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Abstract 

Combined heat and mass transfer by mixed convection flow from a vertical porous plate with 

induced magnetic field, constant heat and mass fluxes has been studied. Nachtsheim Swigert 

iteration technique is used as the main tool for the numerical approach. The above mentioned 

problem is studied with two different aspects of the flow. These studies are mainly based on the 

* similarity approach. In the first case one-dimensional unsteady heat and mass transfer by mixed 

convection flow past an infinite vertical porous plate with induced magnetic field, constant heat and 

mass fluxes problem have been considered and its similarity solution have been obtained. Similarity 

equations of the corresponding momentum, magnetic induction, energy and concentration equations 

are derived by introducing a time dependent length scale which infact plays the role of a similarity 

parameter. The suction velocity is taken to be inversely proportional to that parameter. The 

dimensionless similarity equations for momentum, magnetic induction, energy and concentration 

equations are solved numerically by Nachtsheim Swigert iteration technique. The above problem 

has further been considered in two-dimension in the steady state problem taking into account the 

transverse magnetic field along with the induced magnetic field and constant heat and mass fluxes. 

The similarity equations of the above mentioned problem are obtained by employing the usual 

similarity technique. These are also solved numerically by Nachtsheim Swigert iteration technique. 

With the help of graphs and tables the effects of the various important parameters entering into each 

of the problems, on the velocity, induced magnetic field, current density, temperature, concentration, 

skin friction and current density at the plate are separately discussed. 
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Introduction 
Many transport processes can be found in various ways in both nature and technology, in which the 

heat and mass transfer by mixed convection flow occur due to the buoyancy force caused by thermal 

diffusion (temperature difference), mass diffusion (concentration difference). The heat and mass 

transfer by mixed convection flow has great significance in stellar, planetary, magnetosphere studied 

and also in the field of aeronautics, chemical engineering and electronics. In many engineering 

application heat and mass transfer process in fluid condensing or boiling at a solid surface play a 

decisive role. Boiling and condensing are characteristic for many separation processes in chemical 

engineering. As examples of this type of process, the evaporation, condensation, distillation, 

rectification absorption of a fluid should all be mentioned (Baehr and Stephan,1998). 

Magneto fluid dynamics (MFD) is the study of flow of electrically conducting fluid in electric and 

magnetic field. It unifies in a common framework the electromagnetic and fluid dynamic theories to 

yield descriptions of the concurrent effects of magnetic field on the flow and the flow on the 

magnetic field. Magneto fluid dynamics deals with an electrically conducting fluid whereas its 

subtopics; Magnetohydrodynamjcs (MHD) and Magneto Gas dynamics (MGD) are specifically 

concerned with electrically conducting liquids and ionized compressible gases. 

The problem of laminar natural convection flow in channels with wall temperature and heat transfer 

of fluid has been studied by Ostrach (1952). The natural convection flow along a vertical isothermal 

plate is a classical problem of fluid mechanics that has been solved with the similarity method by 

Ostrach(I 953). Combined natural and forced convection laminar flow with and without heat source 

has been studied extensively by Ostrach(1953,1954,1955) 

Kawase and Ulbrecht(1984) and Martynenko et al.(1984) investigated the free convection flow past 

an infinite vertical plate with constant suction. It was assumed that the plate temperature oscillates in 

such way that its amplitude is small. Weiss et al.(1994), further extended the problem of natural 

convection on a vertical flat plate. Free convection heat transfer on a vertical semi-infinite plate was 

studied by Berezovsky et al.(1977). Mollendrof and Grebhart(1974) studied the natural convection 

resulting from the combined buoyancy effect of the thermal and mass diffusion. Lin and Wu 

(1995,1997) have analyzed the problem of simultaneous heat and mass transfer with the entire range 

of buoyancy ratio for most practical chemical species in dilute and aqueous solutions. 
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MED is currently undergoing a period of great enlargement and differentiation of subject matter. 

The MElD heat and mass transfer flow of a viscous incompressible fluid past an infinite vertical 

porous plate under oscillatory suction velocity normal to the plate was investigated by Singh et al. 

(2003). The problem of combined heat and mass transfer of an electrically conducting fluid in MHD 

natural convection adjacent to a vertical surface was analyzed by Chen (2004). All the above works 

are related to the stationary vertical surface; however, the flow past a continuously moving surface 

has many applications in manufacturing processes. Such processes are hot rolling, the metal and 

plastic extrusion, continuous casting, glass fiber production and paper production (Altan et al., 

1979). 

Soundalgekar and Ramana Murty (1980) studied the heat transfer flow past a continuous moving 

plate with variable temperature. Sami and Al-Sanea (2004) studied the steady laminar flow and heat 

transfer characteristics of a continuously moving vertical sheet of extruded material. Very recently 

an analytical study of the combined heat and mass transfer by laminar mixed convection flow of an 

incompressible electrically conducting viscous fluid past an electrically non-conducting 

continuously moving infinite vertical porous plate under the action of a uniform transverse magnetic 

field is done by Chaudhary and Sharma (2006). 

In Chapter 1, some available information's on MHD heat and mass transfer flows, along with 

various effects are presented and from both analytical and numerical point of view they have been 

discussed. The standard form of the basic governing equations and their forms in the considered 

situations are introduced in Chapter 2. In Chapter 3, the calculation technique is discussed. In 
Chapter 4, a specific one dimensional unsteady heat and mass transfer by mixed convection flow 

past an infinite vertical porous plate taking into account of induced magnetic field with constant heat 

and mass fluxes problem is considered. Two dimensional steady state problem of heat and mass 

transfer by mixed convection flow past a semi-infinite vertical porous plate taking into account of 

induced magnetic field with constant heat and mass fluxes is considered in Chapter 5. 
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Chapter 1 

Some Available Information on MHD 

1.1. Magnetohydrodynamics (MHD) 

Magnetohydrodynamics (MHD) is the branch of magneto fluid dynamics, which deals with the 

flow of electrically conducting fluid in electric and magnetic field. Probably, the largest 

advancement towards an understanding of such phenomena comes from the field of astrophysics. 

It has long been suspected that most of the matter in the universe is in the form of plasma or 

highly ionized gaseous state and much of the basic knowledge in the area of electromagnetic 

fluid dynamics evolved from these studies. The field of MHD consists of the study of a 

continuous, electrically conducting fluid under the influence electromagnetic fields. Originally, 

MIHD included only the study of partially ionized gases as well as the other names have been 

suggested, such as magneto fluid mechanics or magneto aerodynamics, but the original 

nomenclature has persisted. The essential requirement for problem to be analyzed under the law 

of MHD is that the continuum approach be applicable. 

There are many natural phenomena and engineering problems susceptible to MI-TD analysis. It is 

useful in astrophysics because much of the universe is filled with widely spaced charged 

particles and permeated by magnetic fields and so the continuum assumption becomes 

applicable. Engineers employ MI-ID principles in the design of heat exchangers, pumps and flow 

meters; in solving space vehicle propulsion, control and reentry problem; in designing 

communications and radar system; in creating novel power generating systems, and in 

developing confinement schemes for controlled fusion. 

The MHD in the generation of electrical power with the flow of electrically conducting fluid 

through a transverse magnetic field is one of the most important applications. Recently, theses 

experiments with ionized gases have been performed with the hope of producing power on large 
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scale in stationary plants with large magnetic fields. Generation of MHID power on a smaller 

scale is of interest of space applications. 

Generally we known that, to convert the heat energy in to the electricity, several intermediate 

transformations are necessary. Each of these steps means a loss of energy. This naturally limits 

the over all efficiency, reliability and compactness of the conversion process. Method for the 

direct conversion to energy is now increasingly receiving attention. Of these, the fuel converts 

the chemical energy of fuel directly into electrical energy; fusion energy utilizes the energy 

released when two hydrogen molecules fuse into a heavier one, and thermoelectrically power 

generation uses a thermocouple. MiFID power generation is another new process that has received 

worldwide attention. 

The principal MHID effects were first demonstrated in the experiments of Faraday & Ritchie. 

Faraday (1832) find out experiments with flow of mercury in glass tubes placed between poles of 

a magnet and discovered that a voltage was induced across the tube by the motion of the mercury 

across the magnetic field, perpendicular to the direction of flow and to the magnetic field. 

Faraday observed that the current generated by this induced voltage interacted with the magnetic 

field to slow down the motion of the fluid, and he was aware of the fact that the current produced 

its own magnetic fluid that obeyed Ampere's right-hand rule and thus, in turn distorted the field 

of magnet. 

Ritchie contemporary of Faraday, discovered in 1832 that when an electric field was applied to a 

conducting fluid perpendicularly to a magnetic field, it pumped the fluid in a direction 

perpendicular to both fields. Faraday also suggested that electrical power could be generated in a 

load circuit by the interaction of a flowing conducting fluid and a magnetic field. 

The first astronomical application of the MIHD theory occurred in 1899, when Bigalow suggested 

that the sun as a gigantic magnetic system. It remained, however, for Mfven(1942) to make a 

most significant contribution by discovering MI-ID waves in the sun. These waves are produced 

by disturbances which propagate simultaneously in the conducting fluid and the magnetic field. 

The analogy that explains the generation of an Alfven wave is that of a harp string plucked while 

submerged in a fluid. The string provides the elastic force and the fluid provides the inertia force, 

and they combine to propagate a perturbing wave through the fluid and the string. 

In summary, MI-ID phenomena result from the mutual effect of a magnetic field and conducting 

fluid flowing across it. Thus, an electromagnetic force is produced in a fluid flowing across a 

transverse magnetic field, and the resulting current and magnetic field combine to produce a 

force that resists the fluid's motion. The current also generates its own magnetic field which 
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distorts the original magnetic field. An opposing or pumping force on the fluid can be produced 

by applying an electric field perpendicularly to the magnetic field. Disturbance in either the 

magnetic field or the fluid can propagate in both to produce M}ID waves, as well as upstream 

and downstream-wake phenomena. The science of MED is the detailed study of these 

phenomena, which occur in nature and are produced in engineering devices. 

1.2. Some Useful Dimensionless Parameters 

Reynolds number (Re) 

The Reynolds number Re is the most important parameter of the fluid dynamics of a viscous 

fluid, which is defined by the following ratio 

inertia force mass x acceleration ,oL X 
pLU LU Re = . = = - 

viscous force shear stress x cross sectional area 
< 

p V 

where, L and U denotes the characteristic length and velocity respectively and u = is the 
p 

kinematic viscosity (1u is the viscosity and p is the density). 

1 

For if Re is small, the viscous force will be predominant and the effect of viscosity will be felt in 

the whole flow field. On the other hand if Re  is large the inertia force will be predominant and in 

such case the effect of viscosity to be confined in a thin layer, near to the solid wall or other 

restricted region, which is known as boundary layer. However if R is very large, the flow ceases 

to be laminar and becomes turbulent. The Reynolds number at which translation from laminar to 

turbulent occurs is known as critical Reynolds number. 

Reynolds in 1883 found that for flow in a circular pipe becomes turbulent when Re  exceeds the critical value 2300, 

rUdi i.e. 
V 

where U is the mean velocity and 'd' is the diameter of the pipe. 

When the viscous force is pre-dominating force, Reynolds number must be similar for dynamic 

similarity of two flows. 

Prandtl number (Pr ) 

The Prandtl number Pr is the ratio of the kinematic viscosity to the thermal diffusivity and is 
defined by 
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'U 

P = = p = IIc 

r a k k 

pc p  

where c is the specific heat at constant pressure and k is the thermal conductivity. The value of 

is the thermal diffusivity due to the heat conduction. The smaller value of is, the pcp 
pcp  

narrower is the region which affected by the heat conduction and it is known as the thermal 

boundary layer. The value of v = show the effect of viscosity of the fluid. Thus the Prandtl 
p 

number shows that the relative importance of heat conduction and viscosity of a fluid. Evidently 

Pr varies frorn fluid to fluid. For air Pr  = 0.72 (approx.), for water at 15.5°C, Pr 7.00 (approx.), 
for mercury Pr 0.044, but for high viscous fluid it may be very large, e.g. for glycerin Pr 
7250. 

Magnetic Force number (M) 

The magnetic force number is the ratio of the magnetic force to the inertia force and is defined 

b M= magnetic force 
= 

,í4Ho-'L 
inertia force pU 

Schmidt number (Se) 

The Schmidt number is the ratio of the viscous diffusivity to the chemical molecular diffusivity 

and is defined by S = 
viscous diffusivit y v = - 

chamical molecular diffusivit y D, 

Grashof number ( Gr) 

The Grashof number is defined by Gr = gJCLVT 

and is a measure of the relative importance of the buoyancy and viscous forces. The larger it is, 

stronger is the convective current. 

Modified Grashof number (G,,,) 

g,8 L3VC _ The Modified Grashop number is defined by G??? 
- 2 

V 

Soret number (S0) 

The Soret number is defined by S0 D KT (TW -T ) 

Tin u(C—C 
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Magnetic diffusivity (F,,,) 

The magnetic diffusivity is defined by Pm  /io"u 

Eckert number (Er) 
The Eckert number is defined by E =  kUO 

aqc 

1.3. MHD Boundary Layer and Related Transfer Phenomena 
Boundary layer phenomena occur when the viscous effect may be considered to be confined in a 

very thin layer near to the boundaries and the non-dimensional diffusion parameter such as the 

Reynolds number, the Pe'clet number and the magnetic Reynolds number are very large. The 

boundary layers are then the velocity and thermal (or magnetic) boundary layers and each of its 

thickness is inversely proportional to the square root of the associated diffusion number. Prandtl 

observed, in classical fluid dynamics boundary layer theory, from experimental flows that for 

large Reynolds number, the viscosity and the thermal conductivity appreciably influences the 

flow only near a wall. When distance measurements in the flow direction are compared with a 

characteristic dimension in that direction, transverse measurement compared with the boundary 

layer thickness and velocities compared with the free stream velocity, the Navier-Stokes and 

energy equations can be considerably simplified neglecting small quantities. The flow directional 

component equations only remain and pressure is then only a function of the flow direction and 

can be determined from the non-viscous flow solution. Also the number of viscous term is 

reduced to the dominant term and the heat conduction flow direction is negligible. 

There are two types of MI-ID boundary layer flows, by considering the limiting cases of a very 

large and a negligible small magnetic Reynolds number. When the magnetic Reynolds number is 

16 large; the magnetic boundary layer thickness is small and is of nearly the same size of the 

viscous and thermal boundary layers and then the equations of the MI-lID boundary layer must be 

solved simultaneously. On the other hand, when the magnetic Reynolds number is very small 

and the magnetic field is oriented in an arbitrary direction relative to a confining surface; the 

flow direction component of the magnetic interaction and the corresponding joule heating is only 

a function of the transverse magnetic field component and the local velocity in the flow 

direction. Changes in the transverse magnetic boundary layer are negligible. The thickness of the 

magnetic boundary layer is very large and the induced magnetic field is negligible. In this case 

the magnetic field moves with the flow and is called frozen mass. 
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1.4. MHD and Heat Transfer 

With the advent of hypersonic flight, the field of MIHD, as define above, which has attracted the 

interest of aero dynamists and associated largely with liquid metal pumping. It is possible to alter 

the flow and the heat transfer around high velocity vehicles provided that the air is sufficiently 

ionized. Further more, the invention of high temperature facilities such as the shock tube plasma 

jet has provided laboratory sources of following ionized gas, which provide an insentive for the 

study of plasma accelerators and generators. As a result of this, many of the classical problems of 

fluid mechanics have been reinvestigated. Some of these analyses awake out of the natural 

tendency of scientists to search a new subject. In this case it was the academic problem of 

solving the equations of fluid mechanics with a new body force and another source of dissipation 

in the energy equation. Some time there were no practical applications for these results. As for 

example, natural convection MFID flows have been of interest to the engineering community 

only since the investigations, directly applicable to the problems in geophysics and astrophysics. 

But it was in the field of aerodynamic heating that the largest interest was awaked. Rossow 

(1957) presented the first paper on this subject. His result for incompressible constant property 

flat plate boundary layer flow indicated that the skin friction and heat transfer were reduced 

substantially when a transverse magnetic field was applied to the fluid. This encouraged a 

multitude analysis for every imaginable type of aerodynamic flow, and most of the research 

centered on the stagnation point, where in hypersonic flight, the highest degree of ionization 

could be expected. The result of these studies were sometimes contradictory concerning the 

amount by which the heat transfer would be reduced (some of this was due to misinterpretations 

and invalid comparison). Eventually, however, it was concluded that the field strength, necessary 

to provide sufficient shielding against heat fluxes during atmospheric flight, where not 

competitive (in terms of weight) with other method of cooling (Sutton and Gloersen, 1961). 

However the invention of new light weight super conducting magnets has revived interests in the 

problem of providing heat projection during the very high velocity re-entry from orbital and 

super orbital flight (Levy and Petschek, 1962). 

1.5. Free Convection 

In the studies related to heat transfer, considerable effort has been directed towards the 

convective mode, in which the relative motion of the fluid provides an additional mechanism for 

the transfer of energy and material, the later being a more important consideration in cases where 

mass transfer, due to a concentration difference, occurs. Convection is inevitably coupled with 

the conductive mechanisms, since, although the fluid motion modifies the transport process, the 

eventual transfer of energy from one fluid element to another in its neighborhood is thorough 



conduction. Also, at the surface the process is predominantly that of conduction because the 

relative fluid motion is brought to zero at the surface. A study of the convective heat transfer 

therefore involves the mechanisms of conduction and sometimes those of radiative processes as 

well, coupled with that fluid flow. These make the study of this mode of heat or mass transfer 

very complex, although its importance in technology and in nature can hardly be exaggerated. 

The heat transfer in convective mode is divided into two basic processes. If no externally 

induced flow is provided and flow arises naturally simply owing to the effect of a density 

difference, resulting from a temperature or concentration difference in a body force field, such as 

the gravitational field, the process is referred to the natural convection. On the other hand if the 

motion of the fluid is caused by an external agent such as the externally imposed flow of a fluid 

stream over a heated object, the process is termed as force convection. In the force convection, 
the fluid flow may be the result of,  for instance, a fan, a blower, the wind or the motion of the 

heated object itself. Such problems are very frequently encountered in technology where the heat 

transfers to or from a body is often due to an imposed flow of a fluid at a different temperature 

from that of a body. On the other side, in the natural convection, the density difference gives rise 

to buoyancy effects, owing to which the flow is generated. A heated body cooling in ambient air 

generates such a flow in the region surrounding it. Similarly the buoyant flow arising from heat 

rejection to the atmosphere and to other ambient media, circulations arising in heated rooms, in 

the atmosphere, and in bodies of water, rise of buoyant flow to cause thermal stratification of the 

medium, as in temperature inversion and many other such heat transfer process in our natural 

environment, as well as in many technological applications, are included in the area of natural 

convection. The flow may also arise owing to concentration differences such as those caused by 

salinity differences in the sea and by composition differences in chemical processing unit, and 

these cause a natural convection mass transfer. 

Practically some time both processes, natural and forced convection are important and heat 

transfer is by mixed convection, in which neither mode is truly predominant. The main 

difference between the two really lies in the word external. A heated body lying in still air loses 

energy by natural convection. But it also generates a buoyant flow above it and body placed in 

that flow is subjected to an external flow and it becomes necessary to determine the natural, as 

well as the forced convection effects and the regime in which the heat transfer mechanisms lie. 

When MilD become a popular subject, it was normal that these flows would be investigated with 

the additional ponder motive body force as well as the buoyancy force. At a first glance there 

seems to be no practical applications for these MHD solutions, for most heat exchangers utilize 
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liquids, whose conductively is so small that prohibitively large magnetic fields are necessary to 

influence the flow. But some nuclear power plants employ heat exchangers with liquid metal 

coolants, so the application of moderate magnetic fields to change the convection pattern appears 

feasible. Another classical natural convection problem is the thermal instability that occurs in a 

liquid heated from below. This subject is of natural interest to geophysicists and astrophysicists, 

although some applications might arise in boiling heat transfer. 

The basic concepts involved in employing the boundary layer approximation to natural 

convection flows are very similar to those in forced flows. The main difference lies in the fact 

the pressure in the region beyond the boundary layer is hydrostatic instead of being imposed by 

an external flow, and that the velocity out side the layer is zero. However the basic treatment and 

analysis remain the same, the book by Schlichting (1968) is an excellent collection of the 

boundary layer analysis. There are several methods for the solution of the boundary layer 

equations namely the similarity variable method, the perturbation method, analytical method, 

numerical method etc. and their details are available in the books by Rosenberg (1969), Patanker 

and Spalding (1970) and Spalding (1977). 

1.6. Heat and Mass Transfer 

The basic heat and mass transfer problem is governed by the combined buoyancy effects arising 

from the simultaneous diffusion of thermal energy and chemical species. Therefore the equations 

of continuity, momentum, energy, mass diffusion are coupled through the buoyancy terms alone, 

if there are other effects, such as the Soret and Duffor effects, they are neglected. This would 

again be valid for low species concentration levels. These additional effects have also been 

considered in several investigations, for example, the work of the Caldwell (1974), Groots and 

Mozur (1962), Hurel and Jakeman (1971) and Legros, et al. (1968). 

Somers (1956) considered combined buoyancy mechanisms for flow adjacent to a wet isothermal 

vertical surface in an unsaturated environment. Uniform temperature and uniform species 

concentration at the surface were assumed and an integral analysis was carried out to obtain the 

result which is expected to be valid for P and S values around 1.0 with one buoyancy effect 

being small compared with the other. Adams and McFadden (1966) presented experimental 

measurements of heat and mass transfer parameters, with opposed buoyancy effects. Gebhart and 

Pera (1971) studied laminar vertical natural convection flows resulting from the combined 

buoyancy mechanisms in terms of similarity solutions. 
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Nanousis and Goudas (1979) have studied the effects of mass transfer on free convection 

problem in the stokes problem for an infinite vertical limiting surface. Georgantopolous and 

Nanousis (1980) have considered the effects of the mass transfer on free convection flow of an 

electrically conducting viscous fluid (e.g. of a stellar atmosphere, of star) in the presence of 

transverse magnetic field. Solution for the velocity and skin friction in closed form are obtained 

with the help of the Laplace transformation technique, and the results obtained for the various 

values of the parameters S, Pr and M are given in graphical form. Raptis and Kafoussias (1982) 

presented the analysis of free convection and mass transfer steady hydro magnetic flow of an 

electrically conducting viscous incompressible fluid, through a porous medium, occupying a 

semi infinite region of the space bounded by an infinite vertical porous plate under the action of 

transverse magnetic field. Agrawal et al. (1983) have investigated the effect of Hall current on 

the combined effect of thermal and mass diffusion of an electrically conducting liquid past an 

infinite vertical porous plate, when the free stream oscillates about constant non zero mean. The 

velocity and temperature distributions are shown on graphs for different values of parameters. 

1.7. Thermal Diffusion 

In the above mentioned studies heat and mass transfer occur simultaneously in a moving fluid, 

where the relations between the fluxes and driving potentials are of more complicated nature. In 

general the thermal diffusion effects is of a small order of magnitude, described by Fourier or 

Flick's law, is often neglected in heat and mass transfer processes. Mass fluxes can also be 

created by temperature gradients and this is Soret or thermal diffusion effect. There are however, 

exceptions. The thermal diffusion effect for instance has been utilized for isotope separation and 

in mixtures between gases with very light molecular weight (H2, He) and of medium molecular 
weight (N2, air). Kafoussias (1992) studied the MilD free convection and mass transfer flow, 

past an infinite vertical plate moving on its own plane, taken into account the thermal diffusion 

when (i) the boundary surface is impulsively started moving in its own plane (ISP) and (ii) it is 

uniformly accelerated (U.A.P). The problem is solved with the help of Laplace transformation 

method and analytical expressions are given for the velocity field as well as for the skin friction 

for the above-mentioned two different cases. The effect of the velocity and skin friction of the 

various dimensionless parameters entering into the problem is discussed with the help of graph. 

For the both cases, it is seen from the figure that the effect of magnetic parameters M is to 
decrease the fluid (water) velocity inside the boundary layer. This influence of the magnetic field 

on the velocity field is more evident in the presence of the thermal diffusion. From the same 

figures it is also concluded that the fluid velocity rises due to greater thermal diffusion. Hence, 

the velocity field is considerably affected by the magnetic field and the thermal diffusion. 
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Nanousis(1992) extended the work of Kafoussias(1992) to the case of rotating fluid taking into 

account the Soret effect. The plate is assumed to be moving on its own plane with arbitrary 

velocity u0 j(i'), where U0  is a constant velocity and f(t') is a non dimensional function of time 
i'. The solution of the problem is also obtained with the help of Laplace transformation 

technique. Analytical expression is given for the velocity field and for the skin friction for two 
different cases; Case-I: When the plate is impulsively started, moving on it own plane and 
Case-H: When the plate is uniformly accelerated, the effect on the velocity field and skin 

friction of various dimensionless parameters entering in to the problem, specially of the Soret 

number S0, are discussed with the help of graphs. In the case of an impulsively started plate and 

uniformly accelerated plate, it is seen the primary velocity to increase with the increase of S0  and 
the magnetic parameterM. The mass fluxes can also be created by temperature gradients and this 

is the Soret or the thermal diffusion effect. 
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Chapter 2 

The Basic Governing Equations 

The generalized Continuity equation, Momentum equation, Energy equation, Magnetic induction 

equation, Concentration equation together with the Ohm's law and Maxwell equations form the 

basis of studying of magneto fluid dynamics (MFD). These equations are as follows: 

Continuity equation for viscous compressible electrically conducting fluid is 

ap 
at (2.1) 

where p the fluid density and q is the fluid velocity. 

For incompressible fluid (p =constant) the equation yields 

V q =0 where q=(u, v, w) (2.1 a) 

Momentum equation for viscous compressible fluid is 

F_Vp+vv 2 q+v(v.q) (2.2) di' p 3 

For incompressible (V q = 0) the equation (2.2) yields 

Lq +(q.V)q=F_vp+v2q 

- 

at p (2.2a) 

When the fluid moves through a magnetic field, then the equation (2.2a) becomes to be 

Magnetohydrodynamic (MHD) equation as 

.V)q = F_Vp+vv2q  +L(JAH
at 

) 
p p 

(2.2b) 

Magnetic induction equation for a viscous incompressible electrically conducting fluid is 

(2.3) a! PeG1  

Energy equation for a viscous incompressible electrically conducting fluid is 

aT k 2 1 J2  
(2.4) at pcp  pcp  pcpo. 



The Concentration equation for a viscous incompressible electrically conducting fluid (in the 

absence of heat source, viscous dissipation and Joule heating term) is 

ac  — + (q V)C = D7V2C + 
V2T 

Tm  
Generalized Ohm's law is of the form 

J = cr'(E+qAB)-- —(JAB — vp) 
en 

=u'(E+qAB)--—JAB+_vp 
ene en 

J+ -—JAB=cr'(E+qAB)+ 
 071 

vp (2.6) en en 

The Maxwell equation's are 

VAH=J (2.7a) 

\7 AE=O (2.7b) 

VB=O (2.7c) 
where, F is the body force per unit mass, p is the fluid pressure, P is the pressure of electron, 

/1e  is the magnetic permeability, J is the current density vector, B is the magnetic field vector, E 

is the electric field vector, H is the magnetic field intensity, T is the fluid temperature, T,,7  is the 
mean fluid temperature, C is the species concentration variable, 0 '  is the electrical conductivity, 
e is the charge of electron, n, is the number of density electron, cp  is the specific heat at constant 
pressure, k is the thermal conductivity, KT  is the thermal diffusion ratio and D,,, is the 

coefficient of mass diffusivity. 

Also q, denotes the dissipation function, involving the viscous stress and it represents the rate at 

which energy is being dissipated per unit volume through the action of viscosity. In fact the 

energy is dissipated in a viscous fluid in motion on account of internal friction and for 

incompressible fluid 

(aU)2

+~
o

2 (2 au2 
2 

 I+1 I +i —+--- I +1 —+-- I +I
a
U 

+ I (2.8) y) z) 
j x ay) y 3z) z 5x) 

which is always positive, since all the terms are quadratic, where 1u is the coefficient of viscosity. 

(2.5) 
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Let us consider a heat and mass transfer by mixed convection flow of an incompressible 

electrically conducting viscous fluid past an electrically non-conducting vertical porous 

plate y = 0. Introducing the Cartesian co-ordinate system x-axis is chosen along the direction of 

flow and y-axis is normal to it. A uniform magnetic field is applied normal to the flow. In 

addition the analysis is based on the following assumption. 

The magnetic Reynolds number of the flow is taken to be large so that the induced magnetic 

field is not negligible. The magnetic field is of the form: 

H = (H,H2O) 

The equation of the conservation of electric charge is V 
. J = 0, where J = (J, J, ,0), the 

direction of propagation is considered only along the y-axis and does not have any variation 

along the y-axis and the y derivative of J namely -- = 0, resulting in J =constant. Since 
OY 

the plate electrically non-conducting, this constant is zero and hence J = 0 everywhere in the 

flow. 

The divergence equation of Maxwell equations is V H = 0 

which gives = 0 => HY  = constant = H0(say) So H = (H,H0 ,O) 
OY 

Now, from equation (2.7a) we have, 

J=VAH (:çy  

^(

0 

H A (

0 

 allX  + aH. aH, 

 

= 
az) ôz) ax ay,) 

= j 
k( ay 8z) 

J=[o. ,

O"Y ) 
(2.9) 
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H 

Therefore &(JAH)=L 0 
p p I 

H H0  0 

P,  [- H = + H 
)

_

A 

+ FI + (0 
- H 

10  ( ay y ) az 

= 1~'(IH0 , - H - H  aIIx x  ôz ) (2.10) 

Also F=(F,FF.) (2.11) 

Thus the momentum equation (2.2b) can be written in the Cartesian form with the help of 
equations (2.10) and (2.11) as 

8u 
+U —------- 

8u 
+v 

&u &u 
+W 

1 8P 
L{82u FX ----+ + 

öu 82 
+ H (2.12a) 

ô' a a a 18P (a2v 

—+-----+— 
32v allx  

at Y 
22 &2  p (2.12b)  

8w 8w 
— +U— +v— +W_F___.+ 

&iv 8w 1 8P {82w 
—+- 82w 

- 82W/1eH  
at & & p 8z x2 &y2  &2 )pxaz  (2.12c) 

Again H_—(H,H,o) 

and q•V=u a a 
—+v__ a 

ax ay az 

( a a a 
+jH0 +k0) (q.V)HIu_+ (iH 

axay Jx 

'( 8Ff 81-i 8H I 8H 8Ff ÔH 
I 8x 
l U+V+ W 

8z) 
1+11 U+V+W 

I ox I+ko 
Oz) 

= 11 
'( OH 

U —a- 
OH oH 

+ w —s- +0+0 r OH 
I —s- OH OH 

= = = 0 + v —a- I Ox 8y Oz) L Ox Oy Oz 

( OH OH 
I Ox Oy 8z) (2.13) 

Again (H V) q = 

I
(/ H + I H, + k 0). 0 . 0 0 

OxOy 
+ 

az)] 
(zu-i-jv-i-kw) 
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(

H, + H,, 
5y 
 +0

) 

( 
=11 

äu 3u'\ 'I 
H—+H -  I+jl 

av v'1 
H —+H - ~k +H (Hxäw (2.14) 

0)  0) X 0) 

1 
Also \7211 

(2 2 a2'\ 

I --+----+----- I(iH +jH()  +ko) 
Ie ' 1u0o-'  t a 3Z ) 

a2H. a2H aj 
A + 0 + 

a2 H 82H 
 0 + 0  

+ I+ji 
2 2 2 2 

[,(~

(' 3z ) h 3x 
-2 

 
OZ ) 

1 [(324. 62H. 62H i . 

/Je0'LL 
i+10+ko 2 

 ) c 2 2 
Cz 

32H. 52H "1 x 0 01 (2.15) 
2 

z 2 
' ) ax 5 

Thus the magnetic induction equation (2.3) yields 

aH 3H. H H. &i I ~aWx a2i 5'H
- +u - +v— 
& 

+w— = H - +H -  + + - 
0 2 &2

av 

) 
I (2.16a)  

0=11 +H (2.16b) 

°  E3y 

0=H +H
aw  

 (2.16c) 
x 8x 

Again, J=VAH= 10, 
IHx 

, 

ay 

=  

allx  [(aH

azx 

 )+ _ 

2] 

ôy) 

(,IH_ (2.17) 
fc,cr' pco'[ 5z ) y ) J 

Thus the energy equation (2.4) become 

¶ ¶ ¶ ¶ k Ca2T a2i' 52T 1 1  (aN 
2 

—+u—+v—+w---=--- -+--+----  
& & a 

I+—+---- 
/ a pc pcc1 ) 

[(%H
i  I +! I (2 18) 

(ax) 

O~f'
)2] au2 (ôv 2 (aw 2 (8v a2a

wherei +II+J HI+I+I+I++
[ 

a')) az) 
 J 

8x ay) I 3y 8z) \ az 3x 



and the species concentration equation (2.5) become 

ac ac ac ac (a2c  a2c a2c D K. ra2y, a2i' a2T 
I —+---+-- 1+ I (219) 

at ax ay az 'L 
2 J)Y2 &2 ) , 

aX2 ay  2 
az2) 

Thus in three dimensional cartesian coordinate system the continuity equation, the momentum 

equation, the magnetic induction equation and the species concentration equation become 

all a% aw 
Continuity equation (2.20) 

ax ay az 

Momentum equation 

au au au au 1 P a2u a2u IteH a 
—+u +v +w 

a' 
X 

p a 
{a2u 

- .2 +- 2—+ 
&Z2) p ' 

(2.21a) 

av a' av a 1  ap av a a2v/IeH  
__ =F,--+d 

ai 
, 

2 
+--- 

2  + J  
ôz2 

(2.21b) 

a a a 
w
a i a 

+u_ +v +— =J -- — + +— 2 + 2 
JILICH (2.21c) 

a' & a p & &2  
, 

Magnetic induction equation 

elf eli JI a, u 1 2H 52Hx 52ff 
__- +u— +i'--  +w —H 
a 

- 
— +H — +— ----i 

2 
+ 

a) 
(2.22a) 

O=H— + I-f0 
av 
-- (2.22b) 

ax ay 

(2.22c) 
Cx ay 

Energy equation 

aT ¶ 61' CT k 52T 82q 1 1 (
11 [2T  

—+u--+v----+w—=--- - 
a & & pc1, & ? 

+-- 
&) 

+—ço+ 
pc ,ocd 

[H2 

+L-_- & y) j 
(2.23) 

r 2 2 

where -9+I— J+I --- H+—+--+I_+__I+I__+ 

2 
18v 

2 2 21 

L I 
8x 6y) 6z } j Cx 6Y) a Cx) 

J 

Concentration equation 

ac ac ac ac (52C a2c a2c D01K (a2T a2T aT" 
ay az Lax 2 

az2 ) 
1+ (2.24) 

The next section deals with the specific problem. 
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Case-I 
Let us consider an unsteady heat and mass transfer by mixed convection flow of an electrically 

conducting viscous fluid past an infinite vertical porous plate y = 0. The flow is also assumed to 

be in x-direction which is taken along the plate in upward direction and y-axis is normal to it. 

The temperature and species concentration at the plate are instantly raised from 7 and C to 7. 

and Crespectively. Which are thereafter maintained as constant, where 7 and Cthe 

temperature and species concentration of the uniform flow respectively. A uniform magnetic 

field strength H is applied to the plate to be acting along the y-axis, which is electrically non-

conducting. 

In the heat and mass transfer by mixed convection flow along the vertical plate, the body force 

and the pressure gradient along the direction is 

g/3(T — T)+ g/3(C — C) (2.25) 

where g is the acceleration due to the gravitation, )3 is the coefficient of volume expansion,fl 

is the volumetric coefficient expansion with concentration. 

With reference to the above assumptions, the continuity equation (2.20), the momentum 

Al equations (2.21a)-(2.21c), the magnetic induction equations (2.22a)-(2.22c), the energy equation 

(2.23) and the species concentration equation (2.24) become: 

1311 
Continuity equation 

3v 5w 
+ + - = 0 (2.26) 

5x Eiy 5z 

Momentum equation 

—+u—+v—+w—=g/3(T-Tj+g/3(C--c)+ 
3211 

—+—+- 
32j"\  p. SH 

1+-H (2.27a) 
- at 8x v 22 5z)p 

Si,' Sv 5' (8v 52v 
+_+_+_ = 

St 2 ay2 &2
)p 

 

Gy 

(2.27b) 

SVV EV GW Sw OW &W EYW 
— +u—+v—+w— =v! —++ 

) 
14 R (2.27c) a & P 

Magnetic induction equation 

5FJ SU SH SN Su 1 (3'H 5'Hx H 
=H 

a & 
x o Ad 

.__L+_+_ 

J 

(2.28a) 

0=H
x 

OV  
+H - 

 
(2.28b) 

3X °Sy 
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Sw 
0 = H +H - (2.28c) 

X 5X 
05

)) 

 

AW 

Energy equation 

57 01 51 ST k (2j 2q 527 1 1 
--+zi—+v—+w—=-----I —+----+--- J+-7+ I I +I--- (2.29) 

) & & pc9 &)

)2] 

2 2 2 
I i(aui (av (Sw I (5v au 

(
(hj' 8vSnSw

where =pHI—I +1—I +1—I >+I—+-----I +—+—! +I—+
LL 

ax) cy) t..  6z) 
J I Sx 3y) 3y 5z) 0: Ox 

Concentration equation 

ac ac ac ac (52c a2c 32C D KT 
(-~— al

2y 2j 2y 

—+u---+v--+w—=D I—+---+---- 1+ ' +---+---- (7 30) 
ni  a 5y2 5z2 r v2  2  5z2) 

Since the plate occupying the plane y = 0 is of infinite extent and the fluid motion is 

unsteady, so all the physical quantities will depend only upon y and t. Thus the given 

governing equations (2.26)-(2.30) reduced to one dimensional equations, which are as follows 

Ov 

4 Continuity equation =0 (2.31) 
5)) 

Momentum equation 

0u Sn 32 p aH 
—+v—=gfl('J-7T)+gfl(C—C)+v---,-+ eN (2.32a) 

0,t) 5t' 52 i, 
+v_ =V— -H (2.32b) — 

, 2

p

X 

Magnetic induction equation 

+v - 
 

-=H 
1 (2.33a) 

at Sy Y Pea' 
 2 

0=H (2.33b) 
0 

 Ov  

0 

Energy equation 

ST ST k 52T 
[(
&1)

2

+

(O_

V)

2]
+ 

api 
2  

Si Sy jx 2 c 
 v ay /xcr'  y 

(234)
)  
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Concentration equation 

+ v = D 
+a1c Dm  K7. 

a) T ay 
(2.35) 2 

Since the magnetic Reynolds number of the flow be large SO that the viscosity of the fluid be 

small. Let S be the small thickness of the boundary layer and e <<1 be the order of magnitude 

of S i. e. 0(5) = s, then we can write 

0(y) = s, 0(v) = s, 0(H) e 

Also we assume that 0(11) = 1, 0(i) = 1, 0(H ) = I, 

Hence 

all  
oI=!, o1iL=-, 

va,) y) S k ay- ) s ôy) 

01) = O1 = I, 1.-') = 
at) kay) 2) 

aH,

132h1. 1 =I 
at0( ) 2) 2 

within the boundary layer. 

Then the equations (2.31 )—(2.33c) with order become 

Continuity equation =0 
ay 

(2.36) 

Momentum equation 

all 
g)6(T —  

at ay 
 ay p ay 

(2.37a) 

1 1 1 
Is— -- 6— 

S S_ S 

3v av 52v /1 
____ +v_=v____!Hx 

X 

at OY , 

 (2.37b) 

1 1 
- - s e1 
6 6 

Magnetic induction equation 

=H0 —  all  + 
I a2H 

X (2.38a) 
ay 0Y Pe ay2 

1 1 1 

5 
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av 
0=H 

ay 
(2.38b) 

Again let O. be the thermal boundary layer thickness and let e <<1 be also the order of cY, 

i.e. 0(8 ) = s. Then we can write, 0(y) = a, 0(v) = .. Also we can write 0(T) = 1, 

o(c)=i, 0(x)=1 and 0(u)=l 

1-lence 

oI) =-'-
O(a2y,) 

ai) 5 s 

oIJ =1, ociJ =! o[.-c) = 
01 a)! S a))- 5 

within the boundary layer. 

Then the equations (2.34)—(2.35) with order become 

Energy equation 

(a 21 1 

, 
2  

[(ajj)2 

PCp ') J 
8) 

1 1 1 1 

S S S S 

Concentration equation 

ac ac a2c DK a2T 
+v=D m T 

at q' 2 

1 1 1 
1 _ 

5 5 6 

(2.39) 

(2.40) 

Again we have to find that 0(gfl(T 
- )) = 1, O(gfls(C 

- C) = 1, , oJ = 1, 0(v)  62,  = 

*J62 
O1=s2, O(D,)=s2, DmKr2 0

1=s2 , 1_ 
ftp) 'rn L Cp) 1XO) 

Since the viscosity is very small, so neglecting the small order terms. Thus we have to from 

equations (2.36)—(2.40) yields 

av 

ay 
(2.41) 
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ôu ôu 
—+v—_—gfl(T—T,,,)+gfl 

au. 
(2.42) 

at a 
-' 

0
ôy p cy 

oH Ou 1 O 2HX  x X_H+ + V  
at aY 'Y Pea'  O)) 

(2.43) 

OT OT k 0 2r v 1 (ofJ 2  
2 o) 

+ I 

' 
a J 

(2.44) 

OC 3C a2c D,flKT  02T 
+ v - = D 

a '&+ 
(2.45) 

and the boundary conditions for the problem are 

1>0, u 
ÔT q 

U0(t), v=v(1), —, 
OY k 

ÔC in 
--, H =H at O 

a 

} 

2.46)  

1>0, 11=0, H0 as oo 

where H. is the induced magnetic field, H, is the induced magnetic field at the plate and in is 

the coefficient of mass flux per unite area. 

Case-Il 

Let us consider a steady heat and mass transfer by mixed convection flow of an electrically 

conducting viscous fluid past a semi-infinite vertical porous plate y = 0. The flow is also 

assumed to be in x-direction which is taken along the plate in upward direction and y-axis is 

normal to it. The detailed descriptions of the present problem are similar to those of Case-1. 

In the heat and mass transfer by mixed convection flow along the vertical plate, the body force 

and pressure gradient along the direction is 

gfl(T—T)+g/3(C—C,) (2.47) 

where g is the acceleration due to the gravitation, 

fi is the coefficient of volume expansion, 

/Y' is the volumetric coefficient expansion with concentration. 

With reference to the above assumptions, the continuity equation (2.20), the momentum 

equations (2.21a)-(2.21c), the magnetic induction equations (2.22a)-(2.22c), the energy equation 

(2.23) and the species concentration equation (2.24) become: 

Continuity equation 
5u Ov Ow 
- + - + - =0 (2.48) 
Ox Oy  Oz 
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Momentum equation 

u+v+w.
au  
 gfl(T_7)+gfl (CCj+L alu  

 (2.49a) 

av 5v av aJ  
=

(

—
a2v 

—
a2v

— -
5
--

2v  

)

— , 
u—+v—+w—

ax 2
+

ay 2
+

ôz 2

—H  
ax ôy az p a 

(2.49b)  

aw aw aw (a2w a2w 82w ,L ai-i,, 
u -   - +v-+w•--= ---- + --- + - j—H. 

ax 2 2 2) 
1L, 

(2.49c) 

Magnetic induction equation 

ai-i 3J-i ai-i 3u au 1 (32jj 02Hx 32H. 
u---- +i'-+ii'---=H --+H — +----i --+ (2.50a) 

ay ( a)) I1e0' . 5 2 2 
 ) 

O=H (2.50b) 
xax °ay 

0=H (2.50c) 
X 3X °6y 

Energy equation 

¶ ¶ 8T 5T k CO'T 2T OT" 1 1 
I/--  + ly—  + 

• 
 

57 P 
2 &2 ) 

r(8H.2 H
)2] 

 +1 —b  (2.51) 

where ,=iI — p 

(,2] 
(5v Sii 2 ôv2 u 1(ai,2 

(a,,Y")2  az)j 
+— +1I+I+I+i—+--+

x} 5X Sy) t5y 5z) 5z 5x 

Concentration equation 

_ 
ac ac ac ac (02c a2c a2c .D K. ra2T a2 82T 
—+u+v+w=D I++ 
at ax ay az 

rn 
ax 2 2) 

'  1+ 
7 

++ I 2 2 
az2 ) 

(252) 

Since the plate occupying the plane y = 0 is of semi-infinite extent and the fluid motion is 

steady, so all the physical quantities will depend only upon x and y. Thus the given 

governing equations (2.48)-(2.52) reduced to two dimensional equations, which are as follows: 

Continuityequat-ion 
au  

_+ 
av  

_=0 (2.53) axay 

Momentum equation 

) 

(2.54a) 
C 0~ 

0 
0~)  
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av av (a,v  
-+ 

a2v
!H (2.54b) 

ax ay ax2 Xu-+v--=v  

Magnetic induction equation 

ôI-1 oH Ou 1 32H. 32H'\ 
u - + v -f- = H + H - + ---fl-  + I (2.55 a) 

X O 2) 
Cy 

 

- (2.55b) 
Ox ° Oy 

Energy equation 

' 
2 (,\2 (., 21 i 

2 ) 
++_J J -- ) 

(2.56) 

Concentration equation 

c (C (o2c 32(.  D,K7 ( ô2r ??T 
U-  --+V--Dj 

--~--- +----- --+---,- (2.57) 
a dy cy) 7,,, ccC cy ) 

Since the magnetic Reynolds number of the flow be large so that the viscosity of the fluid be 

small. Let 8 be the small thickness of the boundary layer and s <<1 be the order of magnitude 

of 8 i. e. 0(8) = e, then we can write 

O(y)=s, 0(v)=s, 0(H,,)=e 

Also we assume that 0(u) = 1, 0(x) =1, O(H) = 1, 

Hence 

oi±) =1, o1.4 =1 ('.! 
1 

0 
 ~
Hx
) I  

LOX) 6 
2J2 

OI—I=s, 
a2vJ 

0 6, 0— =1, 
(a2V) I 

a) ay 

0( ) 

(82H ) 

 
o1.i!)=! , 

 2H (O 1 

ax 2 
6 6 

within the boundary layer 

 

Then the equations (2.53)—(2.55c) with order become 

Contrn 
Ou 5v 

uity equation - + - = 0 
OxOy 

(2.58) 

1 1 
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Momentum equation 

u—+v—=gfl(T—Tj+gff(C—C)+ 2 (2. 59a) 
ax i ax 

1 1 1 
lIe— 1 2 e C 

av av (82v 32v') 
uH 5H u—+v--=vI —+----- 

8x 8y 8x 2 ay) p ay 
(2.59b) 

1 1 

6 6 

Magnetic induction equation 

of-i au (02H, 02H " - -i-H--+ U x H 
Ox 

- ax 8) + 0y2 J 
(2.6Oa) 

1 1 1 

6 6 62  

av 
O=H -+H .iY (2.60b) 

8x 8ji  

If 1661 

Again let i5T  be the thermal boundary layer thickness and let e <<1 be also the order of ô', 

i.e.O(5T  )=e. Then we can write, O(y)= s, O(v) 6. Also we assume that 0(7')=1, O(C)1, 

O(x)=1 and 0(u)=1. 

Hence 

62T 
O) =1, OJ =1 O[ )  = 

1 
_, 2) 

6 
in 

O

(aC) aC) I 

=1, OJ =1 
o[ 

& oy) e 

within the boundary layer 

Then the equations (2.56)—(2.57) with order become 

Energy equation 

OT ¶ k('82T 82T' 
r 2 2, 

(Ov" (Ov 6u 
 2 

I aH 
U— +V + 

J

)2] 

(2.61) 

1 1 2 1 11 3 — 1 1 1 
S 
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Concentration equation 

ôc ac a2c 82C D K 82T 82T 
u—+v —=D (— )+ 

8x Ey 
m 8x2 

+ 
T 

(2.62) 

11 1 1 
e 

Again we have to find that O(gfl(T—T)) = 1, O(gfl(C--(') = 1, = 1. 0(v) = 
62

, 
 

J =e2 4 O(D 1
)=2,4Ynt 

DnzKi.J_62 C =c2and 4=2 

C1,) 

4 
Since the viscosity is very small, so neglecting the small order terms. Thus we have to from 

equations (2.58)—(2.62) yields 

(2.63) 

(2.64) uv =gfl(T_T)+gfl*(C_C) —+  
5x8y 

____ 

8H I8 
U 

X XH + H —+ (2.65) 
cv 5)) X5

) 
 05

y 
 /1eO8Y 2  

ST ST k 827' v 
( 
au  2 1 (aH 2  

(2.66) U 
 OIX
— +V Oly-  = —  

+J 
+f ) 

SC SC 
- 

52C D_K7. 92T 
D (2.67) Oy Sx -ii;;- — ' 

+ 

and the boundary conditions for the problem are 

u=(, v=i(x), 
5Tq X 

--- , H=H. at )'=O 
i k' (2.68) 

u = 0, T C II *0 as y —•x 

where is the induced magnetic field, J-I is the induced magnetic field at the plate and rn is 

the coefficient of mass flux per unite area. 
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Chapter 3 

The Calculation Technique 

4 The set of ordinary coupled non-linear differential equations with the boundary conditions are very 

difficult to solve analytically. Hence we adopt numerical procedures to obtain solutions. To solve 

our problem we will use a standard initial value solver namely the sixth order Runge Kutta method 

along with Nachtshei m-Swigert iteration technique. 

Nachtsheim-Swigert iteration technique 

To solved the boundary layer equations by using Nachtsheim-Swigert iteration technique, if there 

are three asymptotic boundary conditions then there will have three unknown surface conditions 

fff(Ø), H'(0), 9'(0). 

Within the context of the initial value method and Nachtsheim-Swigert iteration technique the outer 

boundary conditions may be functionally represented as 

JJ'(0), 9'(0)) = 8 (3.1) 

H(/lm.Lx) = H(f"(0), H'(0), O'(0)) = 82 (3.2) 

O(llmt.c  ) = 8(f"(0), H'(0), '(0)) = 83  

with the asymptotic convergence criteria is given by 

f"( ) - f"(f"(0) H'(0), 8'(0)) 54  (3.4) 

H'(llma\  ) - H'( f"(0) H'(0), 9'(0)) - 8, (3 5) 

= 9'(f"(0), H'(0), O'(0)) = 66  (3.6) 

Let us choose, f"(0) = g1 , H'(0) = g,, O'(0) = 93  

and expanding first order Taylor series expansion after using the above equations (3.1)-(3.6), yields 

I '@lmax) = f ('7max ) + ---- ig1  + ---- Lg2  + -v--- Ag3  =81 (3.7) 
à91 ôg2 a93  
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H(J7m )= H().<)+ 
SN  
—Ag j  + SN —492 + 

SI-I 
 A93  = 82 (3.8) 

4 5g1 ag 2 5g3  
.4. 

('7max ) = °c('lmax )+ 
so 
—Ag1  + 

so 
—A92  + 

so 
-.---Ag3  = 53 (3.9) 

5g2 8g3  

'I 

f"@lmax)fc (hlm&x)+ g1 92 +-—Ag3  -84 (3.10) 
Sg, 592 593  

(T9H' 511' 511' 
H(i7)+ — Ag1  +—Ag2  +—A93  = 8   

5g1 5g2 o93  

50' 50' 50' 
=O(11m  )+---Ag1  +—Ag7  +—Ag3  = 86 (3.12) 

0g1 og, 

where subscript 'c' indicates the value of the ftjnction at 7m determined from the trial integration. 

Solution of these equation in a least square sense requires determining the minimum value of the 

error as 

E=812 +82 +8.2 +8+852 ±8 (3.13) 

with respect to g1 , g2  and 

Now differentiating equation (3.13) with respect to g1 , g2  and 931  we get 

so, 583  
+82 +53 +04  (3.14) 

'5g1  5g1 5g1 ag, 5g1 5g1  

581 52 583 584  
8 —+82 --+03 ---+84 ---+85 ---+86 --=0 (3.15) 

592 592 592 592 592 592  

582 583 584 o8 55 

cg3 og3 og3 og3 og3 593  

Now using the equations (3.7)-(3.12) in the equation (3.14), we get 

k
Sf' Sf' ' 

+ +—Ag3  1 +—Ag2  
of' 
— + 

SH öi-i 131-1 [Hc  +Ag+Ag,+—Ag3 
3 2 3 j 

+L 
 

so so so 
+±Ag,+Ag3  Ic1 

so 
+[f,"  +-_4 +-Ag2+-Ag3

1091 cg1 2 - 093 2 3 

+[H
, 

51' SI-I' 511' 
+ Ag1  + ------ Ag2  + A 3  

'SH' 
+ 
[
0c
, O, 59 59' 159 

+ A + Ag, + Ag3  -=0 
cg1 2 3 j a 1 2 CJ3  J c91 

I' 
2 2 2 2 

of (sH (of (aH' 150"V]
Ag]

' 
+I I +II+1—' H' 8g1 ) 8g1 )5g1 )5g1 )5g1 ) 5g 1 ) 
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[of' of' OH OH 88 89 Of" Of" OH' OH' 89' oe'l 
—+-- —+-- —+-- —+--- — Jig3  —+-- +1— 

O93  891 893  591 893  091 893  591 8g3 093 893  891 j 

= "0']  "Ht  (3.17) 
L 8g1 ag, 3g1 0g1 8g1 Og, 

Similarly by using the equations (3.7)-(3.12) in the equation (3.15), we get 

[Of' Of OH OH 09 09 Of" Of " OH' OH' 09' oo'l 
I 
[5g1  

--+ -+— ------ - + + 
0g., Og 09 2 Og Og, Og 092 Og Og, Og Og,] 

Ag 

(of' 2 (oH2 (o9 2 (0f2 (,,)2 
+ +I+1 I+ + +I I 

(efl
2] 

Og,0g,)IOg,) Og,Og2 (,.0g,) 

OH 09 09 " Of" OH' OH' 09' ao'l [Of' Of' OH Of 
+1 —+ —+ +— +— —jAg3  

[Og3 Og2 0g., 0g2 Og3  Og, 0g., 0g. 0g3 Og2 8g3  0g.,] 

=_[fcHc_+9c_+fc h1c 9cJ (318) 
L og, k9 2 6'92 092 og., og., 

and 

[i aH aH 00 aO + t + i i1 
[5g1  5g3 Og1  0g3 0g 0g., Og 0g3 Og 0g3 Og 093] 

Lxgl  

[Of' Of' OH OH 09 09 Of" Of" OH' OH' 09' 09'l 
—+— —+--- —+--- —+-- —lAg, +I---- 

[Og, 0g3 Og, O93 092  093 092  09., Og2 Og, 5g3 ] - 

(of' 2 (oH2 (Oo2 (2 (
,,H

,)2 o9,2

I+j+ji+ji+ + Ag3 
0g3)0g3)0g3)0g3)Og3 0g3 ) 

(3.19) 
5g3 593 0g3 0g., 59., 0g3 j 

We can write the equations (3.17)-(3.19) in system of linear equations in the following form as: 

a11 A91  + a12 Ag2  + a13  t\93 =hII  (3.20) 

a21 Ag1 +a22 A92 +a23 A93  =b22  (3.21) 

a31 Ag1  + a32 i92  + a33 Ag, = b33  (3.22) 
where 

1 1 1 1 1 2 
(af'Y (OHY (89Y (of"Y (OH'Y (08' 

a=I—I +1—I +1—! +1—I +1—I +1- 
8g) Og) Og) lOg) L\8g ) 8g 

2 2 ' ' 2 
(of'Y 

(\j (oi"Y (os"Y (oe'  
i +1—I +1—i +1—I +I—I +1- 

-- 18g2 ) 1\ 8g2 ) LOg,) 1\ 8g2 ) 892 ) 892  

1i12 1 2 1 2  
(133 = + + +

1 2  

(8g3 ) 1.Og3 ) (Og3 ) 093 ) 8g3 ) 
+

(

.
1 2  

Og3 ) 
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Og, 592 Og, 
-+- -+ +- -+- 
892 Og, 892 Og, 092 Og, 892 Og, 092 

f' Of' OH OH 09 09 Of Of OH' OH' 3 O - a,3  -a3 , - -+-- -+-- -+ + + 
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Now solving the equations (3.20)-(3.22) by Cramer's rule, we have 

detA, detA 2 detA3  
Ag1 = = 

detA ' detA 
and 

A93detA 

where 

a11  a12 a,3  jb,, a12 a13  

detA =  a22 a23  detA, = b22  a22 a23  

 a32 a33  Jb33  a32 a33  

a,1 b,, a13  I a,, a,2  

det42  = a21b22 1-7 23 det43  =a2, a22 b22  

a3, b33 a33 a3, a32 b33  

-4. 

Then we obtain the missing (unspecified) values as 

g, —g,+g, 

92  —g2 +Ag2 (3.23) 

93  <—g3  +zg3  

Thus adopting this type of numerical technique as described above, a computer program was set up 

for the solution of the basic non-linear differential equations of our problem where the integration 

technique was adopted as the sixth order Runge Kutta method of integration. Based on the 

integration done with the above numerical technique, the results obtained are in the appropriate 

section. 
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Chapter 4 

Unsteady heat and mass transfer by mixed convection 
flow from a vertical porous plate with induced 
magnetic field, constant heat and mass fluxes 

4.1. Introduction 

Many transport processes can be found in various ways in both nature and technology, in which 

the heat and mass transfer by mixed convection flow occur due to the buoyancy force caused by 

thennal diffusion (temperature difference), mass diffusion (concentration difference). The heat 

- and mass transfer by mixed convection flow has great significance in stellar, planetary, 

magnetosphere studied and also in the field of aeronautics, chemical engineering and electronics. 

In many engineering application heat and mass transfer process in fluid condensing or boiling at 

a solid surface play a decisive role. Boiling and condensing are characteristic for many 

separation processes in chemical engineering. As examples of this type of process, the 

evaporation, condensation, distillation, rectification absorption of a fluid should all be mentioned 

(Baehr and Stephan, 1998). 

Magneto fluid dynamics (MFD) is the study of flow of electrically conducting fluid in electric 

and magnetic field. It unifies in a common framework the electromagnetic & fluid dynamic 

theories to yield descriptions of the concurrent effects of magnetic field on the flow and the flow 

on the magnetic field. Magneto fluid dynamics deals with an electrically conducting fluid 

whereas its subtopics; Magnetohydrodynamics (MHD) and Magneto Gas dynamics (MGD) are 

specifically concerned with electrically conducting liquids & ionized compressible gases. 

The problem of laminar natural convection flow in channels with wall temperature and heat 

transfer of fluid has been studied by Ostrach (1952). The natural convection flow along a vertical 

isothermal plate is a classical problem of fluid mechanics that has been solved with the similarity 
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method by Ostrach(1953). Combined natural and forced convection laminar flow with and 

without heat source has been studied extensively by Ostrach(1953,1954,1955). 

Kawase and Ulbrecht(1984) and Martynenko et al.(1984) investigated the free convection flow 

past an infinite vertical plate with constant suction. It was assumed that the plate temperature 

oscillates in such way that its amplitude is small. Weiss et al.(l 994), further extended the 

problem of natural convection on a vertical flat plate. Free convection heat transfer on a vertical 

semi-infinite plate was studied by Bcrezovsky et al.(1977). Mollendrof and Grebhart(1974) 

studied the natural convection resulting from the combined buoyancy effect of the thermal and 

mass diffusion. Lin and \Vu (1995,1997) have analyzed the problem of simultaneous heat and 

mass transfer with the entire range of buoyancy ratio for most practical chemical species in dilute 

and aqueous solutions. 

MHD is currently undergoing a period of great enlargement and differentiation of subject matter. 

The MHD heat and mass transfer flow of a viscous incompressiole fluid past an infinite vertical 

porous plate under oscillatory suction velocity normal to the plate was investigated by Singh et al. 

(2003). The problem of combined heat and mass transfer of an electrically conducting fluid in 

MHD natural convection adjacent to a vertical surface was analyzed by Chen (2004). All the 

above works are related to the stationary vertical surface; however, the flow past a continuously 
-4 

moving surface has many applications in manufacturing processes. Such processes are hot 

rolling, the metal and plastic extrusion, continuous casting, glass fiber production and paper 

production (Altan et al., 1979). 

Soundalgekar and Ramana Murty (1980) studied the heat transfer flow past a continuous moving 

plate with variable temperature. Sami and Al-Sanea(2004) studied the steady laminar flow and 

heat transfer characteristics of a continuously moving vertical sheet of extruded material. Very 

recently an analytical study of the combined heat and mass transfer by laminar mixed convection 

flow of an incompressible electrically conducting viscous fluid past an electrically non-

conducting continuously moving infinite vertical porous plate under the action of a uniform 

transverse magnetic with constant heat flux and induced magnetic field is done by Chaudhary 

and Sharma (2006). 

Hence our aim is to investigate the heat and mass transfer by mixed convection flows from a 

vertical porous plate with induced magnetic field, constant heat and mass fluxes. This problem is 

solved numerically in case of one-dimensional unsteady flow. The Governing equations of the 

problem contain the partial differential equations, which are transformed by similarity 

transformation in to a system of ordinary coupled non-linear differential equations and are 
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solved numerically by the sixth order Runge Kutta method along with the Nachtsheim-Swigert 

iteration technique. The obtained solutions are shown graphically as well as in tabular form. 

4.2. The Governing Equations 

Let us consider an unsteady MHD heat and mass transfer by mixed convection flow of an 

electrically conducting viscous fluid past an infinite vertical porous plate y = 0. The flow is 

also assumed to be in x -direction which is taken along the plate in upward direction and y-axis 

is normal to it. The temperature and species concentration at the plate are instantly raised from 

7 and C to 7. and C respectively. Which are thereafter maintained as constant, where 7, 

and C.  the temperature and species concentration of the uniform flow respectively. A uniform 

magnetic field strength H is applied to the plate to be acting along the y-axis, which is 

electrically non-conducting. We assumed that the magnetic Reynolds number of the flow be 

large enough so that the induced magnetic field is not negligible. The induced magnetic field is 

of the form H = (Hi , H0  ,O). The equation of the conservation of electric charge is V J = 0, 

where J = , J, .L), the direction of propagation is considered only along the y-axis and does 

not have any variation along the y-axis and the derivative of J with respect to y namely 

= 0, resulting in Jy  = constant. Since the plate is electrically non-conducting, this constant
Cy  

is zero and hence Jy  = 0 every where in the flow. 

With reference to the generalized equation describe in Case-I of Chapter-2, the one-dimensional 

problem under the above assumptions and Boussinesq approximation can be put in the following 

form, 

4' av 

8)) 
(4.1) 

all au 1921, 

at 
 —+v=gfl(T—Tj+gfl (C—)+v-+H (4.2) 

OY ay-  p 

51-I ai-i 8u I a2 H X 
(43) =H —+ 

, 
at ' 3Y IIea 

aT 3T k a2T v(&u' 1 (aH 
(44) —+v--=-----+----I 

 - I + 
at 

' 

5C ac ÔC + D111 K7  Ô2T 

T ay2 
(4.5) 
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and the boundary conditions for the problem are 

-- --- />0, u=U(t), v=v(t), H=H, at y=O 
k' ay Dm ' x (4.6) 

t>O, u=0, as 

where u and v are the velocity components in x- and y-direction respectively, H0  is the 

applied constant magnetic field, H1  is the induced magnetic field, H is the induced magnetic 

field at the plate, p,  is the magnetic permeability, q is the constant heat flux per unit area, in is 

the constant mass flux per unit area, v is the kinematic viscosity, g is the acceleration due to 

the gravity, p is the density, ,8 is the coefficient of volume expansion, ,B' is the volumetric 

coefficient expansion with concentration. T, and 7. are the temperature of the fluid inside the 

thermal boundary layer and the fluid temperature in the free stream respectively, while C and C. 

are the corresponding concentration, ci,, is the specific heat at constant pressure, 7 is the mean 

fluid temperature, KT  is the thermal diffusion ratio, D111  is the coefficient of mass diffusion and 

other symbols have their usual meaning. 

4.3. Mathematical Formulation 

In order to obtain the similarity solutions we introduce a similarity parameter a as 

a=a(t) (4.7) 

such that a-  is the time dependent length scale. In term of this length scale a convenient solution 

of equation (4.1) considered to be 

(4.8) 

where the constant v0  represents a dimensionless normal velocity at the plate, which is positive 

for suction and negative for blowing. 

Now we introduce the following dimensionless variable 

(49) 

U 
(4.10) 

0 

O() = (T-7) (4.11) 
qu 

q$(?7) = 
D

--(C—Cj (4.12) 
ma 
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-41 

Ii 

H(77)=-1  EIHX  (4.13) 
uljp 

From equation (4.9) we have, 

(4.14) 
at 0ô1 

aq 
(4.15) 

?.ycT 

From equations (4. 10)-(4. 13) we have, 

(4.16) 

T=7,+L19(,7) (4.17) 

C=C,+ ma —0(77) (4.18) 
D. 

H=- 111H(q) (4.19) 
cT1J/Ie 

From equations (4.1 6)-(4. 19) we have the following derivatives, 

au u0 a - 
= ----- if'('i) (4.20)  

at 

(4.21) 
aya 

an U 
(4.22) 

_4 f iH' +H)  
(4.23) 

at a at 

= 4 E1H'(77) (4.24) 

Ô2HX 
= 4/iiH"(ui) (4.25) 

a 2 
ap 

aT 
- 
--(i8'-O) (4.26) 

- at k at 

arq 
- - 

—'(7) (4.27) 

a2T 
- 

99"(u ) 
Ok  (4.28) 
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SC m5cr 
- 

----(iØ'—çb) (4.29) 
at  - D 81 

Sc in 
—Ø(, 

F  
= i) (4.30) 

Ey  

82c in if  
-=  

Now substituting the equations (4.8)- (4.31) into the equation (4.2)-(4.5), and after simplification 

we get the following equations interms of dimensionless variables 

uSa 
-{----i ± v0 ] f f"+;O+ G,Ø ±MH' (4.32) 

v 51 

v0 JH'+P IH+MPm f' = 0 (4.33) 
vSt vat 

uSa 
0 +Pr [___1l+Vo }8I_Pr ?i0+Ec Pr (fF 2 +_LHf 2 )=0 (4.34) 

vol vol P,,, 

uSa 
Ø"±S[--±v0 ]Ø'—S ---Ø±S0S9" =0 (4.35) 

vat v81 

where Gr = q 
g/3 is the Grashof number, 

vU0k 
-41 

G.  = g/J is the modified Grashof number, 
m ma 

VUoDm  

M = is the magnetic force number, 
1jpU0  

P = /le cT 'V is the magnetic diffusivity number, 

= 
tX 

is the Prandtl number, r k 

= 
kU0 

is the Eckert number. 
crqc 

SC  = --- is the Schmidt number, 

and S 
= DqK 

is the Soret number. ° T,nzvk 

uSa 
The equations (4.32)-(4.35) are similar except the term -- where time I appears explicitly. 

V St 
4 

Thus the similarity condition requires that uSa -- in equations (4.32)-(4.)5) must be constant 
v at 
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quantity. Hence following the work of Sattar and Alam (1994) one can try a class of solutions of 

the equation (4.32)-(4.35) by assuming that 

- = c(a constant) (4.36) 
at 

Now from equation (4.36) we have, 

aaa=cvai 

a2  
by integrating = CVI +k1  (k1  is a constant) 

2 

Since when I = 0 then a = 0 , thus the integrating constant = 0, so that 

= cut 
2 

=> a=-J2cvt (4.37) 

It thus appear from (4.36) that by making a realistic choice of c to be equal to 2 in equation 

(4.37), the length scale become equal to a = 2-JUt which exactly corresponds to the usual 

scaling factor considered for viscous unsteady boundary layer flows (Schlichting, 1968). Since 

a is a scaling factor as well as a similarity parameter, any value of c in (4.37) would not 

change the nature of solution except that the scale would be different. Finally introducing C = 2 

in equation (4.36) and (4.37), we have 

OU 
(4.38) 

at 

. 

i + v0  = 21  + p0  = 2( ± .2-) = 2 S (4.39) 

where =(i+--) (4.40) 

Hence the equation (4.32)-(4.35), yields 

f"+2f'+G8+Gçt+MH'=0 (4.41) 

H" + 20,H' + 2I,,H +MPJ' = 0 (4.42) 

9"+2P8'-219±EP(f' 2  +IH2)=  0 (4.43) 
P. 

0" + 2Sq5' - 2S0 + SQ S CO = 0 (4.44) 

The corresponding boundary conditions are 

I = 1, 8' = —1, 0' = —1, H = h(whereh = F-ELH_ = 1) at i = 0 
0 '0 

 1=0, 8 0, 0—*0, H—>0 as i7—o 
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In all the above equations prime denote the differentiation with respect to i . Hence the 

- equations (4.41)-(4.44) give the dimensionless ordinary coupled non-linear differential equations. 

4.4. Skin Friction Co-efficient and Current Density at the Plate 

The quantities of chief physical interest are the local skin friction coefficient, and the Local 

Current density at the plate. 

The shearing stress at the plate is generally known as the skin friction, the equation defining the 

local skin friction is 

Oil 
r co i'(o) 

y=O 

(aH 
The current density is generally expressed as J - - and hence the current density 

OY 

at the plate is ,Jco H'(0) 

The next section deals the solution technique of the problem. 

4.5. Numerical Solution 

The set of ordinary coupled non-linear differential equations (4.41)-(4.44) with the boundary 

conditions (4.45) for unsteady case are very difficult to solve analytically, so numerical 

procedures are adopted to obtain their solution. Here we use the standard initial value solver, 

namely the sixth order Runge Kutta method along with Nachtsheim-Swigert iteration technique. 

In a Nachtsheim-Swigert iteration technique, the missing (unspecified) initial condition at the 

initial point of the interval is assumed and the differential equation is then integrated numerically 

as an initial value problem to the terminal point. The accuracy of the assumed missing initial 
01 

condition is then checked by comparing the calculated value of the dependent variable at the 

terminal point with its given value there. If a difference exists, another value of the missing 

initial condition must be assumed and the process is repeated. This process in continued until the 

agreement between the calculated and the given condition at the terminal point is within the 

specified degree of accuracy. For this type of iterative approach, on naturally inquires whether or 

not there is a systematic way of finding each succeeding (assumed) value of the missing initial 

condition. 

The Nachtsheim-Swigert iteration technique thus needs to he discussed elaborately. The 

boundary conditions (4.45) associated with the non-linear coupled ordinary differential equations 

(4.41)-(4.44) of the boundary layer type is of two point asymptotic class. Two point boundary 
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conditions have values of the depended variable specified at two different values of independent 

-41 
variable. Specification of an asymptotic boundary conditions implies that the first derivative (and 

higher derivatives of the boundary layer equations, if exist) of the dependent variable approaches 

to zero and the value of the velocity approaches to unity as the other specified value of the 

independent variable is approached. The method of numerical integration of two point 

asymptotic boundary value problem of the boundary layer type, the initial value method, requires 

that the problem be recast as an initial value problem. Thus it is necessary to set up as many 

boundary conditions as the surfaces there at infinity. The governing differential equations are 

then integrated with these assumed surface boundary conditions. If the required outer boundary 

conditions are satisfied, a solution has been achieved. However, this is not generally the case. 

Hence a method must be devised to logically estimate the new surface boundary conditions for 

the next trial integration. Asymptotic boundary value problems such as those governing 

boundary layer equations become more complicated by the fact that the outer boundary condition 

is specified at infinity. In the trial integration infinity is numerically approximated by some large 

value of the independent variable. There is no general method of estimating this value. Selecting 

too small a maxinhim value for the independent variable may not allow the solution to 

asymptotically converge to the required accuracy. Selecting a large value may result in slow 

convergence or even divergence of the trial integration. Selecting too large a value of the 

independent variable is expensive in terms of computer time. Nachtsheirn-Swigert developed an 

iteration method, which overcomes these difficulties. Extensions of the Nachtsheim-Swigert 

iteration to the above system of differential equations (4.41)—(4.44) with boundary conditions are 

straight forward. In equation (4.45), there are four asymptotic boundary conditions and hence 

there will be four unknown surface conditions f'(0), H'(0), 8'(0), '(o) 

4.6. Results and Discussion 

To study the physical situation of the problem, we have computed the numerical values of the 

velocity, induced magnetic field, current density, temperature and concentration within the 

boundary layer and also the skin friction and current density at the plate for different values of 

the suction parameter (v0), the magnetic parameter (Al), the Prandtl number (Pr), the Soret 

number (Se), the Schmidt number (Se), the Grashof number (Gr), the magnetic diffusivity 

parameter (P,,1), the Eckert number (Er) and for the fixed value of modified Grashof number 

(G,). The values of Gr is taken to be large (Gr S.0), since this value corresponds to a cooling 

problem that is generally encountered in nuclear engineering in connection with the cooling of 

reactors. The three values 0.71, 1.0 and 7.0 are considered for Pr (in particular, 0.71 represents 

air at 20°C, 1.0 corresponds to electrolyte solution such as salt water and 7.0 corresponds to 
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water at 200C). The values 0.22, 0.30, 0.60 and 0.78 are also considered for S, which represents 

specific condition of the flow (in particular, 0.22 corresponds to hydrogen, while 0.30 

corresponds to helium, 0.60 corresponds to water vapor that represents a diffusivity chemical 

species of most common interest in air and value 0.78 represents ammonia at temperature 250C 

and 1 atmospheric pressure). The values of v0, M S0, P,,,, E and G,,, are however chosen 

arbitrarily. 

With the above mentioned parameters, the velocity profiles are presented in Figs. (4.2)-(4.9), the 

induced magnetic fields are presented in Figs. (4.10)-(4.I7), the current density profiles are 

presented in Figs. (4. I 8)-(4.25), the temperature profiles are presented in Figs. (4.26)-(4.33) and 

the concentration profiles are presented in Figs. (4.34)-(4.41). 

Fig.(4.2) shows the effect of the suction parameter v0  on the velocity field. This figure depicts 

that an increase in the suction parameter (v0) leads to a decrease in the velocity. The usual 

stabilizing effect of the suction parameter on the boundary layer growth is also evident from this 

figure. The effect of the magnetic parameter It4) on the velocity field is shown in Fig.(4.3). It is 

observed from this figure that an increase in magnetic parameter (lvi) leads to an increase in the 

velocity. Also the stabilizing effect of M on the boundary layer growth is evident. It is observed 

from Fig (4.4) that the velocity increases within the interval 0 <i <0.42 (approx.) with the 

increase of P,1 , whereas for roughly after i > 0.45 the velocity decreases with the increase of P,,,. 

In Figs.(4.5), (4.6) and (4.7), the variation of the velocity field for different values of Soret 

number (Se,), Eckert number (Ec) and Grashof number (G) are shown respectively. It is observed 

from these figures that the velocity increases with the increase of S0, E and cr.  In Figs (4.8) and 

(4.9), the variation of the velocity field for different values of Pr and S are shown respectively. 

From these figures, it is seen that the velocity decreases with the increase of Pr and Sc.. It is seen 

from Figs.(4.2)-(4.9), the effect of the various parameters on the velocity profiles is more 

prominent when 17 = 0.3 (approximately),It is also seen from Fig.(4.9) that the velocity is more 

for hydrogen (Sc =0.22 at temperature 250C and I atmospheric pressure) than ammonia (S 0.78  

at temperature 250C and I atmospheric pressure). 

The effect of the suction parameter (v0) on induced magnetic field are shown in Fig(4.10). It is 

observed from this figure that the induced magnetic field decreases within the interval 

0 < 17 <0.55 (approx.), whereas after i> 0.55, the induced magnetic field increases with the 

increase of v0. Figs.(4.II) and (4.12) show the effect ofMand P,,, on the induced magnetic field 

IX respectively. It is observed from Fig.(4. 11) that the induced magnetic field has a large decreasing 

effect with the increase of M. The same effect is observed in case of magnetic diffusivity 
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parameter (Pm). In both cases decreasing effect is more prominent approximately at the point 

where, 77 = 0.8 . The induced magnetic fields are shown in Figs.(4.13), (4.14) and (4.15) for 

different values of S0, E or Gr. It is observed from these figures that the induced magnetic field 

decreases with the increase of S0, E and Gr respectively. In Figs (4.16) and (4.17), the effects of 

Prandtl number (Pr) and Schimdt number (S ) on the induced magnetic field are shown. It is 

observed from these figures that the induced magnetic field increases with the increase of Pr or 

S. It is seen from Fig.(4.17) that the induced magnetic field is more for ammonia (S=0.78 at 

temperature 250C and I atmospheric pressure) than hydrogen (S =0.22 at temperature 250C and 

1 atmospheric pressure). In the above Figs.(4. 10)-(4. ] 7), it is seen that 1-I becomes negative when 

0.4 :~ ii <2.0 approximately. 

Fig.(4.18)-(4.25) show the effect of the above mentioned various parameters on the current 

density profiles. From Fig.(4. 18), it is observed that the current density increases rapidly near the 

plate (approx. 17 <0.25) and it has a decreasing effect within the interval 0.25 < il < I with the 

increase of i'd. From this figure it is further observed that the current density again changes its 

pattern. Figs.(4.19) and (4.20) show that the current density increases rapidly near the 

plate(approx. 17 < 0.64), From the point where 17 > 0.64 the current density decreases with the 

increase of MorP,)2. It is observed from Figs (4.21), (4.22) and (4.23) the current density has a 

quite minor increasing effects within the interval 0 < 17 <0.8 and from the point where 17 > 0.8 

the current density decreases with the increase of S,, E or Gr. In both Figs. (4.24) and (4.25), it 

is observed that the increase in Pr and S leads to a quite minor decreasing effect on the current 

density within the interval 0 <17 <0.8 whereas it has a quite minor increasing effect after this 

interval. It is observed from Figs.(4.18)-(4.24), there is a back flow occurred in a considerable 

area of the boundary layer. 

Fi 

Figs.(4.26)-(4.33) show the effect of the above mentioned various parameters on the temperature 

profiles. Fig.(4.26) shows that the temperature decreases with the increase of v0. The temperature 

rapidly increases towards the plate with the increase of M as found in Fig.(4.27). It is observed 

from the Fig.(4.28) that the temperature increases in the range 0 < 71 <0.73 (approx.) and further 

it has a quite minor decreasing effect after this interval with the increase of P,,1 . From Fig.(4.29), 

it is observed that the temperature has a minor increasing effect with the increase of S, whereas 

from Fig.(4.30), it is seen that the temperature has a large increasing effect towards the plate as 

E increases. From Fig.(4.3 1), it is observed that the temperature increases with increase in G,. 

But in Figs.(4.32)-(4.33) leads to a decreasing effects of the temperature with increase of the 
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Prandt! number (Pr) and Schmidt number (Sc) respectively. It is also clear from Fig.(4.33) that 

the temperature is more for hydrogen (S =0.22) than ammonia (S=0.78). 

The concentration profiles are shown in Figs.(4.34)-(4.41) for different values of v0, Al, P,,,, S0, 

Ec, Gr, Pr, and S. Fig.(4.34) shows that the concentration decreases with increase in the suction 

parameter (i'). It is observed from Fig.(4.35) that the concentration increases close to the plate 

within the interval (approx. 0 <i <0.48), thereafter it has a decreasing effect with the increase 

of/vt. From Fig.(4.36), it is seen that the concentration has a minor decreasing effect within the 

interval 0 < i < 0.4 and further it has a minor increasing effect within 0.4 < i < 1 .5 , thereafter it 

has no effect with the increase of P,. The concentration has a large increasing effect with the 

increase of S as shown in Fig.(4.37). It is seen from Fig.(4.38) that the decreasing effect of 

concentration occurs in the interval 0 <i <0.55 (approx.) and further it has a increasing effect 

from ij> 0.55 with the increase of E, whereas from Fig.(4.39), the effects on the concentration 

for the different values of the Grashof number (Gr) are same as those of E. For the increasing 

value of Pr leads to a minor increasing effect on the concentration approximately in the interval 

0 <i <0.7, thereafter it has a minor decreasing effect as shown in Fig(4.40). But Fig.(4.41) 

shows that the concentration increase with the increase of 5c• Also it is noticed from this figure 

that the concentration is more for hydrogen (Sc =0.22) than ammonia (Sc0.78). 

Finally the effects of the various parameters on the skin friction (r) and the current density at 

the plate (J1) are shown in Tables 4.1-4.8. It is observed from Table 4.1 that the skin friction ( r ) 

decreases while the current density at the plate increases with the increase of suction parameter 

(i'). In Tables 4.2-4.6, the skin friction and the current density at the plate are both increase with 

the increase of Magnetic parameter (Al), Magnetic diffusivity (P,), Soret number (S0,) Eckert 

number (Ec) and Grashof number (G) respectively. Whereas Tables 4.7 and 4.8 show that the 
.1- 

skin friction and the current density at the plate (.J) are both decrease with the increase of the 

Prandtl number (Pr) and Schmidt number (Se) respectively. 
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Fig. 4.1. Physical configuration and coordinate system. 
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Fig. 4.2. Velocity profiles (f) for different values of v0, taking Gr=5.0, 
Grn=2.O, M1.O, Pm l.O, Pr O.71, S0=2.0, S=O.6 and E=O.5 as fixed. 
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Fig. 4.3. Velocity profiles (f) for different values ofM taking v0 1 .0, 
Gr5.0, Grn2.0, Prnl .0, Pr0.71, S0  2.0, S=0.6 and E=0.5 as fixed. 
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Fig. 4.4. Velocity profiles (f) for different values of Pm, taking v0  =1.0, 
Gr 5.0, Gm2 .0,M1 .0,Pr0.71, S0  =2.0, S=0.6 and E=0.5 as fixed. 
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Fig. 4.5. Velocity profiles (f) for different values of S0, taking v0  =1.0, 
Gr 5.0, G,,,2.0, M1.0, Prnl.0, Pr0.71, S=0.6 and E=0.5 as fixed. 
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Fig. 4.6. Velocity profiles (f) for different values ofE, taking v0=1 .0, 
Gr 5.0, Grn=2.0, M1.0, Prn1 .0, Pr 0.71, S0=2.0, and S =0.6 as fixed. 
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Fig. 4.7. Velocity profiles (f) for different values Of Gr, taking v0  =1.0, 
Grn2.0, M1.0, P1.0, Pr 0.71, S0 2.0, S0.6 and Ec0.5 as fixed. 
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Fig. 4.8. Velocity profiles (f) for different values of Pr, taking v0  = 1.0, 
Gr 5.0, Gm 2.0,M1.0,Prn1.0, S0=2.0, S=0.6 and E=0.5 as fixed. 
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Fig. 4.9. Velocity profiles (f) for different values of S, taking v0=l  .0, 
Gr5.0, Grn 2.0, M1 .0, P,n1 .0, Pr0.71, S0  =2.0, and E=0.5 as fixed. 
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Fig. 4.10. Induced magnetic field (H) for different values of 1,  ,taking G=5.0, 
Gm2.0,M1.0,Pn,1.0,Pr0.71,So2.0,Sc 0.6andEc 0.5 as fixed. 
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Fig. 4.11. Induced magnetic field (H) for different values ofM, taking v0=1 .0, 
Gr 5.0, G01 2.0, Prn1 .0, Pr0.71, S0  =2.0, S=0.6 and E=0.5 as fixed. 
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Fig. 4.12. Induced magnetic field (H) for different values of P,,taking v0  =1.0, 
Gr 5.0, Gm 2.0, M1.0, Pr 0.71, S0  =2.0, S=0.6 and E=0.5 as fixed. 
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Fig. 4.13. Induced magnetic field (H) for different values of S0  ,taking v0  = 1.0, 
Gr 5.0, G2.0, M1.0, Pm1 .0, Pr0.71, S=0.6 and E=0.5 as fixed. 
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Fig.4.14. Induced magnetic field (H) for different values of E, taking 1,,, 1.0, 
Gr 5.0, G11 2.0, M1.0, Prn 1.0, Pr 0.71, S0 2.0, and S=0.6 as fixed. 
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Fig. 4.15. Induced magnetic field (H) for different values of Gr,, taking v0  1.0, 
G2.0, M1.0, Pm1.0, P0.71, S0 2.0, S0.6 and E0.5 as fixed. 
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Fig. 4.16. Induced magnetic field (H) for different values ofl',,taking v0  =1.0, 
Gr 5.0, G,=2.0, M1 .0, P,,1.0, S0=2.0, S=0.6 and E=0.5 as fixed. 
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Fig.4.17. Induced magnetic field (H) for different values of S ,taking v0  1 .0, 
Gr5.O, G,=2.0, M=1.0, P,,1.0, P=0.71, S0  2.0, and E=0.5 as fixed. 
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Fig. 4.18. Current density profiles (J) for different values of v0  ,taking Gr5.0, 
G,n 2.0,M1.0,Prn 1.0,Pr0.71,S0 2.0,Sc O.6andEc O.5 asfixed. 
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Fig. 4.19. Current density profiles (I) for different values ofM, taking v0 1.0, 
Gr5.0, Gm2.0, Pm1.0, Pr0.71, S0  =2.0, S=0.6 and E=0.5 as fixed. 
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Fig. 4.20. Current density profiles (J) for different values of Pa,, taking v0  1 .0, 
Gr 5.0, Grn2.0, M1.0, Pr 0.71, S0  2.0, S0.6 and E=0.5 as fixed. 
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Fig. 4.21. Current density profiles (I) for different values of S0,taking V0  = 1.0, 
Gr 5.0, Gn,2.0, M1.0, Pm1 .0, Pr0.71, S=0.6 and E=0.5 as fixed. 
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Fig. 4.22. Current density profiles (J) for different values of E, taking v0  = 1.0, 
Gr 5.0, G,2.0, M1.0, Prn1 .0, Pr 0.71, S0  =2.0, and S=0.6 as fixed. 
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Fig. 4.23. Current density profiles (.1) for different values of Gr, taking v0  =1 .0, 
Grn2.0, M1.0, Pm l .0, P1 0.71, S0  2.0, S0.6 and E=0.5 as fixed. 
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Fig. 4.24. Current density profiles (.1) for different values OfPr, taking v0  1.0, 
Gr 5.0, Grn2.0,M=1.0,Prn 1.0, S0 2.0, S=0.6 and E=0.5 as fixed. 
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Fig. 4.25. Current density profiles (.1) for different values of S,  taking v,, = 1.0, 
Gr 5.0, Grn2.0, M1.0, Prn1 .0, Pr0.71, S0  =2.0, and E=0.5 as fixed. 
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Fig. 4.26. Temperature profiles (0 ) for different values of v0  , taking Gr 5.0, 
Grn2.0,M1.0, Pm 1.0, Pr 0.71, S0  =2.0, S=0.6 and E=0.5 as fixed. 
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Fig. 4.27. Temperature profiles (0) for different values ofM, taking v0 1 .0, 
Gr5.0, G,2.0, P1.0, 1r0.71, S0  =2.0, S=0.6 and E=0.5 as fixed. 
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Fig. 4.28. Temperature profiles (8) for different values of P 1, taking v0  1.0, 
Gr 5.0,Gm 2.0,M1.0,Pr 0,71,So 2.0, S=0.6 and E=0.5 as fixed. 
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Fig. 4.29. Temperature profiles (8 ) for different values of S0, taking v0  1.0, 
Gr 5.0, G1=2.0,M=1.0,P3=1.0,1=0.71, S0.6 andE=0.5 as fixed. 
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Fig. 4.30. Temperature profiles (0) for different values of E, taking v0  1.0, 
Gr 5.0, Gm2.0, M1 .0, Prn=1.0, Pr0.71, S0  =2.0, and S=0.6 as fixed. 
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Fig. 4.31. Temperature profiles (9) for different values of G, taking v0  =1.0, 
Gn2.0,M1.0,P1.0,Pr 0.71,So 2.0, S0.6andE=0.5 as fixed. 
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Fig. 4.32. Temperature profiles (9) for different values Of Pr, taking v0  =1.0, 
Gr 5.0, G,,,2.0,M=1.0,P 7=1.0, S0 2.0, S=0.6 and E=0.5 as fixed. 
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Fig. 4.33. Temperature profiles (9) for different values of S, taking v0  =1 .0, 
Gr 5.0, Grn2.0, M1.0, Pnj1.0, 1'r0.71, S, 2.0, and E=0.5 as fixed. 

58 

r 



F 

0.8 

0 0.6 

0.4 

0.2 

0 0.6 

0.4 

0.2 

Ii 

0.8 

0 0.4 0.8 1.2 1.6 2 2.4 

. 77 

Fig. 4.34. Concentration profiles (0) for different values of v0  ,taking Gr=5.0, 
G,2.0,M=1.0, Pm 1.0, Pr 0.71, S0  2.0, S0.6 and E=0.5 as fixed. 
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Fig. 4.35. Concentration profiles (0 ) for different values of M, taking i'1 .0, 
G5.0, G2.0, Pm 1.0, I'=0.71, S =2.0, S=0.6 and E=0.5 as fixed. 
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Fig. 4.36. Concentration profiles (0) for different values of P,,,, taking v0  1.0, 
Gr 5.0, Grn 2.0,M1.0,Pr0.71,S0 2.0, S=0.6 and E=0.5 as fixed. 
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Fig. 4.37. Concentration profiles (0 ) for different values of S0  ,taking v0=1 .0, 
Gr5.0, S0.6 and E=0.5 as fixed. 
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Fig. 4.38. Concentration profiles (0) for different values of E, taking v0  1.0, 
G=5.0, G=2.0, M1 .0, Pm1 .0, Pr0.71, S0  =2.0, and S=0.6 as fixed. 
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Fig. 4.39. Concentration profiles (0) for different values of Gr, taking V0  1.0, 
G,2.0, M1 .0, Pm 1.0, Pr 0.71, S0  =2.0, S=0.6 and E=0.5 as fixed. 
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Fig. 4.40. Concentration profiles (0 ) for different values of Pr, taking v, =1.0, 

Gr 5.0, Grn2.0, M1.0, Pm 1.0, S0 2.0, S=0.6 and E=0.5 as fixed. 
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Fig. 4.41. Concentration profiles (0) for different values of S, taking v0  1.0, 
Gr 5.0, Gm 2.0, M1.0, Pm 1.0, Pr 0.71, S0  =2.0, and E=0.5 as fixed. 
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Table 4.1. Numerical values proportional to r and J 3, for G=5.0, G,=2.0, M=1.0, P,,=1.0, 

Pr'0.71, S0=2.0, S=0.6 and E=0.5. 

V0  

1.00 2.0104592 1.9999696 
1.50 1.1891806 2.4993759 

2.00 0.4986988 2.9999856_- 

Table 4.2. Numerical values proportional to r and 
,'b 

for v0=1 .0, G,.=5.0, G1,,2.0. P,,,=l .0, 

Pr=0.71, So 2.0, S=0.6 and E=0.5. 

Al 

0.50 1.1262961 1.5001152 

1.00 2.0104592 1.9999696 

1.50 3.6339727 2.4997521 

Table 4.3. Numerical values proportional to r and for V0 1 .0, Gr 5.0, Gm 2.O, 111 .0, 

Pr=0.71, S0 2.0, Sf0.6 and E0.5. 

P, fl  r 

0.40 1.6710856 0.8030961 
0.80 1.9291178 1.5996509 
1.20 2.0701131 2.4000924 

Table 4.4. Numerical values proportional to r and J for v0=1 .0,Gr=5.0, Gm 2.0, M1 .0, 

Pm 1.0, Pr''0.71, S=0.6 and E=0.5. 

so  V .1 

1.0 1.6214634 2.0561243 
2.0 2.0104592 2.0753115 
3.0 2.4309134 2.0944394 

Table 4.5. Numerical values proportional to r and J1, for v0 1.0, Gr 5.0. Gm 2.0, M1.0, 

Pm 1.0, Pr0.71, S0 2.0, and S=0.6. 

.J. 
0.20 1.2203901 2.0381327 
0.50 2.0104592 2.0753115 

0.70 2.9868018 2.1195070 

99 
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Table:4.6. Numerical values proportional to r and J, for v0=l.0, G,,,=2.0, M=1.0, Pm=1.0, 

Pr 0.71,So=2.0, S=0.6 and E=0.5. 

Gr 

2.0 0.6473006 2.0125380 
4.0 1.4829989 2.0516683 
6.0 2.7078323 2.1066295 

Table 4.7. Numerical values proportional to r and J for v0  =1.0, Gr=5.0, G,2.0, M1.0, 

P,l .0, S0 2.0, S=0.6 and E=0.5. 

Pr - I 

0.71 2.0104592 2.0753116 
1.00 1.6155200 2.0558877 
7.00 0.8459845 2.02 15634 

Table 4.8. Numerical values proportional to r and J for V0 1.0,Gr 5.0, Grn2.0, M1.0, 

P,n 1.0, Pr 0.71, S0 2.0, and E0.5. 

Sc J 

0.22 3.1648616 2.0002390 
0.30 2.6592434 2.0001581 
0.60 2.0104592 1.9999696 
0.78 1.8644322 1.9982135 
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Chapter 5 

Steady heat and mass transfer by mixed convection 
flow from a vertical porous plate with induced 
magnetic field, constant heft and mass fluxes 

5.1 Introduction 

Heat and mass transfer in the presence of magnetic field, which is the subject matter of MHD has 

many different applications in engineering. I-lot rolling, metal and plastic extrusion, continuous 

costing, glass fiber production, paper production etc are some processes where the concept of the 

flow past a continuously moving surface are applied. Researches in the ielated fields are ongoing. 

Recently the combined heat and mass transfer by laminar mixed convection flow of an 

incompressible electrically conducting viscous fluid past an electrically non-conducting 

continuously moving infinite vertical porous plate under the action of a uniform transverse 

magnetic with constant heat flux and induced magnetic field is studied analytically by 

Chaudhary and Sharma (2006). 

Here heat and mass transfer by mixed convection flow from a vertical porous plate with induced 

magnetic field, constant heat and mass fluxes is investigated. This problem is solved numerically 

in case of two-dimensional steady flow. The Governing equations of the problem contain the 

partial differential equations, which are transformed by usual similarity transformation in to a 

system of ordinary coupled non-linear differential equations and are then solved numerically by 

the sixth order Runge Kutta method along with the Nachtsheim-Swigert iteration technique. The 

obtained solutions are shown graphically as well as in tabular form. 

5.2. The Governing Equations 

Let us consider a steady heat and mass transfer by mixed convection flow of an electrically 

conducting viscous fluid past a semi-infinite vertical porous plate y = 0. The flow is also 
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e. 

assumed to be in x-direction which is taken along the plate in upward direction and y-axis is 

normal to it. The delailed descriptions of the present problem are similar to those of Chapter 4. 

With reference to the generalized equation described in Case II of Chapter 2, the two 

dimensional problem under the above assumptions and Boussinesq approximation can be put in 

the following form 

Of 
(5.1) 

ax  ay 

u'1 +v'=g/J(T_7)+gfl'(C_(T r )+v (5.2) 
(tV (.,V dy-  p cy 

ai-i al-I &u 1 3 2HX  
u--+v-----=H —+H°  + (5.3) 

ax ay ax y /10-' ay 2  

5T 5T k 2T v (aI 2 1 
a— + - + —! + 

(
,
,
HX

)2 

(5.4) 
ax ây ôy 2 côypca 8y 

8C 8C 3 2C DK7  ?T 
(5.5) ii ± v = D, -- ± 

ax ay ay- 7,, Oy 

and the boundary conditions for the problem are 

u=U0, v=t(x), =----, H,=H,, at y=O 
oy k 8y .,, (5.6) 

u=O, T—>7, C>Cc,3  H,—>O as y—>co 

where it and v are the velocity components in x- and y-direction respectively, H0  is the applied 

constant magnetic field, Ji is the induced magnetic field, H,, is the induced magnetic field at the 

wall, /'e  is the magnetic permeability, q is the constant heat flux per unit area, in is the constant 

mass flux per unit area, v is the kinematic viscosity, g is the acceleration due to the gravity, p 

is the density, ,8 is the coefficient of volume expansion, 8*  is the volumetric coefficient 

expansion with concentration. T and T, are the temperature of the fluid inside the thermal 

boundary layer and the fluid temperature in the free stream respectively, while C and are the 

corresponding concentration, c is the specific heat at constant pressure, i;,, is the mean fluid 

temperature, K. is the thermal diffusion ratio, Dm  is the coefficient of mass diffusivity and other 

symbols have their usual meaning. 

II 
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5.3 Mathematical Formulation 

To solve the above system of equations (5.1)-(5.5) under the boundary conditions (5.6) we adopt 

the well-defined similarity technique to obtain the similarity solution. 

For this purpose the following non-dimensional variables are introduced 

(5.7) 

It 
(5.8) 

8(1)= k(T — T) 
(59) 

D fl(CC)

\

[7 
(5.10) 

ni 2vx 

r2 
(5.11) 

Now from equation (5.8), 

71=U0 J' (5.12) 

and using this into the equation (5.1), yields 

1' 
= ii hh1'@7f(h1  

(5.13) 

Also we have, = —v0  (x)r
2

,

x 
(5.14) 

where J. is the suction parameter or transpiration parameter. 

Now from the equations (5.9)- (5.11), we get respectively, 

T=I+$
ux 

 (i7) (5.15) 

C C, 
in F~vx  0 (q)  

Hx  = lfH(1l) \fP_ FUTO (5.17) 

From equation (5.7) we have, 

(5.18) 
âv 2x 
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£ 

= ra— 
Also

(5.19) 
ôv 

 from the equations (5.12) and (5.13) we have the following derivatives, 

= —- iz("('i) (5.20) 
2x 

all 
=U0 

 U.
f"(i) (5.21) 

ôy 2vx 

ô 2uU
fm(,/) (5.22) 

0y 2 2.zc 

av 
= f #(j) (5.23) 

ay2x 

all 0v 
Therefore equations (5.20) & (5.23) gives, —+--=0 which shows that the continuity 

E3xay 

equation is satisfied. 

Again from the equations (5.1 5)-(5. 17) we have the following derivatives, 

EIX1J

IpU,o 
(5.24) 

2X/lç 2x 

a 
F~'07 -H'(i7) (5.25) 

Ey 2x 

a2II X  I_pU0 
H"(i) (5.26) 

2 l2pvx 2x 

a;;-=- 
q (e'-e) (5.27) 
k1J2xU0 

aT 
.O'(i) (5.28) 

ôyk 

82T 

= 
K I (5.29) 

2 
oy k 2ux 

m
F~~U—(770' — O) 

D, 
 (5.30) 

aC rn 
,~(7) — (5.31) 

D, 

32C 
(5.32) 

Dm 2ux 
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Now substituting the equations (5.11)- (5.32) into the equations (5.2)-(5.5), which gives the 

following dimensionless ordinary coupled non-linear differential equations 

fm+fY"+Gr8+Gmø+MH'=O (5.33) 

II" + P(J7-f + fl-I') - J,iI-J[" + MPrn f" = 0 (5.34) 

O"+P(fO'f'6)+EcPr(f"2 + IHl2 )_0 (535) 
I,, 

+ S (/z$' 
- f) + SS8" = 0 (5.36) 

with the corresponding boundary conditions 

f=f, f'=l, O'—I, q5'=—1, II=h=:l(say) at =0 

f'=O, ijo as 77 cc } 

FxL(2
where, Gr  = g is the Grashof number, 

G is the Modified Grashof number, = F
L(2x, 

= is the magnetic force number. 
,2 U0  

-41 

= 1ucr'v is the magnetic diffusivity number, 

P = is the Prandtl number, 
k k 

E = --- 111 is the Eckert number, 
qc,, \I 2vx 

qL), KT  
S0  = - is the Soret number, 

kvrnT,,, 

and S = -- is the Schmidt number. 

In all the above equations primes denote the differentiation with respect to 77. 

(5.37) 

5.4. Skin Friction Co-efficient and Current Density at the Plate 

The local skin friction coefficient and the local Current density at the plate are the quantities of 

chief physical interest. 

The shearing stress at the plate is generally known as the skin friction, the equation defining the 

local skin friction is 
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(az 
- 'i.) i.e. rcxfM(0) 

.7  y=o 

The current density is generally expressed as J = - and hence the current density at the 

plate is H'(0) 
Cy 

The next section deals the solution technique of the problem. 

5.5. Numerical Solution 
The set of ordinary coupled non-linear difierentials equations (5.33)-(5.36) with the boundary 

conditions (5.37) are very difficult to solve analytically. Hence we adopt a procedure to obtain 

the solution numerically. 1-lere we use the standard initial value solver namely the sixth order 

Runge Kutta method along with Nachtsheim-Swigert iteration technique. The detailed 

descriptions of the procedure of the numerical solution of this problem are given in section 4.5 of 

chapter 4. In this problem there are four asymptotic boundary conditions and hence four 

unknown surface conditions f"(0), H'(0), 8'(0) and Ø'(0) are assumed. 

5.6. Results and Discussion 
The numerical values of the velocity, induced magnetic field, current density, temperature, the 

concentration skin friction and current density at the plate respectively for different values of the 

suction parameter (v), the magnetic parameter (Lvi), the Prandtl number (Pr), the Soret number 

(Se), the Schmidt number (Se), the Grashof number (G), the magnetic diffusivity parameter (Pm), 

the Eckert number (E) and for the fixed values of modified Grashof number (G,,1) are obtained 

and discussed. The values of M and G are taken to be large for cooling Newtonian fluid, since 

these large values correspond to a strong magnetic field and to a cooling problem that is 

generally encountered in nuclear engineering in connection with the cooling of reactors. 

The most important fluids are atmospheric air and water and so the results are limited for Prandtl 

number Pr0.71 and 7.00 (in particular, 0.71 represents air at 200C and 7.0 corresponds to water 

at 200C). The values 0.22, 0.30, 0.60 and 0.78 are also considered for S, which represents the 

specific condition ol the flow (in particular 0.22 corresponds to hydrogen, while 0.30 

corresponds to helium, 0.60 corresponds to water vapor that represents a diffusivity chemical 

species of most common interest in air and value 0.78 represents ammonia at a temperature at 

250C and I atmospheric pressure). The values off, M, £, P,, Ec and Gm are however chosen 

arbitrarily. 
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The obtained results are illustrated in Figs.(5.2)-(5.36) in case of air (Pr0.71) and water 

(Pr 7.0).The velocity, the induced magnetic field, current density, temperature and concentration 

versus q -variable plots are shown in Figs.(5.2)-(5.8), (5.9)-(5. 15), (5. 16)-(5.22), (5.23)-(5.29) 

and (5.30)-(5.36) respectively for different value of j,  M Pa,, So, E, Gr and S. 

The effect of the suction parameterf on the velocity is shown in Fig. (5.2). It is observed from 

this figure that an increase in/ leads to a decrease in velocity in case of air (Pr=0.71) and water 

(1)r 7.0). The usual stabilizing effect of the suction parameter on the boundary layer growth is 

also evident from this figure. We also notice that for any value of J the velocity of air is greater 

than velocity of water. The velocity profiles are shown in Figs.(5.3)and(5.4) for different values 

ofM and P,. It is observed that an increase in the applied magnetic field parameter and magnetic 

diffusivity parameter leads to an increase in the velocity within the domain 0< 17 <0.7 and 

0<17<0.4 respectively for both air and water. Further it is observed from these figures that the 

velocity distribution decreases gradually at the points where i ~ 0.7 and ij ~ 0.4 respectively for 

both air and water. Figs.(5.5)-(5.7) show the velocity profiles for different values of S0, .E and Gr 

respectively. We notice that an increase in S0, .E and G (extremely cool plate) leads to a rise in 

the values of the velocity for both air and water. Fig. (5.8) shows the velocity profiles for 

A different values of S The velocity is greater for hydrogen (Sc =0.22 at temperature 250C and I 

atmospheric pressure) than ammonia (S=0.78 at temperature 25°C and 1 atmospheric pressure) 

in case of both air and water. Further it is observed that the velocity distribution 

increases/decreases gradually near the plate and then decreases/increases slowly far from the 

plate. Here it is concluded that the maximum velocity occurs, in the vicinity of the plate and the 

rise and fall in values of the velocity are more dominant in the case of air (Pr 0.71) than of water 

(Pr 7.0). In all situations the velocity profiles always remain in phase. 

Figs.(5.9)-(5.15) present the induced magnetic field for air (Pr=0.71) and water (Pr7.0) 

respectively for different values of J, M, F,,2, S0, E, Gr and S . It is observed from the Fig.(5.9) 

that the induced magnetic field decreases a little within the interval 0 0.4 with an increase 

in suction parameter (,J.) for both air and water, but it increases within the interval 0.4 :!~ 17 :!~ 2.0 

with an increase inf, for both air and water. It is further observed that in the case of air for the 

interval 0.4 <i <2.0, H remains negative. It is observed from Figs. (5.10) and (5.11) that the 

induced magnetic field decreases with the increase of M and F,,, for both air and water. It is also 

found from these figures that the decrease effect is large. But it has a negative value 
rd 

approximately in the interval ( 0.4 :!~- 17 :!~ 2.4). We thus may conclude that the transverse 

magnetic field and magnetic field diffusivity have a strong role on the induced magnetic field. It 

71 



is observed from Figs. (5.12)-(5.14) that the induced magnetic field decreases with the increase 

of S0, E and Gr in case of air and water. The decreasing effect is not so prominent near to the 

plate. In these figures, it appears that there is a back directional induced magnetic field in a 

considerable area of the boundary layer (approximately 0.4 :!~ i :-< 2.4). It is found that H has 

negligible effect for increase of Gr in case of water (Fig.5.14) and it is usual. In Fig. (5.15), the 

induced magnetic field is greater for ammonia (S=0.78 at temperature 250C and I atmospheric 

pressure) than hydrogen (S  =0.22 at temperature 25°C and I atmospheric pressure) for both air 

and water. 

Figs.(5. 16)-(5.22) present the current density proliles for air (IY0.71)  and water (1'r=7.0) for 

different values of f, Iv!, P,, S0, E, Gr and S. . In Fig. (5.16), it is observed that the current 

density increases approximately in the domain 0 <i < 0. 17, and further decreases in the interval 

0.17 <i <1 with the increase of j,  for both air and water. From the point where i ~! I, it is 

reduced to a certain value of 77 and becomes constant. Fig.(5. 17) shows that the current density 

increases in the interval 0 < i <0.6 (approx.) and decreases when 77 > 0.6 for both air and 

water with increase i. It is observed from Fig.(5.18) that the current density increases close to 

the plate within the interval 0 :5 ij :~ 0.6 (approx.). This increasing effect is very large. From the 

point where i ~! 0.6, current density decreases with the increase of I'  in the both air and water 

(Pr 0.71 & 7.0).. Fig.(5.19) shows the minor increasing/decreasing effect of the current density 

for different values of S0  for air and water. The effect is reversed after , 0.72. Fig.(5.20) 

shows the increase of the current density in the interval 0 < 77 <0.7 and decreases from 

i7> 0.7 with increase of E for air and water. However the effects are minor for water. 

Figs.(5.21) shows that the current density has a minor increasing effect within the interval 

0 :!~ i :5 0.6 (approx.) and further it has a minor decreasing effect in case of air, but there is no 
EZ 

effect in case of water for increasing values of Gr, while in Fig. (5.22), the current density has a 

minor decreasing effect within the interval 0 :~ ij :!~ 0.7 (approx.) and further it has a minor 

increasing effect from 17 ~! 0.7 for increasing values of S  for air, but in case of water the effect is 

negligible. 

The temperature profiles are shown in Figs. (5.23)-(5.29) for different values of f,., M, P,,,, S0, 

E, Gr and S for both air (J'r=0.71) and water (11r7.0). It is observed from Fig. (5.23) that the 

temperature has a decreasing effect as increase in suction parameter (J) for both air and water. 

It 
From Fig. (5.24), it is observed that the temperature increases as M increase for both air and 

water. Fig.(5.25) shows that there is minor increasing effect of the temperature for increasing 

values of in case of air; for water the temperature increases within the interval (0<17<0.23 
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approx.) and it decreases from , > 0.23 with increase in P,,. Also it is found from Figs. (5.26), 

(5.28) and (5.29) that the temperature distribution has a negligible effect with the increase of S0, 

Gr and S respectively for both air and water. Fig. (5.27) shows that the temperature has a very 

large increasing effect close to the plate with the increase of E for both air and water. It is 

interesting to note that the temperature profiles are more sensitive for air (Pr=0.71) than of water 

(J'r7.00). 

The displayed Figs.(530)-(5.36) show the effect of the various pararnetersf,, A-f, P,, Se,, Ec, Gr 

and S on the concentration profiles for both air (IY0.71) and water (11r=7.0). From Fig.(S.30), 

it is observed that the concentration decreases with increase of the suction parameter (fe) for 

both air and water. It is observed from Fig.(5.31) that a minor decreasing effect of concentration 

occurs within the interval 0 <i <0.22 (approx.) and further it has a minor increasing effect from 

/7>0.22 in case of air whereas for water the minor decreasing effect of concentration occurs in 

the interval 0 < i <0.55 (approx.) with increase in M. From Fig.(5.32), it is seen that the 

concentration has a minor increasing effect with increase in magnetic diffusivity parameter (P,), 

while from Fig.(5.3), it observed that the concentration increases close to the plate with the 

increase in Soret number (S0). The decreasing effect of concentration is found in the interval 

0 < 77 < 0.2 for air and in 0 < ij <0.5 for water approximately, after that interval the effect is 

reversed with increase in E [Fig(5.34)]. Fig.(5.35) focuses the minor decreasing effect of the 

concentration with increasing values of Gr for air but in case of water changes of Gr has 

practically no effect. In Fig.(5.36) leads to a decreasing effect of the concentration with 

increasing in Sc  It also show that the concentration is more for hydrogen (S =0.22 at 

temperature 250C and 1 atmospheric pressure) than ammonia (S=0.78 at temperature 25°C and 1 

atmospheric pressure) for both air and water. It should be pointed that in all Figs.(5.29)-(5.36), 

the concentration profiles are more sensitive for water (P7.00) than of air (Pr0.71) near to the 

wall up to a certain point, thereafter they are reversed. 

Finally the effects of various parameters on the skin friction (r) and the current density at the 

plate (J.) are tabulated in Tables 5.1-5.7. It is observed from Table 5.1 that the Skin friction (r) 

decreases while the current density at the plate (..J.) increase with the increase Offc  for both air 

(Pr 0.71) and water (Pr 7.00). Whereas in Tables 5.2-5.6 show that the Skin friction and the 

current density at the plate increases with the increase of Al, P,, S, E and Gr respectively for 

both air and water. From the last Table 5.7, it is observed that the skin friction and the current 

density at the plate both decrease with the increase of S for both air (Pr=0.71) and water 

(Pr 7.00). 
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Fig. 5.1. Physical configuration and coordinate system. 
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Fig.5.2. Velocity profiles ( f') for different values of,  .j. , taking Gr5.0, 
Gm 2.0, M1 .0, Prn=1.0, S0  =2.0, S=0.6 and E=0.2 as fixed. 
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Fig.5.3. Velocity profiles (f) for different values of M, takingf2.0, 
Gr 5.0, Grn2.0, Pm 1.0, S0  2.0, S0.6 and E=0.2 as fixed. 
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Fig.5.4. \'elocity profiles (f) for different values of P11 , taking f,=2.0, 
Gr,5.0, G=2.0, M=1.0, S0  =2.0, S0.6 and E0.2 as fixed. 
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Fig.5.5. Velocity profiles (f) for different values of S  takingf.=2.0, 
Gr,5 0, G,2.0, M1.0, Pm1 .0, S=0.6 and E=0.2 as fixed. 
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Fig.5.6. Velocity profiles (f) for different values ofE, taking /2.0, 
G5.0, G=2.0, M=1.0, P,=1 .0, S0  =2.0 and S=0.6 as fixed. 
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Fig.5.7. Velocity profiles (f' ) for different values of Gr, takingJ'=2.0, 
Gm 2.0, M1 .0, P,,,1.0, S 2.0, S0.6 and E=0.2 as fixed. 
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Fig.5.8. Velocity profiles (f') for different values of S taking j2.0, 
Gr,=5.0, Gm 2.0, M1 .0, P,,,1 .0, S0=2.0 and E=0.2 as fixed. 

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 

17 

Fig.5.9. Induced magnetic field (H) for different values of J, taking 
G5.0, Gm 2.0, M1.0, Pm1.0, S0  2.0, S0.6 and E=0.2 as fixed. 
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Fig.5.10. Induced magnetic field (H) for different values of M, taking 
t2.0, Gr 5.0, G 1=2.0, I'm=l.O, S0  =2.0, S=0.6 and E=0.2 as fixed. 
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Fig.5.11. induced magnetic field (H) for different values Of Pm, taking 
f=2.0, Gr,=5.0, Grn=2.0, M=1 .0, S0  =2.0, S=0.6 and E=0.2 as fixed. 
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Fig.5.12. Induced magnetic field (H) for different values of S0  taking 

Gr,5.0, G,,=2.0,M=I0,P,,1.0, Sf0.6 and E=0.2 as fixed. 
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Fig.5.13. Induced magnetic field (H) for different values of E, taking 

4 
j2.0, Gr5.0, Grn 2.0, M1.0, Pm 1.0, S0  2.0 and S0.6 as fixed. 
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Fig.5.14. Induced magnetic field (H) for different values of Gr, taking 

j1=:20 G=2.0, M=1 .0, P,,1 .0, S0  =2.0, S=0.6 and E0=0.2 as fixed. 
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Fig.5.15. Induced magnetic field (B) for different values ofS taking 
J2.0, Gr,5.0, G0,=2.0, M=1.0, P,1 .0, S0=2.0 and E=0.2 as fixed. 
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Fig.5.16. Current density profiles (J) for different values of,f , taking 

Gr 5.0, G2.0,M-1.0, P,1.0,S0 2.0, S0.6 and E=0.2 as fixed. 
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Fig.5.I7. Current density profiles (I) for different values ofM, taking 
1w 2.0, Gr 5.0, Gm 2.0, P,,1.0, S0  2.0, S0.6 and E0.2 as fixed. 

82 



I 

4 

3.6 

3.2 

2.8 

2.4 

2 

1.6 

1.2 

0.8 

0.4 

0 

-0.4 

Curve Pm Pr 
1 0.4 0.71 
2 0.8 0.71 
3 1.2 0.71 
4 0.4 7.00 
5 0.8 7.00 
6 1.2 7.00 

Ka 

it- 

0 0.4 0.8 1.2 1.6 2 2.4 2.8 

17 

Fig.5.18. Current density profiles (I) for different values ofP0 , taking 

/=2.0, Gr,5.0, G0 =2.0, M=1.0, S0  =2.0, S0.6 and E=0.2 as fixed. 
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Fig.5.19. Current density profiles (J) for different values of S0  taking 
j2.0, Gr,5.0, Gm 2.0, M1 .0, Pm1 .0, S=0.6 and E=0.2 as fixed. 
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Fig.5.20. Current density profiles (J) for different values of E, taking 
J2.0, Gr 5.0, Gm 2.0, M=1.0, P,=1.0, S0  =2.0 and S=0.6 as fixed. 
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Fig.5.21. Current density profiles (I) for different values of Gr, taking 
f=2.0, G,,,=2.0, M=1 .0, P,=1.0, S, =2.0, S=0.6 and E=0.2 as fixed. 
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Fig.5.22. Current density profiles (J) for different values of S taking 
J=2.0, G,=5.0, Grn=2.0, M=1 .0, Prn=1.0, S0 2.0 and E=0.2 as fixed. 
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Fig.5.23. Temperature profiles (9 ) for different values off, taking 
Gr5.0, G,2.0, M1.0, I'rn=I.O, S0  =2.0, S=0.6 and E=0.2 as fixed. 
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Fig.5.24. Temperature profiles (9 ) for different values ofM, taking, 
f2.0, Gr 5.0, Gm 2.0, Pm1 .0, S0  =2.0, S=0.6 and E=0.2 as fixed. 
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Fig.5.25. Temperature profiles (9 ) for different values of Pm, taking 
j2.0, Gr,5.0, Grn=2.0, M=1 .0, S, =2.0, S=0.6 and E=0.2 as fixed. 
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Fig.5.26. Temperature profiles (0) for different values of S  taking 
Ki Gr,5.0, Gm2.0,M1.0,Prn 1.0, S=0.6 and E=0.2 as fixed. 
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Fig.5.27. Temperature profiles (0 ) for different values of E, taking 
f2.0, Gr5.0, Gm 2.0, M=1.0, Prn=1 .0, S0  =2.0 and S0=0.6 as fixed. 
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Fig.5.28. Temperature profiles (9 ) for different values of Gr, taking 
f2.0, Grn2.0,Mz1.0pm r1O S0 =2.O, S=0.6 and E=0.2 as fixed. 
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Fig.5.29. Temperature profiles (9 ) for different values of Se  taking j2.0, Gr,5.0, Grn 2.0, M1.o, Pm1.O, S0=2.0 and E=O.2 as fixed. 
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Fig.5.30. Concentration profiles (7$) for different values off,  , taking 
Gr5.0, Gn:2.0,M1.0,Pm 1.O, S0 =2.O, S=0.6 and E=0.2 as fixed. 
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Fig.5.31. Concentration profiles (0) for different values ofM, taking 
f2.0, Gr5.0, Gm2.0, P=1.O, S0  =2.0, S=0.6 and E=0.2 as fixed. 
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Fig.5.32. Concentration profiles (0) for different values of Pm, taking 
j=2.0, Gr,5.0, G07=2.0, M1.0, S0  2.0, S=0.6 and E=0.2 as fixed. 
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Fig.5.33. Concentration profiles (0) for different values of S0  taking 
Gr,5.0, Gm2.O,M1.O,Pm 1O S=0.6 and E=0.2 as fixed. 
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Fig.5.34. Concentration profiles (0) for different values of E, taking 
f2.0, Gr5.0, Gm2.0, M1.0, Pm1 .0, S0  =2.0 and S=0.6 as fixed. 
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Fig.5.35. Concentration profiles (0) for different values of G,-, taking 
f2.0, Gm2.0, M1 .0, Pm=1.0, S0  =2.0, S=0.6 and E=0.2 as fixed. 
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Fig.5.36. Concentration profiles (0) for different values of S taking 
Gr,5.0, Gm2.0,M1.0,Pm 1.O, S0=2.0 and E0.2 as fixed. 
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Table 5.1. Numerical values proportional to r and J for Gr=5.0, G2.0, M1.0, 
P,n 1.0, So=2.0, Sf0.6 and E=0.2. 

Pr - 

0.71 2.00 1.7504487 3.1397836 
0.71 3.00 0.1334494 

- 

4.0073649 
0.71 4.00 -1.3793490 4.9760911 
7.00 2.00 0.3756603 3.0252324 
7.00 

- 
3.00 -0.9692224 3.9721669 

7.00 4.00 -2.2420256 4.9636363 

Table 5.2. Numerical values proportional to r and J.  for f=2.0, G=5.0, G,,=2.0, 
P,,,=l.0, S0=2.0, S=0.6 and E=0.2. 

Pr  M T 
- 

0.71 0.5 1.0777935 
- 2.5055471 

0.71 1.0 1.7504487 3.1397836 
0.71 1.5 2.6215367 3.7948535 
7.00 0.5 -0.1790336 2.4482994 
7.00 1.0 0.3756603 3.0252324 
7.00 1.5 1.0341457 3.6093244 

Table 5.3. Numerical values proportional to r and J for f=2.0, Gr5.0, G,2.0, 
M=1 .0, So=2.0, S='0.6 and E=0.2. 

Pr  V J. 
0.71 0.4 1.4363195 1.1319077 
0.71 0.8 -  1.6810228 2.4725643 
0.71 1.2 

-
1.7993199 3.8003870 

7.00 0.4 0.2051305 1.1183955 
7.00 0.8 

- 
 

0.3347863 2.3866975 
7.00 1.2 0.4061518 3.6616874 

Table 5.4. Numerical values proportional to z and J for J2.0, Gr5.0, G,2.0, 
M=l.0, P,,=1.0, S=0.6 and E=0.2. 

Pr  So r j 
0.71 2.0 1.7504487 3.1397836 
0.71 

-
0.71 

3.0 
4.0 

2.1243856 
2.4795386 

3.1805336 

3.2204364 
-  - 

7.00 2.0 0.3756603 3.0252324 
-  

7.00 3.0 0.7289248 3.0495142 - 
7.00 4.0 1.0655068 -  3.0735690 

-11  
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Table 5.5. Numerical values proportional to r and J 1, for f=2.0, Gr5.0, Gm2.0, 
M=1.O, Pm1.0, So=2.0 and S=0.6. 

Pr 

0.71 0.2 1.7504487 3.1397836 
0.71 0.4 2.5692719 = 3.2191873 
0.71 0.6 3.8088607 3.3484654 
7.00 0.2 0.3756603 3.0252324 

- 7.00 0.4 0.8479453 3.0518631 
7.00 0.6 

- 

1.3962218 3.0861721 

Table 5.6. Numerical values proportional to r and J, for f2.0, G,,2.0, M1.0, 
P,=1 .0, S0=2.0 S=0.6 and 

Pr  G r 
0.71 2.0 0.8455845 3.0832078 
0.71 4.0 1.4416931 

- 3.1194953 
0.71 6.0 2.0687643 3.1615646 
7.00 2.0 0.1747779 3.0198196 
7.00 4.0 0.3075216 3.0233496 
7.00 6.0 0.4450613 3.0272044 

Table 5.7. Numerical values proportional to z and J for f4 =2.0, Gr=5.0, Gm2.0, 
M1.0, P,,'=1.0, So=2.0 and E=0.2. 

Pr Sc  r J.  
0.71 0.22 2.9315276 3.3057810 
0.71 0.30 

- 
2.45 - 39569 

-  3.23268 12 
- 

0.71 0.60 1.7504487 3.1397836 
0.71 0.78 1.5899836 3.1213931 
7.00 0.22 1.8405574 3.2134430 
7.00 0.30 1.2853197 

- 3.1325942 
- 7.00 0.60 1 0.3756603 3.0252324 

0.78 0.1455284 3.0035110 

Ib 
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