
1

Mitigating Soft Error Risks through Protecting Critical Variables and

Blocks

by

Md. Nazim Uddin

A thesis submitted in partial fulfillment of the requirements for the degree of Master of

Engineering in Computer Science & Engineering

Khulna University of Engineering & Technology (KUET)

Khulna 920300, Bangladesh

April 2012

2

MITIGATING SOFT ERROR RISKS THROUGH PROTECTING CRITICAL VARIABLES AND

BLOCKS

Md. Nazim Uddin

Roll No.: 0907556

A thesis submitted in partial fulfillment of the requirements for the degree of ―Master of

Science in Computer Science and Engineering‖

Department of Computer Science and Engineering

Khulna University of Engineering & Technology (KUET)

Khulna 920300, Bangladesh.

April 2012.

Supervisor

Dr. Muhammad Sheikh Sadi

Associate Professor,

Department of Computer Science and Engineering,

Khulna University of Engineering and Technology (KUET).

Signature

3

Declaration

This is to certify that the thesis work entitled "Mitigating Soft Error Risks through

Protecting Critical Variables and Blocks" has been carried out by Md. Nazim Uddin in the

Department of Computer Science and Engineering, Khulna University of Engineering &

Technology, Khulna, Bangladesh. The above thesis work or any part of this work has not

been submitted anywhere for the award of any degree or diploma.

Signature of Supervisor Signature of Candidate

ii

4

Approval

This is to certify that the thesis work submitted by Md. Nazim Uddin entitled "Mitigating

Soft Error Risks through Protecting Critical Variables and Blocks" has been approved by

the board of examiners for the partial fulfillment of the requirements for the degree of

Master of Science in the Department of Computer Science and Engineering, Khulna

University of Engineering & Technology, Khulna, Bangladesh in April 2005.

BOARD OF EXAMINERS

1.

Dr. Muhammad Sheikh Sadi

Associate Professor

Department of Computer Science and Engineering

Khulna University of Engineering and Technology, Khulna

Chairman

(Superviser)

2.

Head of the Department

Department of Computer Science and Engineering

Khulna University of Engineering and Technology, Khulna

Member

3.

Dr. Kazi Md. Rokibul Alam

Associate Professor

Department of Computer Science and Engineering

Khulna University of Engineering and Technology, Khulna

Member

4.

Dr. Md. Liakot Ali

Professor

Institute of Information and Communication Technology

Bangladesh University of Engineering and Technology,

Dhaka

Member

(External)

iii

5

Acknowledgement

First of all, obeisance to the almighty, omnipresent Allah for giving me the strength and

capability for writing the thesis. This thesis would not have been achievable without the

instructions, unconstrained support, guidance and the help of numerous individuals. First

and foremost, my utmost gratitude goes to my supervisor, Dr. Muhammad Sheikh Sadi,

Associate professor, Department of Computer Science and Engineering, for his continuous

supervision, constructive criticism, valuable advice, instructions and encouragement at all

stages of this thesis. I would like to show my heartiest gratitude to Professor Dr. K. M.

Azharul Hasan, Head of the Department of Computer Science and Engineering, and Dr.

Aminul Haque Akhand, Associate Professor, Department of Computer Science and

Engineering for their encouragement and numerous varieties of supports. I also like to

remember the inspiration, supports and encouragement of my family.

Author

iv

6

Abstract

Soft error is a significant reliability concern for nanometer technologies. Shrinking feature

sizes, lower voltage levels, reduced noise margins, and increased clock frequency improves

the performance and lowers the power consumption of integrated circuit. But it causes the

integrated circuit more susceptible to soft error that can corrupt data and make systems

vulnerable. The ‗device shrinking‘ reduces the soft error tolerance of the VLSI circuits, as

very little energy is needed to change their states. In digital systems, where the reliability is

a great concern, the impact of soft errors may be very catastrophic. Safety critical systems

are very sensitive to soft errors. A bit flip due to soft error can change the value of critical

variable. And consequently the system control flow can completely be changed which may

lead to system failure. To minimize the soft error risks, critical blocks are identified by

criticality analysis of the blocks and ranking among them. Highest ranked blocks are

considered as critical block. Refactoring is applied to minimize the criticality of the critical

blocks. Then a novel methodology is proposed to detect and recover from soft errors

considering only preceding variables and critical blocks rather than considering all

variables and blocks in the whole program. The proposed method has less time overhead in

comparison to existing dominant approach.

v

7

TABLE OF CONTENTS

List of Figures viii

List of Tables ix

CHAPTER I Introduction 11

 1.1 Problem Statement 11

 1.2 Motivation to This Work 12

 1.3 Objectives 13

 1.4 Contribution of the Thesis 13

 1.5 Scope of the Thesis 13

 1.6 Thesis Organization 13

CHAPTER II Soft Errors 15

 2.1 Introduction 15

 2.2 Definition of Soft Errors 15

 2.3 Types of Soft Errors 16

 2.3.1 Benign Fault 17

 2.3.2 Silent Data Corruption (SDC) 18

 2.3.3 Detected Unrecoverable Error (DUE) 18

 2.4 Sources of Soft Errors 18

 2.4.1 IR or L(di/dt) Supply Noise 19

 2.4.2 Power Transients 20

 2.4.3 Capacitive or Inductive Cross Talk 21

 2.4.4 Alpha Particles 21

 2.4.5 Cosmic Rays 23

 2.4.6 Low-energy Cosmic Neutron Interactions with 10B

found in Boro-Phospho-Silicat Glass

25

 2.5 An Overview of Soft Error Mitigation Techniques 26

 2.5.1 Process Technology Solutions 27

 2.5.2 Software Based Approaches 28

 2.5.3 Hardware Based Approaches 28

 2.5.4 Hybrid Approaches 29

vi

8

CHAPTER III Criticality Analysis 31

 3.1 Introduction 31

 3.2 Measuring the Criticality of the Block 31

 3.3 Lowering the Criticality of a Block 33

CHAPTER IV Detecting and Correcting Soft Errors 37

 4.1 Introduction 37

 4.2 Flagging the single Preceding Variables 37

 4.3 Identifying Multiple Preceding Variables 39

 4.4 Soft Error Detection using Preceding Variables 42

 4.5 Recovery from Soft Errors 44

CHAPTER V Experimental Analysis 45

 5.1 Introduction 45

 5.2. Experimental Setup 45

 5.3 Identifying the Critical Blocks 45

 5.3.1 Fault Injection 46

 5.3.2 Criticality Analysis 46

 5.4 Applying Refactoring to Lower the Criticality 47

 5.5 Soft Error Detection using Preceding Variables 47

 5.5.1 Comparisons with Existing Approaches 49

 5.6 Discussion 53

CHAPTER VI Conclusions 55

 6.1 Concluding Remarks 55

 6.2 Future Recommendations 55

Bibliography 57

Appendix 63

vii

9

LIST OF FIGURES

Figure No Description Page

2.1 Classification of the possible outcomes of a Faulty Bit in a Microprocessor 17

2.2 Interaction of an Alpha Particle or a Neutron with Silicon Crystal 22

2.3 Proton collides with an Atmosphere Molecule 25

3.1 An Example Statechart of ‗User‘s Access to Server‘ before Refactoring 34

3.2 An Example Statechart of ‗User‘s Access to Server‘ after Refactoring 34

3.3 Methodology to Lower the Criticalities of the Components by Refactoring 36

4.1 An example program-segment to show Variable Dependency 38

4.2 Backward Dependency Graph 38

4.3 Forward Dependency Graph 39

4.4 Preceding Variable in a Series Addition Program 40

4.5 Procedure for Identifying Preceding Variable 40

4.6 Algorithm for multiple Preceding Variable Identification 41

4.7 Variable Dependency Graph 41

4.8 Identification of Preceding Variables 42

4.9 Instruction set of the example program segment 43

4.10 Variable Duplication with Checking 43

4.11 The Reduced Compare Instructions by using Preceding Variable 43

4.12 The flow chart of the Proposed Methodology 44

5.1 Components structure of the Sorting Program for Criticality Ranking 46

5.2 Steps of the Experiment 48

5.3 Comparison of Execution time for the Fibonacci program in ms 49

5.4 Comparison of Execution time for the Series Addition program in ms 50

5.5 Comparison of Execution Time for the Bubble Sort program in ms 51

5.6 Comparison of Execution Time for the Quick Sort program in ms 52

5.7 Comparison of Execution Time for the Matrix Multiplication program in ms 52

5.8 Comparison of Execution Time for the Selection Sort program in ms 53

viii

10

LIST OF TABLES

Table No Description Page

3.1 Evaluation Criteria and Ranking System of FMECA 32

5.1 Criticality Ranking of the Components in Sorting program 47

5.2 Source code size of the selected programs in bytes 48

ix

11

CHAPTER I

Introduction

1.1 Problems Statement

Embedded system has become an important component of the recent era of computer

technology. Embedded systems are found everywhere from end user electronics such as

cell phones, digital cameras and PDA (Personal Digital Assistants) to medical equipment-

pace maker, home goods- washing machine, microwave ovens etc. Actually this can be

predicted from the current trends of embedded systems that nearly any device that runs on

electricity either already have or will soon have embedded computing systems are built

each year for a variety of purposes. Safety critical real time applications of embedded

systems have expanded to include automated aircraft, rotorcrafts, ground transportation

vehicles, ships, and submersibles as well as non transport applications such as nuclear

power plants, missiles and medical equipments. As safety critical system has a risk of

human injuries, dependability and safety are major concerns in a safety critical system.

Numerous errors or faults may happen in embedded system depending on types of damage.

They can be (i) permanent errors or faults that cause physical damage to the systems and

(ii) soft errors (transient faults) that does not cause any physical damage to the systems

rather causes of data corruption when executed. Decreased feature sizes, higher logic

densities, shrinking node capacitances, lower supply voltage, and shorter pipeline depth

have significantly increased the susceptibility of soft errors in embedded systems. The

threat of soft error induced system failure is becoming more prominent and great concern in

recent embedded systems implemented in deep submicron process technologies. The safety

critical systems are expected to offer high reliability and to meet real-time criteria. The

undesired change due to soft errors to the control flow of the system software may be

proved catastrophic for the desired functionalities of the system. Soft errors cannot create

physical damage to a device, but can be catastrophic for the desired functionalities of the

system [1], [2], [3]. Specially, soft error is a matter of great concern in those systems where

high reliability is a necessity [4], [5], [6]. Space programs (where a system cannot

12

malfunction while in flight), banking transaction (where a momentary failure may cause a

huge difference in balance), automated railway system (where a single bit flip can cause a

drastic accident) [7], mission critical embedded applications, and so forth, are a few

examples where soft errors are severe. Medical equipments that are implemented in a

environment of high radiation are more prone to soft errors and can cause human injuries

and even death. The safety critical systems are expected to offer high reliability and to meet

real-time criteria. A missile consists of a embedded computing system which computes the

rang of attack and time of attack. Say, the range is set to 136 km, binary 10001000 is stored

in internal register. And the missile will hit at enemy base at a distance 136 km. But the

missile hits at region at a distance of 8 km apart from the place of launch which eventually

cause death and injures some helpless general people. The reason behind the system

malfunction was that the most significant bit of the value 136 km (10001000) representing

the ranges stored in registers is flipped and value change to 00001000 (8 km) and when the

program was executed this cause system malfunction. It eventually causes human deaths

and injuries. Thus soft error has become a great concern for safety critical systems as well

as for general computer systems.

1.2 Motivation of the Thesis

The impact of soft errors is such that action is needed to increase a system‘s tolerance or to

lower the risk of soft errors in the system. Prior research into soft errors has focused

primarily on post-design phases, such as circuit level solutions, logic level solutions, spatial

redundancy, temporal redundancy, and/or error correction codes. However, in all cases, the

system is vulnerable to soft error problems in key areas. Further, in software-based

approaches, the complex use of threads presents a difficult programming model. Hardware

and software duplication suffers not only from overheads due to synchronizing duplicate

threads, but also from inherent performance overheads due to additional hardware.

Hardware-based protection techniques based on coding or duplication often suffers from

high area, time and power overheads. Moreover, these post-functional design phase

approaches are costly as well as complex to implement. Hence, there is a great need of

research to lower the risks and impacts of the soft errors.

13

1.3 Objectives of the Thesis

The key objective of the thesis is to develop an approach that detects soft errors and then

develop potential techniques that can recover the system from soft errors before the system

goes to crush. The main objectives of this thesis are summarized as follows:

 To develop a preventive soft error technique, by flagging critical components (code

blocks), that will lower the soft error risks at a great extent.

 To devise a novel technique that will detect soft errors in lesser time, cost and

memory requirement.

 To recover from soft errors using fresh program from the backup.

1.4 Contributions of the Thesis

The contributions of this thesis are summarized as follows:

 Criticality ranking of the program blocks is adopted.

 Minimization of the risks of soft errors is done by using refactoring.

 Preceding variables are identified by analyzing the variable dependency graph.

 Soft errors are detected using preceding variables only.

 Time and memory utilization of soft error detection are minimized.

1.5 Scope of the Thesis

This thesis proposes new and efficient soft error detection and recovery techniques. It

detects soft errors by duplicating/ recomputing and comparing the preceding variables only

and recovers from soft errors by copying and replacing the relevant program blocks from

the backup. This thesis deals with soft errors tolerance at processor, data path, and memory

devices of a computer system.

1.6 Thesis Organization

Chapter 2 presents an overview of soft error tolerance, different types of soft errors,

sources of soft errors and also discusses about the existing methodologies to detect and

mitigate soft errors in computing systems.

Chapter 3 discusses about criticality analysis, lowering the criticality using refactoring

model.

14

Chapter 4 provides the detailed discussion about the soft error detection and correction

techniques. Definition of Preceding variable, algorithm for preceding variable identification

and soft error detection using preceding variable identification are also outlined in this

chapter.

Chapter 5 depicts the experimental setup and results.

Chapter 6 entails the concluding remarks.

15

CHAPTER II

Soft Errors

2.1 Introduction

This chapter discusses the definition of soft errors, types of soft errors, sources of soft

errors and an overview of soft error mitigation techniques. These are outlined shortly as

follows.

2.2 Definition of Soft Errors

Temporary unintended changes of states resulting from the latching of single-event

transients (transient voltage fluctuations) create transient faults in a circuit, and when these

faults are executed in the system, the resultant errors are defined as soft errors. Soft errors,

which are also known as Single Event Upsets (SEU), occur for a relatively short duration.

They cannot damage the internal structure of semiconductor devices; however, corrupted

data values resulting from soft errors may crash the subsequent computation,

communication, or memory systems, and may lead to overall system failure. Soft errors can

 Affect the control flow of the program;

 Change the system status; and

 Modify the data stored in memory.

Soft error rate (SER) is the rate at which a device or system encounters or is predicted to

encounter soft errors. It is typically expressed as Failures-in-time (FIT). 1 FIT corresponds

to one error per billion device hours. The typical Soft Error Rate (SER) of CMOS circuits

due to radiation effects can be calculated using the following equation [8]:

Where K is a technology independent constant, F is the neutron flux, A is the sensitive

device area, Qcrit is the critical charge, and Qs is the charge collection slope for the

technology, which is strongly dependent on doping and supply voltage. Qcrit is the

minimum electron charge disturbance needed to change the logic level. A higher Qcrit

(2.1) x xx)(
)(

s

crit

Q

Q

crit e AF K QSER





16

means fewer soft errors. Unfortunately, a higher Qcrit also means a slower logic gate and

higher power dissipation. Reduction in chip feature size and supply voltage, desirable for

many reasons, decreases Qcrit

The rate at which charged particles strike the surface is relatively low but varies with the

geographic location. As the size of the transistors decreases, the chance of striking a

hardware component cell (e.g., SRAM latch) increases. However, at the same time, the

amount of charge required to upset the data stored in the hardware cell decreases which

increases the probability of a particle striking a smaller component cell area. That is, as the

transistor density increases within a fixed die area, the overall probability of a soft error

event occurring increases. Furthermore, due to the smaller feature sizes of component cells,

the probability of multi-bit errors caused by one particle strike increases, although at a

significantly lower rate.

Generally, the amount of charge collected (Qcoll) does not exceed an amount known as the

critical charge (Qcrit) as a result no soft error occur. In a logic circuit, critical charge (Qcrit)

is defined as the minimum amount of induced charge required at a circuit node to cause a

voltage pulse to propagate from that node to the output and be of sufficient duration and

magnitude to be reliably latched. If the amount of charge collected (Qcoll) exceeds the

critical charge (Qcrit) a soft error will occur. An error occurrence in a computer's memory

system can change an instruction in a program or a data value. Soft errors typically can be

remedied by rebooting the computer. A soft error will not damage a system's hardware. The

only damage that soft errors can cause is to the data that is being processed. In terrestrial

applications implemented in sea level or at a range of 10,000 ft above the sea level may

have to face soft error at a rate that is 100 to 1,000 times higher than hard fail rates. In

avionic applications implemented at a range of 40,000 ft above sea level may experience

soft error rates of 10,000 to 100,000 times higher than hard fail rates. Hence soft errors

have become a major concern in electronic systems design that requires high reliability and

safety [7].

2.3 Types of Soft Errors

According to the detection and recovery technique soft error can be categorized as (i)

Benign Fault, (ii) Silent Data Corruption (SDC) and (iii) Detected Unrecoverable Error

17

(DUE) that are described below in details. Figure 2.1, proposed by Weaver et al. [9]

represents the common soft error categories.

Figure 2.1: Classification of the possible outcomes of a Faulty Bit in a Microprocessor.

2.3.1 Benign Fault

A transient fault which does not propagate to affect the correctness of an application is

considered a benign fault. A benign fault can occur for a number of reasons. Examples

include a fault to unused data or a fault to dead (unreachable) code, a fault to an idle

functional unit, a fault to a performance enhancing instruction (i.e. a pre-fetch instruction),

data masking, and Y-branches etc. Less than 15% of faults injected into a Register Transfer

Level (RTL) model of a processor resulted in visible software errors, indicating that many

soft errors are benign faults.

No
Yes

Faulty bit

is read?

Bit has error

protection?

Benign fault;

no error

Fault occurred;

no error Affect program

outcome?

Benign fault; no

error

Affect program

outcome?

 SDC False DUE True DUE

Detection &

correction

Only detection
No

No

Yes
No Yes

1

2

3

4 5 6

18

2.3.2 Silent Data Corruption (SDC)

If the soft error is not detectable by the user but it can affect the output of the program, then

this situation is described as Silent Data Corruption (SDC). An undetected fault which

propagates to corrupt system output is an SDC. This is also the most insidious form of error

[8], where a fault induces the system to generate erroneous outputs. This is the worst case

scenario where a system appears to execute correctly but silently produces incorrect output.

SDC can be expressed as both FIT and MTTF. Designers often use basic error recognition

mechanisms, such as parity to avoid SDC.

2.3.3 Detected Unrecoverable Error (DUE)

If the incorrect output of the program is detectable but unrecoverable, then the soft error is

described as Detected Unrecoverable Error (DUE). The ability to detect a fault but not

correct it avoids generating wrong outputs, but cannot recover when an error occurs. In

other words, simple error detection does not reduce the overall error rate but does provide

fail-stop behavior and thereby avoids any data corruption [8]. A fault which is detected

without possibility of recovery is considered a DUE. DUEs can be split into two categories.

A true DUE occurs when a fault which would propagate to incorrect execution is detected.

A false DUE occurs when a benign fault is detected as a fault. Like SDC, DUE is also

expressed in both FIT and MTTF. DUE events are additional subdivided according to

whether the detected fault would have affected the final result of the execution.

2.4 Sources of Soft Errors

There are mainly two types of source of soft error (i) internal sources and (ii) external

sources of soft error. Internal sources of soft error include:

 IR or L(di/dt) supply noise,

 power transients, and

 capacitive or inductive cross talk

Three principal external sources, radiation sources cause soft errors in semiconductor

devices they includes:

19

 Alpha particles from naturally occurring radioactive impurities,

 High energy neutrons induced by cosmic rays, and

 Low-energy cosmic neutron interactions with 10B found in Boro-Phospho-Silicat

Glass (BPSG).

2.4.1 IR or L(di/dt) Supply Noise

Power supply noise consists of two major components: the IR drop due to wire resistance,

and the L(di/dt) due to wire inductance. Both components can be observed on the package

and on-chip power grid. Generally, the L(di/dt) drop is predominant on the package, since

the package lead resistance is low; while IR drop is predominant on the chip due to high

interconnect resistance.

Due to the resistance of the interconnect constituting the network, there occurs a voltage

drop across the network, commonly referred to as the IR drop. IR drop is predominantly

caused by the parasitic resistance of metal wires constituting the on-chip power distribution

network. The package supplies currents to the pads of the power grid either by means of

package leads in wire-bond chips or through C4 (controlled collapsed chip connection)

bump-array in flip-chip technology. Although the resistance of package is quite small, the

inductance of package leads is significant which causes a voltage drop at the pad locations

due to time-varying currents drawn by devices on the die. This voltage drop is referred to as

the di/dt drop or L(di/dt) drop. Therefore, the voltage seen at the devices is the supply

voltage minus the IR drop and the L(di/dt) drop.

Shrinking device dimensions, faster switching frequency, and increasing power

consumption in deep submicron technologies cause rapid switching currents. Rapidly

switching currents of the on-chip devices can cause fluctuations in the supply voltage

which can be classified as IR and L(di/dt) drops. The voltage fluctuations in a supply

network can inject noise in a circuit which may lead to functional failures of the design.

Power supply integrity verification is, therefore, a critical concern in high-performance

designs. Also, with decreasing supply voltages, gate-delay is becoming increasingly

sensitive to supply voltage variation. With ever-diminishing clock periods, accurate

20

analysis of the impact of supply voltage on circuit performance has also become critical.

Increasing power consumption and clock frequency have exacerbated the L(di/dt) drop in

every new technology generation. The L(di/dt) drop has become the dominant portion of

the overall supply-drop in high performance designs. On-die passive decap, which has

traditionally been used for suppressing L(di/dt), has become expensive due to its area and

leakage power overhead.

2.4.2 Power Transients

Higher integration, tighter process requirements and lower voltage requirements are

moving into designs; thus increasing the hazard of precipitating power transient

disturbances caused by Electromagnetic Interference (EMI) and Electrostatic Discharge

(ESD). These power transient disturbances can create a voltage glitch (transient fault) in a

semiconductor device.

In electrical engineering, spikes are fast, short duration electrical transients in voltage

(voltage spikes), current (current spikes), or transferred energy (energy spikes) in an

electrical circuit. Fast, short duration electrical transients (over voltages) in the electric

potential of a circuit are typically caused by (i) Lightning strikes (ii) Power outages (iii)

Tripped circuit breakers (iv) Short circuits (v) Power transitions in other large equipment

on the same power line (vi) Malfunctions caused by the power company (vii)

Electromagnetic pulses (EMP) with electromagnetic energy distributed typically up to the

100 kHz and 1 MHz frequency range. (viii) Inductive spikes.

Voltage spikes may be longitudinal (common) mode or metallic (normal or differential)

mode. Some equipment damage from surges and spikes can be prevented by use of surge

protection equipment. Each type of spike requires selective use of protective equipment.

For example a common mode voltage spike may not even be detected by a protector

installed for normal mode transients. An uninterrupted voltage increase that lasts more than

a few seconds is usually called a "voltage surge" rather than a spike. These are usually

caused by malfunctions of the electric power distribution system.

21

2.4.3 Capacitive or Inductive Cross Talk

In electronics, crosstalk is any phenomenon by which a signal transmitted on one circuit or

channel of a transmission system creates an undesired effect in another circuit or channel.

Crosstalk is usually caused by undesired capacitive, inductive, or conductive coupling from

one circuit, part of a circuit, or channel, to another. Cross talk is usually caused by

undesired inductive or capacitive coupling. Capacitive crosstalk arises from a coupling

capacitance between interconnects and mutual inductance between interconnects. In

nanometer technologies, interconnect delay dominates gate delay and accurate estimation

of interconnect delay has become an important design issue. Capacitive and inductive

crosstalk is a well-known obstacle for accurate interconnect delay estimation. Capacitive

crosstalk is widely considered in current designs, whereas inductive crosstalk noise

emerges in recent processes. Qualitative discussion generally shows that both capacitive

and inductive crosstalk noises will be more significant as the fabrication processes advance.

Impact of capacitive crosstalk is reduced in most of shortened interconnects. Technology

advancement increases capacitive crosstalk noise owning to a larger aspect ratio of

interconnects and sharper signal transition waveforms. In wide and fat global interconnects,

fast transitions including higher signal frequency strengthen inductive crosstalk effect.

2.4.4 Alpha Particles

Alpha particles mostly occur from the decay of uranium and thorium present within the

packages. When alpha particles hit the silicon bulk, they create minority carriers, which, if

collected by active source/drain diffusions, can generate a voltage glitch of short duration

(transient fault) on such nodes. An alpha particle consists of two protons and two neutrons

bound together into a particle that is identical to a helium nucleus. Alpha particles are

emitted by radioactive nuclei, such as uranium or radium, in a process known as alpha

decay. This sometimes leaves the nucleus in an energized condition, with the emission of a

gamma ray removing the excess energy. Alpha particles are emitted when the nucleus of an

unstable isotope decays to a lower energy state. These particles show a kinetic energy in the

range of 4 to 918 MeV. There are many radioactive isotopes. Uranium and thorium have

the highest activity among naturally occurring materials. In the terrestrial environment,

major sources of alpha particles are radioactive impurities such as lead-based isotopes in

22

solder bumps of the flip-chip technology, gold used for bonding wires and lid plating,

aluminum in ceramic packages, lead-frame alloys and interconnect metallization.

Alpha particles are positively charged and when travels through the semiconductor device,

disturbs the regularity of electrons there. A sufficient disturbance can alter a digital signal

from one state to another for example from 0 to 1 and vice versa. In combinational logic,

this effect is transient, perhaps lasting for a fraction of a nanosecond. On the contrary in

sequential logic such as latches and RAMs, even this transient upset can become stored for

an indefinite time, to be read out later. Alpha particles and neutrons slightly differ in their

interactions with silicon crystals. Charged alpha particles interact directly with electrons. In

contrast, neutrons interact with silicon via inelastic or elastic collisions. Inelastic collisions

cause the incoming neutrons to lose their identity and create secondary particles, whereas

elastic collisions preserve the identity of the incoming particles. Experimental results show

that inelastic collisions cause the majority of the soft errors due to neutrons; hence inelastic

collisions will be the focus of this section.

Stopping Power: when an alpha particle penetrates a silicon crystal, it causes strong field

perturbations, thereby creating electron–hole pairs in the bulk or substrate of a transistor

(Figure 2.2). The electric field near the p–n junction—the interface between the bulk and

diffusion—can be high enough to prevent the electron–hole pairs from recombining. Then,

the excess carriers could be swept into the diffusion regions and eventually to the device

contacts, thereby registering an incorrect signal.

Figure 2.2: Interaction of an Alpha Particle or a Neutron with Silicon Crystal

Stopping power is one of the key concepts necessary to explain the interaction of alpha

particles with silicon. Stopping power is defined as the energy lost per unit track length,

23

which measures the energy exchanged between an incoming particle and electrons in a

medium. This is same as the linear energy transfer (LET), assuming all the energy absorbed

by the medium is utilized for the production of electron–hole pairs. The maximum stopping

power is referred to as the Bragg peak. Stopping power quantifies the energy released from

the interaction between alpha particles and silicon crystals, which in turn can generate

electron–hole pairs. About 3.6 eV of energy is required to create one such pair. For

example, an alpha particle (
4
He) with a kinetic energy of 10 MeV has a stopping power of

about 100 keV/μm and hence can roughly generate about 2.8 × 10
4
 electron–hole pairs/μm.

The charge on an electron is 1.6 × 10
−19

 C, so this generates roughly a charge as high as 4.5

fC/μm. Whether the generated charge can actually cause a malfunction or a bit flip depends

on two other factors, namely, charge collection efficiency and critical charge of the circuit.

2.4.5 Cosmic Rays

Cosmic rays originate from outer space. They collide with particles in the atmosphere

resulting in neutron flux. It in turn be accelerated toward the earth and create soft errors in

memory elements, latches and logic circuits. Cosmic rays may be the predominant cause of

soft errors in modern devices. The primary particle of the cosmic ray does not generally

reach the Earth's surface. It creates a shower of energetic secondary particles with the

collision from earth‘s atmosphere. At the Earth's surface approximately 95% of the

particles capable of causing soft errors are energetic neutrons with the remainder composed

of protons and pions. High-energy (> 1 MeV) neutrons from cosmic radiation can induce

soft errors in semiconductor devices via secondary ions produced by the neutron reaction

with silicon nuclei. Cosmic rays that are of galactic origin react with the Earth‘s

atmosphere to produce complex cascades of secondary particles. Less than 1% of the

primary flux reaches ground level and the predominant particles include muons, neutrons,

protons, and pions. Because pions and muons are short-lived and proton 19 and electrons

are attenuated by Columbic interaction with the atmosphere, neutrons are the most likely

cosmic radiation sources to cause SEU in deep-submicron semiconductors at the terrestrial

altitudes. The neutron flux is dependent on the altitude above the sea level, the density of

the neutron flux increases with the altitude.

24

Cosmic rays are energetic charged subatomic particles, originating in outer space. They

may produce secondary particles that penetrate the Earth's atmosphere and surface. The

term ray is historical as cosmic rays were thought to be electromagnetic radiation. Most

primary cosmic rays (those that enter the atmosphere from deep space) are composed of

familiar stable subatomic particles that normally occur on Earth, such as protons, atomic

nuclei, or electrons. However, a very small fraction is stable particles of antimatter, such as

positrons or antiprotons, and the precise nature of this remaining fraction is an area of

active research.

About 89% of cosmic rays are simple protons or hydrogen nuclei, 10% are helium nuclei or

alpha particles, and 1% are the nuclei of heavier elements. These nuclei constitute 99% of

the cosmic rays. Solitary electrons (much likes beta particles, although their ultimate source

is unknown) constitute much of the remaining 1%.

The variety of particle energies reflects the wide variety of sources. The origins range from

processes on the Sun (and presumably other stars as well), to as yet unknown physical

mechanisms in the farthest reaches of the observable universe. There is evidence that very

high energy cosmic rays are produced over far longer periods than the explosion of a single

star or sudden galactic event, suggesting multiple accelerating processes that cover very

long distances with regard to the size of stars. The obscure mechanism of cosmic ray

production at galactic distances is partly a result of the fact that (unlike other radiations)

magnetic fields in our galaxy and other galaxies bend cosmic ray direction severely, so that

they arrive nearly randomly from all directions, hiding any clue of the direction of their

initial sources. Cosmic rays can have energies of over 10
20

 eV, far higher than the 10
12

 to

10
13

 eV that Terrestrial particle accelerators can produce. There has been interest in

investigating cosmic rays of even greater energies.

Cosmic rays are enriched in lithium, beryllium, and boron with regard to the relative

abundance of these elements in the universe compared to hydrogen and helium, and thus

are thought to have a primary role in the synthesis of these three elements through the

process of "cosmic ray nucleosynthesis". They also produce some so-called cosmogenic

stable isotopes and radioisotopes on Earth, such as carbon-14. In the history of particle

physics, cosmic rays were the source of the discovery of the positron, muon, and pi meson.

25

Figure 2.3: Proton collides with an Atmosphere Molecule

When cosmic rays enter the Earth's atmosphere they collide with molecules, mainly oxygen

and nitrogen, to produce a cascade of billions of lighter particles, a so-called air shower. All

of the produced particles stay within about one degree of the primary particle's path.

Typical particles produced in such collisions are charged mesons e.g. positive and negative

pions and kaons. These subsequently decay into muons that are easily detected by many

types of particle detectors.

2.4.6 Low-energy Cosmic Neutron Interactions with 10B found in Boro-Phospho-

Silicate Glass (BPSG)

BPSG has been implicated in increasing a device's susceptibility to soft errors since the

Boron-10 isotope is efficient at capturing thermal neutrons from cosmic radiation. The

thermal neutrons then undergo fission, producing a gamma ray, an alpha particle, and a

lithium ion. These products may then dump a charge into nearby structures, causing data

loss (bit flipping, or single event upset). The third significant source of ionizing particles in

electronic devices is the secondary radiation produced from the interaction of cosmic ray

neutrons and boron [10]. This radiation is induced by low-energy cosmic neutrons,

interacting with the isotope boron-10 or 10B. Boron is extensively used as p-type dopant in

silicon and is also specifically used in formation of BPSG (Borophosphosilicate glass)

dielectric layer [10]. Boron has two isotopes: 10B and 11B of which 10B is unstable. The

reaction scheme is shown in [11]. In the 10B and cosmic neutron reaction, the lithium

nucleus is emitted with a kinetic energy of 0.84 MeV 94% of the time and with 1.014 MeV

6% of the time. The gamma photon has energy of 478 KeV, while the alpha particle is

emitted with an energy of 1.47 MeV [11]. This mechanism has recently been found to be

the dominant source of soft errors in 0.25μ and 0.18μ SRAMs fabricated with BPSG.

http://en.wikipedia.org/wiki/Earth%27s_atmosphere
http://en.wikipedia.org/wiki/Molecule
http://en.wikipedia.org/wiki/Air_shower_%28physics%29
http://en.wikipedia.org/wiki/Meson
http://en.wikipedia.org/wiki/Pion
http://en.wikipedia.org/wiki/Kaon
http://en.wikipedia.org/wiki/Muons
http://en.wikipedia.org/wiki/File:Atmospheric_Collision.svg

26

Modern microprocessors use highly purified package materials and this radiation

mechanism is greatly reduced, leaving the high-energy cosmic rays as the major reason for

soft errors. The SEU due to activation of 10B can be mitigated by removing BPSG material

from the process flow. For future deep-submicron DRAM generations a greater suppression

of soft error rate is expected for devices made with silicon-on-insulator (SOI) technologies

[12].

In space high-energy neutrons generated from the interaction of cosmic rays with the

atmosphere are the main source of incident radiation. Neutrons cannot cause direct

ionization, but the by-products of nuclear reactions with the silicon generate ionizing

particles that cause soft errors. Soft errors are generally related to random errors or

corruption of data in electronic systems. They are mostly induced by alpha particles emitted

from radioactive impurities in materials such as packaging, solder bumps and by highly

ionizing secondary particles produced from the reaction of both thermal and high-energy

neutrons with component materials. In general, soft errors are nondestructive functional

errors induced by energetic ion strikes and could be fixed by resetting or re-writing of the

device. Soft errors are a subset of single event effects (SEE) that is caused by single alpha

particle as it passes through a semiconductor material. Alpha particles emitted from nucleus

of unstable isotope decays, High energy neutrons from cosmic radiation, interaction of

cosmic ray neutrons and boron [10] are principal radiation sources cause soft errors in

advanced semiconductor devices [13].

2.5 An Overview of Soft Error Mitigation Techniques

Soft error tolerant design techniques can be classified into two types: ‗prevention‘ and

‗recovery‘. The methods to protect microchips from soft-errors are the prevention methods.

They are used during the chip design and development. The recovery methods include on-

line recovery mechanisms from soft-errors in order to achieve the chip robustness

requirement. One should note that soft error is not the only reason why computer systems

need to resort to a recovery procedure. Random errors due to noise, unreliable components,

and coupling effects may also require recovery mechanisms. The need for a recovery

mechanism stems from the fact that prevention techniques may not be enough for

contemporary microchips, because the supply voltage keeps reducing, feature size keeps

27

shrinking, and the clock frequency keeps increasing. Also, the cost of prevention

techniques for a fault tolerant design may be too high. Representing the broad area of the

error-tolerant computing, here we give a few examples of techniques used for soft error

mitigation.

2.5.1 Process Technology Solutions

A significant reduction in the soft error rate of microelectronics can be achieved by

eliminating or reducing the sources of radiation. To reduce the alpha particle emission in

packaged ICs, high purity materials and processes are employed. Uranium and thorium

impurities have been reduced below one hundred parts per trillion for high reliability.

Going from the conventional IC packaging to an ultra-low alpha packaging materials, the

alpha emission is reduced from 5∼10 particles/cm
2
-hr to less than 0.001 particles/cm

2
-hr.

To reduce the SER induced by the 10B activation by low energy neutrons, BPSG is

replaced by other insulators that do not contain boron. In addition, any processes using

boron precursors are carefully checked for 10B content before introducing them to the

manufacturing process. When these measures are employed the SER of the IC is reduced

dramatically, but the SER caused by the high-energy cosmic neutron interactions cannot be

easily shielded. Radiation Hardened Process Technologies SER performance can be greatly

improved by adapting a process technology either to reduce the collected charge (Qcoll) or

increase the critical charge (Qcrit). One approach is to use additional well isolation (triple-

well or guard-ring structure) to reduce the amount of charge collected by creating potential

barriers, which can limit the efficiency of the funneling effect and reduce the likelihood of

parasitic bipolar collection paths.

Another approach replaces bulk silicon well-isolation with silicon-on-insulator (SOI)

substrate material. The direct charge collection is significantly reduced in SOI devices

because the active device volume is greatly reduced (due to thin silicon device layer on the

oxide layer). Recent work shows a 10X reduction in SER achieved over conventional bulk

devices when a fully depleted SOI substrate is used. Unfortunately, SOI substrates are more

expensive than conventional bulk substrates and phenomena like parasitic bipolar action

limit further reduction of SER. Circuit-level solutions such as the addition of cross-coupled

resistors and capacitors to decrease the bit-line float time are also employed.

28

2.5.2 Software Based Approaches

Software based approaches to detect and correct soft errors has become popular. It includes

redundant programs to detect [14], [15], [16], [17] and/or recover from soft errors [18],

duplicating instructions [19], [20], task duplication [21], dual use of super scalar data paths

[22], and Error detection and Correction Codes (ECC) [23] etc. Redundant programs to

detect run redundant copy of the same program and compare the output to check if a soft

error occur. Using Error detection and Correction Codes (ECC) to detect soft errors is

another popular software implemented technique. Chip level Redundant Threading (CRT)

[24] used a load value queue such that redundant executions can always see an identical

view of memory. Although the load value queue produced identical view of memory for

both leading and trailing threads, integrating this into the chip multiprocessor environment

requires significant changes. Walcott et al. [25] used redundant multi threading to

determine the architectural vulnerability factor, and Shye et al., [26] used process level

redundancy to detect soft errors. In redundant multi threading, two identical threads are

executed independently over some period and the outputs of the threads are compared to

verify the correctness. EDDI [19] and SWIFT [20] duplicated instructions and program

data to detect soft errors. So, both redundant programs and duplicating instructions create

higher memory requirements and increase register load. Error detection and Correction

Codes (ECC) [23] adds extra bits with the original bit sequence to detect error. Using ECC

to combinational logic blocks makes them complicated, and requires additional logic and

calculations with already timing-critical paths.

2.5.3 Hardware Based Approaches

Hardware approaches for soft errors mitigation mostly include circuit level solutions, logic

level solutions and architectural solutions. At the circuit level, gate sizing techniques [27],

[28], [29], increasing capacitance [30], [31], resistive hardening [32], are commonly used to

increase the critical charge (Qcrit) of the circuit node as high as possible.

Increasing capacitance of diffusion area is a common ways to reduce soft error rate. Critical

charge (Qcrit) increases as the capacitance raises because the total charge at a node is the

product of its capacitance and voltage. Increasing the size of the device raises the

29

capacitance of the devices. Also the capacitance can be raised by adding an explicit

capacitor to the diffusion area of the devices.

Radiation hardening is another common technique to reduce soft error rate in electronic

circuit. Radiation hardening increases the diffusion capacitance of storage cells only, such

as SRAM cells or latches. It maintains a redundant copy of data which provide the correct

data after a particle strike as well as help to recover corrupted section from the upset.

However, these techniques tend to increase power consumption and lower the speed of the

circuit. Logic level solutions [33], [34] mainly propose detection and recovery in

combinational circuits by using redundant or self-checking circuits. Architectural solutions

mainly introduce redundant hardware in the system to make the whole system more robust

against soft errors. These solutions include dynamic implementation verification

architecture (DIVA) [35], block-level duplication used in IBM Z-series machines [36] etc.

DIVA in its method of fault protection assumed that the checker is always correct and it

proceeds using the checker‘s result in case of a mismatch. So, faults in the checker itself

must be detected through alternative techniques.

2.5.4 Hybrid Approaches

Hardware and software combined approaches [36], [37], [29], [18] use the parallel

processing capacity of chip multiprocessors (CMPs) and redundant multi threading to

detect and recover from the problem. Mohamed et al. [38] shows Chip Level Redundantly

Threaded Multiprocessor with Recovery (CRTR), where the basic idea is to run each

program twice, as two identical threads, on a simultaneous multithreaded processor. One of

the more interesting matters in the CRTR scheme is that there are certain faults from which

it cannot recover. If a register value is written prior to committing an instruction, and if a

fault corrupts that register after the committing of the instruction, then CRTR fails to

recover from that problem. In Simultaneously and Redundantly Threaded processors with

Recovery (SRTR) scheme, there is a probability of fault corrupting both threads since the

leading thread and trailing thread execute on the same processor. However, in all cases the

system is vulnerable to soft errors in key areas.

30

In contrast, the complex use of threads presents a difficult programming model in software-

based approaches while in hardware-based approaches, duplication suffer not only from

overhead due to synchronizing duplicate threads but also from inherent performance

overhead due to additional hardware. Moreover, these post-functional design phase

approaches can increase time delays and power overhead without offering any performance

gain.

31

CHAPTER III

Criticality Analysis

3.1 Introduction

A single soft error in a particular component (program block) could have a greater effect

than multiple soft errors in another or a set of components. For this reason, the effects of

soft errors in the whole system need to be analyzed by injecting transient faults (which will

create soft errors if activated) into each component. This chapter deals with criticality

ranking of the program block by Failure Mode Effects and Criticality Analysis (FMECA)

and lowering the criticality with refactoring.

3.2 Measuring the Criticality of the Block

The criticalities of the block are determined by the Failure Mode Effects and Criticality

Analysis (FMECA) [39] method. FMECA is a procedure for the analysis of potential

failure modes within a system by classifying criticality or determining of the failure‘s effect

upon the system. FMECA is an analysis technique that facilitates the identification of

potential problems in the design or process by examining the effects of lower level failures

[40]. Failure causes are any errors or defects in the process, design, or item. Effects analysis

refers to studying the consequences of those failures. The FMECA determines, by failure

mode analysis, the effect of each failure and ranks each failure according to the criticality

of a failure effect. Failure Mode Effect and Criticality Analysis (FMECA) is analytical and

non-compositional approach. Though it has some traditional limitations like tedious, time

consuming and costly analysis technique, for criticality analysis it is really hard (if not

impossible) to find a suitable alternative. The evaluation criteria and a ranking system for

the criticality of effects, which is suggested by Hosseini et. al. [41] for a design FMECA, is

shown in Table 3.1. Diverse criticality assigning levels (i.e. point of scale) can be adopted

in a design FMECA. However, huge levels increase the programming complexity on the

other hand. Hence, ten-point scales have been applied in this thesis.

32

Transient faults are injected into each component, into one bit at a time. The reason is that

transient faults change the value of one bit at a time and the probability of changing two

bits and/or two transient faults at a time are almost zero. The fault injection is made by

changing one bit of the parameter value, or anywhere in code or in the parameter name. For

example, if the correct value of parameter ‗x‘ is ‗4‘, then ‗4‘ can be changed to ‗5‘ or ‗6‘ or

any other combinations. The parameter name ‗x‘ can be changed to ‗y‘, ‗v‘, or any other

combinations. The combinations can be generated as follows. The ASCII value of character

‗x‘ is 58 in hex and 0111010 in binary. Therefore, changing one bit is possible in any of the

six bits that will in turn generate a different character in each case. Similarly, the faulty

combinations for the parameter value (the binary value of ‗7‘ is 000111) can be generated.

The effects in the overall system are analysed by the FMECA method.

To validate the analysis results, several tests (three to five) are performed for each

component and the average integer (floor) value is taken as the resultant rank of criticality.

If in first three cases, the effects are almost the same then the test is terminated. The effect

in the system functionality is evaluated by FMECA. Failure modes are classified into one

Linguistic

Terms for Criticality Mode

Rank

Hazardous 10

Serious 9

Extreme 8

Major 7

Significant 6

Moderate 5

Low 4

Minor 3

Very minor 2

None effect 1

Table 3.1: Evaluation Criteria and Ranking System of FMECA [41]

33

of the ten categories as shown in Table 3.1. To analyze the cause and effect of the failure in

the system better, domain expertise is required. Hence, the system is studied in detail before

performing criticality analysis.

3.3 Lowering the Criticality of a Block

Component criticality suggests to the designer where in the system design changes are

necessary or helpful to minimize soft error risk. These changes can be made by applying a

suitable approach where he/she may change the architecture or behavioural model of the

component to lower its criticality. Refactoring is a good candidate for this type of approach.

The purpose of refactoring is to alter the model based on the user‘s requirements by

keeping the functionality and other constraints of the system unaffected. In each trial of

refactoring, it was examined whether the refactoring could achieve the impact of soft errors

in the system maintaining the non-functional properties like functionality, performance etc.

If it fails to do that then the method of re-factoring is altered and repeated until the goal is

achieved. In software engineering, "refactoring source code‖ means improving it without

changing its overall results and is sometimes informally referred to as "cleaning it up".

Refactoring neither fixes bugs nor adds new functionality, though it might precede either

activity; rather, it improves the understandability of the code, changes its internal structure

and design, and removes dead code. UML Model refactoring is the equivalent of source

code refactoring at the model level with the objective of preserving the model‘s behaviour

[42]. It re-structures the model to improve quality factors, such as maintainability,

efficiency, fault tolerance, etc., without introducing any new behaviour at the conceptual

level [43]. As the software and hardware system evolves, almost each change of

requirements imposed on a system requires the introduction of small adaptations to its

design model [44], [45]. However, the designers face challenges to this adaptation by a

single modification in the model. A possible solution to this problem can be to provide

designers with a set of basic transformations so maintaining model functionality. This set of

transformations is known as refactoring, which can be used gradually to improve the design

[44].

A detailed taxonomy of model transformations has been presented by Mens and Van Gorp

[46], [47]. Model refactoring can be made by replacing components or sub-systems with

http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Source_code
http://en.wikipedia.org/wiki/Computer_bug
http://en.wikipedia.org/wiki/Understandability
http://en.wikipedia.org/wiki/Structure
http://en.wikipedia.org/wiki/Design
http://en.wikipedia.org/wiki/Dead_code

34

ones that are more elegant, merging/splitting the states keeping the behaviour unchanged,

altering code readability or understandability, formal concept analysis, graph

transformation, etc. Model refactoring can be detailed by using an example, which consists

of Figure 3.1 and Figure 3.2.

Pass to Server

Actions

Verify User

User Logged On

Retrieved

[Valid User]

[Else]

Figure 3.1: An Example Statechart of ‗User‘s Access to Server‘ before Refactoring

Verifying

Actions (Copied)

Verify User

User Logged On

[Valid User]

[Else]

Figure 3.2: An Example Statechart of ‗User‘s Access to Server‘ after Refactoring

35

Figure 3.1 shows an example statechart of a user‘s access to the server, and Figure 3.2

shows this statechart after refactoring. Two states in Figure 3.1, named as ―Pass to Server‖,

and ―Retrieved‖, are merged into one state, ―Verifying‖, in the refactored statechart (Figure

3.2). The actions used in ―Pass to Sever‖ are copied into the ―Verifying‖ state.

Once the criticality ranking is returned, a model can be refactored with the goal of reducing

the criticalities of the components. Lowering the criticalities can be achieved by reducing

any of the parameter: Execution time (ET), number of iteration or propagation of failure

(‗fan in‘ and ‗fan out‘). Then, the design is analysed to find which parameter is causing the

large value of the product. If its complexity is very high, then the reason is probably that its

ET is high and/or its communication dependency with other components is high. Higher

values of ET imply that this component is being called upon more frequently than others

are, and/or it is changing a greater number of states than others. If the criticality of the

component shows a higher value, then it means that the soft error in it has more effects on

overall system functionality than other components. Refactoring can be applied on the

architecture or behavioural model of the component to lower the complexity of the

components. The methodology of lowering the criticalities of components by refactoring is

shown in Figure 3.3.

As shown in Figure 3.3, initially, the abstract model is created from the given

specifications. The model is then analysed to measure the criticalities of its components.

Component criticalities need to be compared with a threshold value that users need to

determine (for simplicity, the threshold value is ignored in the example). The large

variations among components‘ criticalities are taken as the guideline for flagging the

components as critical. If critical components exist in the model, then the model is analysed

to be refactored to lower the components‘ criticalities.

36

Requirement Specification for

Embedded Systems

Critical Components

Exist?

Terminate

Abstract Model in UML

Criticalities measured for the

Components in the Model

Refactor the Model

Constraints

Maintained

Criticalities

Reduced

Apply Metrics

[Yes]

[Yes]

[Yes]

[No]

[No]

Change The

Methodology of

Refactoring

[No]

Figure 3.3: Methodology to Lower the Criticalities of the Components by Refactoring

Special attention needs to be given to the top-ranked components to lower their criticalities.

Other components can be examined in turn later according to their criticality ranking.

Several trial and error iterations are needed to achieve the goal of lowering a component‘s

criticality. In each trial, checks must be made to ensure the refactoring does not interfere

with the functionality of the system; otherwise, the model will have to go through another

refactoring method. If these constraints are maintained, then the lowering process will

check whether components‘ criticalities are sufficiently reduced or not. If the check is

successful, then the process will terminate. If not, another iteration of the above steps will

occur.

37

CHAPTER IV

Detecting and Correcting Soft Errors

4.1 Introduction

A novel methodology has been proposed to mitigate soft error risk. In this method, the

major working fact consists of three-steps. Throughout 1st step, the proposed method

identifies critical variables. At 2nd step, soft errors are detected by duplicating and

comparing the critical variables only and at 3rd step, soft errors are recovered by using

fresh program from the backup. The details of the approach are discussed in the subsequent

sections.

4.2 Flagging the single Preceding Variables

All variables or blocks are not equally responsible or susceptible to system failure in a

computer program. These can be analyzed according to their significance level and

responsibility to system malfunction or failure. Variables those are of higher levels of

significance are considered most vulnerable. Variables are determined as ‗critical‘ through

adopting and considering some fact like number of recursion, dependencies, etc. Criticality

ranges higher with respect to more dependencies.

The program code fragment shown in Figure 4.1, which depicts a simple program with a

single while loop, narrates ideas of variable dependence relationships. At the end of the

program, variable x depends upon the initial values of the variables i, z, y, b, x. Here, the

way is shown in which variable dependence can be circular or loop carried (x‘s dependence

upon y) and involves control dependence (x‘s dependence upon i) as well as data

dependence.

38

Figure 4.1: An example program-segment to show Variable Dependency

Besides, variable dependencies may be classified as ‗forward dependencies‘, and

‗backward dependencies‘. Figure 4.2 and Figure 4.3 show the variable dependency graph

for backward and forward dependencies respectively. In the figures, three statements are

considered and assumed as part of a program code segment and seven variables are

deployed. As shown in Figure 4.2, while executing, value determination of variable ‗rslt2‘

of statement 2 will depend on statement 1 for result of the variable ‗rslt1‘, statement 3 will

depend on statement 2 to calculate ‗var0‘ since ‗var0‘ is the summation of ‗rslt2‘ and ‗var4‘.

Hence ‗var0‘ is dependent on the variables at the back e.g., ‗rslt2‘, ‗var4‘, ‗rslt1‘ etc. this is

called backward dependency. Any error in rslt2, var1, rslt1 etc. will be propagated to var0. If

soft errors occur in any of the variables, it can be detected by comparing and checking only

var0.

Figure 4.2: Backward Dependency Graph

while(i>1){

a=a-1;

b=b+1;

x=x-y+b;

y=y+z;

j=j+1;

z=z+1;

}

rslt1=var1+var2;

rslt2=rslt1+var3;

 var0=rslt2+var4;

var0

rslt2

rslt1

var1 var2

var3

var4

39

As shown in Figure 4.3, statement 2 and statement 3 are dependent on ‗rslt0‘ in statement 1.

Hence, the variable at the forward e.g. rslt2, rslt1 etc. are dependent on ‗rslt0‘. This

dependency is called ‗forward dependency‘. Considering the assignment statements, the

tree in Figure 4.3 is formed and the root node (rslt0) is determined. It is seen that the root

node is more critical among others because it is (root node) decisive in those respect. If soft

errors occurred in any node other then root, that will ultimately be propagated to the root

node.

Figure 4.3: Forward Dependency Graph

So, to detect soft error, the critical variable comparison will be more efficient rather than

consider all variables to be compared. This significantly reduces the execution time of

program as well as memory utilization. Thus it may considerably increase the efficiency of

error detection process.

4.3 Identifying Multiple Preceding Variables

A program may have multiple variable dependency graphs since all variables may not be

associated with each other. So a program may have one or more preceding variable and

even isolated variable. If all preceding variable and isolated (disconnected) variable is not

considered then some variables may stay out of computational coverage. To detect the soft

errors it is required to consider all preceding variable and isolated variable if exist.

var1= rslt0;

rslt1=var1+var3;

rslt2=rslt1+var4;

rslt2
var4

rslt1
var3

var1

rslt0

40

Figure 4.4 represents three different preceding variables S1, S2 and S3, forming with

different set where each set has different set of variables. Each cluster (Figure 4.4 (a),

Figure 4.4 (b) and Figure 4.4 (c)) has a single preceding variable. In Figure 4.4 there is no

isolated variable. Different critical program may face such situation. All preceding

variables and isolated variable (if exist) are required to take under computational coverage,

otherwise soft error may not be detected.

Figure 4.4: Preceding Variable in a Series Addition Program

The process for preceding variables identification can be expressed as shown in Figure 4.5.

Figure 4.5: Procedure for Identifying Preceding Variable

 List all variable of the candidate program, V[n]

 Find variable dependency, E(v, e)

 Draw dependency graph, G(V,E)

 List preceding variable, Vp[i]

 Find isolated/ disconnected variable, Vd[k]

(a)

(b)

(c)

41

Preceding variables are identified dynamically by constructing the dependency graphs. The

algorithm that employed to construct the dependency graph is as follows (Figure 4.6):

[Definition.] Vd:= set of destination operand/ vertex in a particular instruction, Vs := holds the source

operands of the instruction, Lvi:= contain the already visited variables for future use, Lver:= is used to hold the

vertices of the dependency graph, v=vertex, e= edge, E= holds the edges of the dependency graph,

I=instruction, Is=Instruction set.

[Initialize.] Set Vd:=NULL, Vs:=NULL, Lvi:=NULL, Lver:=NULL, E:=NULL, Is:={set of all I}

Foreach (I ∊ Is)

Begin

 Set Vd:= destination operand of I

 Set Vs:= source operand of I

 Foreach(v ∊ Lvi)

 Begin

 IF(v ∊ Lvi)

 Begin

 e:= create edge from v to Vd

 E:= E ⋃ e

 End Loop

 Else

 Begin

 V:= create Node for v

 Lver:= Lver ⋃ V

 Lvi:= Lvi ⋃ v

 End Loop

 End Loop

 Lvi:= Lvi ⋃ Vd ; Vd:=NULL ; Vs:=NULL

End Loop

Figure 4.6: Algorithm for multiple Preceding Variable Identification

From Figure 4.7, several important informations could be extracted. For example, in-degree

of a node indicates how many nodes directly affect this node. And out-degree indicates how

many nodes are directly dependent on it. This information eventually helps in determining

the variable dependency. In the proposed methodology, variable dependency information is

used to identify the preceding variable.

1. Add r1,$0,$2

2. Add r2,r1,$3

3. Add r3,r2,r1

 Figure 4.7: Variable Dependency Graph

$0
$2

r1
r2

$3

r3

42

Consider the dependency graph in Figure 4.7, the node labeled r1 has a out-degree of 2 that

means this variable directly affects the computation of two other variables. Also the

direction of the edges represents the direction of the flow of the computational effects. That

is any erroneous computation will propagate along the direction of the edges. If a node

results in a incorrect outcome, this incorrect result will cause some invalid outcome of the

variables which directly or indirectly depend on it.

A simple arithmetic problem is exposed in Figure 4.8, focusing on the instructions and

variable dependency to describe the proposed approach. Figure 4.8 shows the variable

dependency graph for indentifying the preceding variable. Variable v is the preceding

variable. If soft errors occurred in any other variables, this error will ultimately be

propagated to the v. If soft errors occur in any of the variables among v1, v2, r1, v3, r2 and

v5, it can be detected by checking only v. That is soft errors will be propagated to and

captured by preceding variable v. This will perform soft error detection in a lesser time.

 Figure 4.8: Identification of Preceding Variables

4.4 Soft Error Detection using Preceding Variables

The arithmetic expressions, shown in Figure 4.8, are represented using the defined

instruction set as shown in Figure 4.9 Where, value of variable v1 and v2 are kept in a

memory location $0 and $2. Addition-operation result of $0 and $2 are transferred to

variable r1. In this way, variable v3, v4 and v are kept in a memory location $4, $6 and $8

respectively.

1. r1=v1+v2;

2. r2=r1+v3;

3. v=r2+v5;

 V1
V2

r1

r2

V3

V

V5

Preceding

variable

43

Figure 4.9: Instruction set of the example program segment

To detect the soft errors Maurizio Rebaudengo et al.[48] duplicates all variables and check

the consistency as shown in Figure 4.10. This compares the outcomes of each recomputed

variable during program execution which significantly increases the program execution

time. Check expression is marked by rectangle at Figure 4.10 that contains three (3) check

expressions.

Figure 4.10: Variable Duplication with Checking

Figure 4.11 depicts the source code modification of the proposed method. Figure 4.11

outlines the minimized comparisons performed by the proposed method in comparison to

the approach shown in Figure 4.10. It shows huge amount of comparisons may be avoided

without sacrificing the reliability found in the whole program variable duplication. This

method requires only a single check instead of three checking that is suggested by the

whole program variable duplication. The proposed method significantly reduces the

execution time of the program as well as memory utilization.

Figure 4.11: The Reduced Compare Instructions by using Preceding Variable

Add r1,$0,$2

Add r2,$1,$3

Check($0,$1)||check($2,$3)

Add r3,r1,$4

Add r4,r2,$5

Check (r1,r2)||check($4,$5)

Add $8, r3,$6

Add $9, r4,$7

Check ($6,$7)||check(r3,r4)

Print $8

hlt

Add r1,$0,$2

Add r2,r1,$4

Add $8,r2,$6

Add r3,$1,$3

Add r4,r3,$5

Add $9,r4,$7

Check($8,$9)

Print $9

hlt

Add r1,$0,$2

Add r2,r1,$4

Add $8,r2,$6

Print $8

hlt

44

The overall soft errors detection procedure is shown in the Figure 4.12.

Figure 4.12: the flow chart of the Proposed Methodology

At first, all preceding variables of the program are identified. To detect soft errors, the

preceding variables are needed to be compared only.

4.5 Recovery from Soft Errors

The critical blocks or component come into main focus among all other program

blocks or components. To recover from soft errors, erroneous program blocks are replaced

with the relevant backup fresh program. A backup of the fresh program is stored earlier that

is assumed as error free. A mirror of the program is loaded into memory and this program is

modified with the proposed methodology to ensure soft error detection. If any soft error is

detected then the corrupted program is replaced with the fresh program that is stored in the

backup device.

Compare only preceding variables and isolated
variables (if exist) to check soft errors

Perform read write operation on both of the duplicated
variables

Program variables duplication

Preceding variables identification

Dependency graph creation from instruction sets

45

CHAPTER V

Experimental Analysis

5.1 Introduction

To evaluate the efficiency of the proposed method, the method was experimented on

selected sample programs. The programs are analyzed to determine the variable

dependency, and then dependency graphs are formed. From the variable dependency graph,

preceding variables are identified. After dependency analysis, the program source code is

modified according to the proposed method. Execution time is examined and compared

with previous dominant approach(es).

5.2 Experimental Setup

For experimental work, programs run on Intel Pentium dual core (2.0 MHz), 1GB RAM,

2GB virtual memory and as a operating system Windows 7 Ultimate are used. Dot net

framework (Microsoft visual studio 2010) is used to develop the selected program. Since

execution time of the program is dependent on several system specification parameters like

processor speed, size of the primary memory and the number of thread running on the

system; so result will be varied at different machine. ‗Hex editor‘ and customized

simulation tools are used to inject soft errors at the selected programs.

5.3 Identifying the Critical Blocks

Critical program blocks or components are identified by using the criticality analysis. A

target program is divided in several program segments i.e. blocks. Program blocks are

usually the class, function or methods of the program. To measure the failure effect, several

faults were injected into these blocks. By analyzing the failure effect, criticality rankings of

the blocks are determined. The fault injection procedure, and critical block identification by

FMECA are shown in the subsequent sections.

46

5.3.1 Fault Injection

Figure 5.1 represents the program blocks of the sorting program. Where, ‗ENV‘ means

environment and blocks are represented by round rectangles. To calculate the criticality

ranking of the blocks, several random faults were injected into these blocks. For each

block, a single soft error is injected at a time and observed the effects on the system by

FMECA analysis. This process is repeated several times to identify the criticality mode of

the block, typically 10 to 20 trials are applied. Criticality modes are determined as

discussed in Section 3.2 and criticality ranking shown in Table 3.1.

Figure 5.1: Components structure of the Sorting Program for Criticality Ranking

5.3.2 Criticality Analysis

The criticality ranking is performed according to the method described in Section 3.2.

Table 5.1 shows the criticality mode for each of the program block. From the experimental

data represents at Table 5.1, it is observed that ―sorting order decision‖ block is more

critical than any other blocks.

Global variable

declaration

Random array

assigning

Sorting order

decision

Sort ascending

Sort descending

ENV

Output

47

 Table 5.1: Criticality Ranking of the Components in Sorting program

Name of the Component Criticality

Mode

Global variable declaration No effect

Random array assigning No effect

Sorting order decision Major

Sort descending Significant

Sort ascending Significant

5.4 Applying Refactoring to Lower the Criticality

Observing Table 5.1 it is found that the criticality mode of the ‗Sorting order decision‘

block is ‗major‘ and its criticality is higher than any other blocks of the program. To lower

the criticality of this component, refactoring is applied. The purpose of refactoring is to

alter the model based on the user‘s requirements by keeping the functionality and other

constraints of the system unaffected. In each trial of refactoring, it was examined whether

the refactoring could achieve the impact of soft errors in the system maintaining the non-

functional properties like functionality, performance etc. If it fails to do that then the

method of refactoring is altered and repeated until the goal is achieved. Refactoring neither

fixes bugs nor adds new functionality; rather, it improves the understandability of the code,

changes its internal structure and design, and removes dead code.

5.5 Soft Error Detection using Preceding Variables

The key objective of this experiment is to detect soft errors that affect one of the variables

on which the value of preceding variable produces an incorrect consequence. The overall

experimental process can be expressed by the flowchart shown in Figure 5.2. The

experimental process could be divided in three phases. In the Phase 1, a set of simple real

life program are taken for the experiments. In Phase 2, proposed method is applied to

modify the source code. Before modifying the source code, preceding variables are

48

identified by the proposed method that is discussed in Chapter 4. In Phase 3, evaluation of

the proposed method is done.

Figure 5.2: Steps of the Experiment

A close observation discloses that the number of checking expressions can be significantly

reduced by variable dependency analysis. In a program, variables are interrelated. Value of

a variable eventually affects the computation of another variable. So error in a variable will

eventually propagated to the variable which directly depends on that variable. So checking

the preceding variables will detect any error that changes the values of the dependent

variables. In case of the bubble sort algorithm, comparing the duplicated array elements

after sorting can significantly reduce the number of checking and thus reduce execution

time.

Table 5.2: Source code size of the selected program in bytes

Original

Program

Maurizio

Rebaudengo et al.

x

Proposed

Method

y

% Improvement

𝑧 =
x − y

x
× 100

Matrix Multiplication 1084 1423 1318 07.40

Bubble Sort 0999 1308 1296 01.00

Quick Sort 1546 3278 2577 21.40

Selection Sort 1052 1545 1530 01.00

Fibonacci 0272 0910 0669 26.50

Series Addition 0955 4490 2000 55.46

49

Table 5.2 depicts the changes in source code sizes due to applied transformation on several

program codes according to proposed method and methodology described in Maurizio

Rebaudengo et al. [48] along with original program code. Since the numbers of checking

statements are reduced in proposed method, the transformed code size is reduced.

5.5.1 Comparisons with Existing Approaches

The figures illustrate at the subsequent section shows the graph of execution time for

Fibonacci, Series addition, Bubble sort, Quick sort, Matrix Multiplication and Selection

sort respectively that are used to evaluate the efficiency of the proposed method. Original

program, whole program duplication (proposed by Rebaudengo et al. [48]), and proposed

methods are applied to evaluate the performance of the proposed method. Execution time of

the program is dependent on several system specification parameters like processor speed,

size of the primary memory and the number of thread running on the system; so result will

be varied at different machines. Data are manipulated at the machine with the configuration

of Intel dual core 2.0 GHz processor, 1 GB RAM, 2GB virtual memory and as an operating

system Windows 7 Ultimate is used.

Figure 5.3: Comparison of Execution time for the Fibonacci Program in ms

0

10

20

30

40

50

60

70

80

90

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

E
x

ec
u
ti

o
n
 t

im
e

in
 m

s

Data size

Original Maurizio Proposed

50

Figure 5.3 illustrates that proposed method significantly reduced the execution time in

comparison with Maurizio Rebaudengo et. al. [48] since reduced number of checking

expressions is used. Data size N= 1000, 2000, 3000…, 10000 is used to generate the

Fibonacci series. Since execution time is very small, 100000 iterations are applied to make

the results user friendly. Execution time is calculated for each N, and it is observed that

each trial gives almost the similar execution time. The proposed method checks preceding

variables rather than checking all variables. Due to reduced number of comparisons,

significant amount of time is saved.

Figure 5.4 represents the execution time of the series addition program. The dependency

graph and the three distinct preceding variables, S1, S2 and S3 of these programs are shown

in Figure 4.6. Figure 5.4 outlines that execution time is minimized with the proposed

method.

Figure 5.4: Comparison of Execution time for the Series Addition Program in ms

Figure 5.5 shows that the time overhead for bubble sort is significantly reduced as well due

to reduced number of comparisons. To experiment, random data of different size is

generated and stored in a text file. Those data file is used to sort by using the three different

methods. In this experiment, 1000, 2000, 3000, .…., 10000 random data is used; Figure 5.5

shows that in each trial (any size of data) execution time of the proposed method is lower

0

10

20

30

40

50

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

E
x
ec

u
ti

o
n
 t
im

e
in

 m
s

Data size

Original Maurizio Proposed

51

than the dominant approach. Proposed method is lower time overhead then [48] for any size

of data for the bubble sort.

Figure 5.5: Comparison of Execution Time for the Bubble Sort Program in ms.

Figure 5.6 shows the execution time overhead for the quick sort algorithm. It is plotted

against original code; code transformed by method described in Maurizio Rebaudengo et.

al. [48], and proposed method. It shows the comprehensible enhancement in execution time

over the existing method due to reduced number of comparisons. Some different size of

data is used to measure the performance of the proposed method for quick sort. In each size

of data, proposed method proved its time efficiency then [48]. 1000, 2000, 3000…. random

data is used to experiment.

0

500

1000

1500

2000

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

E
x

ec
u
ti

o
n
 t

im
e

in
 m

s

Data size

Original Maurizio Proposed

52

Figure 5.6: Comparison of Execution Time for the Quick Sort Program in ms.

The execution time overhead for the Matrix Multiplication is plotted in Figure 5.7. If the

size of matrix increases, the proposed method takes lesser time than the Maurizio

Rebaudengo et. al. [48]. The experiment uses 100x100, 200x200, 300x300, 400x400,

500x500…. 1000x1000 sized matrices for the multiplication.

Figure 5.7: Comparison of Execution Time for the Matrix Multiplication Program in ms.

0

20

40

60

80

100

120

140

1000 2000 3000 4000 5000

E
x

ec
u

ti
o

n
 t
im

e
in

 m
s

Data size

Original Maurizio Proposed

0

20000

40000

60000

80000

100000

120000

140000

100 200 300 400 500 600 700 800 900 1000

E
x

ec
u

ti
o
n
 t
im

e
in

 m
s

Matrix size

Original Maurizio Proposed

53

The execution time overhead for the Selection sort algorithm is also plotted for the original

code, code transformed by Maurizio Rebaudengo et. al. [48], and the proposed method in

Figure 5.8. The experiments have been performed on 1000, 2000, 3000…..10000 ranged/

sized random data to arrange using selection sort. In each of trials proposed methods

consume lesser time then the Maurizio Rebaudengo et. al. [48]. We believe, Execution time

of the selection sort algorithm is minimized in the proposed method in comparison with the

existing.

Figure 5.8: Comparison of Execution Time for the Selection Sort Program in ms.

5.6 Discussion

From the experimental data represents at Table 5.1, it is observed that ―sorting order

decision‖ block is more critical than any other blocks of the program. To lower the

criticality of this block, refactoring is applied. After refactoring, criticality of the block is

minimized from ‗major‘ to ‗minor‘.

Experimental results of the Bubble sort, Quick sort, Selection sort and Matrix

multiplication problem shows that the proposed method consumes lesser time in every trial

than the method proposed by Maurizio Rebaudengo et. at [48]. Execution time of the

0

100

200

300

400

500

600

700

800

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

E
x
ec

u
ti

o
n
 t
im

e
in

 m
s

Data size

Original Maurizio Proposed

54

Matrix multiplication, Bubble sort and Selection sort increases exponentially with the

increment of data size. Hence, the proposed method minimizes the risks of soft errors by

refactoring critical blocks and then detects the soft errors in lesser time than [48] by using

preceding variable only.

55

CHAPTER VI

Conclusions

6.1 Concluding Remarks

The significant contribution of the proposed method is to lower soft error risks with a

minimum time and space complexity since it works with preceding variables only. Hence,

all the variables in the program code are not considered to be recomputed or replicated.

Preceding variable comparisons can capture the soft errors which could affect other

dependent variables and this approach has no interference to system performance. The

point of interest of the proposed method is the placement of the detector in the right place

to reduce the computational effect without minimizing soft error coverage significantly.

Although soft errors not only occur inside the variables but also in the command words or

at any other places, the proposed methodology opens the possibility of determining the

dependency among them and then use lesser checks to detect soft errors. In case of the

absence of dependant variables, this method applies check in each independent variable.

Experimental studies show that the proposed method can provide high-coverage, low-

latency (rapid) error detection to preempt uncontrolled system crash/hang and prevent error

propagation. And the soft error detection time is lesser than the previous dominant

approaches.

6.2 Future Recommendations

Few possible steps could be adopted to enhance the performance of the method. The

protection of backup of original program is a great concern to remain soft error free. For the

soft error tolerance of the storage, besides existing techniques such as Error-Correcting-

Code (ECC), Redundant Array of Inexpensive Disks (RAID), several enhancements can be

explored. Efficiency of the proposed method depends on proper identification of critical

blocks and variables. Several issues like ―fan out‖ i.e., that is number of dependency/

branches exist; number of ―recursion‖ i.e., looping or how many times a call repeated;

―severity of blocks‖ i.e., block containing more weighted variables etc., are wide open to

56

determine the criticality. Hence, much more scopes are available in the field of critical

block and variable identification.

57

BIBLIOGRAPHY

[1] A. Timor, A. Mendelson, Y. Birk, and N. Suri, "Using underutilized CPU resources to

enhance its reliability," Dependable and Secure Computing, IEEE Transactionson, vol. 7,

no. 1, pp. 94-109, 2010.

[2] E. L. Rhod, C. A. L. Lisboa, L. Carro, M. S. Reorda, and M. Violante, "Hardware and

Software Transparency in the Protection of Programs Against SEUs and SETs," Journal of

Electronic Testing, vol. 24, pp. 45-56, 2008.

[3] S. S. Mukherjee, J. Emer, and S. K. Reinhardt, "The soft error problem: an architectural

perspective," In 11th International Symposium on High-Performance Computer

Architecture, San Francisco, CA, USA, pp. 243 - 247, 2005.

[4] R. K. Iyer, N. M. Nakka, Z. T. Kalbarczyk, and S. Mitra, "Recent advances and new

avenues in hardware-level reliability support,"Micro, IEEE, vol. 25, pp. 18-29, 2005.

[5] V. Narayanan and Y. Xie, "Reliability concerns in embedded system designs,"

Computer, vol. 39, pp. 118-120, 2006.

[6] S. Tosun, "Reliability-centric system design for embedded systems" Ph.D. Thesis,

Syracuse University, United States --New York, 2005.

[7] Muhammad Sheikh Sadi, D. G. Myers, Cesar Ortega Sanchez, and Jan Jurjens,

―Component Criticality Analysis to Minimizing Soft Errors Risk.‖ Comput Syst Sci & Eng,

vol 26, no 1, pp. 377-391, 2010.

[8] Shubu Mukherjee, ―Architecture Design For Soft Errors‖, Morgan Kaufmann

Publishers, ISBN 978-0-12-369529-1, 2008.

[9] C. Weaver, J. Emer, S. S. Mukherjee, and S. K. Reinhardt, ―Techniques to Reduce the

Soft Error Rate of a High-Performance Microprocessor,‖ in31st Annual International

Symposium on Computer Architecture, pp. 264–275, 2004.

[10] R. Baumann, T. Hossain, S. Murata, and H. Kitagawa, ―Boron Compounds as a

Dominant Source of Alpha Particles in Semiconductor Devices‖ In Proceeding of the 33rd

Annual Reliability Physics Symposium, pp. 297–302, 1995.

58

[11] R. Baumann, ―Soft Errors in Advanced Semiconductor Devices-Part 1: The Three

Radiation Sources‖ IEEE Trans. Device and Materials Reliability, vol. 1, no. 1, pp. 17–22,

2001.

[12] O. Musseau, ―Single-Event Effect in SOI Technologies and Devices‖ IEEE Trans.

Nuclear Science, vol. 43, no. 2, pp. 603–613, 1996.

[13] M. Genero, M. Piatini, and E. Manso, "Finding "early" indicators of UML class

diagrams understandability and modifiability," in Proceedings - International Symposium

on Empirical Software Engineering, ISESE, 2004, pp. 207-216.

[14] S. S. Mukherjee, M. Kontz and S. K. Reinhardt, "Detailed design and evaluation of

redundant multi-threading alternatives" In Proceeding of the 29th Annual International

Symposium on Computer Architecture, pp. 99-110, 2002.

[15] S. K. Reinhardt and S. S. Mukherjee, "Transient fault detection via simultaneous

multithreading" In Proceeding of the 27th International Symposium on Computer

Architecture, pp. 25-36, 2000.

[16] E. Rotenberg, "AR-SMT: A Micro Architectural Approach to Fault Tolerance in

Microprocessors" In Proceeding of the 29th Annual International Symposium on Fault-

Tolerant Computing, pp. 84-91, 1999.

[17] J. C. Smolens, B. T. Gold, J. Kim, B. Falsafi, J. C. Hoe, and A. G. Nowatzyk,

"Fingerprinting: Bounding soft-error detection latency and bandwidth" In Proceedings of

the 11th International Conference on Architectural Support for Programming Languages

and Operating Systems, ASPLOS XI, New York, NY 10036-5701, United States, pp. 224-

234, 2004.

[18] T. N. Vijaykumar, I. Pomeranz, and K. Cheng, "Transient-fault recovery using

simultaneous multithreading," In Proceeding of the 29th Annual International Symposium

on Computer Architecture, pp. 87-98, 2002.

[19] N. Oh, P. P. Shirvani, and E. J. McCluskey, "Error detection by duplicated instructions

in super-scalar processors" Reliability, IEEE Transactionson, vol. 51, pp. 63-75, 2002.

59

[20] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. August, "SWIFT:

software implemented fault tolerance" In Proceeding of the International Symposium on

Code Generation and Optimization, Los Alamitos, CA, USA, pp. 243-54, 2005.

[21] Y. Xie, L. Li, M. Kandemir, N. Vijaykrishnan, and M. J. Irwin, "Reliability-aware co-

synthesis for embedded systems," In Proceeding of the 15th IEEE International Conference

on Application-Specific Systems, Architectures and Processors, pp. 41-50, 2004.

[22] J. Ray, J. C. Hoe, and B. Falsafi, "Dual use of superscalar datapath for transient-fault

detection and recovery" In Proceeding of the 34th ACM/IEEE International Symposium on

Microarchitecture, pp. 214-224, 2001.

[23] C. L. Chen and M. Y. Hsiao, "Error-Correcting Codes for Semiconductor Memory

Applications: A State-Of-The-Art Review," IBM Journal of Research and Development,

vol. 28, pp. 124-134, 1984.

[24] J. M. a. T. Khoshgoftaar, "Software metrics for reliability assessment," in

Handbook of Software Reliability Eng., M. Lyu ed., Chapter 12ed., pp. 493-529, 1996.

[25] K. R. Walcott, G. Humphreys, and S. Gurumurthi, "Dynamic prediction of

architectural vulnerability from microarchitectural state," in Proceedings of the

International Symposium on Computer Architecture, New York, NY 10016-5997, United

States, pp. 516-527, 2007.

[26] A. Shye, J. Blomstedt, T. Moseley, V. Janapa Reddi, and D. Connors, "PLR: A

Software Approach to Transient Fault Tolerance for Multi-Core Architectures" In

Proceeding of the IEEE Transactions on Dependable and Secure Computing.pp. 267-78,

2007.

[27] J. K. Park and J. T. Kim, "A Soft Error Mitigation Technique for Constrained Gate-

level Designs" IEICE Electronics Express, vol. 5, pp. 698-704, 2008.

[28] N. Miskov-Zivanov and D. Marculescu, "MARS-C: modeling and reduction of soft

errors in combinational circuits" In Proceedings of the Design Automation Conference,

Piscataway, NJ, USA, pp. 767-772, 2006.

60

[29] Z. Quming and K. Mohanram, "Cost-effective radiation hardening technique for

combinational logic" In Proceedings of the International Conference on Computer Aided

Design, Piscataway, NJ, USA, pp. 100-106, 2004.

[30] Martin Omafia. Daniele Rossi. Cecilia Metra, "Novel Transient Fault Hardened Static

Latch," In IEEE International Test Conference (TC), Charlotte, NC, United states, pp. 886-

892, 2003.

[31] S. P. Release. New chip technology from STmicroelectronics eliminates soft error

threat to electronic systems, Available at: http://www.st.com/stonline/ press/news/

year2003/t1394h .htm [Online].

[32] M. Zhang, "Analysis and design of soft-error tolerant circuits" Ph.D. Thesis,

University of Illinois at Urbana-Champaign, United States -- Illinois, 2006.

[33] M. Zhang, S. Mitra, T. M. Mak, N. Seifert, N. J. Wang, Q. Shi, K. S. Kim, N. R.

Shanbhag, and S. J. Patel, "Sequential Element Design With Built-In Soft Error Resilience"

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 14, pp. 1368-

1378, 2006.

[34] P. J. Meaney, S. B. Swaney, P. N. Sanda, and L. Spainhower, "IBM z990 soft error

detection and recovery " Device and Materials Reliability, IEEE Transactions on, vol. 5,

pp. 419-427, 2005.

[35] T. M. Austin, "DIVA: A reliable substrate for deep submicron microarchitecture

design," In Proceeding of the 32nd Annual International Symposium on Microarchitecture,

pp. 196-207, 1999.

[36] B. T. Gold, J. Kim, J. C. Smolens, E. S. Chung, V. Liaskovitis, E. Nurvitadhi, B.

Falsafi, J. C. Hoe, and A. G. Nowatzyk, "TRUSS: A reliable, scalable server architecture"

Micro, IEEE, vol. 25, pp. 51-59, 2005.

[37] S. Krishna Mohan, "Efficient techniques for modeling and mitigation of soft errors in

nanometer-scale static CMOS logic circuits" Ph.D. Thesis, Michigan State University,

United States -- Michigan, 2005.

61

[38] A. G. Mohamed, S. Chad, T. N. Vijaykumar, and P. Irith, "Transient-fault recovery

for chip multiprocessors" IEEE Micro, vol. 23, p. 76, 2003. [35] T. N. Vijaykumar, I.

Pomeranz, and K. Cheng, "Transient-fault recovery using simultaneous multithreading," in

29th Annual International Symposium on Computer Architecture, pp. 87-98, 2002.

[39] P. E. Evans, "Failure mode effects and criticality analysis," in Midcon/87 Conference

Record, Los Angeles, CA, USA, pp. 168-171, 1987.

[40] T. N. Vijaykumar, I. Pomeranz, and K. Cheng, "Transient-fault recovery using

simultaneous multithreading," in 29th Annual International Symposium on Computer

Architecture, pp. 87-98, 2002.

[41] S. M. Seyed-Hosseini, N. Safaei, and M. J. Asgharpour, "Reprioritization of failures in

a system failure mode and effects analysis by decision making trial and evaluation

laboratory technique," Reliability Engineering & System Safety, vol. 91, pp. 872-881, 2006.

[42] S. Hosseini and M. A. Azgomi, "UML model refactoring with emphasis on behavior

preservation," in Proceedings of the 2nd IFIP/IEEE International Symposium on

Theoretical Aspects of Software Engineering, Piscataway, NJ 08855-1331, United States,

pp. 125-128, 2008.

[43] S. Gerson, P. Damien, T. Yves Le, J. Jean-Marc, z, and quel, "Refactoring UML

Models," in Proceedings of the 4th International Conference on The Unified Modeling

Language, Modeling Languages, Concepts, and Tools, ed: Springer-Verlag, pp. 134-148,

2001.

[44] L. Dobrzanski and L. Kuzniarz, "An approach to refactoring of executable UML

models," in Proceedings of the ACM Symposium on Applied Computing, New York, NY

10036-5701, United States, pp. 1273-1279, 2006.

[45] M. Boger, T. Sturm, and P. Fragemann, "Refactoring browser for UML," in

Proceedings of the International Conference on Objects, Components, Architectures,

Services, and Applications for a Networked World, Berlin, Germany, 2003, Revised Papers

(Lecture Notes in Computer Science), vol.2591, pp. 366-377, 2003.

62

[46] T. Mens and P. Van Gorp, "A taxonomy of model transformation," Electronic Notes in

Theoretical Computer Science, vol. 152, pp. 125-142, 2006.

[47] T. Mens, "On the use of graph transformations for model refactoring," Lecture Notes

in Computer Science, vol. 41, LNCS, pp. 219-257, 2006.

[48] Maurizio Rebaudengo, Matteo Sonza Reorda, Marco Torchiano, Massimo Violante,

―Soft-error Detection through Software Fault-Tolerance techniques”. International

Conference on Intelligence in Networks (ICIN), Bordeaux, France, October, 2001.

63

APPENDIX A

TERMS AND DEFINITIONS

BPSG: Borophosphosilicate glass. BPSG is a type of silicate glass that includes additives

containing boron and phosphorus. Silicate glass such as PSG and borophosphosilicate glass

are commonly used in semiconductor device fabrication for intermetal layers, i.e., for

insulating layers deposited between successive metal or conducting layers.

Critical Charge (Qcrit): The minimum amount of charge that when collected at any

sensitive node will cause the node to change state. The critical charge is usually generated

by incident radiation and its value is dependent on the effective linear energy transfer,

which is usually a function of the angle of incident of the particle radiation.

ECC: Error correction code, sometimes called Error Detection And Correction (EDAC).

Electron Volt (eV): One eV is the energy gained by an electron when accelerating through

a potential difference of 1 volt. Energy of radiation is usually in MeV (106eV).

FIT: Failure in Time; the number of failures per 10
9
 device hours. 1 year MTTF =

10
9
/(24×365)FIT = 114,155 FIT.

MTTF: Mean Time to Failure.

RAID: Redundant Arrays of Inexpensive Disks. RAID is a technology that supports the

integrated use of two or more hard-drives in various configurations for the purposes of

achieving greater performance, reliability through redundancy, and larger disk volume sizes

through aggregation.

SEE: Single Event Effect. Any measurable or observable change in state or performance of

a microelectronic device, component, subsystem or system resulting from a single energetic

particle strike. SEE include SEU, SEL, SEB and SEFI.

SET: Single Event Transient. A current or voltage transient pulse caused by SEE.

SEU: Single Event Upset. Radiation-induced errors in microelectronic circuits caused

when charged particles (usually from the radiation belts or from cosmic rays) lose energy

by ionizing the medium through which they pass, leaving behind a wake of electron-hole

pairs.

Soft error: A soft error that can be corrected by repeated reading without rewriting or

without the removal of power.

SER: Soft error rate.

SOI: Silicon on insulator.

