element b is called dual atom, if 1, the greatest element of the lattice covers b. 

The following theorem is a general ization s of a well-known results. 

Theorem 2.5.4: Let L be a lattice of finite length. Suppose in L, whenever, x,y cover 

xy implies xvy covers x and y, then L satisfies the Jordan- Dedekind 

condition. 

Proof :Let a, b be any two comparable points (a:!~b).We show all maximal chains from a 

to b have same length 1 [a,b]. 

Since all chains from a to b are finite, at least one maximal chain exists of finite 

length from a to b . We show all maximal chains are of the same length. 

We prove the result by induction on n, the length I [a,b], if l[a,b]1.then b covers 

a and thus there is only one maximal chain from a to b with length I and hence 

the result holds for n=1. 

Let the result be true for n=m- 1 

Let a<x1<x2< .... 

a<yl<y2< ......  <yk b 

be two maximal chains from a to b of lengths in and k. We show k=m. 

Case (i) if x1yi 

Then x1 <x2<. .. .<x 1  =b 

xl=yi<y2< . ... <ykb 
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are two maximal chains from x1t0 b with lengths rn-i, k-i and as the result holds 

form- I, 

k- I =m- I=> k=m 

Case(ii)xyi  

Here x1and y1 cover a=x1  A y 

Thus by given condition Xi V yi covers x and yi 

Let xi  vyit 

Since xi <b, yi <b 

t=x I  vyi :!~-b 

and we find t and b are comparable. 

Fig: 2.26 

Let t<zi<z2 <  ....... <zi =b.be a maximal chain from t to b with length i 

Now 

x1<x2< 

x1 <t<z1 < 

are two maximal chains from x1  to b of lengths rn-i and i+i (Note t covers xi ) 

But the result holds for rn-I and thus j+Im- I. 

Again, the chains 

YI<Y2< .........  <yk b 

y j<t<zj< 

are maximal chains from yi to b with lengths k-I and i+1 

0- 
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i.e., are maximal chains from yi to b with lengths k-I and rn-i. 

But result holds for rn-I, and so k-1=m-1 

k=rn 

i.e., the result holds for n=m. 

Hence by induction hypothesis, the result holds for all n and our assertion is 

proved. 

Example 2.5.5 : Let X # (p finite set and p(X) be the power set of X. We know 

(p(X),(--:)forms a lattice with least element (p and greatest element x. Also for 

any A, B E p(X) 

Solution: 

AAB=AnB and AvB=AB 

Since 

AA(X—A)= Ar(X—A)= 

Av(X—A)=Au(X—A)=X 

we find X-A is complement of A (relative to [(p,X 1) 

Thus p(X) is complemented. 

Suppose B is any complement of A, then 

* 

tJE1 \ 
Ban9ade3

j

). 

AA H = = An B 
i.e., AvB=X=AB 

A n B = A n (x - A) 

A 13 = A u (x - A) 
13 = X - A 

Or that X-A is unique complement of A. Thus this is an example of a uniquely 

complemented lattice. 

We show further that p(X) is also relatively complemented. 

Consider any interval [A,B] of p(X). 

Let, C E [A,B] be any member. Then 

Cr(AL..'(B-C))=(Cn A)(Cn(B-C))= A.j = A 
c (A (B - c))= (Cu A) (B - c)= c (B - c)= B 

Showing that A(B — C) is complement of C relative to [A,B]. 
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Since C was any element of any interval of p(X). we find p(X) is relatively 

complemented. 

Theorem 2.5.6 : Two bounded lattices A and B are complemented if and only if A x B 

is complemented. 

Proof: - Let A and B be complemented and suppose o, u and o, u are the universal 

bounds of A and B respectively. 

Then (0,0:)  and (u, u) will be least and greatest elements of AxB. 

Let (a,b) E AxB be any element. 

• Then aEA, bEB and as A, B are complemented a EA, bE B st., 

a A a'=o, av au, b A b=o, b v 

Now (a,b) A(a, b)=(aAa, bAb)=(o,o) 

(a,b) v (a',b)= (a v at', b v b')=(u,u') 

Shows that (a,b) is complement of (a,b) in AxB. 

Hence AxB is complemented 

Conversely, let AxB be complemented. 

Let a e A, bE B be any elements. 

Then (a,b) e AxB and thus has a complement, say (a',b) 

Then (a,b) A (a,b)=(o,o), (a,b) v (a,b')=(u,u) 

A a',b A b)=(o,o'), (a v a, b v b')=(u,u) 

aAa=o,av a=u 

bAb0°, by b'u 

i.e. a and b are complements of a and b respectively. Hence A and Bare 

complemented. 

Theorem 2.5.7 : Two lattices A and B are relatively complemented if and only if A x B 

is relatively complemented. 
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Proof: - Let A, B be relatively complemented. 

Let [(ai, b1 ), (a2, b2)J be any interval of Ax B and suppose (x, y) is any element 

of this interval. 

Then (a1, b1 ):5 (x, y) :!~(a2, b2) 

al.a2, xEA 

b1 , b2,yEB 

al~x:!~a2 

bi:!~y:!~b2  

x [ai, a2]  an interval in A 

y [b1 , b2] an interval in B 

Since A, B are relatively complemented so x, y have complements 

relative to [a1, a2] and [b1, b2] respectively. 

Let x and y be these complements, Then 

xAxaI, yAy=bi 

xvxa2, yvyb2  

Now (x,y) A (x', y (x A X', Y A y')= (a1 ,h1 ) 

(x,y) v (x, y) (xvx', yVy(a2,  b2) 

(x, y) is complement of (x, y) relative to [(at, b1 ), (a2, b2)] 

Thus any interval in A x B is complemented. 

Hence A x B is relatively complemented 

Conversely, let A x B be relatively complemented. 

Let [a t , a2] and [b1, b2] be any intervals in A & B. 

Let x [at, a2],  y [b1 , b2] be any elements. 

Then a :!~x:!~a2, bi :!~y:!~b2  

(ai, b1) :!~(x, y) !!~ (a2, b2) 

(x, y) E [(ai, b1), (a2, b2)], an interval in A x B 

(x,y) has a complement, say (x, y) relative to this interval. 

Thus (x,y) A (x, y) = (at. b1  ) 

(x,y) v (x, y) = (a2, b2) 

or, (x AX, y A y(ai, b1) 

(xv x', y Vy')(a2, b2) 

xAxal xvxa2 

A ybi,yVyb2 
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xis complement of x relative to [al,a2] 

y 
11 is complement of y relative to [b1 , b2] 

which in turn imply that A, B are relatively complemented. 

Theorem 2.5.8: Dual of a complemented lattice is complemented. 

Proof: Let (L,p) be a complemented laftice with o, 1 as least and greatest elements. 

Let (L,P) be the dual of( L,p) Then 1,o are least and greatest elements of L 

Let a e L =L be any element. 

Since a cz L, L is complemented, I a' E L s.t. 

aAa'=O,ava'=l inL. 

i.e., OInf{a,a'} in L. 

=Opa,op a' 

a j5 0, a'j 0 in L 

o is an upper bound of {a,a'} in L 

Ifk is any upper bound of (a,a'} in L then a j5 k, a' k 

='kpa, kpa'=kpo asoislnf 

0k 

i.e., o is tub. ta, a') in I 

i.e., av a'=O in L 

Similarly, a Aa'=lin I 

or that a' is complement of a in L 

Hence L is complemented. 
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Problem 2.5.9 : Show that no ideal of a complemented lattice which is a proper 

sublattice can contain both an element and its complement. 

Solution: Let L be a complemented lattice. Then o, I E L. Let / be an ideal of L such 

that I is a proper sublattice of L. Suppose an element x in I such that its 

complement xis also in I. 

ThenxAxo,xvx 1 

since / is a sublattice, X AX, xv x are in I. i.e., o, I E I. 

Now if/E L be any element then as 1 E I 

/A I E I 

/E I =:> LcJ I = L, a contradiction. 

Problem 2.5.10 : Let L be a uniquely complemented lattice and let a be an atom in L. 

Show that a' the complement of a is a dual atom of L. 

Solution: Since L is uniquely complemented lattice, every element has a unique 

complement. 

Suppose a is not a dual atom, then 3 at least one x st., a <x<1 

ava:!~xva 

I!~xva<1 

Ixva. 

Now if a:!~x then xva.x x=1, not true. Again if a x, then axO 

(note a is an atom) 

thus aAxO, aVx  = 1 => x = a' ,again a contradiction. 

Hence a' is a dual atom. 
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CHAPTER 3 

Boolean Algebra and Boolean Function 

Introduction: 

A complemented distributive lattice is called a Boolean Lattice. Let (A.A.v.'.OJ) be 

a Boolean Algebra. Expressions involving members of A and the operations A , v 

and complementation are called Boolean expression. Any function specifying these 

Boolean expressions is called a Boolean function. A Boolean function is said to be in 

Disjunctive normal form (DN for -n) in n variables ............... 
,, 

if it can be 

written as join of terms of the type j (x1 ) A (x ) A  j (x3  ) A ............A j (x). where 

t; (x1  ) = x1  for all i = 1,2,3 ........... n and no two terms are same. A Boolean function f 

is said to be in Conjunctive Normal Form (CN form) in n variables 

x1 ,x,,x3. ......... ... .if •f is meet of terms of the type 

1 (x ) v 12 (x 2 ) v .......... .......... ..... v f (x ) where f (x,) = x, or X, for all 

1=1,2,3.............. n and no two terms are same. 

3.1: Boolean Algebra and Boolean Lattice: 

Definition (Boolean Algebra and Boolean Lattice): A complemented distributive 

lattice is called a Boolean Lattice. Since complements are unique in a Boolean 

Lattice we can regard a Boolean Lattice as an algebra with two binaiy operations A 

and v and one unary operation . Boolean Lattices so considered are called 

Boolean algebras. In other words, by a Boolean Algebra, we mean a system 

consisting of a non empty set L together with two binary operationsA and v and 

unary operation ,0and I satisfying(va,b.c eL) 

VO 
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(i)a A a = a,a v a = a 

(ii)a A b = b A a,a v b = b v a 

(iii)a A (b Ac) = (a A b) A c,a v (b v c) = (a v b) v c 

(iv)a A (a v b) = a,a v (a A b) = a 

(v)a A (b v c) = (a A b)v (a A c) 

(vi) v-a E L,a' E L.s.t., a A a' = O.a v a' = I 

where 0, 1 are elements of L satisfying 0 :~ x !~ I x e L. (a will be unique and is 

the complement of a)([l ],[2],[4],[5],[6],[ 10]). 

Since we have mentioned above that, A , vand are operations on L. It is clear 

that closure properties hold in L i.e.- for all a,b€L, at b, av b, a' EL. 

-4 

Example 3.1.1: Let B=to,a,b,l).  If we define A , vand complementation  by 

A 0 a ') 1 

0 0 
0 1 a 

2_ 
b I I 

.i_ 
/ 

0 0 0 0 

a 

-- 

I 

b 
1 

aaall 

L _L 
1 1 

_ _L_ 
1 1 

a b 
b a 
1 0 

a 0 a 0 

i;-  -o-  -- - 
1 0 a b 

Then B forms a Boolean algebra under these operations. Since a Boolean Algebra is 

distributive (and thus, modular) and complemented, all properties of modular, 

distributive and complemented lattices hold in a Boolean algebra. 

Theorem 3.1.2 : Prove that Boolean sublattice may not be a Boolean subalgebra. 

Proof: A subalgebra (or a Boolean subalgebra) is a non empty subset S of a Boolean algebra 

L. Such that, a, be S => a A b,a v b,a' E S 

We thus realize that a subalgebra differs from a sublattice in as much as it is closed 

under complernentation also. Notice that if [a, b] be an interval in a Boolean algebra 

L, where a>0, then [a, b] is a sublattice of L, but is not subalgebra as 
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a c [a,bj => a'€ Ia,bl 
=> a A 'E [a,bl 

=' Oea,b 

which is not possible as a>O. Hence a Boolean sublattice may not be a Boolean 

subalgebra. 

Theorem 3.1.3 In a Boolean algebra, the following results hold. 

(a) = a 

(a A b) = a' v b' [Dc Morgan's Law] 

a v b) a' A b' [De Morgan's Law] 

a b a' ~! b' 
v)a b aAb'=O #> a'vb=1 

/ Prof: (1) Let (a / 
 ) =a/1  then 

aAa'=O, ava'=I 

a' A a" = 0, a' v a" = I 

aAa' =a" Aa', ava'=a" va'  

(ii) We have 

(a A b)A (a' v b')= [(a A b)A a']v [(a A b)A b'J 

=[(aAa')Ab}v [aA(bA b')J 
= [o A b]v [a A o]= 0 v 0 = 0 

(a A b)v (a'v b') = (a'v b')v (a A b) 

= [(a' v b')va]A [(a' v b')v b] 

=[(a'va)v b']A[a'v(b'v b)] 

( 
,\ (  , =1vb)Aa vl)=IAI=1 

Hence (a A b) = a'v b' 

(iii) This can be proved in the similar way used to prove (ii). 
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(iv) a:!~ba=aAb 

a'=(aAb)'  =a'vb' 

= b' < a' 

b' :!~ a' b" ~! a ' b ~! a 

(v)a~b=aAb'!~bAb'0:!~aAb'<0 

aAb' =0 

Again,Let,a A b' =0 

Then a=aAl=aA(bvb')=(aAb)v(aAb') 

= (a A b) v 0= (a A b) 

a ~aAb. 

Second result follows similarly. 

3.2: Boolean Functions: 

Definition (Boolean Functions): Let (A, A, 1', ,0,1) be a Boolean algebra. Expressions 

involving members of A and the operations A,v and complementation are called 

Boolean expressions or Boolean polynomials. For example, x V y', x, x A 0 etc. are 

all Boolean expressions. Any function specifying these Boolean expressions is called 

a Boolean function. Thus if f(x,y)=x A y then f is the Boolean function and x A y is 

the Boolean expression (or value of the function f). Since it is normally the 

functional value (and not the function) that we are interested in, we call these 

expressions the Boolean functions. 

In what follows, we'll be denoting least and greatest elements of a Boolean algebra 

by 0 and I respectively. In fact, most of the times we'll confine ourselves to Boolean 

algebras that contain only these two elements. 

Disjunctive Normal form (DN form) 

A Boolean function (expression) is said to be in disjunctive normal form(DN form) 

in n variables x1 , x2, -----, xi,. If it can be written as join of terms of the type 
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f1 (x1 ) Af,(x2 )A ........... Af,,(x,,) Where f1(x1)=x1 or x for all i=l,2,3------  n. and no 

two terms are same. Also I and 0 are said to be in disjunctive normal form. 

Again, in that case, terms of the type f1 (x1 ) Af2 (x,)A ........... Af,) (x,,)are called 

minterms or minimal polynomials. (A normal form is also called a canonical form). 

For instance, (x A y A z') v (x' A y' A z)v (x' A y A z)is in disjunctive normal form 

(in 3 variables) and each of the brackets is a minterm. 

Thus each minturm is a meet of all the n variables with or without a prime (i.e. xi or 

x1). If we have three variables x, y, z then any function in the DN form will be join 

of some or all the minterms. 

XAYAZ X' AYAZ 
, , I 

XAY AZ X AYAZ 

X A y' AZ 

A y'  AZ 

X A 3) AZ'  

X'  A y'  AZ' 

Which will be 2 (n=3) in number. 

Consider the function. 

f(x.y) = xv (x' A x A (y v y')v (x' A 3)) 
= (x A v)v (x A v')v (x' A ) 

Which is in DN form and contains three minterms out of four (possible) minterms 

xAy,x'Ay,xAy',x'Ay'  in2variables. 

Example 3.2.1: A complete DN form in 3 variables is 

f(x,y,z) = (x AyAz) v(' AyAz)v(xA A:) v(xAyAz)v(xAV Az)v(x' AyAz) 

v (x' A y' A z)v (x' A )' A z') 

Theorem 3.2.2 : Every Boolean function can be put in disjunctive normal form. 

Proof.: We prove the result by taking the following steps. 

(I) If primes occur outside brakets, then open the brakets by using De Morgan's 

laws. (a A b) = a' v b'. (a v b)'  = a' A b' 

(2) Open all brakets by using distributivity and simplify using any of the definition 

conditions like indempotency , absorption etc. 

A 
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(3) if any of the terms does not contain a certain variable x1(or x1 ) then take meet of 

that term with x1  v x. Do this with each such term. (it will not affect the 

function as x, v x = 1 and 1 i' a = a) 

Now ,open brakets and drop all terms of the type a A a'(= 0). Again, if 

any of the terms occur more than once. These can be omitted because of 

idempotency. The resulting expression will be in DN form. 

Hence every function in a Boolean algebra is equal to a function in DN form. 

Problem 3.2.3: Put the function f = [(x A y')'  v z'] A (x' v in the DN form. 

Solution: We have I = [(x' v v")v z']A (z' A 

r(x'v y vz')A(z'Ax) 

= (x'  AZ'  A x)v (y  AZ'  A x)v (z'  A z'  A x) 

0 v (x A y A z')v (x A z') 
A 

= x Ay AZ )V I
F
.
(
x AZ A  )A I  y V y 

= (x A y A ')v [(x AZ'  A y)v (x A z'  A y')] 
= (x A y /\Z')V(X A y'AZ') 

Pioblem 3.2.4: Put the function: 

f=[(x'Ay)v(xAyAz')v(xAy' Az)v(x' Ay'AzAt)vt'J in the DNform. 

Solution : We have 

f=(x'Ay) A(XAYAZ') A(XAY'AZ) A(XAYAZ'A!) Al 

= [( xv y' ) A( x'v y'vz)]A( x'v y vz' ) A[( xv yvzvr' ) AI ] 

= [(xA x')v(xA y')v(x A z)v(y' Ax')v(y'  Ay')v(y'  A Z)]A(X'  v yv z' ) 

A[(X At)V(y Al)V(Z Al)V(t At')] 

=[(xAy')v(xA z)v(y'Ax')vy'v(y'Az)]A 

[(x'AyAI)v(x'AzAI)v(yAxAI)v(yAl)v(yAzAl)v(:'AxAl)v(z'AyAI)] 
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=(xAy'Az'At)v(xAZAyAl)v(y'Ax'AzA)v(y'AzAIAx') 

v (y'  AZ'  AX Al) v (y'  AZ AX'  At) 

=(xAy' AZ' Al)v(xAyAzAl)v(x'Ay'Az Al) 

Example 3.2.5: 

LetA= {0,1} and f:A 2  - Abedefinedby 

f(x.y)= (x A v)v (x'A y)v (x A y')v (x'A v ') 

i.e.- f is incomplete DN from. We calculate all values of f(x,y), x,yE A 

f(0,0) = (0 A 0) v (1 A 0) v (0 A 1) V (1 A 1) 

f(1.0) = (1 A 0) V (0 A 1)v (i A i)v (i A o)= i 
1(0.1) = (o A i)v l A i)v (o A O)v (I A o)= 1 
f(1.1) = (1 A 1)v (o A 1)v (1 A O)v (o A o)= 1 

(Note x = 0 x' = I) 

We thus notice that in each case, one minterm is I A 1 =1 and all others are zero. 

Also the resulting value of f(x,y) is always I. 

If we go through similar process, with a function f which is in complete DN from in 

3 variables x, y, z we'll get the same result. 

Problem 3.2.6 : Write the function x v y' in the disjunctive normal form in three variables 

x,y,z. 

Solution: We have, 

xv y'  = [x A(y v y')A(z vz')]v [y'A(x v x')A(zv z')j 

= [{ (x A y) v (x A y')} A (z v z')]v [{(y' Ax) V (y'  A X ')} A (z v z')] 

=(x AyAZ)V(X A Y Az')V(x Ay'Az)V(x Ay'AZ')V(y'A XAZ)V(y'Ax AZ')V 

(y'  A '  A z)v(y'  A '  A z') 

= (x A yAZ)V(xA y AZ')V(X Ay'AZ)V(X Ay'AZ')V 

(x'  A y'  A z)v(x' A y'  A z'). 

-k 
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Conjunctive Normal Form: 

Definition: ( Conjunctive Normal Form ): A Boolean function f is said to be in 

Conjunctive Normal Form (CN form )in n variables x.x,.x3. ......... .... x if f is meet 

oftermsof the typef1 (x1 )vf,(x,)v .......... .......... ..... vf(x) 

where f(x1)x1  or X,' for all i=1,2,3.............. n 

and no two terms are same. Also 0 and I are said to be in CN form. 

Problem 3.2.7: Put the function 

f = KX A y')v z']A (x' v in the C.N form. 

Solution: We have 

.1 = [(x' v v)v Z'}A (x A z' ) 

= (x' v v v z')A [(x A z)v (v A 

= (x'  v v v z' )A{[(x A z')v .v]A [(XA z')v v' }} 

= (x' v V V z')A [(xv v)A(z'  v .v)A (Cv v' )A (z'  v 

= (x'  v v z')A Lxv v v (z A A {(z'  v v)v (x A x') A {(xv .v')v (z A A V v')v (x A x')] 

(x' v vv z' )A(xv yv z)(xv vv z' )(z'  v yv x)Az' v vv x')A 

(xv y' v A (xv y' v A (z v V v x) A (z'  v V v x') 

= (xv vv z)A (x' vpv z')A(xv yv z' )A (xv '  v z)A(xv v'  v z')A(x'  v V v z' ) 

A Problem 3.2.8: Put the function x A (y v ) in the C.N form. 

Solution: 

XA(V V z)= V (y  A  V')IA v v V (x A x')] 
= (xvv)A (xvv')A(yv zv x)A(vv zv x') 

= (xv y)v (z A z')A(xv y')v (z A z')A (y v z v x)A(x' v y v 

= (x v yv z)A (xv yv z')A(xv y' v z)A(xv y'v z')A(xv y v z)A(x'  v yv 

= (xv v v z)A(xv yv z')A(xv y'v z)A(xv v'v :')A(x'v vv 

V 



Chapter 3 Page 43 

Problem 3.2.9: Find the D.N form of the function whose CN form is 

f=(xvyvz) A(xVyVz')A(xvyvz) A(xvyvz)A(xvyvz) 

Solution: We know f(f). Thus 

f[{(xvyvz) A(xvyvz)A(xvy vz) A(xvy vz)A(x vyvz)}] 

=[(xvyvz)v(xvyvz)v(xvy ' vz)'v 

1 / 1 

(x v y v z)
/ 
 v (x v y v z) 

/

] (by De Morgan s Law) 

[(X ' Ay'AZ)V(XAyAZ) v(xAyAz) 

v (x A y A z) v (x A y A z')](by De Morgan's Law) 

-4 =(xAyAz)v(xAy'Az)v(xAyAz) 

3.3: Length and Cover: 

Deflnition( Length and Cover): A finite chain with n elements is said to have length n-I. 

(i.e. length is the number of links that the chain has).We say a covers b if b <a and 

there exists no c.s.t., b <c < a. A chain x1  <x2  <... <x, is called a maximal chain if 

each X +1  covers X. Suppose now [a,b] is an interval in a lattice and if amongst all 

chains from a to b, there is one of maximum length n , we say [a, b] has length n. 

Thus it is the Sup of lengths of chains from a to b. We denote it by l[a, b] = n. In case 

some chains from a to b have infinite length we say [a, b] has infinite length. 

If L be a lattice with least 0 and greatest element I then as L = [0, 11, length of L is 

defined to be length of the interval [0, 1]. 

Example 3.3.1: Consider the pentagonal lattice 

It has five chains 
a 

0 1, 0 a' 1, 0 b 1. 

0'c 1, 0 - b ,  a/ b 

Fig :3.1 
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from 0 to I The last two being maximal chains. (Thus there can be more than one 

maximal chain from x to y (x y ) in a lattice). 

The chains have lengths 1, 2, 2, 2, 3, 

I [0, I ] = 3, and hence length of the pentagonal lattice is 3. 

3.4: Homomorphism, Isomorphism and Endomorphism. 

Definitions:(Homomorphisms, Isomorphism and Endomorphism) 

Let L and M be lattices. A mapping 0 L -+ M is called a meet homomorphism if 

0(a b)=0(a) 0(b) 

It is called a join homomorphism if O(a v b)= 0 (a) v 0 (b) 

If 0 is both meet as well as join homomorphisim, it is called a homomorphism (it 

is ,of course , clear that the operation and v on the left are those of L and on the 

right are of M). A homomorphism is also sometimes called a morphism. 

If in addition, the map 0 is also 1-I onto we call 0 to be an ismorphism. If 0 is an 

ismorphism from L to L we call it an automorphism. 

A homomorphism from L to L is called endomorphism. if 9 : L—* M is onto 

homomorphism, we say M homomorphic image of L 

ok.ngI, & 

Example 3.4.1: Let L and M be the lattices 
KUET 

 

Fig :3 .2 
Fig :3.3 

Define 0: L - M, s.t, 

0(o)'p, 0(a)q, 9(b)p, 9(I)=q 

Then 0 is a homomorphism. 

0(a b)=0(o)=p,0(a)0(b)q.pp 

0(o va)= 0 (a)= q, 0 (o)v 0 (a)= p v q = q etc. 
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The map q: L - M, S.t., (p (o) =p, (p (a) =x, ( (b) =x, p  (I) = q is neither a meet, 

nor a join homomorphism as 

(p (a,  b) p(0)=p,p(a)(p(b)=x x = x 

(p(avb)=(p(1)=q,(p(a)v(p(b)=xv x=x 

The map '1: L—>M, st. P (0) = P, P (a) = p, P (b) = p. P (1) = q is meet 

homomorphism, but not a join homomorphism as 

P(av b) = kP (1)=q,P(a)vqJ()=pp=p  

P (a b) = P (0) =p=p p P (a) -  P (b) 

P(a O)=P(0)=p=ppP(a) P(0) 

'P(a l)P(a)=p=pq P(a)P(1)etc. 

Finally, the map a : L - M, st., a (0) = p. a (a) = a (b) q= a (1) is a join 

homomorphism but not a meet homomorphism. 

Theorem 3.4.2: Any meet (join) homomorphism preserves order. 

Proof: Let 0: L -> M be a meet homomorphism,. 

Letab inL. 

- Then a=ab 

9(a)=9 (ab)=0(a) 9(b) 

0(a)<0(b) 

Dually, the result follows for join homomorphisms. 

Hence, a homomorphisms preserves order. The converse, however, is not true. 

Consider the map cp in the above example, p preserves order but is neither a meet nor 

a join homomorphism. 

1' 



Chapter 3 Page 46 

Problem: 3.4.3: Let L, M be lattices. If 0: L - M is onto homomorphism and L has least 

element then so has M. 

Solution: Let 0 be least element of L. Then (0) < (x) V x E L. 9 (0) < 9 (x) (9 preserves 

order). Since 0 is onto, any element y e M is of the for 9 (a), a € L. But 0 (0) < 0 (x) 

V x E L. i.e., 0 (0) is least element of M. 

Similarly, we can show that if L has greatest element, M would also have greatest 

element. Hence if L is a bounded lattice then so would be any of its homomorphic 

image. Having defined isomorphism in two ways, it should be our endevour to first 

establish the equivalence of the two definitions which we achieve through. 

Theorem 3.4.4: Lattices isomorphic as posets are isomorphic as algebras and conversely. 

l'roof: Let Land M be two lattices isomorphic as posets i.e., I a 1-! onto map 0: L— M 

st., a < b in L 0 (a) < 0 (b) in M. To show that L, M are isomorphic as algebras, 

we need prove that 0 is a homomorphism. 

Let a, b e L be any elements. 

Then a b a, a bb 

' 0(ab)0(a),0(ab)9(b) 

0(a b)isa lower bound of(0(a),0(b)}. 

Suppose y E M is any lower bound of {O (a), 9 (b)}. 

Since y E M, 0 is onto, 3 x c= L, s.t., 0 (x) = y. 

So 0 (x) is a lower bound of {0 (a), 0 (b)}. 

' 0(x) 0(a),0(x)9(b) 

x is a lower bound of ta,  b} 

xab 

O(x)< O(a b)inM 

or that 0(a b) is g.l.b. {O (a), 0 (b) 

I.e.9(ab)=9(a)9(b) 

Dually, we can show 0 (a v b) = 0 (a) v 0 (b) 

I 

-d 
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No 

Hence 9 is a homomorphism 

Conversely, let L, M be isomorphic as algebras i.e. a 1-1 onto homomorphism 

8:1,-+M.WeneedshowabinL OorO (a)9(b)inM. 

Now ab -=ab 

0(a) =0(aAb)=0(a)AO(h) 

9(a):!~8(b) 

Also 

o (a):!~ 0 (h) =' 0 (a) = 0 (a) A 0 (b) 
= 8 (a) = 8 (a A 5) 

=a a A h 

=a<h 

Which proves our assertion. 

Problem 3.4.5: If L1  L2, M1 , M2  are lattices such that L1  = M1  and L2  = M2  then show that 

L1 xL2  = M1 xM2 M2 xM1 . 

Solution : Let f:L, -> M1  andg:L, ->M, be the given isomorphisms. 

Define 8 :L, x L. -->M 1  xM-, Si., 

O((a. b)) = (f(a),g(b)) 

Then O((a, b)) = O((c, d)) 

' (f(a),g(b)) = (f(c);g(d)) 

f(a)=f(c), g(b)=g(d) 

a=c, b=d 

(a, h) =(c.d) 

shows that 0 is well defined 1-1 map 

Again, 0 ((a,b)A(c,d)=O((aAc,bAd)) 

= (f(a A c), g (b A d )) 

= (f (a) A f (c), g (b) A g (d)) 

= (J (a). g (b)) A ((J (c). g (d)) 

= G((a.b))AO((c,d)) 

I 
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Similarly, e ((a, b) v (c, d)) = 0 ((a, b)) v ((c, d)) 

Showing thereby that 9 is a homomorphism. 

Finally, for any (rn1,m2) E 

M1  x M, since m1  € M1  & m, E M, andf,g are onto,  

311  E L1  L2  eL2  s.t..f(11 ) = m1 9 02) = 1112  

and 0((1 I 2 ))=(f(I1 ),g(I1)) = (m1  m2) 

Shows that 9 is onto and hence an isomorphism. 

To show M1 XM 2= M2 X  M1  we can define 

p:M 1  xM —MxM 1  st.. 

(0111 = (ni.in) 

It is now easy to verify that ( is an isomorphism. 

We conclude this chapter with the following two theorem which are nice generalization of 

some results of [13]. 

Theorem 3.4.6 Homomorphic image of a relatively complemented lattice is relatively 

complemented. 

Proof : Let 0 L -> M be an onto homomorphism and suppose L is relatively 

complemented. Let [a', b] be any interval in M, since 9 is onto homomorphism, 

pre images a and b for a', b' respectively such that 

0 (a)=a'. 0 (b) =b'and aLb(asa' <b'), 

Thus [a, b] is an interval in L. 

Let y e [a', b'] =1 0 (a). 0 (b) I be any element then as before 3 a pre image x of y 

s. t., 0 (x)=vand a:~x b. 

Now L relatively complemented implies that X has a complement x' relative to [a, b], 

i.e., xAx=a,xvx=b 

0(x) A 0 (x)=0 (a), 0 (x)' 0 (x ) = 0 (b) 

=' V A 0 (x') = a'v v 0 (x') hb' 

if 

-4 
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0 (x') is complement of y relative to [a', b'], 

Thus each element in any interval in M has a complement, giving us the required 

result. 

Delinition(kernel of 0): Let 0 :L-+M be an onto homomorphism. the set{xEL: 0(x)o'} 

where o' is least element of M is called kernel of 0 and is denoted by kerO. If M 

does not have the zero element, kerO does not exist. 

Theorem 3.4.7 : If 0 : L - M is an onto homomorphism, where L, M are lattices and 0' is 

least element of M, then Ker 0 is an ideal of L. 

Proof: Since 8 is onto, 0' E M, thus ker 8 as pre image of 0' exists in L. 

Now x,y E ker 9 

0(yvv)=0()v0(v)=O'vO' => %VVE Ker&. 

Again eKer0. lEL. gives 0()=0' 

Also 0 (x AI)=0(x)AO(l)=OAI=0 

xAI€Ker0. 

Hence Ker 8. is an ideal of L. 

Theorem: 3.4.8. If: 0 :L ->L be a homomorphism where L is a complete lattice then 3 some 

aEL, s.t., 9(a)=a. 

Proof: Let S = {x E LI x :!~ 9 (x)} 

ThenS#asocScls050(0)(NoIe0(0)E L). 

Thus S is a non empty subset of a complete lattice and therefore Sup S exists. Let 

Sup S = a. 

Nowxa VxES 

0(.0:!~0(a) V.veS 

xO(x)::-~0(a) V x E S 

9 (a) is an upper bound of S 

/ 
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a :5 0 (a) (Def. of Sup) 

=:> a E S by def.of. S and hence a is greatest element osS. 

Also a :!~ 9 (a) => 9 (a) :!~ 0 (9 (a)) 

9(a)S (Def.ofS) 

a being greatest element of S then gives 9 (a) :!~ a 

i.e., a:!~9(a):!~a. 

Hence 8 (a) = a, which proves our assertion. 

-4 Definition (Dual join homomorphism, Dual isomorphism) : A mapping 

0 : L -> M is called dual meet horn omorphism if 0 (a A b) = 0 (a) v 0 (b) and is 

called a dual join homomorphism if 0 (a v h) = 9 (a) A 0 (b). 

It is called a dual homomorphism if it satisfies both the above conditions. 

A 1-I onto dual homomorphism is called a dual isomorphism. 

if 
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CHAPTER 4 

SWITCHING CIRCUIT DESIGNS 

intioduction: 

In this chapter we study series combination, Parallel combination, Don't care 

condition and Bridge circuits. In this chapter using the concepts of Boolean algebra 

and Boolean polynomials different circuits has been designed and analyzed. 

4.1: Series combination, Parallel combination: 

Let A, B......denote electrical switches, and let A and A denote switches with the 

property that if one is on then the other is off, and vice versa. Two switches, A and 

B, can be connected by wire in a series or parallel combination as follows: 

Seiics Combination . A A B Parallel Combination A v B 

Let AA  B and AV  B, read as A meet B and A join B, denote respectively that A and B 

are connected in series and A and B are connected in parallel. A Boolean switching 

circuit design means an arrangement of wires and switches that can be constructed by 

repeated use of series and parallel combinations; hence it can be described by the use 

of the connectives A and v. 

Example 4.1.1: 

13 

Circuit (I) Circuit (2) 

(1) AA(BVA') (2) (A A B')v(A' v (')A B] 

/ 

) 
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Circuit (I) can be described byA A(Bv A'), and circuit (2) can be described by 

(A A B') v [(A' c)A B]. 

Now let 1 and 0 denote, respectively, that a switch or circuit is on and that a switch 

or circuit is off The next two tables describe the behavior of a series circuit AAB 

and parallel circuit AV  B 

A B A A B A 13 A v B 
I I I I I I 
1 0 C) I 0 I 
o i o 0 1 1 
o o 0 0 () 0 

The next table shows the relationship between a switch A and a switch A. 

A A 
1 0 
0 1 

Notice that the above three table are identical with the tables of conjunction, 

disjunction and negation for statements (and propositions). The only difference is 

that 1 and 0 are used here instead of T and F. 

Theorem 4.1.2: The algebra of Boolean switching circuits is a Boolean algebra. In order 

to find the behavior of a Boolean switching circuit, a table is constructed which is 

analogous to the truth tables for propositions. 

Example 4.1.3: Consider circuit(l) in example 4.1.1. What is the behavior of the circuit, 

that is, when will the circuit be on (i.e.- when will current flow) and when will the 

circuit be off? A "Truth" table is constructed for A A (B v A') as follows: 

A B A' I3vA' ..IA(BVA') 

I 0 1 
1 0 0 0 0 
C) I I 1 C) 
0 0 1 1 0 

Thus current will flow only if both A and B are on. 

4 
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Example 4.1.4 The behavior of circuit (2) in example 4.2.1 is indicated by the following 

truth table for (A A B')v [(A' v (')A B]: 

A B C A' B' AAB' A'vC (A'vC)AB (AAB')v((A'v(')AB) 

0 0 1 1 1 

110000 0 0 0 

1010 1 1 1 0 1 

10 

0 0 1 

10 

0 1 

0  1 1 1 00 1 1 1 

0101 00 I I I 

0011 10 1 0 0 

0001 1 0 I 0 0 

Remark 4.15 : Any combination of switches using the connectives Aafld vsuch as 

(A A B')v [(A' v C)A /3], will also be called a Boolean polynomial. 

Problem 4.1.6 Determine the Boolean polynomial for each of the given three circuits 

Circuit (1) Circuit (2) 
Circuit (3) 

Solutioii: 

(i) AA(BvA')A(.' (ii) [A A (C v B')] v (B A C') (iii) {[(AvB)AC]vA'}AB 

A 

Id 
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Problem 4.1.7 : Construct a circuit for each of the following Boolean polynomials: 

(I)(rl A B)v [A ' A (B'v .l v B)1 (2) (A v 13)AC A (A'v B'v(') 

Solution: 

Circuit (2) 
Lireull I) 

 

Note that the series circuit (AAB) is in parallel with (A'A(B'vAvll)) which 

is A' in series with the parallel combination (B' v A v B). 

Note that the parallel circuit (A v B) is in series with C and in series with the 

parallel circuit (A' v B' v ('). 

Problem 4.1.8: Construct an equivalent simpler circuit of the adjacent diagram. 

Solution: We first write the Boolean polynomial which represents the circuit. 

(A A 13)v (A A B')v (A 'A 13') 

Now 

(A A R)v (A A R')v (A' A 13') 

[AA(BV B')]v(A'AB') 

[AAU]v(A'AB') 
A v(A'AB') 

(A VA')A(A v B') 

U A(AV B') 

A v B' A 

.3 Hence the adjacent figure is an equivalent circuit. 
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Problem 4.1.9 : Determine the Boolean polynomial for each of the given circuits. 

FG 
L N C 

0 
&—j  

Circuit - 1 
Circuit - 3 

Circuit - 2 
Circuit - 4 

Solution: (i) A A (A v B) (ii)(AvB)A(A'vB') 

(iii)(A A B)vCv(A' AC') (iv)[BA(A vC)]v(A' AC') 

Problem 4.1.10: Construct a circuit for each Boolean polynomial 

(1) AV(BAC) (2) AA(BVC) (3)(AvB)A(CvD) (4)(AAB)v(CAD) 

(5) (AvB)A[A'v(CAB')] (6) [(AAB)vC]A[Dv(A'AB)] 

Solution: 

Circuit - i Circuit - 2 

Circuit - 3 Circuit - 4 
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Circuit - 5 Circuit - C, 

4.2: Don't Care Conditions: 

suppose we have a circuit specified by a certain function. Suppose further that there 

is a condition which is impossible to happen. Then there is no harm if we include 

this condition as part of our circuit (function) as in any case this condition is not to 

occur. The advantage lies in the fact that addition of an extra condition 

sometimes leads to a simplification of the given circuit. Such conditions are called 

don't care conditions. 

Example 4.2.1 : Suppose an interview board has three members A, B, C and a candidate is 

selected only when all the three members say yes. When a member has to say yes, he 

presses a button provided to him. When all the three press the respective buttons 

provided to them, a light goes on. if a,b,c stand for A,B,C saying yes, then the light 

shines only when a & b & c occur. The circuit would be constructed as follows: 

Suppose now, member C would say yes if both A and B say yes. Then the condition 

a A b A c' can never occur. Thus our original circuit can be put equal to 

(aAbAc)v(aAbAc') which simplifies to (aAh) v(cAc')=aAbwhich is 

simpler than a A b A c. Thus a A b Ac'  is a Don't Care Condition. 

Translated in simple language, since C will say yes when A and B say yes, we need 

not provide C with a button to press. Indeed, if C presses the button when one of A 

or B have said no, the result is still no. So pressing of the button by C is immaterial. 

4 
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Problem 4.2.2 : Suppose a circuit is defined by the following table where X denotes don't 

care condition. Draw the circuits with X0 and I 

x y I_f(x,y,z) 
o 0 0 I 
I 0 0 1 
o 1 0 0 
o 0 1 X 

1 0 0 
1 0 1 1 
o 1 1 0 

1 1 0 

- Solution: The function (with X= 0 ) is 

f = (x 'Ay 'Az ')v(xAy 'Az')v(xAy'Az) 

= [(x 'vx)A(v 'Az ')Jv(xA''A/) 

= (y 'Az ')v(xAv'Az) 

= y 'A(Z'V(xAZ)) 

= Y 'A((Z 'VX)A(z'vz)) 

= Y 'A(Z'Vx) 

If Xr=1, we get 

f = A (z' V x)v (x' A y'  A z) 

= (y'  A z')v (y' A x)v (x' A A z) 

= y'A[Z'V xv(x'Az)J 

= y'A[Z'  v {(x v x')A(x v z)}] 

V'A[Z'V(XVZ)] 

= VP 

The two circuits are given by 

Fig: 4.1 Fig : 4.2 

4 
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Thus, if X is a don't care condition, the circuit can be simplified by applying the 

condition. 

Example 4.2.3:Suppose we have a circuit defined by the function 

t=aA (b' v c)v (a' A b' A c'). Suppose further that the conditions a A b A c'and 

a' A b' AC are impossible to occur. 

Then our function can be replaced by 

.1= [a A(b'v c)v (a' Ah' Ac')}v(a Ab Ac')v(a' Ab' AC) 

= a A (b' v c)v (a' A h' A c')v (a' A b' A c)v (a A b A c) 
= a Ah'vc)v1a'Ah)AC'vc)1va Ah AC') 

=aA(h'v c)v (a' Ah')v(aAhAc') 
ICA  

=aAE(h'vc)v(hAc')]v(a'Ab) 

=aA[(b'vcvb)A(h'vcvC')]v(a'Ah) (f ci 
=(aA1)v(a'Ah) In 

=(ava')A(avb) \%). 

Hence the circuit giver by the original function could be replaced by a v h'. The two 

circuits are not equal, but they differ only by cases which would never arise. Hence 

any one will give the desired result. The two circuits are given by 

Fig 4.3 Fig : 4.4 

4 

-4 

Ik 
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43: Bridge Circuits: 

Consider the following series-parallel circuit which is represented by the function 

[aA(dv(cAe))}v [bA(ev(cAd))] 

=(aAd)v(aAcAe)v(bAe)v(bAcAa) 

d1  

__________ I c 
________ H I  

ci 

Fig: 4.5 

We notice it can also be represented by the following circuit, which is not a series-parallel 

rk 

circuit 

~c  :~:] j 

Fig : 4.6 

Or 

a  "T d 

bC 

Fig : 4.7 

IN 

4 
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This is called a bridge circuit. Expression () explains the routes through which the 

current could flow. 

Consider another function 

f = (a A b)v (a A C A z)v [a v (x A v)} A {c v (z A h)] 

=aAh)vaAcAz)vfa Ac)va A(z Ah)vxAy)Acv(xAy)Ab] 

= a Ah)va AZ A C)v [(a v (x A y))AC}V Ea v A y))A(z Al))] 

It is given by the following circuit 

a /T\ b 

X V \ / 

Fig : 4.8 

The corresponding series-parallel circuit being 

N 
1 y b  z1 

121  

Fig : 4.9 

Consider now the bridge circuit 

/[\ 
I) 

C 

b 

Fig : 4.10 
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The different paths through which the current can flow are given by 

aAb,aAeA(dvb'),cA(dvb') and CACAb 

Thus the function representing this circuit is 

(a A b)v (a v e A (d v b'))v [c A (d v b')]v (c A e A b) 

={aA[bv(eAd)v(eAb')jv{cA(dvb've) 

= a [h V C\J (e A d)]vcA (ci V b'v 

=aA(hve)vcA(dvb've) [as bv(eAb')=(hve)] 

Now this is represented by the series-parallel circuit 

h 

Fig : 4.11 

One may remark here that it is not essential that the bridge circuit corresponding to 

a series- parallel. 

Circuit would always have lesser number of switches. 

For, instance, the bridge circuit 

b 

Fig :4.12 

4 
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which is represented by 

[(a A b)A c']v [a A b Ad A a]v (c A a)A (c Ad A c') 

= (a A h A c')v (a A h A d)v (c A a) 

= a A[b A(c'v d)v c] 

= aA [(h A c') vc v (b A d)] 

aA [(b v c)v (b A d)] 

= a A [(c v b) v (b A d )] 
= aA[cv(hv(b Ad))] 

= a A (c v b) 

Which has series parallel circuit 

-LI-- ta 

Fig 4.13 

having lesser number of switches. 

Reader with a sharp eye would have noticed that the above conversions of bridge 

circuits to series parallel circuits actually involve the Wye to delta transformations. 
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