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At first Krylov and Bogoliubov l)rcseflted  a perturbation method known as 'the 

asymptotic averaging method' in the theory of nonlinear oscillations. Primarily, the 

method was proposed only to get the periodic solutions of second order autonomous 

systems with small nonlinearitics. Later, the method has been extended by Bogoliubov 

and Mitropolskii. At present the method is used to obtain the solutions of second and 

higher order nonlinear equations for damped oscillatory, over damped, near critically 

damped, critically damped, more critically damped systems under some special 

conditions. The unified Krvlov-13ooliubov-Mitropolskii (KBM) method is used to find 

approximate solutions of fourth order nonlinear systems with large damping. In this 

thesis. the KBM method has been modified and elaborated to find out the solutions of' 

fburth order damped oscillatory and near critically damped non-oscillatory nonlinear 

systems by imposing some restrictions on the cigen-values. For verification of the results 

obtained by the modi lied KI3M method, we have compared them with those obtained by 

the fourth order Runge-Kutta method and a nice matching is observed. 
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(.il APFER I 

I NTRODUCTION 

l)i flereiitial equation is a mathematical tool, which has its applications in many branches 

of knowledge of mankind. Numerous physical, mechanical, chemical, bi0102ica1. 

biochemical. and many other relations appear mathematically in the !brm of differential 

equations that are linear or nonlinear. autonomous or non-autonomous. General!, in 

many physical phenomena. such as spnng-mass systems. resistor-capacitor-inductor 

circuits. bendini of beams, chemical reactions, l)endultlms. the motion of the iOtalifl! 

mass around another body. etc. the differential equations occur. Also in ecology and 

economics the differential equations are vastly used. Basically, many differential 

equations involving physical phenomena are nonli neai. J)i llct'ential equations. which are 

linear are comparatively easy to solve and nonlinear are laborious and in some cases it is 

iiiipossible to solve them analytical lv. In such situations, mathematicians convert the 

nonlinear equations into linear equations by imposing some conditions. The method of' 

small oscillations is a well-known example of the linearization. But, such a linearization 

is not always possible and when it is not, then the original nonlinear equation itself must 

be used. With the discovery of numerous phenomena of self-excitation Of circuits 

containi ne. nonlinear equations of electricity, like, election tubes. gaseous discharc. etc. 

and in many cases of nonlinear mechanical vibrations of special types, the method or  

small oscillations becomes inadequate for their analytical treatment. The knowledge of 

the nonlinear equations is generally eonlned to a variety of rather special cases. There 

exists an important difference between the phenomena. which oscillate in steady state and 

the phenomena governed by linear di ffirential equations with constant coefficients. For 

example. oscillations or a l.enduilum with small amplitudes, in that the amplitude of' the 

ultimate stable oscillations seems to be entirely independent of the initial conditions, 

where as in oscillations coverned by a linear differential equation with constant 

coelhcients. it depends upon the iniial coivlitions. Originally the Krvlov-Bogol iubov-

Mitropolskii (KHM) method was developed for the systems only to obtain the periodlic 

a solutions of second order nonlinear differential equations. Now the method is used to 

obtain oscillatory as well as damped. critically damped. over danlj)ed. near criticall 

dam pcd. more critically dam ped use i I latoiv and non-uscillatory solutions of' second. ihi i'd. 



tourth etc. order nonlinear di itcrential equations by imposing some spec ifle conditions to 

make the solutions unilhrm. To solve nonlinear ditTerential equations there exist some 

methods. i\inong the methods. the method of perturbations, i.e., asymptotic expansions in 

terms of a small parameter, are Ibre most. Perturbation methods have recently received 

much attention as methods for accurately and quickly computing numerical solutions of 

dnamic. stochastic economic ec.luilibrium models, both single-agent or rational-

expectations models and multi-agent or game-theoretic models. A perturbation method is 

based on the following aspects: The equations to be solved are sufficiently "smooth" or 

sufficiently differentiable a number or times in the required regions of variables and 

parameters. At trst Van der p01 paid attention to the new oscillations i.e., sell-excitations 

and indicated that their existence is inherent in the nonlinearity of the di ffèrentia] 

equations characterizing the process. This nonlinearity appears. thus. as the very essence 

of these Phenomena and by linearizing the differential equation in the sense of the method 

of small oscillations, one simply ci iminaes the possibility ui investigating such problems. 

Thus it is necessary to deal with the nonlinear problems directly instead of evading them 

by dropping the nonlinear terms. The method of Krvluv and Hogol iubov is an asymptotic 

method in the sense that ; --> 0 . An asymptotic series itself may not be convergent. but 

for a flxed nuni her of,  terms. the approximate solution tends to the exact solution as c 

tends to zero. It may be noted that I ic term asymptotic is frequently used in the theory of 

oscillations in the sense that e' .....> . But in this case the mathematical method is quite 

different. It is an important approach to the study of such nonlinear oscillations is the 

small parameter expansion. Two widely spreaded methods in this theory are mainly used 

10 in the literature; one is averaging asymptotic method of Kl3M and the other is multi-time 

scale method. Among the methods used to study nonlinear systems with a small 

nonlinearit, the KBM method is particularly convenient and is the extensively used 

technique to obtain the approximate solutions. The method of KBM starts with the 

solution of linear equation (sometimes called the generating solution of the Ii near 

equation). assuming that in the nonlinear case, the amplitude and phase in the solution of 

the linear differential equation are time dependent functions rather than constants. [his 

procedure introduces an additional condition on the trst derivative of the assumed 

solution for determining the solution of a second order equation. It is customary in the 

a- KBM method that correction terms (i.e.. the terms with small parameter) in the solutions 

do not contain secular terms. These assum ptions are mainly valid for second and third 

n 



order equations. But for the fourth order di IireiitiaI equatioli the correction terms 

4 
sometimes contain secular terms, although the solution is generated by the classical KBM 

asymptotic method. Consequently. the traditional solutions fitil to explain the proper 

Situation of the systems. To remove the presence of secular terms and obtain the desired 

results, WC need to impose some special conditions. The main target of this thesis is to 

find out these limitations and determine the proper solutions under sonic special 

conditions. The method has its use mainly in engineering and technology, notably in 

mechanics. electrical circuit theory and also used in population dynamics, chemistry. 

control theory. plasma physics. etc.. It may be noted that most of the representers have 

tried to find the solutions of second and third order nonlinear systems. Although some 

investitators have obtained the solutions of fourth order nonlinear difThrential equations, 

which have not been studied extensively. 

In this thesis. we have chosen a fourth order nonlinear autonomous differential equations. 

that describes clamped oscil latory and near critical ly damped non-oscillatory systems with 

small nonlinearities. to solve by the modified KBM method and the quality of the solution 

is being tested. 

We are going to propose a perturbation technique to solve a fourth order nonlinear 

differential equation of the form 

i t x <1 .v J2 

+ci +C2 -fC3 --- 1-c',1.V = -El (4, 
di di di 

here c is a very small positive parameter : C, C 2 . C-. C4  are arbitrary constants and / 

is a uIxen nonlinear function. 

In Chapter 2. the review of literature is presented. In 2.1 information regarding damped 

oscillatory nonlinear system is presented and Jn 2.2 that regarding near critically damped 

nonlinear system is presented. In Chapter 3, the methodology is being discussed. In 3.1 

the solution procedure of a fourth order damped oscillatory system is discussed where as 

in 3.2 the solution procedure of a Fourth order near critically damped non-oscillatory 

nonlinear system is discussed. In Chapter 4, the results and discussions is presented. In 

4.1 solution of lourtli order damped oscillatory nonlinear system with an example and its 

4 discussion are presented. In 4.2 the solution of fburth order near critically damped non-

oscillatory nonlinear system with an example and its discussion are presented. Finally, in 

Chapter 5. the conclusion is presented. 
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C11A1TER 2 

LITERATURE REVIEW 

2.1 Damped oscillatory nonlinear systems 

Nonlinear differential equations show peculiar characters. But mathematical formulations of 

many physical problems often result in differential equations, which are nonlinear. In many 

situations. linear differential equation is substituted for a nonlinear differential equation, 

which approximates the tornier equation closely enough to give expected result. In many 

cases such linearization is not possible, and, when it is not, the original nonlinear differential 

equation must be tackled directly. [)uring last several decades in the 20h  century, some 

Russian scientists like Mandeistam and Papalexi [55], Krvlov and Bogoliubov [501. 

Bogoliuhov and Mitropolskii 1331 unitedly investigated the nonlinear dynamics. To solve 

nonlinear dillerential equations there exist some methods. Among the methods, the method 

of perturbations. i.e.. an asymptotic expansion in terms ol' small parameter is foremost. 

Firstly. Krylov and 13ogoliuhov [50] considered equations of the form 

cl 2 x dx 
+ (0X = c / (x. —.1, ) , (2.1.1) 

( It 2 di 

where c is a small positive parameter and f is a power series in c . whose coefficients are 

polynomials in X. , sint and cosi and their proposed solution procedure is known as 
dt 

Krylov-Bogoliubov (KB) method. In general, f does not contain either e or 1. To describe 

the behavior of nonlinear oscillations by the solutions obtained by perturbation method. 

Lindstedi. [54], Gvlden [48], Liapounoff [52], L'oincarc [68] discussed only periodic 

solutions, transient were not considered. Most probably. Poisson initiated approximate 

solutions of nonlinear differential equations around 1 830 and the technique was established 

by Liouville. The KBM method started with the solution of the linear equation, assuming that 

in the nonlinear systems, the amplitude and phase in the solution of the linear equation are 
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time dependent functions rather than constantS. This procedure introduced an additional 

condition on the first derivative of the assumed solution for determining the solution. Some 

meritful works were (lone and elaborative USCS have been made by Stoker [75]. McLachlan 

[56], Minorsky [58], Nayfeh [65], Bellman [32]. Duffing [47] investigated many significant 

results about the periodic solutions of equation of the Ibrm 

£4 ± 2k±w 2 x =_v (2.1.2) 

di - di 

Sometimes different types nonlinear phenomena occur, when the amplitude of the dependent 

variable of a dynamical system is less than or greater than unity. The damping is negative 

when the amplitude is less than unity and the damping is positive when the amplitude is 

greater than unity. The governing equation having these phenomena of the form 

(2.1.3 

dt' di 

This equation is known as Van der Pol [761 equation. Kruskal [49] has extended the KB 

method to solve the fully nonlinear diflrentiaI equation of the fbriii 

(2.1.4a) 

di - di 

Cap [46] has studied nonlinear systems of the form 

+ (1)/(X) = c E(x, (2.1 .4b) 

di- di 

Since, generally, I dose not contain either e or i , thus the equation (2.1 .1) becomes 

d 2 x - dx 
— 

 
+w  1. x=et (x.--)  

di di 

As pointed certain that. in the treatment of nonlinear oscillations by perturbation method, 

ssed. transients were not considered by different 
only periodic solutions were discu  

investigators, where as Krylov and Bogoliuhov first discussed transient responSe. 

If = 0 , the equation (2.1 .5) reduces to linear equation and its solution is 

x = acos(o1 +0). 
(2.1.6) 

where a and 0 are arbitrary constants to be determined using initial conditions. 



lie 0, but is very small, then Kr by and Bogoliuhov assumed that the solution of (2.1.5) 

is still given by (2.1.6) together with the derivative of the lhrm 

dx 
= —awsIn(ci +0). (2.1.7) 

di 

where a and 0 are functions of i. rather than being constants. 

Thus the solution of (2.1 .5) of the form 

X = (if)COS((OI + oi))  

and the derivative equation (2.1 .7) becomes 

= - a(t)Us1n(wt + Oi)) (2.1.9) 

Diffrcntiating the assumed solution (2.1 .8) with respect to I, we obtain 

dx da . dO 
- =— cos i, - awsin x1i-  a—sin T.  
cit di di 

where xV =0)1+8(1) 

1. sin" the equations (2.1 .7) and (2. 1. 10), we oct 

da dO 
-- COSI/ = U -SW I/I 
di di 

1 

Again differentiating (2. 1 .9) with respect to 1, we have 

dx da 
. 2 dO 

--=---- w sIny/—aa) cosu —cuo—cos't (2.1.12) 
di di di 

Putting the value of from (2.1.12) into the equation (2.1.5) and using equations (2.1.8) 
di 

and (2. I .9), we obtain 

da . dO  
—wsinw + ao —cost' = —e f(acositi. — awsini') (2.1.1.)) 

Solving (2.1.11) and (2.1 .13), we have 

6 



A 

da .c 
- - sin ,,ii f  (acosi,t', - a(in y) (2.1.14) 

di w 

dO 
- - COSI •t ((IcOsl/f, - (1(f)SII11//)  

di 

Thus it is observed that. a basic difftrentiaI equation (2.1.5) of the SeCOnd order in the 

unLnown x . reduces to two first order differential equations (2.1.14) and (2. I .15) in the 

unknowns a and 0. 

Moreover, 
(Ia dO 

and are proportional toe : a and 0 are slowly varying functions of the 
di di 

21c
= It is noted that these lirst-order equations are 110W Written Ifl terms of time period T  

the amplitude a and phase 0 as dependent variables. Therefore, the right sides of equations 

(2.1 . 14) and (2. I .1 5) show that both and are periodic functions of time T. For the 
(II (11 

fact, the rieht-hand terms of these equations contain a small parameter e and also contain 

2,7 
both a and 0. which arc slowly varying functions of the time with period T = 

CO 
. We can 

transform the equations (2. 1 .14) and (2. 1 .15) into more convenient form. Now, expanding 

sini,'/ f(acosii,—aosinyi) and cosyi f(acosi.—awsin'i) in Fourier series in the total 

phase i,'i the first approximate solution of (2.! .5), by averaging (2.1.14) and (2.1 .15) with 

period T = is 
CO 

-'It 
do E. 

= - ............. 
----- j sin ' [(a cos i. - ac' sin i) dt1;, 

di 2it 
(2.1.16) 

dO c 
= - fcos 'ji [(a cos y. - aosm ') di. 

di 2itioa 

where a and 0 are independent of time under the integrals. 

Krylov and Bogol iubov [50] called their method asymptotic in the sense that c - 0. An 

asymptotic series itself is not convergent, but for a fixed number of terms the approximate 

7 



solution tends to the exact solution as F, lends to zero. Later, this technique has been 

extended mathematically by Bogoliubov and Mitropolskii [33], and extended to non-

stationary vibrations by Mitropolskii [59]. They assumed the solution of the nonlinear 

difi'erential equation (2.1 .5) of the form 

x = acoslI + c U1 ((l.k(I) + it, (a, N') + ......... + i;"  it,  (a, 'I') + 
()(n+1) (2.1.17) 

where Uk , (k = I, 21  ......; ) are periodic functions of rji with a period 2 r. and the quantities 

a and w are f'unctions of time i . defined by 

(ii  I 
=e A1  (a) + 

,,2  A, ((I) + .....+ cA,, (a) +O(c" t ), 

=(')+E 111 (a) + c 2 B2  (a) + .....+ '7??  (a) +O(c 1 )  

The functions "A Ak and Bk , (k = I. 2 , ) are to be chosen in such a way that the 

equation (2. I .17), after replacing a and yi by the functions defined in equation (2.1 .1 8), is a 

solution of (2.1.5). Since there are no restrictions in choosing lunctions Ak  and Bk , it 

generates the arbitrariness in the delinitions of the functions 11k  (Bogoliubov and 

Mitropolskii [331 ). To remove this arbitrariness, the following additional conditions are 

imposed 

Juk  (h.y)cosi Jy =0, 

Jic (a,i//)sin i,ii dip =0. 

(2.1. l9) 

Absences of secular terms in all successive approximations are guaranteed by these 

conditions. Difkrentiating (2.1 .17) two times with respect to t. substituting the values of 

clv 
and 

 c1.v 
i x. - -s- nto (2. 1.5). .t ). usin these relations in (2.1 .1 8) and equating the coefficients 

cli di 

of r 
A 

( k = 1, 2.• . ..n) result a recursive system 

8 



I Uj 
_______ 1 o ( +uk ) = f(k_1) (a, j')  + 2aBk cos i + Ak sin si), (21.  i.2O) 

2 

where j(0) 
 (a, 'v) = .f (a COS 'V - acosin 'v) and 

j.(Ii 
(a,kii) =u1  J. (cicosli, - (1o)sin w) + (A1  COSV - a131  sin 'v +(oI) 

x f( j (cosy. - ao)Sin w) + (aB - A1 !) cos i (2. I .21) 
— da 
(I I 

dB  
I I 

Thu1 Thu1  
+ (2,41  B -a A1 -) sinI - 2(j) (A1 + B1  

da aaav aill 

Here j ' is a periodic function of ,ii with period 27r which depends also on the amplitude 

a. 

Therefore. f 0  and Uk  can he expanded in a 1ourier series as 

(1 
(g(k_I)(j) cosn + /Jjk_1)(a) sin 

 ny), 
n=l 

(2.1.22) 

(k 1) 
nAV 11 k (a,) =v - (a) + k_l)(a) cosni+w 0  (a) si n 

n=I 

where 

(k--]) 
1 2it 

90 - J (aCOSW. - aO)Sifl1I)dI 
27r 

(k-0 
1 

A l) I 271 

- a(OSin\II)cOSndqI (2.1.23) 

'(j. I) I 
° a = j .tcosi'. - (/W ii ~ SIfl ii)sinnwdw, I 

Here, t4" ) = = 0 for all values of k. because both integrals of (2.1 .19) vanish. 

Substituting these values into the equation (2.1 .20). we obtain 

9 



2 (k-I) 
(U v0 (a)+ O) (1—n 2  )I '(a)cosnii + ' 0(a)sin nw I 'I 

n=2 
(k -i) 

= go (a)+ (g(a)+ 2nci 8k ) cos nw 
+ (/(k _1)(a)+ 2oAk ) siny . .24) 1) 

(I 
+ V ri.r (k _ 1)  Ion (a)cosjV + h(a)sinni 

2 

Now equating the coefficients of the harmonics of the same order. yield 

gkl)a)+ 2 aa B =0, h[(a)+ 2o 'k = o v'(a)= 

g(h I)() 
(kl)() 

/7 ( 
(2.1.25) 

l'hese are the sufficient conditions to obtain the desired order of approximation. For the first 

order approximation, we have 

I 2i  
f/((icoslw. —awsin \v)sin ku (iI, 

2w 2itw 
(
-. 

1 16) 

1 2t  

ff(a  cos  lw.  —awsin kv)  cos  N! 
2aw 2irciw 

Thus, the variational equations in (2. I 18) become 

da t 
- 

 

--- - ------ j/(acosy,—awsinyi)sinwdy'. 
di 2ra 

(2.1.27) 
dyi E r 

=w— Jf(acosyi. —(l(J)SIr1l/f)C()Sl/I (Il/I. 
di 2ra0 

It is seen that, the equations of (2. I .27) are sinii lar to the equations in (2.1 .16). Thus, the first 

order solution obtained by Bogoliubov and Mitropotskii [33] is identical to the original 

solution obtained by Krylov and Mitropotskii [501. Secondly, higher order solutions can be 

found easily. The correction term u is obtained by (2.1 .22) on using (2.1.25) as 

g°)(a) 
u 9(0)(a)cosni + h,° (ci) sin 

(2.1.28) 
2 

(t) 11=2 () (I - n) 

a 

ir 

10 



The solution (2.1 .17) together with i11  is Lnown as the first order improved solution in which 

a and yi are obtained from (2.1.27). II' the values of the functions A1  and B1  are substituted 

from (2.1 .26) into the second relation of (2.1 .21). the Function f and in the similar \•vay. 

the functions .4 . 13., and u 2  can be found. Therefore, the determination of the higher order 

The KB method is very similar to that of Van der Pol and related approxiniation is complete.  

to it. Van der Pol applied the method of variation of constants to the basic solution 

x = (ICOS (01 + hsin wi of w 2 x = 0, on the other hand Krylov-Bogoliubov applied the 

same method to the basic solution x = (leos(w1 ±0) of the same equation. Thus in the KB 

method the varied constants are a and 0, while in the Van der Pol's method the constants 

are a and h . The method of Krylov-I3ogoliuhov seems more interesting from the point of 

view of' applications, since it deals directly with the amplitude and phase of the quasi-

harmonic oscillation. 

Volosov 1771 and Museenkov [64] also obtained hi2her order effects. The solution of the 

equation (2.1 .4a) is based on recurrent relations and is given as the power series of the small 

parameter. Cap [46] solved the equation (2.1.4b) by using elliptical functions in the sense of 

Krlov and Bogoliuhov. The method of Krylov-Bogoliubov (KB) has been extended by 

Popov [69] to damped nonlinear systems represented by 

4 

d'x (1 X 2 (d 
+2k+o x=fi.x 

d1 (it di 
(2.1.29) 

where - 2k is the linear damping force and 0 <k <w. It is noteworthy that, because of 
(II 

the importance of the Popov's method [691 in the physical systems. involved damping tbrce. 

Mendelson [57] and Bojadzicv 1421 retrieved Popov's results. In case of damped nonlinear 

systems the First equation of (2.1 .1 8) has been replaced by 

=- ka + s A1  ((i) + c A (a) + .....+ "A,, (a) +O(e?1+I) (2.l.18a) 

Murtv and Dcekshatulu [61 ] developed a sini plc anal vtical method to obtain the time 
1' 

response of' second order nonlinear over-damped systems with small nonlinearity represented 



F! 

by the equation Q. 1.29), based on the Krylov-Bogoliubov method of' variation of parameters. 

Alam [21] extended the KBM method to find solutions of over-damped nonlinear systems. 

when one root of the auxiliary equation becomes much smaller than the other root. 

According to the KBM method. Murty ci al. [621 found a hyperbolic type asymptotic 

solution of an over-damped system represented by the nonlinear differential equation 

(2.1 .29), /. e., in the case k > to. They used hyperbolic functions, cosh and sinhi'p instead 

of their circular counterpart, which was used by Krylov, l3ogoliubov. Mitropolskii, Popov 

and Mendelson. In case of' oscillatory or damped oscillatory process cosh ço may be used 

arbitrarily for all kinds of initial conditions. But in case of' non-oscillatory systems cosh q' or 

sinh should he used depending on the given set of initial conditions (Bojadziev and 

Edwards [43]. Murtv ci al. [62]. Murty [63]). Murty [63] has presented a unified KBM 

method for solving the nonlinear systems represented by the equation (2.1 .29). which cover 

the undamped, damped and overdamped cases. Boiadziev and Edwards 143] investigated 

solutions of' oscillatory and non-oscillatory systems represented by (2.1.29) when k and (0 

are slowly varying functions of time 1 . Arya and l3ojadziev [30. 3 I] examined damped 

oscillatory systems and time-dependent oscillating systems with slowly varying parameters 

and delay. Sattar [73] has developed an asymptotic method to solve a second order critically 

damped nonlinear system represented by (2.1 .29). lie has found the asymptotic solution of 

the system (2.1 .29) of the form, 

v = ü(l + ii)+ c u 1  (. i) ...... F E1'  u(a. i)+ o(). 2.I.30 

4 

where a is dehned by the equation (2.1 .1 8a) and v is defined b 

di 
=1 + : C1  (a) + c 2  C2 (a) + ..... + c C,7  (a) +O(s" 1 ) (2. I.I$h) 

Osiniskil [66]. extended the KBM method to a third order nonlinear differential equation. 

(I
)
X (1X (IX . (IX (IX 

-—±cI ---—+c2 —+c_v=! ---.----.XI, 
c/i" c/I - (It iii- (i i ) 

(2.1.3 1) 

whcrc 4 is a small positive parameter and .1.  is a nonlinear function. I Ic assumed the 

I asymptotic solution of (2.1 .31) in the form 

1') 
IL 



x = a + bcosi + E ui(a,h,tic)+.'' + 0 iI n (a.h.V)+oc 1+1 ). (2.1.32) 

where each it,  (k = 1,2.....a) is a periodic function of yi with period 2 and a, h and 

yi are functions of time t . given by 

= — 2a +c A1 (a) + E A2 (a) + .....+ E'1 A (a) +O(C h1

db 

), 

=—
dt 

Lh+E B1 (b) + 2 B2 (b) + .....+ EB,1(b) +O(+1 ) . (2.1.3)) 

d1; 
=(j)+C C1 (h) + F, (.2 (b) + .....+ E 7  C (h) +O(E" 1 ), 

(it 

where - A. - ji ± w are the cigen-valucs of the equation (2.1 .31) when e = 0. 

By using the KBM method, Boladziev [34] has investigated solutions of nonlinear damped 

oscillatory systems with small time lag. Bojadziev [391 has also found solutions of damped 

forced nonlinear vibrations with small time delay. Boladziev  [40], Bojadziev and Chan [4)] 

applied the KBM method to solve the problems of' population dynamics. Bojadziev [421 used 

the KBM method to investigate solutions of nonlinear systems arised from biological and 

biochemical fields. Lin and Khan [53] have also used the KBM method to some biological 

problems. Proskurjakov [70] and Boladziev  e/ al. [35] have investigated periodic solutions of 

nonlinear systems by the KBM and Poincare method, and compared the two solutions. 

Bojaclziev and Lardner [36, 37] have investigated monofrequent oscillations in mechanical 

systems including the case of internal resonance, governed by hyperbolic differential 

equations with small nonlinearities. Bojaclziev and Lardner [38] have also investigated 

solution for a certain hyperbolic partial differential equation with small nonlinearity and large 

time delay included into both unperturbed and perturbed parts of the equation. Rauch [71] 

has studied oscillations of a third order nonlinear autonomous system. Bojadziev [44] and 

Bojadziev and Hung [45] developed a technique by using the method of KBM to investigate 

a weakly nonlinear mechanical system with strong damping. Osiniskii [67] has also extended 

the KBM method to a third order nonlinear partial differential equation with initial friction 

and relaxation. Mulholland [60] studied nonlinear oscillations governed by a third order 

differential equation. Lardner and Bojadziev [5 I] investigated nonlinear damped oscillations 
Ir 

governed by a third order partial differential equation. They introduced the concept of 



couple amplitude" where the unknown functions Ak , 11k and Ck  depend on both the 

amplitudes a and b. Bojadziev [44] and Bojadziev and Hung [45] used at least two trial 

solutions to investigate time dependent differential systems; one is for resonant case and the 

other is for the non-resonant case. But Alarn [26] used only one set of variational equations. 

arbitrarily for both resonant and non-resonant cases. Alani e/ al. [28] presented a general 

form of the KBM method for solving nonlinear partial differential equations. Raymond and 

Cahak [72] examined the effects of internal resonance on impulsive forced nonlinear systems 

with two-degree-of-freedom. Later, Alarn [15. 17] has extended the method to n-th order 

nonlinear systems. Alam [18, 24] has also extended the KBM method for certain non-

oscillatory nonlinear systems when the eigeii-values of the unperturbed equation are real and 

non-positive. Alam [I I ] has presented a new iertiirbation  method based on the KBM method 

to find approximate solutions of second order nonlinear systems with large damping. Alam c-

al. [13] investigated perturbation solution of a second order time-dependent nonlinear system 

based on the modified Krylov-Bogoliubov method. Sattar [74] has extended the KBM 

asymptotic method for three-dimensional over-damped nonlinear systems. Alam et al. [12] 

extended the KBM method to certain non-oscillatory nonlinear systems with varying 

coefficients. Later. Alam [23] has unified the KBM method for solving n-tb order nonlinear 

differential equation with varying coefficients. Alam and Sattar [10] studied time dependent 

third order oscillating systems with damping based on an extension of the asymptotic method 

of Krylov-Bogoliubov-Mitropolskii. Alam [21] and Alam et al. [27] have developed a simple 

method to obtain the time response of some order over-damped nonlinear systems together 

with slowly varying coefficients under some special conditions. Later, Alam [17] and Alam 

and Hossain [22] have extended the method presented in [21] to obtain the time response of 

n-tb order (n~: 2), over-damped systems. Alarn [19. 20] has also developed a method for 

obtaining non-oscillatory solution of third order nonlinear systems. Alam and Sattar [8] 

presented a unified KBM method for solving third order nonlinear systems. Main [14] has 

also presented a unified KBM method, which is not the formal form of the original KBM 

method, for solving n -th order nonlinear systems. The solution contains some unusual 

variables, yet this solution is very important. \!am [251 has also presented a modified and 

compact form of the Krylov-Bogoliuhov-M itropolskii unified method for solving a a -th 

order nonlinear differential equation. The formula presented in [25] is compact, systematic 

14 



and practical, and easier than that of [14]. Alani [26] developed a general formula based on 

the extended KBM method, for obtaining asymptotic solution of an n-th order time 

dependent quasi linear differential equation with damping. Akbar ci al. [1] presented an 

asymptotic method based on the KBM method to solve the fourth order over-damped 

nonlinear systems. Later. Akbar ci al. [2] extended the method present in [I] for the fourth 

order damped oscillatory systems. Akbar et cii. [31 also developed a simple technique for 

obtaining certain over-damped solution of an n-tb order nonlinear differential equation. 

Akher ci al. [4] presented the KBM unified method for solving n-tb order nonlinear systems 

under some special conditions including the case of"internal resonance. Akbar ci al. [6] also 

developed perturbation theory for lburth order nonlinear systems with large damping. 

.41 

2.2 Near critically damped nonlinear systems 

The Krylov-Bogoliuhov-Mitropolskii (KBM) method [33, 50], was basically developed to 

find periodic solutions of second order nonlinear differential equations with small 

non linearities, 

+(1
)2 —cf(x.), (2.2. 1 ) 

jt 2 di 

where c is very small positive parameter but not equal to zero. 

4 First, Popov [69] has extended the KB method. The KBM [33, 50] method is particularly 

easy to understand and extensively used to obtain approximate solution of weakly nonlinear 

systems. OFor the physical importance. Mendelson [57] reproduced Popov's results [69]. 

Murty ci al. [62] and Alani [9] extended the method to nonlinear over-damped systems. 

However, both over-damped solutions [62, 9] are not up to the mark for certain damping 

effects especially near to the critically damped. Alam [9] has developed a new perturbation 

technique to find approximate analytical solution of second order both over-damped and 

critically damped nonlinear systems. First, Alam and Sattar [7] developed a method to solve 

third order critically damped autonomous nonlinear systems. Alam [16] redeveloped the 

method presented in [7] to find approximate solutions of critically damped nonlinear systems 
I 
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in the presence of different damping forces by considering different sets of variational 

equations. Later, he unified the KBM method for solving critically damped nonlinear systems 

[29]. Alam [20] studied a third order critically damped nonlinear system whose unequal 

eigen-values are in integral multiple. Alam [20] has also extended the method to a third order 

over-damped system when two of the eigen-values are almost equal (i.e., the system is near 

to the criticalily damped) and the rest is small. Recently, Alam [24] has presented an 

asymptotic method for certain third order non-oscillatory nonlinear system, which gives 

desired results when the damping force is near to the critical damping fbrce. 

In this thesis, we want to develop the KBM method to solve fourth order damped oscillatory 

and near critically damped non-oscillatory nonlinear systems with small nonlinearities. 

4 

if 
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CI-IAPTER 3 

METHODOLOGY 

In this chapter, we have discussed the methodology to solve fourth order nonlinear 

difThrential equation. On the basis of the eigen-valucs of the unperturbed form of the 

equation the solution may he oscillatory or non-oscillatory. In 3.1 we have considered the 

oscillatory system and in 3.2 we have considered the non-oscillatory system. In the 

oscillatory case the system considered is dampcd, where as, in the non-oscillatory case 

the system is near critically damped. 

3.1 Approximate Solutions of Fourth Order Damped Oscillatory Nonlinear Systems 

Let us consider a weakly nonlinear damped oscillatory system. which is governed by the 

differential equation 

d 4 x I 3 x d 2 x dv 

di (It di 2 (It 
(3.1.1.) 

where c is a small positive quantity. ..is the given nonlinear function and 

c1 , c2, c3 , c4  are arbitrary constants dcEned in terms of the eigen values 
- 

?j ( i1, 2. 3, 

4 4 4 
4 ) of the unperturbed form of (3.1.1) as cl  = Y X j, c-, = YXikj,  c3  = 

i=I i,j=1 i.j,k=l 
i;4j#k 

4 

and c4  = flX, 
i=I 

Suppose, for the damped oscillations, the two eigen-values say 
- 

- are real and the 

other two - , - are complex, so they are conjugate to each other. 

If F = 0, then the unperturbed solution of the equation (3.1 .1) is, 

x(t. 0) = a10  

where a10  ( i = 1, 2, 3, 4) are arbitrary constants. 



If C # 0, then we consider the SO ILI tP In of the equation (3.1.1) of the form 

4 .01 

x(i.c)= a1  e " +cu1 (a1 .a2,a3 ,a4 ,0+ E 2  u2(a1 ,a2 .a3 ,a4 .0+ c , (3.1.3) 
i= I 

where each a, (i = 1. 2, 3. 4) satisfies the differential equations 

da.(t) 2 3 =CA1(a1.a2.a3,a4.t)+C B1(a1,a2,a3,a4..t)+e (3.1.4) 
'II 

We will remain confined within some first few terms, 1. 2, 3........ , in in the series 

expansion (3.1.3) and (3. 1 .4) and calculate the functions u 1 , /12, U3 ,.... and A1, B1,- 

(i=l, 2, 3.4). so that ,a, appearing in (3.1.3) and (3.1.4) will satisfy the given differential 

equation (3.1.1) with correctness of Chhl.Basically,  the solution can be obtained up to 

the correctness of any order of approximation. However, owing to the rapidly growing 

algebraic complexity for the formulae, the solution is, in general, confined to a lower 

order, usually the first [62]. In order to determine these functions, it is assumed that the 

functions u1 . 1(2 , U3 ,.... (10 not contain the fundamental terms, which are included in the 

series expansion (3.1.3) of order e Thus, the first approximated solution may he taken 

as 

a1e 
' 

+ C111 , (3.1.5) 

where each a, (i = 1.2, 3.4) satisfies the following form of the differential equations 

da,(t) 
= cA,(a1 ,a2 ,a3 ,a4 ,i) (3.1.6) 

Differentiating (3.1 .3) four times with respect to t, then substituting x and the 

4 d v d 3  dx cLv 
derivatives, --. 

- in the original equation (3.1.1), using the relations in 
dt 4 ' (it3  dt 2  di 

(3.1.4) and equating the coefficients of c , we will obtain equation involving u1  and A1  ( i 

= 1,2,3,4) 

with f = J'(x0 ) on the iight .where x0  = 

it In oeneral. the function can he expanded in a Taylor series as 

LI 



j = 
=,m3  =-.m 4  s_a. 

fll, /77 /77 a1" a2"'2 ((3/7/ a 1 11  e' X 1 -,nA. -,n4 X 31 

According to our assumptions, u1  does not contain the fundamental terms, the obtained 

equation can be separated into five equations for unknown functions, 41 , A2 , A3 , A4  and 

11 1 . 

Putting the value of /'() and separating in terms of e" t  (i =1.2,3.4), we will get 

separate equations involving A1  . A2 , A3  . A 1  and u1  respectively. 

The particular solutions of these equations give the results of the functions 

A1 , A2. A3 , 44  and u1 . The values of A1 . A2 . A3 . A1  will be used on (3.1.6) to 

determine a, (i = 1, 2, 3, 4) and the final values to be substituted on (3.1.5). Thus, the 

determination of the first approximate solution is completed. The above process can be 

applied to the higher order approximations. 

3.2 Asymptotic Solutions of Fourth Order Near Critically Damped Non-Oscillatory 

Nonlinear Systems 

Let us consider the following fourth order weakly nonlinear ordinary differential equation 

d 4x d 3x d 2x dx 
—j-+el ------+e2e  --+e3  —+e4x = -j (x).

dt  dt' 
4 

where C is a positive small parameter; • f is the given nonlinear function and e1 , e2  . 

C4  

are constants, defined in terms of the eigen values - ?. ( i1, 2, 3, 4 ) of the unperturbed 

4 4 4 4 
form of (3.2.1) as e,  = Y X1 . e2  = e3  = and e4  = flX 

Suppose, for the near critically damped nonlinear system the two real eigen-values say 

- 
i and — are almost equal and the other two cigen-values say — 2 3 and - arc 

it real and different. 

When s = 0 , the equation (3  ).2. becomes linear and the solution of the linear equation is 
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x(i3O) = a30e '  +a4 0e ' +aio(e1t  + e _k21 )+
a2.o

[e 3.2.2) 

where a10 (i=1, 2, 3, 4) are arbitrary constants. 

Whenc # 0. following the method presented by Alarn [24], we choose the solution of 

(3.2.1) in the form 

-x i 
-x , I -x - / e -e

-x 2  
x(t.a)= a 3 (t)e - +04 (t)e +-a1(t)(e I  +e  2 )+a2(t) 

2 — (3.2.3) 

+ su 1 (a1 ,a) ,a3 ,a4 ,i) + 

where each a1  (i1. 2, 3. 4) satisfies the following first order differential equations 

(I(1I(t) =CAI(al,a2,as,a4.1)+c2 . .. 
(it 

da-(t) 
= 2 

- 42(a1a2,a3ci4,t)+c 
cit 

da.(t) 2 dt =43(a1,a2,a3,a4t)+  

da4  (t) 
and =EA4 (a,a2,a3 .a4 ,t)+ 2 ... 

cit 

Confining only to a first few terms 1, 2, 3....., it in the series expansion of (3.2.3) and 

(3.2.4). we calculate the functions u and A1  ( i=1, 2, 3...... ii ). such that a1(t) ( j- 1. 1 3. 

ii). appearing in (3.2.3) and (3.2.4), satisfy the given differential equation (3.2.1) with 

an accuracy of order i+1 •  40 To determine the unknown functions it,, A1 . A7 . A3 , A4  it 

is assumed (as customary in the KBM method) that the correction term it, does not 

contain secular-type terms t e' and/or I e for different eigen-values. which make 

them large. Theoretically, the solution can he obtained up to the accuracy of any order of 

approximation. 1-lowever, owing to the rapidly growing algebraic complexity for the 

derivation of the formulae, the solution is, in general, confined to a lower order usually 

the first order. Differentiating the equation (3.2.3) four times with respect 1, substituting 

d 4x d 3x d 2x d 
the derivatives -. and x in the original equation (3.2.1), using the 

(i14  dt 3  dt 2  cit 

relations in (3.2.4) and then equating the coefficients of 8 , we obtain 
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(D + k. )(D + X 2  )(D + ? )(D + /4 )u1  

+e'(D-)13  +? 1 )(D- 3  +? 2 )(D-X 3  +X4 )43  

+e X4t(D_.4  +.1 )(D- 4  +)12)(D-i4 +)3)214 

cDX1  + X 2 )(D -X1  +X 3 )(D- 1  +4)A1 
+ 

2 e_X2! (D 
- 

+ ),1  )(D 
- 

+ X 3  )(D 
- 

+ X 4  

(D+2 4)e'() 1  —?3 - D)+e2t (X 2  

+ 21 2 
(e_xu1(4 -xi) + c 2t (X 2  - + (c" - )D)x 

DD + 
- 

12 

  

where f() 
= 1(x0 ) and 

= a3 e' + a,1(/)e' '  +a1(e + e )+ ()[ 

It is assumed that the functional value (0)  can be expanded in power series as in the 

form (detail can be found in [24] ) 

f(0) 
-x 

-X i  
F,. (a3e . ae 4 )  - a1  (e I  + e 2 ) + a2 

1-0 2 

-A 
-c 2 

-x, 
(3.2.6) 

where it is the order of polynomial of the nonlinear function f. The assumption is 

certainly valid when f is a polynomial function of x. Such polynomial functions of .1 

cover some special and important systems in mechanics. Following Alam [16. 201 we 

assume that it, does not contain the terms F0  and F1  of f (0)  since the system is 

considered near to a critically damped non-oscillatory nonlinear system. Substituting the 

?, I t -  A 2, 

value of (0)  into (3.2.5) and equating the coefficients of powers of 
e e 

. we 
I 2 

will obtain equations for U1  and A1  (i = 1, 2, 3. 4). Krylov-Bogoliuhov-Mitropolskii 

(KBM) [33. 50], Sattar [73], Alam [7, 9. 16. 20] imposed the condition that ill will not 

contain the fundamental terms (the solution presented in equation (3.2.2) is called the 

generating solution and its terms aic called fundamental terms) of f). It is not easy to 

solve the equations for the unknown functions , A, A3  and A4  . if the nonlinear 

21 
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function f and the eigen-values 
- ,-, - 

X1. - X4  of the corresponding linear 

equation of (3.2. 1) are not specified. When these are specified, the values can be found 

subject to the condition that the coefficients in the solutions of them do not become large 

(Akbar et cii. [4], Alam [16, 24]). For this reason, we have assumed that the relations. 

limit ?, -* X 2  and X3 3?, exist among the eigen-values. Imposing the relations. 

limit X1  - X2  and X3  3?.4 , we can find the values of Al , A2 , A3  and A4 . Substituting 

the values of A1 , A2  , A3  and A4  in the equation (3.2.4), we obtain the results of 
cit 

(i=l. 2. 3, 4), which are proportional to the small parameter 8, so they are slowly varying 

functions of time t , i.e., they are almost constants and by integrating the equations of 

(3.2.4), we obtain the values of a1  (i=l. 2, 3, 4). It is laborious to solve equation for u1 . 

1-lowever. as -> 2  it takes the simple form and can be solved. Finally, substituting 

the values of a1  ( i=l. 2, 3. 4 ) and U1 in the equation (3.2.3), we will get the complete 

solution of(3.2. I). 

Thus, the determination of the first approximate solution is completed. The above 

process can be applied to the higher order approximations. 
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1p 
CHAPTER 4 

RESULTS AND DISCUSSIONS 

In this chapter, we have shown the application of the methodology discussed in the previous 

Chapter 3. Here, examples have been chosen to utilize the tools devised earlier. In 4.1 we 

have solved a particular differential equation, which represents damped oscillatory system. 

We have chosen a differential equation of fourth order with small nonlinearities. The 

methodology adopted to solve this is discussed in 3.1 . Here the results and findings are 

discussed in succession. In a similar fashion, with suitable example in 4.2, we have discussed 

4 
the near critically damped non-oscillatory nonlinear system, whose methodology is discussed 

in 3.2. 

4.1 Approximate Solutions of Fourth Order Damped Oscillatory Nonlinear Systems 

4.1.1 Example 

As an example to solve damped oscillatory nonlinear system, we consider the fourth order 

nonlinear differential equation of the form 

-4 d 4  x d 3  .v d 2  .v clx 3 

dt 4 dt it 
(4.1.1.1) 

The unperturbed solution of (4.1 .1 .11) as prescribed in (3.! .2) can be rewritten as 

x(t. 0) = ae 
At 

 cosh(o l t + (p1 ) + be2t cos(w21 + T2). 

Also, from (3.1.3), the first approximate solution is 

x(t,c) = aet cosh(w1 t ± (pi)+be cos(o2t +(P2)+ CuI 

For equation (4.1.1.1), we have, I = —x and 

I' 
(O

Ir 
) ( -,__,1 -- i I -1.. 1 

= + + (3C + a4e 
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4, 
or. 

fi) 
= - {a13 

-3A 1 3 -3X t 3 -3k 
e +a2 e 2 +a3  e 3 ( +a43e 3X  4 t  

-(2X +X )1 -(2X +X.)i 
2 

-(2k +X 4 )z 
+3a1 a2e l 2 +3a('a3e - +3a1 a4e 

+ 3 2 -(2X, +X )t , -, -(2X ±A )t 2 -(2X, +X 4  )t 
(12 a1 e + .,a2 a3 e 2 3 + 3a, a4e 

2 -(2X +X )t - -(2X +X ' - 2 -(2X + )i 
+303  a1 e +3a3 a2e - 2 +.a3  a4e (4.1.1.2) 

2 -(2X +X )i -(2X +X 3 )z 
+3a4  a1e +3a42 

-(2. +X )t 
a,e 4 2 +3a42a3e 

+ 6a1a2a3e 
)i + 6aa2a4e" 2 

+6a1a3a4e
-(k +. + )z -0. +X. 

., 
+X )t 2 4 1 3 +6a2a3a4c 

-x Now equating the like terms, i,e,. in terms of e / (i 12.3,4), we have 

e"(D-X1  +X 2 )(D-X 1  + 3 )(D-2 1  +) 4 )A 

-(2X +?,)z 
-. +X 3 +X 1 )z 1  

= -{3 2  a1 a2 e I - + 6a1 a3 a4e 

(4.1.1.3) 

e*'(D_X2+X1)(D_?i 23)(D-X1+)4)A2 
(4.1.1.4) 

-(2X +. )i 0., 4- X 3 +x 4 )1  
=-{3a12a1e 2 I +6aa3a4e

- 
- } 

e 3'(D-? 3  +X 1 )(D-)c3  ±X 2 )(D 3  +? 4 )A3  

)i 2 -0. = {30ae(_Xi +X4 
+ 6a1a2 a3e 

(4.1.1.5) 

eX41D_X4 +X1XD-?4 +? 2 XD-X 4  + 3 )A4  
(4.1.1.6) 

-(X 1 +x 4  )z = 32 -(2x4  +X3  ) 
+ 6a1a7a4e 

and 

(D + 2 )(D + 2 )(D + t 3  )(D + X4  )11  

= _[a13e_3Xh1 + a13e3x21 + a3 e 3  + a4e3X41 

+3ai2a3e(2 +,_ ) +3a12a4e  (2X 1  +X 4  )i 

+ 3a2 2 a3e 2 
+x3 

+ 3a,2a4e (2h2  +X 4  )t (4.1.1.7) 

+3a3 2 a1e 3 )1  +3a32a2e (2X
7  +),, 

+3a42a1e(2x4 +X1)t +3a4Th 2

,e
-(2X 4 

+X )i 
2 } 
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4, 
Solving the equations (4.1.1.3)-(4.1.1.7) and considering X, =k —o, X, =k1  +o, 

= k, - ico, and X4 = k2 + '2  and then substituting these values, we obtain 

A1  = 

(k2  —0)1 )(k1  +k, —(o t  •1-i0)2 )(k1  +k2 -(')1 -10)2) 

3a1 a3a4e_2k 21  

- 2 -2k, 
_ae + 

-101  
2(k1 

 - (oi )(3k1  + k2 - + i() )(3k1  - 
-0)1 - 1()2) 

I -2k 2  
- 

a2a3a4e 
2 
- (k2  + 1 )(k 1  +k2 +o +ko,)(k1 +k2  +1 2) 

2 -2k v, 
__________ _______ 

3a1 a e 
+ -------______ 

2(k1  + 0)1  )(3k 1  - k, + (oi + i0)- )(3k 1  - k2 + 0)1 -iw 
 

3a1 a
2 
a3e _2k ht 

(k1  - io2 )(k1  + k, + 1 - )(k1  + k2 - (01 - '2) (4.1.1.8) 
- 
-

k 21, 
3a3'a4e 

+ 
2(k, —i0)2)(3k2  —k1  +0)j —i2)(3k 2  —k1  - — 1(0,) 

and 

3a1a,a4e-2k,  

(k1  +i0),)(k1  +k-, +(1)1  +i0)2)(k 1  +k2 -0)j + 1()2) 

3a1a 2e_2k2 

+ 
2(k2 + 2  )(3k1 - k1  + + 1(02 )(3k2  - k1 

 - 
+ /0)7) 

Putting the values of (4.1 .1.8) into equation (3.1.4) and neglecting the second and higher 

powers of c (since c is very small), we get 

da1 I (k2 —(01 )(k1  + k 2  - 0)1 + /0)2 )(k1  + k, -  
= 

cit 3a1 2  ct,e -2k11 
+ - 

2(k1  - ü)  (3k1  + k2 - (0 + Ui)2 )(3k 1  - - (0j - 1(0,) 

11 
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-2k,! 'I 
3a1a3a4e 

cia [(k2  +(o)(k1  +k2  +o +io2)(k1  +k2  +w 1  —io1) L 
dt - 2  + a1a2  

I  2(k1  +o1 )(3k1  —k2  +o +1o2)(3k1  —k2  +o  

3a1 a2a3 e 2 ' 1 
f 1 _1(o2)(k, +k1 +o)l  —ko2)(k1 +k2  —w1  —i(02) 

 
dt 2 -2k21! 1+ I 

a3  a4e I 

[ 2(k2  —1w2 )(3k7  —k1 +w—ko2)(3k2  —k1  —o —io2)J 

and 

-'ki 
3a1 a2 a4e - l 

da4 =  

e

f(k1  +iw2)(k1  +k) +co  +10)2)(k1  +k2 -(j)j  +k02) 

dt 1 a3a42e2k2h1 + I 
L 2(k2  +i(02)(3k, —k1  +O) +iffl 2 )(3k2 —k1  —os  +iw2 )j 

ae ae be"P2 be' 2  
Now, substituting a1  = 

2 
' 

= 2 
into the equation 

2 - 2 

(4.1.1.9) and simplifying, we obtain, 

da ( 3 -2k 
= si 11 a e 

! 
+laL 

- 

e

-  2k 2  !) 

dt 

cib ( -) -2k! 
— =EI r1 abe I +,h3e 2L 2 t  
dt ' 

2 
e 

-2k 
 + rnb2e2l2/ 

di 

dp2  
and =c sla 2 e

-2k 
'

1 
--s2b 

2 
e
-2k 2 1

).  
dt 

where 

3[ k 1 (9k1 2  +k 22  +0)1 2  +022 —6k1 k2 )+2o 1 2 (3k1  —k 2 ) 1 
11 =—I 

SL(k1 2  _ 0) 2 )c ( 3k_ —k2  _
0))2 +(022)f ((3k1 —k2 +0)1 )2 +(1)2 2 )] 

3[ k9(k1 +k2
2

_f 2 +o22 +2k1 k2 )+2o 1 2 (k1 +k2) 1 
12 2 1 k2 _W 2)(f(k, +k1  _WI)2  +W 2 2 }{(k1  +k2  +0i)2 +02k] 
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P 3r 
_

2 2 k1 (k1 +k _ 0) 2 (2 —2k1 k2 )-2()22 (k1  +k 2 ) 1 
r1  

=L12 +o22(k1~k2 +0)1)2+W12}{(k1 +k2 _wi)2+0)22}j 

3[ k7 (k1 2 +9k2 2 _0)1 2  _ 0)__ -6k1 k2 )-2o,2 ()k2 —k 1 ) 1 
8L(k22 +0)l2(3kl  —k1  +(j)1)2  +0)22 } {(3k2  —k1 oi)2 +(J)2}] 

3 [ 2k1 o(3k - k2  ) + o (9k 1 2  + k2 2  + (t)12  + 0,,
2 
- 6k1 k2) 1 

nl 
= - 0)1 (3k - k2 

 - 
o )2  + 0)22)  '(3k - k2 )2 + (0 2 2}] 

- 
2k2o 1 (k1  +k2 )+o 1 (k 2  +k 2 2  +0)1 2  +0)22 +2k1k2 ) 1 

/n2 - 
3[ 

/_
'_ _________

2 LI k2 —o)1 )(k1  ±k7  -w1 +o2}(ki +k2  +o)i) +0)2] 

3 r 2k 1 (o,(k,+k,)+()2 (k i 2 +k2 2  _ 0) 2
-(02 +2k 1 k 2 ) 

= (ki 2 +0)22  )'(k_ + k2 +(o1 )2 + (02 2 ) {(k1 + k2 -  0)1 )2 + 0)2k 

and 

3r 2k7o2(3/2 —k1)+02(k(+9k2_ 
1 
 -0)( 

1 

0)2 
 2 —6k1k2) 

8 Lki 2 +0)22 (3k2—k2 +(01)2 +W22 U(3k2 —k1 -0)i) + 0)2 2 }] 

In a similar manner the solution of (4.1.1.7) can be written as 

UI 
1 2 

a _m+2h1h 2nh1  Cosh{1m13(0,,,, + 
tfl) 

e3k / 
In 

16 ,n,n,= I jn 

I 2 
a,n+2n b 2" si nh (j 3(w,t + tp,,, } h,,, 

-3k ' t 
II 

ji 1 6 )n.n.=I.,n-n 

3ab 2 ,n+n2 m+n-3 
) 

_k +k )t - 
1)fl ( 201j 2

p1
) 

cos(o2 7 12 + 'P2 e I 2 Cm,,, e 
1 6 pn.n,=I.rnn 

+ 
3ab 
— 

2 
arn+n_21,m+n_3 sin(o21 + 

-(2k I +&2  )i , 
e (-IY(2o1+2p1) 

16 

--- 
,n+n-2 -(k +2k,)t (-1)"(w11±p1 ) 

a" 31) cos 2(wt +(p2)c I e 
16  

+ 
3ab 2 -(k1  +2k 2 )! 

sin 2(021 + q,n,n  e 
16 

where 
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AL 
(34-, - k)2tk.  2 + (-1)' 20),,,2 } + (2(,),,,2 + (1)nkm2 

}(92 + (0,) 

+ 
(J)t?  l8k 7(,),(3k,,, - k,7 ) 

gm_fl = 2 2 m 2-, 2 
1" 
H. 

i, 
+ (_l)m(), )( n 

k,,,2 +(-1)"4o,2 }3k, -k +(—l) 3 i) 
) 1-n 2 

+ 9 2 "o 2 2  } {(3k,,, - k,, + (_1))z32_Pn01)_  + 9 2 ) 

6W rn {kn, 2  + (_1)"2co, 2  }(3k, - k) + 3k117 co,(3k,), - k,,)2 

+(_I)'3kp,(Om(9CO3n2 +,,2) 
171,75,7  = 

{k, 2  + (l)"D 2 + (—I)"4w,,,2 }t(3k,,, - k,, + ( l)mn32mW)2 

2 }(3k, -k,, +(—l) (j)1 )2  +92 "w22 } 

{I' +(_1)m(I } ((k 1  +k,) 2  +(-l)" 4w 1 (k 1  +k 2  )+(3w1 2  —W22 )) 

- 2o,2 (k1  + k 2  )+ (-I)"4W1 W 22  
C rn,n = 

{k 1  + (_1)m Wi } {(k 1  + k, (1)''ui )2 +0)72) {(k +k7  + (-I)" 30)1 )2  +(J)2 2 ) 

>{(k 1  +(_I)uub()t)2 2} 

'ki +(I)m w 1 ) {2w 7  (ki + k, ) ~(1)' 40)10)2  + 0)2 (k 1  + 
2 k2 ) 

+(-1) 4w1w2 (k +k )+w,(3w12  (i) 
2

) 

2in 
{k 1  +(-1) (Oi)  {(h ±k2(-l)' i) ±0)22 1W - I  k2  +(-I)"30i 2 °2 

x {(/cl  + (_l)I?0)1 )2  +(o2 } 

(k 2  (k2 +(_l)m 
0))

)
0

2 2 )k {k 1  +k 2  +(-1)"' 0)02  -3k2o, 2{k, + —1S ifl 
>l } 

_4W2 2 {2k2+(_I)m(0I ){kI+k2 (_I)110)l }+ 30)24  
= 

{k 2 2  +(O,}{(k 1  +k Z (_Dm (ol )2  +(0,}{(k 1  +k, +(I)Wi)2  +9(02 2 1 

IN ' 2 \{(k 2  +(-1)(01) +0)2 

{4k, 2  (k 2  + (-I)" w1 ) — °2 ) {k 1  + k + (1)"W } + {2k 2  + (-1),> } 
in 

and { 7 (k 1  +k 2  (-') 0)I  ) — 30i1 
= 

{k 2 2  +o,2 }((k 1  +k,(-1)"(0 1 ) 2  +0) }{(k I  -i-k, +(_l)h? 1 )2  +90)2 2 ) 

{(k 2  +(_1)711 W1 )2  +0)2 2 ) 

Equation (4.1 .1 .10) has no exact solution. Since, 
c/a c/b dp1 
-, -, and 

dp2 
are 

dt dt c/f dt 

proportional to the small parameter c, therefore they are slowly varying functions of time I 

2m 
with the period T = . Moreover, by assuming a and b are constants in the right hand 

0) 

side of equation (4.1 .1 .10) and by integrating equation (4.1 .1 .10), we have 

ri 
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-2k 1 -2k : 
(1-e ) !2a0b02(1-e 2  )I 
kI k2  

a=ao +_{ 

-2k x -2k $ 

k2  

(1-e 2  ) /1 a02b0(1-e 1 )1 
b=bo~ 

E r2b03 
{ 

+k,
I,  

 

 

-2k i. - -2k i 
(1-e 1) ,n2b02 (1 - e 2  ) + , =1(0)+

{nuIao 

k1 k 2  
(4.1.1.12) 

-2kt 
C Is2ho(1e 2 ) and P2 P2(0)+1 

' -2k! 
s1a0(1-e 1) 

kI  

Therefore, the first approximate solution of the equation (4.1.1.1) is 
rA 

x(t,c) = ae "  cosh(o lt+ 91)+be"2'  cos(0)2t-i- 92)+ cu1, (4.1.1.13) 

where a, b, p 1  and T 2 are given by (4.1.1.12) and u1  is given by (4.1.1.11). 

-I- 

29 



4.1.2 Discussion 

By balancing harmonic terms and separating equation (3.1.5). we have five equations in 

which the variational equations contain the first harmonics and the correction terms contain 

harmonics with multiple arguments. These assumptions for the second order and third order 

differential equations certainly hold. But these assumptions for the fourth order differential 

equations do not hold sufficiently. When one of the eigen-values of the corresponding 

unperturbed equation is a linear combination of"the other eigen-values, both the variational 

equations and the correction terms contain secular type terms. Then the solutions fail to give 

the desired results. in these cases, to obtain the desired results, the technique in [22, 25. 26] is 

necessary. Following the KBM method, an asymptotic method is developed to obtain the 

solutions of a fourth order damped oscillatory nonlinear differential equation with small 

nonlinearities. when out of the Ibur eigen-values of the corresponding linear equations two 

are real and the other two are comi:lcx.  For some values of k1  k2, 0)j. 0)2 and c 

we have evaluated x from (4.1 .1 .13). in which a, b, ~p j  and P2  are evaluated from 

(4.1.1.12). The corresponding second solutions of (4.1. 1 . 1) are calculated by a fourth order 

Runge-Kutta formula with a small time increment At =0.05. Both the results are plotted in 

Fig.(4. 1.2.1) to Fig.(4.1 .2.5) to show the comparisons between the analytical and numerical 

results. From the figures it is observed that the analytical solution represented by equation 

(4.1 . I .13) along with the equations (4.1 .1 .11) and (4. 1.1 .12) agrees well with the numerical 

solution. 
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Fig. (4.1.2.1) 

Fig.(4.1.2.1) Comparison between analytical solution and numerical solution for chosen 

values of arbitrary constants, eigen-values and small parameter (analytic solution in solid 

It line - and numerical solution in dotted line o o o )• 

4. 

-ç 
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3 a0 =1.O 

1)0  =1.0 

(p(0) = 1.570796 

P2(0) = 1.570796 

k1 =0.6 

k2 =0.10 
2 

o=0.25 

2 2.236068 

/ 

><1v 

2 V4 8 V10 

t 

Fig.(4.1.2.2) 

Fig.(4. 1 .2.2) Comparison between analytical solution and numerical solution for chosen 

values of arbitrary constants, eigen-values and small parameter ( analytic solution in solid 

line - and numerical solution in dotted line o o o )• 
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2.5 a0  =1.0 

h0  = 1.0 

(p1 (0) = 0.523599 

2 k =0.5 

k2 =0.25 

(ol = 0.333333 

1.5 

= 2.236068 

E0.1 

>(
1 

0.5 

0 
2 4 6 8 10 

-0.5 

t 

Fig.(4. 1.2.3) 

Fig.(4.1.2.3) Comparison between analytical solution and numerical solution for chosen 

values of arbitrary constants, eigen-values and small parameter (analytic solution in solid 

line - and numerical solution in dotted line o o o ) 
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2.5 00=1.0 

bo  = 1.0 

p (0) = 0.523599 

P2(0) = 0.523599 

2 = 0.333333 

k.,=0.10 

coi= 0.25 

(,)21.732051 

1.5 

>< 1 

0.5 

0 
10 

v 

-0.5 

t 

Fig.(4. 1.2.4) 

Fig.(4. 1 .2.4) Comparison between analytical solution and numerical solution for chosen 

values of arbitrary constants, eigen-values and small parameter ( analytic solution in solid 

line - and numerical solution in dotted line o o o ) 

-r 
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2.5 a0  =1.0 

b0  = 1.0 

p1(0) = 0.523599 

P2(0) 0.523599 

2 k1  =0.333333 

k2 =0.10 

(0 = 0.25 

(02_1.41 4214  

1.5 

>< 1 

0.5 - 

10 

-0.5 

t 

Fig.(4. 1 .2.5) 

Fig.(4. 1 .2.5) Compatlson between analytical solution and numerical solution for chosen 

values of arbitrary constants, eigen-values and small parameter °( analytic solution in solid 

line - and numerical solution in dotted line o o o ) 

35 



4.2 Asymptotic Solutions of Fourth Order Near Critically Damped Non-Oscillatory 

Nonlinear Systenis 

4.2.1 Example 

As an example to solve fourth order near critically damped nonlinear system, we consider the 

fourth order nonlinear differential equation of the form 

cl 4 x d 3 x d 2 x dx 3 — 4  +e1  —+e2 . 
—+e---+e-1  x=—cx 

cit dt c1t dt 

The unperturbed solution of (4.2.1.1) as prescribed in (3.2.2), we have 

-x t - xt 
- t -x 1 -X -x i e — e 

x0 =a3e +a4e +—a1 (e +e 2 )+a2 
2 I2 

Also, from (3.2.3) the first approximate solution is 

(4.2.1.1) 

-x, -x \ 

(t)( 
-x t —e 2 I 

x(t. E) = a3  (t)e + a (t)e + 1a1 e ' + e 2 ) + a2  (t) I 
2 12 ) 

+ Eu 1 (a1 ,a,,a3 ,c14 ,t) 

For equation (4.2.1.1), we have. f = 
. and 

f(0) 
_xI( -x 

ja3e-k"' +a4e '  +'a1(e +e_/2t)+
a2

[ C 

—X2 

or, 

f(0) = + 3(ae3 

x<—a1(e +e - )+a 
I-, 

- 

IL I2 

2 I _xi 
-x 1 -xt 

 +a 
I e - C 2' (4.2.1.2) 

,l +3(a3e 3 ' +a4e 1—a1 (e I 
1 2 

( 
- -x 

1 

Ji -xt -x e ' —e 2 

2 
+ —a1 (e +e 2  )+a 

- I2 

36 



.4- 

/ xi xj\ 
e ' — e 

Now equating the coefficients of powers of I I. we have 

\ 
X12 

)• 

II t _x4 ( (D+?ci )(D+X.2 )(D+2 3 )(D+X 4 )ui Fr (a3e a4e ) 
r=2 

xJ_a (e'  +e2')+a2I 
£? - e '  

i.e., 

(D +)9  )(D + X )(D + X )(D + X = —[3(a3e' + a4e ' ) 

Xi - X-.t 
2 

x{!ai(eh t  +e2 E)+[C 

j 2 

(4.2.1.3) 

I / -xi 
ii -At -At le —e 2 

+—a1 (e +e 2 )+ail I 

L 2 
X12 )j 

e(D—X3  + 1 )(D—X 3  +X 7 )(D- 3  +X 4 )A3  

+e'(D—? 4  +X 1 )(D—X 4  +2,)(D—X 4  +? 3 )A4  

1 Ie (D—X 1  +X2)(D—? 1  +)c3 )(D-2 1 +?) 

-A 
L+e 2 '(D_X2  +X 1 )(D—X 2  + 3 )(D- 2  

3 -X.j 3 
-- _D)}A7 (4.2.1.4) D)+e (X 2 —X 3 — 

-  2 

+ 
(X e X2e )

1 IxD(D+73 - +X2 )A2 
2 

= —[(a3e '  +(14e' )3 

-Xi21  
+a4e ) —a1(e I +e 2  )] 

and (2c 4  + D) x D(D + X3  -  XI   ± X 2 )A1  = -3a2 (03e' + a4e_X41 )2 (4.2.1.5) 

Solving equation (4.2.1.5), we obtain 

A7  = a2[n1a3 2 
e

-2A 
-
.z (A 

+ ,i2a3ae 
)t 

+ n3a4
2e 2k 4 1 ] , (4.2.1.6) 
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- 

where 

3 
nl = 

?'3 + X2  + 22 3  )(2X3  A4) 

12 
/Z2 

X3 (X3  +7 4 )(? 2 +224) 

3 

24(X1 2 —2? 3  +4X4 ) 

Now substituting the value of A2 from equation (4.2.1.6) into equation (4.2.1.4), we obtain 

(D— X 3  + X I  )(D— X 3  ± X2)(D— + 

+e'(D—? 4  + 1 )(D—) 4  +X 2 )(D—? 4  +X 3 )A4  

1 e'(D—X1  + 2 )(D—X 1  +X 3 )(D- 1 +) 
A1  

2 +e 2'(D_? 2  +? 1 )(D—? 2  +X 3 )(D- 2  + )X) 

= [a 2n {(X1  + 2).3  )() + 2X 3  X4) + 0 

x(? 1  + + 2X3)X3 _alIa32e1+23 )l 

+ [ al n2  {(? + X )(2X1 + X3 + 3) + (1— X20 

x()X42  +2X3) 4  +?c1X3 23 +?9X4  +X22 4 )? 3  

)t 
-3a1]a3a4e 

(X 1  +), +X 3 4 

+{a7 n3 {(2 1  +i4)(? I  — X, +3?) 

3 2 (X +2X 4 t 
+(1—) 2t)(? 1  +X2  —2X3  +4? 4 )X4  ---a1 ]a4  C 

+ [a2n1  {(X2  + 2? 3  )(?2  + 2) 3  - X4 ) - a1 103e 
(.2+2X3)/ 

1 (?,  
+[—a2n2{(? 2  +X3 )(2) 2  ±X +3? 4 )-3a 1 ]a3a4e - 

4 )1 (4.2.1.7) 

+[a2n3 {(? 2  + 4 )() 7 +34)—a1Ja4 2 e 
(X --2 

3X 3 - / -(2?. +X +2X 4  )1  
—[a3  e +3a3 a4e - +3a3a e - +a4  e ] 

18 



In order to separate the equation (4.2. 1.7) for determining the unknown functions A1  . A3  

and A4 , we consider the most important relations among the eigen-values as limit X , -> 

and X- 3 4  (Akbar et al. [5], Alam [16, 24]). It is interesting to note that our solution 

approaches toward a critically damped solution (found by Alam [24]) if X —)~ X ,. However, 

the equation (4.2.1.7) has no exact solution unless 29  - 2.  Under these imposed 

conditions and by equating like terms on the both sides of(4.2.1.7), we obtain 

eAtI(DXi +X2 )(D-2+X3 )(D—X 1  ±X 4 )A1  

21712?(X1 +X 2  +22 3 )te
- 

1 (4.2.1.8) 
--a2c 3a4,i2 2 2 (2 4 2  + 22X4  + ?I?3  + + + 

-(X +X. +X )i 2 x te - a2a4  7132,X 4 (29 + )2 - 2 3  + 4X4  )te ' 

(D - + )(D - X3 + 2 )(D - X3 + 24 )A3  

i  +2?. 
= [a2n1  ((29 + 2 3 )(29 + 2 3  - X ) + + ?2 + 2X3  )} - -a1  ]a 2  3 e

-(X )I 
 

+[1(7 2iz2  {(X1  + X3)(21 + 3 + 3X 4 ) 

+X )t 
+ (2X4  + 2X3? 4  + I3  + + + 24 )} - 301  ]a3a4e

- +X - , 4 

+ [a2113 (()'l + X4 )()'I - + 3) 4  ) + X4  029 + 2 - 2 3  + 429)) 

3 2 -()+2?)t 
---a1 ]a4  e 

+ [a2n1  (2  + 2)3 )(2  + 2? 3  - 29) - 411 1413 
2 -O +2X )I 

+ [ ( + 29 )(2)`2  + 29 + 329) - 3a1  1a3a4e2 
+X )t 

+ [a2iz3 (29 + 29 )(29 - 29 + 329)- 't ]a42e2 +2? 4  )t 

i -3k. t -(2X. ~2. ) - -(X +2? )f . -3 t 
—[a3  e + 3a 3 a4e - + .,a3a4 e - ' + a e ' ] 

and 

e'(D-29 +29)(D—)4  +X2)(D—)4  +29)A4  =0 (4.2.1.10) 

The particular solutions of equations (4.2.1.8), (4.2.1.9), (4.2.1.10)  yield respectively 
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I -(X1 '2  +2k.) X X 2  +2X3  ) + J2a2 i3 !e = 
-( 

 
-(? X 2  +). +. 't -(X -?, +. 3  +A4  )t 

 + 13a2a 3a4te + I 4a1a3ci 4te 

2 —( —X+2? 4 )t 2 C _ +2  +15a2a4  le I +16a2a4  te I24)t 

—(? 
A =(M1 a2  +M 2 +? )

2a1 )a3  e - +(M3a2  +A'I4a1 )a3a4e
-O  I  

I -0 
+ (A'15a2  + M6 a1 )a4 e 24 3) 

+ (M7 a2 + Ma) 

x a32e2 3)1 + (M9a2 + M10a1 )a1a4e
-(? 

 ' 

+4)t 
 

—2? t I 2~2X13 
+ii'I13a33e +(1I'I11a2  + I1'I12 a1 )a4 e 

2 —(? +) )e 2? t —(3? —) )t 
+Ai14ti3  a4e +it415 a3a 2e +Ai16a( 

i 
 e " 

and 

1- i1=O, 

where 

11 
11= - 

223(? I  +X3 )()'1  +2X3  —X4 ) 

r1 (i 1 
I—+ + 

2? 3 (2 +X3 )( 1  +2 3  X4 )2X3  (X1  +)) (29  +2X3  _X4 )) 

17 
13  = — - 

(i +?c3 )(X1  +2c4)(23 +4) 

- _____ + + 
(? +X3)(X1  +X4 )(X3  +X) 0'1  +X3 ) (X1  +2) (+4)J' 

lc=_ 
r3 

— 

2? 4 (X1 + 4 )(X1 +2A 4 -2 3 ) 

r3 ( 1 1 1 

)( 2? (2 + 4I + 2) 4 + ()9 + X + (29  + 224 - )3) 

r1  =—n1 7c,X 3 (X j  +2c2  +2X3 ), 

= _n2?2(2)24 + 22 34  + + k2 3  + X12 4  + 

if 13 =—n3X-,X4(?1 2 —2X3  +4X4 ), 
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3 
fl' 

2 3 (X 1 +2X3 )(2X3  —X4 ) 

12 
122 - 

? 3 (X 3  +? 4 )(2 2 +224) 

3 

?4 
2 

+ X2  - 2? 3  + 4? 4 ) 

in1  

2X3( 1 +22 3  —X7 )(X1 +22 3  —X4 ) 

M, = - 
1712 

2? 3  (), I  + 2X3  - 2 2 )(? I + 2? 3  - 

-, 1 
M- 

1 

( +24)(J +X 3  +X 4  —? 2 )(X 1  +X)' 

= - 12 
 

() 3  +X4 )( 1 —)(X 1  +X 3 )' 

Pi 

2A 4 (? 1  +)14 )(? 1  +2X4 2) 

P2 
2A 40 1  +X4 )(2 1  +2X4 '2) 

'21 

2X3(? 2  +2A.3  —X1)(? 7  +2X3  —X4) 

q=- 
2 

 

2? 3  (?2 + 2?3 - )(X 2  + 22c3  - 

h1  
M9 

(X 2  +k 3 )(X 3  + 4 )()' 2  +X 3 -)' 

M10  = - 

(2 +X
112  

3 )(X 3  +X 4 )(? 2  +X 3  +? —X 1 )' 

Si  

2X4(?2 1)(2 +)2.4  —2,) 

M12 =— 
if 2X4 (X2  +X4 )(?, +2?4 i) 
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3 
in.) =-•--. 

2 

'2 =3 

3 
P2 = 

3 
q2 =— 

= —1 

I 
M13  = 

0 3  - X 1  )(3? 3  - X 2  )3? 

3 

2? 3 (3X3  +2 4  —X1 )(2)'3  +2¼4 —2) 

3 
1115 = 

()'3 +X.4)(2X4 +X3  —X1 )(2X 4  +X3  ?) 

M16 
1 

2? 4 ()? 4  —X1)(3X4 2) 

in1  = n1 {(X1  +22 3 )(X1  +2X3  —X4 )+? 3 (?c 2 +2X3)}, 

1 1( 1 + 3 )(2 1 +X3 +3 4) 
11  = — fl ) . 

2 L+(2X2 4 +2?3?4 I3 23 +11X4 +2224)J 

m = iz3 {(X1  +)(7 +3X4 )+X4 ( +X2  —2X3  +4? 4 )}. 

q1  =n1 (? 2  +2X3)(X2  +2?.3  —X4 ), 

h1  =—n,( 2  + 3 )(2X2  +) 3  +3X), 

S1 = '3(2 +X 4 )(? 2 +3X 4 ), = 

The solution of the equation (4.2.1.3) is 

UI = _30 3e2X13 [doa, 2 + 2d1 a1 a2 + d3a22  + (d2a12  - 2d0a1 a2  )t + d0022,2} 

3ae_(2X4)!c1a2 +2d5a1 a +d7 a2  +(d6 a22  _2d4a1a1)t+d4a2212] 
(4.2.1.14) 

- e d8a1  + ia1  a2  (d9a1  + c/i ()'2) + d12a2  + ci2 (di  1a2 - 3da1  

- 6d9 01 412 )t + 3a,2  (d8a1  + d9 412 )12  _d8a231 3 } 

where 

1 
d, 

= +X3 ) (2), j +X3  
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I (i 2 1 
d1 

2X1 (X1  +X3 )(2?9 ~X H (X 1  +X) + (2X1 + _X4)J 

1  
d2 

1 
= 

4 
+ 

2 

2?9 ()9  + X3 )2  (2X1  + ? - 2 4 )X1 (X 1  + 2 3 ) (2X1  + X3 
- 

1 

2X1 (X1  +X3) (2)9  +X3  X4 ) 

1 2 6 2 
x +-.--.---•'+---.  

229 2  24 (29 +? 3 ) (24+X3 )2  (224 +X3 )2 

1 (i 4 
+ I -+

)]~ 

(2X1 +2 3 -? 4 )X1  (24+?) 

d4 = 
224(29 +X4 ) (224 -X3  +2 4 ) 

d5 =- 
1 1 2 

+ 
224(29 + 4) 

-+ 
(2?4  23 +? 4) 224 (X1  +X4) (224 2 3  

c1= + 
1 (1 4 2 

224 (X1  + X)(21 - ) 3  + ?4 ) (24 + X) (229 - + X 4 )) 

(17  = 
1 

22(24 +? 4 ) (224 X3  +) 4 ) 

XI + + 
[i 2 6 2  

+ 
[224 X 1 (X 1  +) (29+?4)2 (224 )13 +? 4 ) 

+ + 
)J]

I 1 4  
+X4 

 

d8 = 
42(3 -X3 )(324 -X 4 ) 

d9=- 2 
I—+ 

429 (29 - X 3  )(329 - X 4 ) 24 329 - 

I 

+ 
1 

329-X4  
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4- 

d fl  ____ 

1 

[(..IXI 

2 2 
)= 

- 

4X(3X —? 3 )(3X1  _X 4 ) ?) + QkI  —?3)(3)"I 4) 

2 2 2  

+ + + + I 
(3 X) (3 —X3 ) (3? 2? 2 j 

r 6 6 9 
I + 

4X 2 (3X —?3)(3X1 -X4)L(3X1 X) (3X1 3)(3 4) 2? 1  

+ 
6 6 6 

(3 X) + + 

[ 6 
__ 

6 6 6 
d1-=—I + + + 

- 

, 
(3X 

- )13 )(3), -1 4 ) (3X - X(3? - )) (3)11 - 

11 6 6 6 1 
?(' ?)2 ( 3 )(3 14)(3. _ X4)hj 

+-- I 
3( 3 3 ' 3 

1. 
2? I 2 

+ +- 
3i I _ 3  3- 4 ) 

Putting the values of A2. A1 , A3  and A4  from equations (4.2. 1.6), (4.2.! .1 1). (4.2. 1.12) and 

(4.2.1.13) into the equation (3.2.4), we have 

2 -(X X2 +_X 3 )t 
J1  a,a32 

-(X -X X 3)t 
+ I2a2 a3  te te I 2 ±2 

= j+ I3a2a a te I + I4a,a3a4te I  
da1 (t) -(X 2 +X 3  +X )i -(X X2  +k 3  +X 4  )t 

di' I 
2 -(X -X, +2 4  ) + I6a2a42te1 -X, +2X 4  )t 

[+I5a2a4  te 

da-,(t) 
= 

2 2X I -(X +X 4  )i 2 2X 
Ea2[n1 a3  e + n,a3a4e + n3a4  e 

4  

dt 

1
], 
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(A'11a2  +M2a1 )a1  e ' M4a1 )a3a4e ' ' 
da3(t) 

= [ 
2 -O +X )i +(M3a2  +  

di 

2 -(X1+2k -?..)t 
+(Ma, +M6a1)a4 e +(M7 a2  +M8a1 ) 

xa3  2 e 2 + (M 9a, + Ma1  )a3a4e2 +).4)t 
 

- ( 2 2+2X4 X3)i 
+ Mi3a3

3 2e  +(M 11a7  +M12a1 )a4  e 

+ M 
2 -2X 4 + 

A'116U 4  e 
, -(3X4  - 2 +M1ça3a4  e 14a3  a4e 

da4 (t) 0  

dt 

(t) da1 (t) da2 (t) da3 (t) da4  
The functions and are slowly varying functions of time 1, 

di ' di ' ,It tit 1 

because each of these functions varies as the small parameter c, and are thus almost 

constant. Following Murty and Deekshatulu [61], Murty etal. [62], we assume that a1 (11, 

2. 3, 4) presented in the right hand side in the relations of equation (4.2.1 .15), are constants. 

Thus, by solving the relations of the equation (4.2.1.15). we obtain 

-r 

and 
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at(O=ai(0)+c[ a2 (0)a32 (0) 
, 

.): 

12 (
\
1 -e I 2 3 I1  

)i) I 2 -2X3), + e (- 
I +) -2X 

-' 2 
- J 

- (e  

2I 2 
+2A3 

+ 02 (0)413 (0)a4  (0) 

(-X +. 

e 14(1 - 
1 234 

111 
+ 

( 2 +?
3  +? 4 ) 

+ a(0)a4 2 (0) 

+Xk )I ( (- 1 +A,-2X4 )r e -1 Ii 16(1_ e(_12_2 4 + J_Iste 
I 

2 
+24 

x 

( 2 
+2? 4 ) 1' 

1 
a2  (t) = a2  (0) + 2 (0) [ni a12  (0)

e
-2? 1  

- {[  
2 ft 

3 

- z 
_________ 1—e

2? " 
_ 

 

Jn3a4(0){[ 24 

x 
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4.  

I -( +X 3 )t ' 
+ c[a32 (0){M1a2  (0) + M2a (0)}I 1- 

e 
I X+?. I 

I 3) 

( 1+'u'\ I 1 - 
+a3(0)a4(0){Lv13a2(0)+Ii'I4ai(0)

- e
-o 4  

1 
I .i) 

- -? +2X4  )t 

+ a4 2  (0){M5a, (0) + tl'I6 a1  (0)}[ 
3 

?. -? + 2?. 
I 3 4 

3 ' 
+ a3 2  (0)'I7a2(0) + M8ai(0)}[1 

_2  

x +x I 
2 3) 

+ a3  (0)a4  (0){J%'19Q2 (0) + M10 a1  (0)}! I 
I J 

+a42(0){Miia2(0)+IWiiai(0)}I Ic I 
I X -? +2X I 

2 3 4) 

I -2X 1 )t " I 1- 
+a3(0)Mj3 ' +a32(o)a4(o)M14 

c -O3+X4 

1 
+ x I 

3) 34) 

-2 i 1 -(3 X 3  )t (1-e c 4 

J +a3(0)a42(0)M15 
2 

+a4  (0)J1'116
X4 3X -X 

4 3 

and 

a4 (0= a4 (0) 

Therefore, we obtain the first approximate solution of the equation (4.2.1.1) as 

(4.2.L16) 

-A.t 1 
x(t,) = a3e + a4e + -a1 (e 

- I 
-?r C 

)+a2  
-) i 

-e 2 

+ £ U1, 
- 

-, ) 

(4.2.1.17) 

where a1 , a2 , a3  and a4  are given by the equations of (4.2.1.16) and u1  is given by the 

equation (4.2.1.14). 
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4.2.2 i)iscussion 

An asymptotic method, based on the theory of Krylov-Bogoliuhov-MitropolsLii (KBM), is 

developed for solving fourth order near critically damped systems under some specific 

conditions with small nonliiiearities, when all of the four eigen-values of the corresponding 

linear equation are real. The relations, limit A1  -> 22 and 2 324  among the eigen-values 

are imposed to solve the system. We have compared the approximate solution obtained by 

using our proposed perturbation method to the numerical solution to test the performance of 

our approximate solution. Firstly, x(i, e) is calculated by (4.2.1 .17) by imposing the 

conditions that limit A -4 2 and 2 324  in which a1 , a2 , 113 and a4  are calculated by the 

11 
equation (4.2.1.16) and u1  is calculated by the equation (4.2.1.14) for different sets of initial 

conditions and for various values of i. Secondly, a corresponding numerical solution of 

(4.2.1.1) is computed by fourth order Runge-Kutta method. The approximate analytical 

solutions and numerical solutions are plotted in the figures (From Fig.(4.2.2. 1) to 

Fig.(4.2.2.5). From these figures. we observed that the analytical solutions and the numerical 

solutions are in good agreement. 
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2.5 a10  = 0.75 

a 20  = 0.75 

a30  = 0.75 

a40  = 0.75 

2 = 0.333333 
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X3 =l.75 
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2 4 6 8 10 

-0.5 

t 

Fig.(4.2.2. 1) 

Fig.(4.2.2.1) Comparison between analytical solution and numerical solution for chosen 

values of arbitrary constants, eigen-t'alues and smaU parameter ( analytic solution in solid 

line - and numerical solution in dotted line o o o )• 
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Fig.(4 .2.2.2) 

Fig.(4.2.2.2) Comparison between analytical solution and numerical solution for chosen 

values of arbitrary constants, eigen-values and small parameter ( analytic solution in solid 

line - and numerical solution in dotted line o o o ) 

il- 

50 



a10  =1.0 

a20  = 0.0 
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0 2 4 6 8 10 
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Fig.(4 .2.2.3) 

Fig.(4.2.2.3) Comparison between analytical solution and numerical solution for chosen 

values of arbitrary constants, eigen-values and small parameter ( analytic solution in solid 

A line - and numerical solution in dotted line o o o )• 
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F ig.(4 .2.2.4) 

Fig.(4.2.2.4) Comparison between analytical solution and numerical solution for chosen 

values of arbitrary constants, elgen-values and small parameter ( analytic solution in solid 

line - and numerical solution in dotted line o o o ) 
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Fig.(4.2.2.5) 

Fig.(4.2.2.5) Comparison between analytical solution and numerical solution for chosen 

values of arbitrary constants, eigen-values and small parameter ( analytic solution in solid 

line - and numerical solution in dotted line o o o )• 
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CHAPTER 5 

CONCLUSION 

Following the KBM method, the asymptotic methods are developed to obtain the solutions of 

fourth order nonlinear differential equations with small nonlinearities that represent damped 

oscillatory and near critically damped non-oscillatory systems under some specific 

conditions. For the damped oscillatory system Out of the four eigen-values of the 

corresponding linear equation, two are assumed to be real and the other two are complex; 

where as. for the near critically damped non-oscillatory system all of the four eigen-values of 

the corresponding linear equation are real. The relations. limit 2 
- 2 2  and 2. 3t4  . among 

the eigen-values are imposed to solve the fourth order near critically damped non-oscillatory 

system. The results obtained by the 1Dertu1bati0n  method with the propositions about the 

eigen-values are in good agreement with those of the numerical method. 
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