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Abstract

At first Krylov and Bogoliubov presented a perturbation method known as “the
asymptotic averaging method” in the theory of nonlincar oscillations. Primarily. the
method was proposed only to get the periodic solutions of second order autonomous
systems with small nonlinearities. Later, the method has been extended by Bogoliubov
and Mitropolskii. At present the method is used to obtain the solutions of second and
higher order nonlinear equations for damped oscillatory, over damped, near critically
damped, critically damped. more critically damped systems under some special
conditions. The unified Krylov-Bogoliubov-Mitropolskii (KBM) method is used to find
approximate solutions of fourth order nonlinear systems with large damping. In this
thesis, the KBM method has been modified and elaborated to find out the solutions of
fourth order damped oscillatory and near critically damped non-oscillatory nonlinear
systems by imposing some restrictions on the eigen-values. For verification of the results
obtained by the modified KBM method, we have compared them with those obtained by

the fourth order Runge-Kutta method and a nice matching is observed.
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CHAPTER 1
INTRODUCTION

Differential equation is a mathematical tool, which has its applications in many branches
of knowledge of mankind. Numerous physical. mechanical, chemical, biological.
biochemical. and many other relations appear mathematically in the form of differential
equations that are linear or nonlinear, autonomous or non-autonomous. Generally, in
many physical phenomena. such as spring-mass systems. resistor-capacitor-inductor
circuits, bending of beams, chemical reactions, pendulums. the motion of the rotating
mass around another body. ete. the differential equations occur. Also in ecology and
cconomics the differential equations are vastly used. Basically. many differential
equations involving physical phenomena are nonlinear. Differential equations. which are
linear are comparatively easy to solve and nonlincar are laborious and in some cases it is
impossible to solve them analytically. In such situations, mathematicians convert the
nonlinear equations into linear equations by imposing some conditions. The method of
small oscillations is a well-known example of the linearization. But, such a linearization
is not always possible and when it is not, then the original nonlinear equation itself must
be used. With the discovery of numerous phenomena of sclf-excitation of circuits
containing nonlinear equations of electricity, like, electron tubes. gaseous discharge, ete.
and in many cases of nonlinear mechanical vibrations of special types, the method of
small oscillations becomes inadequate for their analytical treatment. The knowledge of
the nonlinear equations is generally confined to a variety of rather special cases. There
exists an important difference between the phenomena, which oscillate in steady state and
the phenomena governed by linear differential equations with constant coefficients. For
example, oscillations of a pendulum with small amplitudes, in that the amplitude of the
ultimate stable oscillations seems to be entirely independent of the initial conditions,
where as in oscillations governed by a linear differential equation with constant
coefficients, it depends upon the initial conditions. Originally the Krylov-Bogoliubov-
Mitropolskii (KBM) method was developed for the systems only to obtain the periodic
solutions of second order nonlincar differential equations. Now the method is used to
obtain oscillatory as well as damped. critically damped. over damped, near critically

damped. more critically damped oscillatory and non-oscillatory solutions of second. third.



fourth etc. order nonlinear differential equations by imposing some specific conditions to
make the solutions uniform. To solve nonlinear differential equations there exist some
methods. Among the methods, the method of perturbations, i.e., asymptotic expansions in
terms of a small parameter, are foremost. Perturbation methods have recently received
much attention as methods for accurately and quickly computing numerical solutions of
dynamic stochastic economic equilibrium models, both single-agent or rational-
expectations models and multi-agent or game-theoretic models. A perturbation method is
based on the following aspects: The equations to be solved are sufficiently “smooth™ or
sufficiently differentiable a number of times in the required regions of variables and
parameters. At first Van der pol paid attention to the new oscillations i.e., self-excitations
and indicated that their existence is inherent in the nonlinearity of the differential
equations characterizing the process. This nonlinearity appears. thus. as the very essence
of these phenomena and by linearizing the differential equation in the sense of the method
of small oscillations, one simply climinates the possibility of investigating such problems.
Thus it is necessary to deal with the nonlinear problems directly instead of evading them
by dropping the nonlinear terms. The method of Krylov and Bogoliubov is an asymptotic
method in the sense that & — 0. An asymptotic series itself may not be convergent. but
for a fixed number of terms, the approximate solution tends to the exact solution as ¢
tends to zero. It may be noted that the term asymptotic is frequently used in the theory of
oscillations in the sense thatg —» co. But in this case the mathematical method is quite
different. It is an important approach to the study of such nonlinear oscillations is the
small parameter expansion. Two widely spreaded methods in this theory are mainly used
in the literature; one is averaging asymptotic method of KBM and the other is multi-time
scale method. Among the methods used to study nonlinear systems with a small
nonlinearity, the KBM method is particularly convenient and is the extensively used
technique to obtain the approximate solutions. The method of KBM starts with the
solution of linear equation (sometimes called the generating solution of the linear
equation). assuming that in the nonlinear case, the amplitude and phase in the solution of
the linear differential equation are time dependent functions rather than constants. This
procedure introduces an additional condition on the first derivative of the assumed
solution for determining the solution of a second order equation. It is customary in the
KBM method that correction terms (i.e., the terms with small parameter) in the solutions

do not contain secular terms. These assumptions are mainly valid for second and third
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order equations. But for the fourth order differential equation the correction terms
sometimes contain secular terms, although the solution is generated by the classical KBM
asymptotic method. Consequently, the traditional solutions fail to explain the proper
situation of the systems. To remove the presence of secular terms and obtain the desired
results, we need to impose some special conditions. The main target of this thesis is to
find out these limitations and determine the proper solutions under some special
conditions. The method has its use mainly in engineering and technology, notably in
mechanics. electrical circuit theory and also used in population dynamics, chemistry,
control theory. plasma physics, etc.. It may be noted that most of the representers have
tried to find the solutions of second and third order nonlinear systems. Although some
investigators have obtained the solutions of fourth order nonlinear differential equations,

which have not been studied extensively.

In this thesis, we have chosen a fourth order nonlinear autonomous differential equations.
that describes damped oscillatory and near critically damped non-oscillatory systems with
small nonlinearities. to solve by the modified KBM method and the quality of the solution

is being tested.

We are going to propose a perturbation technique to solve a fourth order nonlinear
differential equation of the form

4 3 A
d*x d’ x d- x dx 3
+ C,'| 4+ &9 g = Gy N == E‘f (\) )

d!4 d{3 Ld,r?‘ i

where ¢ is a very small positive parameter :¢,, ¢,. ¢;. ¢, are arbitrary constants and /
is a given nonlinear function.

In Chapter 2, the review of literature is presented. In 2.1 information regarding damped
oscillatory nonlinear system is presented and in 2.2 that regarding near critically damped
nonlinear system is presented. In Chapter 3, the methodology is being discussed. In 3.1
the solution procedure of a fourth order damped oscillatory system is discussed where as
in 3.2 the solution procedure of a fourth order near critically damped non-oscillatory
nonlinear system is discussed. In Chapter 4, the results and discussions is presented. In
4.1 solution of fourth order damped oscillatory nonlinear system with an example and its
discussion are presented. In 4.2 the solution of fourth order near critically damped non-
oscillatory nonlinear system with an example and its discussion are presented. Finally, in

Chapter 5. the conclusion is presented.
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CHAPTER 2

LITERATURE REVIEW

2.1 Damped oscillatory nonlinear systems

Nonlinear differential equations show peculiar characters. But mathematical formulations of
many physical problems often result in differential equations, which are nonlinear. In many
situations, linear differential equation is substituted for a nonlinear differential equation,
which approximates the former equation closely enough to give expected result. In many
cases such linearization is not possible, and, when it is not, the original nonlinear differential
equation must be tackled directly. During last several decades in the 20™ century, some
Russian scientists like Mandelstam and Papalexi [55], Krylov and Bogoliubov [50],
Bogoliubov and Mitropolskii [33] unitedly investigated the nonlinear dynamics. To solve
nonlinear differential equations there exist some methods. Among the methods, the method
of perturbations, i.e., an asymptotic expansion in terms of small parameter is foremost.
Firstly, Krylov and Bogoliubov [50] considered equations of the form

d*x 2 dx

— #¥@X =& f (x,—. 1, €}, (2.1.1)

(dr* dt

where ¢ is a small positive parameter and f is a power series in &. whose coefficients are
i dy . 5 " :
polynomials in x. 5 sin/ and coss and their proposed solution procedure is known as
t

Krylov-Bogoliubov (KB) method. In general, f does not contain either & or 7. To describe
the behavior of nonlinear oscillations by the solutions obtained by perturbation method.
Lindstedt [54], Gylden [48], Liapounoff [52], Poincare [68] discussed only periodic
solutions, transient were not considered. Most probably, Poisson initiated approximate
solutions of nonlinear differential equations around 1830 and the technique was established
by Liouville. The KBM method started with the solution of the linear equation, assuming that

in the nonlinear systems, the amplitude and phase in the solution of the linear equation are
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time dependent functions rather than constants. This procedure introduced an additional
condition on the first derivative of the assumed solution for determining the solution. Some
meritful works were done and elaborative uses have been made by Stoker [75]. McLachlan
[56], Minorsky [58], Nayfeh [65], Bellman [32]. Duffing [47] investigated many significant
results about the periodic solutions of equation of the form
LA DL D 2.1.2)
dr- dt
Sometimes different types nonlinear phenomena occur, when the amplitude of the dependent
variable of a dynamical system is less than or greater than unity. The damping is negative
when the amplitude is less than unity and the damping is positive when the amplitude is
greater than unity. The governing equation having these phenomena of the form
RIS KW | (2.1.3)
di’ dt
This equation is known as Van der Pol [76] equation. Kruskal [49] has extended the KB
method to solve the fully nonlinear differential equation of the form
i»;— =F(x, i—\, 2) (2.1.4a)
dt di

Cap [46] has studied nonlinear systems of the form

2
d°x

- (2.1.4b)
At dr

Since, generally, / dose not contain either & or £, thus the equation (2.1.1) becomes

2
ci—:— +wtx=e L 1% ﬂ) (2.1.5)
dt’ dit

As pointed certain that, in the treatment of nonlinear oscillations by perturbation method,
only periodic solutions were discussed. transients were not considered by different
investigators, where as Krylov and Bogoliubov first discussed transient response.

If & =0, the equation (2.1.5) reduces to linear equation and its solution is

x = acos(wf +0). (2.1.6)

where a@and @ are arbitrary constants to be determined using initial conditions.

N



Ife = 0, but is very small, then Krylov and Bogoliubov assumed that the solution of (2.1.5)

is still given by (2.1.6) together with the derivative of the form

a2

= —awsin(w! +0). (2.1.7)
atr

where a and @ are functions of ¢, rather than being constants.

Thus the solution of (2.1.5) of the form

x = alr)cos(wr +6(r)) (2.1.8)
and the derivative equation (2.1.7) becomes

j—: = — a()wsin(wt + ()(l)) (2.1.9)

Differentiating the assumed solution (2.1.8) with respect to 1, we obtain

dx da L do .
e T e COS S — G MSINW — F——3§ . 2[.[0
b= sy —a y-a— sin ( )

where y = o 7+0(7)
Using the equations (2.1.7) and (2.1.10), we get

da do
—— COSW = a ~——Sil 2.1.11
gy R R NI St

Again differentiating (2.1.9) with respect to ¢, we have

q

" ; £
E{wl}=--d—a siny — a wzcosw—amf‘jﬁcosw (2.1.12)
dt dt dt
) dix - ; ; ; _ .
Putting the value of P from (2.1.12) into the equation (2.1.5) and using equations (2.1.8)
t

and (2.1.9), we obtain
j—f @siny + am% cosi = —¢ f(acosy, —amsiny) (2.1.13)

Solving (2.1.11) and (2.1.13), we have

6



d g . .

LN £ siny f (acosy, — amsiny) (2.1.14)
di ()

!() e v . S
QU % cosy f(acosy, — awsiny) (2.1.13)
di am

Thus it is observed that, a basic differential equation (2.1.5) of the second order in the
unknown x. reduces to two first order differential equations (2.1.14) and (2.1.15) in the

unknowns a and 0.

da do . i ;
Moreover, ; and ; are proportional tog; « and @ are slowly varying functions of the
al at
9}
. ¢ s LTC . % . . "
time period T'=—. It is noted that these first-order equations are now written in terms of
®

the amplitude @ and phase @ as dependent variables. Therefore, the right sides of equations

. d do W N - .
(2.1.14) and (2.1.15) show that both —;i and o are periodic functions of time T . For the
dait at

fact, the right-hand terms of these equations contain a small parametere and also contain

Lt

both @ and @. which are slowly varying functions of the time with period 7 = —. We can
Q]

transform the equations (2.1.14) and (2.1.15) into more convenient form. Now, expanding
siny flacosy,—awsiny) and cosy f(acosr;/,w.m)sim;/) in Fourier series in the total

phase i . the first approximate solution of (2.1.5), by averaging (2.1.14) and (2.1.15) with

5
AI’T
period T = , is
0}
d ; 2n .
e S [siny f(acosy.—awsiny) dy,
dt 2n ™ 0
0 , (2.1.16)
e : Icos W S (acosy.—amsin ) dy,
di 2noa

where a and @ are independent of time under the integrals.

Krylov and Bogoliubov [50] called their method asymptotic in the sense that & — 0. An

asymptotic series itself is not convergent, but for a fixed number of terms the approximate



solution tends to the exact solution as € tends to zero. Later, this technique has been
extended mathematically by Bogoliubov and Mitropolskii [33], and extended to non-
stationary vibrations by Mitropolskii [59]. They assumed the solution of the nonlinear

differential equation (2.1.5) of the form
x = acosy + & u (a,y) + g2 sy (a, 1) +eene +¢" u, (a, )+ oY, 21D

where u,, (k =1, 2,...,n) are periodic functions of 1 with a period 2 7, and the quantities

a and y are functions of time 7. defined by

{ :

% =& A () + & Ay @)+t €74, (@) +O ("),

dt

ﬂ_f)'l'ﬁ ﬂ( )_;r_ EB [' ) ,f?B e . {) cnl ’)I IS)
e Bi(a) + € By (a) +.....+ " B, (a) +O (") (2.1.

The functions #«,. 4, and B,, (k=1,2,....n) are to be chosen in such a way that the
equation (2.1.17), after replacing @ and y by the functions defined in equation (2.1.18), is a
solution of (2.1.5). Since there are no restrictions in choosing functions 4, and B, , it
generates the arbitrariness in the definitions of the functions wu, (Bogoliubov and

Mitropolskii [33] ). To remove this arbitrariness, the following additional conditions are

imposed

2

J“: (h.yr)cosy dy =0,
0
J‘rr* (a,y)siny dyr =0.

]

(2.1.19)

Absences of secular terms in all successive approximations are guaranteed by these

conditions. Differentiating (2.1.17) two times with respect to ¢, substituting the values of

d x a:
% —— and——
dt dt-

into (2.1.5). using these relations in (2.1.18) and equating the coefficients

of ¢ *, (k=1,2.---.n) result arecursive system



(32
U

®° ( ; +uy ) = f(k_l} (a, ) + Z(D(GB;( cos\y + A siny ), (2.1.20)
oy

where _f“)' (a,y) = f (acosy, —amsiny) and
(1] 5 5 i ) @ul
F (a) =uy £ (acosy, —amsiny) + (4, cosy —aB) siny +mn—)

x fdx (cosy, — amsin ) +(aB|2 -4, i%')c-osw (2.1.21)

dt

2 %)
A Bosgroly P iy ey (i P oy 1 2 .
da a oy

Here %" isa periodic function of y with period 2 which depends also on the amplitude

a.
Therefore, fU‘_') and #, can be expanded in a Fourier series as

o

f”(_” (a,q;]:g[()k_])(a) + X (gn(k_l)(a) cosny + h,(?k_l)(a} sin n\p),

iy, (2.1.22
o
up (a,y) =vt(}k_l}(a)+ > ('.v,(f_')(a) COSJ’.-'\|1’+1-l'£k_I)(a) sin n\p),
n=|
where
.f.»’f(f_l) = ~‘—j f“‘_” (acosy, — ansiny)dy
2n
(=1} . 1% ) .
25 =— _f i (acosy, — amsiny)cosmy dy (2.1.23)
To
R A SR —
hy 7= J_f (acosy, —amsiny)sinmydy, =1
g

Here, vlu‘“l} = w:‘rk“” =0 for all values of k. because both integrals of (2.1.19) vanish.

Substituting these values into the equation (2.1.20), we obtain



\ . s i :
0* N a)+ Ezm‘ (=n2 Y[ N a)cos my + w1 (a)sin my ]
=

= g(()”‘ _'](a)+ (gl(k_”(a)+ 2wa By )cos n\p+(hl(k_1)(a)+ 20A;, )siny (2.1.24)

(L
+ Y [g“"_”(a)cos ny + h,(f_”(a)sinnq; ]

n
n=2

Now equating the coefficients of the harmonics of the same order, yield

_ (k-1)
g¥Na)+2wa B, =0, h,“"”(a)Jr 204, =0, m‘é"_'J(a):igU q(a),

S0y = ) ey )

s , 2 nz1 (9.1:08)
(oz(lwnz) 0> (1-n")

These are the sufficient conditions to obtain the desired order of approximation. For the first

order approximation, we have

- hl(ﬂ)(a)__ 1 2n

= [ f(acosny, —awsiny)siny dy,

20 2nom _
(2.1.26)
g((’) 1| ¢
B=-=l—=- [f(acosty, —awsiny)cos\y dy.
2am 2naw |
Thus, the variational equations in (2.1.18) become
da g %, .
e : J‘f (acosy, —amsiny )siny dy.
di 2@
e (2.1:27)
dy &g :
il =@ — _[_f((r cosy . —awsiny )cosy dyr.
dt 2raw

It is seen that, the equations of (2.1.27) are similar to the equations in (2.1.16). Thus, the first

order solution obtained by Bogoliubov and Mitropotskii [33] is identical to the original

solution obtained by Krylov and Mitropotskii [50]. Secondly, higher order solutions can be

found easily. The correction term u, is obtained by (2.1.22) on using (2.1.25) as
g{{f})(u) (0)(0)005;1'1;: + h,gu}(a) sin ays

i < &n
w = g b - %
® n=2 o (I-n7)

(2.1.28)

10



The solution (2.1.17) together with #, is known as the first order improved solution in which
a and w are obtained from (2.1.27). If the values of the functions 4, and B, are substituted
from (2.1.26) into the second relation of (2.1.21), the function f{” and in the similar way.
the functions .4,. B, and u, can be found. Therefore, the determination of the higher order

approximation is complete. The KB method is very similar to that of Van der Pol and related

to it. Van der Pol applied the method of variation of constants to the basic solution

: R ; . . .
x=acoswt+bsinwt of ~d—2+ @’x = 0, on the other hand Krylov-Bogoliubov applied the
!

same method to the basic solution x = acos(w?+6) of the same equation. Thus in the KB
method the varied constants are « and €. while in the Van der Pol’s method the constants
are a and b. The method of Krylov-Bogoliubov seems more interesting from the point of
view of applications, since it deals directly with the amplitude and phase of the quasi-

larmonic oscillation.

Volosov [77] and Museenkov [64] also obtained higher order effects. The solution of the
equation (2.1.4a) is based on recurrent relations and is given as the power series of the small
parameter. Cap [46] solved the equation (2.1.4b) by using elliptical functions in the sense of
Krylov and Bogoliubov. The method of Krylov-Bogoliubov (KB) has been extended by
Popov [69] to damped nonlinear systems represented by

N

g “'+2kﬁ+m2x=8.f{%£~x ; (2.1.29)
{

df: di

dx . ’ o B " 5
where -2k o is the linear damping force and 0 <k <. It is noteworthy that, because of
df

the importance of the Popov’s method [69] in the physical systems, involved damping force,
Mendelson [57] and Bojadziev [42] retrieved Popov’s results. In case of damped nonlinear

systems the first equation of (2.1.18) has been replaced by

%ﬁ ——ka+e A(a)+&* Ay (@) +.t "4, (@) +O(™) R
at

Murty and Deekshatulu [61] developed a simple analytical method to obtain the time

response of second order nonlinear over-damped systems with small nonlinearity represented



by the equation (2.1.29), based on the Krylov-Bogoliubov method of variation of parameters.
Alam [21] extended the KBM method to find solutions of over-damped nonlinear systems,
when one root of the auxiliary equation becomes much smaller than the other root.
According to the KBM method. Murty et al. [62] found a hyperbolic type asymptotic
solution of an over-damped system represented by the nonlinear differential equation
(2.1.29), i. e., in the case k > w. They used hyperbolic functions, cosh ¢ and sinhg instead
of their circular counterpart, which was used by Krylov, Bogoliubov, Mitropolskii, Popov
and Mendelson. In case of oscillatory or damped oscillatory process cosh ¢ may be used
arbitrarily for all kinds of initial conditions. But in case of non-oscillatory systems cosh ¢ or
sinhe should be used depending on the given set of initial conditions (Bojadziev and
Edwards [43]. Murty et al. [62]. Murty [63]). Murty [63] has presented a unified KBM
method for solving the nonlinear systems represented by the equation (2.1.29), which cover
the undamped, damped and overdamped cases. Bojadziev and Edwards [43] investigated
solutions of oscillatory and non-oscillatory systems represented by (2.1.29) when & and @
are slowly varying functions of time ¢. Arya and Bojadziev [30. 31] examined damped
oscillatory systems and time-dependent oscillating systems with slowly varying parameters
and delay. Sattar [73] has developed an asymptotic method to solve a second order critically
damped nonlinear system represented by (2.1.29). He has found the asymptotic solution of

the system (2.1.29) of the form,
x=a(l+y)+e u(ay)++e"u,lay)+ O(z: mhL ) (2.1.30)
where a is defined by the equation (2.1.18a) and i is defined by

‘;—“’ =l+& Cj(a) + &° C3 (@) +. v £" C,y (a) +0@E™ (2.1.18b)
{

Osiniskii [66]. extended the KBM method to a third order nonlinear differential equation.

13 x 1%y i [d*x dx _
= }-l—c‘l%+c‘2ﬂ+c3x:£f - :.:‘x, 2.1.31)
dt’ dt- di dt* dt

where ¢ is a small positive parameter and f is a nonlinear function. He assumed the

asymptotic solution of (2.1.31) in the form



x=a+bcosy+e u](a,b, y)+ee+g” un{rr.b.qf)+o(a"+] ), (2.1.32)

where each u, (k =12.....n) is a periodic function of  with period 27 and a,b and

w are functions of time t . given by

%“?‘ =~ha+e Aj(a) + 82 Ay (@) + .t "4, (a) +O (™),

[

db : 2 n n+l1 et
—t=—ub+a Bi(b) +€° By (b) +....+ €" B, (b) +O(e"" "), (2.1.33
dy 2 n n+l

Wzawa Ci(0) +°Cq (b) +.....q 87 C; (b) +O(e™" ),

where — A, — £ @ are the eigen-values of the equation (2.1.31) when ¢ =0.

By using the KBM method, Bojadziev [34] has investigated solutions of nonlinear damped
oscillatory systems with small time lag. Bojadziev [39] has also found solutions of damped
forced nonlinear vibrations with small time delay. Bojadziev [40], Bojadziev and Chan [41]
applied the KBM method to solve the problems of population dynamics. Bojadziev [42] used
the KBM method to investigate solutions of nonlinear systems arised from biological and
biochemical fields. Lin and Khan [53] have also used the KBM method to some biological
problems. Proskurjakov [70] and Bojadziev ef al. [35] have investigated periodic solutions of
nonlinear systems by the KBM and Poincare method, and compared the two solutions.
Bojadziev and Lardner [36, 37] have investigated monofrequent oscillations in mechanical
systems including the case of internal resonance, governed by hyperbolic differential
equations with small nonlinearities. Bojadziev and Lardner [38] have also investigated
solution for a certain hyperbolic partial differential equation with small nonlinearity and large
time delay included into both unperturbed and perturbed parts of the equation. Rauch [71]
has studied oscillations of a third order nonlinear autonomous system. Bojadziev [44] and
Bojadziev and Hung [45] developed a technique by using the method of KBM to investigate
a weakly nonlinear mechanical system with strong damping. Osiniskii [67] has also extended
the KBM method to a third order nonlinear partial differential equation with initial friction
and relaxation. Mulholland [60] studied nonlinear oscillations governed by a third order
differential equation. Lardner and Bojadziev [51] investigated nonlinear damped oscillations

governed by a third order partial differential equation. They introduced the concept of



“couple amplitude” where the unknown functions A,, B, andC, depend on both the

amplitudes @ and b. Bojadziev [44] and Bojadziev and Hung [45] used at least two trial
solutions to investigate time dependent differential systems; one is for resonant case and the
other is for the non-resonant case. But Alam [26] used only one set of variational equations.
arbitrarily for both resonant and non-resonant cases. Alam er al. [28] presented a general
form of the KBM method for solving nonlinear partial differential equations. Raymond and
Cabak [72] examined the effects of internal resonance on impulsive forced nonlinear systems
with two-degree-of-freedom. Later, Alam [15. 17] has extended the method to n-th order
nonlinear systems. Alam [I8, 24] has also extended the KBM method for certain non-
oscillatory nonlinear systems when the eigen-values of the unperturbed equation are real and
non-positive. Alam [11] has presented a new perturbation method based on the KBM method
to find approximate solutions of second order nonlinear systems with large damping. Alam er
al. [13] investigated perturbation solution of a second order time-dependent nonlinear system
based on the modified Krylov-Bogoliubov method. Sattar [74] has extended the KBM
asymptotic method for three-dimensional over-damped nonlinear systems. Alam et al. [12]
extended the KBM method to certain non-oscillatory nonlinear systems with varying
coefficients. Later, Alam [23] has unified the KBM method for solving n-th order nonlinear
differential equation with varying coefficients. Alam and Sattar [10] studied time dependent
third order oscillating systems with damping based on an extension of the asymptotic method
of Krylov-Bogoliubov-Mitropolskii. Alam [21] and Alam ef «l. [27] have developed a simple
method to obtain the time response of some order over-damped nonlinear systems together
with slowly varying coefficients under some special conditions. Later, Alam [17] and Alam
and Hossain [22] have extended the method presented in [21] to obtain the time response of
n-th order (n = 2), over-damped systems. Alam [19. 20] has also developed a method for
obtaining non-oscillatory solution of third order nonlinear systems. Alam and Sattar [8]
presented a unified KBM method for solving third order nonlinear systems. Alam [14] has
also presented a unified KBM method, which is not the formal form of the original KBM
method, for solving »-th order nonlinear systems. The solution contains some unusual
variables, vet this solution is very important. Alam [25] has also presented a modified and
compact form of the Krylov-Bogoliubov-Mitropolskii unified method for solving a n-th

order nonlinear differential equation. The formula presented in [25] is compact, systematic



and practical, and easier than that of [14]. Alam [26] developed a general formula based on
the extended KBM method, for obtaining asymptotic solution of an n-th order time
dependent quasi linear differential equation with damping. Akbar ef al. [1] presented an
asymptotic method based on the KBM method to solve the fourth order over-damped
nonlinear systems. Later, Akbar et al. [2] extended the method present in [1] for the fourth
order damped oscillatory systems. Akbar er al. [3] also developed a simple technique for
obtaining certain over-damped solution of an n-th order nonlinear differential equation.
Akber er al. [4] presented the KBM unified method for solving n-th order nonlinear systems
under some special conditions including the case of internal resonance. Akbar et al. [6] also

developed perturbation theory for fourth order nonlinear systems with large damping.

2.2 Near critically damped nonlinear systems

The Krylov-Bogoliubov-Mitropolskii (KBM) method [33, 50], was basically developed to
find periodic solutions of second order nonlinear differential equations with small

nonlinearities,
2, "

d—; + O x=—¢ f(x.ﬂ), (2.2.1)

dt dt
where ¢ is very small positive parameter but not equal to zero.
First, Popov [69] has extended the KB method. The KBM [33, 50] method is particularly
easy to understand and extensively used to obtain approximate solution of weakly nonlinear
systems. OFor the physical importance, Mendelson [57] reproduced Popov’s results [69].
Murty ef al. [62] and Alam [9] extended the method to nonlinear over-damped systems.
However, both over-damped solutions [62, 9] are not up to the mark for certain damping
effects especially near to the critically damped. Alam [9] has developed a new perturbation
technique to find approximate analytical solution of second order both over-damped and
critically damped nonlinear systems. First, Alam and Sattar [7] developed a method to solve
third order critically damped autonomous nonlinear systems. Alam [16] redeveloped the

method presented in [7] to find approximate solutions of critically damped nonlinear systems
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in the presence of different damping forces by considering different sets of variational
equations. Later, he unified the KBM method for solving critically damped nonlinear systems
[29]. Alam [20] studied a third order critically damped nonlinear system whose unequal
eigen-values are in integral multiple. Alam [20] has also extended the method to a third order
over-damped system when two of the eigen-values are almost equal (7.e., the system is near
to the criticallly damped) and the rest is small. Recently, Alam [24] has presented an
asymptotic method for certain third order non-oscillatory nonlinear system, which gives
desired results when the damping force is near to the critical damping force.

In this thesis, we want to develop the KBM method to solve fourth order damped oscillatory

and near critically damped non-oscillatory nonlinear systems with small nonlinearities.
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CHAPTER 3

METHODOLOGY

In this chapter, we have discussed the methodology to solve fourth order nonlinear
differential equation. On the basis of the eigen-values of the unperturbed form of the
equation the solution may be oscillatory or non-oscillatory. In 3.1 we have considered the
oscillatory system and in 3.2 we have considered the non-oscillatory system. In the
oscillatory case the system considered is damped, where as, in the non-oscillatory case

the system is near critically damped.

3.1 Approximate Solutions of Fourth Order Damped Oscillatory Nonlinear Systems

Let us consider a weakly nonlinear damped oscillatory system, which is governed by the

differential equation

4 3 3 _
2 JL+C| d;\+czd '\+c3d—l+c4x:8f(x), 3.1.D)
gt Cad  Cde

where € is a small positive quantity, f is the given nonlinear function and

-

¢, €y, C3, €4 are arbitrary constants defined in terms of the eigen values — A J012L 23

4 4 4

4) of the unperturbed form of (3.1.1) as ¢; = X X;, ¢p = Y AA;, c3= XAk hy
i=1 i, j=I ijk=1

i#j iw j*k

4
and ¢4 =[]A;.

i=]
Suppose, for the damped oscillations, the two eigen-values say — A;,— A, are real and the
other two —A5,— XAy are complex, so they are conjugate to each other.

If €= 0, then the unperturbed solution of the equation (3.1.1) is,

M=

x{t. 0)= Ta; g, (3.1.2)

i=1
where a; o (1= 1, 2, 3, 4) are arbitrary constants.
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If & # 0, then we consider the solution of the equation (3.1.1) of the form
4 - % 3. 3 -
x{t;e)= Yae +eu(ay.ay,ay.a4,t)+e%us(ay,ar,a3,a4,t)+€ -+, (3.1.3)
i=1

where each a, (i =1, 2, 3, 4) satisfies the differential equations

da;(t _
(;r ) - 814;((1[,(?2 ,03,04,f)+82 Bj(al,a2,03,04,f)+ 83 (314}
We will remain confined within some first few terms, 1,2, 3,....... , m in the series
expansion (3.1.3) and (3.1.4) and calculate the functions Uy, Uy, Uz,....and 4;, B,

(i=1, 2, 3, 4). so that , @, appearing in (3.1.3) and (3.1.4) will satisfy the given differential

equation (3.1.1) with correctness of ¢

].Basically, the solution can be obtained up to
the correctness of any order of approximation. However, owing to the rapidly growing
algebraic complexity for the formulae, the solution is, in general, confined to a lower
order, usually the first [62]. In order to determine these functions, it is assumed that the

functions u,, 5, u3,....do not contain the fundamental terms, which are included in the

series expansion (3.1.3) of order gl Thus, the first approximated solution may be taken
as
4 - At .
*te)=Ta,e” " +em, (3.1.5)
i=l
where each a, (i= 1.2, 3, 4) satisfies the following form of the differential equations
da; (1)

=g A (ay,a,,a,,a,,t) (3.1.6)
o7 12,03, 0y

Differentiating (3.1.3) four times with respect to t, then substituting x and the
2
d*x d’x d*x dx

y —— , — in the original equation (3.1.1), using the relations in
dt dar’ 1 ¢

derivatives,

(3.1.4) and equating the coefficients of &, we will obtain equation involving %, and A, (i
=1,2,3,4)

) : -\t
with /% = f(x,) on the right .where x5 = Y a;(r)e” ™.

i=]

: (0) - :
In general. the function /"’ can be expanded in a Taylor series as
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(0 ittt m m m m (—m h = b, —m b —m h M

3 — 7 Y 2 i 4 171 i S 373 474

/ Z f'm],nh.m,‘,lllu a . a, “d; “dy "€ )
2 3 Y

M ==, ==, ==0,m , =~
According to our assumptions, #; does not contain the fundamental terms, the obtained
equation can be separated into five equations for unknown functions, 4, 4,, 43, A and

lf].

Putting the value of _f'(O} and separating in terms of e_k"!(i =1,2,3.4), we will get
separate equations involving A4;.4,, 45, 4, and u, respectively.

The particular solutions of these equations give the results of the functions
A, A, A3, Ay and wy. The values of 4,,4,.4;.A4; will be used on (3.1.6) to
determine a, (i = 1, 2, 3, 4) and the final values to be substituted on (3.1.5). Thus, the

determination of the first approximate solution is completed. The above process can be

applied to the higher order approximations.

3.2 Asymptotic Solutions of Fourth Order Near Critically Damped Non-Oscillatory

Nonlinear Systems

Let us consider the following fourth order weakly nonlinear ordinary differential equation

4 3 2

& 1°x
jfﬂ*r%—fwze {d e j—"‘w’f——sf(\) 3.2.1)
t £ $e t

where ¢ is a positive small parameter; f is the given nonlinear function and e;, e,, e,
4

are constants, defined in terms of the eigen values —A; (=1, 2, 3, 4 ) of the unperturbed

4=

form of (3.2.1) as ¢; =

Lol
i=l

4 4 4
Ais €= 2Zhh;, 3= Z?L Ak and ey =[], .
i, j=I A=] i=1
i#] j#k
Suppose, for the near critically damped nonlinear system the two real eigen-values say
—k and —X, are almost equal and the other two eigen-values say — A3 and —A4 are
real and different.

When ¢ = 0, the equation (3.2.1) becomes linear and the solution of the linear equation is
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iyt —hyt
5t € —€
Y+ @y g —— |, (3.2.2)
- M =4,

) - 1 -3 4
x(2,0) = as ge ™ +ay 6™ +oay(e ME e

where a; o (i=1, 2, 3, 4) are arbitrary constants.

Whene # 0. following the method presented by Alam [24], we choose the solution of
3.2.1) in the form

-kt -kt
1T e 2

4

= 5 -) ot e
x(f.€) = as(t)e 3! +ay (e +;a,(r)(e Mpe™ )+a,(t)

veulag,a.,a5,0,,0) %€ ..,

where each a; (i=1. 2, 3. 4) satisfies the following first order differential equations

da(t

Lma:AI{a],cafg..a3,c;*4.f)+82---
dt

da- (1
2( ) :8.42((1],02,({3,(74,{)"}‘82
dt

das (1 _
J()=8A3(G|.02.(13.04.”+82"' (3.2.4)
dt

day (1

and ';():SA4(G|,02,(13,(¢‘4,£)+82---

dft

Confining only to a first few terms 1, 2, 3, ...., # in the series expansion of (3.2.3) and

-

(3.2.4). we calculate the functionsu; and A4;(i=1, 2, 3,...., n ), such that a;(¢)(i=1, 2, 3,

..... ). appearing in (3.2.3) and (3.2.4), satisty the given differential equation (3.2.1) with

n+l
&

an accuracy of order . To determine the unknown functions uy, 4;. Ay, Ay, A4 it

is assumed (as customary in the KBM method) that the correction term #; does not

contain secular-type terms te ™ and/or re_k’r for different eigen-values, which make
them large. Theoretically. the solution can be obtained up to the accuracy of any order of
approximation. However, owing to the rapidly growing algebraic complexity for the
derivation of the formulae, the solution is, in general, confined to a lower order usually

the first order. Differentiating the equation (3.2.3) four times with respect ¢, substituting

el d*x dPx d*x dx ) . - )
the derivatives B N LA and x in the original equation (3.2.1), using the
dt de®  dr* dt

relations in (3.2.4) and then equating the coefficients of €, we obtain
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(D+0)(D +%y (D +h3)(D+Ag iy

e (0 T ) ORI IR [ (R g
i~ D S B R D~ D~y STy

I [e“*l‘(p—xl RV (T W MR g +}

e (3.2.5)
e (D =hy +M)D =g + A3 XD =Dy +14) 4

2

(D + M)[e‘“ Bty = 5’ e e —%D)]Az

1
A=Ay

; A+ A (0
D[I)+k3— ‘2 ]Azz—f“

+4-

(e_klf(},;; “kl)-i-é’_k:r(?\.-g —*)\.4)4-(_6’—}']; —E’_lzr )D)x

where f (0 f(xp) and

=i d =Kl
Shit = | =y S e ' —e
xg=az(Ne 3 +ay(t)e " +:a;(r)(e ' te 3r)+a:(r)[l—]
= 1 = &2

It is assumed that the functional value f(m can be expanded in power series as in the

form (detail can be found in [24] )

B el B

0) _ < -\t -kt 1 e A S e ! 2 .

[ =3 F(age % jage * J—ayfe "\ +e 2 )tapy| ——— | 5 (3.2.6)
r=0 2 A=A

where n is the order of polynomial of the nonlinear function /. The assumption is
certainly valid when fis a polynomial function of x. Such polynomial functions of f
cover some special and important systems in mechanics. Following Alam [16, 20] we
assume that udoes not contain the terms Fyand /| of f(m, since the system is
considered near to a critically damped non-oscillatory nonlinear system. Substituting the

l]r elgr

k . : — e -
value of f O into (3.2.5) and equating the coefficients of powers of | —————— |, we

A=Ay
will obtain equations for u; and 4, (i = 1, 2, 3. 4). Krylov-Bogoliubov-Mitropolskii
(KBM) [33, 50], Sattar [73], Alam [7, 9, 16, 20] imposed the condition that #; will not
contain the fundamental terms (the solution presented in equation (3.2.2) is called the
generating solution and its terms ate called fundamental terms) of f O 1t is not easy to

solve the equations for the unknown functions 4, 4,, A; and Ay, if the nonlinear
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function f and the eigen-values —X;,—Ak,, —X3.—Xy of the corresponding linear
equation of (3.2.1) are not specified. When these are specified, the values can be found
subject to the condition that the coefficients in the solutions of them do not become large
(Akbar et al. [4], Alam [16, 24]). For this reason, we have assumed that the relations,
limit Ay = %, and A3 = 3y, exist among the eigen-values. Imposing the relations.
limit A = A, and A3 = 3k, we can find the values of 4;, 45, A; and 44. Substituting

; ; : ; da;
the values of 4, 45,45 and A4, in the equation (3.2.4), we obtain the results of —J"—
dar

(1=1, 2. 3, 4), which are proportional to the small parameter €, so they are slowly varying
functions of time /£, i.e., they are almost constants and by integrating the equations of
(3.2.4), we obtain the values of a;(i=1, 2, 3, 4). It is laborious to solve equation for .
However, as A; — L, it takes the simple form and can be solved. Finally, substituting
the values of a; (i=1, 2, 3, 4 ) and u; in the equation (3.2.3), we will get the complete

solution of (3.2.1).
Thus, the determination of the first approximate solution is completed. The above

process can be applied to the higher order approximations.
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CHAPTER 4

RESULTS AND DISCUSSIONS

[n this chapter, we have shown the application of the methodology discussed in the previous
Chapter 3. Here, examples have been chosen to utilize the tools devised earlier. In 4.1 we
have solved a particular differential equation, which represents damped oscillatory system.
We have chosen a differential equation of fourth order with small nonlinearities. The
methodology adopted to solve this is discussed in 3.1. Here the results and findings are
discussed in succession. In a similar fashion, with suitable example in 4.2, we have discussed
the near critically damped non-oscillatory nonlinear system, whose methodology is discussed

in 3.2.
4.1 Approximate Solutions of Fourth Order Damped Oscillatory Nonlinear Systems
4.1.1 Example

As an example to solve damped oscillatory nonlinear system, we consider the fourth order

nonlinear differential equation of the form

d'x d’x d*x dx 3
T+ — ke s —ex (4.1.1.1)
dt dr’ dt” dt

The unperturbed solution of (4.1.1.1) as prescribed in (3.1.2) can be rewritten as

x(t.0) = a1 cosh(of+ @) + e cos(®af + ).

Also, from (3.1.3), the first approximate solution is

: -kt -kt
x(t,e)=ae "' cosh(oz+@;)+be "* cos(wyt+@y)+Eu

3

For equation (4.1.1.1), we have, f =—x~ and

A —hot Aot

_ o = 1 -
j[m:—(cne " taye "2 +me Y +tage 4
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or,

-3 3 —312r

3 1£+a?_Je 3 =3kt 3 —314:

f(0)=—{a13e +az’e " +aye

—(2&, +4, )t e—(zll Ao i

2 74
+3a,"aje +3a,"a;
—(2h, +X W
+3(122a]€ 3y &

3a,"a

1 )
+3a,"ase +3a,"aye

+ 3a32(ll

- —(2h, +X N
+Ja4za]e( )

+3a3"aze +3a3"aye

-2k, +A
e (o 2)f+3a42a33

—(A A, +A, )

+3a4zaze

—(A, +A, +A M
+6ajarase By ) +06aja,aye
~(l|+l3+l4)r

—(h,+A_ +A WU
+60'](23(14(3 ( 2 3 4} }

+06ayazaye
Now equating the like terms, i.e,. in terms of e Mt (1=1,2,3,4), we have

e—)"l'r(D_)\_l —{—A’z)(D'—'}Ll +13)(D'-7\.| +?~,4)A]

2 e—{'2l1+k2]z

:—{3a1 a g N T T

+6G|a3a4€ f

P T W YRy B VRS VT T SRR VR W
(212+llj.r —{?L2+7\.3+k4)£

= —{3(!22016_ +06a,a;aye

}

& "3 (D= ¥ (D= g 400 (D g 40 ) s

—(2h, A =y ¥Ry #13 )y

= —{3a32a4e +6ajayaze

& D g D Dy -0 D~ g% )

2 (A, A )
e -

—(h +h, +h N
=—{3G4 a3 ( ! 2 4;' }

+0ayaraye
and

(D+2 D +25 (D +23)(D+ 2y g

(3 301 3 =3k, 3 —=3h./ 3 =3kt
=—{a; e +ase = shdgTe il 0 T

(2% +A N
+3a1204€.( 1 Fhe)

—(212 +},3): 2

BN ) —(2l|+l,)r
+ 34, aze ?

—(2h_ +A N
3a32a4c~3( 2+h)

~(2h, +h, )t

2
+3a, ase

2 —(2%,+L N 2
+3a3"ae il +3a3"aye
—(2h, +2 )t ~(2h, A, )

2
+3a42ale +3a,"ase

.
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2 Lle—(ZIkI +h, Ot
—{2h2+13)r 2 —{2l3+ld)r

—(2l3+}k|}t 2 —~{2?L,_+?u2'}.-’ ~ 2 —(2L+l‘}r
e ? 47

—(2h, +h N

(4.1.1.2)

(4.1.1.3)

(4.1.1.4)

(4.1.1.5)

(4.1.1.6)

(4.1.1.7)



Solving the equations (4.1.1.3)-(4.1.1.7) and considering A =kj -0, A, =k +0,,

A3y =k, —i, and Ly = ky +iw,, and then substituting these values, we obtain

()
3ajazagse ohit

4= (ky — o) )k +kr — @) +iody )k + ky — 0 — i)
4 3alzaze_2k1"
2(ky —0,)(3ky + ky - 0 +i0,)3k) —ky — ) —im,)’
- 302(13048_2}‘3’
T (kptop)ky ko o)+, )k +hy + 0 —i®,)
0 3a1a323_2k"' ‘
2(ky + )3k —ky + @) +i05)3k; —ky + ) —i,)
N 30|a2036_2kl{
37 (kg =00 )(ky + ky + @) — 05 )y + ko — 03 — i)
i 3(132(146'_21{“!
2(ky — i) (3ky — ki +©) =i, )(3ky — ky — ) —i,)’
and
Ly ?na]azaﬂz_z’hr
(K +ioy )k +ky + 0 +iwy Nk +k —0) +im,)
3a3a4ze_2k?"'

2(ks +i0;)3ka —ky + @) +iw5)(3ky —ky — ) +iw,)

(4.1.1.8)

Putting the values of (4.1.1.8) into equation (3.1.4) and neglecting the second and higher

powers of € (since € is very small), we get

3(11(13049_2!"’-!
da; _ A (ky =@ )k +ky =) +i00, )k + ky — 0 — i)
dt 30]2a:e“2k" ,
k+ 2(ky —0)Bk) + ks — ) +i0,)3k) —ky — ) —i®5)

4
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—_
3asasaye 2k,
da (ky + @) )ky +ky + 0 +i, )k + ky + 0 —i®,)
—_—= SJ \,
df . 3010226—4}{]{
E(kl +(O|)(3k| —kz + 0y +1'-.U)2 )(3;€] ""kz + @ —n"(l):)_)‘
3a|aza3e_2k'f
da:; (kl —I(.l}z)(f,ﬂ +k2 +UJI—1.(02)(kl+k2 —UJI —10)2)
= £+ e’ 4.1.1.9)
dt 3an aze” !
q(kz""l(l)z)(Bkj —‘kl+(01—1(1)2)(3k2 _kl Iﬂ)z)
and
3al.az.a_,_1e_2k’r
{,fa4 (k| +IU)’_) )(kl +k2 +(l]] +I(l)2 )(k] +k2 —(D] +I.(02)
dt 3a- 0423 2kt
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Now, substituting a; = 5 a, = o T8 as = 5 ay = into the equation

(4.1.1.9) and simplitying, we obtain,
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t

1b -2k 3 =2k
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dt

il 2k

a91 =8[m]a e 4 mab2e ’2’], (4.1.1.10)
and S[S i + 8 bz _MI].
where
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In a similar manner the solution of (4.1.1.7) can be written as
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- —m+2i g 2m—n (-m—] =3k
u :_E Ya b coshlr (o, + cpmj}gm‘,, g m
n=lm=n
2 2 3k 1
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Tk D o i (100 w2 {y ky +=D)" 302 +0,7)
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Equation (4.1.1.10) has no exact solution. Since, —, — i and —— are

di’ dir’ dt dt

proportional to the small parameter €, therefore they are slowly varying functions of time ¢

2n ] : ;
with the period 7" = —. Moreover, by assuming @ and b are constants in the right hand
®

side of equation (4.1.1.10) and by integrating equation (4.1.1.10), we have
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3 -2kt 9% =2kt
2 j 2
P {flao (-e 1) Dhaobp"(-¢ )},
2 ky

k)
3 —2k,t 2 ~2k t

b=b0+i robg (1—e 2 )+I|a0 bo(1-e ~1) ,
2 k2 ky

2 -2k t o) —2k.1.

g |map (l—e V) mby"(l—-e 2)

= 0 e +
¢1=01(0) 2[ 0 =

d =@5(0)+—
an 02 =92(0) > - P

; {523’02“ —e "1 i s189” (1- 6= )}

Therefore, the first approximate solution of the equation (4.1.1.1) is

—k -k
x(t,e)=ae N cosh(ot +¢,) +be 2! cos(m,f + @, )+ €Uy,

where a, b, ¢; and @, are given by (4.1.1.12) and u; is given by (4.1.1.11).
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4.1.2 Discussion

By balancing harmonic terms and separating equation (3.1.5), we have five equations in
which the variational equations contain the first harmonics and the correction terms contain
harmonics with multiple arguments. These assumptions for the second order and third order
differential equations certainly hold. But these assumptions for the fourth order differential
equations do not hold sufficiently. When one of the eigen-values of the corresponding
unperturbed equation is a linear combination of the other eigen-values, both the variational
equations and the correction terms contain secular type terms. Then the solutions fail to give
the desired results. In these cases, to obtain the desired results, the technique in [22, 25, 26] is
necessary. Following the KBM method, an asymptotic method is developed to obtain the
solutions of a fourth order damped oscillatory nonlinear differential equation with small
nonlinearities, when out of the four eigen-values of the corresponding linear equations two
are real and the other two are complex. For some values of &y, k9, 07, 05, @1, ¢, and €
we have evaluated x from (4.1.1.13), in which a, b, ¢; and ¢, are evaluated from

(4.1.1.12). The corresponding second solutions of (4.1.1.1) are calculated by a fourth order
Runge-Kutta formula with a small time increment Af=0.05. Both the results are plotted in
Fig.(4.1.2.1) to Fig.(4.1.2.5) to show the comparisons between the analytical and numerical
results. From the figures it is observed that the analytical solution represented by equation
(4.1.1.13) along with the equations (4.1.1.11) and (4.1.1.12) agrees well with the numerical

solution.



i diy =10

by =1.0
0,(0) =1.570796

2.5 1 ©,(0) =1.570796
k = 0.5
ky =0.15
o, =025
0, =2.236068 .I
£=0.1

-0.5 -

Fig. (4.1.2.1)

Fig.(4.1.2.1) Comparison between analytical solution and numerical solution for chosen
values of arbitrary constants, eigen-values and small parameter ( analytic solution in solid

line — and numerical solution in dotted line oo o ).
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319 a, =1.0
by=1.0
¢,(0) =1.570796
0,(0) =1.570796
k, =0.6
k, =0.10

=1 @, =0.25 |
®, =2.236068
e=0.1

x 1
; 2 v 5 \J/W

Fig.(4.1.2.2)

Fig.(4.1.2.2) Comparison between analytical solution and numerical solution for chosen
values of arbitrary constants, eigen-values and small parameter ( analytic solution in solid

line — and numerical solution in dotted line o oo ).
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25 T al} — l .O
bg = IO
¢,(0) =0.523599
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21 kl = 0.5
ky =0.25
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1.5 - e =0.1
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1 4
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0.5 -
0 T
) 2 4 6 8 10
-0.5 -
t

Fig.(4.1.2.3)

Fig.(4.1.2.3) Comparison between analytical solution and numerical solution for chosen
values of arbitrary constants, eigen-values and small parameter (analytic solution in solid

line — and numerical solution in dotted line oo o0 ),
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25 M ao =l.0
bo =}0
©,(0) =0.523599
©,(0)=0.523599
2 ky =0.333333
k, =0.10
w; =0.25
0, =1.732051
1.5 - | e=0.1
> 1 4
0.5 - ﬂ
D V U v' 1
0 5 10
-0.5 - '
{

Fig.(4.1.2.4)

Fig.(4.1.2.4) Comparison between analytical solution and numerical solution for chosen
values of arbitrary constants, eigen-values and small parameter ( analytic solution in solid

line — and numerical solution in dotted line oo o ).
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2.5 - a, =1.0
b, =1.0
0,(0) = 0.523599
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a k, =0.333333
k, =0.10
o, =0.25
w, =1.414214
1.5 4 =]
> 14
0.5 -
§
0 T .JX T T T Y
0 4 6 8 10
-0.5
t

Fig.(4.1.2.5)
Fig.(4.1.2.5) Comparison between analytical solution and numerical solution for chosen
values of arbitrary constants, eigen-values and small parameter ( analytic solution in solid

line — and numerical solution in dotted line o oo ).
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4.2 Asymptotic Solutions of Fourth Order Near Critically Damped Non-Oscillatory

Nonlinear Systems

4.2.1 Example

As an example to solve fourth order near critically damped nonlinear system, we consider the

fourth order nonlinear differential equation of the form

4 3 2

a x d’x a°x dx 3

— e - ter—ep=—gr” (4.2.1.1)

dt dt dt® dt
The unperturbed solution of (4.2.1.1) as prescribed in (3.2.2), we have

—h t -\t
-\, t At 1 T R e ' —e 2

Xg=aze * +age ' +—ale ' +e 2 )+a,

Also, from (3.2.3) the first approximate solution is
~}~|; -kt

€

x(t.e)=as (e +a,(t)e " + %al e +e " Y+ ay ()

+euy(ay,ay,a;3,a4,t)

For equation (4.2.1.1), we have, f = > and
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Now equating the coefficients of powers of i we have
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Solving equation (4.2.1.5), we obtain

=(h,+2 2 =2kt

=2\t
Azzaz[nla328 ¥+ nyazaye +nyas”e ], (4.2.1.6)
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where
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A a0 200 )
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By = % B
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Hy =

T S S S

Now substituting the value of A, from equation (4.2.1.6) into equation (4.2.1.4), we obtain
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In order to separate the equation (4.2.1.7) for determining the unknown functions A4, 43
and A4y, we consider the most important relations among the eigen-values as limit 4; — X%,
and Ay =3k, (Akbar et al. [5], Alam [16, 24]). It is interesting to note that our solution
approaches toward a critically damped solution (found by Alam [24]) if A; — A&, . However,

the equation (4.2.1.7) has no exact solution unless A; — A,. Under these imposed

conditions and by equating like terms on the both sides of (4.2.1.7), we obtain
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and
MDD =g+ ks WD =g+ 85 g =0 (4.2.1.10)

The particular solutions of equations (4.2.1.8), (4.2.1.9), (4.2.1.10) yield respectively
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Putting the values of 45, A4;,4; and A4, from equations (4.2.1.6), (4.2.1.11), (4.2.1.12) and
(4.2.1.13) into the equation (3.2.4), we have
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and
da, (t
da4() _,
dt

dal(f) daz(f) da3(f) i da4(f)

are slowly varying functions of time ¢,
dt dt dt dt

The functions

because each of these functions varies as the small parameter €, and are thus almost
constant. Following Murty and Deekshatulu [61], Murty et al. [62], we assume that a; (i=1,
2, 3, 4) presented in the right hand side in the relations of equation (4.2.1.15), are constants.

Thus, by solving the relations of the equation (4.2.1.15), we obtain
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ag(t)=ay(0)

Therefore, we obtain the first approximate solution of the equation (4.2.1.1) as

o =t
= _ - - | G 2
x(t,) = aze ™ +age ! +%al(e M ye *2’)+a2{”]+gu], (4.2.1.17)
' y iy

—

where a;, a,. a3 and a, are given by the equations of (4.2.1.16) and u, is given by the

equation (4.2.1.14).
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4.2.2 Discussion

An asymptotic method, based on the theory of Krylov-Bogoliubov-Mitropolskii (KBM), is
developed for solving fourth order near critically damped systems under some specific
conditions with small nonlinearities, when all of the four eigen-values of the corresponding
linear equation are real. The relations, limit A, - A, and A, =34, among the eigen-values
are imposed to solve the system. We have compared the approximate solution obtained by
usiné our proposed perturbation method to the numerical solution to test the performance of
our approximate solution. Firstly, x(¢,&) is calculated by (4.2.1.17) by imposing the
conditions that limit A, = 4, and A, =34, in which «;, a,, a; and a4 are calculated by the
equation (4.2.1.16) and u, is calculated by the equation (4.2.1.14) for different sets of initial
conditions and for various values of 7. Secondly, a corresponding numerical solution of
(4.2.1.1) is computed by fourth order Runge-Kutta method. The approximate analytical
solutions and numerical solutions are plotted in the figures (From Fig.(4.2.2.1) to

Fig.(4.2.2.5). From these figures, we observed that the analytical solutions and the numerical

solutions are in good agreement.
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Fig.(4.2.2.1)
Fig.(4.2.2.1) Comparison between analytical solution and numerical solution for chosen
values of arbitrary constants, eigen-values and small parameter ( analytic solution in solid
”" line — and numerical solution in dotted line coo ),
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Fig.(4.2.2.2) Comparison between analytical solution and numerical solution for chosen
values of arbitrary constants, eigen-values and small parameter ( analytic solution in solid

line — and numerical solution in dotted line c oo ),
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Fig.(4.2.2.3)

Fig.(4.2.2.3) Comparison between analytical solution and numerical solution for chosen
values of arbitrary constants, eigen-values and small parameter ( analytic solution in solid

line — and numerical solution in dotted line o oo ),
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[

Fig.(4.2.2.4) Comparison between analytical solution and numerical solution for chosen

values of arbitrary constants, eigen-values and small parameter ( analytic solution in solid

line — and numerical solution in dotted line c oo ).
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Fig.(4.2.2.5) Comparison between analytical solution and numerical solution for chosen

values of arbitrary constants, eigen-values and small parameter ( analytic solution in solid

line — and numerical solution in dotted line oo o ),
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CHAPTER §

CONCLUSION

Following the KBM method, the asymptotic methods are developed to obtain the solutions of
fourth order nonlinear differential equations with small nonlinearities that represent damped
oscillatory and near critically damped non-oscillatory systems under some specific
conditions. For the damped oscillatory system out of the four eigen-values of the
corresponding linear equation, two are assumed to be real and the other two are complex;
where as, for the near critically damped non-oscillatory system all of the four eigen-values of
the corresponding linear equation are real. The relations, limit 4, = 4, and A, =34, , among
the eigen-values are imposed to solve the fourth order near critically damped non-oscillatory
system. The results obtained by the perturbation method with the propositions about the

eigen-values are in good agreement with those of the numerical method.
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