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SUMMARY 

This thesis studies the nature of Pseudocomplemented lattice. We can 

define a lattice in two ways; (i) Set theoretically and (ii) Algebraically. 

Set theoretically: A poset <L; :!~> is a lattice if for every a, be L both 

Sup {a,b} and Inf{a,b} exists in L. 

Algebraically : A nonempty set L with two binary operations A and v is 

called a lattice if V a, b, C L. The following conditions hold. 

aAa=a, avaa 

aAb=bAa,avb=bva. 

aA(bAc)(aAb)Ac, a v (b v c) = (a v b)v c, 

aA(avb)=a, av(aAb)=a. 

In this thesis, we have studied several properties of pseudocomplemented 

lattices. Moreover, we give several results on pseudocomplemented 

lattices which certainly extend and generalize many results in lattice 

theory. 

In Chapter one, we have discussed posets, lattices and Ideals of a lattice 

which are explain with some examples and generalized many theorems of 

them. 

In chapter two, congruence of lattices, distributive lattices, 

Complemented lattices and Boolean algebra have been discussed, which 

are basic concept of this thesis. 

In chapter three we give a description of pseudocomplemented lattices. 

We have also studied distributive pseudocomplemented lattices and 

algebraic lattices. Pseudocompiemented lattices have been studied by 

G. Gratzer [7] and many other authors. Here we extend several results of 

/ G. Gratzer [7] to lattices. 



Chapter four introduces the concepts of stone lattices. Stone lattices have 

been studied by Gratzer [7], Katrinak [11] and many other authors. We 

have given a characterization of minimal prime ideals of 

pseudocompiemented distributive lattices. 

Chapter five introduces the concept of distributive and modular lattice 

with n-ideals. Here we include several characterizations of n-ideals. We 

have proved some interesting result which are generalizes several results 

on distributive ,modular and ideals of a lattices. Latif [20] in his thesis 

has introduced the concept of standard n-ideals of a lattice. We conclude 
this thesis with some more properties of standard and neutral n-ideals. 



CHAPTER ONE 

LATTICES AND IDEALS 

1. Lattices: 

Introduction: The intention of this section is to outline and fix the 

notation for some of the concepts of lattices which are basic to this thesis. 

We also formulate some results on arbitrary lattices for later use. For the 

background material in lattice theory we refer the reader to the text of G. 

Birkhoff [1], G. Gratzer [7], [8], D.E. Rutherford [17] and vijay K. 

Khanna [18]. 

Definition (Poset): A nonempty set P. together with a binary relation p 

is said to form a partially ordered set or a poset of the following 

conditions hold: For all a,b,c E P 

Reflexivity: a p a 

Anti - symmetry: apb and bpa imply that a = b 

Transitivity: a pb and bpa imply that a p c 

We also use the partially ordering relation ':!~' in lieu of p. 

Now we give an example of a poset. 

Example 1.1.1 : The set N of natural numbers form a poset under the 

usual ':!~' . Similarly, the set of integers Z, the set of rationals Q and the 

set of real numbers R also form posels under usual  

4 6  

0%/2%3 

Figure 1.1 



As a particular case, the poset {2,3,4,6} under divisibility is represented 

by figure 1.1 

Definition (Chain): If P is a poset in which every two members are 

comparable it is called a totally ordered set or to set or a chain. Thus if P 

is a chain and x,y E P then either x :!~ y or y :!~ x. The poset in figure 

1.2 is a chain. 

1 

a 

- 0 

Figure 1.2 

Let P be a poset. If there exists an element a E P such that x :!~_ a for all 

x P then a is called greatest element, if it exists, will be comparable 

with all elements of the poset. It is generally denoted by u or I. 

Also an element b E P will be called least or zero element of P if 

b :!!~ x,Vx E P. It is denoted by 0. Least element (if it exists) will be 

unique. 

Let X = {1,2,3}, then (x)= {b,{1},{2},{3},{l,2},{2,3},{l,3},{l,2,3}} form a 

peset under usual ':!~ * with q as least element and {l ,2,3 } as greatest 

element. An element a in a poset P is called maximal element of P if 

a < X for no x E P. In the poset {1,2,4,6} under divisibility 4 and 6 

are both maximal elements. Greatest element is the unique maximal 

element in figure 1.1. An element b in a poset P is called a minimal 

element of P if x <b for no x in P. 2 and 3 are both minimal 

/ elements in figeure 1 .1. 

Pj 



Theorem 1.1.2: If S is a nonempty finite subset of aposet P then S 

has maximal and minimal elements. 

- Proof: Let x1. x2  ................................, x,1 be all the distinct elements of 

S in any random order. If x j  is maximal element, we are done. If x j  is not 

maximal then there exists some xi  E S such that x1  <xi. If x, is maximal. 

We are done. If not, there exists some x ES such that xi  <xi. 

Continuing like this, we will reach a stage where some element will be 

maximal. Similarly, we can show that S has minimal elements. 

Theorem 1.1.3: The cardinal product of two posets is aposet. 

Proof: Let P1  and P2  be two posels then we show that 

P1  x P2 = ((x, y) Ix E I' s, y E P2) forms a posel under the relation defined 

by. (x1 ,y1 ) :!~ PI  x P2 (x2,y2 ) x 1  :!~ Pj  X2  in Pi, y' -!!~-P2y2 in P2  

i) Reflexivity. (x, y) -!!:-:~Pj xP2 (x,y) V (x, y) EPJ xP2 asx -:s~P1  in 

P1  and y-S-P2 yinP2  Vx ePj,y EP2 

Anti - symmetry : Let (xi, y') -:5- Pi x P2  'x2, Y2)  and (x2,y2) :!~ P j  

x P2  (x j, y). Then x1  -!-<P1  x2, yj -!-~'P2 Y2 and x2 -!-~P1  x1, Y2 :5'P2 Y2, 

implies that x1  = x2, y' = Y2 implies that 'x1, yi) = "x2, y2). 

Transitive: Let (x j, y') s-P, xP2  (x2, Y2)  and 

(x2, y2) -:S~P1 x P2  (x3, y). Then x1  -S~P1 x,,  YJ S-P7 Y2 and x2 -s-P1  x3, 

Y2 -:!~P2 Y3, implies that xj:s~P1  x3, y-:!~P  y3  

implies (x j, y') -S-P1 xP2  (x3, y3). 

Hence the product of two posets is a pose!. 

Definition(Suprimum and Infimum): Let S be a non empty subset of 

aposet P. An element a E P is called an upper bound of S if x :!~ aVx E S. 

Further if a is an upper bound of S such that, a :!~'b for all upper bounds b 

/ 
of S then a is called least upper bound or supremum of S. We write 

3 



Sup S for suprernurn of S. Then a is called least upper bound or supremum 

of S. An element a E P will be called a lower bound of S if S 

ifa :!~ xVx E S and a will be called the greatest lower bound or lnJlmurn of 

S if b :!~ a for all lower bounds b of S. 

Example : Let <Z, :!~> be the poset of integers under usual  

Let S= { ...............  —3,-2,-1,O,-2,3} then 3SupS. 

Definition(Lattice): Lattices are defined in two ways; (i) set 

theoretically and (ii) Algebraically 

Set theoretically (define a lattice): Aposet <L;:!~> is said to form a 

lattice if for every a, b E L, Sup{a, b} and Jnf{a, b} exist in L. So we 

can write Supa,b} a v band Infa,b}= a v b 

Example: 1.1.4: Let X be a non empty set, then the poset <P(X);c> 

of all subsets of Xunder set inclusion '' is lattice. 

Here, for A,BEP(X),AAB=Ar'B and AvB=AuB. Asaparticular 

case when X= 11, 2, 3} then 

= {, {i}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,311. 

(1,2, 3) 

(1, 2,) 

(1) 

(2,3) 

(3) 

Figure 1.3 

Now we give an example of a poset which is not a lattice. 
F 

4 



Example: 1.1.5: The set {2,3,4,12} under divisibility is a poset but is 

not a lattice. Since 2 A 3 = 6 does not exists. 

The algebraic definition of a lattice: A nonempty set L together with 

two binary operations A and v is said to form a lattice if V a, b, c E L 

the following conditions hold; 

1) Idempotency: 

Cornrnutativity 

Associativity 

Absorption 

a A a = a,a v a = a 

a A b = b A a, a v b = b v a 

ai (b A c)= (a A b)A C. 

av(bvc)=(avb)vc 

a (a v a, av (a A a. 

Example:1.1.6: The set L = 10,a,b,11 forms a lattice. 

ab 

Figure 1.1.4 

The meet table and the join table of L = {0,a,b,1} are as follows: 

Table - 1 

MOMME 

MMMMM 

MMMMM I--
MMMMM 

- 
Table - 2 



Theorem: 1.1.7: (a) Let the poset L =< L;:!~> be a lattice. 
Set Supa, b} = a v b and Inf {a, b} = a A b, then the algebra 

=< L;A,V >is a lattice. 

(b) Let the algebra L =< L; :!~> be a lattice. Set a b if and only if 

aAb=a,then L' =< L;:!~> is a poset and the poset L P isalattice. 
Proof: a) We have L is non empty and A and v are two binary 
operations in L. 

1) aAa=Jnf{aa}=aava_Sup{aa}_a 

A and v satisfy idempotent law. 

aAb=Infa,b}=Inftba}=bAa 

a vb = Sup{a,b} := Sup{b,a}= b va 

A and v satisfy commutative law. 

aA(bAc) = aAlnf{b,c}=Jnf{abc} 

—1n1{a,b}A c=(aA b)A c 

a v (b v c)= a v Sup {b,c}= Sup {a,b,c} 

= Sup(a,b}vc(avb)vc 

.. A and v satisfy associative law. 

 

a v (a A b)= a v inf (a,b}= sup(a,infa,b}} = a 

.. A and v satisfy absorption law. 

So L' =< L;A,v> is a lattice. 

b) Given that the algebra L =< L;:!~> be a lattice set a :!~ b if and only if 
a A b = a; then LI = <L; :!~,> is a lattice. 

i) a a A b set a :!~ b if and only if a = a A b. Since A IS 
idempotent. 

I 

aAa=a, Implies thata:!~a, aEL .. :!~ is reflexive. 

6 



Since A is commutative then a A b = b A a implies that 

a <b and b :!~ a. 

.4 implies that a = b where a,b E L. 

:!~ is anti -symmetric. 

Let a:!~banda:!~b then a=aAb and b=bAc 

a = a A b = a A (b A c)= (a A b)A c = a AC, 

Soa :!~- cwherea,b,cEL 

~ is transitive. 

Hence L =< L;:!~> is aposet. 

Let a,b,c E LthenaAb EL 

Now (aAb)Aa=aA(bAa)=aA(aAb)=(aAa)Ab=aAb 

and (aAb)Ab=aA(bAb)=aAb 

So, aAb:!~a,b 

i.e. (a A b) is the another lower bound of a and b. 

Let c be the another lower bound of a and b. :. C ::~ a,c :!~ b 

Then C A a = c and cAb=c. i.e., C :!~ a A b 

(a A b) is greatest lower bound of (a, b) 

:.(aAb)=Inf{a,b} 

By absorption law, 

aA(aAb)=a and bA(aAb)=b 

i.e., a and b is lower bound of a v b. 

Therefore b:!~avb. 

Then a v b is an upper bound of a and b 

Let c be the another upper bound of a and b, then a :!~ c, b :!~ c 

So,avc=(aAc)vc=C, bvC=(bAc)vC=C 

Thus (avb)Ac=(avb)A(avc)=(avb)A(avbvc) 

7 



=(a v b)A ((a v b)v c) 

= (a v h)[by absorption law] 

i.e. (avb):!~c 

and so avb_—Sup{a,b} 

Hence L' =< L; :!~> is a lattice. 

Theorem 1.1.8 : The cardinal product of two lattices is a lattice. 

Proof: Let L1  and L2  be two lattices then we have already proved that 

[Th-1.l.3] L1  x L7  = (x,y : XE L1 ,y € L2 } is aposet under the relation 

:!~ define by. (x1 ,y1 ):!~ L1  xL2(x2,y2 ) <=> xLx2  inL1 ,y1  :!gL,y,inL2 . 

We shall show that L1  xL2  forms a lattice. 

Let (x1 ,y1 ),(x2,y,)€L1  x L2 be any elements. Then X1 ,X2  €L1  and 

y1 ,y2  €L,. Since L1  and L2  are lattices ,then {x1 , x 2  }and {y1 , y, } 
have sup and inf in L1  and L2  respectively. 

Let X1  A X2  = 1nf{x1  , x2 } and y1  A y2  = inf{y1  ,y2  } 
Then X1  A X2  :!~ L 1  x 1 , x1  A X2  :!~ L 1  x2 , y1  A y2  :!~ L2y1 , y1  A y2  :!~ L2y2  

Irnpliesthat(x1  AX2  ,y1  A y2 ):!~L1  xL2  (x1 ,y1 ),(x1  AX2 ,)'1 A y2)!~ L1  xL, 

(x21y2) 
. Implies that (x1  A X2 )1 A  y2) is a lower bound of 

Suppose (p,q) is any lower bound of 

then (p,q):!~L1 xL2 (X1 ,y1 )and (p,q):!~L1 xL,(x2,y2) 

Implies that p :!~ L1 x1 ,q ~ L2y1 , p :!~ L1 x2  ,q :!~ L2y2  

Implies that p :!~ L1 x1 ,p :!~ L1 x2 , and q :!~ L2 y1  , q :!~ L2y2  

Implies that p isa lower bound of {X 1  , X2 } in L. 

q is a lower bound of {y1 , y 2 } in L 

Implies that p :!~ L1  x1  Ax2  = infx1 ,x2}, q:~ L1  y1  Ay = inf{y1 ,y,} 

8 



Implies that (p,q) !~ Lix L2  { X1  A X2 , y1  A 32 } 

impliesthat (x1  A X2 
, y1  A y2) is greatest lower bound 

of {(x1,y1),(x2,y2) }. 

Similarly,we can say that (x1  A X2 
, y1  A y2 ) is least upper bound of 

{ (x1 
, 

y1 ), (x21  y2 ) 
. 

Hence L1  x L2  is a lattice. 

Defmnition(Complete lattice): A lattice L is called a complement lattice 

if every nonempty subset of L has its Sup and lnf exists in L. 

Example: 1(L) the lattice of all ideals of a lattice L is complete 

if O(=- I. 

Definition(Meet semi lattice): A poset <P;:!~> is called a meet semi 

lattice if for all a,b E P, Inf{a,b} exists. Equivalently, a nonempty set L 

together with a binary operation A is called a meet semi lattice if 

Va,b,c E L, 

(i) aAa=a (ii) aAbbAa, (iii) aAbAc)=(aAb)Ac. 

Definition(Sublattice): A nonempty subset S of a lattice L is called a 

sub/at/ce of L if a,b E S implies that a A b,a v b E S. If L is any lattice 

and a E L be any element then falis a sublattice of L. 

Theorem 1.1.9: Union of two sublattices may not be a sub/attice. 

Proof: Consider the lattice L = {1,2,3,4,6,12} of factors of 12 under 

divisibility. 

0 

4 

Figurel.4 
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Then S = 1,21 and 7' = 2,31 are sublattices of L. 

But S u 7' = 1,2,31 is not sublattice as 2,3 eS u T 

'4 but 2v3=6ST. 

Theorem 1.1.10: A lattice L is a chain if and only if every non empty 

subset of it is a sublattice. 

Proof: Let S be a non empty subset of a chain L then a,b E S 

implies that a,b E L, 

implies that a,b comparable, let a < b 

then a A b = a E S, a v h = b e S, therefore S is a sublattice. 

Conversely, Let L be a lattice such that every nonempty subset of L is a 

sublattice. We show that L is a chain. Let a,b e L be any elements, than 

{a, b} being a non empty subset of L will be a sublattice of L. Thus by 

defination of sublattice a A b = a,b} implies that a A b = a or a A h = b 

implies that a :~ b ora :!~ b i.e, a, b are comparable, Hence L is a 

chain. 

Definition(Convex sub lattice): A sudset K of a lattice L is called a 

convex if a,beK; cEL and a:!~c:5b implies that cEK. Any interval 

[a,b] in a lattice is a convex sublattice. 

Now we give an example which is not convex sublattice. 

In the lattice { 1,2,3,4,6,12 } under divisibility {1,6} is a sublattice 

which is non-convex as 2,3 E [1,6], but 2,3 o 11,61 

Thus 1,6] 1,61. 

Definition(Bounded lattice): A lattice is called finite if it contains a 

finite nuber of elements. A lattice with a largest and smallest elements is 

called a bounded lattice. Smallest element is denoted by zero and the 

It largest element is denoted by one. 

10 



Let L and L, be lattices. A mapping ç 
. L —L2  is called a meet 

homomorphism if (aAb)= (a)Aq,(b). It is called ajoin homomorphism 

if ço(avb)= (a)v co(b). If (o is both meet as well as join homomorphism, 

it is called a homomorphism. 

Example: Let L1  and L2  be the lattices of figure 1.6(a) and 1.6(b) 

respectively. 

a 

-4 

L ___________________________________ 

Figure 1.6 (a) 

Define q: L1 —. L2 such that (o)= p,ço(a)= q,ço(b)= p,q(u) = q. 

Then is a homomorphism for 

q,(a A b)= ço(o) = p,ço(a)A ço(b)= q A p = p 

implies that q(a A b)= (a)A ço(b), 

ço(o v a)= p(a)= q, 

(0)v(a)=pvq=p 

implies that ç (o v a) = q,(0) v (a) 

Similarly for all other elements. 

A map q: J- —> P is called isotone if x :!~ J-y implies that f(x):!~  P,f(y). 

1 I' 

a a' 

It 

0 U.  

Figure 1.6(b) 



Theorem 1.1.11: The algebra <L;A,v> is a lattice if and only if 

<L;A> and <L;v> semi-lattices and a = a A b is equivalent to 

b=avb. 

Proof: Let A and v are two binary relations on L. Since <L;v> is a 

lattice then A and v satisfy the following conditions : For all a,b,c E L, 

aAa=a,ava=a; aAb=bAa and <L;v> are I. Let a=aAb then 

a v b = (a A b) v b = 

Conversely, let <L;A> and <L;v> are semi-lattices then the above three 

conditions hold. So we need only to show the absorption identities hold in 

L. aA(avb)=aAb=a and av(aAb)=ava=a, so <L;A,v> is a 

lattice. 

4 

12 
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10 

04 

30 

Figure 1.7 

2. Ideals of a lattice. 

Definition(Idea1): A sub lattice I of a lattice L is called an ideal of L 

if, iI and aEL implies that aAiEI 

Equivalently, 

A non empty subset I of a lattice L is an ideal if 

a,b€ I, avbEl 

a Eland lEL implies that aAIEI 

Let L 
= { 1,2,3,5,6,10,15,301 be a lattice of factors of 30 under 

divisibility. 

Then {i}, { 1,2}, { 1,3}, {1,5}, {1,2,5,l o}, {1,3,5,1 5}, {1,2,3,6}, {1,2,3,5,6,10,15} 

are all the ideals of L. 

Theorem: 1.2.1: Intersection of two ideals is an ideal. 

Proof: Let I and 12  are two ideals of a lattice L. Since I, 12  are 

non empty, there exists some a E I, b e '2•  Now a € I, b e I, g L 

implies thataAbEI. Similarly aAb El2 . Thus I nl, #Ø. 

Let x,ye11  rI, be any elements, 
Ir 

implies that x,yEI1  and x,yEI7  

implies that xvycl1  and xvyEl2  as I, 12'  are ideals, 

13 



So, x v y E '1 '2• Again if x I n I., and I E L be any elements then 

xe11 ,xEI,,IEL implies that xAlEI1  and xAIEI, 

implies that xAleI1  mJ,. 

Hence I  nl., is an ideal. 

Theo rem 1.2.2: Union of two ideals is an ideal if and only if 

one of them is contained in the other. 

Proof: Let 'I"2  be two ideals of a lattice L such that either 

c '2 or 12 C  I. We have to show that '1  U 12  is an ideal. 

Since I #,L, #Ø then I, ul,# (as 11 ,I,are two ideals). 

Let J 12  then 1,  U '2 = 12 . If 12  c Il  then I,  u 12 = J. 

In this case I u J2  is an Ideal. 

Conversely, let 1 and I, be two ideals of L and Ii  12  and 

'2 , such that I,  U L, is an ideal. As I '2 and 1291,  

there exists xEI1,xEI1  and ye11 ,yEI,. Now x,yE1 uI, 

implies that xvyEI 1  UI, implies that xvyEl)  or xvyEl, 

ifxvyel1  thenx:!!~xvy, y:!~xvy implies that x,yEI1  

which is contradiction. 

If xvyI, then x:!~xvy, y:!~xvy implies that x,ycl,, 

which is contradiction. 

Hence I CZ 12  or 12  c I. 

Theorem 1.2.3: A nonempty subset I of a lattice L is an ideal if and 

only if 

a,b e I implies that a v b El 

aEI,x<a implies that xEI. 

Proof : Let I be an ideal of a lattice L. By definition of ideal given 

condition a A / E I. Hence I is an ideal. 
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(i) is satisfied. Let a E I,x !~ a then x = a A X E I 

Conversely, we need show that a E 1,1 E L implies that a A / E I. 

since a Al :!~ a anda el. By given condition a A/El. 

Hence I is an ideal. 

Theorem 1.2.4: The set of all ideals 1(L) of a lattice L forms a 

Lattice under 'c' relation. 

Proof: Let 1(L), be the set of all ideals of L. We shall show that 

<I(L);c:> is a/alt/ce. NowasL EI(L) then I(L)#Ø. 

First we show <I(L);c> is aposet. 

Reflexivity : I c I, V J€J (L) 

Anti-symmetry: Let 11 "2  E 1(L) such that J c 12  and 12 c ' 
Implies that I = 

Transitivity: Let I j I7 13  E 1(L) and Ii c 12  ç 13  implics that 1 13 . 

Hence <I(L);>is aposet. 

Again let 1I512  €I(L) then I AI,=11  nL, EI(L). 

Therefore Inf{11 ,I 2 }=I1  AZ2  EI(L). 

Now we claim that I vi, =x€LIx:5i1  vi,} for some / El1 ,!2  El2  

It To prove this, let x, y R.H.S then x:!~ i 1  Ai 2 for some i1  El1, '2  El, 

and y:!!~11 vj2  for some 11 E11 ,J, El, 

So x v y :!~ (i V '2)  v (11  v 12) = ('I v  j) v (i, v 12) 

(where i vj 1  El1) ! 2  VJ 2  el,,) 

Which implies x VE R.H.S. If xER.H.S and tEL with t:!~x then 

x :!~ i1  V /, for some i1 ' '2 '2. So I ~ / v '2  implies IE R.H.S. 

Therefore R.H.S is an ideal. Obviously this contains both I and 12• 

Suppose K is an ideal containing both J and 12'  Let xER.H.S then 

x :!~ i1  v i2  for some i1  E I, I., e 12'  Since K is an ideal containing I and 
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12 So i1  V '2 K and X E K i.e., R.H.S :!~, K i.e., R.H.S is the smallest 

ideals.Therefore R.H.S 
= 

v I and so 1(L) is a lattice. i.e., Sup (I j , 12) 

liv 12. Hence< J(L);c>is a lattice. 

Definition (dual ideal): A nonempty subset D of a lattice L is called 
dual ideal of L if 

a,bED implies thataAbED 

dED,aEL impliesthat. dvaeD. 

Let I = (1, 2, 5, 10) be the lattice under divisibility. Then (10), (5,10), 

(2,10) are all dual ideals of lattice L. 

10 

2 5 

1 

Figure 1.8 

An ideal I of L is proper ifl # L 
1 

b 

Figure 1.9 
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A proper ideal P of L is called aprime idealif for any x, yEL and 

XAyEP implies either xEPoryEP. Let L={ 1,2,3,4,6,12 } 

factors of 12 under divisibility forms a lattice then { 1,2,4 } be a 

prime ideal of L. 

0 

4 

Figure 1.9 

Theorem 1.2.5: Every ideal ofa lattice L is prime if L is chain. 

Proof: Let a, bEL a Ab E L. Consider (aAb) by hypothesis I = (aAb) 

is prime implies that either a = a A b or b = a A b implies that either 

a<b or b:!~a .Hence L is chain. 

Conversely, Let L be a chain and I be an ideal of L. Suppose a A b E 

since L is chain, either a :~ b or b :!~ a implies that a E I or b E I, 

therefore I is prime. U 

17 
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CHAPTER TWO 

CONGRUENCES OF A LATTICE 

1. Congruence and Distributive lattices 

Introduction: Congruence of lattices, Distributive lattices, Modular 

lattices and Boolean algebras has been studied by several authors 

including Katrinak [10], H. Lakser [13], A. S. A. Noor & M. A. Latif 

[23], W. H. Cornish [4], A. Davey [6], G. Gratzer [7] and Vijay K. 

Khanna [18]. In this chapter, we discuss congruence of lattices, 

distributive lattices, modular lattices, complemented lattices and 

Boolean algebras which are basic concept of this thesis. 

Definition (Congruence): An equivalence relation 0 (that is, a 

r(flexive symmetric, and transitive binary relation) on a lattice L is called 

a congruence relation of L if and only if a0  b (0) and a1  b1  (0) imply 

that a0  a1  =b0  Ab1 (0)and a0 va1  = b0  vb(®) 

Lemma.2.1.1: Let 0 be a congruence relation of L. Then for every 

a E L , hale is a convex sub lattice. 

Proof: Let x, y e [a] 0; then x a(®) and y a(0). 

Therefore XA aa = a (®) and x v y a v a = a(®), proving that 

[a] 0 is a sub lattice. Ifx :!~ t :!~ y and x, y E [a]® then x a(®) and 

ya(0).Therefore, t=1Ay=tAa(0) 

and t=tvx(tAa)vx(tAa)va=a(0), 

Hence [a]e is convex. 
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Sometimes a long computation is required to prove that a given binary 

relation is a con gruence relation. Such computations are often facilitated 

by the following lemma (G. Gratzer and E. T. Schmidt [1958e] and F. 

Maeda [1958]): 

Lemma.2.1.2: A reflexive binary relation ® on a lattice L is a 

congruence relation if and only if the following three properties are 

satisfied; forall x, y, :, t 

(i) xy(®) i/' xAyxvy(®) 

(ii)x:5y:!~z,x_=y and yz(®) imply that x_=z(®) 

(iii) x:!~y and xEy(®) imply thaixAl yAi(®) and xvt yvt(®. 

Proof: The "only if" part being trivial, assume now that a symmetric and 

reflexive binary relation ® satisfies conditions (i) - (iii).Let b,c E [a,d] 

and a d(®), we claim that b c(®). Indeed a d() and a < d by 

(iii) imply that bAc=avbAc dvbAc=a(. Now bAc:!~d 

and (iii) imply that bAc=(bAc)AbvcdA(bvc)=bvc(®; 

Thus by (i), bc(®. 

To prove that ® is transitive, let x y(®) and y 

Then by (i), xAyxvy(®)and 

by (iii), yvz=(yvz)v(y/\x)(yvz)v(yvx)=xvyvz(e), 

and similarly, xAyAzyAz(®). 

ThereforexAyAzyAzyvzxvyvz (®) 

and XAAZ :!!~yAZ ~yVZ :!~X VyVZ  .Thus applying (ii) twice, 

we get X A y A : x V y V Now we apply the statement of the 

previous paragraph with a=xAyAz,b=x,c=z,dxvyvz 

to conclude that xz(e. 
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LetXy(®); we claim that xv! 

Indeed, xAyxvy(®) by (i); thus by (iii), xAy)vtxvyvt(® 

Since XVt,yVtE[XAyVt,Xvyvt]. we conclude that xvtyv! (0). 

To prove the substitution Property for v, 1etx0  y0 (0) and x1  y. (0). 

Then x0  V V YJ  = YO  V 31 (0), 

Implying that x0  v y0  vy1 (®), since 0 is transitive. 

The substitution property for A is similarly proved. 

Lemma 2.1.3: C(L) is a lattice. For 0, D E C(L), ®A cI =®fl 

The join ®vI can be described as follows: 

xy(®v) if and only if there is a sequence z0  XAy, 

.......... ,z 1= xv y of elements of L such that Z0  :!~Z1  :!~ .........  :~Z,,1  and 

for each i, 0 :!~ i :~ n —1, z, = Z11  (®) or Z 

Proof: 0 A = 0 n CI is obvious. To prove the statement for the join 

,let P be the binary relation described in this theorem . Then 

qi  and 'I c P are obvious. If F is a congruence 

relation 0çF, cFand x y(yt) and x y(y'),then for each i, 

either Z, Z,~1  (0),: :, (F) .By the transitivity of r , X A y xv y(F) 

thus x y(F). Therefore, çu c F. this shows that if P is a congruence 

relation , then 'P = 0 v cj?. 'P is obviously reflexive and satisfies 

Lemma 2.1.2. If x :!~ y < z,x y(P) and y z (P ) then x z(P)is 

established by putting together the sequences showing x y(T) and 

y z('P); this verifies Lemma 2.1.2(u). To show lemma 2.1.2(iii), 

Let x y('P), X < 3) with z0  , ...........  z, 1  establishing this, and t e L .Then 

X A t y A i('P)and x v t y v can be shown with the 
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sequences Z, A t,0 :!~ i < n, z v 1,0 :!~ i < n,respectively. Thus the 

hypotheses of Lemma 2.1.2 hold forP and we conclude that 'Yis a 

congruence relation. Homomorphism and congruence relations express 

two sides of the same phenomenon. To establish this fact we first define 

quotient lattices (also calledfactor lattices). Let L be a lattice and let P be 

a congruence relation on L. Let LI® denote the set of blocks of the 

Partition of L induced by®, that is L/® ={[a]® :a(=-  L}. 

set [a]OA[b]®=[aAb]® 

and [a]®v[b]®=[avb]® 

This defines A and v on LI®. Indeed, if [a]® = [a1  ]e and 

= b1  , then a a1  (e) and b b1  (®); 

therefore, a A b a1  A b1 (e), that is [a A b](®)=a1  A b1 ]®. Thus A 

and (dually) v are well defined on LI® .The lattice axioms are easily 

verified. The lattice L / ® is the quotient lattice of L modulo ®. 

Example: the lattice L and a congruence sub lattice S of L that cannot be 

represented as [a] ® for any congruence relation ® of L. 

Consider the lattice 

a C 

a 

b 

C 

Figure 2.1 

Consider the convex sub lattice {0, a}. 

Now if 0 [a] ® for some congruence ® 
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then c v o c v a or, c v [a] ® 

and cAb=cAb® or o b®.This implies b E[a] ®, i.e. Convex sub 

lattice. { o ,a}is not a congruence class for any Congruence. 

Theorem 2.1.4: Construct a lattice that has exactly three congruence 

relations. 

I 

F1 

Figure-2 .2 

Observe that only congruence of above lattice are q, 1 and ® where 

= {o, a, b, c, 11, {e, 1 1, so above lattice has exactly three congruence. 

Theorem 2.1.5: (THE FIOMOMORPHISM THEOREM) 

Every homomorphic image of a lattice L is isomorphic to a suitable 

quotient lattice of L. In fact, if : L ->L, is a homomorphism of L onto 

L1 and if ® is the congruence relation of L defined by x y(®) if and 

only if xço= yço, then L /® L 1 ; an isomorphism figure 1.14 is given 

by 'P: [x] ®—*x, xEL. 

Proof: Since p is a homomorphism and (0) is obviously a congruence 

to prove that Y is an isomorphism we need to check 

i) 0 is well defined: Let [x]® = [y](®). Then xy(®); thus x'p=yço 

([y]®)'P 

is well defined. 
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To show that P is one-one P ([x](19)) =P (y), ®) (x) =ço (Y) 

then x = y (®) and so [x](®) [y] (®) . i.e., P is one-one. 

To show that cit is onto: Let xEL1 . Since p  is onto, There is 

anyEL with ço (y) =x. Thus ([y]®)yçit =x. i.e., cit is onto. 

To show that cit is a homomorphism Let [x]®, [y] ® € LI®, 

therefore cit ([x] ® A [] ®) = cu ([x A))] ®) = ço (x Ay) = çp (x) 

A(q,(y) = yi (I X1 ®)AçiJ( Y J ®). And ([x]®v[y]®) 

=y,Gxvy]®}(xvy) =x)v(y)) = wGx]®)v w(I yj 0) 

i.e., cit is homomorphism then the theorem is proved. 

Theorem: 2.1.6: LI®is a lattice under the operatiOnSAand vdefined 

by [a]® A[b]®)[aAb]® and [a]® v[b]® = [avb]®. 

Proof: Let L be a lattice and ® be a congruence relation on L defined by 

a1  =_b1 (®)anda2  b,(®) where a1  a, b 1  Ab,(®)and 

a1  Va 7  =b 1  vb 2 (®). We also define [a] (®)={xEL/x 

Then LI® = {[a] 01 aEL}. 

Now define A and v on L by [a] ® A [b] 0 = [a A b] 0 and [a] 0 v [b] ® = 

[avb]®. 

Idempotency: [a] 0 A [a] 0 = [a A a] 0 = [a] 0 and [a] 0 v [a] 0 = [av a] 

0= [a]®. 

Commutativity: [a] 0 A [b]®= [a Ab] 0= [b A a]® = [b] 0 A [a]®. 

[a] 0 V [b] 0= [av b]®= [b v a] 0= [b]® v [a] 0. 

Associativity: [a]® A([h]® A[c]®)= [a]® A([bAc]®). 

= [aA(bAc)]® = [(aAb)Ac]® 

= ([aAb]®)A[c]® = ([a]® A[b]®)A[c ]®. 

Similarly, [a]®v ([b]®v[c]®)([a]®V[b]®)V[c]®. 

Absorption: [a] ®A ([a] 0 v [b]®) = [a]0 A ([a b]® 

= [aA(avb)]®[a]® 
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[a]®v([a]®A[b]®) = [a]®v([aAb]®). 

=[av(aAb)]® =[a]®. 

Hence LI® is a lattice. 

Definition (Modular Lattice): A lattice L is called modular lattice if all 

a,b,ceL with a~!b then aA(bvc)=bv(aAc). 

Definition (Distributive Lattice): A lattice L is called distributive lattice 

ifall a,b,cEL, aA(bvc)=(aAb)v(aAc) 

Lemma.2. 1.7: The following inequalities hold in any lattice 

(xAy)v(xAz)!~xA(yvz) 

xv (yAz):5(xvy)A(xvz) 

(xAy)v(yAz)v(zAx)!!~(xvy)A(yvz)A(zvx) 

(xAy)v(xAz):!~xA(yv(xAz)) 

Proof: (i) In any lattice xAy:!~x, xAy:!~ y, y!~yvz 

implies that xAy:!~x, xAy:!~yvz 

implies that xiy is a lower of { x, yvz 

xAy!~xA(yvz) ...............(i). 

Again in any lattice XAZ :5x, xAz!~z, z !~yAz 

implies that X AZ !~ x, X AZ :!~ yvz 

implies that x A z is a lower hound of{ x, y vz } 

XAZ:!~XAVVZ) ............(ii). 

From (i) and (ii) we can say that x A(y Az) is upper bound of 

{xAy, XAZ }. Therefore xA(yVz):!~(xAy)v(xAz). 

(ii) In any lattice, x:5xvy,y!~xvy,yAz:!~,y 

implies that xvy~!x, xvy~!y~:yAz 

implies that xvy~ x, xvy~!yAz. 

Implies that xvy is upper bound of {x,yAz}. 

:.XVy~!XV(yAz). 

Implies that xv(yAz):5xvy ............(iii) 
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Again,x:!~ XVZ, z !~ XVZ, yAz:!~z 

implies thatxvz~!x, xvz:5z,z~!yvz 

14 implies that XVZ~!X, xvz~!yAz 

implies that XvZ is upperboundof{x,yAz} ..........(iv). 

Form (iii) and (iv) we get xv(yAz) is a lower bound of {xvy, xvz}. 

There fore xv(yAz)!~(xvy)A(xvz). 

(iii) Any lattice, xAy!!~ x, x:5xvy 

Implies thatxAy:5 xvy........... (v) 

Again xAy:5y, y!~ yvz 

Implies that xAy!~yvz ............. (vi). 

Also xAy:!~x, X:!~zvx 

Implies that xAy!~zvx.............(vii). 

Form (v), (vi), (vii) we can say that 

xAyislowerbound of{xvy,yvz,zvx}, 

xAy:!~(xvy)A(yvz)A(zvx) ............  (A). 

Again yAz!~ y,y:!~xvy 

implies that yAz<xvy............(viii). 

Also yAz :'--,z, z:!~yvz 

Implies that yAz:5yvz .......... (ix) 

and ytz :!~z , Z:~ZVX. 

yAZ!5ZVX ...............(x). 

From (viii), (ix) and (x) we can say that 

yAz is lower hound of {xvy, yvz, ZVX}. 

...yAz<(xVy)A(yVZ)A(ZVX) (B). 

Similarly, zAx!!~(xVy)A(yVZ)A(ZVX) (C). 

From (A), (B) and (C) we can say that 

(xvy)A(yvz)A(zvx) isupperboundof{xAy,yAz,zAx}. 

(xvy)A(yvz)A(zvx):!~(xAy)v(yAz)v(ZAX) 

iv) Since xAy:!~xAz :!~X, 
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So we get (xAy)v(xAz):!~,x . (xi), 

And xAy!~y:!~ yv(xAz) and XA z :!~yv(xAz) 

14 :.(xAy)v(xAz) !~yv(xAz) ...................(xii) 

From (xi) and (xii) we get (xAy)v(xAz) :!~ xA(yv(xAz). I 

x 

>0 5 

Figure 2.3 

Example: The pentagonal lattice is not modular. 

1 0   y 
z 

0 

 
Figure-2.4 

Here, XA(yvz)=xA1=x 

And yv(xAz)=yvO=y 

Since xA(yvz)#yv(xAz) 

Hence the pentagonal lattice is not modular. I 

-4 
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Theorem.2.1.8: Two lattices L 1  and "2  are modular if L1  xL,, is 

Modular 

Proof: Let L 1  and L,be modular. Let (x1 ,y1 ), (x 21y 2 )1  

(x 3 , y 3 )E L1  xL, be three elements with (x1 , y1 )~!(x 3 ,y 3 ). 

Then x 1 , x 2 ,x 3  eL1 , x1 ~! x 3 , y1 , y 25  y 3 EL 211 y1~!  y 3  

and since L 1  and L 2  are Modular. 

We get x1  A(x 2  vx3 ) = (x1  AX 2 )VX 31  y1  A(y 2  vy3 ) = (y1  Ay 2 )vy3 . 

Thus (x1 , y1)A[(x 21y 2 )v(x31y 3 )] 

= (x 1 , y1)A[x 2  vx31  y, vy 3 1 

= (x1  A(X 2  vx 3 ) y1  A(y 2  vy 3 )) 

= ((x1  AX 2 )VX 31  (y1  Ay 2 )vy 3 ) 

= 01  AX 21  Y j  Ay 2 )V(X 31  y 3 )) 

= [(x1, y1)A(X 21  y 2 )}v(x3 , y 3 ) 

Hence L1  x L, is modular. 

Conversely, Let L1  x L 2 be modular. Let x1 , x 21  X3EL1, x~!x, and 

y11y 2 eL 2  ,y1  ~!y 3 then(x1 ,y1 ),(x 2 1y 2 )1(x 31y 3 )E L1  x L 2 

and(x1 ,y1 )~!(x 3 ,y3 ). Since L1  x L 2 is modular. 

We find (x1,y1)A[(x 2 , y 2 )v(x 31  y 3 )] = [(x 1 , y1)A(x 2 , y,)}v(x3 , y 3 )] 

Or, (x1 , y1)A[(X 2  vx 3 ), (y 21vy 3 )] = [(x 1  Ax 2 ),(y1  Ay2)v(x 3 ,y 3 )1 

Or, (x 1  A(X, vx 3 ), y 1  A(y 2  vy 3 )) = ((x1  Ax 2 )vx 3 ,(y1  Ay 2 )vy3 )) 

Or, x1  A(x 2  vX 3) = (x 1  AX 2 )VX 3  Y. A(y 2  vy 3) = (y1  Ay 2 )vy 3  

:.L 1  and L 2  are modular. 

Theorem.2.1.9: If a, bare any elements of a modular lattice 

then [aAb,a] [b,avb] 
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Proof: We know an interval in a lattice is a sub lattice. We establish 

the isomorphism define a map ': [aAb, a]->[b, a v b ] such that i'(x) 

I =xvb, xE[aAb, a]. Then i'is well defined as x E[aAb, a] 

implies that aAb:5 x !!~x:5a 

implies that (aAb)vb:5xvb:~avb 

implies that b:!~xvb:!~avb 

implies that xvbe[b, avb]. also x1 = x, 

implies that x1 vb =x 2 vb 

implies that çv(x1 ) =W(x 2 ), 

ç,  is one-one as let cit (x 1 ) = W(x 2 ) then x1  vb = x 1  vb 

implies that aA (x v b) = aA x2  v b) 

implies that x 1  v(aAb) = x 2  v(aAb) 

implies that x1 = x 2 , 

i is onto as let yE[b, avb] be any element. 

We show that aAy is the required pre-image. 

y b,avb] implies that b:~ y:!~ a v b 

implies that aAb:~aAy:~ aA(avb) 

implies that aAb:!~aAy:!~a 

implies that aAyE[aAb, a]. 

Also, ii (a A b) = (a A y) v b, so we need show y = (a A y) v b 

Now, y:!~avb implies that yA(avb) = y 

Implies that y = yA(bva) = bv(yAa). 

Hence cit is onto. 

Again, x1  .!~x,, implies that x1  vb:!~, x 2  vb 

Implies that cv (x1 )< W(x 2 ) 

Now, x1  vb:!~x 2  vb Implies that aA(x 1  vb):!~aA(x 2  vb) 

Implies that x1  v(aAb):!~x 2  v(aAb) 

28 



Implies that x1  :!~x,. 

Thus x1 :!~ x, 

Implies that W(x1 ):!~-'(x 2 ). 

Hence çtiis an isomorphisin. 

Theorem.2.1.10: A lattice L is modular if it does not contain a Sub 

lattice isomorphic to pentagonal lattice. 

Proof: Suppose a lattice L is modular, then its every sub lattice is 

also modular; Since N ={O, a, b, c, 1} 

N 

z 

( 

 

0 

 

Figure 2.5 

Where b:!~a, aAb=aAcbAcO and avb=avc=bvc1 is 

not Modular So, L does not contain any sub lattice isomorphic to N 

To prove the converse, let L is not modular, then there exists 

elements x,y,zEL with z:!~x such that xA(yvz) #(xAy)vz. But 

xA(yvz)>(xAy)vz. Then the elements xy, y, (xAy)v z, xA(yvz), 

y v z form a lattice 
yVz 

Diagram as follows: xA(yvz)  

y 

(xAy)vz 

XA 

Figure-2.6 
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Observe that (xA(yvz)) Ay = xA[(yvz) Ay] = xAy 

And so, yA((xAy) vz)= xAy 

Again, yv((xAy)vz)= [yv(yAx)] vz = yvz 

And so, yv(xA(yvz)) = yvz. If y = xiy then we have y:5 x 

And so, yvz. = (xAy)vz, 

Also, y!~,  x and z:5 x implies that y v z :!~ x and so xA(yvz) = yvz, 

So we have xA(yvz) = (xAy)vz which gives a contradiction. Since 

L is not modular. So y#XAy. Similarly, we can show that 

(xAy)vz#xAy, y:#yvZ, xA(yvz)yvz 

Hence the five elements are distinct and they form a sub lattice of L. 

which is isomorphic to N 5 . Hence L is modular. 

A lattice < L; A, v> is called distributive lattice if for all x, y, zeL, 

xA(yvz) = (xAy)v(xAz), dually, xv(yAz) = (xvy) A (xvz) of 

course every distributive lattice is modular. 
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x 

Figure -2.7 

Theorem: 2.1.11: Two lattices L 1  and L 2  are distributive if L, x L 2 

is distributive. 

Proof: Let L 1 , and L, are distributive, let (x1 ,y1 ), (x,,y 2 ),(x 3 ,y 3 ) be 

any three elements of L 1  x L 2  then x1 , x 2  ,x 3  E L1 , y1 , y 27  y 3 , € L 2 . 

Now, (x1 , y1 ) [(x 21  y 2 ) v (x 3, y 3 )] = (x1,y1)A(x 2  vx 31  y 2  vy 3 ) 

= (x1  A(X 2  vx 3 ), y 1  A(y 2  vy 3 )) 

= ((x1  AX 2 ) v (x1  AX 3 ), (y 1  Ay 2 ) v (y1  Ay 3 )) 

= [(x 1 Ax 2 ,y1 Ay,)v(x1 Ax 3 ,y1Ay3)] 

= [(x1, y1)A(x 2 ,y 2 )} v[(x1, y1) A (x 31  y 3 )] 

Shows L 1  x L 2  is distributive. 

Conversely, Let L 1 , x L 2  be distributive. 

let x 1 , x,, x3  . eL1  and y j,Y2  y 3  e L 2  be any elements, then 

(x1 , y1 ), (x 21  y 2 )1  (x 3 ,y3 )EL1 ,x L 2  and as L 1  x L 2  is distributive. 

(X1,y 2 )A [(x 21  y 2 ) v (X 31  y 3 )} 

=[(X 15  y ) A (x 2 ,y2 ) v [(x 1 ,y1)A (x 3 ,y 3 )} 
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i.e., (x 1 , y 1 ) A (x 2  vX 3 , y, vy 3 ) = (x1  AX 2 , y 1  Ay 2 ) v (x1  AX 3 , y 1 ) 

or,(( x 1 A(x 2 vx 3 ),y1 A(y 2 vY 3 )) 

=((x1 Ax 2 )v(x1 Ax 3 ),(yi AY 2 )v(Y 1 AY 3 )) 

Which gives, x 1 A(x 2  vX 3  )=(X 1 AX 2 )v(X 1 AX 3 ) 

y 1  A(y, vy3) = (y 1  Ay 2 )v(y 1  Ay 3 ) 

implies that L and L 2  are distributive . 

Theorem: 2.1.12: A distributive lattice is always modular but 

Converse is not true. 

Proof: Suppose L is distributive, let a,b,c EL with c :~ a, 

then aA(bvc) =(aAb)v(aAc) = (aAb)vc, Thus L is modular. 

Conversely, consider the lattice 

1 

a 

M5 

Figure -2.8 

It is says to check that M, is modular: aA(bvc) = aA 1= a, 

(aAb)v(aAc) = Ov 0 = 0 i.e., aA(bvc)#(aAb)v(aAC). 

Therefore L is not distributive. 

Theorem 2.1.13: Let L be a distributive lattice, I be an ideal. Let 

D be a dual ideal of L and let Ir'D 1 Then there exists a prime 

ideal P of L such that P I. 

Proof: Let X be the set of all ideals of L containing I that are disjoint 
4 

form D. Clearly X is non empty as I EX 
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Let C be a chain in X and Let M = U {XI  XeC}. If a ,beM then 

a AX, b A Y, for some X, Ye C. Since C is chain either Xc Y or YcX 

Suppose Xc Ythen a, be Y. Since Yis an ideal avbc YcM. 

Also ifaeMand b:!~a, then aEXfor sorneXeC. 

Since X is an ideal, so b eXcM. Therefore M is an ideal contain I. 

Obviously MnD = CI. Hence MeC, 

so by zorn's Lemma, X has a maximal element, say P, 

We claim that p is a prime ideal. 

If P is not prime, then there exists a,bEL with a,heP such that 

aAbeP. 

- By the maxirnality of P ((a]vP)rD#ço, ((b]vP)mD # ç. 

Let p v a e D and q v be D for some p, q e P 

Then x = (pvq)A(avh)= (pAq)v(aAq) vpAh)(aAb) e P 

Which implies that xeP n D which gives a contradiction. 

Therefore ç must be aprinie ideal. 

Theorem 2.1.14: Dual of a distributive lattice is distributive. 

Proof: Let <L; A,V> be distributive and <L; A,V> be its dual. 

Now for any a, b, ceL=L d  A(bv 1 c) = a(bAc) = (avb) (avc) = 

(aA db) V d (aA dc)  as L is distributive 

This implies that L is also distributive. 
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2. Complemented and Boolean lattices. 

Definition (Complemented Lattice): In a bounded lattice L, a is a 

complement of b if a A b = 0 and a v b = 1. A complemented lattice is a 

bounded lattice in which every element has a complement. 

Now, let [a, b] be an interval in a lattice L. Let x E [a, b] be any element. 

If there exists y € L such that x A y a, x v y = b. We say y is a 

complement of x relative to [a ,b] or y is relative complement of x in 

[a, b].In every element x of an interval [a ,b] has at least one complement 

relative to [a, b], the interval [a ,b] is said to complement. Further, if 

every interval in a lattice is complement, the lattice is said to relative 

complemented. 

Theorem 2.2.1: Two lattices L1  and L2  are relatively complemented if 

and only if L1  x L, is relatively complemented. 

Proof: Let L and L., be relatively complemented. Let [(x1 ,y3(x2,y2 )] 

be any interval of L1  x L., and suppose (a, b) is any element of this 

interval.Then (x1 ,y1 ):!~(a,b)<(x,,y,) where x1 ,y1 ,a EL1  and y1 y1 ,b EL.,. 

implies that x1  :!~a:!~x2 , y1  :!~b<y,. 

implies that a E [x1  , x2  ] a an interval in L1  and b E [y1 , y2  ] be an interval in 

L,. Since L, ,,  L, are relatively complemented, a, b have complements 

relative to [x1  , x,] and 1y1 , y2 ] respectively. 

Let a' and b' be these complements, 

Then a A a' = x1 ,a v a' = 
25 

b Ab' = 

Now, (a,b)A(a',b')=(ava',bAb')=(x1 ,x.,) 

(a,b)A(a',b')=(avc/,bAb')= (y11y2 ) 
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(a', b') is complement of (a, b) relative to [(x1 , y3, (x, , y,)]. Thus any 

interval in L1  x L, is complemented. Hence L1  x L2  is relatively 

complemented. 

Conversely, Let L1  x L, be relatively complemented, L let [x,, x,] and 

[y,y,] be relatives in L, and L2. Let a e [x1 ,x2 ] and bE [y,y,] be any 

elements. Then x1  :!~ a !~ x2 , y1 :!~ b e 

implies that (x1 ,y1 ) :,--- (a,b) :!~ (x,,y2 ) 

implies that (a, b) E [(x1 ,y1 ) (x,,y,)] an interval in L1  x L, 

implies that (a, b) has a complement, say (a', b') relative to this interval. 

Thus (a, b) A (a', b') = (x1 , y1 ) 

(a, b) v (a', b') = (x7 ,y1) 

implies that (a v a',b A b') = (x1 ,y1 ) 

(ava',b Ah')= (x21 y2 ) implies that a A a' = x1 ,a V a' = 

bAb'=b1,bvb'=y2  

implies that aa', is complement of a relative to [x2,y2 J, b' is 

complement of b relative to [x., , y2  }. 

Hence L 1  and L 2  are relative complemented. 

Theorem 2.2.2: A complemented modular lattice is relatively 

complemented. 

Proof: Let L be a complemented modular lattice. Let [a, b] be any 

interval in L and x E [a,b] be any element, Since L is complemented, x 

has a complement, say x'. Then y = a v (b A x') 

XAX'=O. x'=l,a:~x<b. 

Take yaV(bAX') 

Then x A y = x[a v (b A x')] 
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= a v(x A(b A x')) [as x ~! a,L is modular] 

= av (b A x,b A x') 

= a v (b A 0) 

=avO 

I 

x  vy = x v[a v(b A x')] =(xva) V(b AX') =x v(b Ax') = b 

(XvX')=bAl=b. 

Hence y = a v (b A x') is relative complement of x in [a, b]. U 

Theorem 2.2.3: Let L be a distributive lattice and let a e L then the 

map : x —>< x A a, x V a> , x e L is an embedding of L into (a] x {a): 

4 
it is an isornorphism if a has a complement. 

Proof: q : L —> (a] x [a) is defined by q,(x) = <x A a, x v a> 

for any x,y€L 

A y) =< (x A y) A a, (x A y) Aa > 

=<(xA a)v(yAa),(xva) t (yv a)> 

=<xAa,xva> A<yAa,yva> 

=q(x)Aço(y) 

i.e. q is a homomorphism. 

Let (x)=ço(y), then <xAa,xva>=<YAa,YVa> 

implies that x Aa= y a and x va = y v ci 

Now, x=xA(xva)=xA(YVa)(XAY)V(XAa) 

=(xAy)v(yAa)=yA(xva)=YA(YVa)Y 

i.e. qi is one- one. 

Now suppose a has a complement a'. To show on tones. 

Let <r,s>c(a]x[a), 
.4 
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Then[(a' A s)vr]Aa = (a' AsAa)v(rAa)= Ov(rva)= Ov(rAa) 

= rAa=r 

and [(aAs)vr]va (avrva)A(svrva)=1A(svrva)=s 

i.e. <r,s>=[(a' As)vr]Aa,[(a'  As)va]va=ç9(d As)vr 

So is onto and hence L (a] x [a). 

Definition (Boolean Lattice): A complemented distributive lattice is 

called a Boolean lattice. 

Since complements are unique in a Boolean lattice we can regard a 

Boolean lattice as an algebra with two binary operations A and v and 

one unary operation . Boolean lattices so considered are called Boolean 

algebras. In other words, by a Boolean algebra, we mean a system 

<L,A,V, 
' ,0,1> where L is a non empty set with the binary operations 

A and v and a unary operation , and nullary operations 0, 1 is called a 

Boolean algebra if it satisfy the following condition: 

aAa=a,ava=a,VaeL 

aAb=bAa,avb=bva,Va,bEL 

aA(bAc)=(aAb)Ac,av(bvc)=(avb)vc,Va,b,cE L 

aA(avb)=a,av(aAb)=a, Va,bEL 

aA(bvc)=(aAb)v(aAc), Va,b,cEL 

There exists 0 E L,1 E L such that a v 0= a, a A I = a Va E L 

Each aEL,a'EL such that aAa'=O,ava'=I 

viiV 0'=l 

1'=O 

(aAb)'=a'vb' 

(avb)'=a'Ab' 
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Theorem 2.2.4: The infinite distributive laws hold in a complete 

Boo/can algebra. 

Proof: We have for distributive lattice y A (vx,) = v(y A x,), even when 

there are infinitely many terms in the unions. These unions certainly exist 

since the lattice is complete. 

Let z=v(yAx) then yAX <z 

and x, :!~ y'vx, = y'v(yAx)= y'vz for each i. 

Hence vx, :!~y'vz and so yA(vx,):!~yA(y'vz)=yAz:5z. 

That is to say yA(vx,)=v(yAx,). 

We there fore have by anti- symmetric property the distributive law 

y A (vx) = v(y A x). Its dual may be obtained in the same way. 

An element a of a lattice is called join irreducible if a = b v c implies 

either a = b or a = c. 

I 

1. 

C d 

Figure 2.9 

Here 1 is not join- irreducible but a, b, c, d all are join- irreducible. 

Now zero join- irreducible element x which cover 0. 

i.e. x ,O are called atoms. 

[a,b means b :!~ a and if b :~ c :!~ a then either b = cora = c] 
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I 

b 

Figure-2. lo 

1 

Theorem.2.2.5: In a Boolean lattice x # 0 be join- irreducible if and 

only if x is an atom. 

Proof: Let L be a Boolean lattice and let x # 0 be join- irreducible. We 

have to show that x is an atom. 

Let I E [0,x] then there exists t' such that I At'  = 0,1 A I' = X. Since x is 

join- irreducible, then either I = x or 1' = x. If t A x then t' = 

:.I=1Ax=1AI'=0 implies that x is an atom. 

Conversely, Let x is an atom. We have to prove that x is join- irreducible. 

Let avb=x,then 0<a:!~x, 0:~x impliesthat 0=aora=x;0=b 

or b = x implies that x is join- irreducible. 
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CHAPTER THREE 

PSEUDOCOMPLEMENTED LATTICE. 

Introduction: In lattice theory there are difference classes of lattice 

knows as variety, Of course the most powerful variety. Throughout this 

chapter we will be concerned with another large variety known as the 

class of distributive pseudocoinpiemented lattice. Pseudocomplemented 

lattice have been studied by several authors [9], [10], [13], [14], [15], 

It [16]. There are two concepts that we should be able to distinguish a 

lattice <L;A,v> in which every element has a pseudocomplenient and an 

algebra, <L;A,v,*,O,1>. Where <L;A,v,O,1> is a bounded lattice and where, 

for every a EL, the element a* is a pseudocompiernent of a. We shall call 

the former a pseudocomplenien ted lattice and the later a lattice with 

pseudocomplementation (as an operation). In this chapter we have also 

studied algebraic lattice. 

40 



Construction of pseudocom plemented lattices. 

Let L be a bounded distributive lattice, let a E L, an element a* € L is 

called apseudoconiplenieni of a in L if the following conditions hold: 

(i)aAa*O, (ii) Vx(=- L ,aAx=O implies that x:!~a* 

ajc 

Figure 3.1 

a has no pseudocomplement. 

A bounded lattice L is called a pseudocomplemented lattice if its every 

element has a pseudocomplernent. 

 

Example: 
= 

 

 

 

C =a 
c = = 

b* 

UI 

Figure 3.2 

The lattice L = {O,a,b,c,1} show by the figure 3.2 is pseudocomplernented. 
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An algebra, <L;A,v,*,O,1> where A and v are binary operation, * is a 

unary operation and 0, 1 are nullary operations is called a lattice with 

pseudocompleinentation if. 

<L,A,v,0,1> is bounded lattice 

* is a unary operation i.e. Va E L there exists a * 

suchthat aAa*=O and aAx=O 

impliesthat xAa*=x,VxeL. 

A bounded distributive lattice L is called a pseudocomplernented 

distributive lattice if its every element has a pseudocomplement. 

4 
1 

Figure - 3.3 
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1. Pseudocomplemented distributive lattice. 

To see the difference in view point, consider the finite distributive lattice 

of figure (3.3). As a distributive lattice it has twenty-five sub/a/lice and 

eight con gruences; as a lattice with pseudocomplernentation it has three 

subalgebras and five con gruencies. 

L as lattice: 

Sub lattice: {0},{a},{b},{c},{1},{O,a},{O,b},{O,c},{0,1},{O,a,b,c},L, 

{a,c},{a,c,1},{b,c}, 

{a,1}, {b,1}, {b,c,l}, {c,l}, {O, a,1}, {0,b,1}, {O, c,1}, {O, a, c}, 

4. 
{0,h,c},{0,a,c,1} {0,b,c,1} = 25: 

L as a lattice with pseudocompleinentation {0,1}, L, {O,c,1} 

Congruence: 

As a lattice: 

= {0},{a},{b},{c},{1} 

r = {O,a,b,c,1} 

0 = {O,a},{b,c},{I} 

= {0,a},{b,c,1} 

yi = {0,b},{a,c},{l} 

i = {0,b},{a,c,1} 

= {O,a,b,c}, {1} 

'7 = {c,1},{a},{b},{0} 

Congruence as a lattice with pseudocomplernentation , r, ), 1,17 

Theorem 3.1.1: Let L be a pseudocomplemented distributive lattice. 

S(L)={a*/ae L} and D(L)={a/a*=0}. Then for a,b,E L: 

(i)aAa*=0 

(ii)a :!~ b implies that a* >_ b * 
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(i,i)a:!~a** 

(iv)a* = a * * * 

-4 (v)(avb)*=a*Ab* 

(vi)(aAb)** =a**Ab** 

aAb=oiffa**Ab**=O 

aA(aAb)*=aAb* 

0*=1 and l*=O 

a e S(L) iff a = a * * 

a, b e S(L) implies that a A b E S(L) 

SUP 5'L)  {a,b}=(avb)**=(a*Ab*)* 

0,1 e S(L),1 E D(L) and S(L) n D(L) = {1} 

a, b e D(L) implies that a A b E D(L) 

a E D(L) and a :!~ b implies that b E D(L) 

a v a* c D(L) 

x_>x** is a meet- homomorphism of L onto S(L) 

Proof: (i) By the definition of pseudocomplement, a A a* = O.Va E L. 

(ii)For bAb*=Oand a:!~b=>aAb*=O which implies a*>—b* 

By the definition of pseudoconiplernent a A a* = a * Aa =0 

Similarly, a*A(a*)*=0=>a*Aa**0  and a*Aa=O=>a*—<a**, 

=>a:!!~a**. Hence a:!~a**. 

From (iii) we have a :!~ a * * 

implies that a* >— a * * (A) [by (ii)] 

Again a*Aa** = 0, 1.e.a**Aa*=0. 

Similarly a**A(a**)*=0, implies that a**Aa***=0, 

and a * * A a* =0 implies that a* —< a * * * (B). 

4 From (A) and (B) 

We have a* = a*** Hence  a* = a*** 
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We have (a v h) A (a * Ab*) = (a A a * Ab*) v (b A a * Ab*) 

=(0Ab*)v(a*AO) [by(i) 

=0v0 

=0 

Let (avb)Ax=0 

implies that (a A x) v (b A x) = 0 

implies that aAx=0 and bAx=0 

implies that x :!~ a * and x !~ b * 

Implies that x:!~a * Ab *  

There fore a * Ab * is the pseudocomplenieni of a v b. 

Ar Hence (avb)*=a*Ab* 

Let a,b L implies that a*, b* € L implies that a * *,b * *,E S(L). 

implies that a * * A b * * E S(L). But a * * A b * * is the smallest element 

of S(L) containing a A b. So (a A b) * * = a * * A b * 

IfaAb=0 by(vi)then a**Ab**=(aAb)**=:O**=0. 

So a**Ab**=0. 

Conversely, if a * * A b * * 0 by (iii) a :!~ a * , b :!~ b * * Va, b, E L, 

then aA b :!~a** Ab**=0 

.. a A h =0, Hence a A b =0 if and only if a * * A b * * =0. 

Since aAb:!~b so (a A b)* -<b* and 

so a A (a A b)*  >- a A b * •. ................ ....... (A). 

Again (a A b) A (a A b)* = 0 implies that(a A(a A b)*)Ab =0, 

there fore a A(a A b)K < b *  

implies that a A a A (a A b)* -< a A b * (B). 

Form('A) and (B) aA(aAb)*=aAb*. 

Hence aA(aAb)*=aAb*. 

We have 0 A x =0 V x E L and 0 Al =0. 
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But x:!~lVxEL. Hence 0*=1. 

Again 0* = 1 implies that 0* * = 1 * 

implies that 0=1*...1*=0. 

If a E S(L) then, a = b * for some b E L. 

but a* = a*** , V a E L. 

Now a**=b***=b*= a  

Hence a * * = a 

Conversely if a = a * * then a = b*, thus a € S(L). 

Hence aES(L) if  and  onlyifa=a**. 

Let a,bES(L) then a = a**,b=b**, Since aAb:!~a 

implies that (aA b)** —< a**= a, 

a~:(a A b)**, 

Again since aAb:!~b implies that (aA b) b**=b 

.. (a A b) * * —< b implies that b ~! (a A b) * * 

implies that a A b ~! (a A b) * * (A). 

But aAb):5(aAb)** (B). 

From (A) and (B)aAb=(aAb)**  implies that aAbES(L). 

If x e S(L) such that x :!~ a and x :5 b then x :~ a A b. 

i.e a A b is a greatest lower bound of S(L). 

Therefore a A b= Inf S(L){a,b} E S(L). 

For a,b € S(L). since a*>— a* Ab* 

implies that a * * —< (a *  Ab*) * [by (ii)] 

implies that a :!~ (a *  Ab) * [by (i)] 

Again b*  >— a *  Ab * implies that b (a *  Ab*) * [by (ii)] 

Implies that b:!~(a*Ab*)* [ by (i)] 

(a * Ab*) * is a upper bound of (a, b) in S(L). 
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Let x E S(L) such that a :~ x,b :5 x then a*  >— x*, b* x * [by (ii)]. 

a*Ab*>— x* implies that (a* Ab*)*<— x**=x 

implies that (a * Ab*)* —< x 

(a * Ab*) * is a least upper bound of (a, b) in S(L) 

Sup S(L)  (a, b) (a* Ab*) * 

Again (a A b) * * = ((a A b)*)* = (a * Ab*) * 

Hence SUpS(L) {a,b}=(avb)**=(a*Ab*)* 

From (ix) we have 0*  =1,  1* = 0 then 0,1 E S(L) and 1 E D(L). 

Let x e S(L) n D(L) then x E S(L) and x E D(L) 

such that x=x, x*=0  then x =(x*)*=0*=1. 

Hence S(L) n D(L) = {l}. 

Let a,b E D(L) then a* = 0, b* = 0 implies that a **= b** = 0* = 1 

Now, (aAb)**=a**Ab**=IAI=1 [by(iv)] 

(a A b)* = (a A b) * ** = 1* = 0 implies that a A b E D(L). 

If a € D(L) then a*  =0 and a :!~ b implies that a*  >— b * 

implies that b*  <— a* = 0 

implies that b* = 0. Hence b € D(L). 

From (v) we have (ava*)*=a*Aa**=a*A(a*)*=O. 

Hence a v a*  c D(L). 

Let : L - S(L) defined by (x) = x * . Then q(x A y) 

= (x A y) * * == X * * A y * * 

=q.(x)A(y). 

is meet homomophism. 

An identity xAv(xji El) = v(xAx1 i e I) is called the join Infinite 

Distributive Identity. 
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Lemma 3.1.2: Let B be a complete Boo/can lattice. Then B satisfies the 

Join Infinite Distributive Identity (JID,) 

Proof: XAX, !!~x and XAX1 !~v(x,Ii€I); 

therefore xAv(x1 icI) is an upper bound for {xAx1 iEI}. Now let u be 

any upper bound, that is, X A x, :!~ u for all i E I. 

Then x, =x1  A(xvx')=(x1  Ax)v(x, AX'):!~UVX" 

Thus xAv(xjiEl):5xA(zlvx')=(xAu)v(xAx')=xAu:!~,u. 

Showing that X A v(x,I i I) is the least upper bound for {x AX 1€  

Theorem 3.1.3: Any complete lattice that satisfies the Join Infinity 

Distributive Identity (JID,) is a pseudocoinpiernented distributive lattice. 

Proof: Let L be a complete lattice. For a E L. set 

a*=v(x/xcL, aAx=O). 

Then by (JID),aAa*=aAv(x/aAx=O)=v(aAx/ aAx=O)=v(0)=O. 

Suppose a A x = 0, then x :!~ a * by the definition of a *; Thus a*  is the 

pseudocompoernent of a and so L is pseudocompoernented. 

Recall that a distributive lattice L is a complete distributive if A H and 

v H exists in 1 for any subset H of L. 

The following figure 3.4 is an example of a complete distributive lattice 

which is not pseudocompoemented. 

(0,2) T ..................................................................................... ..
(1,2) 

(0,0) (1,0) 

-4 

Figure 3.4 
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Here L ={(o,y)O < y< 2}u{(1,y)I0<y:!5 2}, so(0,O) is the smallest and 

(1,2) is the largest element. Observe that (0,2) L. This is a complete 

distributive lattice, where :5' is the usual ' :!g '  relation. But this is not 

pseudocomplemented as (1, 0) has no pseudocompoement. 

1 

P. 

4 
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2. Algebraic lattices. 

12 

Definition (Algebraic lattice) : A set (L;A,v) with two binary 

operation A and v is called an algebraic lattice if it satisfy the following 

properties: 

(i) for all aEL,aAa=a,ava=a 

(ii)forall a,bEL,aAb=bAa,avb=bva. 

for all a,b,ccL, aA(bAc)=(aAb)Ac. 

av(bvc)=(avb)vc. 

for all a,bEL,aA(avb)=a. 

a v (a A b)= a. 

A complete lattice is called algebraic if every element is the join of 

compact elements 

Example: Let L be a with 0 then 1(L), the set of all ideals of L under '' 

is an algebraic lattice. 

In the literature, algebraic lattices are also called compactly generated 

lattices. Just as for lattices, a nonvoid subset 1 of a join - semi lattice S is 

an ideal if, for a,bES, we have civbEL ifand only ifa,a,bEL. Again, 

I(S) is the poset of all ideals ofS partially ordered under set inclusion. IfS 

has a zero, then I(S) is a lattice. 

Using J('S,), We give a useful characterization of algebraic lattices. 

Theorem 3.2.1: A lattice L is algebraic if and only if it is isomorphic to 

the lattice of all ideals of a join semi- lattice with 0. 

Proof: Let S be a join semi-lattice with 0. We have to prove that I(S) is 

algebraic. Since 0 S,J(S) is a complete lattice, We claim that 

Va E S (a] is a compact in I(S). 
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Let Xc:I(S) and (a]cv(IlIcX). 

Now v(IIGX)={Xx:!~11 v ..................... vl,7 ,t, El,,I, EX} 

I There fore, a :!~ t 1  v ........................v ç, t1  E Ii Ji  E X 

Thus with X1  = {I......................... JJ 

(a]:!~v(I, EX1  cX). 

Therefore (a] is compact in I(S). 

Now, for any I e I(S),I = v((a] I a E L) . Hence I(S) is algebraic and so 

any lattice L is isomorphic to I(S) is also algebraic. 

Conversely, let L be an algebraic lattice and let S be the set of all 

compact element of L. Obviously 0 S. 

Moreover, clearly join of two compact elements is again a compact 

element. So S is a join semi-lattice with 0. Now consider the map 

ço:L—>I(L)isdefinedbyq(a)={xESx:~a}. 

Obviously, çø maps L into I(S). By the definition of an algebraic lattice 

a = v(a), and so qi is one- one. To prove that q' is onto. Let I I(S), 

,a=vl then ço(a)DI. Now, let xEq3(a),then xES,x:~a. 

v i, By compactness of x, there exists a finite subset J c I such that 

x :!~ v11 . This implies x E I and so I q(a). There fore ço is onto. 

Also p(aAb)={xeSx:5aAb}={xESx:!~h} 

=q(a)Aço(b) 

Also (avb)={xcSIxE:!~,avb}={xESx:!~a}v{xeSx:!!~b} 

= ço(a) V q.(b) 

i.e. çz is a homomorphism 

Therefore it is an isomorphism. 

.4 
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Corollary 3.2.2: Let L be an arbitrary lattice C(L) is an algebraic 

lattice. 

Proof: We already know that C(L) is a complete distributive lattice. 

Suppose ® E C(L). Observe that 0 = v(®(a,b)Ia b®,a,b EL). Since every 

principal congruence is compact, So C(L) is algebraic. 

Corollary 3.2.3 : Every distributive algebraic lattice 

spseudocomplem ent. 

Proof: Let L be a distributive algebraic lattice. Then L I(S), for some 

distributive join semi lattice S with 0, 1(L) is complete. 

Let "K  El(S), we have to show that IA(vIK )=v(JAIK ) 

Of course, v (1 A 'K) c I A (vIK  ).............................(1). 

Let x E I A (vIK ) then, x E I and x € VIK  

implies that X:!~IKJ  V ........ 'Kn'  for some 1K1  EIKI ,IK2  ElK2...... ... .......... i, EJ n  

implies that XEJKI V ............................. v1, 

implies that xEIA(IKI v ..................  vlKfl ) 

(IAIKI)v .............................  v(JAJKfl ):~(JAIK ). 

implies that (I A VIK) g v(I A 'K) ............................................  

From (i) and (ii) 

v (1 A 'K) = I A (vIK) 

implies that I(S) holds JID 

implies that I(S) is pscudocomplemdn ted. 

implies that L is pscudocomplemented. 

Theorem 3.2.4: Let L be a pseudocomplemented meet semi-lattice. 

S(L) = {a * I  a E L} .Then the partial ordering of L partially orders S(L) 

and makes S(L) into a Boo/can lattice. 

For a,b E S(L) we have a A b E S(L) and the join in S(L) is described by 

a v b = (a*  Ab*) * 
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Proof: The following results have already been proved in theorem 3.1.1. 

(i) a:!~a** 

a :!~ b implies that a* >- b * 

a*= a*** 

(vi) aES(L) iffa*=a** 

a,b S(L) implies that a A b € S(L) 

For a,b € S(L), Sup s(L){a,b}  =(a*Ab*)* 

For a,b€S(L) define avb=(a*Ab*)* 

then by (v) and (vi) we get <S(L); A, V> is a bounded lattice. 

Since, for a € S(L), a A a* = 0 and a V a* = (a * Aa * *)* = 0* = 1, 

implies that S(L) is Complemented lattice. 

Now we need only to show that S(L) is distributive. 

For X,Y,Z,ES(L),XAZ :5.xV(yAz) and yAz:5xV(yAz); 

there fore xAzA(xv(yAz))*0 

implies that x A (z A (x V (y A z))*) = 0 

implies that z A (x V (y A z))* —< x * 

Again yAzA(xv(yAz))*0 

Or ))A (z A (x V (y A z)*) 

ZA(XV(YAZ))* <y* 

We can write z A (x V (y A z))* —< x * A)) * 

Consequently, z A (x V (y A z)) * A(x * Ay*)* = 0, 

which implies that z A (x * Ay*)* —< (x V (y A z)) * 

Now the left- hand side is z A (x V y) [by for a, b € S(L). 

SUPS(L) {a, b} =(a* Ab*)*] 

and the right hand side is XV(YAZ) [by a€S(L) 1ff a=a**] .  

Thus we z A (x V y) :!~- X V (y A z) which is distributivity. 
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Theorem 3.2.5: Let L be a pseudocomplemented lattice. 

Then a * * v h * * (a v b) * * for all a, b E L. 

Proof: We know that if L is a pseudocomplemented meet semi-lattice. 

then a vb =(a* vb*)* where a,b € S(L). 

Now for a,bEL, a**,b** E S(L) 

So a**vb** =(a*** Ab***)* 

= (a *  Ab*)* 

= (a v b) * * 

implies that a**v b**=(av b)**.  

Theorem 3.2.6: Let L be a pseudocompiemenied meet semi-lattice and 

let a,beL then (aAb)* =(a**Ab)* (a**Ab**)* 

Proof: Since L is a pseudocomplemented meet semi-lattice. 

Then a :!~ a * * implies that a A b :!~ a * * A b 

implies that (aAb)* >- (a**Ab) * (I) 

Again b:!~b** implies that a**Ab:~a**Ab** 

implies that a * * A b :!~ (a A b) * * 

implies that (a** A b)*>(aA b)**** 

implies that (a**Ah)* ->(aAb)* ..........................  (ii) 

Form (/) and (ii) we have (aAb)*=(a**Ab)* ........................ (iii) 

Again, b :!~ b * * implies that a * * A b :!~, a * * A b * * 

Implies that (a * * A b)* >- (a * * A b * *) * (ii') 

Again, a a**** implies that a** Ab** —<a****Ab** 

= (a * * A b) * * 

implies that (a * * A b * *)* >— (a * * A b) * * * implies that 

(a** Ab**)*>(a**Ab)* ........................  (v). 

From (iv) and (v) 

(a** A  b)* = (a** A  b**)* ()  
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From (iii) and (vi) 

(aA b)*=(a** A b)*=(a** A b**)*. 

Theorem 3.2.7: Let L be a pseudocompleniented distributive lattice. 

Then for each a E L, (a] is a pseudocomplernent distributive lattice in fact 

the pseudocoinpiernent of x e (a] in (a] is x * Aa. 

Proof: Let xE(a] then x A (x*Aa)=(x*Aa)=(xAx*)Aa=OAa=0. 

Further if x A t = 0 then I < x * implies that I A a :!~ x * Aa implies that 

I :!~ x * ta implies that x * Aa is the pseudocomplement of x, implies that 

(a] is a pseudocomplernented distributive lattice. 

Theorem 3.2.8: Let A be a binary operation on L, let * be a unary 

operation on L (that is, for every a c L, a* (-= L) and let 0 be a nulary 

operation (that is 0 E L). Let us assume that the following hold for all 

a,h,cE L: aAb = bAa. 

(aAh)Ac =aA(bAc),aAc7 =a,0Aa=0,aA(aAb)*aAb*, 

a A 0* = a, (0*)* = 0. Show that <L;A> is a meet semi-lattice with 0 as 

zero, and for all, a E L, a *  is the pseudocomplement of a (R. Balbes and 

A. Horn [19 70a]) 

Proof: Let a E L,a* E L then 

a A a = a [by given condition] 

a A a = b A a [by given condition] 

a A (b A c) = (a A b) A c [by given condition] 

Define ':!~' onLby a:!~b<>a=aAb. 

.. < L;A> is a meet semi-lattice. 

Now 0Aa=0 VacL implies that 0:!~a 

So, 0 is the zero element of L. 

Secondpart: 0 =aA 0 =aA 0**=a A (aA0*)*aAa* and CIAX=O. 

Then xAa* =xA(xAa)* XA O*XXAa*X implies that x:!~-a* 

55 



Hence a * is the pseudocomplement of a. 

Theorem 3.2.9: For as pseudocomplernented distributive lattice L. 

-1 Define the relation R by: x y(R) if and only if x* = y *. Then R is a 

congruence on L and LR S(L). 

Proof: Given that x y(R) x* = y *, then x* = x * implies that 

x x(R) implies that R is reflexive.Also if x y(R), then x* = y * 

implies that y* = x * implies that y x(R) implies that 1? is symmetric. 

Let x y(R) and y z(R), then x* = y * and = ; * implies that 

x* = z * implies that x z(R) implies that R is transitive. implies that R is 

an equivalence relation. 

Now, suppose xy(R) and tEL then x*=y* implies that x **=y**. 

Now, (xAt)**=x**At**=y**At**=(yAt)** 

implies that (xAl)**= (yAI)** 

implies that (x A t)* = (y A t) * 

implies that x Al y A 1(R) 

and (x v = * A1 * At* = (y Vt) * 

implies that x v i y v 

So R is a congruence relation on L. 

Define ço:L/R—>S(L) by ((a]R)=a**, 

then ([a]A[b])=2([aAb])** =(aAb)** =a** Ab**  

= qi([a]) A q,([b]) 

And q([a] v [b]) = v b]) = (a v b) * * = (a * Ab*) * 

= (a * * * Ab * **) * 

= a **vb** 

-4 = p([a]) v q,([b]) 

ço is a homomorphism. 
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To show that ço is one- one. Let a * * = b * * 

implies that a* = b * 

implies that a a b(R) implies that [a] = [b], 

is one- one. 

Let a€S(L) then a = a * * implies that a=[a] 

implies that q is onto. 

Hence q: L I R -* S(L) is an isomorphism. 

Therefore LI R S(L). 
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CHAPTER FOUR 

STONE LATTICES 

Introduction: Stone lattices have been studied by several authors 

including Cornish [5], G. Gratzer & E.T. Schmidt [9], Katrinak [11], 

T.P.Speed [25], J.Verlet [26]. In this chapter, we discuss the Stone 

lattices, Stone algebras and some basic concepts to Stone lattices. In 

section 1 of this chapter, we give some basic properties of Stone algebra 

which will be needed in the next part. 

In section 2 of this chapter, we have given characterization of minimal 

prime ideals of a pseudocomplemented distributive lattice. Then we have 

shown that every pseudocomplemented lattice is generalized Stone if and 

only if every two minimal prime ideals are co-maximal. 

Definition (Stone lattice): A distributive pseudocomplemented lattice 

L is called a Stone lattice if for each a E L, a' v a = 1. 

1 

C d 

Figure 4.1 
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Definition (Stone algebra): A pseudocomplernented distributive lattice 

'4 L is called a stone algebra if and only if it satisfies the condition 

va = 1 which is called stone identity, for each a e L. 

Definition (Generalized stone lattice): A lattice L with 0 is called 

generalized stone lattice if (x]
* 
 v (x]

** 
 = L for each x E L. 

rd 

4 
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I. Properties of Stone Lattices. 

I 
Theorem 4.1.1: For a distributive lattice L with 

pseudocomplernentation, 

the following conditions are equivalent. 

LisaStone algebra 

(a A b)* = a * vb * for all a,b E L 

a,b E S(L) implies that a v bE S(L). 

S(L) is a sub algebra of L. 

Proof: (i) implies (ii), Let L be a Stone algebra, we shall show that 

a * vb * is the pseudocomplerneni of a A b, Indeed. 

(a A b) A (a * vb*) = (aAb A a*) v (a Ab Ab*) 

=(OAb)v(aAO) 

=OvO 

If(aAb)Ax=O then (bAx)Aa=O. 

and so bAx:!~a*, Meeting both sides by a** 

Yields bAxAa**-<a*Aa**=0 

that is, bA(xAa**)=O, implying that a**Ax:!~b* 

We have, a * va * * =1, by Stone 's identity. 

xAl= XA (a* va**) = (x Aa*)  v (x A a**) a* vb * 

implies that a * vb * is the pseudocomplernent of a A b 

implies that (a A b)* = a * vb *. 

(ii) implies (iii). 

Let a,bE S(L) , then a= a**, b = b ** 

avb= a** vb ** (a * Ab*)* = (a v b) ** 

implies that a v b € S(L) 
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implies (iv), For a,b E S(L),a v bE S(L) 

Also a=a**,b=b** 

Now,avb = a**vb **(a*Ab*)* =(avb)** = avb 

i.e. S(L) is a sub algebra of L. 

implies (1) Let S(L) is a sub algebra of L. 

Then a*va**=(aAa*)*=O*=1. 

l-Icncc L is a Stone algebra. 

Theorem 4.1.2: If L is a complete Stone lattice, then so is 1(L). 

Proof: Let I*=(a],  where a=A(x* I x€1) and let xElml*,  then 

x e I and x E 1* = (a] implies that x I and x E (a] implies that x I 

and x:!~y*VyEJ implies that x:!!~x* implies that x = xAx*=O, 

implies that I A 1* = (0] 

Let IAJ,chooseanyjEJ,then IAj=OVIEI implies that j :!~i*,i e l 

implies that j :!~ A(I * I / 1) implies that j :!~ a implies that j E I * 

implies that J ç I *  implies that J*  is a pseudocompiemented. Since 

0 E L, so 1(4) is complete. Finally, we have to show that I * vi * * = L. 

Now J*vj**=(a]v(a]*=(a]** v (a]* 

rld = (a * *] V (a*} 

= (a * * V a*] 

=L 

Hence 1(L) is a Stone. 

Thus 1(L) is a complete Stone lattice. 

Theorem 4.1.3: A distributive pseudocomplemented lattice is a Stone 

lattice if and only if (a v b) * * = a * * v b * * for a, b E L. 

Proof: Let L be a Stone lattice. Then we have (a A b)* = a * vb * for 

a, h E L. Now (a v b)**=(a vb*)*=(a* Ab*)*=a**vh** 
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Conversely, let (avb)**=a**yb** fora, b e L. 

Since L is a pseudocomplemented lattice. Then for a E L, a A a* = 0 

'4 implies that (aAa*)**=0** 

implies that a**Aa***=O 

implies that a * * A a* = 0 

Now, (ava*)*=a*Aa**=0 

implies that (a v a*) * * = 0* 

implies that a**va***=1 

implies that a * * v a*  =1 

Hence L is a Stone lattice. 

A 
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2. Minimal prime ideals. 

A prime ideal P of a lattice L is called minimal if there does not exists a 

prime ideal Q such that Q c P. 

The following lemma is a fundamental result in lattice theory; 

e.f. [7], lemma 4pp. 169]. Though our proof is similar to their proof, we 

include the proof for the convenience of the reader. 

Theorem 4.2.1: Let L be a lattice with 0. Then every prime ideal 

contains a minimal prime ideal. 

Proof: Let P be a prime ideal of L and Let 1? denote the set of all prime 

ideals Q contained in P. Then R is non-void, since 0 E Q and Q is an 

ideal; infact, Q is prune. Indeed, if a A b e Q for some a, b E L, then 

a,h € X for all X c C; since X is prime, either a EX or b E X. Thus either 

Q = n (X: a EX) or Q= (X :b E A') proving that a or b E Q. 

Therefore, We can apply to I? the dual form of Zorn's lemma to conclude 

the existence of a minimal member of R. • 

Lemma 4.2.2: Let L be a pseudocomplemented distributive lattice and 

let P be a prime ideal of L. Then the following four conditions are 

equivalent. 

P is minimal. 

x E P implies that x* P. 

x E P implies that x**EP. 

PrD(L)=Ø. 

Proof: (i) implies (ii). 

Let P be minimal and (ii) fail, that is a*  e P for some a E P. Let 
4 

D = (L —P) v [a), We claim that 0 o D. Indeed, if 0 E D, then 
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qa = 0 for some qeL - 1', which implies that q :!~ a e P, a 

contradiction. Thus (by theorem 1 .4.8) there exists a prime ideal Q 

disjoint to D. Then Q c P since Q r (L —P) = 0, and Q # P. since : a 

Q, contradicting the minimally of P. 

implies (iii) 

Indeed, x * AX * * = 0 EP for any x E L thus ifx E P. then by (ii) X* EP, 

implying that x * * E P. 

implies (iv) 

If a E P n D(L) for some a E L, then a Iz P. a contradiction to 

(iii), thus P nD(L) 

implies (i) 

If P is not minimal, then Q c P for some prime ideal Q of L. 

Let XE P—Q. Then XAX*=O EQand 0 .thenx 

which implies that x v x E P. By theorem 3.1.1. (xvi), x v x * e 

thus we obtain x v x* e P n D(L), contradicting (iv). 

Hence P is minimal. 

Theorem 4.2.3: In a Stone algebra every prime ideal contains exactly 

one minimal prime ideal. 

Proof: Let L be a stone algebra and let P be a prime ideal of L. We 

need prove that P contains exactly one minimal prime ideal. Suppose P 

contains two distinct minimal prime ideals Qi and Q2. 

Choose x E Qi - Q2 ('Qi Q2, since Q2 is minimal 

and Q2 = Qi, hence Qi - Q2 # 0); 

Since x A X* =0 E Q2 x Q2 and Q2 is prime, so x* E Q2 L- 01 is 

maximal dual prime ideal, hence it is a maximal dual ideal of L. 

Thus (L - Qi) v [x) = L and so, x A a = 0 for some a e L - Qi. 

Therefore, x >— a €L - Qi implies that x* E Qi . Hence x E 02 - Qi. 

Similarly, x* e Qi, so x * and x * * both contained in P. 
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implies that 1 = x * vx * * E F, which is a contradiction that P is a prime 

ideal of L. Thus in a Stone algebra every prime ideal contains exactly one 

minimal prime ideal. 

Theorem 4.2.4: A prime ideal P of a Stone algebra L is minimal if and 

only if P = (P n S(L)) L 

Proof: Suppose P is minimal, Let x e (P r-S(L)JL. Then x :!~ r for some 

r E P n S(L) implies that r e P and r E S(L) implies that x E P 

implies that r E P and r E S(L,) implies that r e P implies that x e P. 

implies that ('P n S('L)]L c P ....................... (i) 

Again let x E F, since F, is minimal so, x * * E P. Then x E P n S('L), as 

x So XE (P n S(L)],.. 

implies that P c  (P n S(L)]L  ................................ (ii) 

Form (i) and (ii) P = (P n S(L)]j. 

Conversely, let P = (P n S(L)JL  and let x E P then x !~ r for some 

r e P n S(L,), implies that x**~r** =r implies that x**E P. 

Hence P is minimal. 

Theorem 4.2.5: A distributive lattice with pseudocomplemenlation is a 

Stone algebra if and only if every prime ideal contains exactly one 

minimal prime ideal (G. Gratzer and E. T Schmidt [1957b]) 

Proof: Let L be distributive lattice with pseudocomplemefltati0n. If L is 

a Stone algebra, then by theorem 4.2.3 every prime ideal contains exactly 

one minimal prime ideal. 

Conversely, let L is not a Stone lattice and let a E L such than a* v a** * 

1. Then there exist aprime ideal R such that, a*va**ER. We claim that 

(L - R) v jja*) # L. if (L - R) v [a*) # L then there exist an x E L - R 

such that x/\a*=O. Then a**>-XEL-R implies a**EL-R. Which 

is a contradiction. So (L - I?) v [a*) :# L. Let F be a minimal dual prime 

ideal containing (L - R) v [a*) and let G be a minimal dual prime ideal 
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containing(L_R)v[a*). We setP = L— Fand Q = L— G. Then 1'and Q 

are minimal prime ideals such that P, Q c R. Moreover P # Q, because 

a*EE=L—P andhence a*P;thus a**EP but a**Q. 

Theorem 4.2.6: Let L be a distributive with 0 and 1 . For an ideal I of 

L. We set I*={x I xAi=O for all iel}. LetP be aprime ideal of L. 

Then P is minimal prime ideal if and only if x E P 

implies that (x]* ç P (T. P. Speed). 

Proof: By the definition of I*,(x]* = {y I y A x = O} as x * AX = 0 

implies that x* E (x] * implies that (x*} ç (x} *, again let z E (x] *, 

then: A x = 0 implies that z x * implies that z E (x*] implies that 

(x]* c (x* implies that (x]* = (x*]. Now suppose P be a minimal prime 

ideal and x E P, then by the theorem x* P, implies that (x*] a P 

implies that (x*] c P 

Conversely, if for XE P, (x]* z P and if possible. Let P is not minimal 

then there exist a prime ideal Q such that Q c P. Let x E P = Q. 

Now x * AX = 0 E Q implies that x* E Q implies that x E P implies that 

(X*] g P implies that (x}* c P. which is a contradiction. 

Hence the proof. 

Theorem 4.2.7: Every Boo/can lattice is a Stone lattice but the 

conversely is not necessary true. 

Proof: Let L be a Boo/can lattice. Then for each a E L, it's complement 

d' is also the pseudocomp/ement of a. 

Moreover, a * va * * = ci' v = ci' v a —1. Hence L is also Stone. 

Observe that 3- elements chain is a Stone lattice. 
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For a * va * * = 0 v 0* = 0 v 1 1. But it is not Boolean, as a has no 

complement. 

1 

a 

0 

Figure - 4.2 

In theorem 4.2.3, we have proved that in a Stone lattice every prime ideal 

contains a unique minimal prime ideal. In the following lattice, observe 

that (c] is a prime ideal and it contains two minimal prime ideals (a] and 

(b]. 

Hence it is not a Stone lattice. 

a b 

Figure-4.3 

Also by 4.1.1. we know that in a Stone lattice L, a A b E S(L) for all 

a, b L. In above lattice observe that a v b = c o S(L). 

Hence L is not Stone. 
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Definition(Skeleton of a lattice): Let L be a Stone lattice, then 

S(L) = {a* : a E L} is called skeleton of L. The elements of S(L) are called 

skeletal. L is dense if S(L) = (O,I), 

<S(L);A,v,*,O,l> is a Boolean algebra. 

Corollary 4.2.8: A finite distributive lattice is a Stone lattice if and only 

if it is the direct product of finite distributive dense lattices that is finite 

distributive lattices with only one atom. 

Proof: By theorem 4.1.1 a Stone lattice L has a complemented element 

a o f0j} iff S(L)# o,i};  thus the decomposition of theorem 2.1.14 can 

be repeated until each factor Li  satisfies S(L)= {o,i}. In a direct product, 

* is formed component wise: Therefore all the Li  are Stone lattices; For a 

finite lattice K with S(K)= f0j} the condition that K has one atom is 

equivalent to K being a Stone lattice. 

Theorem 4.2.9: A distributive pseudoconiplemented lattice is a Stone 

lattice L if and only if for any two minimal prime ideals P and Q, 

PvQ=L 

Proof: Suppose L is a Stone lattice and P, Q are two minimal prime 

ideals. If P v Q # L then by theorem 2.1.17 there exists a prime ideal R 

containing P v Q. This means that R contains two minimal prime ideals, 

which is a contradiction to theorem 4.2.5. as L is a Stone, there fore 

I'vQ=L. 

Conversely, suppose the given condition holds and R is a prime ideal of 

L. Then 1? can not contain two minimal prime ideals P and Q, as other 

wise R P v Q = L, Therefore again by theorem 4.2.5. L is Stone. 
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Definition (Dense set): D(L) = (a E L : a* = O} , D(L) is called the 

dense set. D(L) is afihter or Dual ideal, I E D(L). 

We can easily cheek that D(L) is a dual ideal of L and that I c D(L); thus 

D(L) is a distributive lattice with 1. Since a v a c D(L) for every a € L, 

we can interpret the identity a v a * * A (a v a*). 

To mean that every a E L can be represented in the form a = b A C. 

Where b E S(L), c E D(L). Such an interpretation correctly suggests that 

if we know S(L) and D(L) and the relation ships between element of S(L) 

and D(L), 

Figure : 4.4 

Then we can describe L. The relation ship is expressed by the 

homomorphism p(L) : S(L) -> (D(L)) defined by 

ço(L):a—>{x Ix€D(L);x~a*} 
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Now we prove a theorem which givens an ideal of construction of Stone 

algebra 's. 

Theorem 4.2.10: (C. C. Chen and G. Gratzer [1969b] ) Let L be a Stone 

algebra. Then S(L) is a Boo/can algebra D(L) is a distributive lattice with 

L and q(L) is a {O, l} homomorphism of S(L) into gD(L)). The triple 

<S(L). D(L).d(L)> characterizes L up to isomorphism. 

Proof: The first statement is easily verified. For a E S(L), 

set Fa= {x:x**=a}. 

The sets (Fa  I a c S(L)} form a partition of L; for simple example figure 

4.4. Obviously, F0  = (0) and F1  = D('L); The map x -> x v a * 

sends Fa into F1  = D(L); infact the map is an isomorphism between Fa 

and a q(L) g D(L). Thus XE Fa is completely determined by a and 

x v a* E aqi(L)- that is by a pair <a, z> where a E S(L), z E aq,(L) - and 

every such pair determines one and only one element of L. To complete 

our proof we have to show how the partial ordering on L can be 

determined by such pairs. 

Let x E Fa and y E Fb. Then x :!~ y implies that x * * <- y * * , that is 

a:!gb. Since X:!~y if and only if, avx:!~avy and xva*<-yva* and 

since the first of these two conditions is trivial, we obtain: X :!~ y iff a :!~ b 

and x v a* <- y v a *. Identifying x with <x v a*,a> and y with 

v b*,b>, we see that the preceding conditions are stated in terms of 

the components of the ordered pairs, except that y v a * will have to be 

expressed by the triple. Because (L) is a [0,1] homomorphism and 

a * * is the complement of a *, we conclude that a * *q,(L) and a* (L) 

are complementary dual ideals of D(L). Therefore, by theorem 2.2.3. for 

any z E D(L),[z) is the direct product of [z v a*) and [z v a * *). Thus 
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every z can be written in a unique fashion in the form 

z = z(a*)A z(a**), where z(a*)€ aq.(L) and z(a**)E a*(o(L). Let 

YPa denoted the element (yço(L))(a*) and observe that p0  is expressed 

interims of the triple. Finally, y v a* = y v b * va* = (yço(L)) v a *=Y Pa• 

Thus for u€aço(L) and VE bçp(L), we have <u,a> :!~ <v,b> if and only 

if a:5 b and u:5 vp.. 

.4 
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CHAPTER FIVE 

MODULAR AND DISTRIBUTIVE 

LATTICE WITH n-IDEAL. 

Introduction: An idea of standard n-ideals of a lattice was introduced 

by A.S.A.Noor and M.A. Latif in [20]. Then they studied those n-ideals 

extensively and included several properties in [19] and [21]. Moreover, in 

[22] Latif has generalized isoniorphism theorems for standard ideals in 

terms of n-ideals. In this section we give a nice idea of distributive and 

modular lattice with n-ideals. 

An n-ideal S of a lattice L is called a standard n-ideal if it is a standard 

element of the lattice I (L). That is, S is called standard if for all 

I,JEI(L), I,A(svJ)=(Jns)v(InJ). 

Distributive elements and ideals were studied extensively by Gratzer and 

Schmidt in [9]. On the other hand [24] have studied the distributive 

elements and ideals in Join semi lattices which are directed below: 

An element d of a lattice L is called distributive if for all 

X, y E L, d v (x A y) = (d v x) A (d v y). An ideal I is called distributive if 

it is a distributive element of the ideal Lattice 1(L). 

In [24] Talukder and Noor have given an idea of a modular element and a 

modular ideal of a Lattice. According to them, an element n of a lattice L 

is called modular if for all x,yELwithy:!~,x, xA(nvy)=(x An) vy. 

An ideal of L is called modular if it is a modular element of 1(L). 

An elements E L is standard if for all 

x,yEL,xA(svy)=(xAs)v(xAy) 
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An element n E L is called neutral if it is standard and for all 

x,yeL,(aAx)v(xAy)v(yAa)=(avx)A(xvy)A(yva) That is, n 

is dual distributive. 

In section 1, we have introduced some idea of distributive lattice with n-

ideals. We have given several characterizations of distributive lattice with 

n-ideals. For a distributive lattice of n-ideal I of a lattice L we have also 

given some definition of ® (1). The congruence generated by I. We have 

also explained neutral element n of a lattice L, Principal n-ideal (a) or 

P (L) in distributive Lattice. 

4 
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1. n-Ideal of a lattice. 

A non-empty subset I of a lattice L is said be an ideal of L if 

a,b EI=avbEI 

aEI, lEL =aAlEI. 

If L is bounded then {o} is always an ideal of L and is called the zero 

ideal. The n-ideal of a lattice have been studies extensively by A.S.A 

Noor and M.A. Latif in [19], [20], [21], [22] and [23]. For a fixed element 

n of a lattice L, a convex sub lattice containing n is called an n-ideal. If L 

has "o" then replacing n by "o" an n-ideal becomes a filter by 

replacing n by 1. Thus the idea of n-ideals is a kind of generalization of 

both ideals and filters of lattices. So any result involving n-ideals of a 

lattice L will give a generalization of both ideals and fillers of lattices. So 

any result involving n-ideals of a lattice L with give a generalizations of 

the results on ideals if OEL and filters if 1 EL. 

The set of all n-ideals of a lattice L is denoted by I,,(L). Which is an 

algebraic lattice under set inclusion. Moreover, {n} and L are 

respectively the smallest and the largest elements of I(L), while the set 

theoretic intersection is the infirnurn. For any two n-ideals H and K, of 

a lattice L, it is easy to say that H n K = {x: x = m(h, n, k) for some 

liE H,k E K} 

Where m(x,y,z)=(xAy)v(yAz)v(zAx) and 

HvK={x:h Ak1  :!~x:!~h2 vk2, forsome h,h, E H. and k1 ,k, EK. 

The n-ideal generated by p1 , p2 ................., An is denoted by 

(p1' P2 ................. 

clearly, (PI ,  P2 ................., Pm ) (P)  v (p2),, V .................  (Pm),,. 
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The n-ideal generated by a finite number of elements is called a finitely 

generated n-ideal. The set of all finitely generated n-ideal is denoted by 

F(L), is a lattice. The n-ideal generated by a single element is called a 

princiai n-ideal. The set of all principal n-ideals of a lattice L is 

denoted by P,(L). We have (a) = {x c L : a A n :!~ x :!~ a v n}. 

Standard element of a Lattice: An element s of a lattice L is called 

standard if xA(svy)=(xAs)v(xAy) for all x,ye L. 

Theorem 5.1.1: If 1,7 (L) be an n-ideal of a lattice L is distributive if 

and only if (I v(a),1 )n(I v(b)) = I v((a) n(b)). for a,b EL. 

Proof: Let .1 and K be two ideals of a lattice L and I is distributive 

lattice. Again let x E (I v J) n (I v K). 

Then x E I v .1 and x E I v K. 

Then 1 A J :5 x i v j2 and 13  A k3  :5 x :!~ /4  v k4  

for some i1,12,13,i4  El, J1'12 E .J and k3,k4,E K. 

Now, n:5xvn:!~i2 Vj2 Vfl impliesthat xvnEIV(j2  vn) 

Similarly, n :5: x v n < i4  v k v n implies that 

Thus, xvne(Iv(J2 vn))(Iv(JnK)).. 

If I is distributive, then the condition clearly holds from the definition. To 

prove the converse, suppose given equation holds for all a,b E L, let J 

and K be any two n-ideals of L. 

Obviously, Iv(JrK)(Iv.J)n(IvK). 

Theorem.5.1.2: An element a of a lattice L is distributive if and only if 

the relation 01,  defined by x Y9a  if and only if x v a = y v a is a 

congruence. 

Theorem5.1.3: If I be n-ideal of a lattice L, is distributive if and only 

if the relation ON defined by y x®(I) Vx,y e L if and any if 

76 



x V l = y V 11  and X A 1 2  = y A 12  for some i 1 ,i2 el in the 

congruence generated by I. 

4' Proof: At first we shall show that 

yx®(I)f and only if(y)=(x)®1  in I(Lj Lety x®(I), 

Then y v = x v i1  and y Ai2  = X A '2•  for some i1 , i2  E I. 

Now yAi2 =xAi2  :!~X:!~XVi1 =yV/1  implies that xe(y),1 v1. 

Therefore, (y),, V I = (X),, V I. 

Which implies that (y),, (x),, ®(i) in I(L). 

A 
Conversely,(y, ) n =(x),,  01 in I. (L) 

then (y),, V I = (x) V I. 

Again, yE(x) vl, and os XAflAi1  :!~-y :!~ XVnVi2. 

Similarlyy, XAflAl3 :!~X:!~yVflVi4. 

This y:!~xVflV4:!~yVflV4 vi 

Which implies yvnVi2 Vi4  =xvnVi2 Vi4 . 

Similarly yAnAi1  Al3  =XAflAi1  Al3. 

That is yvi=xviandyAj=xAj 

Where i=nvi2 vi4 andj=nAi1 Ai3. 

Therefore y xe(I). 

Above proof shows that ®(z) is a congruence in L if and only if ® is 

a congruence in I,L). But by lemma 5.1.2 e1 is a congruency if and 

only if I is distributive in I(L) and completes the proof. U 

Theorem: 5.1.4: If n be a neutral element of a lattice L and 

A n ............. J v n are distributive in L. Then finitely generated 

n-ideals (i,P2  .............  ,),, is distributive. 
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Proof: Suppose 1 Afl ............. J Afl are dual distributive and 

v n ................ P,, V n are distributive in a lattice L. let J,K cI,? (L). 

Suppose xE((I .......... J 7,)fl  vf)n((P.......... vK).ni  

Then by using disiributivity of f v n ............... J- v n. 

Wehave,x:!!~(F v .......... vP, vnvj)A(J v ..........  vP,,1  vnvK) 

=(p1  vn)v[(p ............  Vp,,, vnvj)A(p2  v .........  v p,,, v n v k)] 

forsome J J,k € K. 

=(p1 vn)v(p2 vn)v .................  V(PmVfl)V(fAk). 

= (p v p, v .......... ..v p v n)v [(j v n) A (k v 17)] 

A 
But, (jvn)A(kvn)=m(/vn,n,kvn)EJnK. 

Dually using the dual disiributivity of p1  A fl ........... Pm  A fl, 

It is easy to see that, 

p, Ap2  A ............ APm AflA((J1  Afl)V(K1  Afl)):!~X 

for some j,  € J, k € K. 

Moreover, (j1 Afl)V(k1  Afl)=m( j1 Afl,fl,/ Afl)EJnK. 

Thus by convexity, Since the reverse in inclusion is 

x€(p1,p2, ............  ,pm )n v(JnK). 

so ( P I I P 2 . ........ p ) is distributive. 

It should be mentioned that the converse of above result is not necessarily 

true. For example consider the following lattice. 

Figure: 5.1 
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Here (a,f),, = L which is of course distributive in i(L) 

But neither a v n nor f v n is distributive in L. 

But the converse holds for princioal n-ideals. 

Definition (neutral element of a lattice): An element n € L is called 

neutral if it is standard and for all x, y, E L. fl A (x v y) = (n A y). By 

[15], we know that n EL is neutral if and only if for all x,y E L. 

m(x,n,y)= (xAy)v(xAn)v(yAn)=(xvy)A(xvn)A(yvn). 

Ofcourse 0 and 1 of a lattice are always neutral, of course every 

element of a distributive lattice is distributive, standard and neutral. 

A Theorem : 5.1.5: Suppose n be a neutral element of I(L). Then aAn 

is dual distributive and avn is distributive if and only if (a),7  is 

distributive. 

Proof: Suppose (a),, is distributive and b, C c L. 

Then (a) v ((b) n (c)) = ((a) v (b)) n ((a) v (c)j. 

Thus, [aAn,avn]v([bAn,bvn]n[aAcAn,avcvn]) 

=[aAbAn,avbvn]n[aAcAn,avcvn] 

This implies, 

a A fl A ((b A n) v (c A n)) = (a A b A n) v (a A c A n) 

and avnv((bvn)A(cvn))=(avbvn)A(avcvn) 

That is (aAn)A(bvc)(aAbAc)v(aAcAn) 

and (a v n) v (b A c) = (a v b v n ) A (a v c v n), 

as n is neutral Therefore, a A fl is dual distributive and a v n is 

distributive in a lattice L. 

To prove the converse, suppose a A n is dual distributive and a v n 
.4 

is distributive. Then by theorem 5.1 .4 (a),, is distributive. 
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Theorem: 5.1.6: Let I be a distributive n-ideal of a lattice L. Then I,7 (L) 

is isomorphic with the lattice of all n-ideals of L containing I, that is, with 

[I, L] in I(L). 

Proof: Let ço be the homomorphism x -> [x]e(I) onto 

Then it is easily to see that the map cu : K -> Kço maps I ( into 

[I,L]. To show that kP  is onto, it is sufficient to see that [J] ®(I) = J 

for all j I. Indeed, if j J and a E L with j a 0(I), then 

Jvi=avi and JA11  for somei,i1  el. Thus jAi1  <a:!~jvi. Since 

A 
J A /,J v i €J, so by convexity a € .i. Moreover, '1' is obviously an 

isotone and one-one. Therefore, it is an isomorphism. I 

IV 

-4 
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1. n-Ideal of a lattice. 

A non-empty subset I of a lattice L is said be an ideal of L if 

a,b EI=avbEI 

aEJ, i(=- L ='aAlEI. 

If L is bounded then {o} is always an ideal of L and is called the zero 

ideal. The n-ideal of a lattice have been studies extensively by A.S.A 

Noor and M.A. Latif in [19], [20], [21], [22] and [23]. For a fixed element 

n of a lattice L, a convex sub lattice containing n is called an n-ideal. If L 

has "o", then replacing n by "o" an n-ideal becomes a filter by 

replacing n by 1. Thus the idea of n-ideals is a kind of generalization of 

both ideals and filters of lattices. So any result involving n-ideals of a 

lattice L will give a generalization of both ideals and/lIters of lattices. So 

any result involving n-ideals of a lattice L with give a generalizations of 

the results on ideals if OEL and filters if 1 EL. 

The set of all n-ideals of a lattice L is denoted by I,,(L). Which is an 

algebraic lattice under set inclusion. Moreover, {n} and L are 

respectively the smallest and the largest elements of I,,(L), while the set 

theoretic intersection is the infirnuni. For any two n-ideals H and K, of 

a lattice L, it is easy to say that H n K = {x: x = m(h, n, k) for some 

hE H,k E K} 

Where m(x,y,z) = (xA y)v(yA z)v(z Ax) and 

H v K = {x: h1  A k1  :~ X :!~ h2  v k2, for some h1 , h., E H. and k1  , k., E K. 

The n-ideal generated by p1 ,p2 . ................. p,,, is denoted by 

.4 (p1,p2 .................  ,p,,,),2 ,  

clearly, (P, P2 .................'pm ) = (p)  v (p, ) v .................  (Pn)n 
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2. Modular n-ideals of a lattice 

Introduction: An n-ideal M of a lattice L is called a modular n-ideal if 

it is a modular element of the lattice I,(L) . In other words is called 

Modular if for all H,KE J,; (L) with K c I, 

Ht'm(MvK)=(HnM)v K. 

We know from [24] that a lattice L is modular if and only if its every 

element is modular. Also from [20]. We know that for a neutral element 

n of a lattice L, L is modular if and only if I,,(L) is 50. 

Thus for a neutral element n, the lattice L is modular if and only if it 

every n-ideal is modular. Following result gives a characterization of 

modular n-ideals of a lattice. 

Theorem :5.2.1: An n-ideal M of a lattice L is modular if and only if 

for any J, K e P(L) with K J, (J nM)v K = J n(M v K). 

Proof: Suppose M is modular lattice of I,(L). The above relation 

obviously holds from the definition. Conversely, Suppose 

(I n K) v K = J n (M v K) for all J,KE P,,(L) with K J. Let 

It S.T E I,(L) with T c S. 

Wehaveto show that, (SrM)vT= Sn(M vT). 

Clearly, (SnM)vTcSn(MvT). 

To prove the reverse inclusion let x ES r (M v 7'). 

Then xESand xE(MvT). 

Then,m A t :!~ x m 1  v t 1 . for some m1m1  E M,t,t1  E T 

Thus, xvn:!~-x<m1  Vt1  vn. 

Which implies xv n E (rn1  v n) v (t1  v n) M v (t v n), 

Moreover, x v n €(xvt vn),, and (xv11  vn) (t1  vii), 
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Hence by the given Condition, x v n E (xv 11  vn) n(M v(11  vn)) 

=((xvl vn)nM)v(t1  vn) c(SnM)vT. 

By a dual proof of above we can easily see that X A fl € (S n M) V T. 

Thus by Convexity x E (S n M ) v T. 

Theorem.5.2.2: Suppose n is a neutral element of a lattice L . Then 

M E 'P?  (L) is modular if and only if for and only if for any x E M v 

with (Y) c: (x) ,x=(xAm1 )v(xAy)=(xvm2 )A(xvy) for some 

m1 ,m2  EM. 

Proof: Suppose M is modular and x C M v (y),. 

Then xe (x) m(M v (y)=((x) nM)v(y). 

This impels pAyAn:!~x:!~qvyvn. 

for some p, q e (x), n M. 

ByPropositionl.1.1, qE(x)nM. 

Implies that q = (x v q) v (x A n) v (q A n) = (x A (q v n)) v (q A n). 

Thus, xvn:!~ (x A (q v n)) v yvn:!~ xv n, 

which implies x v n = (x A (q v n)) v y v n = 

It (x A (q v n)) v yA  (x v n)) v n. 

= ( x A (q v n)) v (x A y) v n, an n is neutral. Hence by the 

neutrality of n again, x = x A (x v n) = x A [x A (q v n)) v (x A y) v nil 

=(x A [(x A (q v n)) v (x A y)]) v (x A n) 

=(xA(qv n))v(xA y)v(xAn). 

=(x A (q v n)) v (x A 

Which is the first relation where m1  = q V fl C  M. 

A dual Proof of above establishes the second relation. 
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Conversely, let (y)  ç (x), By theorem 5.2.1, we need to show that 

(x)n(Mv(y))=.(x) n(Mv(y))= 

Clearly R.H.S cL.H.S. 

To prove the reverse inclusion let t e (x) n (M v  

Then i' e (x) and t e M v (y) 

Then mAyAn:!~I:!~m1  VyVfl. for some rn,m 1  E M. 

Thus, tvyvn:!~m1  vyvn, and sotvyvnEMv(yvn) 

and (y v n) c (t v y v n). 

So by the given conditionlvyvn=((tvyvn)Am')v (yv n) for 

A 
some lfl'EM. Since t,yE(X) 

fl , 

So tvyvnE(x). 

Moreover, by the neutrality of n, 

((I vyvn)Arn')v(yvn) 

((Iv yv n ) A (rn'v n)) v y. 

= v y v n, n, m') v y E ((x) n M) v (y). 

Therefore, t v y v n E ((x) n M) v (y). 

By the dualproofwecanshowthatlAyAne ((x) n M)v (y) 

Thus, by the convexity, I E ((x) n M) v (y). 

Therefore, (x) r(Mv(y)) ((x) cmM)v(y). 

and so by Theorem 5.2.1, M is Modular. 

Theorem.5.2.3: Let M is a modular n-ideal and I be any n-ideal of L 

and I be only n-ideal of L and n be a neutral element of a lattice L. Then 

I(L)is principal if M v I = (a),, and M ri I = (b),, 

-4 
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Theorem.5.2.4: Let I and J be ideals of a join Semi-lattice then 

IvJ ={t/t:5ivj, iEJ,jEJ}. 

Proof: Suppose a modular lattice L is distributive. Then clearly, R.H.S 

<IvJ. Nowlet,tElvf. 

Then we have I :~ i v j for some i E Iandj E J. 

..11A(iVj). 

=(tAi)v(tAj) 

=i'vj'wherei'=tAiEIand j'=tAjeJ. 

Hence I R.H.S. 

.IvJ:!~R.H.S. 

Therefore, I vJ= ivj/iEI,jeJ} 

Conversely, Suppose L is not distributive. 

Therefore it contains elements a,b,c is M5  or N5. 

Figure-5 .2 

Let I = (b] and J = (c] since a:!~bvc, Then wehave aEIvJ. 
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However a has no representation as in given theorem.For if 

a = I V J,i E J,J E J 

Then j:5a. also j < c 

Therefore j:!~aAc<b. Thus jEI 

Which gives a contradiction. 

Hence L is distributive. 

A. 

4 
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2. Modular n-ideals of a lattice 

hitroductjoii: An n-ideal M of a lattice L is called a modular n-ideal if 

it is a modular element of the lattice IL) . In other words is called 

Modular if for all I-IKE I, (L) with K I, 

IIn(ivIvK) (/-InM)v K. 

We know from [24] that a lattice L is modular if and only if its every 

element is modular. Also from [20]. We know that for a neutral element 

n of a lattice L, L is modular if and only if I(L) is so. 

Thus for a neutral element n, the lattice L is modular if and only if it 

every n-ideal is modular. Following result gives a characterization of 

modular n-ideals of a lattice. 

Theorem :5.2.1: An n-ideal M of a lattice L is modular if and only if 

for any J,Ke 1 1 (L) with Kc:.J,(JnM)vK =Jn(MvK). 

Proof: Suppose M is modular lattice of J(L). The above relation 

obviously holds from the definition. Conversely, Suppose 

(.1 n K) v K = .1 n (M v K) for all J,KE P(L) with K J. Let 

5.7' C= 1,7 (L) with 7' C S. 

We have to show that, (SnM)vT=Sn(M vT). 

Clearly, (S n M) v T c  Sn (M vT). 

To prove the reverse inclusion let x ES n (M VT). 

Then xESand xE(MvT). 

'l'hcn, /fl A I S: x in v t. for some m1 m1  c M, t, t1  cz T. 

Thus, x v n :!~ x in1  Vt1  vn. 

Which implies xv n c (ni1  v n) v (t1  v n) M v (t1  v 

Moreover, xvnc(xv11  vn) and (xvt1  vn) (t1  vn). 
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