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Abstract I 
Hybrid Algorithms for solving set of linear equations are hybridization of evolutionary 

techniques and classical methods for solving set of linear equations. The classical iterative 

methods for solving set of linear equations are slow in terms of convergence and can be 

made faster by introducing relaxation factor co (0 < co < 2). The process in very sensitive 

to the relaxation factor and the estimation of its optimum value is very difficult. Adaptation 

and selection mechanism of evolutionary computations serves the purpose of finding the 

optimum value of the relaxation factor and then the solution come out. The four Hybrid 

Evolutionary Algorithms (JBUA, GSBUA, JBTVA and GSBTVA) were in front of us. 

Thorough study of the Uniform Adaptive Hybrid Evolutionary Algorithms JB[JA and 

GSBUA showed that the crossover operation present in them are needless and thus we 

have proposed two modified Algorithms MJBUA and MGSBUA. We have tested the 

proposed MGSBUA separately for solving partial differential equations (especially in case 

of Laplace's equation). The solution of the discretized form is compared with the analytical 

one and the same set is also solved by the Gauss-Scidel method. It is found that our 

proposed method is faster and better accuracy can be achieved. We also have solved a 

sample Poisson's equation using our proposed algorithm. It is found that MJBUA and 

MGSBUA hybrid algorithms are faster and memory effective than their original 

counterparts. 
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4 CHAPTER 1 

Introduction 

The Evolutionary Computation techniques are inspired by the natural process of evolution 

[Hashem (1999)]. Selection and variation are the two basic principles in evolution and 

when these principals are found in any computation technique then that can be termed as 

Evolutionary computation technique. The algorithms which contain these strategies are 

4 termed as Evolutionary Algorithms. The variations of Evolutionary Algorithms bring 

differing philosophies of how to algorithmically abstract the model of natural evolution. 

Due to difference in commitment to levels of abstraction distinct emphasis are given that 

leads to a commitment to representations and philosophy of operators. Four main streams 

of these general algorithms, developed independent of each other, come forward - (i) 

Genetic Algorithms [Holland (1962), Back and Schwefel ((1993)], (ii) Evolutions 

strategies [Rechenberg (1993), Back and Schwefel (1993) and Hashem (1999)], (iii) 

Evolutionary Programming [Fogel et al. (1966), Back and Schwefel (1993)] and (iv) 

Genetic Programming (GP) [Koza (1994) and Hashem (1999)] They have their own 

capabilities to yield good approximate solutions of optimization problem. Different 

algorithms emphasizes different features as being most important for a successful evolution 

process. Evolutions strategies and Evolutionary programming concentrate on mutation as 

the main search operator, while the rule of pure random mutation in Genetic Algorithms 

and Genetic Programming is usually seen to be of secondary importance. Recombination 

and probabilistic selection mechanisms have their own merits in different algorithms. 

The inherent strength of Evolutionary Algorithms lies in the choice of the mutation steps 

(Rechnberg (1994), Fogel (1995), Back et al. (1996)]. According to the biological evidence 

Time Variant Mutation operator can improve the fine local tuning and can reduce the 

disadvantage of uniform mutation (Michalewiez (1996), Back et al. (1997), Hashem 

(1999)]. 

4. 



4. The peculiarity of Evolutionary Computations is maintaining a set of points (called 

population) that are searched in parallel. Each point (individual) is evaluated according to 

the objective ftinction (fitness function). Further a set of genetic operators is given that 

work on populations. They contribute to the two basic principles in evolution - se/cc/jo,, 

and i tiritafion. Selection focuses the search for the "better" regions of the search space by 

given individuals with "better" fitness values and higher probability to be member of the 

next generations (loop iteration). On the other hand, variation operators create new points 

in the search space. Here not only random changes (mutations) of particular point are 

possible but also the random mixing of the information of two or more individuals 

(crossover/ recombination) are possible [Back and Schwefel (1993), Schoenauer and 

Michaleewicz (1997) and Back et al. (1997), Hashem (1999)]. Evolutionary Computations 
.4 

are often characterized as combining features from path-oriented methods and volume-

oriented methods. Evolutionary Computations combine these contrary features in so far 

that in the beginning of the search the population is usually spread Out in the whole search 

space, corresponding to a volume-oriented search. In the latter stages of the search 

algorithm has focused few (or single) region due to selection and the selected region is 

examined further. In this respect the algorithm behaves like a path—oriented search 

[Hashem (1999)]. Another possible identification of these two stages of the search could be 

the correspondence of the first stage to a global reliability strategy (coarse grin search) and 

the second stage to a local refinement strategy (fine grin search) [Yuret (1994), Hashem 

(1999)]. It is also observed that there are two important issues in the simulated search 

process of natural evolution: population diversity (exploration) and selective pressure 

(exploitation). These factors are strongly related - a strong selective pressure "supports" 

the premature convergence of evolutionary search and a weak selective pressure can make 

the search ineffective. Thus it is important to strike a balance between these two factors 

[Hashem (1999), Michalewicz (1996), Blickle (1997)]. 

Large set of linear equations are very common in Engineering and other physical 

applications. Though many classical methods are available for solving them yet rapidly 

convergent and efficient methods are still of interest. Iterative methods are preferred to 

solve them as computers can be utilized for solution purpose. The convergence of the 

Jacobi and the Gauss-Seidel methods (both are iterative in nature) is slow. Their 

convergence can be made faster by introducing successive relaxation technique. But the 



+ speed depends on the relaxation factor and the technique is very much sensitive to that. The 

optimum value of the relaxation factor is difficult to estimate. In hybrid algorithms the 

fitness of certain individual serves the optimality of relaxation parameter in terms of the 

error of estimation. In this way the classical iterative methods with successive relaxation is 

hybridized with the evolutionary algorithms. The generation of new population, mutation 

etc. of evolutionary algorithms serves to generate new relaxation factors to estimate its 

fitness. The partial differential equations, after discretization, also give rise of set of linear 

equations. Thus the methods usable to solve set of linear equations are also useful to get 

numerical solutions of partial differential equations. 

For our study purpose we have chosen four hybrid evolutionary algorithms - Jacobi Based 
.4 

Uniform Adaptive, Gauss-Seidel Based Uniform Adaptive, Jacobi Based Time Variant 

Adaptive and Gauss-Seidel Based Time Variant Adaptive hybrid evolutionary algorithms. 

All of them can be used to solve set of linear equations effectively. 

The organization of this thesis is presented below: 

Chapter 2 contains discussion on some classical numerical approach to solve a set of 

linear equations. There Jacobi's iterartion method, Gauss-Seidel method, Successive 

relaxation method, along with Gauss elimination method is discussed. Chapter 3 starts 

with the classification of Partial Differential Equations. How the discretized form of Partial 

Differential Equations can be solved is presented there in limited form. The overview on 

the Evolutionary Computation is presented in Chapter 4. Different aspects of Evolutionary 

Computations, its merits and demerits, along with some hybrid evolutionary algorithms are 

incorporated in Chapter 4. After thorough investigations on the chosen uniform adaptive 

hybrid evolutionary algorithms we have found that the presence of crossover operation in 

them is needless to solve a set of linear equations. This matter is presented in Chapter 5. 

Utilizing our findings we have presented two modified hybrid evolutionary algorithms 

there and the performance of them is also discussed. The result of the primary 

investigations of the modified algorithms inspired us to use them in the solution of Partial 

Differential Equations. We have used one of them in the next chapter i.e. in Chapter 6. 

There we have presented the solution of a steady state heat distribution problem with 

certain boundary conditions. The discretized equation gives rise of 121 equations with 12 1 

unknowns. We have solved that set with our own devised tool and also by using a classical 

3 



numerical method. The results are compared with the analytical solution and a good match 

is found. Also we have used that method to solve a sample Poisson equation and the 

obtained solution is also presented in Chapter 6. Finally we have made our Concluding 

Remarks. Also the cited references are listed at the end of the thesis. 

KUEJ 
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J11- CHAPTER 2 

Some Classical Numerical Approach to solve a set 

of Linear Equations 

2.1 Introduction 

The importance of solving linear equations can be sunimarized in a single statement: 

solving linear equations pervades and enriches almost all areas in numerical computation. 

Numerous classical methods are available for the solution of system of linear equations 

using computers. Yet this field is constantly expanding as more and more new concepts 

and algorithms are developed almost every day. The reasons for such a rapid growth in this 

area are the advent of very high-speed large-memory computers and the non-availability of 

a best suited computational method in solving system of linear equations for all types of a 

given problem. Since linear equations can be expressed as matrix equations, these 

constitute an important aspect of matrix algebra. This chapter overviews the elementary 

concept of linear equations in matrix algebra and the classical numerical methods of 

solving linear equations. 

Let us consider a set of ii equations with n unknowns as follows 

ajixt  +a1.,x2 ..........  +a1 x1  =b1  

C1 2 1 X1  + + .........+ a2 x = 

(2.1) 

+c 2x1  +...... =b, 11 

This can be written as Ax = h (2.2) 

where A = La,1 ], x[x1 ,x2,x3.........,x,1 } and h=[h1 ,h2,b,.........b,J 

There are mainly two methods to solve linear equations: Direct methods and Iterative 

methods. 

.1 
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2.2 Direct Methods 

The term direct method indicates a method that solves a set of equations by techniques in 

which it is not needed to guess an approximate solution. This method involves elimination 

of a term containing one of the unknowns in all but one equation. One such step reduces 

the order of equations by one. Repeated elimination leads finally to one equation with one 

unknown. There are many direct methods to solve system of linear equations such as Gauss 

elimination method, Gauss-Jordon method, Crout method, Doolittle's method, etc [Gerald 

and Wheatley (1994), Jain et al. (1985), Forsythe and Moler (1967)]. The direct methods 

are efficient and effective for small number of unknowns. But direct methods are not 

suitable for solving very large set of linear equations. Since the order of operation of direct 

methods are O() (only consider multiplication and divisions) [Gerald and Wheatley 

(1994)] so it may produce a significant amount of round off error in calculation. Direct 

methods also inefficient for large sparse and structured matrices. Two well-known classical 

direct methods named Gauss Elimination and Crout LU decomposition methods are 

described below: 

2.2.1 Gauss Elimination Method 

A simple and most well known direct method of solving linear equations (Small and dense 

coefficient matrix) is Gauss elimination method. For small coefficient matrix, this method 

is frequently used. This method possess a systematic strategy for deducing the system of 

equations to the upper triangular form using the forward elimination approach and then 

back substitution process is used to obtain the set of values of the unknowns. The strategy, 

therefore, comprised two phases: 

1. Forward el/rn/na/ion phase: This phase is concerned with the manipulation of 

equations in order to eliminate some unknowns from the equations and produce an 

upper triangular system. By the following way the coefficient matrix of Eqn. (2.2) is 

reduced to triangular matrix. The relation for obtaining the coefficient of the kth 

derived system has the general form: 

.4 

I'.  

FA 
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a11 - a a (k-I) 
(k) 
- 

(k-I) 
- 

a 
(k-I) 
/h. (k-I) 

(2.3) 

where / = k + 1 to n ,  j = k + 1 to 11; and 

am =a4  fori=I ton, j=1 ton 

The kth equation, which is multiplied by the factor a/k /akk , is called the pivot 

equation and akk  is called pivot element. The process of dividing the kth equation by 

a/k /akk is referred to as normalization. 

2. Back siibslilulioi, process: This phase is concerned with the actual solution of the 

equations and uses the back substitution process on the reduced upper triangular 

system. After reducing the system of Eqn. (2.2), by the following way the relation for 

obtaining the kth unknown, Xk, has the general form: 

Xk = (k-I) 
[bk_n 

-I)  
- 

.::] (2.4) 
I cl /A 1+I 

where k = n — I to I ,and X (n-I) (2.5) 
a,11, 

2.2.2 Crout Method 

Although Gaussian elimination is the best known of the direct LU decomposition methods, 

Crout (or Doolittle) method is widely used. In direct method, Crout method is popular in 

programs because the storage space may be economized. There is no need to store the 

zeros in either L or U, and the ones on the diagonal of U can also be omitted. The LU 

decomposition is produced by Crout reduction method [Gerald and Wheatley (1994)] as 

follow: 

k-i 

'ik =alk liiU ik , k~i, i=I,2,•••,n, (2.6) 
j=I 

7 



Uk - a, —lijU jA. i ~ k, k 1,2. (2.7) 
1=1 j 

(For k =l,the role for /reduces to =a 1  for I = 1,2,",n . And for 1= 1,the role 

for ureducesto 111k 

= 

a 1k 
 fork = 2,3,n) 
/11  

where A = [a11 ] is the coefficient matrix as in Eqn. (2.2), L 
= 

[Ii,] is the lower triangular 

matrix and U = [Uq ] is the upper triangular matrix. 

Then the matrix A can be transformed by the above equations and becomes 

a, 1 a12 a13 - a, /11 U 19 11, • 

02, 6122  a23 121 122 1/ 23 111 11  

a3, 32 (133 >/3j 32 133 (2.8) 

a_1 _ 1  a,,_ . 

a,11 - a_1 a 
121 1n2 

Because the L and U matrices are condensed into one array and store their elements in the 

space A, this method is often called a compact scheme. 

Then the solution of the set of the Eqn. (2.2) is readily obtained with the L and U matrices 

ra 

4 

by the following formulas: 

The general equation for the reduction of b to b' are 

b 
bf 

=bi  - Ib;.k 
J. 

i =2,3, • 

And the equations for the back-substitution are 

x,, = b 

Xk = - ux1, k = n—I, n-2,• 
j=k+1 

Ir ur1 

(2.9) 
IL  •

1 

(2.10) 

i 



2.3 Iterative Methods 

As opposed to the direct methods of solving a set of linear equations by Elimination, 

iterative methods are discussed now. Direct methods for solving linear systems, with their 

large number of operations proportional to ti [Gerald and Wheatley (1994)], have a 

tendency to accumulate round off errors so that for a not well-conditioned coefficient 

matrix A, the solution can become entirely useless. On the other hand, iterative methods 

are unaffected by round off error to a large extent, because each approximate solution with 

its inherent computational error can easily be improved upon in the following iteration 

steps. Iterative methods typically require around /,2  operations [Gerald and Wheatley 

(1994)] for each iteration step. But unfortunately, they do not converge for all solvable 

systems [Chapra and Canale (1990)]. Figure-2.1 illustrates the convergence and 

divergence of iterative methods applied to the same functions (line ii and i' in the figure). 

Thus the order in which the equations are implemented (as depicted by the direction of the 

first arrow from the origin in the figure) dictates whether the computation converges or 

diverges [Chapra and Canale (1990)]. In certain cases, these methods are preferred over 

the direct methods - especially when the coefficient matrices are sparse (has many zeros), 

in that situation they may be more rapid. They may be more economical in memory 

requirements of a computer. Apart from this, because of round off error, direct methods 

sometimes prove inadequate for large systems. Iterative methods may sometimes be used 

to reduce round off error in the solutions computed by direct methods, as discussed earlier. 

An iterative technique to solve the linear system Ax = b starts with an initial 

approximation x 1 " to the solution x and generate a sequence of vectors {x that 

converge to x. Iterative technique involves a process that converts the system Ax = b 

into an equivalent system of the form 

x=Hx+V  

For some fixed matrix H, called iteration matrix, and vector V [Jain et al. (1985), Chapra 

and Canale (1990), Mathews (2001)]. After the initial vector is selected, the sequence 

of approximate solution vectors is generated by computing 

I 
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K.,  

4- 

K' 

U 

   

LI 

(a) (b) 

Figure 2.1: Illustration of (a) convergence and (b) divergence of iterative methods. Notices that 
the same functions (line it and v in (hc figure) are plotted in both cases. 

x =Hx' +  V  , foreach k=l,2,— (2.12) 

An iteration matrix H can be viewed as a correction on the last computed iteration [Chapra 

and Canale (1990)] 

= x +z (2.13) 

where Z 
(k)

is called the correction vector or residual vector. 
1' 

Subtracting Eqn. (2.11) from Eqn. (2.12) and if the error is defined as 

() =x — X, (2.14) 

then 

(k+1) = Hs", k = 0, 1, 2, (2.15) 

from which follows 

= H's", k = 0, 1, 2,••• (2.16) 

There are mainly two basic iterative methods - Jacobi method and Gauss-Seidel method. 

The rate of convergence of both methods is relatively slow. The rate of convergence may 

be accelerated by using Successive Relaxation (SR) technique [Gerald and Wheatley 



(1994), Varga (1962), Engeln-Mullges and Uhlig (1996)]. The two well-known iterative 

methods are discussed bellow including SR technique. 

2.3.1 Jacobi Method 

Assume that a linear system given (in the form Eqn. (2.2)) is 

Ax = b with A # 0 

Assume without loss of generality that none of the diagonal entries is zero, otherwise 

interchange it rows. Then 

(D+U +L)x =b,where A=(D+U+L) 

11 or Dx=—(U+L)x+b 

or x=—W1 (U+L)x+IY'b 

or xH,x+V1 (2.17) 

where H 1  —D '(L + U), called Jacobi iteration matrix, and V1  = D'b [Engeln- 

Muliges and Uhlig (1996), Jam et al. (1985), Burder and Faires (1997), Cheney and 

Kincaid (1999)]. 

By solving the ith equation of Eqn.(2.2) for X, , then an equivalent form for the system 

is [Antia (1991)] 

b 
i=ln 

 
k=I a11 aii  ( 
k#i 

And construct the sequence {x} for an initial vector X by setting 

= H .x +V, with 

x(k) 
( 

for k = 0,1,2,....  

Expressed in component-wise, this Jacobi iteration becomes 

_ I  -  —fly  X~k) ... 
'' c.1 

•,= 
a; and k0,l,2, (2.20) 

j•#I 



The iteration matrix H 1  can be viewed as a correction on the last computed iteration as 

Eqn. (2.13) i.e. 

= x(k) +z 

where 

= V1  —(1— H 1 )x" (2.21) 

Jacobi method is also known as the method of simultaneous displacement method [Antia 

(1991)]. 

2.3.2 Gauss-Seidel Method 

The Gauss-Seidel method differs from the Jecobi method slightly. The difference between 

the Jacobi and Gauss-Seidel methods is that in the later, as each component of x"is 

computed, and used it immediately in the iteration [Engein-Mullges and Uhlig (1996), Jam 

etal. (1985), Burder and Faires (1997), Cheney and Kincaid (1999)]. Assume that a linear 

system given (in the form Eqn. (2.2)) is 

Ax=b with I A I #O 

Assume without loss of generality that none of the diagonal entries of is zero; otherwise 

interchange it rows. Since in Gauss-Seidel method used on the right hand side all the 

available values from the present iteration. So 

(D+U+L)xb,where A=(D+U+L) 

or (D+L)x-Ux+b 

or x=-(D+L)'Ux+(D+L)'b 

or x=Hx+V (2.22) 

where V? = (L + D) b and 1-I = —(L + D) U, called Gauss-Seidel iteration matrix. 

And construct the sequence {x } for an initial vector x by setting 

1 ' 
=HgX(k) +Vg  with 

x x 
, fork =0, 1, (2.23) 

12 

I 



Expressed in component wise, this Gauss-Seidel iteration becomes 

and k =0,1,.— (2.24) 
i 

a
ii 
.. 

._ 
ai.. .1-  

The iteration matrix H g  can be viewed as a correction on the last computed iteration as 

Eqn. (2.13) i.e 

= x '  + 

where 

= Vg  — (I - H g  )x (2.25) 

Gauss-Seidel method is also known as the method of successive displacement method. 

2.3.3 Successive Relaxation (SR) Technique 

Relaxation method represents a slight modification of the Jacobi/Gauss-Seidel method and 

is designed to enhance convergence [Carre' (1961), Young, (1954), Gerald and Wheatley 

(1994), Varga (1962), Engein-MUilges and Uhlig (1996)]. Define an auxiliary vector x as 

(k+l) = —D'Lx —D'Ux + D'b, for Jacobi method and 

k = —D'Lx' - W1  Ux + D'b, for Gauss-Seidal method 

Then using SR technique the final solution is now written as 

= + ü z (2.26) 

where z is the correction vector and w is a relaxation factor. 

or X = + (0((k+l) 
- x) 

or = (1 - + (2.27) 

Here is weighted mean of (k1)  and and w is a weighted factor that is 

assigned a value between 0 and 2 [Krishnamurthy and Sen (1989), Gerald and Wheatley 

(1994), Varga (1962), Engeln-Mu11ges and Uhli (1996)].g  

(i) For 0) = 1, the Eqn. (2.26) reduced to the Jacobi/Gauss-Seidel method 

[Krishnaniurthy and Sen (1989), Gerald and Wheatley (1994)]. 
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If w is set at a value between 0 and 1, the result is weighted average of 

corresponding previous result and sum of other (present or previous) result. It is 

typically employed to make a non-convergence system or to hasten convergence by 

dampening Out oscillations. This approach is called successive under relaxation 

[Gerald and Wheatley (1994), Krishnamurthy and Sen (1989)]. 

For value of 0,  from 1 to 2, extra weight is placed. In this instance, there is an 

implicit assumption that the new value is moving in the correct direction towards 

the true solution but at a very slow rate. Thus, the added weight (t is intended to 

improve the estimate by pushing it closer to the truth. Hence this type of 

modification, which is called over relaxation, is designed to accelerate the 

convergence of an already convergent system. This approach is called successive 

over relaxation (SOR) [Gerald and Wheatley (1994), Krishnamurthy and Sen 

(1989)]. 

(iv) The combine approach, i.e. for value of CO from 0 to 2, is called successive 

relaxation or SR technique [Gourdin and Boumahrat (1996), Engeln-Mullges and 

Uhlig (1996)]. 
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CHAPTER 3 

Partial Differential Equation 

3.1 Introduction 

Many physical phenomena in applied science and engineering when formulated into 

IF mathematical models fall into a category of systems known as Par//al different/al 

equations. A partial differential equation is a differential equation involving more than one 

independent variable. These variables determine the behavior of the dependent variable as 

described by their partial derivatives contained in the equation. Some of the problems 

which lend themselves to partial differential equations include: 

Study of displacement of a vibrating string, 

Heat flow problems, 

Fluid flow analysis, 

Electrical potential distribution, 

Analysis of torsion in a bar subject to twisting, 

Study of diffusion of matter, and so on. 

Most of these problems can be formulated as second-order partial differential equations 

(with the highest order of derivative being the second). If we represent the dependent 

variable as/and the two independent variables as x and y, then we will have three possible 

j:f (f 
___ second-order partial derivatives and in addition to the two first-order 

ax -  (7X(y  PY 

partial derivatives and 

We can write a second-order equation involving two independent variables in general form 

as 

__ 

3 .( 
+( -

21 
  -=Il 

. of 
) 

I (3.1) 
ax- 0y Ox ' 
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where the coefficients A, B and C may be constants or functions of x and y. Depending on 

the values of these coefficients, equation (3.1) may be classified into one of the three types 

of equations, namely, elliptic, parabolic and hyperbolic. 

Elliptic, B 2  —4AC <0 

Parabolic, B2 -4AC =0 

Hyperbolic, B 2  - 4AC > 0 

If A, B and C are functions of x and y, then depending on the values of these coefficients at 

various points in the domain under consideration, an equation may change from one 

classification to another. 

Solution of partial differential equations is too important to ignore but too difficult to 

cover in depth in brief Since the application of analytical methods becomes more complex, 

we seek the help of numerical techniques to solve partial differential equations. There are 

basically two numerical techniques, namely, fi,,ite-difference  method and finite-element 

method that can be used to solve partial differential equations. The finite-element method 

is very important for solving equations where regions are irregular. We will discuss here 

the application of finite-difference methods only, which are based on formulae for 

approximating the first and second derivatives of a function. We will also consider 

problems, only those where the coefficients A, B and C are constants. 

3.2 Finite difference method 

Consider the problem 

ay 

a L+ht +cL=P'Ix,y I., 0.")a2  

Equation (3.2), when Ci = 1, h = 0, C = 1, and P'(x,y,f,t,f.) 0, becomes 

+ 
ax 

= = 0  

The operator 

12 2 
2 I (l 7 =I—+-- 

lax2 2 

4- 
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is called the Laplacian operator and Eqn. (3.3) is called Laplace 's equation. (Many authors 

use it in place of f) 

To solve the Laplace equation on a region in the xy -plane, we subdivide the region in two-

dimensional finite difference grid. Consider the portion of the region near (x,,',). We have 

to approximate 

2= 2f2f0 
2 2 

( fi.j. 
 \ - 

fi+i.i -2f•1+f11,1 

- h 2 
(3.4) 

f,•1+1 -2 +L1-1 
'.1 k2 

(.).5) 

Replacing the second-order derivatives by their finite difference equivalents fiom equation 

(3.4) and (3.5) at the point we obtain, 

v2j: = 
-2i; +/; 

+ 
-2/a +f; 

1.J 
k 2  

If we assume, for simplicity, h = k, then we get 

v2f 
= 

++ ~L _4f 1 )= 0 (3.6) 

Note that Equation (3.6) contains four neighboring points around the central point (x, ,y,) 

(on all the four sides) as shown in Figure 3.1. Equation (3.6) is shown as the fIve-point 

difference formula for Laplace's equation. 

+1 

i - l,j 
I 

  

i 

i+1, j 

4, 
i,j-1 

Fig. 3.1 Grid/or Lapace 's equal/oil 
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We can also represent the relationship of pivotal values pictorially as in equation (3.7). 

v2fI{l 4 (3 7) 

From equation (3.6) we can show that the thnction value at the grid point (x1 ,y,) is the 

average of the values at the four adjoining points. That is, 

= + 
I  (f 

1j +Li+1 (3.8) 

To evaluate numerically the solution of Laplace's equation at the grid points, we can apply 

equation (3.8) at the grid points where •/ is required (or unknown), thus obtaining a 

system of linear equations in the pivotal values .t;.. The system of linear equations may be 

solved using either direct methods or iterative methods. 

3.2.1 Liebmann's Iterative Method 

2j. 
 32f 

We have Laplace's equation 
2  + 

= V •f = 0 (3.9) 

We know that a diagonally dominant system of linear equations can be solved by iteration 

methods such as Gauss-Seidel method. When such iteration is applied to Laplace's 

equation, the iterative method is called Liehinann 'S i/era/ire inc/hod. 

To obtain the pivotal values of / by Liebmann's iterative method, we solve for fij  

the equations obtained from (3.8). That is, 

i =(f,11+f 11+f1+ +f11) (3.10) 

The value fi.  at the point (i, j) is the average of the values of / at the four adjoining 

points. If we know the "initial values" of the functions at the right-hand side of equation 

(3.10) we can estimate the value / at the point (i, .1) . We can substitute the values, 

thus obtained, into the right-hand side to achieve improved approximations. This process 

may continue till the values fj j  converge to constant values. 



) Initial values may be obtained by either taking diagonal average or cross average of the 

adjoining four points. 

3.3 Examples 

Examnle 1: 

Consider a steel plate of size 15 cm x  15 cm. If two of the sides are held at 100°C and the 

other two sides are held at 0°C, what are the steady state temperature at interior points 

assuming a grid size of 5 cm x  5 cm. 

Solution: 

A problem with the values known on each boundary is said to have Dirichiet boundary 

conditions. The problem is illustrated below. 

100 100 

0 0 

Fig. 3.2 Grid for Laplaces equal/oil 

The system of equation is as follows: 

Atpoint 1: f2+fH4f +100+1000 

Atpoint2: J1+.14 4.[2+100 + 0 _O 

At point 3: j + .f - 4.t. + 100+0 = 0 

Atpoint4: .12+13 414+ 0 +00  

100 

100 

100 

EIA 

Ir 
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>. 
That is, 

-4f +J +O=-200 

f -4f +0+f4  100 

f +0-4f,  +f4 =-l0O 

0+f2 +f--4f4  =0 

Solution of this system is 

j=75 f2 =50 

f3 =50 f4 =25 

Note that there is a symmetry in the temperature distribution, i.e. it can be stated that 

= 1.3 
and therefore the number of equations in Example I may be reduced to three equations 

with three unknowns as shown below. 

-4J +2f2  =-200 

f -4f  +f4 =-lOO  

- 2f = 0 

Example 2: 

Solve the problem in Example I using Liebmann's iterative method correct to one 

decimal place. 

Solution: 

By applying equation (3.8) to every grid points, we obtain 

• - f, + f13 + 200 
11 — 4 

• _fl + •14 +100 
f2- 4 

r 

ME 



= 
J + J1 +100 

(3.12) 

14_
2  

4 

Appropriate initial values for the iterative solution are obtained by taking diagonal average 

at 1 and cross average at other points, assuming first j = 0. 

I;(100+100+100+0) = 75.00 (Average) 

.f =I(75+100+0+0)= 43.75 

.r=(100 + 75 + 0 + 0)= 43.75 

.t = i(4375+4375)= 21.88 

Note that /,, f, , and f are computed using the latest values on the right hand side. 

Using these initial values in equation (3.12) and performing iterations gives the values 

as shown in Table 3.1. 

Table 3.1 

f Inilial 
Values 

Jieralions 

1 2 3 4 

75.00 71.88 74.22 74.81 74.95 

43.75 48.44 49.61 40.90 49.98 

43.75 48.44 49.61 40.90 49.98 

.14 21.88 24.22 24.81 24.95 24.99 

The process may be continued till we get identical values in the last two columns. Note that 

the values are approaching to correct answers obtained in Example - 1. 

ExamIe 3: 

Solve the Poisson equation V 2 f = 2x 2y2  over the square domain 0 x :!~ 3 and 

0 :!~ y :!~ 3 with .1 = 0 on the boundary and h = 1 by finite difference formula. 
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y = 2 

y= 1  

Solution: We have the finite difference formula for solving Poisson's equation 

a 21 a2 f 
2 + 2  g(x,y) then take the form 

ôx ôy 

f+LJ +_ +f =h2g ij  (3.13) 

The domain is divided into squares of one unit size as illustrated below: 

0 0 0 0 

0 x=1 x = 2 0 

By applying equation (3.13) at each grid point, we get the following set of equations: 

At point 1: 0 + O+f, + f3 - 4f = 2(1)2  (2)2  

i.e. f2 +f4f8 (3.14.a) 

At point 2: 0+0+ f + f4 - 412 = 2(2)2  (2)2  

Af 
i.e. f1 -4f2 +f4 z 32  (3.14.b) 

At point 3: 0 + 0 + f + f4 - 4f3  = 2(1)2(1)2 

i.e. j4f3 +f4 2 (3.14.c) 

At point 4: 0+0+f2 +f4f4 2(2)2 (1)2  

i.e. f2 +J4f4 8 (3.14.d) 

VA 

22 



Rearranging the equations (a) to (d), we get 

-4J +f2+f. =8 

f1 -4f,+f4 =32 

f1 -4j+f4 =2 

f2 +J-4f4 =8 

Solving the equation (3.15) by elimination method, we get the answers. 

- 

22 43 
f2 

13_ J4_ 4 

(3.15) 

Example 4: 

Solve the problem in Example - 3 using Liebmann's iterative method. 

Solution: By using the equations (3.15), we have 

-4J+f2 +f =8 

fI-f2--f4 =32 

J-4f+f4 =2 

f2 +f3 -4f4 =8 

By rearranging the above equations, we have 

f2 =(f+f4-32) 

J=(+f4 -2) 

f4 =1(f2 +f3 -8) 

(3.16) 

(3.17) 



Note that .1; = .14 , Therefore the equation (3. 17) becomes, 

f =(/+-8) 

= I(2f; -32) 

f. =(2f1 -2) 

Assume starting values as f2 = 0 = 

Iteration I: 

f=-2, f2 =-9,  j=-1 
Iteration 2: 

18 41 ç 11  
11= 4' ./2= 4' J3 

-ii- 

Iteration 3 

22 
- 

43 . 13 
jI =—,  .f--- •i=___ 

Iteration 4.• 

.13 .11 
- 4 , 12 

- 4 ' .13 - 
- j- 

IOA 

11( 

Vr 

- 

24 



CHAPTER 4 

An Overview of Evolutionary Computations 

4.1 Introduction 

The Evolutionary Computation (EC) techniques are inspired by the natural process of 

evolution [Hashem (1999)]. The peculiarity of ECs is maintaining a set of points (called 

population) that are searched in parallel. Each point (individual) is evaluated according to 

the objective function (fitness function). Further a set of genetic operators is given that 

work on populations. They contribute to the two basic principles in evolution - se/cc/ion 

and i.'ariation. Selection focuses the search for the "better" regions of the search space by 

given individuals with "better" fitness values and higher probability to be member of the 

next generations (loop iteration). On the other hand, variation operators create new points 

in the search space. Here not only random changes (mutations) of particular point are 

possible but also the random mixing of the information of two or more individuals 

(crossover/ recombination) are possible [Back and Schwefel (1993), Schoenauer and 

Michaleewicz (1997) and Back et al. (1997), Hashem (1999)]. ECs are often characterized 

as combining features from path-oriented methods and volume-oriented methods. ECs 

combine these contrary features in so far that in the beginning of the search the population 

is usually spread out in the whole search space, corresponding to a volume-oriented search. 

In the latter stages of the search algorithm has focused too few (or single) region due to 

selection and the selected region is examined further. In this respect the algorithm behaves 

like a path—oriented search [Hashem (1999)]. Another possible identification of these two 

stages of the search could be the correspondence of the first stage to a global reliability 

strategy (coarse grin search) and the second stage to a local refinement strategy (fine grin 

search) [Yuret 1994, Hashem (1999)]. It is also observed that there are two important 

issues in the simulated search process of natural evolution: population diversity 

(exploration) and selective pressure (exploitation). These factors are strongly related - a 

strong selective pressure "supports" the premature convergence of evolutionary search and 
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a weak selective pressure can make the search ineffective. Thus it is important to strike a 

balance between these two factors [Hashern (1999), Michalewicz (1996), Buckle (1997)]. 

4.2 Variants of Evolutionary Algorithms 

The variations of Evolutionary Algorithms (EAs) that are of current interest bring differing 

philosophies of how to algorithmically abstract the model of natural evolution. Because of 

differing commitment to levels of abstraction, each uses a distinct emphasis that leads to a 

commitment to representations and philosophy of operators. Four main streams of 

instances of these general algorithms, developed independently of each other, can now a 

days be identified - (i) Genetic Algorithms (GAs) [1-lolland (1962), Back and Schwefel 

(1993)], (ii) Evolutions Strategies (ESs) [Rechenberg (1973), Back and Schwefel (1993) 

and Hashem (1999)], (iii) Evolutionary Programming (EP) [Fogel et al. (1966), Back and 

Schwefel (1993)] and (iv) Genetic Programming (GP) [Koza (1994) and Hashem (1999)]. 

Each of these main stream algorithms have clearly demonstrated their capability to yield 

good approximate solutions even in the cases of complicated multimodal, discontinues, 

non-differentiable, and noisy or moving response surfaces of optimization problems. The 

variety of data-structures, variation of operators and selection mechanisms give possible 

ways of classifying Genetic Algorithms. However, the different terms are mostly historical. 

Moreover, the differences between the variants are fluid. Furthermore, these algorithms are 

specified for parameter optimization problems. 

it is a remarkable fact that each algorithni emphasizes different features as being most 

important for a successful evolution process. In analogy to repair-enzymes, which give 

evidence for a biological self-control of mutation rates of nucleotide bases in DNA, both 

ESs and EP use self-adaptation processes for the mutation rates. In canonical GAs, this 

concept was successfully tested only recently [Back (1992)], but still need more time to be 

recognized and applied. Both ESs and EP concentrate on mutation as the main search 

operator, while the rule of pure random mutation in canonical GAs and GPs is usually seen 

to be of secondary importance. On the other hand, recombination plays a major rule in 

canonical GAs and GPs, but recombination is missing completely in EPs and is urgently 

necessary for use in connection to self-adaptation in ESs. Finally, canonical GAs, GPs and 

EPs emphasize on a necessarily probabilistic selection mechanism, while from the ESs 

-4 
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point of view selection is completely deterministic without any evidence for the necessity 

of incorporating probabilistic rules. in contrast, both ESs and EPs definitely exclude some 

individuals from being selected for reproduction, i.e. they use extinctive selection 

mechanisms, while canonical GAs and GPs generally assign a non-zero selection 

probability to each parent individual, which can be termed as presert'alive se/cc/ion 

mechanism. The characteristic similarities and differences of the evolutionary algorithms 

discussed in this chapter are summarized in Table 4.1 [Hashem (1999)]. 

Table 4.1: Main characteristics of evolutionary algorithms. 

[Characteristics GA ES 

Abstraction Organisni Individual behavior Species Organism 

level behavior 

Representation Binary-valued Real-valued Real-va liicd Tree like 

Stntcture 

Self-adaptation None Standard deviation Standard None 

& covariancc deviation 

Fitness Scaled objective Objective function Objective Objective 

function value value function value Function value 

Mutation Background Main operation Only operation Secondary 

operation Operation 

Recombination Main operation Different variants. None Main operation 

important for 

self-adaptation 

Selection Probabilistic. Deterministic. Probabilistic. Probabilistic. 

preservative extinctivc extinetive preservative 

4.3 Basic Mechanisms of Evolutionary Algorithms 

For the sake of clarity, we shall try to introduce a general framework according as much as 

possible for most of the existing EAs. The EAs can be classified as probabilistic search 

algorithms, which maintain a population of If individuals, 

where w(t)E S for generation I which 

simultaneously sample of the search space S. Each individual represents a potential 

solution to the problem at hand and is implemented as some complex data structure and/or 
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object variable vector 4 with component E j  E H V / € i, 2., n}. Each solution kV (i) 

is evaluated to produce some measure of its "fitness" 90. After initialization of the 

population, a new population is formed by three main operators - crossover 

(recombination), mutation and selection. There is higher order transformation: 

(crossover operator), which creates new individuals (offspring) ( : (4 x 

where i' is the offspring population size and an unary transformation: ' (mutation 

operator), which modifies these new individuals (offspring) by a small change 

). A selection operation (c: U pJre)ll ) is then applied 

to choose the parent population for the next generation. After some number of generations 

the program converges - it is hoped that the best individual represents a near optimum 

solution [Hashem (1999), Back and Schwefel (1993)]. 

Variation is introduced into the population by crossover and/or mutation. Since these 

operators usually create offspring at new positions in the search space, they are also called 

"explorative" operators. The several instances of the EAs differ in the way that how 

individuals are represented and in the realization of the recombination operator. Common 

representations are, for example, bit strings, vectors of real or integer values (for parameter 

optimization), trees (for function optimization), graphs or any other problem dependent 

data-structure. Based on information-theoretical considerations, John Holland suggests that 

the bit-string representation is optimal. Back et al. (1993) suggests from practical 

experience, as well as some theoretical point of view that the bit-string representations 

have some disadvantages such as the coding and decoding functions might introduce 

additional multimodality along with the objective function [Michalewicz (1994, 1994a), 

Michalewicz and Attia (1994), Kim and Myung (1997) and Chellapilla et al. (1998)]. 

Along with a particular data-structure, variation operators have to be defined which can be 

divided in asexual and sexual variation operators. The asexual variation (mutation) consists 

of a random change of the information represented by an individual, if the individual is 

represented as a vector, mutation is the random change of elements of the vector. How this 

change is performed depends on the type of the vector-elements. If the vector is a simple 

bit-string, mutation is to too1e the bit or not (with equal probability). For real or integer 
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values more sophisticated mutation operators are necessary. The most cl  general approach is 

to define a probability distribution over the domain of possible values for a particular 

vector element. A new value is then chosen according to this distribution. During sexual 

variation (Crossover /recombination) two individuals exchange or blend part of their 

information. Two individuals are chosen from the population and named parents. How the 

exchange or blend of information is performed depends of the chosen representation. There 

is no need to restrict the number of parents for crossover to two. Recent research shows 

that increasing the number of mates leads to an increased performance [Blickle (1997), 

Salomon (1998)]. There is an ongoing debate between different communities which 

operator- mutation or crossover - is more important. Some researchers found evidence that 

the crossover operator might be "simulated" by mutation [Fogel (1995)]. 

4.3.1 Time-Variant Mutation 

The inherent strength of EAs - towards convergence and high precision results - lies in the 

choice of the mutation steps i.e. standard deviation [Rechnberg (1994), Fogel (1995), Back 

et. al. (1996)]. According to the biological evidence, a special dynamic Time-Variant 

Mutation (TVM) operator is proposed aiming to both improving the fine local tuning and 

reducing the disadvantage of uniform mutation [Michalewicz (1996), Back et. al. (1997), 

Hashem (1999)]. Moreover, it can exploit the fast (but not premature) convergence. By this 

mutation scheme, a natural behavioral change at the level of individuals will be achieved. 

The TVM is defined for a child - as that of EAs do [Back et. al. (1993), Schwefel et al. 

(1995)] as VIE 1, 2, , n} 
- +a(t).N1 (Oj)  

where N, (0, 1) indicates that Gaussian random value with zero-mean and unity variance, 

it is sampled anew for each value of the index i and (t) is the time-variant mutation step 

generating function at the generation I, which is defined by 

(t)=[1_q) I 
V 

(4.2) 
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- where qE(O,l), is uniform random number, T is the maximal generation, -y is a real-valued 

parameter determining the degree of dependency on generations. The parameter -y is also 

called an exogenous parameter of the method [Hashem 1999]. 

The function G1) returns a value in the range [0, 1], that falls within so-called evolution 

window [Rechebberg (1994)] such that the probability of (t) being closed to 0 as the 

generation t increases. This property of aW causes to search the problem space uniformly 

(volume- oriented search) initially when I is small and very locally (path - oriented search) 

at larger I stages. Another possible identification of these two stages of the search could be 

the correspondence of the first stage to a global reliability strategy (coarse grain search) 

and the second stage to a local refinement strategy fine grain search [Michalewicz (I 994a), 

Michalewicz and Attia (1994), Michalewicz (1996)]. 

4.3.2 Development of Time-Variant Adaptive Parameters 

As pointed earlier the inherent strength of EA - towards convergence and high precision 

results - lies in the choice of the mutation steps, i.e. standard deviation. Obvious biological 

evidence is that a rapid change is observed at early stages of life and a slow change is 

observed at latter stages of life in all kind of animals! plants. These changes are more often 

occurred dynamically depending on the situation exposed to them. Jamali et al. (2004b) 

introduced a new Time-Variant Adaptive (TVA) parameter aiming at both improving the 

fine local tuning and reducing the disadvantage of uniform adaptation of relaxation factors 

as well as mutation for solving linear equations. 

Fornuilas 

The time variant adaptive (TVA) parameters are defined as 

= x N(0,0.25)x 7 (4.3) 

and is denoted as adaptive (TVA) probability parameter of (OX , and 

= Ex J N(O,O.25) j  xT (4.4) 

and is denoted as adaptive (TVA) probability parameter of (o. 

-I 
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)- 
where i =21ii(1+ ) , >10 (4.5) 

or =(1---) (4.6) 

Here ). and y  are exogenous parameters, used for increased or decreased of rate of change 

of curvature with respect to number of iterations, I and T denote number of generation and 

maximum number of generation respectively. Also N(0, 0.25) is the Gaussian distribution 

with mean 0 and standard deviation 0.25. 

Now E and 1, denote the approximate initial boundary of the variation of TVA 

parameters of w and Wr  respectively. And if 00 is denoted as the optimal relaxation 

factor then 

= p.r Max 
= 

W 

, so that co (0.5 + Pv max )(W x  + w) 
2(o. +w) 

wwv M CO 
and E . = p 

. = 
or 

, so that 
U) — u - v 

69 +p, 
niax 

—(O1,), when, >w 

. + p. max  (w, - (O1,), when w1, <w, 

Properties 

The functions p, and p return values in the range [—E,, E I and [0, E s.] respectively, 

which falls within the so-called evolution window [Rechenberg (1994), Yao and Liu 

(1997)] such that probability of p,  and p tend to 0 as generation of population increased. 

This property of p and p causes to search the space uniformly (volume-oriented search) 

initially when generation, I, is small and very locally (path oriented search) at larger I 

stages. Another possible identification of these two stages of search could be 

correspondence of the first stage to a global reliability strategy (coarse grain search) and 

the second stage to a local refinement strategy (fine grain search) [Hashem (1999)]. 
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Now from Eqn. (4.5) i.e. 7 (  = 2 ln(1 + 11(1 + 2)) (denoted as Lambda based TVA 

parameter) it is obvious that when the value of X is small then, initially, rate of change of 

the function Ic = 2 In (1 + 11(1 + 2)) is very rapid; on the other hand when the value of X is 

relatively large, then initially, rate of change of this function is relatively slow. For all the 

cases, in later stages, the rate of change is slow. 

Again from Eqn. (4.6) i.e. i = (1 - I / T)' (denoted as Gamma based TVA parameter) it CO 

is obvious that when the value of y  is large then initially, rate of change of this function is 

very rapid; on the other hand when the value of y is relatively small, then initially, rate of 

If 
change of this function is relatively slow. The rate of change of this function is all most 

constant in all stages for each value of y. 

4.4 Modern Trends: Hybrid Algorithms 

Many researchers modified further evolutionary algorithms "by adding" some problem 

specific knowledge to the algorithm. Several papers have discussed initialization 

techniques, different representations, decoding techniques (mapping from genetic 

representations to phenotype representations) and the use of heuristics for genetic 

operators. Such hybrid/nonstandard systems enjoy a significant popularity in evolutionary 

computation community. Very often these systems, extended by the problem-specific 

knowledge, outperform other classical evolutionary methods as well as other standard 

techniques. For example, a system Genetic-2N [Michalewicz (1 994a)] constructed for the 

nonlinear transportation problem used a matrix representation for its chromosomes, a 

problem-specific mutation (main operator, used with probability 0.4) and arithmetical 

crossover (background operator, used with probability 0.05) [Schoenauer and Michalewicz 

(1997)]. It is hard to classify this problem: it is not an evolution strategy, since it did not 

use Gaussian mutation, nor did it encode any control parameters in its chromosomal 

structures. Clearly, it has nothing to do with genetic programming and very little (matrix 

representation) with evolutionary programming approaches. It is just an evolutionary 

computation technique aimed at particular problem. 
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Recently, hybridization of evolutionary algorithm with classical Gauss-Seidel based SR 

method has successfully been used to solve large set of linear equations where relaxation 

factor, w, is self-adapted by using uniform adaptation technique [He et a]. (2000)]. 

The key idea behind this hybrid algorithm that combines the SR technique and 

evolutionary computation techniques is to self-adapt the relaxation factor w which is used 

in the classical SR technique. For different individuals in a population, different relaxation 

factors are used to solve equations. The relaxation factors will be adapted based on the 

fitness of individuals (i.e. based on how well an individual solves the equations). Similar to 

many other evolutionary algorithms, this hybrid algorithm always maintains a population 

of approximate solution to linear equations. Each solution is represented by an individual. 

The initial solution is usually generated by the SR technique using an arbitrary relaxation 

factor w. The fitness of an individual is evaluated by the error estimate of the approximate 

solution. The relaxation factor is adapted after each generation, depending on how well an 

individual performs. 

4.5 Properties of Evolutionary Algorithms 

ECs are normally classified as stochastic optimization algorithms. Within this 

categorization, the most important properties of ECs can be itemized as bellow 

•Accuracy: The accuracy describes the difference between the optimal solution and the 

solution obtained by the optimization method. This distinguishes between exact methods 

and ECs. Exact methods guarantee to find the optimum. This guarantee is paid with the 

complexity of the optimization method that has to be at least as high as the complexity of 

the problem to be solved. For example, the branch and bound algorithm is an exact method 

for solving linear optimization problems with integer restrictions. On the other hand, ECs 

do obtain only near-optimal solutions; furthermore, the accuracy of the solution often can 

not be predicted for these algorithms [Hashem (1999)]. 

•Time—cornplexity: The complexity of an EC method (or an algorithm in general) is 

measured by the order of the number of elementary operations independent of the input 

size. The input size is the amount of data necessary to specify the problem. As there are 
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many different problem instances having the same problem size, there are different 

possibilities to define the complexity. Most commonly the complexity is measured in the 

worst case asymptotic complexity. "Worst-case" means that the complexity of the 

algorithm is determined by the "hardest" problem of fixed size input. EAs have polynomial 

execution time allowing problems with a several order of magnitudes of higher 

dimensionality to be considered. Usually the absolute complexity depends upon the 

underlying machine model or implementation. Hence, the asymptotic complexity measures 

the relative increases in time with length of the problem instance and not the absolute time 

[Hashem (1999)]. 

•Sj,ace—coinplexity: The space (memory) demand of an evolutionary algorithm is an 

important property that may limit the applicability of the algorithm. Similar to the time-

complexity measure a worst-case space demand is most commonly used [Hashem (1999)]. 

• Utilization of a priori-knowledge: It is obvious, that an algorithm that considers a priori-

knowledge about the problem will outperform a method using less knowledge. The least 

knowledge that must be known (or must be computable) is the value of the objective 

function. Additional information could be used to restrict the search space, and to use 

symmetries in the objective function, etc. But most of the EAs perform blind search 

without priori-knowledge [Hashem (1999)]. 

• Balance between global reliability and local refinement: Two competing goals have to 

be achieved by an optimization method. First, as the global minimum can be located 

anywhere in the search space no parts of the region can be neglected. Global reliability, 

therefore, corresponds to a strategy where the search points are uniformly distributed over 

the whole search space. Secondly, the assumption that the chance of finding a good point 

in the neighborhood of a good point is higher than in the neighborhood of bad point. This 

assumption will surely be fulfilled for a continuous function. However, in general this 

assumption can not be made. Nevertheless for pragmatic reasons, most optimization 

methods make this assumption. This leads to a strategy that focus on particular regions or 

in other words that performs a local refinement of the search at "promising" points. 

Interestingly, ECs have incorporated a mixture of these two basic strategies [Hashem 

(1999)]. 
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- 4.6 Merits and Demerits of Evolutionary Algorithms 

4.6.1 Merits 

The identified merits of ECs can be itemized as 

•Large application domain: ECs have been applied successfully in a wide variety of 

application domains. One reason for this might be the intuitive concept of evolution and 

the modesty to the ECs with regard to the structure of the specific optimization problem. 

Especially the intuitive concept makes it easy to implement an algorithm that works 

[Hashem (1999)]. 

•Suitahlefr complex search spaces: It is extremely difficult to construct heuristics for 

complex combinatorial problems. In these problems, the choice of one variable may 

change the meaning or quality of an other, i.e., there are high correlation between 

variables. ECs have been successfully applied to such instances. Obviously, the success of 

the ECs depends on the particular implementation and not all flavors ECs are equally well 

suited. As a rule of thumb, it is always good to combine an EC with available (problem-

dependent) optimization heuristics [Hashem (1999)]. 

•Robustness: Robustness means that different run of an EA for the same problem yields 

similar results i.e. there is no great deviation in the quality of the solution. But a Monte-

Carlo-based algorithm performed in average as good as a GA, the variation in the results 

was much higher [Hashem (1999)]. 

•Easy toparallelize: The population concept of ECs makes parallelization easy. This can 

reduce the execution time of the algorithm. Whole population can be divided into sub-

population and each sub-population is assigned to each processor that evolves almost 

independently of the other populations. Furthermore, a topology of the population is 

defined such that each sub-population has only few "neighbours" A few individuals 

ni/grale between neighbours and form a loose coupling between the sub-populations 

[Hashem (1999)]. 
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4.6.2 Demerits 

The identified demerits of ECs can be itemized as 

•High comjutational time: The modest demand on the objective function is paid with a 

relatively high computational time. This time demand not only arises from the population 

concept but also from the difficulty of the problems. An application specific heuristic that 

makes use of domain —knowledge is likely to outperform an EC [Hashem (1999)]. 

• Difficult adjustment of parameters: In every EA, a large number of parameters need to 

be adjusted, for example the kind of selection and crossover operator to use, the population 

size the probabilities of applying certain operator and the form of fitness function. Due to 

this fact, successful applications are often the result of a lengthy trial and error procedure 

whose sole purpose is to adjust the parameters of the algorithm for a particular problem 

class or even problem instance. Furthermore EAs are often very sensitive to the fitness 

function such that slight changes in the fitness function may lead to completely different 

behavior [Hashem (1999)]. 

•Heuristic principle: ECs don't guarantee to find the global optimum. The theoretical 

proofs of global convergence are useless from practical point of view as they assume 

infinite computation time. Under this premise, even random search can reach the global 

4 
optimum. Of more importance is the fact that for most instances of EC, the accuracy of a 

solution obtained in a limited amount of computation time can not be predicted or 

guaranteed [Hashem (1999)]. 

4.7 Some Hybrid Algorithms 

In this section some available hybrid algorithms will be discussed. The chosen algorithms 

are - Jacobi Based Uniform, Jacobi Based Time Variant and Gauss-Seidel Based Time 

Variant Adaptive Hybrid Algorithms. 

'V 
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4.7.1 Jacobi Based Uniform Adaptive 1-lybrid Algorithm 

The Jacobi Based Unifbrm Adaptive (JBUA) evolutionary algorithm is proposed by Jamali 

(2004). It uses evolutionary computation techniques and Jacobi based SR technique. The 

JBUA hybrid evolutionary algorithm does not require a user to guess or estimate the 

optimal relaxation factor co. The algorithm initializes uniform relaxation factors in a given 

domain and "evolves" it. It integrates the Jacobi-based SR method with evolutionary 

computation techniques, which uses initialization, recombination, mutation, adaptation, 

and selection mechanisms. It makes better use of a population by employing different 

equation-solving strategies for different individuals in the population. Then these 

individuals can exchange information through recombination and the error is minimized by 
1 

mutation and selection mechanisms. 

The Basic E(juations of Jacobi Based SR Method 

Let us consider a system of linear equations 

11 
a

ii 
= b1, (i = 1,2,...,n) (4.7) 

In Jacobi method by using SR technique [Engeln-Mullges, and Uhlig (1996)] Eqn. (4.7) is 

given by 

x 
k) 

(i = l,2, ..,n) (4.8) 
ce j=1 

in matrix form Eqn. (4.8) can be rewritten in matrix-vector equation as using the concepts 

discussed in § 2.3.1 and 2.3.3: 

= + V(,) (4.9) 

where H(,) , called Jacobi iteration matrix, and Vt,, are given successively by 

H (,, = D' {(1—w)1 —co (L+U), (4.10) 

V =coD1 b (4.11) 

and 



The Algorithm 

Similar to many other evolutionary algorithms, the JBUA hybrid algorithm always 

maintains a population of approximate solution to linear equations. Each solution is 

represented by an individual. The initial population is generated randomly form the field 

Different individuals use different relaxation factors. Recombination in the hybrid 

algorithm involves all individuals in a population. If the population size is N, then the 

recombination will have N parents and generates N offspring through linear combination. 

Mutation is achieved by performing one iteration of Jacobi based SR method as given by 

Eqn. (4.9). The mutation is stochastic since w used in the iteration is initially generated 

between (V 1  and co,., and cq is adapted stochastically in each generation (iteration). The 

fitness of an individual is evaluated based on the error of an approximate solution. For 

example, given an approximate solution (i.e. individual) i, its error is defined by 

1 e() A - b . The relaxation factor is adapted after each generation, depending 

011 how well an individual performs (in term of error). The main steps of the JBUA hybrid 

evolutionary algorithm described as below: 

Step 1: Initialization 

Generate an initial population of approximate solution to the system of linear Eqn. (4.7) 

using different arbitrary relaxation factors. Denote the initial population as 

X(o)  - 
( (0) (0 (0) 

- X 1  ,X 2  ... X (4.12) 

4 
where each individual x, E .)? fl; N is the population size. Let 0 is assigned to k, where k is 

the generation counter. Also initialize relaxation factor co, . ... ... .W randomly from (coL  

(ol .) where co, and co are lower and upper boundaiy of co's. 

Step 2: Recombination 

( (k+c) 
Now generate X (k+c) = { kic) x 1 , ,. .., x" } as an intermediate population 

through the following recombination: 

X"' = R(X) 

j 



where 

so that 

=' and i ~:O for I i < N 

(4.14) 

i.e. R is a stochastic matrix {Kriyszig (1993)]. Superscript " " is a transposed operator. 

Note that the symbol c, as a superscript, is used just as an indicator of crossover. 

Step 3: Mutation 

Then generate the next intermediate population X" liows: from as to 

(k.+c (k+c) 
For each individual X1 (1 ~ 1 ~ N) in population X produces an offspring 

according to Eqn. (4.9) as 

= H(f, + V,, I = 1,2.... ,N (4.1 5) 

where H is called Jacobi iteration matrix corresponding w,and given by 

H(  =D{(1—w,)I—co, (L+U)}, (4.16) 

and 

D'b. (4.17) 

Here w is denoted as relaxation factor of the ith individual and ( is denoted as ith 

(mutated) offspring, so that only one iteration is carried out for each mutation. Note that 

the symbol in, as a superscript, is used just as an indicator of mutation. 

Step 4: Adaptation 

Let x and y be two offspring individuals corresponding to relaxation factors w, and w 

and 11 e(x) 11 and II e(y) 11 are their corresponding errors (fitness value). Then the 

relaxation factors w  and w are adapted as follows: 

(a) If 11 e(x) Ij>I e(y)  M 

' (i) then move w toward (0 (i.e. co.,  is adapted to (o) by using 

n 
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= (0.5 + p. )(w + (o1,)  

where p E(-0.01, 0.01) 

And (ii) move w away from w, (i.e. (o r  is adapted to cv) by using 

[W
. 
 + p1, (w - co t,), when w1, > 

W= 
•V 

L011, + p1, (co, - co), when w <w 

where p € (0.008. 0.012) 

(4.19) 

(4.20) 

(4.21) 

If II e(x) 11<11 e(y)II,adapt w,and in the same way as above but reverse the 

order of w and cv'. 

If 11 e(x) 11=11 e(y) , no adaptation. So that 

(z) = and cv'  = Co'.  

Here uniform adaptation technique is used to adapting the relaxation factors [He et. al. 

(2000)]. 

Step 5: Selection and Reproduction 

The best N12 individuals in population X" will reproduce (i.e. each individual 

generates two offspring), and then form the next generation X(kI) of N individuals. 

Step 6: Halt 

.4, If the error of the population = inin{ e() € X} is less than a given 

threshold i  then the algorithm terminates; otherwise, go to Step -2. 

4.7.2 Jacobi Based Time Variant Adaptive Hybrid Algorithm 

The Jacobi Based Time Variant Adaptive (JBTVA) hybrid algorithm is proposed by Jamali 

et al. (2004). In that algorithm Jacobi based SR method, evolutionary computation 

techniques and time variant adaptation techniques are used. That also does not require a 

user to guess or estimate the optimal relaxation factor cv. The algorithm initializes uniform 

relaxation factors in a given domain and "evolves" it. The proposed algorithm integrates 

Ir the Jacobi-based SR method with evolutionary computation techniques, which uses 
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recombination, mutation and selection mechanisms. It makes better use of a population by 

employing different equation-solving strategies for different individuals in the population. 

Then these individuals can exchange information through recombination and the error is 

minimized by mutation and selection mechanisms. 

The main steps of the JBTVA hybrid evolutionary algorithm are Initialization, 

Recombination, Mutation, Adaptation, Selection, Reproduction and Halt respectively. 

Initialization, Recombination, Selection, adaptation mechanisms and Halt criteria of this 

proposed algorithm is same as those of Gauss-Seidel Based Time Variant Adaptive 

algorithm and is discussed in the next subsection. And Mutation mechanism is same as 

that of JBUA algorithm (see § 4.7.1). 
KA 

4.7.3 Gauss-Seidal Based Time Variant Adaptive Hybrid Algorithm 

The Gauss-Seidel based Time-variant adaptive (GSBTVA) hybrid evolutionary algorithm 

is the hybridization of evolutionary algorithm with classical Gauss-Seidel based SR 

method in which a time-variant adaptation (TVA) technique is used instead of uniform 

adaptation (UA). In sequel, it is described here elaborately. -. 

The Basic Equations of Gauss-Seidal Based SR Method 
8angsa , 

Here also the system of linear Eqn. is taken as

aijxj 

 

= b1, (i = 1,2...,n) (4.22) 

In Gauss-Seidel based SR method [Engeln-Mullges, and Uhlig (1996)] Eqn. (4.22) is given 

by 

w)x + CI..XA) + b
i (423) 

a 1 J=l 1=1+1 

and k = O,l, 

In matrix form Eqn. (4.23) can be rewritten in matrix-vector equation as using the concepts 

discussed in § 2.3.2 and 2.3.3: 

(4.24) 

if 



where H,,  is called Gauss-Seidel iteration matrix and given by 

H, = (I +w D 1 L)' {(1—w) 1—wD'U) (425) 

and 

V(,)  =w(I+wDLDb (4.26) 

The Algorithm 

Similar to many other evolutionary algorithms, the GSBTVA hybrid algorithm also always 

maintains a population of approximate solution to linear equations. The initialization of 

population and recombination mechanisms of this algorithm is same as those of JBUA 
I 

algorithm. Mutation is achieved by performing one iteration of Gauss-Seidel based SR 

method as given by Eqn. (4.24). The mutation is stochastic since w used in each mutation 

step, is adapted stochastically in each generation (iteration). The fitness of an individual is 

evaluated based on the error of an approximate solution. The relaxation factor is adapted 

after each generation, depending on how well an individual performs (in term of error). 

The main steps of the GSBTVA hybrid evolutionary algorithm described as below: 

Step 1: Initialization 

Generate, randomly from 'R', an initial population of approximate solutions to the linear 

Eqn. (4.7) using different relaxation factor for each individual of the population. Denote 

ç (0) (0) (0) 
the initial population as = 1X 1  , X 2 .., Xv I  where N is the population size. Let 0 

.4,  

is assigned to k, where k is the generation counter. And initialize corresponding relaxation 

factor (0 as: 

for /=1 
= 2 (4.27) 

for 1<iN 

d 
- 

W I.  

where 
- N 
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Step 2: Recombination 

ç (k+c) (k~) (k+c) 
Now generate X' x1 , x 2 ,..., Ar as an intermediate population through 

the following recombination: 

= R(X) (4.28) 

where R is a stochastic matrix. Superscript " '" is a transposed operator. 

Step 3: Mutation 

..r(k+nz) r(k+c) 
Then generate the next intermediate population from X as follows: For each 

(k+c 
individual Xj (1 ~i ~ N)in population produces an offspring according to 

(see Eqn. (4.24)) 

= H X 1 + V , / = 1,2....., N . (4.29) 

where H (, is called Gauss-Seidel iteration matrix corresponding w, and given by 

H e,,, =(I+o) D1 L){(l—w,)I —w1  D 1 U} (4.30) 

and 

V()  =w (L+w1  D'L 1 D'b (4.31) 

Here co is denoted as relaxation factor of the Ith individual and x is denoted as /th 

(mutated) offspring, so that only one iteration is carried out for each mutation. 

Step 4: Adaptation 

Let X ' " and y be two offspring individuals corresponding to relaxation factors co,  

and co and 11 e(xF?l)I and 11 e(y") are their corresponding errors (fitness value). Then 

the relaxation factors cv,:  and co, are adapted as follows: 

(d) If 11 e(x")>11 e(y" )11, (i) then move co, toward w,:  by using 

= (0.5 + p )(w. + w) (4.32) 

and (ii) move cv, away from w, using 

f
co. +p4,( c)c: —wy), when w > 

+p1,(co —w 1,), when w1, <w x 
(4.33) 



where p = E xN(0,0.25)x1 9 , and p =E ,. x I  N(0,0.25) x7, as defined earlier 

(Eqn. (4.3) and Eqn. (4.4)). 

(e) If 11 e(x"') 11<11 e(y") 11 , then adapt co and w in the same way as above but 

reverse the order of co and a. 

(t) if II e(xm)JJ=jJe(ym)II, no adaptation. Sothat co"' =cox  and co' =W.. 

Step 5: Selection and Reproduction 

Selection mechanism is same as that of JBUA algorithm. That is, select the best N/2 

offspring individuals according to their fitness values (errors). Then reproduce of the above 

selected offspring (i.e. each parent's individual generates two offspring). Then form the 

next generation of N individuals. 

Step 6: Terniination 

If nzinflle(z)II : z€X} < l (Threshold error), then stop the algorithm and get unique 

solution. Ifmin{IIe(z)II : zX) —> oc, then stop the algorithm but fail to get any solution. 

Otherwise go to Step 2. 

4 
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CHAPTER 5 

Evaluation of Uniform Adaptive Hybrid Evolutionary 

Algorithms for Solving a Set of Linear Equations 

5.1 Introduction 

4 
Large set of linear equations frequently arise directly or indirectly in the real world 

problems and though there are many classical methods available for solving them, 

scientists till have their keen interest to find out the methods, which converge rapidly and 

efficiently. 

For solving large set of linear equations, especially for sparse and structured coefficients, 

iterative methods are preferable, as iterative method are unaffected by round off errors 

[Gerald and Wheatley (1998)]. The rate of convergence of the well-known classical 

numerical iterative methods (the Jacobi and the Gauss-Seidel method) is very slow and can 

be accelerated by using successive relaxation (SR) technique [Young (1971) and Engeln-

Muliges and Ublig (1996)]. But the speed of convergence depends on the relaxation factor 

1 ) (0 < () < 2) and SR technique is very much sensitive to the relaxation factor [1-lagaman 

and Young (1981), Stocr and Bulirsch (1991)]. Moreover, it is often very difficult to 

estimate the optimal relaxation factor, which is a key parameter of the SR technique 

[Hagarnan and Young (1981), Gourdin and Boumahrat (1996)]. 

The evolutionary algorithms (EA) are developed from some natural phenomena: genetic 

inheritance and Darwinian strife for survival [Back et al. (1997), Back and Schwefel 

((1993) and Schocnauer and Michalewiez (1997)]. Generally, most of the works on EA can 

be classified as evolutionary optimization (either numerical or combinatorial) or 

evolutionary learning [Hashem (1999), Watanabe and 1-lashem (2004), Michalewicz 

(1994), Michalewicz and Attia (1996), Salomon and Van Henimen (1996) and Jun et al. 
If 

(2000)]. Recently, Jamali et al. (2003) has developed Gauss-Seidel based uniform adaptive 
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(GSBUA) hybrid evolutionary algorithm and Jacobi based uniform adaptive (JBUA) 

hybrid evolutionary algorithm for solving large set of linear equations. In these algorithms 

both crossover and mutations operations are present. Furthermore, Gauss-Seidel based 

Time variant adaptive (GSBTVA) hybrid evolutionary algorithm [Jamali et al. (2004b)] 

and Jacobi based Time variant adaptive (JBTVA) hybrid evolutionary algorithm [Jarnali et 

al. (2004a)] have been developed for solving large set of linear equations by integrating 

classical numerical methods with Time variant adaptive (TVA) evolutionary computation 

techniques. In the later two algorithms, both crossover and mutations operations are also 

present. The uniform adaptation or time variant adaptation techniques are introduced for 

self-adaptation of relaxation factor. The idea of self-adaptation was also applied in many 

different fields [Salomon and Van Hemmen (1996), Back (1997) and Beyer and Deb 
MA 

(2001)]. 

5.2 The Existing tJniform Adaptive Hybrid Evolutionary Algorithms 

The main aim of the hybridization of the classical SR methods with the evolutionary 

computation techniques is to self-adapt the relaxation factor used in the classical SR 

technique. The relaxation factors are adapted on the basis of the fitness of individuals (i.e. 

how well an individual solves the equations). Similar to many other evolutionary 

algorithms, the hybrid algorithm always maintains a population of approximate solutions to 

the linear equations. Each solution is represented by an individual. The initial population is 

generated randomly from the field Different individuals use different relaxation 

factors. Crossover in the hybrid algorithm involves all individuals in a population. If the 

population is of size N, then the crossover will have iV parents and generates N offspring 

through linear combination. Mutation is achieved by performing one iteration of classical 

(Gauss-Seidel or Jacobi) method with SR technique. The mutation is stochastic since w, 

used in the iteration are initially determined between coi (=0) and w, (=2), is adapted 

stochastically in each generation. The fitness of an individual is evaluated on the basis of 

the error of an approximate solution. For example, given an approximate solution (i.e., an 

individual) z, its error is defined by IIe(z)II = jAZ - bjl. The relaxation factors are adapted 

after each generation, depending on how well an individual performs (in terms of the 

error). The main steps of the existing JBUA and the GSBUA hybrid algorithms are - 

initialization, Crossover, Mutation, Adaptation and Selection mechanism [Jamali et al. 
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(2003)]. The pseudo-code structure of the existing hybrid evolutionary algorithms [Jamali 

et al. (2003)] is given bellow: 

Algorithm_J BUA/GSBUAO 

begin 

k *— 0 ; /* Initialize the generation counter */ 

(0) (0) 
Initialize population: X °  = (x1  ,x2 .x};  

* Here X 
(k) 

i-th individual at k-th generation 

Initialize relaxation factors: w. E (0, 2) randomly 

-I' Evaluate population: I Je(X)J = {, e(z)  J : z X); 

While (hot termination-condition) do 

begin 

Select individuals for reproduction: 

Apply operators: 

Crossover: X = RX); 

j* R is stochastic matrix & Superscript c indicates Crossover * 

(k+m) (k+c) 
Mutation: X = H q(w,)Xi +Vq((oj) , 

/* where q E { .1' g , "j" indicate Jacobi based method and "g" indicate Gauss-

Seidel based method * 

Evaluate newborn offspring: {e(") (/ +m) 
H : E X"} 

Adaptation of C') : CO, = fjco"Co,' & 

ps.) 

and p,, are adciptive probability functions * 

Selection and reproduction: X(k) = 

k —k+1; 

" Increase the generation couizter *: 

end 
'V 

end 
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As the adaptation and the selection are the main characteristic mechanisms of the existing 

hybrid algorithms (as well as proposed modified algorithm also), so we have described 

them in brief bellow: 

Adaptation: 

(k+m) (k+m) Let X and Y be two offspring individuals with relaxation factors 0V  and w. 

and with errors (fitness values) II e(x") and 11 e(y') respectively. Then the relaxation 

factors w and w, are adapted as follows: 

if JJ e(x")  Ij>jJ e(y")  JJ, 

.1 (i) then co is moved toward w, by setting 

(0 = (0.5+p)(w +w) (5.1) 

and 

(ii) w 1, is moved away from w by setting 

(0111= JWV 
+ PV( ()U - wy), when W

.V 
 > COX  

.', + p,( 0L - (oy ), when w <W.V 
(5.2) 

where 

€ (-0.01,0.01) and p1, E (0.008, 0.012), 

are the uniform adaptive (UA) parameters of W and (OY  respectively. Note that co and 

are adapted relaxation factors correspond to °V  and (0,  respectively. 

if 11  e(x"7 ) 114 e(y'11 ) 11, then W. and are adapted in the same way as above but in 

the reverse order of w ' and 

If II e(x"') 11=11 e(y"') , no adaptation will take place i.e. 

= and C0' = CO 
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Selection and Reproduction: 

The best N/2 offspring individuals are selected according to their fitness values (errors). 

Then the selected offspring are reproduced (i.e. each parent individuals generate two 

offspring). Thus the next generation of N individuals is formed. 

5.3 Necessity of Crossover 

Here have tried to investigate the necessity of the crossover operation available in the 

existing uniform adaptive hybrid evolutionary algorithms [Jun et al. (2000) and Jamali et 

al. (2003)]. For the purpose two modified uniform adaptive hybrid evolutionary algorithms 

(i.e. modified GSBUA and the modified JBUA algorithms) are proposed to solve large set 
-01 

of linear equations. The proposed modified hybrid algorithms are modified from the 

existing GSBUA and the JBUA algorithms and contain all the evolutionary operations 

available in the existing algorithms except crossover operation. The proposed modified 

hybrid algorithms initialize random relaxation factors in a given domain and evolve" it by 

uniform adaptation technique as well. The main mechanisms of the proposed modified 

algorithms are initialization, mutation, uniform adaptation, and selection mechanisms (i.e. 

crossover operation is absent). It makes better use of a population by employing different 

equation-solving strategies for different individuals in the population. The errors are 

minimized by mutation and selection mechanisms. The investigation is done by comparing 

the proposed modified hybrid algorithms containing only mutation operation with existing 

hybrid algorithms containing both crossover and mutation operations. 

41  

5.4 The Proposed Modified Hybrid Evolutionary Algorithms 

The key idea behind the proposition of the modified algorithms (Modified Jacobi Based 

Uniform Adaptive (MJBUA) hybrid evolutionary algorithm and the Modified Gauss-Seidel 

Based Uniform Adaptive (MGSBUA) hybrid evolutionary algorithm) is to examine the 

necessity of crossover operation for solving linear equations. So the proposed modified 

hybrid evolutionary algorithms contains all steps of the JBUA and GSBUA hybrid 

evolutionary algorithms except the step - crossover. And we are not repeating the pseudo-

code structures of the both modified uniform hybrid evolutionary algorithms here, as they 

will be same as that of JBUA and GSBUA except crossover portion. 
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- The system of ii linear equations with n unknowns X1 , X2 , ......., X,, can be written as 

12 

1x1  = b,, (i = 1, 2,••, n) or equivalently, in matrix form 

Ax=b (5.3) 

In order to evaluate the effectiveness of the proposed MJBUA and MGSBUA hybrid 

algorithm, a number of numerical experiments have been carried out to solve the Eqn. 

(5.3) the following settings were valid for all the experiments: 

Dimension of unknown variable, n = 200 

Population size, N=2 

Boundary of relaxation factor, (cot , (0) = (0, 2) 

Initial domain from which each individual x of population X be initialized in (-30. 30) 

Threshold error, q =1 O 

Also the relaxation factors and the stochastic matrix R are generated randomly. 
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The first problem (problem P1  in Table 1 & 2) was set by considering a,1  E (100,200), a,1  e 

(-10, 10), h, E (100,200), I, j = 1, , ii. A single set of parameters was generated randomly 

from the above-mentioned problem and the following two experiments were carried out. 

The problem was solved with an error smaller than the threshold error 10 

In the first experiment, the comparison between the JBUA and the proposed MJBUA had 

been made. Figure 1 shows the numerical results of this experiment. From this experiment, 

two important observations came out. Firstly the proposed MJBUA algorithm is 

comparable with the JBUA algorithm in terms of number of generation. Secondly the 

proposed MJBUA algorithm required less amount of time than that of JBUA algorithm. 

Ir 
In the second experiment, the comparison between the GSBUA and the proposed 

MGSBUA had been made. Figure 2 shows the numerical results of this experiment. Again 

two observations came out - (i) the proposed MGSBUA algorithm is comparable with the 

GSBUA algorithm in terms of number of generation and (ii) the proposed MGSBUA 

algorithm required less amount of time than that of GSBUA algorithm. 

Table 1: Comparison between the JBUA and the proposed MJBUA hybrid algorithms for several 
randomly generated test probleiiis 

Domain of the elements of the coefficient matrix 
A & the right side constant vector b of the test MJBUA Alg. JBUA Aig. 

- Problems 

o .2 

)LiJ 

P, a, €( 100.200): a ji  e 10. 10)-. h1e( 100200) 62 390 60 411 
P2  a11 E(1.400): a,1  €(-44): bi= 100 171 1016 168 1320 
P3  a,e(-50.50), a11  e(-LI): be(-L1) 37 609 37 640 

P., aij= 100: a,1  E(-l. 1): bE(-100. 100) 42 539 44 582 

a1, = 50: a,, E(-10. 10): b,e(-5.5) 10 156 II 172 
p6  aii  =50: a, = (-1.1): h,= 2 10 188 11 219 
P7  a,1 =20i: a1, =(100-j) "20: b=10 I 79 1282 82 1312 

P8  a,, 20,i: a6  =
-
j: h, i 

Not 
converged 

-- 

Not 
 converged  

P9  a,, =(-20. 200): a,, e(-2.3); be(-2.3) 475 7406 489 7641 
P1  a,, =40: a,1  e(-44): b, =200 73 1170 74 1200 

P,, a,e(-50.50): a11  e(-I.1): be(-L1) 34 530 33 560 

Ir 
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Table 1 and 2 represent eleven test problems in each labeled from P i  to P u , with 

dimension, ii = 200. For each test problem P1: i = 1, 2.....II, the coefficient matrix A 

and constant vector b all were generated uniformly and randomly within given domains. 

Table I shows the comparison between the number of generations (iterations) of the JBUA 

and the proposed MJBUA hybrid algorithms with respect to the considered threshold error, 

,. 
One observation can be made immediately from this table that the proposed MJBUA 

hybrid algorithm is comparable with the existing JBUA hybrid algorithm for all the 

problems. Another observation is that the proposed MJBUA required less amount of time 

than that of JBUA for all the cases. 

Table 2: Comparison between the GSBUA and the proposed MGSBUA hybrid algoritluiis for 
several randomly generated test problems 

Domain of the elements of the coefficient 

- 
matrix A & the right side constant vector b of MGSBUA Alg. GSBUA All  

the test Problems 
1:) 

H ii H 
P1  a,,€( 100.200): a,, c(-10. 10): bE( 100.200) 34 260 35 310 
P. a,e(1.400): a, e(-4.4): h,= lOt) 92 710 93 734 
P3  a1 E(-50.50): a,1  e(-l.1): be(-1.1) 44 625 45 656 
P., a11= 100: a,1  e(-1,1): b,E(-100.100) 40 495 41 591 
Ps a,= 50: a,, -10.10): bE(-5.5) 8 141 7 156 
136 aii a,,=(-1.t): b=2 13 204 13 218 
P- a,, =20i: a,, =(100-j) 20; b,=10 / 112 1468 117 1578 
P,, a,, 20ii: a, =j: bi= i 60 859 58 938 
P, a1, =(-20. 200): a11  E(-2.3): b,E(-2.3) 554 7141 559 7219 
P10  a,1  =40: a11  e(-4.4): hi  =200 107 1422 111 1500 

p,, a11E(-50,50): aij€(-l.1): b,E(-1.1) 13 Iii 13 145 

Table 2 shows the comparison between the number of generations (iterations) of the 

GSBUA and the proposed MGSBUA hybrid algorithms with respect to the considered 

threshold error, i. One observation can be made immediately from this table that the 

proposed MGSBUA hybrid algorithm is comparable with the GSBUA hybrid algorithm for 

all the problems. Another observation is that the proposed MGSBUA required less amount 

of time than that of GSBUA for all the cases. 

19 

( 
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Table 3 Ff1ct of dimension of coefficient matrix Table 4: 1'11'ect of dimension of coefficient matrix 

on both MUSifiJA and GSBUA algorithms on both MJT31JA and JBUA algorithms 

Wj 

q 

MGSBUA GSBUA 
Aig. Aig. 

C) 
.943 

C) 
E' 

•
0 

(f) <I) 
C.) 

0 :z 

oLi-I 
'- 

C) c '- 

200 168 2200 169 2266 
100 34 171 46 293 
50 20 16 20 31 
25 19 2 19 3 

ii!ii 15 0 15 0 

MJBUA JBUA 
AIg. Aig. 

C) 
.2 

C) 

h C j 

(I)— 

oLiJ 0 

LiJ' tLJ 

20() 162 2656 170 2828 
10() 32 140 31 156 
50 19 15 19 31 
25 15 1 15 2 
10 12 0 12 0 

In order to study the effect of the dimension it of the coefficient matrix A on the modified 

hybrid evolutionary algorithms, we set problems with ciii = it, a €(- n/4, n/4), h= ii: where 

the value of it were set at 200, 100, 50, 25 and ID. For each value of it the problem was 

generated randomly within proposed domain. Table 3 and 4 show the generation history 

for both the modified hybrid algorithms and their existing counter parts for the above 

problems. From the tables, it is observed that the effect of dimensions of the coefficient 

matrix on MGSBUA and GSBUA as well as both MJBUA and JBUA hybrid algorithms 

are almost same. 

It is to be mentioned here that a total often independent runs with different sample paths 

were conducted. The average results are reported here. Also for all the experiments, the 

times were measured in the same environment. 

5.5 Concluding Remarks 

MJBUA and MGSBUA are the two modified uniform adaptive hybrid evolutionary 

algorithms, which have been proposed for solving large set of linear equations which do 

not contain the crossover operation. By omitting the crossover operations from existing 

JBUA and GSBUA (Jun et al. (2000) and Jamali et al. (2003)) the proposed MJBUA and 

MGSBUA hybrid algorithms respectively have been developed. The necessity of the 
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crossover  operation is investigated by comparing the performance of the proposed 

Algorithms with that of the JBUA and the GSBUA hybrid algorithms respectively. The 

preliminary investigation has showed that both the proposed MJBUA and MGSBUA 

hybrid algorithms are comparable in terms of generation (iteration) with the JBUA and 

GSBUA respectively. Also the both proposed MJBUA and MGSBUA hybrid algorithms 

required less amount of time than the JBUA and the GSBUA hybrid algorithm 

respectively. Furthermore since proposed modified hybrid algorithms have no crossover 

operation, so they require less memory allocation and less computational effort to solve the 

problems. Moreover, the proposed modified hybrid algorithms are also very simple and 

easier to implement both in sequential and parallel computing environments. It may thus 

conclude that for solving set of linear equations by uniform adaptive hybrid evolutionary 

algorithms, crossover is a needless operation. 

( 

rA 
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CHAPTER 6 

Use of Proposed Hybrid Evolutionary Algorithms for 

Solving Partial Differential Equations. 

6.1 Introduction 

Solution of Laplace's equation V 2 Ø = 0 will be performed using one of the Proposed 

Modified Hybrid Evolutionary Algorithms. The problem will also be solved by Gauss-

Seidel method. Both the solution will be compared with the analytical solution and the 

RMS error will be calculated. A sample Poisson's equation will also be discretized to 

transfer into a set of linear equations. That set will also be solved by one of the proposed 

Algorithm, MGSBUA Algorithm. 

6.2 Solution of LapLace's Equation 

Let us consider a steel plate of size 36cm x  36cm. The upper side is held at 100°C and the 

other sides are held at 0°C. Now we are to find the steady state temperature at interior 

points assuming a grid size of 3cm x  3cm. Here we obtain 13 x.  13 grid points on the plate. 

( There will be II x  I I grid points inside the plate where the temperature distribution is to 

be calculated. 

initial values may be obtained by either taking diagonal average or cross average of the 

adjoining four points. They are associated with the point patterns 

& . . . 

S • 

respectively, and may be more vividly pictured by the stencils 
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41 0 0 0 0 0 0 0 0 0 1 000 0 ........... .11 
1-410000000001000 ........... 

0 1 -4 1 0 0 0 0 0 0 0 001 0 0  ........... 
0014100000000010 ........... 

000 1-41 000000000 1 ........... 

0 0 0 0 1 -4 1 0 0 0 0 0000 0 ........... 
000001 -41 00000000 ........... 
000000 1-41 0000000 ........... 

0 0 0 0 0 0 0 1 -4 1 0 0000 0 ........... 
00000000 1-41 00000 ........... 
0000000001400000 ........... 
1000000000041000 ........... 
01000 

.... 

.... 14100000000010 
. . . . 0 1 -4 0 0 0 0 0 0 0 0 0 0 1  
.... 00040000000000 
.... 00014000000000 
. . . . 00 0 0 1 -40 0 0 0 0 0 0 0  

.... 00000140000000 

.... 00000014100000 
. . . . 00 0 0 0 0 0 1 -4 1 0 0 0 0  
.... 00000000141000 

.... 00000000014100 

.... 10000000001410 /119 

.... 01000000000141 .1120 

.... 00100000000014 .21 

-100 
-100 
-100 
—100 
- 100 
-100 
-100 
-100 
—100 
-100 
-100 
0 
0 

( 

I 
I 
I 

I 

1 

1 -4 1 

I 

which show in their proper relative positions. Thus we have for any (i,j) 

f+L/ +j /  +j +  +,._, -4ff  =0 (6.1) 

We will get a system of linear equations in terms of fi.,  and consequently we will have 

121 equations with 121 unknowns. The system of linear equations came to the form 

Ax=b (6.2) 

Ed 
The matrix will be of the form presented below. The coefficient matrix will be a 121 x  121 

order. 

For solving the equation (6.2) the Analytical/Exact solution is the basic solution. The 

analytical solution of the problem is 
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n7rx 
( 

200{1 
' Sflh y .SlIl (6.3) 

= ,iirh 1 / fl1 n7r.sillll - 

I 

The presence of the hyperbolic function is trouble creating. If we want to take more terms 

fl7t 
in the summation the sinh / becomes larger and larger. So we restrict ourselves up to 

50 terms only and the output result (6.3) is taken up to 6 decimal places only. 

The following matrix represents the analytical result. 

49.240183 68.930570 77.099542 80.999858 82.844247 83.394362 82.844247 80.999858 77.099542 68.930570 49.240183 

28029296 46.964189 57.851131 63.865378 66.902297 67.832005 66.902297 63.865378 57.851131 46.964189 28.029296 

18.327701 33.042382 43.202833 49.544496 52.971909 54.052922 52.971909 49.544496 43.202833 33.042382 18.327701 

12.850216 23.937285 32.366485 38.071833 41.323675 42.375842 41.323675 38.071833 32.366485 23.937285 12.850216 

9.317473 17.639133 24.302695 29.043628 31.846087 32.769986 31.846087 29.043628 24.302695 17.639133 9.317473 

6.846087 13.071833 18.202833 21.964189 24.240183 25.000000 24.240183 21.964189 18.202833 13.071833 6.846087 

5.022558 9.635470 13.499968 16.383616 18.153913 18.749648 18.153913 16.383616 13.499968 9.635470 5.022558 

3.621661 6.966553 9.795235 11.928167 13.249081 13.695779 13.249081 11.928167 9.795235 6.966553 3.621661 

2.504230 4.824423 6.797167 8.293784 9.225429 9.541412 9.225429 8.293784 6.797167 4.824423 2.504230 

1.574475 3.035811 4.282064 5.230785 5.823099 6.024330 5.823099 5.230785 4.282064 3.035811 1.574475 

0.759817 1.465658 2.068527 2.528265 2.815722 2.913465 2.815722 2.528265 2.068527 1.465658 0.759817 

We have solved the system of equations represented by (6.2) by Gauss-Seidel method and 

obtained the following result, which is obtained after 109 iteration. 

49.231949 68.195547 76.616603 80.705450 82.638024 83.213237 82.638393 80.706113 76.617416 68.196314 49.232446 

28.732703 46.934371 57.566362 63.568255 66.634544 67.577638 66.635234 63.569493 57.567880 46.935803 28.733631 

18.765227 33.244032 43.147698 49.368342 52.756009 53.829238 52.756951 49.370033 43.149771 33.245989 18.766496 

( 13.085121 24.130310 32.413933 38.003525 41.194115 42.228490 41.195230 38.005525 32.416385 24.132625 13.086622 

9.446029 17.779832 24.376316 29.040100 31.790920 32.697779 31.792121 29.042254 24.378958 17.782327 9.447646 

6.920300 13.168423 18.273604 21.992119 24.234261 24.982071 24.235462 21.994274 18.276246 13.170917 6.921917 

5.067856 9.701656 3.559696 16.422913 18.174423 18.763185 18.175544 16.424924 13.562160 9.703983 5.069365 

3.650479 7.012189 9.842539 11.967582 13.279575 13.722861 13.280546 11.969323 9.844674 7.014204 3.651785 

2.522719 4.855369 6.832300 8.327100 9.255296 9.569928 9.256061 8.328474 6.833983 4.856958 2.523750 

1.585674 3.055232 4.305392 5.254564 5.845960 6.046819 5.846483 5.255502 4.306542 3.056318 1.586378 

0.765152 1.475094 2.080213 2.540625 2.828003 2.925706 2.828264 2.541094 2.080788 1.475637 0.765504 

We also have solved (6.2) by one of the proposed Modified Hybrid Evolutionary 

Algorithm, MGSBUA Algorithm. Here threshold error is taken as 1/ 10. The 

estimation procedure of the error is discussed earlier (§ 4.7.1). 

For the following result the number of generations (iteration) required was 109. 
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A 
49.233647 68.198716 76.620933 80.710572 82.643542 83.218755 82.643542 80.710572 76.620933 68.198716 49.233647 

28.735872 46.940286 57.574442 63.577814 66.644842 67.587936 66.644842 63.577814 57.574442 46.940286 28.735872 

18.769557 33.252112 43.158736 49.381399 52.770076 53.843305 52.770076 49.381399 43.158736 33.252112 18.769557 

13.090243 24.139869 32.426990 38.018972 41.210757 42.245132 41.210757 38.018972 32.426990 24.139869 13.090243 

9.451548 17.790130 24.390383 29.056741 31.808849 32.715707 31.808849 29.056741 24.390383 17.790130 9.451548 

6.925819 13.178721 18.287671 22.008761 24.252190 25.000000 24.252190 22.008761 18.287671 13.178721 6.925819 

5.073005 9.711264 13.572820 16.438440 18.191151 18.779912 18.191151 16.438440 13.572820 9.711264 5.073005 

3.654938 7.020510 9.853906 11.981028 13.294062 13.737347 13.294062 11.981028 9.853906 7.020510 3.654938 

2.526236 4.861931 6.841264 8.337705 9.266721 9.581353 9.266721 8.337705 6.841264 4.861931 2.526236 

1.588076 3.059714 4.311515 5.261808 5.853764 6.054622 5.853764 5.261808 4.311515 3.059714 1.588076 

0.766353 1.477335 2.083274 2.544247 2.83 1905 2.929608 2.83 1905 2.544247 2.083274 1.477335 0.766353 

The Elapsed time in sequential processor is: 0.063000 seconds. 

To cheek the efficiency of the Modified Hybrid Evolutionary Algorithm the same number 

Ir of iteration is taken. The corresponding results are compared with the analytical one. For 

the comparison the Root mean square (RMS) error is calculated. The RMS error for the 

Gauss-Seidel method is found as 0.235760 and that for the proposed Modified Hybrid 

Evolutionary Algorithm is found as 0.235158. Thus we may conclude that for the same 

number of iteration Modified Hybrid Evolutionary Algorithm is better than the Gauss-

Seidel method. To get the same accuracy of the solution Hybrid Evolutionary Algorithm 

requires 109 iteration where as Gauss-Seidel requires 312 iteration. 

6.3 SoLution of Poisson's Equation ( 71 
Let us consider the Poisson's equation 

( 
8xy (6.4) 

over the square domain 0 x < 3 and 0 ::~ y _< 3 with f = 0 on the boundary and h 

0.25. We have to find f(x, y). 

The discretized form of the equation (6.4) becomes 

f+ +f +fjjj  -4f f  = 8x(i)y(j) (6.5) 

For h = 0.25 we have 1 1 x  11 grid points inside the boundaries. The matrix form will be as 

follows: - 



4 1 0 0 0 0 0 0 0 0 0 1000 0  . . . . . . . . . . ..  
1410000000001000 . 
0 1 -4 1 0 0 0 0 0 0 0 0010 0  . . . . . . . . . . . / 
001-4100000000010 . 

0001-410000000001 
0000 1-41 000000000 . 
000001-41 00000000 . 
000000 1-410000000 . 
0000000 1-41000000 . 
0 0 0 0 0 0 0 0 1 -4 I 0000 0 
0 0 0 0 0 0 0 0 0 1 -40000 0 
1 0 0 0 0 0 0 0 0 0 0-4100 0  . . . . . . . . . . . 
01000 

.1-41 00000000010 

.01-400000000001 

.000-40000000000 

.0001-4000000000 

. 00 0 0 1 -40 0 0 0 0 0 0 0 

.000001-40000000 

. 00 0 0 0 0 1 -4 1 0 0 0 0 0 

. 00 0 0 0 0 0 1 -4 1 0 0 0 0 

.000000001-41000 

. 00 0 0 0 0 0 0 0 1 -4 1 0 0 

. 1 0 0 0 0 0 0 0 0 0 1 -4 1 0 ./119 

.  0 1 0 0 0 0 0 0 0 0 0 1 -4 1 t. 
0010000000001 

5.5 
11 

16.5 
22 

27.5 
33 

38.5 
44 

49.5 
55 

60.5 
5 

10 

10 
11 
.5 
1.5 
2 

2.5 
0 
.3 

0 
-3- 

4 
4.5 

5 
5.5 

It is difficult to find solution normally. But we have easily obtained the solution by using 

the proposed MGSBUA Algorithm. The obtained solution is presented below which has 

taken 110 generations (iterations). 

( 
-16966811 .33 631848 -49666321 -64683301 -78.197100 -89564348 -97.890348 -101 866250 -99456944 -87232202 -$ 741101 

-28 735396 -56.894262 -83.850133 -108.869784 -131.040751 -149.169945 -161.630795 -166.117705 -159 229326 -135 730764 -87.232202 

-36.080513 -71.359670 -104970165 -135.904951 -162926174 -184.443884 -198.345184 -201.744451 -190611888 -159.229326 -99.456944 

-39.726985 -78.493739 -115.265908 -148.853680 -177.515111 -200.334234 -214.061604 -215.903027 -201.744451 -166.117705 -101.866250 

-10 333688 -79.622392 -116 746048 -150.428749 -179 l4637 -201.016336 -213.663970 .214 061604 -198 345184 -161 630795 -97 890348 

-38485375 -75.916092 -III 167145 -142.968911 -169825231 .189.920784 -201.016336 200334234  -184.443884 -149.169945 -89.564348 

-34691722 -68.389456 -100.037528 -128454517 -152.264874 -169.825231 -179 146357 -177.815111 -162.926174 -131 04078! -78.197100 

.29.392055 -57.912484 -84.638995 -108.546756 -128.454517 -142 96891! -150 428749 -148.853681) -135.904951 -108.869784 .64.683301 

.22.964015 -45229428 -66.09211 -84.638995 -100.037528 -111.167145 -116.746048 -115265908 -104970165 -83 850133 49.666321 

-15.734576 -30.982002 -45.229428 -57.912484 -68.389456 -75.916092 -79.622392 -78493739 -71 359670 -56.894262 -33 631848 

-7992288 -15.734576 -22.964015 -29.392055 -34,691722 -38.485375 -40.333688 -39,726985 -36.080513 -28.735396 -16 9668!! 

The threshold error is taken as '7  =10 and the time required was 0.078000 seconds. 

The computation is done on the computer with 2.60 GI-Iz Intel Dual core processor and the 

RAM is 1GB. 
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-J Concluding Remarks 

Our target was to study the use of Hybrid Evolutionary Algorithms for solving large set of 

linear equations. Iterative methods are best suitable for solving large set of linear equations 

by computer. The convergence of the well known classical iterative methods is very slow 

and can be accelerated by using successive relaxation technique. The speed of convergence 

depends on the relaxation factor ct) (o <(o <2). It is veiy difficult to estimate the optimum 

relaxation factor. To estimate the optimal value of the relaxation factor the idea of 

evolution is utilized and thus Hybrid Evolutionary Algorithms evolved. Jacobi Based 

Uniform Adaptive Hybrid Algorithm, Gauss-Seidal Based Time Variant Adaptive Hybrid 

Algorithm and Jacobe Based Time Varint Adoptive Hybrid Algorithm has evolved with 

underlying idea i.e. using the ideas of evolutionary computations the optimal relaxation 

factor is estimated and using that optimum value of the relaxation factor the convergence 

of the classical iterative method is accelerated and thus the hybridization is done. After 

rigorously examining the existing Uniform Adaptive Hybrid Evolutionary algorithms we 

have found that "For solving set of linear equations I/ic presence of cro.s-over is not 

necessary". Hence we have proposed two modified algorithms. The modified algorithms 

/ 
have no cross over operations as a result they consume less memory and become faster. 

The proposed algorithms are tested to solve the steady state heat distribution on a square 

plate with considered boundary conditions. The obtained result is compared with the 

analytical one and found satisfactory. A sample Poisson's equation is taken for solving. 

After discretization a set of linear equations is obtained. To solve that set we again have 

utilized one our proposed Modified evolutionary algorithm and the obtained solution is 

presented. It should be noted here that we have not tried to modify the Time Variant 

Adaptive Hybrid Algorithms. 

y 
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From our study the following conclusions and remarks can be made: 

Hybridization of Evolutionary Computation and classical Iterative methods to 

solve set of linear equations are very effective. 

The presence of cross-over step in the Uniform Adaptive Evolutionary Hybrid 

Algorithms to solve a set of linear equations is not necessary. 

The two proposed modified hybrid algorithms are faster and memory effective 

than their original counterparts. 

Partial differential equations, after discretization can be solved suitably by the 

proposed modified Hybrid Algorithms. 

More studies are needed on the Time Variant Adaptive Hybrid Algorithms. 

( 

61 



References 

I. Antia, H. M. (1991), "Numerical Methods for Scientist and Engineers", Tata 

McGraw-Hill, New Delhi, pp.  01 - 109. 

Back, T. (1992), "ihe Jimieraction qf Mutation Rate, Selection, citid Self-adaptation 

within ci gene/ic Algorithm, in Parallel 11roblem Solving fron, Nature ", mo 

Procs. of the 1st European Conference on Artificial Life (F. J. Varela and P. 

Bourgine, Eds) MIT press, MA, pp.  263 —271. 

Back, T. (1997), 'Self-adaj,lation, in Handbook of Evolutionary (7ompillaliomi 

Oxford University Press. 

Back, T., G. Rudolph and H-P. Schwefel. (1993), "kvolutionamy Progmwnnzing and 

evolution Strategies: Similarities and Differences ", In. Procs. of the 2nd 

Annual conference on Evolutionary Programming. MIT Press, San Diego, 

CA. pp.  11-22. 

Back, T. and H-P. Schwefel. (1993), "Aim overview ?f Lvoluilionaiy Algorithms /br 

Parameter Opuinuizalioui ", IEEE Trans. on Evolutionary Computation, 1(1), 

pp. 1-23. 

Back, T., M. Schutz and S. Khuri (1996), "Evolution Strategies: An alternative 

evolutionary ('omputalion Method", In. Procs. of the 2nd Annual 

Conference on Evolutionary Programming (M.J. Alliot, E. Luttin, E. 

Ronald, M. Schoenhauer and D. Rogers, Eds.), Springer-Verlag, Berlin, pp. 

3-20. 

Back, T., U. 1-lammel, and H-P. Schwefel (1997), "Evolutionary Computation: 

('oniments on the History and Current State ", IEEE Trans. on Evolutionary 

Computation, 1(1), pp.  3-17. 

Beyer, H.-G. and K. Deb (2001), "On Self adaptive feature.s in l?eaLlci,cz,,iete,• 

Jvolulionary Algorithm ", Transactions on Evolutionary Computation, 5(3), 

pp. 250-270. 

62 



Buckle, T. (1997), "theory ?f Evolu/ionaiy Algorithms and Application to Systeni 

s:y,ithesis", A Doctoral Dissertation, Diss. ETH No. 11894, Swiss Federal 

Institute of Technology, Zurich, Switzerland. 

Burder, R. L. and J. D. Faires (1997), "Numerical Analysis (6 1'  edition)", 

Brooks/Cole - Thomson Learning, USA, pp.  250-472. 

Carre', B.A. (1961), "7'he Determination (?tlhe  Opiinuiin Accelerating i'actor for 

Successive Over-Relaxation ", The Computer Journal, Vol 4, pp. 73-78. 

Chapra, S. C. and R. P. Canale (1990), "Numerical Method/or Engineers (2n0 

editio,i) ", McGraw-Hill, New York. 

Chellapilla, K. H. Birro and S. S. Rao (1998, 'Effectiveness of Lvolutionaiy 

programming", in: 3rd Annual conference on Genetic Programming 

(GP'98), duly 22-25, Univ. of Wisconsin, Madision. 

Cheney, W. and D. Kincaid (1999), "Numerical Mathematics and computing 
(/hh1 

edition)", Brooks/Cole - Thomson Learning, USA pp. 240-316. 

Engeln-Mullges, G. E. and F. Uhlig (1996), "Numerical Algorithms with  

Springer-Verlag, Heidlberg, pp.  59 - 142. 

Fogel, D. B (1995), "Evolufionaiy Computation: Towards a New Philosophy of 

Machine inelegance ", IEEE Press, Piscataway, N J. 

Fogel, L. J., A. J. Owens and M. J. Walsh (1966), "Artificial intelligence ihivugh 

Simulated Evolution ", Wiley, New York.. 

Forsythe, G. E. and C. B. Moler (1967), "('omputer So/u/ion of Liizear Algebraic 

Systeni,s' ", Prentice-Hall, Englewood Cliffs, New Jersey. 

Gerald, C. F., and P. O.Wheatley (1994), "Applied Numerical Analyis (5th 

edition.)", Addison-Wesley, New York. pp.  102-209. 

Gourdin, A. and M. Boumahrat (1996), "Applied Numerical Methods ", Prentice 

Hall of India, New Delhi, pp.  2 12-232. 

Hagaman, L. A. and D. M. Young (1981)' "Applied Iterative, Methods ", Academic 

press, New York. 

Hashem, M. M. A. (1999), "Global Optimization Through a New Class of 

Evolutiomiary Algorithm ", Ph.D. dissertation, Diss. No. 19, Saga University, 

Japan, pp. 1-30. 

63 



He, J., J. Xu, and X. Yao (2000), "Solving E(luations by Hybrid Evolutionary 

Computation Techniques ", Transactions on Evolutionary Computation, 

.4(3), pp. 295-304. 

Holland, J. H. (1962), "Outline/or a Logical Jheoiy ?f Adaptive Systems", Journal 

of the Association for Computing Machinery, 3, pp. 297-3 14. 

Jam, M. K., S. R. K. lyengar and R. K. Jam. (1985), "Numerical Methods/or 

Scientific and Engineering ('oniputa/ion (2nd edition) ", Wiley Eastern, 

India. 

Jamali, A R M J U, M. M. A. Hashem and M. B. Rahman (2003), "An Approach to 

Solve Linear Equations Using a Jacobi-Based k'oliüoiiary Algorithm ", 

Proceeding of the ICEECE, December 22-24, Dhaka, Bangladesh, pp. 225-

230. 

Jamali, A. R. M. Jalal Uddin, M. M. A. Hashem and M. B. Rahman (2004a), 

"5o1ving Linear Equations (ising a Jacobi Based 7me4'ar/cu/I Adaptive 

Hybrid Lvollltionai3' Algorithm", Proceedings of The 7th  International 

Conference on Computer and Information Technology (ICCIT) 2004, 

BRAC University, pp. 688-693. 

Jamali, A. R. M. Jalal Uddin, M. M. A. Hasheni and M. B. Rahman (2004b), "An 

Approach to Solve Linear Equations Using Time-J 'ariait Adaptive Based 

Hybrid Evolutionaty Algorithm", The Jahangirnagar University Journal of 

Science, Jahangirnagar University, Bangladesh, Vol. 27, pp.  277-289. 

Jun, I-I., J. Xu and X. Yao (2000), "Solving Equations by Hybrid Evolutionary 

Computation Techniques", Transactions on Evolutionary Computation, 

Vol.4, No-3, pp  295-3 04. 

Kim, J. H. and H. Myung (1997), "Evolutionary Programming Techniques/br 

Constrained Optimization Problems", IEEE Trans. on evolutionary 

Computation, 1(2), pp.  129 - 140. 

3 1 . Koza, J. R. (1994), "Ge,ietic Programming on the Programming qf ('omputers by 

Ivicans of Natiircil Evolution", MIT Press, Massachusetts. 

32. Krishnamurthy, E. V. and S. K. Sen (1989), "NumericalAlgorithms compulations 

in Science and Engineering", Affiliated East-West Press New Delhi, pp. 

157-259. 

64 



Mathews, J. H. (2001), "Numerical Methods tbr Mathematics, Science, and 

Engineering, (2nd edition. & 6//i reprint) ", Prentice-Hall of India, New 

Del hi. 

Michalewicz, Z. (1994), A Hierarchy of Evolution Pivgranis, "An Experimental 

Study, Evolutionary Computation", 1(1), pp.  51 - 76. 

Michalewicz, Z. (1994a), "Evolutionary ('ompulalion Jechnicues /br Nonlinear 

Progranmung Prohle,n.s' ", International Trans. On Operation Research, 

192), pp. 223- 240. (http:// www.coe.uncc.edu  /-zbyszek/papers.htnil). 

Michalewicz, Z. (1996), "Genetic Algorithms Data Structure Evolution 

Programs, (3rd I?ev., and extended edition) ", Springer-Verlag, Berlin.. 

Michalewicz, Z. and N. F. Attia (1994)' "Evolutionary Optimization of(onsircuned 

Problems", Procs. of the 3rd. Annual Conference on Evolutionary 

Programming, River Edge, NJ, World Scientific, pp.  98-108. 

Rechenberg, 1. (1993), "Evolutions Strategies: Optimierung tec/inisher Syvteme 

na/h Prinzipieii des Biologischen Evolution ", Frornman-Holzbook Verlag, 

Stuttgart. 

Rechenberg, 1. (1994), "Evolution Strategy, In. ('oniputational Intelligence: 

Imitating Li/i.'" (J.M. Zurada, R.J. Marks 11 and C.J. Robinson,Eds.), IEEE 

Press, New York, NY, pp.  147-159. 

Salomon, R. (1998), "Evolutionaty Algorithms and Gradient Search: Similarities 

and Differences", iEEE Trans. on Evolutionary Computation, 2 (2), pp. 45 

Sa1omon,R. and J. L. V. Hemmen (1996), "Accelerating Back Propagation 

Through Dynamic Self-adaptation ", Neural Networks, 9(4), pp. 589-601. 

Schoenauer, M. and Z. Michalewicz. (1997), "Evolutionary Computation", Control 

and Cybernetics 26(3), pp.  303-3 88. 

Schwefel, H.-P., G. Rudolph and T. Back. (1995), "('onlemporary Evolution 

Strategies in Advances Artificial Life ", Third International Conference on 

Artificial Life. Vol. 929 of lecture Notes in Artificial Intelligence, Springer-

Verlag, Berlin, Germany. pp. 893-907. 

Stoer, J. and R. Bulirsch. (1991/92), "Introduction to Numerical Analysis ('2/id 

edition) ", Springer, New York. 

65 



) 45. Varga, R. S. (1962), "Matrix Iterative Analysis", Prentice-Hall, Englewood Cliffs, 

New Jersey. 

Watanabe, K. and M. M. A. Hashem (2004), "Evohitionary Computation Technique 

for Nonlinear Programming Problem", International Trans. on Operation 

Research, Vol. 1, No. 2, pp  223-240. 

Yao, X., and Y. Liu (1997), "Fast Evolutionary Strategies", Control and 

Cybernetics, Special Issue on Evolutionary Computation, 26(3), pp.467  - 

497. 

Young, D. (1954), "Iterative Method for Partial Difference Equations of Elliptic 

lype ", Trans. American Math. Soc, Vol 7(6), pp.  92-1 11. 

Young, D. (1971), "Iterative Solution of Large Linear System ", Academic Press, 

Now York. 

Yuret, D. (1994), "From Genetic Algorithm to Efficient Opiinzization ", MIT, A.!. 

Technical Report No. 1569. 

LI 

I 

66 


