## STUDY OF PSEUDOCOMPLEMENTED LATTICE



A Thesis
Submitted for the partial fulfillment of the requirements for the Degree of MASTER OF PHILOSOPY

In
Mathematics

BY

## KHAKI MASUDUR RAHMAN <br> Registration No.- 115 <br> Roll No.-0051510, <br> Session: 2000-2001,

## To

Department of Mathematics
Khulna University of Engineering \& Technology.
Khulna, Bangladesh.
June, 2008

We hereby recommend the thesis prepared by KHAKI MASUDUR RAHMAN, Roll no. 0051510, Registration No. 115 , Session 2000-2001 Entitled "STUDY OF PSEUDOCOMPLEMENTED LATTICE" to be accepted as fulfilling this part of the requirements for the degree of Master of Philosophy in the department of Mathematics.

## Committee of Examiners

1. Dr. Md. Abut Kalam Azad Supervisor
Department of Mathematics
Chairman ১৬/心/0৮
Khulna University of Engineering \& Thchnology. Bangladesh
2. Professor Dr. Fouzia Rahman

Department of Mathematics
Member
Khulna University of Engineering \& Thchnology. Bangladesh
3. Professor Dr. Md. Bazlar Rahman

Department of Mathematics


Member ${ }^{16.6 .08}$
Khulna University of Engineering \& Thchnology. Bangladesh
4. Professor Dr. Mohammad Arif Hossain

Head

$$
\operatorname{Acuif}_{\text {Member }}^{16 \cdot 6.08}
$$

Department of Mathematics
Khulna University of Engineering \& Thchnology. Bangladesh
5. Professor Dr. M. A. Latif

Department of Mathematics
University of Rajshahi, Rajshahi

## Dedicated

To My Parents

## DECLARATION

I hereby declare that this thesis entitled "Study of Peudocomplemented Lattice" submitted for the partial fulfillment for the degree of Master of Philosophy is done by myself under the supervision of Dr. Md. Abul Kalam Azad and is not submitted elsewhere for any other degree or diploma.

> M. Phill Research Fellow.

Khulna
Jun 01, 2008


Couter signed by:


Supervisor
Dr. Md. Abul Kalam Azad
Associate Professor
Department of Mathematics
Khulna University of Engineering \& Technology.

## ACKNOLEDGEMENT

It is my heartfelt pleasure expressing my gratitude to my supervisor Dr. Md. Abul Kalam Azad , Associate Professor Department of Mathematics, Khulna university of Engineering and Technology for his guidance, criticism and encouragement throughout my research work. I am obliged to express my heartiest thanks to my supervisor who taught the topic of the present thesis and provided me the way with his suggestions. Without his encouragement and sincere help, my thesis would never come to light, In particular I would like to extend my gratitude to Dr. Md. Bazlar Rahman, Professor, Department of Mathematics, KUET for hisconstructive suggestions and kind discussion help to improve my thesis. I must also thank Dr. Mohammad Arif Hossain, Professor, Department of Mathematics, KUET for his encouragement and caring concern.

I can not but express my sincere admiration, appreciation and gratitude to all the teachers of the Department of Mathematics, KUET for providing me with valuable suggestions during the period of research work, particularly Md. Zaidur Rahman, Assistant professor, Department of Mathematics, KUET for willing help to improve my thesis.

My family, inevitably, had to suffer a lot while this work was being done. This thesis owes a lot to the patience and co-operation shown to me by my wife Hazera and our three children Moury, Saad and Fariha for their suffering while I remained absent from home for thesis purpose; I am deeply thankful to them.

Finally, I would like to shoulder upon all the errors and shortcoming in the study if there be any, I am extremely sorry for that.

## TABLE OF CONTENTS

CHAPTER ONE Page No
Lattices and Ideals
Introduction ..... 01
1.1 Lattice ..... 01
1.2 Ideals ..... 13
CHAPTER TWO
Congruences of a Lattice
2.1 Congruence and Distributive Lattice ..... 18
2.2 Complemented and Boolean lattices ..... 34
CHAPTER THREE
Pseudocomplemented Lattice
Introduction ..... 40
3.1 Pseudocomplemented distributive Lattice ..... 43
3.2 Algebraic Lattices ..... 50
CHAPTER FOUR
Stone Lattices
Introduction ..... 58
4.1 Properties of Stone Lattice ..... 60
4.2 Minimal Prime Ideals ..... 63
CHAPTER FIVE
Modular and Distributive Lattice with n-ideals
Introduction ..... 72
5.1 n-Ideal of a lattice ..... 74
5.2 Modular n-Ideal of a lattice ..... 80

## SUMMARY

This thesis studies the nature of Pseudocomplemented lattice. We can define a lattice in two ways; (i) Set theoretically and (ii) Algebraically. Set theoretically: A poset $<L ; \leq>$ is a lattice if for every $a, b \in L$ both $\operatorname{Sup}\{\mathrm{a}, \mathrm{b}\}$ and $\operatorname{Inf}\{\mathrm{a}, \mathrm{b}\}$ exists in $L$.
Algebraically : A nonempty set $L$ with two binary operations $\wedge$ and $\vee$ is called a lattice if $\forall a, b, c \in L$. The following conditions hold.
i) $\quad a \wedge a=a, a \vee a=a$
ii) $\quad a \wedge b=b \wedge a, a \vee b=b \vee a$.
iii) $\quad a \wedge(b \wedge c)=(a \wedge b) \wedge c, a \vee(b \vee c)=(a \vee b) \vee c$,
iv) $\quad a \wedge(a \vee b)=a, a \vee(a \wedge b)=a$.

In this thesis, we have studied several properties of pseudocomplemented lattices. Moreover, we give several results on pseudocomplemented lattices which certainly extend and generalize many results in lattice theory.

In Chapter one, we have discussed posets, lattices and Ideals of a lattice which are explain with some examples and generalized many theorems of them.

In chapter two, congruence of lattices, distributive lattices,
Complemented lattices and Boolean algebra have been discussed, which are basic concept of this thesis.

In chapter three we give a description of pseudocomplemented lattices. We have also studied distributive pseudocomplemented lattices and algebraic lattices. Pseudocomplemented lattices have been studied by G. Gratzer [7] and many other authors. Here we extend several results of G. Gratzer [7] to lattices.

Chapter four introduces the concepts of stone lattices. Stone lattices have been studied by Gratzer [7], Katrinak [11] and many other authors. We have given a characterization of minimal prime ideals of pseudocomplemented distributive lattices.
Chapter five introduces the concept of distributive and modular lattice with $n$-ideals. Here we include several characterizations of $n$-ideals. We have proved some interesting result which are generalizes several results on distributive ,modular and ideals of a lattices. Latif [20] in his thesis has introduced the concept of standard n-ideals of a lattice. We conclude this thesis with some more properties of standard and neutral n-ideals.

## CHAPTER ONE

## LATTICES AND IDEALS 1. Lattices:

Introduction: The intention of this section is to outline and fix the notation for some of the concepts of lattices which are basic to this thesis. We also formulate some results on arbitrary lattices for later use. For the background material in lattice theory we refer the reader to the text of G. Birkhoff [1], G. Gratzer [7], [8], D.E. Rutherford [17] and vijay K. Khanna [18].

Definition (Poset): A nonempty set $P$, together with a binary relation $\rho$ is said to form a partially ordered set or a poset of the following conditions hold: For all $a, b, c \in P$
i) Reflexivity : $a \rho a$
ii) Anti - symmetry: $a \rho b$ and $b \rho a$ imply that $a=b$
iii) Transitivity: $a \rho b$ and $b \rho a$ imply that $a \rho c$

We also use the partially ordering relation ' $\leq$ ' in lieu of $\rho$.
Now we give an example of a poset.
Example 1.1.1 : The set $N$ of natural numbers form a poset under the usual ' $\leq$ '. Similarly, the set of integers $Z$, the set of rationals $Q$ and the set of real numbers $R$ also form posets under usual ' $\leq$ '.


Figure 1.1

As a particular case, the poset $\{2,3,4,6\}$ under divisibility is represented by figure 1.1
Definition (Chain): If $P$ is a poset in which every two members are comparable it is called a totally ordered set or to set or a chain. Thus if $P$ is a chain and $x, y \in P$ then either $x \leq y$ or $y \leq x$. The poset in figure 1.2 is a chain.


Figure 1.2
Let $P$ be a poset. If there exists an element $a \in P$ such that $x \leq a$ for all $x \in P$ then $a$ is called greatest element, if it exists, will be comparable with all elements of the poset. It is generally denoted by $u$ or $l$. Also an element $b \in P$ will be called least or zero element of $P$ if $b \leq x, \forall x \in P$. It is denoted by 0 . Least element (if it exists) will be unique.
Let $X=\{1,2,3\}$, then $P(X)=\{\phi,\{1\},\{2\},\{3\},\{1,2\},\{2,3\},\{1,3\},\{1,2,3\}\}$ form a peset under usual ' $\leq$ ' with $\phi$ as least element and $\{1,2,3\}$ as greatest element. An element a in a poset $P$ is called maximal element of $P$ if $a<x$ for no $x \in P$. In the poset $\{1,2,4,6\}$ under divisibility 4 and 6 are both maximal elements. Greatest element is the unique maximal element in figure 1.1. An element $b$ in a poset $P$ is called a minimal element of $P$ if $x<b$ for no $x$ in $P .2$ and 3 are both minimal elements in figeure 1.1.

Theorem 1.1.2 : If $S$ is a nonempty finite subset of a poset $P$ then $S$ has maximal and minimal elements.

Proof : Let $x_{1}, x_{2} \ldots \ldots \ldots \ldots \ldots \ldots . . . . . . . . . . . . . . . . . . . . . . . . . x_{n}$ be all the distinct elements of $S$ in any random order. If $x_{l}$ is maximal element, we are done. If $x_{l}$ is not maximal then there exists some $x_{i} \in S$ such that $x_{I}<x_{i}$. If $x_{i}$ is maximal.

We are done. If not, there exists some $x_{j} \in S$ such that $\mathrm{x}_{\mathrm{i}}<\mathrm{x}_{\mathrm{j}}$.
Continuing like this, we will reach a stage where some element will be maximal. Similarly, we can show that $S$ has minimal elements.

Theorem 1.1.3: The cardinal product of two posets is a poset.
Proof : Let $P_{1}$ and $P_{2}$ be two posets then we show that $P_{1} \times P_{2}=\left\{(x, y) / x \in P_{1}, y \in P_{2}\right\}$ forms a poset under the relation defined by. $\left(x_{1}, y_{1}\right) \leq P_{1} \times P_{2}\left(x_{2}, y_{2}\right) \Leftrightarrow x_{1} \leq P_{1} x_{2}$ in $P_{1}, y_{1} \leq P_{2} y_{2}$ in $P_{2}$
i) Reflexivity : $(x, y) \leq P_{1} \times P_{2}(x, y) \forall(x, y) \in P_{1} \times P_{2}$ as $x \leq P_{1}$ in $P_{1}$ and $y \leq P_{2} y$ in $P_{2} \forall x \in P_{1}, y \in P_{2}$
(ii) Anti - symmetry : Let $\left(x_{1}, y_{1}\right) \leq P_{1} \times P_{2}\left(x_{2}, y_{2}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right) \leq P_{1}$ $\times P_{2}\left(x_{1}, y_{1}\right)$. Then $x_{1} \leq P_{1} x_{2}, y_{1} \leq P_{2} y_{2}$ and $x_{2} \leq P_{1} x_{1}, y_{2} \leq P_{2} y_{2}$, implies that $x_{1}=x_{2}, y_{1}=y_{2}$ implies that $\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right)$.
(iii) Transitive: Let $\left(x_{1}, y_{1}\right) \leq P_{1} \times P_{2}\left(x_{2}, y_{2}\right)$ and $\left(x_{2}, y_{2}\right) \leq P_{1} \times P_{2}\left(x_{3}, y_{3}\right)$. Then $x_{1} \leq P_{1} x_{2}, y_{1} \leq P_{2} y_{2}$ and $x_{2} \leq P_{1} x_{3}$, $y_{2} \leq P_{2} y_{3}, \quad$ implies that $x_{1} \leq P_{1} x_{3}, \quad y_{1} \leq P_{1} y_{3}$ implies $\left(x_{1}, y_{1}\right) \leq P_{1} \times P_{2}\left(x_{3}, y_{3}\right)$.
Hence the product of two posets is a poset.
Definition(Suprimum and Infimum): Let $S$ be a non empty subset of a poset $P$. An element $a \in P$ is called an upper bound of $S$ if $x \leq a \forall x \in S$. Further if a is an upper bound of $S$ such that, $a \leq b$ for all upper bounds b of $S$ then a is called least upper bound or supremum of $S$. We write

Sup $S$ for supremum of $S$. Then $a$ is called least upper bound or supremum of $S$. An element $a \in P$ will be called a lower bound of $S$ if $S$ if $a \leq x \forall x \in S$ and $a$ will be called the greatest lower bound or Infimum of $S$ if $b \leq a$ for all lower bounds $b$ of $S$.
Example : Let $<Z, \leq>$ be the poset of integers under usual ' $\leq$ ' Let $S=\{$ $\qquad$ $-3,-2,-1,0,-2,3\}$ then $3=\operatorname{Sup} S$.
Definition(Lattice): Lattices are defined in two ways; (i) set theoretically and (ii) Algebraically
Set theoretically (define a lattice): A poset $\langle L ; \leq>$ is said to form a lattice if for every $a, b \in L, \operatorname{Sup}\{a, b\}$ and $\operatorname{Inf}\{a, b\}$ exist in $L$. So we can write $\operatorname{Sup}\{a, b\}=a \vee b$ and $\operatorname{Inf}\{a, b\}=a \vee b$
Example: 1.1.4: Let $X$ be a non empty set, then the poset $<P(X) ; \subset$ of all subsets of $X$ under set inclusion ' $\subseteq$ ' is lattice.
Here, for $A, B \in P(X), A \wedge B=A \cap B$ and $A \vee B=A \cup B$. As a particular case when $X=\{1,2,3\}$ then $P(X)=\{\phi,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}$.


Figure 1.3
Now we give an example of a poset which is not a lattice.

Example: 1.1.5: The set $\{2,3,4,12\}$ under divisibility is a poset but is not a lattice. Since $2 \wedge 3=6$ does not exists.

The algebraic definition of a lattice: A nonempty set $L$ together with two binary operations $\wedge$ and $\vee$ is said to form a lattice if $\forall a, b, c \in L$ the following conditions hold;
i) Idempotency: $\quad a \wedge a=a, a \vee a=a$
ii) Commutativity: $\quad a \wedge b=b \wedge a, a \vee b=b \vee a$
iii) Associativity : $\quad a \wedge(b \wedge c)=(a \wedge b) \wedge c$.
$a \vee(b \vee c)=(a \vee b) \vee c$
iv) Absorption: $a \wedge(a \vee b)=a, a \vee(a \wedge b)=a$.

Example:1.1.6: The set $L=\{0, a, b, 1\}$ forms a lattice.


Figure 1.1.4
The meet table and the join table of $L=\{0, a, b, 1\}$ are as follows:

| $\wedge$ | 0 | $\mathbf{a}$ | $\mathbf{b}$ | $\mathbf{1}$ |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 |
| $\mathbf{a}$ | 0 | $\mathbf{a}$ | $\mathbf{0}$ | $\mathbf{a}$ |
| $\mathbf{b}$ | 0 | 0 | $\mathbf{b}$ | $\mathbf{b}$ |
| $\mathbf{l}$ | 0 | $\mathbf{a}$ | $\mathbf{b}$ | $\mathbf{l}$ |

Table - 1

| $\vee$ | 0 | a | b | 1 |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | a | b | l |
| a | a | a | l | 1 |
| b | b | l | b | 1 |
| l | 1 | l | l | 1 |

Table - 2

Theorem: 1.1.7: (a) Let the poset $L=<L ; \leq>$ be a lattice.
Set $\operatorname{Sup}\{a, b\}=a \vee b$ and $\operatorname{Inf}\{a, b\}=a \wedge b$, then the algebra $L^{a}=\langle L ; \wedge, \vee\rangle$ is a lattice .
(b) Let the algebra $L=<L ; \leq>$ be a lattice. Set $a \leq b$ if and only if $a \wedge b=a$, then $L^{p}=<L ; \leq>$ is a poset and the poset $L^{p}$ is a lattice.
Proof: a) We have $L$ is non empty and $\wedge$ and $\vee$ are two binary operations in $L$.
i) $a \wedge a=\operatorname{Inf}\{a, a\}=a, a \vee a=\operatorname{Sup}\{a, a\}=a$
$\therefore \wedge$ and $\vee$ satisfy idempotent law.
ii) $\quad a \wedge b=\operatorname{Inf}\{a, b\}=\operatorname{Inf}\{b, a\}=b \wedge a$
$a \vee b=\operatorname{Sup}\{a, b\}=\operatorname{Sup}\{b, a\}=b \vee a$
$\therefore \wedge$ and $\vee$ satisfy commutative law.
iii) $\quad a \wedge(b \wedge c)=a \wedge \operatorname{Inf}\{b, c\}=\operatorname{Inf}\{a, b, c\}$

$$
=\operatorname{In} f\{a, b\} \wedge c=(a \wedge b) \wedge c
$$

$$
a \vee(b \vee c)=a \vee \operatorname{Sup}\{b, c\}=\operatorname{Sup}\{a, b, c\}
$$

$$
=\operatorname{Sup}\{a, b\} \vee c=(a \vee b) \vee c
$$

$\therefore \wedge$ and $\vee$ satisfy associative law.
iv) $\quad a \wedge(a \vee b)=a \wedge \operatorname{Sup}\{a, b\}=\operatorname{Inf}\{a, \operatorname{Sup}\{a, b\}\}=a$
$a \vee(a \wedge b)=a \vee \inf \{a, b\}=\sup \{a, \inf \{a, b\}\}=a$
$\therefore \wedge$ and $\vee$ satisfy absorption law.
So $L^{a}=\langle L ; \wedge, \vee\rangle$ is a lattice.
b) Given that the algebra $L=<L ; \leq>$ be a lattice set $a \leq b$ if and only if $a \wedge b=a$; then $L^{p}=<L ; \leq>$ is a lattice.
i) $a=a \wedge b$ set $a \leq b$ if and only if $a=a \wedge b$. Since $\wedge$ is idempotent.
$\therefore a \wedge a=a$, Implies that $a \leq a, a \in L \therefore \leq$ is reflexive.
ii) Since $\wedge$ is commutative then $a \wedge b=b \wedge a$ implies that $a<b$ and $b \leq a$. implies that $a=b$ where $a, b \in L$.
$\therefore \leq$ is anti -symmetric.
iii) Let $a \leq b$ and $a \leq b$ then $a=a \wedge b$ and $b=b \wedge c$

$$
a=a \wedge b=a \wedge(b \wedge c)=(a \wedge b) \wedge c=a \wedge c
$$

So $a \leq c$ where $a, b, c \in L$
$\therefore \leq$ is transitive.
Hence $L=<L ; \leq>$ is a poset.
Let $a, b, c \in L$ then $a \wedge b \in L$
Now $(a \wedge b) \wedge a=a \wedge(b \wedge a)=a \wedge(a \wedge b)=(a \wedge a) \wedge b=a \wedge b$ and $(a \wedge b) \wedge b=a \wedge(b \wedge b)=a \wedge b$

So, $a \wedge b \leq a, b$
i.e. $(a \wedge b)$ is the another lower bound of $a$ and $b$.

Let $c$ be the another lower bound of $a$ and $b . \therefore c \leq a, c \leq b$
Then $c \wedge a=c$ and $c \wedge b=c$. i.e., $c \leq a \wedge b$
$\therefore(a \wedge b)$ is greatest lower bound of $\{a, b\}$

$$
\therefore(a \wedge b)=\operatorname{Inf}\{a, b\}
$$

By absorption law,
$a \wedge(a \wedge b)=a$ and $b \wedge(a \wedge b)=b$
i.e., $a$ and $b$ is lower bound of $a \vee b$.

Therefore $b \leq a \vee b$.
Then $a \vee b$ is an upper bound of $a$ and $b$
Let $c$ be the another upper bound of $a$ and $b$, then $a \leq c, b \leq c$.
So, $a \vee c=(a \wedge c) \vee c=c, \quad b \vee c=(b \wedge c) \vee c=c$
Thus $(a \vee b) \wedge c=(a \vee b) \wedge(a \vee c)=(a \vee b) \wedge(a \vee b \vee c)$

$$
\begin{aligned}
& =(a \vee b) \wedge((a \vee b) \vee c) \\
& =(a \vee b)[\text { by absorption law }]
\end{aligned}
$$

i.e. $(a \vee b) \leq c$
and so $a \vee b=\operatorname{Sup}\{a, b\}$
Hence $L^{p}=<L ; \leq>$ is a lattice.
Theorem 1.1.8: The cardinal product of two lattices is a lattice.
Proof: Let $L_{1}$ and $L_{2}$ be two lattices then we have already proved that [Th-1.1.3] $L_{1} \times L_{2}=\left\{x, y: x \in L_{1}, y \in L_{2}\right\}$ is a poset under the relation $\leq$ define by. $\left(x_{1}, y_{1}\right) \leq L_{1} \times L_{2}\left(x_{2}, y_{2}\right) \Leftrightarrow x_{1} L_{1} x_{2}$ in $L_{1}, y_{1} \leq L_{2} y_{2}$ in $L_{2}$.
We shall show that $L_{1} \times L_{2}$ forms a lattice.
Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in L_{1} \times L_{2}$ be any elements. Then $x_{1}, x_{2} \in L_{1}$ and $y_{1}, y_{2} \in L_{2}$. Since $L_{1}$ and $L_{2}$ are lattices, then $\left\{x_{1}, x_{2}\right\}$ and $\left\{y_{1}, y_{2}\right\}$ have sup and $\inf \operatorname{in} L_{1}$ and $L_{2}$ respectively.
Let $x_{1} \wedge x_{2}=\inf \left\{x_{1}, x_{2}\right\}$ and $y_{1} \wedge y_{2}=\inf \left\{y_{1}, y_{2}\right\}$
Then $x_{1} \wedge x_{2} \leq L_{1} x_{1}, x_{1} \wedge x_{2} \leq L_{1} x_{2}, y_{1} \wedge y_{2} \leq L_{2} y_{1}, y_{1} \wedge y_{2} \leq L_{2} y_{2}$ Impliesthat $\left(x_{1} \wedge x_{2}, y_{1} \wedge y_{2}\right) \leq L_{1} \times L_{2}\left(x_{1}, y_{1}\right),\left(x_{1} \wedge x_{2}, y_{1} \wedge y_{2}\right) \leq L_{1} \times L_{2}$ $\left(x_{2}, y_{2}\right)$. Implies that $\left(x_{1} \wedge x_{2}, y_{1} \wedge y_{2}\right)$ is a lower bound of $\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right\}$. Suppose $(\mathrm{p}, \mathrm{q})$ is any lower bound of $\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right\}$.
then $(\mathrm{p}, \mathrm{q}) \leq L_{1} \times L_{2}\left(x_{1}, y_{1}\right)$ and $(\mathrm{p}, \mathrm{q}) \leq L_{1} \times L_{2}\left(x_{2}, y_{2}\right)$
Implies that $p \leq L_{1} x_{1}, q \leq L_{2} y_{1}, p \leq L_{1} x_{2}, q \leq L_{2} y_{2}$
Implies that $p \leq L_{1} x_{1}, p \leq L_{1} x_{2}$, and $q \leq L_{2} y_{1}, q \leq L_{2} y_{2}$
Implies that p is a lower bound of $\left\{x_{1}, x_{2}\right\}$ in $L$. q is a lower bound of $\left\{y_{1}, y_{2}\right\}$ in L
Implies that $p \leq L_{1} x_{1} \wedge x_{2}=\inf \left\{x_{1}, x_{2}\right\}, \quad \mathrm{q} \leq L_{1} y_{1} \wedge y_{2}=\inf \left\{y_{1}, y_{2}\right\}$

Implies that $(\mathrm{p}, \mathrm{q}) \leq L_{1} \times L_{2}\left\{x_{1} \wedge x_{2}, y_{1} \wedge y_{2}\right\}$
impliesthat ( $x_{1} \wedge x_{2}, y_{1} \wedge y_{2}$ ) is greatest lower bound of $\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right\}$.

Similarly,we can say that ( $x_{1} \wedge x_{2}, y_{1} \wedge y_{2}$ ) is least upper bound of $\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right\}$. Hence $L_{1} \times L_{2}$ is a lattice.

Definition(Complete lattice): A lattice $L$ is called a complement lattice if every nonempty subset of $L$ has its Sup and Inf exists in $L$.
Example: $I(L)$ the lattice of all ideals of a lattice $L$ is complete if $0 \in I$.
Definition(Meet semi lattice): A poset $\langle P ; \leq>$ is called a meet semi lattice if for all $a, b \in P, \operatorname{Inf}\{a, b\}$ exists. Equivalently, a nonempty set $L$ together with a binary operation $\wedge$ is called a meet semi lattice if $\forall a, b, c \in L$,
(i) $a \wedge a=a$
(ii) $a \wedge b=b \wedge a$,
(iii) $a \wedge(b \wedge c)=(a \wedge b) \wedge c$.

Definition(Sublattice): A nonempty subset $S$ of a lattice $L$ is called a sublatice of L if $a, b \in S$ implies that $a \wedge b, a \vee b \in S$. If $L$ is any lattice and $a \in L$ be any element then $\{a\}$ is a sublattice of $L$.

Theorem 1.1.9: Union of two sublattices may not be a sublattice.
Proof: Consider the lattice $L=\{1,2,3,4,6,12\}$ of factors of 12 under divisibility.


Figure1.4

Then $S=\{1,2\}$ and $T=\{2,3\}$ are sublattices of $L$.
But $S \cup T=\{1,2,3\}$ is not sublattice as $2,3 \in S \cup T$
but $2 \vee 3=6 \notin S \cup T$.
Theorem 1.1.10: A lattice $L$ is a chain if and only if every non empty subset of it is a sublattice.
Proof: Let $S$ be a non empty subset of a chain $L$ then $a, b \in S$ implies that $a, b \in L$, implies that $a, b$ comparable, let $a \leq b$ then $a \wedge b=a \in S, a \vee b=b \in S$, therefore $S$ is a sublattice.
Conversely, Let $L$ be a lattice such that every nonempty subset of $L$ is a sublattice. We show that $L$ is a chain. Let $a, b \in L$ be any elements, than $\{\mathrm{a}, \mathrm{b}\}$ being a non empty subset of $L$ will be a sublattice of $L$. Thus by defination of sublattice $a \wedge b=\{a, b\}$ implies that $a \wedge b=a$ or $a \wedge b=b$ implies that $a \leq b$ or $a \leq b$ i.e, $\mathrm{a}, \mathrm{b}$ are comparable, Hence $L$ is a chain.
Definition(Convex sub lattice): A sudset $K$ of a lattice $L$ is called a convex if $a, b \in K ; c \in L$ and $a \leq c \leq b$ implies that $c \in K$. Any interval $[a, b]$ in a lattice is a convex sublattice.
Now we give an example which is not convex sublattice.
In the lattice $\{1,2,3,4,6,12\}$ under divisibility $\{1,6\}$ is a sublattice
which is non-convex as $2,3 \in[1,6]$, but $2,3 \notin\{1,6\}$.
Thus $[1,6] \not \subset\{1,6\}$.
Definition(Bounded lattice): A lattice is called finite if it contains a finite nuber of elements. A lattice with a largest and smallest elements is called a bounded lattice. Smallest element is denoted by zero and the largest element is denoted by one.

Let $L_{1}$ and $L_{2}$ be lattices. A mapping $\varphi: L_{1} \rightarrow L_{2}$ is called a meet homomorphism if $\varphi(a \wedge b)=\varphi(a) \wedge \varphi(b)$. It is called a join homomorphism if $\varphi(a \vee b)=\varphi(a) \vee \varphi(b)$. If $\varphi$ is both meet as well as join homomorphism, it is called a homomorphism.

Example: Let $L_{1}$ and $L_{2}$ be the lattices of figure 1.6(a) and 1.6(b) respectively.


Figure 1.6 (a)
Define $\varphi: L_{1} \rightarrow L_{2}$ such that $\varphi(0)=p, \varphi(a)=q, \varphi(b)=p, \varphi(u)=q$.
Then $\varphi$ is a homomorphism for
$\varphi(a \wedge b)=\varphi(0)=p, \varphi(a) \wedge \varphi(b)=q \wedge p=p$
implies that $\varphi(a \wedge b)=\varphi(a) \wedge \varphi(b)$,

$$
\begin{aligned}
& \varphi(0 \vee a)=\varphi(a)=q, \\
& \varphi(0) \vee \varphi(a)=p \vee q=p \\
& \text { implies that } \varphi(0 \vee a)=\varphi(0) \vee \varphi(a)
\end{aligned}
$$

Similarly for all other elements.
A map $\varphi: P_{1} \rightarrow P_{2}$ is called isotone if $x \leq P_{1} y$ implies that $f(x) \leq P_{2} f(y)$.


Figure 1.6(b)

Theorem 1.1.11: The algebra $\langle L ; \wedge, \vee\rangle$ is a lattice if and only if $<L ; \wedge>$ and $<L ; \vee\rangle$ semi-lattices and $a=a \wedge b$ is equivalent to $b=a \vee b$.

Proof : Let $\wedge$ and $\vee$ are two binary relations on $L$. Since $\langle L ; \vee\rangle$ is a lattice then $\wedge$ and $\vee$ satisfy the following conditions: For all $a, b, c \in L$, $a \wedge a=a, a \vee a=a ; a \wedge b=b \wedge a$ and $\langle L ; \vee\rangle$ are I. Let $a=a \wedge b$ then $a \vee b=(a \wedge b) \vee b=b$,

Conversely, let $\langle L ; \wedge\rangle$ and $\langle L ; \vee\rangle$ are semi-lattices then the above three conditions hold. So we need only to show the absorption identities hold in L. $a \wedge(a \vee b)=a \wedge b=a$ and $a \vee(a \wedge b)=a \vee a=a$, so $\langle L ; \wedge, \vee\rangle$ is a lattice.

## 2. Ideals of a lattice.

Definition(Ideal): A sub lattice $I$ of a lattice $L$ is called an ideal of $L$ if, $i \in I$ and $a \in L$ implies that $a \wedge i \in I$
Equivalently,
A non empty subset $I$ of a lattice $L$ is an ideal if
(i) $a, b \in I, a \vee b \in I$
(ii) $a \in I$ and $l \in L$ implies that $a \wedge l \in I$

Let $L=\{1,2,3,5,6,10,15,30\}$ be a lattice of factors of 30 under divisibility.


Figure 1.7
Then $\{1\},\{1,2\},\{1,3\},\{1,5\},\{1,2,5,10\},\{1,3,5,15\},\{1,2,3,6\},\{1,2,3,5,6,10,15\}$ are all the ideals of $L$.

Theorem: 1.2.1: Intersection of two ideals is an ideal.
Proof: Let $I_{1}$ and $I_{2}$ are two ideals of a lattice $L$. Since $I_{1}, I_{2}$ are non empty, there exists some $\mathrm{a} \in I_{1}, b \in I_{2}$. Now $a \in I_{1}, b \in I_{2} \subseteq L$ implies that $a \wedge b \in I_{1}$. Similarly $a \wedge b \in I_{2}$. Thus $I_{1} \cap I_{2} \neq \phi$.

Let $x, y \in I_{1} \cap I_{2}$ be any elements,
implies that $x, y \in I_{1}$ and $x, y \in I_{2}$
implies that $x \vee y \in I_{1}$ and $x \vee y \in I_{2}$ as $I_{1}, I_{2}$, are ideals,

So, $x \vee y \in I_{1} \cap I_{2}$. Again if $x \in I_{1} \cap I_{2}$ and $l \in L$ be any elements then $x \in I_{1}, x \in I_{2}, l \in L$ implies that $x \wedge l \in I_{1}$ and $x \wedge l \in I_{2}$ implies that $x \wedge l \in I_{1} \cap I_{2}$.

Hence $I_{1} \cap I_{2}$ is an ideal.
Theorem 1.2.2: Union of two ideals is an ideal if and only if one of them is contained in the other.

Proof: Let $I_{1}, I_{2}$ be two ideals of a lattice $L$ such that either $I_{1} \subseteq I_{2}$ or $I_{2} \subseteq I_{1}$. We have to show that $I_{1} \cup I_{2}$ is an ideal.

Since $I_{1} \neq \phi, I_{2} \neq \phi$ then $I_{1} \cup I_{2} \neq \phi$ (as $I_{1}, I_{2}$ are two ideals).
Let $I_{1} \subseteq I_{2}$ then $I_{1} \cup I_{2}=I_{2}$. If $I_{2} \subseteq I_{1}$ then $I_{1} \cup I_{2}=I_{1}$.
In this case $I_{1} \cup I_{2}$ is an Ideal.
Conversely, let $I_{1}$ and $I_{2}$ be two ideals of $L$ and $I_{1} \not \subset I_{2}$ and $I_{2} \not \subset I_{1}$, such that $I_{1} \cup I_{2}$ is an ideal. As $I_{1} \subseteq I_{2}$ and $I_{2} \subseteq I_{1}$ there exists $x \in I_{1}, x \in I_{2}$ and $y \in I_{1}, y \in I_{2}$. Now $x, y \in I_{1} \cup I_{2}$ implies that $x \vee y \in I_{1} \cup I_{2}$ implies that $x \vee y \in I_{1}$ or $x \vee y \in I_{2}$ if $x \vee y \in I_{1}$ then $x \leq x \vee y, y \leq x \vee y$ implies that $x, y \in I_{1}$ which is contradiction.
If $x \vee y \in I_{2}$ then $x \leq x \vee y, y \leq x \vee y$ implies that $x, y \in I_{2}$,
which is contradiction.
Hence $I_{1} \subseteq I_{2}$ or $I_{2} \subseteq I_{1}$.
Theorem 1.2.3: A nonempty subset $I$ of a lattice $L$ is an ideal if and only if
(i) $a, b \in I$ implies that $a \vee b \in I$
(ii) $a \in I, x \leq a$ implies that $x \in I$.

Proof : Let $I$ be an ideal of a lattice $L$. By definition of ideal given condition $a \wedge l \in I$. Hence $I$ is an ideal.
(i) is satisfied. Let $a \in I, x \leq a$ then $x=a \wedge x \in I$.

Conversely, we need show that $a \in I, l \in L$ implies that $a \wedge l \in I$.
since $a \wedge l \leq a$ and $a \in I$. By given condition $a \wedge l \in I$.
Hence $I$ is an ideal.
Theorem 1.2.4: The set of all ideals $I(L)$ of a lattice $L$ forms a Lattice under ' $\subseteq$ ' relation.

Proof: Let $I(L)$, be the set of all ideals of $L$. We shall show that $<I(L) ; \subseteq>$ is a lattice. Now as $L \in I(L)$ then $I(L) \neq \phi$.

First we show $<I(L) ; \subseteq>$ is a poset.
Reflexivity: $I_{1} \subseteq I, \forall I \in I(L)$
Anti-symmetry: Let $I_{1}, I_{2} \in I(L)$ such that $I_{1} \subseteq I_{2}$ and $I_{2} \subseteq I_{1}$
Implies that $I_{1}=I_{2}$.
Transitivity: Let $I_{1}, I_{2}, I_{3} \in I(L)$ and $I_{1} \subseteq I_{2} \subseteq I_{3}$ implics that $I_{1} \subseteq I_{3}$.
Hence $<I(L) ; \subseteq>$ is a poset.
Again let $I_{1}, I_{2} \in I(L)$ then $I_{1} \wedge I_{2}=I_{1} \cap I_{2} \in I(L)$.
Therefore $\operatorname{Inf}\left\{I_{1}, I_{2}\right\}=I_{1} \wedge I_{2} \in I(L)$.
Now we claim that $I_{1} \vee I_{2}=\left\{x \in L / x \leq i_{1} \vee i_{2}\right\}$ for some $i_{1} \in I_{1}, i_{2} \in I_{2}$
To prove this, let $x, y \in$ R.H.S then $x \leq i_{1} \wedge i_{2}$ for some $i_{1} \in I_{1}, i_{2} \in I_{2}$
and $y \leq j_{1} \vee j_{2}$ for some $j_{1} \in I_{1}, j_{2} \in I_{2}$
So $x \vee y \leq\left(i_{1} \vee i_{2}\right) \vee\left(j_{1} \vee j_{2}\right)=\left(i_{1} \vee j_{1}\right) \vee\left(i_{2} \vee j_{2}\right)$
(where $i_{1} \vee j_{1} \in I_{1}, i_{2} \vee j_{2} \in I_{2}$,)
Which implies $x \vee y \in$ R.H.S. If $x \in$ R.H.S and $t \in L$ with $t \leq x$ then $x \leq i_{1} \vee i_{2}$ for some $i_{1} \in I_{1}, i_{2} \in I_{2}$. So $t \leq i_{1} \vee i_{2}$ implies $t \in$ R.H.S. Therefore R.H.S is an ideal. Obviously this contains both $I_{1}$ and $I_{2}$. Suppose $K$ is an ideal containing both $I_{1}$ and $I_{2}$, Let $x \in$ R.H.S then $x \leq i_{1} \vee i_{2}$ for some $i_{1} \in I_{1}, i_{2} \in I_{2}$, Since $K$ is an ideal containing $I_{1}$ and
$I_{2}$. So $i_{1} \vee i_{2} \in K$ and $x \in K$ i.e., R.H.S $\leq \mathrm{K}$ i.e., R.H.S is the smallest ideals. Therefore R.H.S $=I_{1} \vee I_{2}$ and so $I(L)$ is a lattice. i.e., $\operatorname{Sup}\left\{I_{1}, I_{2}\right\}$ $=I_{1} \vee I_{2}$. Hence $<I(L) ; \subseteq>$ is a lattice.
Definition (dual ideal): A nonempty subset $D$ of a lattice $L$ is called dual ideal of $L$ if
(i) $a, b \in D$ implies that $a \wedge b \in D$
(ii) $d \in D, a \in L$ implies that. $d \vee a \in D$.

Let $I=\{1,2,5,10\}$ be the lattice under divisibility. Then $\{10\},\{5,10\}$, $\{2,10\}$ are all dual ideals of lattice $L$.


Figure 1.8
An ideal $I$ of $L$ is proper if $I \neq L$


Figure 1.9

A proper ideal $P$ of $L$ is called a prime ideal if for any $\mathrm{x}, y \in L$ and $x \wedge y \in P$ implies either $x \in P$ or $y \in P$. Let $L=\{1,2,3,4,6,12\}$ factors of 12 under divisibility forms a lattice then $\{1,2,4\}$ be a prime ideal of $L$.


Figure 1.9
Theorem 1.2.5: Every ideal of a lattice $L$ is prime if $L$ is chain. Proof: Let $a, b \in L \therefore a \wedge b \in L$. Consider $(a \wedge b)$ by hypothesis $I=(a \wedge b)$ is prime implies that either $a=a \wedge b$ or $b=a \wedge b$ implies that either $a \leq b$ or $b \leq a$. Hence $L$ is chain.
Conversely, Let $L$ be a chain and $I$ be an ideal of $L$. Suppose $a \wedge b \in P$, since $L$ is chain, either $a \leq b$ or $b \leq a$ implies that $a \in I$ or $b \in I$, therefore $I$ is prime.

## CHAPTER TWO

## CONGRUENCES OF A LATTICE

## 1. Congruence and Distributive lattices

Introduction: Congruence of lattices, Distributive lattices, Modular lattices and Boolean algebras has been studied by several authors including Katrinak [10], H. Lakser [13], A. S. A. Noor \& M. A. Latif [23], W. H. Cornish [4], A. Davey [6], G. Gratzer [7] and Vijay K. Khanna [18]. In this chapter, we discuss congruence of lattices, distributive lattices, modular lattices, complemented lattices and Boolean algebras which are basic concept of this thesis.

Definition (Congruence): An equivalence relation $\Theta$ (that is, a reflexive symmetric, and transitive binary relation) on a lattice $L$ is called a congruence relation of $L$ if and only if $a_{0} \equiv b_{0}(\Theta)$ and $a_{1} \equiv b_{1}(\Theta)$ imply that $a_{0} \wedge a_{1}=b_{0} \wedge b_{1}(\Theta)$ and $a_{0} \vee a_{1} \equiv b_{0} \vee b_{1}(\Theta)$

Lemma.2.1.1: Let $\Theta$ be a congruence relation of $L$. Then for every $a \in L,[a] \Theta$ is a convex sub lattice.

Proof: Let $x, y \in[a] \Theta$; then $x \equiv a(\Theta)$ and $y \equiv a(\Theta)$.
Therefore $x \wedge y \equiv a \wedge a=a(\Theta)$ and $x \vee y \equiv a \vee a=a(\Theta)$, proving that $[\mathrm{a}] \Theta$ is a sub lattice. If $x \leq t \leq y$ and $x, y \in[a] \Theta$ then $x \equiv a(\Theta)$ and $y \equiv a(\Theta)$.Therefore, $t=t \wedge y=t \wedge a(\Theta)$
and $t=t \vee x \equiv(t \wedge a) \vee x \equiv(t \wedge a) \vee a=a(\Theta)$,
Hence $[a] \Theta$ is convex.

Sometimes a long computation is required to prove that a given binary relation is a congruence relation. Such computations are often facilitated by the following lemma (G. Gratzer and E. T. Schmidt [1958e] and F. Maeda [1958]):

Lemma.2.1.2: A reflexive binary relation $\Theta$ on a lattice $L$ is a congruence relation if and only if the following three properties are satisfied; forall $x, y, z, t \in L$;
(i) $x \equiv y(\Theta)$ iff $x \wedge y \equiv x \vee y(\Theta)$
(ii) $x \leq y \leq z, x \equiv y$ and $y \equiv z(\Theta)$ imply that $x \equiv z(\Theta)$.
(iii) $x \leq y$ and $x \equiv y(\Theta)$ imply that $x \wedge t \equiv y \wedge t(\Theta)$ and $x \vee t \equiv y \vee t(\Theta)$.

Proof: The "only if" part being trivial, assume now that a symmetric and reflexive binary relation $\Theta$ satisfies conditions (i) - (iii).Let $b, c \in[a, d]$ and $a \equiv d(\Theta)$, we claim that $b \equiv c(\Theta)$. Indeed $a \equiv d(\Theta)$ and $a \leq d \quad$ by (iii) imply that $b \wedge c=a \vee(b \wedge c) \equiv d \vee(b \wedge c)=d \Theta$. Now $b \wedge c \leq d$ and (iii) imply that $b \wedge c=(b \wedge c) \wedge(b \vee c) \equiv d \wedge(b \vee c)=b \vee c(\Theta)$;

Thus by (i), $b \equiv c(\Theta)$.
To prove that $\Theta$ is transitive, let $x \equiv y(\Theta)$ and $y \equiv z(\Theta)$.
Then by (i), $x \wedge y \equiv x \vee y(\Theta)$ and
by (iii), $y \vee z=(y \vee z) \vee(y \wedge x) \equiv(y \vee z) \vee(y \vee x)=x \vee y \vee z(\Theta)$,
and similarly, $x \wedge y \wedge z \equiv y \wedge z(\Theta)$.
Therefore $x \wedge y \wedge z \equiv y \wedge z \equiv y \vee z \equiv x \vee y \vee z(\Theta)$
and $x \wedge y \wedge z \leq y \wedge z \leq y \vee z \leq x \vee y \vee z$. Thus applying (ii) twice, we get $x \wedge y \wedge z \equiv x \vee y \vee z(\Theta)$. Now we apply the statement of the previous paragraph with $a=x \wedge y \wedge z, b=x, c=z, d=x \vee y \vee z$ to conclude that $x \equiv z(\Theta)$.

Let $x \equiv y(\Theta)$; we claim that $x \vee t \equiv y \vee t(\Theta)$.
Indeed, $x \wedge y \equiv x \vee y(\Theta)$ by (i); thus by (iii), $(x \wedge y) \vee t \equiv x \vee y \vee t(\Theta)$
Since $x \vee t, y \vee t \in[(x \wedge y) \vee t, x \vee y \vee t]$ : we conclude that $\mathrm{x} \vee \mathrm{t} \equiv y \vee t(\Theta)$.
To prove the substitution Property for $\vee$, let $x_{0} \equiv y_{0}(\Theta)$ and $x_{1} \equiv y_{1}(\Theta)$.
Then $x_{0} \vee x_{1} \equiv x_{0} \vee y_{1} \equiv y_{0} \vee y_{1}(\Theta)$,
Implying that $x_{0} \vee x_{1} \equiv y_{0} \vee y_{1}(\Theta)$, since $\Theta$ is transitive .
The substitution property for $\wedge$ is similarly proved.
Lemma 2.1.3: $C(L)$ is a lattice. For $\Theta, \Phi \in C(L), \Theta \wedge \Phi=\Theta \cap \Phi$. The join $\Theta \vee \Phi$ can be described as follows:
$x \equiv y(\Theta \vee \Phi)$ if and only if there is a sequence $z_{0}=x \wedge y$,
$z_{1}, \ldots \ldots \ldots ., z_{n-1}=x \vee y$ of elements of $L$ such that $z_{0} \leq z_{1} \leq \ldots \ldots \ldots \leq z_{n-1}$ and for each i, $0 \leq i \leq n-1, z_{i} \equiv z_{i+1}(\Theta)$ or $z_{i} \equiv z_{i+1}(\Phi)$.

Proof: $\Theta \wedge \Phi=\Theta \cap \Phi$ is obvious. To prove the statement for the join ,let $\Psi$ be the binary relation described in this theorem. Then $\Theta \subseteq \Psi$ and $\quad \Phi \subseteq \Psi$ are obvious. If $\Gamma$ is a congruence relation $\Theta \subseteq \Gamma, \Phi \subseteq \Gamma$ and $x \equiv y(\psi)$ and $x \equiv y(\psi)$, then for each i , either $z_{i} \equiv z_{i+1}(\Theta), z_{i} \equiv z_{i+1}(\Gamma)$.By the transitivity of $\Gamma, x \wedge y \equiv x \vee y(\Gamma)$ ; thus $x \equiv y(\Gamma)$. Therefore, $\psi \subseteq \Gamma$. this shows that if $\Psi$ is a congruence relation, then $\Psi=\Theta \vee \Phi . \Psi$ is obviously reflexive and satisfies Lemma 2.1.2. If $x \leq y \leq z, x \equiv y(\Psi)$ and $y \equiv z(\Psi)$ then $x \equiv z(\Psi)$ is established by putting together the sequences showing $x \equiv y(\Psi)$ and $y \equiv z(\Psi)$; this verifies Lemma 2.1.2(ii). To show lemma 2.1.2(iii), Let $x \equiv y(\Psi), x \leq y$ with $z_{0}, \ldots \ldots \ldots \ldots z_{i-1}$ establishing this, and $t \in L$.Then $x \wedge t \equiv y \wedge t(\Psi)$ and $x \vee t \equiv y \vee t(\Psi) \quad$ can be shown with the
sequences $z_{i} \wedge t, 0 \leq i<n, z_{i} \vee t, 0 \leq i<n$, respectively. Thus the hypotheses of Lemma 2.1.2 hold for $\Psi$ and we conclude that $\Psi$ is a congruence relation. Homomorphism and congruence relations express two sides of the same phenomenon. To establish this fact we first define quotient lattices (also called factor lattices). Let L be a lattice and let $\Psi$ be a congruence relation on L . Let $L / \Theta$ denote the set of blocks of the Partition of $L$ induced by $\Theta$, that is $\mathrm{L} / \Theta=\{[\mathrm{a}] \Theta: \mathrm{a} \in L\}$.
set

$$
[a] \Theta \wedge[b] \Theta=[a \wedge b] \Theta
$$

and

$$
[a] \Theta \vee[b] \Theta=[a \vee b] \Theta .
$$

This defines $\wedge$ and $\vee$ on $L / \Theta$. Indeed, if $[a] \Theta=\left[a_{1}\right] \Theta$ and

$$
[b] \Theta=\left[b_{1}\right] \Theta \text {, then } a \equiv a_{1}(\Theta) \text { and } b \equiv b_{1}(\Theta) ;
$$

therefore, $a \wedge b \equiv a_{1} \wedge b_{1}(\Theta)$, that is $[a \wedge b](\Theta)=\left[a_{1} \wedge b_{1}\right] \Theta$. Thus $\wedge$ and (dually) $\vee$ are well defined on $L / \Theta$.The lattice axioms are easily verified. The lattice $L / \Theta$ is the quotient lattice of $L$ modulo $\Theta$.
Example: the lattice $L$ and a congruence sub lattice $S$ of $L$ that cannot be represented as [a] $\Theta$ for any congruence relation $\Theta$ of $L$.

Consider the lattice


Figure 2.1
Consider the convex sub lattice $\{0, a\}$.
Now if $0 \equiv[\mathrm{a}] \Theta$ for some congruence $\Theta$
then $c \vee o \equiv c \vee a$ or, $c \vee[\mathrm{a}] \Theta$
and $c \wedge b=\mathrm{c} \wedge b \Theta$ or $o \equiv \mathrm{~b} \Theta$. This implies $b \in[a] \Theta$, i.e. Convex sub lattice. $\{o, a\}$ is not a congruence class for any Congruence.

Theorem 2.1.4: Construct a lattice that has exactly three congruence relations.


Figure-2.2

Observe that only congruence of above lattice are $\varphi, 1$ and $\Theta$ where $\Theta=\{o, a, b, c, l\},\{e, l\}$, so above lattice has exactly three congruence.

## Theorem 2.1.5: (THE HOMOMORPHISM THEOREM)

Every homomorphic image of a lattice $L$ is isomorphic to a suitable quotient lattice of $L$. In fact, if $\varphi: L \rightarrow L_{1}$ is a homomorphism of $L$ onto $L_{1}$ and if $\Theta$ is the congruence relation of L defined by $x \equiv y(\Theta)$ if and only if $\mathrm{x} \varphi=\mathrm{y} \varphi$, then $L / \Theta \cong L_{1}$; an isomorphism figure 1.14 is given by $\Psi:[x] \Theta \rightarrow \mathrm{x} \varphi, x \in L$.
Proof: Since $\varphi$ is a homomorphism and $(\Theta)$ is obviously a congruence to prove that $\Psi$ is an isomorphism we need to check
i) $\Theta$ is well defined: Let $[x] \Theta=[y](\Theta)$. Then $x \equiv y(\Theta)$; thus $x \varphi=y \varphi$ $\Rightarrow([x] \Theta) \Psi \equiv([y] \Theta) \Psi$
i,e,. $\Psi$ is well defined.
(ii) To show that $\Psi$ is one-one $\Psi([x](19))=\Psi(y), \Theta) \Rightarrow \varphi(x)=\varphi(y)$ then $x \equiv y(\Theta)$ and so $[x](\Theta) \equiv[y](\Theta)$.i.e., $\Psi$ is one-one.
(iii) To show that $\psi$ is onto: Let $x \in L_{1}$. Since $\varphi$ is onto, There is any $\in L$ with $\varphi(y)=x$. Thus $([y] \Theta) y \psi=x$. i.e., $\psi$ is onto.
(iv) To show that $\psi$ is a homomorphism Let $[x] \Theta,[y] \Theta \in L / \Theta$, therefore $\psi([x] \Theta \wedge[y] \Theta)=\psi([x \wedge y] \Theta)=\varphi(x \wedge y)=\varphi(x)$

$$
\begin{aligned}
& \wedge(\varphi(y)=\psi \quad(|x| \Theta) \wedge \psi(|y| \Theta) . \quad \text { And } \quad \psi([\mathrm{x}] \Theta \vee[\mathrm{y}] \Theta) \\
& =\psi([x \vee y] \Theta\}=\varphi(x \vee y)=\varphi(x) \vee(\varphi(y))=\psi([x] \Theta) \vee \psi(|y| \Theta)
\end{aligned}
$$

i.e., $\psi$ is homomorphism then the theorem is proved.

Theorem: 2.1.6: $L / \Theta$ is a lattice under the operations $\wedge$ and $\vee$ defined by $[a] \Theta \wedge[b] \Theta)=[a \wedge b] \Theta$ and $[a] \Theta \vee[b] \Theta=[a \vee b] \Theta$.
Proof: Let L be a lattice and $\Theta$ be a congruence relation on $L$ defined by $a_{1} \equiv b_{1}(\Theta)$ and $a_{2} \equiv b_{2}(\Theta)$ where $a_{1} \wedge a_{2} \equiv b_{1} \wedge b_{2}(\Theta)$ and $a_{1} \vee a_{2} \equiv b_{1} \vee b_{2}(\Theta)$. We also define $[a](\Theta)=\{x \in L / x \equiv a(\Theta)\}$.
Then $\mathrm{L} / \Theta=\{[a] \Theta \mid a \in L\}$.
Now define $\wedge$ and $\vee$ on $L$ by $[a] \Theta \wedge[b] \Theta=[a \wedge b] \Theta$ and $[a] \Theta \vee[b] \Theta=$ $[a \vee b] \Theta$.
Idempotency: $[a] \Theta \wedge[a] \Theta=[a \wedge a] \Theta=[a] \Theta$ and $[a] \Theta \vee[a] \Theta=[a \vee a]$ $\Theta=[a] \Theta$.
Commutativity: $\quad[a] \Theta \wedge[b] \Theta=[\mathrm{a} \wedge \mathrm{b}] \Theta=[\mathrm{b} \wedge \mathrm{a}] \Theta=[\mathrm{b}] \Theta \wedge[\mathrm{a}] \Theta$.

$$
[a] \Theta \vee[b] \Theta=[a \vee b] \Theta=[b \vee a] \Theta=[b] \Theta \vee[a] \Theta
$$

Associativity: $\quad[a] \Theta \wedge([b] \Theta \wedge[c] \Theta)=[a] \Theta \wedge([b \wedge c] \Theta)$.

$$
\begin{aligned}
& =[a \wedge(b \wedge c)] \Theta=[(a \wedge b) \wedge c] \Theta \\
& =([a \wedge b] \Theta) \wedge[c] \Theta=([a] \Theta \wedge[b] \Theta) \wedge[c] \Theta
\end{aligned}
$$

Similarly, $[a] \Theta \vee([b] \Theta \vee[c] \Theta)=([a] \Theta \vee[b] \Theta) \vee[c] \Theta$.
Absorption: $[a] \Theta \wedge([a] \Theta \vee[\mathrm{b}] \Theta)=[a] \Theta \wedge([a \vee b] \Theta)$.

$$
=[a \wedge(a \vee b)] \Theta=[a] \Theta
$$

$$
\begin{aligned}
{[a] \Theta \vee([a] \Theta \wedge[b] \Theta) } & =[a] \Theta \vee([a \wedge b] \Theta) . \\
& =[a \vee(a \wedge b)] \Theta=[a] \Theta .
\end{aligned}
$$

Hence $L / \Theta$ is a lattice.
Definition (Modular Lattice): A lattice $L$ is called modular lattice if all $a, b, c \in L$ with $a \geq b$ then $a \wedge(b \vee c)=b \vee(a \wedge c)$.

Definition (Distributive Lattice): A lattice $L$ is called distributive lattice if all $a, b, c \in L, a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c)$

Lemma.2. 1.7: The following inequalities hold in any lattice
i) $\quad(x \wedge y) \vee(x \wedge z) \leq x \wedge(y \vee z)$
ii) $x \vee(y \wedge z) \leq(x \vee y) \wedge(x \vee z)$
iii) $(x \wedge y) \vee(y \wedge z) \vee(z \wedge x) \leq(x \vee y) \wedge(y \vee z) \wedge(z \vee x)$
iv) $(x \wedge y) \vee(x \wedge z) \leq x \wedge(y \vee(x \wedge z))$

Proof: (i) In any lattice $x \wedge y \leq x, x \wedge y \leq y, y \leq y \vee z$
implies that $x \wedge y \leq x, x \wedge y \leq y \vee z$
implies that $x \wedge y$ is a lower of $\{x, y \vee z\}$ :
$\therefore \mathrm{x} \wedge \mathrm{y} \leq \mathrm{x} \wedge(\mathrm{y} \vee \mathrm{z})$.
Again in any lattice $\mathrm{x} \wedge \mathrm{z} \leq \mathrm{x}, \mathrm{x} \wedge \mathrm{z} \leq \mathrm{z}, \mathrm{z} \leq \mathrm{y} \wedge \mathrm{z}$ implies that $x \wedge z \leq x, x \wedge z \leq y \vee z$
implies that $x \wedge z$ is a lower hound of $\{x, y \vee z\}$
$\therefore x \wedge z \leq x \wedge(y \vee z)$ (ii).

From (i) and (ii) we can say that $\mathrm{x} \wedge(\mathrm{y} \wedge \mathrm{z})$ is upper bound of $\{x \wedge y, x \wedge z\}$. Therefore $x \wedge(y \vee z) \leq(x \wedge y) \vee(x \wedge z)$.
(ii) In any lattice, $x \leq x \vee y, y \leq x \vee y, y \wedge z \leq y$
implies that $x \vee y \geq x, x \vee y \geq y \geq y \wedge z$
implies that $x \vee y \geq x, x \vee y \geq y \wedge z$.
Implies that $\mathrm{x} \vee \mathrm{y}$ is upper bound of $\{\mathrm{x}, \mathrm{y} \wedge \mathrm{z}\}$.
$\therefore x \vee y \geq x \vee(y \wedge z)$.
Implies that $x \vee(y \wedge z) \leq x \vee y$.

Again, $x \leq x \vee z, z \leq x \vee z, y \wedge z \leq z$
implies that $x \vee z \geq x, x \vee z \leq z, z \geq y \vee z$
implies that $x \vee z \geq x, x \vee z \geq y \wedge z$
implies that $\mathrm{x} \vee \mathrm{z}$ is upperbound of $\{x, y \wedge z\} \ldots \ldots \ldots$. (iv).
Form (iii) and (iv) we get $\mathrm{x} \vee(\mathrm{y} \wedge \mathrm{z})$ is a lower bound of $\{x \vee y, x \vee z\}$.
There fore $x \vee(y \wedge z) \leq(x \vee y) \wedge(x \vee z)$.
(iii) Any lattice, $x \wedge y \leq x, x \leq x \vee y$

Implies that $x \wedge y \leq x \vee y$
Again $x \wedge y \leq y, y \leq y \vee z$
Implies that $x \wedge y \leq y \vee z$ (vi).

Also $x \wedge y \leq x, x \leq z \vee x$
Implies that $x \wedge y \leq z \vee x$. (vii).

Form (v), (vi), (vii) we can say that
$x \wedge y$ is lower bound of $\{x \vee y, y \vee z, z \vee x\}$,
$\therefore \mathrm{x} \wedge \mathrm{y} \leq(\mathrm{x} \vee \mathrm{y}) \wedge(\mathrm{y} \vee \mathrm{z}) \wedge(\mathrm{z} \vee \mathrm{x})$. (A).

Again $y \wedge z \leq y, y \leq x \vee y$
implies that $\mathrm{y} \wedge \mathrm{z} \leq \mathrm{x} \vee \mathrm{y} \ldots \ldots \ldots \ldots$.........iii).
Also $\mathrm{y} \wedge \mathrm{z} \leq \mathrm{z}, \mathrm{z} \leq \mathrm{y} \vee \mathrm{z}$
Implies that $\mathrm{y} \wedge \mathrm{z} \leq \mathrm{y} \vee \mathrm{z}$. (ix)
and $\mathrm{y} \wedge \mathrm{z} \leq \mathrm{z}, \mathrm{z} \leq \mathrm{z} \vee \mathrm{x}$.
$\therefore \mathrm{y} \wedge \mathrm{z} \leq \mathrm{z} \vee \mathrm{x}$ $\qquad$ (x).

From (viii), (ix) and (x) we can say that $y \wedge z$ is lower hound of $\{x \vee y, y \vee z, z \vee x\}$.
$\therefore \mathrm{y} \wedge \mathrm{z} \leq(\mathrm{x} \vee \mathrm{y}) \wedge(\mathrm{y} \vee \mathrm{z}) \wedge(\mathrm{z} \vee \mathrm{x})$
Similarly, $z \wedge x \leq(x \vee y) \wedge(y \vee Z) \wedge(z \vee x)$
From (A), (B) and (C) we can say that $(x \vee y) \wedge(y \vee z) \wedge(z \vee x)$ is upper bound of $\{x \wedge y, y \wedge z, z \wedge x\}$.
$\therefore(x \vee y) \wedge(y \vee z) \wedge(z \vee x) \leq(x \wedge y) \vee(y \wedge z) \vee(z \wedge x)$
iv) Since $x \wedge y \leq x \wedge z \leq x$,

So we get $(x \wedge y) \vee(x \wedge z) \leq x$. (xi),

And $x \wedge y \leq y \leq y \vee(x \wedge z)$ and $x \wedge z \leq y \vee(x \wedge z)$
$\therefore(\mathrm{x} \wedge \mathrm{y}) \vee(\mathrm{x} \wedge \mathrm{z}) \leq \mathrm{y} \vee(\mathrm{x} \wedge \mathrm{z})$ $\qquad$ (xii)

From (xi) and (xii) we get $(x \wedge y) \vee(x \wedge z) \leq x \wedge(y \vee(x \wedge z)$.


Figure 2.3

Example: The pentagonal lattice is not modular.


R
Figure-2.4
Here, $x \wedge(y \vee z)=x \wedge 1=x$
And $y \vee(x \wedge z)=y \vee 0=y$
Since $x \wedge(y \vee z) \neq y \vee(x \wedge z)$
Hence the pentagonal lattice is not modular.

Theorem.2.1.8: Two lattices $L_{1}$ and $L_{2}$ are modular if $L_{1} \times L_{2}$ is

## Modular

Proof: Let $L_{1}$ and $L_{2}$ be modular. Let $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right),\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$,
$\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right) \in L_{1} \times L_{2}$ be three elements with $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \geq\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)$.
Then $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3} \in \mathrm{~L}_{1}, \mathrm{x}_{1} \geq \mathrm{x}_{3}, \mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3} \in \mathrm{~L}_{2}, \mathrm{y}_{1} \geq \mathrm{y}_{3}$
and since $L_{1}$ and $L_{2}$ are Modular.
We get $x_{1} \wedge\left(x_{2} \vee x_{3}\right)=\left(x_{1} \wedge x_{2}\right) \vee x_{3}, y_{1} \wedge\left(y_{2} \vee y_{3}\right)=\left(y_{1} \wedge y_{2}\right) \vee y_{3}$.
Thus $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \wedge\left[\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right) \vee\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)\right]$

$$
\begin{aligned}
& =\left(x_{1}, y_{1}\right) \wedge\left[x_{2} \vee x_{3}, y_{2} \vee y_{3}\right] \\
& =\left(x_{1} \wedge\left(x_{2} \vee x_{3}\right) y_{1} \wedge\left(y_{2} \vee y_{3}\right)\right) \\
& =\left(\left(x_{1} \wedge x_{2}\right) \vee x_{3},\left(y_{1} \wedge y_{2}\right) \vee y_{3}\right) \\
& =\left(\left(x_{1} \wedge x_{2}, y_{1} \wedge y_{2}\right) \vee\left(x_{3}, y_{3}\right)\right) \\
& =\left[\left(x_{1}, y_{1}\right) \wedge\left(x_{2}, y_{2}\right)\right] \vee\left(x_{3}, y_{3}\right)
\end{aligned}
$$

Hence $L_{1} \times L_{2}$ is modular.
Conversely, Let $L_{1} \times L_{2}$ be modular. Let $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3} \in \mathrm{~L}_{1}, \mathrm{x} \geq \mathrm{x}_{3}$ and $\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3} \in \mathrm{~L}_{2}, \mathrm{y}_{1} \geq \mathrm{y}_{3}$ then $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right),\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right),\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right) \in L_{1} \times L_{2}$ $\operatorname{and}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \geq\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)$. Since $L_{1} \times L_{2}$ is modular.
We find $\left.\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \wedge\left[\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right) \vee\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)\right]=\left[\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \wedge\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)\right] \vee\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)\right]$
Or, $\left(x_{1}, y_{1}\right) \wedge\left[\left(x_{2} \vee x_{3}\right),\left(y_{2}, \vee y_{3}\right)\right]=\left[\left(x_{1} \wedge x_{2}\right),\left(y_{1} \wedge y_{2}\right) \vee\left(x_{3}, y_{3}\right)\right]$
Or, $\left.\left(x_{1} \wedge\left(x_{2} \vee x_{3}\right), y_{1} \wedge\left(y_{2} \vee y_{3}\right)\right)=\left(\left(x_{1} \wedge x_{2}\right) \vee x_{3},\left(y_{1} \wedge y_{2}\right) \vee y_{3}\right)\right)$
Or, $x_{1} \wedge\left(x_{2} \vee x_{3}\right)=\left(x_{1} \wedge x_{2}\right) \vee x_{3} y_{1} \wedge\left(y_{2} \vee y_{3}\right)=\left(y_{1} \wedge y_{2}\right) \vee y_{3}$
$\therefore L_{1}$ and $L_{2}$ are modular.

Theorem.2.1.9: If $\mathrm{a}, \mathrm{b}$ are any elements of a modular lattice then $[a \wedge b, a] \cong[b, a \vee b]$

Proof: We know an interval in a lattice is a sub lattice. We establish the isomorphism define a map $\psi:[a \wedge b, a] \rightarrow[b, a \vee b]$ such that $\psi(\mathrm{x})$
$=x \vee b, x \in[a \wedge b, a]$. Then $\psi$ is well defined as $\mathrm{x} \in[\mathrm{a} \wedge \mathrm{b}, \mathrm{a}]$
implies that $a \wedge b \leq x \leq x \leq a$
implies that $(a \wedge b) \vee b \leq x \vee b \leq a \vee b$
implies that $b \leq x \vee b \leq a \vee b$
implies that $x \vee b \in[b, a \vee b]$. also $x_{1}=x_{2}$.
implies that $x_{1} \vee b=x_{2} \vee b$
implies that $\psi\left(\mathrm{x}_{1}\right)=\psi\left(\mathrm{x}_{2}\right)$,
$\psi$ is one-one as let $\psi\left(\mathrm{x}_{1}\right)=\psi\left(\mathrm{x}_{2}\right)$ then $x_{1} \vee b=x_{1} \vee b$
implies that $a \wedge\left(x_{1} \vee b\right)=a \wedge\left(x_{2} \vee b\right)$
implies that $x_{1} \vee(a \wedge b)=x_{2} \vee(a \wedge b)$
implies that $\mathrm{x}_{1}=\mathrm{x}_{2}$,
$\psi$ is onto as let $\mathrm{y} \in[\mathrm{b}, \mathrm{a} \vee \mathrm{b}]$ be any element.
We show that $\mathrm{a} \wedge \mathrm{y}$ is the required pre-image.
$y \in[b, a \vee b]$ implies that $b \leq y \leq a \vee b$
implies that $a \wedge b \leq a \wedge y \leq a \wedge(a \vee b)$
implies that $a \wedge b \leq a \wedge y \leq a$
implies that $a \wedge y \in[a \wedge b, a]$.
Also, $\psi(\mathrm{a} \wedge \mathrm{b})=(\mathrm{a} \wedge \mathrm{y}) \vee \mathrm{b}$, so we need show $\mathrm{y}=(\mathrm{a} \wedge \mathrm{y}) \vee \mathrm{b}$
Now, $\mathrm{y} \leq \mathrm{a} \vee \mathrm{b}$ implies that $\mathrm{y} \wedge(\mathrm{a} \vee \mathrm{b})=\mathrm{y}$
Implies that $y=y \wedge(b \vee a)=b \vee(y \wedge a)$.
Hence $\psi$ is onto.
Again, $\mathrm{x}_{1} \leq \mathrm{x}_{2}$, implies that $\mathrm{x}_{1} \vee \mathrm{~b} \leq \mathrm{x}_{2} \vee \mathrm{~b}$
Implies that $\psi\left(\mathrm{x}_{1}\right) \leq \psi\left(\mathrm{x}_{2}\right)$
Now, $x_{1} \vee b \leq x_{2} \vee b$ Implies that $a \wedge\left(x_{1} \vee b\right) \leq a \wedge\left(x_{2} \vee b\right)$
Implies that $x_{1} \vee(a \wedge b) \leq x_{2} \vee(a \wedge b)$

Implies that $\mathrm{x}_{1} \leq \mathrm{x}_{2}$.
Thus $\mathrm{x}_{1} \leq \mathrm{x}_{2}$
Implies that $\psi\left(\mathrm{x}_{1}\right) \leq \psi\left(\mathrm{x}_{2}\right)$.
Hence $\psi$ is an isomorphism.
Theorem.2.1.10: A lattice $L$ is modular if it does not contain a Sub lattice isomorphic to pentagonal lattice.
Proof: Suppose a lattice $L$ is modular, then its every sub lattice is also modular; Since $N=\{0, a, b, c, 1\}$


Figure 2.5
Where $b \leq a, a \wedge b=a \wedge c=b \wedge c=0$ and $a \vee b=a \vee c=b \vee c=1$ is not Modular So, L does not contain any sub lattice isomorphic to N To prove the converse, let L is not modular, then there exists elements $x, y, z \in L$ with $z \leq x$ such that $x \wedge(y \vee z) \neq(x \wedge y) \vee z$. But $x \wedge(y \vee z)>(x \wedge y) \vee z$. Then the elements $x \wedge y, y,(x \wedge y) \vee z, x \wedge(y \vee z)$, $\mathrm{y} \vee \mathrm{z}$ form a lattice
Diagram as follows:


Figure-2.6

Observe that $(x \wedge(y \vee z)) \wedge y=x \wedge[(y \vee z) \wedge y]=x \wedge y$
And so, $y \wedge((x \wedge y) \vee z)=x \wedge y$
Again, $y \vee((x \wedge y) \vee z)=[y \vee(y \wedge x)] \vee z=y \vee z$
And so, $y \vee(x \wedge(y \vee z))=y \vee z$. If $y=x \wedge y$ then we have $y \leq x$ And so, $\mathrm{y} \vee \mathrm{z}$. $=(\mathrm{x} \wedge \mathrm{y}) \vee \mathrm{z}$,
Also, $y \leq x$ and $z \leq x$ implies that $y \vee z \leq x$ and so $x \wedge(y \vee z)=y \vee z$,
So we have $x \wedge(y \vee z)=(x \wedge y) \vee z$ which gives a contradiction. Since L is not modular. So $\mathrm{y} \neq \mathrm{x} \wedge \mathrm{y}$. Similarly, we can show that $(x \wedge y) \vee z \neq x \wedge y, y \neq y \vee z, x \wedge(y \vee z) \neq y \vee z$
Hence the five elements are distinct and they form a sub lattice of L. which is isomorphic to $\mathrm{N}_{5}$. Hence $L$ is modular.

A lattice $\langle L ; \wedge, \vee\rangle$ is called distributive lattice if for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{L}$, $\mathrm{x} \wedge(\mathrm{y} \vee \mathrm{z})=(\mathrm{x} \wedge \mathrm{y}) \vee(\mathrm{x} \wedge \mathrm{z})$, dually, $\mathrm{x} \vee(\mathrm{y} \wedge \mathrm{z})=(\mathrm{x} \vee \mathrm{y}) \wedge(\mathrm{x} \vee \mathrm{z})$ of course every distributive lattice is modular.


Figure - 2.7

Theorem: 2.1.11: Two lattices $L_{1}$ and $L_{2}$ are distributive if $L_{1} \times L_{2}$ is distributive.
Proof: Let $L_{1}$, and $L_{2}$ are distributive, let $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right),\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right),\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)$ be any three elements of $L_{1} \times L_{2}$ then $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3} \in \mathrm{~L}_{1}, \mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}, \in \mathrm{~L}_{2}$. Now, $\left(x_{1}, y_{1}\right)\left[\left(x_{2}, y_{2}\right) \vee\left(x_{3}, y_{3}\right)\right]=\left(x_{1}, y_{1}\right) \wedge\left(x_{2} \vee x_{3}, y_{2} \vee y_{3}\right)$

$$
\begin{aligned}
& =\left(x_{1} \wedge\left(x_{2} \vee x_{3}\right), y_{1} \wedge\left(y_{2} \vee y_{3}\right)\right) \\
& =\left(\left(x_{1} \wedge x_{2}\right) \vee\left(x_{1} \wedge x_{3}\right),\left(y_{1} \wedge y_{2}\right) \vee\left(y_{1} \wedge y_{3}\right)\right) \\
& =\left[\left(x_{1} \wedge x_{2}, y_{1} \wedge y_{2}\right) \vee\left(x_{1} \wedge x_{3}, y_{1} \wedge y_{3}\right)\right] \\
& =\left[\left(x_{1}, y_{1}\right) \wedge\left(x_{2}, y_{2}\right)\right] \vee\left[\left(x_{1}, y_{1}\right) \wedge\left(x_{3}, y_{3}\right)\right]
\end{aligned}
$$

Shows $L_{1} \times L_{2}$ is distributive.
Conversely, Let $L_{1}, \times L_{2}$ be distributive.
let $x_{1}, x_{2}, x_{3}, L_{1}$ and $y_{1}, y_{2} y_{3} \in L_{2}$ be any elements, then $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right),\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right),\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right) \in \mathrm{L}_{1}, \times \mathrm{L}_{2}$ and as $L_{1} \times L_{2}$ is distributive. $\left(\mathrm{x}_{1}, \mathrm{y}_{2}\right) \wedge\left[\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right) \vee\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)\right]$
$=\left[\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \wedge\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right) \vee\left[\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \wedge\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)\right]\right.$
i.e., $\left(x_{1}, y_{1}\right) \wedge\left(x_{2} \vee x_{3}, y_{2} \vee y_{3}\right)=\left(x_{1} \wedge x_{2}, y_{1} \wedge y_{2}\right) \vee\left(x_{1} \wedge x_{3}, y_{1}\right)$
or, $\left(\left(x_{1} \wedge\left(x_{2} \vee x_{3}\right), y_{1} \wedge\left(y_{2} \vee y_{3}\right)\right)\right.$
$=\left(\left(x_{1} \wedge x_{2}\right) \vee\left(x_{1} \wedge x_{3}\right),\left(y_{1} \wedge y_{2}\right) \vee\left(y_{1} \wedge y_{3}\right)\right)$
Which gives, $x_{1} \wedge\left(x_{2} \vee x_{3}\right)=\left(x_{1} \wedge x_{2}\right) \vee\left(x_{1} \wedge x_{3}\right)$
$y_{1} \wedge\left(y_{2} \vee y_{3}\right)=\left(y_{1} \wedge y_{2}\right) \vee\left(y_{1} \wedge y_{3}\right)$
implies that $L_{1}$ and $L_{2}$ are distributive .
Theorem: 2.1.12: A distributive lattice is always modular but
Converse is not true.
Proof: Suppose $L$ is distributive, let $a, b, c \in L$ with $c \leq a$, then $\mathrm{a} \wedge(\mathrm{b} \vee \mathrm{c})=(\mathrm{a} \wedge \mathrm{b}) \vee(\mathrm{a} \wedge \mathrm{c})=(\mathrm{a} \wedge \mathrm{b}) \vee \mathrm{c}$, Thus L is modular. Conversely, consider the lattice


Figure - 2.8
It is says to check that $M_{5}$ is modular: $a \wedge(b \vee c)=a \wedge 1=a$,

$$
(a \wedge b) \vee(a \wedge c)=0 \vee 0=0 \text { i.e., } a \wedge(b \vee c) \neq(a \wedge b) \vee(a \wedge c)
$$

Therefore L is not distributive.
Theorem 2.1.13: Let $L$ be a distributive lattice, $I$ be an ideal. Let $D$ be a dual ideal of $L$ and let $I \cap D=\Phi$ Then there exists a prime ideal P of $L$ such that $P \supseteq I$.
Proof: Let $X$ be the set of all ideals of $L$ containing $I$ that are disjoint form $D$. Clearly $X$ is non empty as $I \in X$.

Let $C$ be a chain in $X$ and Let $M=U\{X \mid X \in C\}$. If $a, b \in M$ then $a \wedge X, b \wedge Y$, for some $X, Y \in C$. Since $C$ is chain either $X \subseteq Y$ or $Y \subseteq X$.

Suppose $X \subseteq Y$ then $a, b \in Y$. Since $Y$ is an ideal $a \vee b \in Y \subseteq M$.
Also if $a \in M$ and $\mathrm{b} \leq \mathrm{a}$, then $a \in X$ for some $X \in C$.
Since $X$ is an ideal, so $b \in X \subseteq M$. Therefore $M$ is an ideal contain $I$.
Obviously $M \cap D=\Phi$. Hence $M \in C$,
so by zorn's Lemma, X has a maximal element, say $P$,
We claim that p is a prime ideal.
If $P$ is not prime, then there exists $a, b \in L$ with $a, b \in P$ such that $a \wedge b \in P$.

By the maximality of $P((a] \vee P) \cap D \neq \varphi,((b] \vee P) \cap D \neq \varphi$
Let $p \vee a \in D$ and $q \vee b \in D$ for some $p, q \in P$
Then $\mathrm{x}=(p \vee q) \wedge(a \vee b)=(p \wedge q) \vee(a \wedge q) \vee(p \wedge b)(a \wedge b) \in P$
Which implies that $x \in P \cap D$ which gives a contradiction.
Therefore $\varphi$ must be a prime ideal.
Theorem 2.1.14: Dual of a distributive lattice is distributive.
Proof: Let $\langle L ; \wedge, \vee>$ be distributive and $<L ; \wedge, \vee>$ be its dual.
Now for any $a, b, c \in L=L, a \wedge{ }^{d} \wedge\left(b \vee{ }^{d} c\right)=a(b \wedge c)=(a \vee b)(a \vee c)=$ $\left(a \wedge{ }^{d} b\right) \vee{ }^{d}\left(a \wedge^{d} c\right)$ as $L$ is distributive .

This implies that $L$ is also distributive.

## 2. Complemented and Boolean lattices.

Definition (Complemented Lattice): In a bounded lattice $L, a$ is a complement of b if $a \wedge b=0$ and $a \vee b=1$. A complemented lattice is a bounded lattice in which every element has a complement.

Now, let $[\mathrm{a}, \mathrm{b}]$ be an interval in a lattice $L$. Let $x \in[a, b]$ be any element. If there exists $y \in L$ such that $x \wedge y=a, x \vee y=b$. We say y is a complement of $x$ relative to $[a, b]$ or y is relative complement of $x$ in $[a, b]$.In every element x of an interval $[a, b]$ has at least one complement relative to $[\mathrm{a}, \mathrm{b}]$, the interval $[a, b]$ is said to complement. Further, if every interval in a lattice is complement, the lattice is said to relative complemented.

Theorem 2.2.1: Two lattices $L_{1}$ and $L_{2}$ are relatively complemented if and only if $L_{1} \times L_{2}$ is relatively complemented.

Proof: Let $L_{1}$ and $L_{2}$ be relatively complemented. Let $\left[\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)\right]$ be any interval of $L_{1} \times L_{2}$ and suppose ( $a, b$ ) is any element of this interval.Then $\left(x_{1}, y_{1}\right) \leq(a, b) \leq\left(x_{2}, y_{2}\right)$ where $x_{1}, y_{1}, a \in L_{1}$ and $y_{1} y_{2}, b \in L_{2}$. implies that $x_{1} \leq a \leq x_{2}, y_{1} \leq b \leq y_{2}$.
implies that $a \in\left[x_{1}, x_{2}\right]$ a an interval in $L_{1}$ and $b \in\left[y_{1}, y_{2}\right]$ be an interval in $L_{2}$. Since $L_{1}, L_{2}$ are relatively complemented, a, b have complements relative to $\left[x_{1}, x_{2}\right]$ and $\left[y_{1}, y_{2}\right]$ respectively.
Let $a^{\prime}$ and $b^{\prime}$ be these complements,
Then $a \wedge a^{\prime}=x_{1}, a \vee a^{\prime}=x_{2}, b \wedge b^{\prime}=y_{2}$.
Now, $(a, b) \wedge\left(a^{\prime}, b^{\prime}\right)=\left(a \vee a^{\prime}, b \wedge b^{\prime}\right)=\left(x_{1}, x_{2}\right)$
$(a, b) \wedge\left(a^{\prime}, b^{\prime}\right)=\left(a \vee a^{\prime}, b \wedge b^{\prime}\right)=\left(y_{1}, y_{2}\right)$
i.e, $\left(a^{\prime}, b^{\prime}\right)$ is complement of $(\mathrm{a}, \mathrm{b})$ relative to $\left[\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right]$. Thus any interval in $L_{1} \times L_{2}$ is complemented. Hence $L_{1} \times L_{2}$ is relatively complemented.
Conversely, Let $L_{1} \times L_{2}$ be relatively complemented, $L$ let $\left[x_{1}, x_{2}\right]$ and [ $y_{1}, y_{2}$ ] be relatives in $L_{1}$ and $L_{2}$. Let $a \in\left[x_{1}, x_{2}\right]$ and $b \in\left[y_{1}, y_{2}\right]$ be any elements. Then $x_{1} \leq a \leq x_{2}, y_{1} \leq b \in y_{2}$
implies that $\left(x_{1}, y_{1}\right) \leq(a, b) \leq\left(x_{2}, y_{2}\right)$
implies that $(a, b) \in\left[\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)\right]$ an interval in $L_{1} \times L_{2}$
. implies that $(a, b)$ has a complement, say $\left(a^{\prime}, b^{\prime}\right)$ relative to this interval.
Thus $(a, b) \wedge\left(a^{\prime}, b^{\prime}\right)=\left(x_{1}, y_{1}\right)$

$$
(a, b) \vee\left(a^{\prime}, b^{\prime}\right)=\left(x_{2}, y_{2}\right)
$$

implies that $\left(a \vee a^{\prime}, b \wedge b^{\prime}\right)=\left(x_{1}, y_{1}\right)$
$\left(a \vee a^{\prime}, b \wedge b^{\prime}\right)=\left(x_{2}, y_{2}\right)$ implies that $a \wedge a^{\prime}=x_{1}, a \vee a^{\prime}=x_{2}$

$$
b \wedge b^{\prime}=b_{1}, b \vee b^{\prime}=y_{2}
$$

implies that $\mathrm{a} a^{\prime}$, is complement of a relative to $\left[x_{2}, y_{2}\right], b^{\prime}$ is complement of b relative to $\left[x_{2}, y_{2}\right]$.

Hence $L_{1}$ and $L_{2}$ are relative complemented.
Theorem 2.2.2: A complemented modular lattice is relatively complemented.
Proof: Let $L$ be a complemented modular lattice. Let $[a, b]$ be any interval in $L$ and $x \in[a, b]$ be any element, Since L is complemented, x has a complement, say $x^{\prime}$. Then $y=a \vee\left(b \wedge x^{\prime}\right)$
$x \wedge x^{\prime}=0 . x^{\prime}=1, a \leq x \leq b$.
Take $y=a \vee\left(b \wedge x^{\prime}\right)$
Then $x \wedge y=x\left[a \vee\left(b \wedge x^{\prime}\right)\right]$

$$
\begin{aligned}
& =a \vee\left(x \wedge\left(b \wedge x^{\prime}\right)\right)[\text { as } x \geq a, L \text { is modular }] \\
& =a \vee\left(b \wedge x, b \wedge x^{\prime}\right) \\
& =a \vee(b \wedge 0) \\
& =a \vee 0 \\
& =a
\end{aligned}
$$

$x \vee y=x \vee\left[a \vee\left(b \wedge x^{\prime}\right)\right]=(x \vee a) \vee\left(b \wedge x^{\prime}\right)=x \vee\left(b \wedge x^{\prime}\right)=b \wedge$ $\left(x \vee x^{\prime}\right)=b \wedge 1=b$.

Hence $y=a \vee\left(b \wedge x^{\prime}\right)$ is relative complement of x in $[a, b]$.
Theorem 2.2.3: Let $L$ be a distributive lattice and let $a \in L$ then the map $\varphi: x \rightarrow\langle x \wedge a, x \vee a>, x \in L$ is an embedding of L into $(a] \times[a)$ :
it is an isomorphism if a has a complement.
Proof: $\varphi: L \rightarrow(a] \times[a)$ is defined by $\varphi(x)=\langle x \wedge a, x \vee a\rangle$ for any $x, y \in L$

$$
\begin{aligned}
\varphi(x \wedge y)=< & (x \wedge y) \wedge a,(x \wedge y) \wedge a> \\
& =<(x \wedge a) \vee(y \wedge a),(x \vee a) \wedge(y \vee a)> \\
& =<x \wedge a, x \vee a>\wedge<y \wedge a, y \vee a> \\
& =\varphi(x) \wedge \varphi(y)
\end{aligned}
$$

i.e. $\varphi$ is a homomorphism.

Let $\varphi(x)=\varphi(y)$, then $\langle x \wedge a, x \vee a\rangle=\langle y \wedge a, y \vee a\rangle$
implies that $x \wedge a=y \wedge a$ and $x \vee a=y \vee a$
Now, $x=x \wedge(x \vee a)=x \wedge(y \vee a)=(x \wedge y) \vee(x \wedge a)$

$$
=(x \wedge y) \vee(y \wedge a)=y \wedge(x \vee a)=y \wedge(y \vee a)=y
$$

i.e. $\varphi$ is one- one.

Now suppose a has a complement $a^{\prime}$. To show on tones.
Let $\langle r, s\rangle \in(a] \times[a)$,

Then $\left[\left(a^{\prime} \wedge s\right) \vee r\right] \wedge a=\left(a^{\prime} \wedge s \wedge a\right) \vee(r \wedge a)=0 \vee(r \vee a)=0 \vee(r \wedge a)$

$$
=r \wedge a=r
$$

and $[(a \wedge s) \vee r] \vee a(a \vee r \vee a) \wedge(s \vee r \vee a)=1 \wedge(s \vee r \vee a)=s$
i.e. $\langle r, s\rangle=\left[\left(a^{\prime} \wedge s\right) \vee r\right] \wedge a,\left[\left(a^{\prime} \wedge s\right) \vee a\right] \vee a=\varphi\left(a^{\prime} \wedge s\right) \vee r$

So $\varphi$ is onto and hence $L \cong(a] \times[a)$.
Definition (Boolean Lattice): A complemented distributive lattice is called a Boolean lattice.
Since complements are unique in a Boolean lattice we can regard a Boolean lattice as an algebra with two binary operations $\wedge$ and $\vee$ and one unary operation ${ }^{\prime}$. Boolean lattices so considered are called Boolean algebras. In other words, by a Boolean algebra, we mean a system $<L, \wedge, \vee,{ }^{\prime}, 0,1>$ where L is a non empty set with the binary operations $\wedge$ and $\vee$ and a unary operation ${ }^{\prime}$, and nullary operations 0,1 is called a Boolean algebra if it satisfy the following condition:
i) $\quad a \wedge a=a, a \vee a=a, \quad \forall a \in L$
ii) $\quad a \wedge b=b \wedge a, a \vee b=b \vee a, \forall a, b \in L$
iii) $a \wedge(b \wedge c)=(a \wedge b) \wedge c, a \vee(b \vee c)=(a \vee b) \vee c, \forall a, b, c \in L$
iv) $\quad a \wedge(a \vee b)=a, a \vee(a \wedge b)=a, \forall a, b \in L$
v) $\quad a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c), \quad \forall a, b, c \in L$
vi) There exists $0 \in L, 1 \in L$ such that $a \vee 0=a, a \wedge 1=a \forall a \in L$
vii) Each $a \in L, a^{\prime} \in L$ such that $a \wedge a^{\prime}=0, a \vee a^{\prime}=1$
viii) $0^{\prime}=1$
ix) $1^{\prime}=0$
x) $(a \wedge b)^{\prime}=a^{\prime} \vee b^{\prime}$
xi) $(a \vee b)^{\prime}=a^{\prime} \wedge b^{\prime}$

Theorem 2.2.4: The infinite distributive laws hold in a complete Boolean algebra.
Proof: We have for distributive lattice $y \wedge\left(\vee x_{i}\right)=\vee\left(y \wedge x_{i}\right)$, even when there are infinitely many terms in the unions. These unions certainly exist since the lattice is complete.

Let $z=\vee\left(y \wedge x_{i}\right)$ then $y \wedge x_{i} \leq z$
and $x_{i} \leq y^{\prime} \vee x_{i}=y^{\prime} \vee\left(y \wedge x_{i}\right)=y^{\prime} \vee z$ for each i.
Hence $\vee x_{i} \leq y^{\prime} \vee z$ and so $y \wedge\left(\vee x_{i}\right) \leq y \wedge\left(y^{\prime} \vee z\right)=y \wedge z \leq z$.
That is to say $y \wedge\left(\vee x_{i}\right)=\vee\left(y \wedge x_{i}\right)$.
We there fore have by anti- symmetric property the distributive law $y \wedge\left(\vee x_{i}\right)=\vee\left(y \wedge x_{i}\right)$. Its dual may be obtained in the same way.

An element a of a lattice is called join irreducible if $a=b \vee c$ implies either $a=b$ or $a=c$.


Figure 2.9
Here 1 is not join- irreducible but $a, b, c, d$ all are join- irreducible.
Now zero join- irreducible element x which cover 0 .
i.e. $x, 0$ are called atoms.
[ $a, b$ means $b \leq a$ and if $b \leq c \leq a$ then either $b=\operatorname{cor} a=c$ ]


Figure-2.1o

Theorem.2.2.5: In a Boolean lattice $x \neq 0$ be join- irreducible if and only if x is an atom.
Proof: Let $L$ be a Boolean lattice and let $x \neq 0$ be join- irreducible. We have to show that x is an atom.
Let $t \in[0, x]$ then there exists $t^{\prime}$ such that $t \wedge t^{\prime}=0, t \wedge t^{\prime}=x$. Since x is join- irreducible, then either $t=x$ or $t^{\prime}=x$. If $t \wedge x$ then $t^{\prime}=x$ $\therefore t=t \wedge x=t \wedge t^{\prime}=0$ implies that x is an atom.
Conversely, Let x is an atom. We have to prove that x is join- irreducible. Let $a \vee b=x$, then $0 \leq a \leq x, 0 \leq x$ implies that $0=a$ or $a=x ; 0=b$ or $b=x$ implies that x is join- irreducible.

## CHAPTER THREE

## PSEUDOCOMPLEMENTED LATTICE.

Introduction: In lattice theory there are difference classes of lattice knows as variety, Of course the most powerful variety. Throughout this chapter we will be concerned with another large variety known as the class of distributive pseudocomplemented lattice. Pseudocomplemented lattice have been studied by several authors [9], [10], [13], [14], [15], [16]. There are two concepts that we should be able to distinguish a lattice $\langle L ; \wedge, \vee\rangle$ in which every element has a pseudocomplement and an algebra, $\langle L ; \wedge, \vee, *, 0,1\rangle$. Where $\langle L ; \wedge, \mathrm{v}, 0,1\rangle$ is a bounded lattice and where, for every $a \in L$, the element $a^{*}$ is a pseudocomplement of $a$. We shall call the former a pseudocomplemented lattice and the later a lattice with pseudocomplementation (as an operation). In this chapter we have also studied algebraic lattice.

## Construction of pseudocomplemented lattices.

Let L be a bounded distributive lattice, let $a \in L$, an element $a^{*} \in L$ is called a pseudocomplement of a in L if the following conditions hold:
(i) $a \wedge a^{*}=0$, (ii) $\forall x \in L, a \wedge x=0$ implies that $x \leq a *$


Figure 3.1
a has no pseudocomplement.
A bounded lattice $L$ is called a pseudocomplemented lattice if its every element has a pseudocomplement.

Example :


Figure 3.2

The lattice $L=\{0, a, b, c, 1\}$ show by the figure 3.2 is $p$ seudocomplemented.

An algebra, $\left\langle L ; \wedge, \vee, *, 0,1>\right.$ where $\wedge$ and $\vee$ are binary operation, ${ }^{*}$ is a unary operation and 0,1 are nullary operations is called a lattice with pseudocomplementation if.
i) $\langle L, \wedge, \vee, 0,1>$ is bounded lattice
ii) $\quad *$ is a unary operation i.e. $\forall a \in L$ there exists $a *$ such that $a \wedge a *=0$ and $a \wedge x=0$ implies that $x \wedge a^{*}=x, \forall x \in L$.

A bounded distributive lattice $L$ is called a pseudocomplemented distributive lattice if its every element has a pseudocomplement.


Figure - 3.3

## 1. Pseudocomplemented distributive lattice.

To see the difference in view point, consider the finite distributive lattice of figure (3.3). As a distributive lattice it has twenty-five sublattice and eight congruences; as a lattice with pseudocomplementation it has three subalgebras and five congruencies.
$L$ as lattice:
Sub lattice: $\{0\},\{a\},\{b\},\{c\},\{1\},\{0, a\},\{0, b\},\{0, c\},\{0,1\},\{0, a, b, c\}, L$, $\{a, c\},\{a, c, 1\},\{b, c\}$, $\{a, 1\},\{b, 1\},\{b, c, 1\},\{c, 1\},\{0, a, 1\},\{0, b, 1\},\{0, c, 1\},\{0, a, c\}$, $\{0, b, c\},\{0, a, c, 1\}\{0, b, c, 1\}=25$ :

L as a lattice with pseudocomplementation $\{0,1\}, L,\{0, c, 1\}$
Congruence:
As a lattice:
$\omega=\{0\},\{a\},\{b\},\{c\},\{1\}$
$\tau=\{0, a, b, c, 1\}$
$0=\{0, a\},\{b, c\},\{1\}$
$\varphi=\{0, a\},\{b, c, 1\}$
$\psi=\{0, b\},\{a, c\},\{1\}$
$t=\{0, b\},\{a, c, 1\}$
$\zeta=\{0, a, b, c\},\{1\}$
$\eta=\{c, 1\},\{a\},\{b\},\{0\}$
Congruence as a lattice with pseudocomplementation $\omega, \tau, \varphi, \iota, \eta$
Theorem 3.1.1: Let $L$ be a pseudocomplemented distributive lattice. $S(L)=\{a * / a \in L\}$ and $D(L)=\{a / a *=0\}$. Then for $a, b, \in L:$
(i) $a \wedge a^{*}=0$
(ii) $a \leq b$ implies that $a * \geq b *$
(iii) $a \leq a * *$
(iv) $a *=a * * *$
$(v)(a \vee b)^{*}=a * \wedge b *$
$(v i)(a \wedge b) * *=a * * \wedge b * *$
(vii) $a \wedge b=0$ iff $a * * \wedge b * *=0$
(viii) $a \wedge(a \wedge b)^{*}=a \wedge b^{*}$
(ix) $0 *=1$ and $1 *=0$
(x) $a \in S(L)$ iff $a=a * *$
(xi) $a, b \in S(L)$ implies that $a \wedge b \in S(L)$
(xii) $\operatorname{Sup} s_{(L)}\{a, b\}=(a \vee b) * *=(a * \wedge b *) *$
(xiii) $0,1 \in S(L), 1 \in D(L)$ and $S(L) \cap D(L)=\{1\}$
(xiv) $a, b \in D(L)$ implies that $a \wedge b \in D(L)$
( $x v$ ) $a \in D(L)$ and $a \leq b$ implies that $b \in D(L)$
(xvi) $a \vee a * \in D(L)$
(xvii) $x \rightarrow x^{* *}$ is a meet- homomorphism of $L$ onto $S(L)$

Proof: (i) By the definition of pseudocomplement, $a \wedge a^{*}=0 . \forall a \in L$.
(ii) For $b \wedge b *=0$ and $a \leq b=>a \wedge b *=0$ which implies $a * \geq b *$
(iii) By the definition of pseudocomplement $a \wedge a *=a * \wedge a=0$

Similarly, $\quad a * \wedge(a *) *=0 \Rightarrow a * \wedge a * *=0$ and $a * \wedge a=0=>a * \leq a * *$,
$=>a \leq a * *$. Hence $a \leq a * *$.
(iv) From (iii) we have $a \leq a * *$ implies that $a * \geq a * * \ldots \ldots \ldots \ldots \ldots$ (A) $\quad$ [by (ii)]

Again $a * \wedge a * *=0, \quad$ i.e. $a * * \wedge a *=0$.
Similarly $a * * \wedge(a * *) *=0$, implies that $a * * \wedge a * * *=0$,
and $a * * \wedge a *=0$ implies that $a * \leq a * * *$
From (A) and (B)
We have $a^{*}=a^{* * *}$ Hence $a^{*}=a^{* * *}$
(v) We have $(a \vee b) \wedge(a * \wedge b *)=(a \wedge a * \wedge b *) \vee(b \wedge a * \wedge b *)$

$$
\begin{aligned}
& =(0 \wedge b *) \vee(a * \wedge 0) \quad[\mathrm{by}(\mathrm{i})] \\
& =0 \vee 0 \\
& =0
\end{aligned}
$$

Let $(a \vee b) \wedge x=0$
implies that $(a \wedge x) \vee(b \wedge x)=0$
implies that $a \wedge x=0$ and $b \wedge x=0$
implies that $x \leq a *$ and $x \leq b^{*}$
Implies that $x \leq a^{*} \wedge b^{*}$
There fore $a * \wedge b *$ is the pseudocomplement of $a \vee b$.
Hence $(a \vee b) *=a * \wedge b *$.
(vi) Let $a, b \in L$ implies that $a *, b * \in L$ implies that $a * *, b * *, \in S(L)$. implies that $a * * \wedge b * * \in S(L)$. But $a * * \wedge b * *$ is the smallest element of $S(L)$ containing $a \wedge b$. So $(a \wedge b)^{* *}=a^{* *} \wedge b^{* *}$.
(vii) If $a \wedge b=0$ by (vi) then $a^{* *} \wedge b^{* *}=(a \wedge b)^{* *}=0^{* *}=0$.

So $a^{* *} \wedge b^{* *}=0$.
Conversely, if $a^{* *} \wedge b^{* *}=0$ by (iii) $a \leq a^{* *}, b \leq b^{* *} \forall a, b, \in L$,
then $a \wedge b \leq a^{* *} \wedge b^{* *}=0$
$\therefore a \wedge b=0$, Hence $a \wedge b=0$ if and only if $a^{* *} \wedge b^{* *}=0$.
(viii) Since $a \wedge b \leq b$ so $(a \wedge b)^{*} \leq b^{*}$ and
so $a \wedge(a \wedge b)^{*} \geq a \wedge b *$ $\qquad$ (A).

Again $(a \wedge b) \wedge(a \wedge b)^{*}=0$ implies that $\left(a \wedge(a \wedge b)^{*}\right) \wedge b=0$,
there fore $a \wedge(a \wedge b)^{*} \leq b^{*}$
implies that $a \wedge a \wedge(a \wedge b)^{*} \leq a \wedge b^{*}$ (B).

Form (A) and (B) $\quad a \wedge(a \wedge b)^{*}=a \wedge b^{*}$.
Hence $a \wedge(a \wedge b)^{*}=a \wedge b^{*}$.
(ix) We have $0 \wedge x=0 \forall x \in L$ and $0 \wedge 1=0$.

But $x \leq 1 \forall x \in L$. Hence $0^{*}=1$.
Again $0^{*}=1$ implies that $0^{* *}=1^{*}$
implies that $0=1^{*} \therefore 1^{*}=0$.
(x) If $a \in S(L)$ then, $a=b^{*}$ for some $b \in L$.
but $\mathrm{a}^{*}=\mathrm{a}^{* * *}, \forall \mathrm{a} \in \mathrm{L}$.
Now $a^{* *}=b^{* * *}=b^{*}=a$
Hence $a^{* *}=a$
Conversely if $a=a^{* *}$ then $a=b^{*}$, thus $a \in S(L)$.
Hence $a \in S(L)$ if and only if $a=a^{* *}$.
(xi) Let $a, b \in S(L)$ then $a=a^{* *}, b=b^{* *}$, Since $a \wedge b \leq a$
implies that $(a \wedge b)^{* *} \leq a^{* *}=a$,
$\therefore a \geq(a \wedge b)^{* *}$,
Again since $a \wedge b \leq b$ implies that $(a \wedge b)^{* *} \leq b^{* *}=b$
$\therefore(a \wedge b)^{* *} \leq b$ implies that $b \geq(a \wedge b)^{* *}$
implies that $a \wedge b \geq(a \wedge b)^{* *}$. (A).

But $(a \wedge b) \leq(a \wedge b)^{* *}$. (B)

From (A) and (B) $a \wedge b=(a \wedge b)^{* *}$ implies that $a \wedge b \in S(L)$.
If $x \in S(L)$ such that $x \leq a$ and $x \leq b$ then $x \leq a \wedge b$.
i.e $a \wedge b$ is a greatest lower bound of $S(L)$.

Therefore $a \wedge b=\operatorname{Inf}_{S_{(L)}}\{a, b\} \in S(L)$.
(xii) For $a, b \in S(L)$. since $a^{*} \geq a^{*} \wedge b^{*}$
implies that $a^{* *} \leq\left(a^{*} \wedge b^{*}\right)^{*}[$ by (ii)]
implies that $a \leq\left(a^{*} \wedge b\right)^{*}[\mathrm{by}(\mathrm{i})]$
Again $b^{*} \geq a^{*} \wedge b^{*}$ implies that $b^{* *} \leq\left(a^{*} \wedge b^{*}\right)^{*}[$ by (ii)]
Implies that $b \leq\left(a^{*} \wedge b^{*}\right)^{*}[$ by (i)]
$\left(a^{*} \wedge b^{*}\right)^{*}$ is a upper bound of $\{a, b\}$ in $\mathrm{S}(\mathrm{L})$.

Let $x \in S(L)$ such that $a \leq x, b \leq x$ then $a^{*} \geq x^{*}, b^{*} \geq x^{*}$ [by (ii)]. $\therefore a^{*} \wedge b^{*} \geq x^{*}$ implies that $\left(a^{*} \wedge b^{*}\right)^{*} \leq x^{* *}=x$ implies that $\left(a^{*} \wedge b^{*}\right)^{*} \leq x$
$\therefore\left(a^{*} \wedge b^{*}\right)^{*}$ is a least upper bound of $\{a, b\}$ in $S(L)$
$\operatorname{Sup}_{S(L)}\{a, b\}=\left(a^{*} \wedge b^{*}\right)^{*}$
Again $(a \wedge b)^{* *}=\left((a \wedge b)^{*}\right)^{*}=\left(a^{*} \wedge b^{*}\right)^{*}$
Hence $\operatorname{Sup}_{S(L)}\{a, b\}=(a \vee b)^{* *}=\left(a^{*} \wedge b^{*}\right)^{*}$
(xiii) From (ix) we have $0^{*}=1,1^{*}=0$ then $0,1 \in S(L)$ and $1 \in D(L)$.

Let $x \in S(L) \cap D(L)$ then $x \in S(L)$ and $x \in D(L)$
such that $x=x^{* *}, x^{*}=0$ then $x=\left(x^{*}\right)^{*}=0^{*}=1$.
Hence $S(L) \cap D(L)=\{1\}$.
(xiv) Let $a, b \in D(L)$ then $a^{*}=0, b^{*}=0$ implies that $a^{* *}=b^{* *}=0^{*}=1$

Now, $(a \wedge b)^{* *}=a^{* *} \wedge b^{* *}=1 \wedge 1=1[$ by (iv)]
$(a \wedge b)^{*}=(a \wedge b)^{* * *}=1^{*}=0$ implies that $a \wedge b \in D(L)$.
(xv) If $a \in D(L)$ then $a^{*}=0$ and $a \leq b$ implies that $a^{*} \geq b^{*}$
implies that $b^{*} \leq a^{*}=0$
implies that $b^{*}=0$. Hence $b \in D(L)$.
(xvi) From (v) we have $\left(a \vee a^{*}\right)^{*}=a^{*} \wedge a^{* *}=a^{*} \wedge\left(a^{*}\right)^{*}=0$.

Hence $a \vee a^{*} \in D(L)$.
(xvii) Let $\varphi: L \rightarrow S(L)$ defined by $\varphi(x)=x^{* *}$. Then $\varphi(x \wedge y)$

$$
\begin{aligned}
& =(x \wedge y)^{* *}==x^{* *} \wedge y^{* *} \\
& =\varphi(x) \wedge \varphi(y) .
\end{aligned}
$$

$\therefore \varphi$ is meet homomophism.
An identity $x \wedge \vee\left(x_{i} \mid i \in I\right)=\vee\left(x \wedge x_{i} \mid i \in I\right)$ is called the join Infinite Distributive Identity.

Lemma 3.1.2: Let $B$ be a complete Boolean lattice. Then $B$ satisfies the Join Infinite Distributive Identity (JID)

Proof: $x \wedge x_{i} \leq x$ and $x \wedge x_{i} \leq \vee\left(x_{i} \mid i \in I\right)$;
therefore $x \wedge \vee\left(x_{i} \mid i \in I\right)$ is an upper bound for $\left\{x \wedge x_{i} \mid i \in I\right\}$. Now let $u$ be any upper bound, that is, $x \wedge x_{i} \leq u$ for all $i \in I$.

Then $x_{i}=x_{i} \wedge\left(x \vee x^{\prime}\right)=\left(x_{i} \wedge x\right) \vee\left(x_{i} \wedge x^{\prime}\right) \leq u \vee x^{\prime}$.
Thus $x \wedge \vee\left(x_{i} \mid i \in I\right) \leq x \wedge\left(u \vee x^{\prime}\right)=(x \wedge u) \vee\left(x \wedge x^{\prime}\right)=x \wedge u \leq u$.
Showing that $x \wedge \vee\left(x_{i} \mid i \in I\right)$ is the least upper bound for $\left\{x \wedge x_{i}^{\prime} \mid i \in I\right\}$.
Theorem 3.1.3: Any complete lattice that satisfies the Join Infinity
Distributive Identity (JID) is a pseudocomplemented distributive lattice.
Proof: Let L be a complete lattice. For $a \in L$. set $a^{*}=\vee(x / x \in L, a \wedge x=0)$.

Then by $(J I D), a \wedge a^{*}=a \wedge \vee(x / a \wedge x=0)=\vee(a \wedge x / a \wedge x=0)=\vee(0)=0$.
Suppose $a \wedge x=0$, then $x \leq a^{*}$ by the definition of $a^{*}$; Thus $\mathrm{a}^{*}$ is the pseudocompoement of a and so $L$ is pseudocompoemented.
Recall that a distributive lattice $L$ is a complete distributive if $\wedge H$ and $\vee H$ exists in 1 for any subset $H$ of $L$.

The following figure 3.4 is an example of a complete distributive lattice which is not pseudocompoemented.


Figure 3.4

Here $L=\{(o, y) \mid 0 \leq y<2\} \cup\{(1, y) \mid 0 \leq y \leq 2\}$, so $(0,0)$ is the smallest and $(l, 2)$ is the largest element. Observe that $(0,2) \notin \mathrm{L}$. This is a complete distributive lattice, where $\leq$ ' is the usual ' $\leq$ ' relation. But this is not pseudocomplemented as $(1,0)$ has no pseudocompoement.

## 2. Algebraic lattices.

Definition (Algebraic lattice) : A set $(L ; \wedge, \vee)$ with two binary operation $\wedge$ and $\vee$ is called an algebraic lattice if it satisfy the following properties :
(i) for all $a \in L, a \wedge a=a, a \vee a=a$
(ii) for all $a, b \in L, a \wedge b=b \wedge a, a \vee b=b \vee a$.
(iii) for all $a, b, c \in L, a \wedge(b \wedge c)=(a \wedge b) \wedge c$.

$$
a \vee(b \vee c)=(a \vee b) \vee c .
$$

(iv) for all $a, b \in L, a \wedge(a \vee b)=a$.

$$
a \vee(a \wedge b)=a .
$$

A complete lattice is called algebraic if every element is the join of compact elements
Example: Let $L$ be a with 0 then $I(L)$, the set of all ideals of $L$ under ' $\subseteq$ ' is an algebraic lattice.
In the literature, algebraic lattices are also called compactly generated lattices. Just as for lattices, a nonvoid subset 1 of a join - semi lattice $S$ is an ideal if, for $a, b \in S$, we have $a \vee b \in L$ if and only if a, $a, b \in L$. Again, $I(S)$ is the poset of all ideals of $S$ partially ordered under set inclusion. If $S$ has a zero, then $I(S)$ is a lattice.

Using $I(S)$, We give a useful characterization of algebraic lattices.
Theorem 3.2.1: A lattice $L$ is algebraic if and only if it is isomorphic to the lattice of all ideals of a join semi- lattice with 0 .

Proof: Let $S$ be a join semi-lattice with 0 . We have to prove that $I(S)$ is algebraic. Since $0 \in S, I(S)$ is a complete lattice, We claim that $\forall a \in S \quad(a]$ is a compact in $I(S)$.

Let $X \subseteq I(S)$ and $(a] \subseteq \vee(I \mid I \in X)$.
Now $\vee(I \mid I \in X)=\left\{X \mid x \leq t_{1} \vee\right.$ $\left.\vee t_{n}, t_{i} \in I_{i}, I_{i} \in X\right\}$

There fore, $a \leq t_{1} \vee$ $\qquad$ $\vee t_{n}, t_{i} \in I_{i}, I_{i} \in X$

Thus with $X_{1}=\left\{I_{1}\right.$ $\qquad$ $I_{n}$ \}

$$
(a] \leq \vee\left(I_{i} \in X_{1} \subseteq X\right) .
$$

Therefore (a] is compact in $I(S)$.
Now, for any $I \in I(S), I=\vee((a] / a \in L)$. Hence $I(S)$ is algebraic and so any lattice $L$ is isomorphic to $I(S)$ is also algebraic.
Conversely, let $L$ be an algebraic lattice and let $S$ be the set of all compact element of $L$. Obviously $0 \in S$.

Moreover, clearly join of two compact elements is again a compact element. So $S$ is a join semi-lattice with 0 . Now consider the map $\varphi: L \rightarrow I(L)$ is defined by $\varphi(a)=\{x \in S \mid x \leq a\}$.

Obviously, $\varphi$ maps $L$ into $I(S)$. By the definition of an algebraic lattice $a=\vee \varphi(a)$, and so $\varphi$ is one- one. To prove that $\varphi$ is onto. Let $I \in I(S)$, ,$a=\vee I$ then $\varphi(a) \supseteq I$. Now, let $x \in \varphi(a)$, then $x \in S, x \leq a$.
$\vee I_{1}$, By compactness of $x$, there exists a finite subset $I_{1} \subseteq I$ such that $x \leq \vee I_{1}$. This implies $x \in I$ and so $I \in \varphi(a)$. There fore $\varphi$ is onto.

Also $\varphi(a \wedge b)=\{x \in S \mid x \leq a \wedge b\}=\{x \in S \mid x \leq b\}$

$$
=\varphi(a) \wedge \varphi(b)
$$

Also $\varphi(a \vee b)=\{x \in S \mid x \in \leq a \vee b\}=\{x \in S \mid x \leq a\} \vee\{x \in S \mid x \leq b\}$

$$
=\varphi(a) \vee \varphi(b)
$$

i.e. $\varphi$ is a homomorphism

Therefore it is an isomorphism.

Corollary 3.2.2: Let L be an arbitrary lattice $C(L)$ is an algebraic lattice.

Proof: We already know that $C(L)$ is a complete distributive lattice.
Suppose $\Theta \in C(L)$. Observe that $\Theta=\vee(\Theta(a, b) \mid a \equiv b \Theta, a, b \in L)$. Since every principal congruence is compact, So $C(L)$ is algebraic.

Corollary 3.2.3 : Every distributive algebraic lattice spseudocomplement.
Proof: Let $L$ be a distributive algebraic lattice. Then $L \cong I(S)$, for some distributive join semi lattice S with $0, I(L)$ is complete.
Let $I, I_{K} \in I(S)$, we have to show that $I \wedge\left(\vee I_{K}\right)=\vee\left(I \wedge I_{K}\right)$
Of course, $\vee\left(I \wedge I_{K}\right) \subseteq I \wedge\left(\vee I_{K}\right)$.
Let $x \in I \wedge\left(\vee I_{K}\right)$ then, $x \in I$ and $x \in \vee I_{K}$
implies that $x \leq i_{K 1} \vee \ldots \ldots . . i_{K n}$, for some $i_{K 1} \in I_{K 1}, i_{K 2} \in I_{K 2} \ldots \ldots \ldots \ldots \ldots . . . . . . . i_{K n} \in I_{K n}$ implies that $x \in I_{K 1} \vee$ $\qquad$ $\vee I_{K n}$
implies that $x \in I \wedge\left(I_{K 1} \vee\right.$ $\qquad$ $\vee I_{K n}$ )

$$
\left(I \wedge I_{K 1}\right) \vee \ldots \ldots
$$

implies that $\left(I \wedge \vee I_{K}\right) \subseteq \vee\left(I \wedge I_{K}\right)$. (ii)

From (i) and (ii)
$\vee\left(I \wedge I_{K}\right)=I \wedge\left(\vee I_{K}\right)$
implies that $I(S)$ holds JID
implies that $I(S)$ is pscudocomplemdnted.
implies that $L$ is pscudocomplemented.
Theorem 3.2.4: Let $L$ be a pseudocomplemented meet semi-lattice. $S(L)=\left\{a^{*} \mid a \in L\right\}$. Then the partial ordering of $L$ partially orders $S(L)$ and makes $\mathrm{S}(L)$ into a Boolean lattice.
For $a, b \in S(L)$ we have $a \wedge b \in S(L)$ and the join in $S(L)$ is described by $a \vee b=\left(a^{*} \wedge b^{*}\right)^{*}$.

Proof: The following results have already been proved in theorem 3.1.1.
(i) $a \leq a * *$
(ii) $a \leq b$ implies that $a^{*} \geq b^{*}$
(iii) $a^{*}=a^{* * *}$
(vi) $a \in S(L)$ iff $a^{*}=a^{* *}$
(v) $a, b \in S(L)$ implies that $a \wedge b \in S(L)$
(vi) For $a, b \in S(L)$, Sup $s_{(L)}\{a, b\}=\left(a^{*} \wedge b^{*}\right)^{*}$

For $a, b \in S(L)$ define $a \vee b=\left(a^{*} \wedge b^{*}\right)^{*}$
then by $(v)$ and $(v i)$ we get $\langle S(L) ; \wedge, \vee\rangle$ is a bounded lattice.
Since, for $a \in S(L), a \wedge a^{*}=0$ and $a \vee a^{*}=\left(a^{*} \wedge a^{* *}\right)^{*}=0^{*}=1$, implies that $S(L)$ is Complemented lattice.
Now we need only to show that $S(L)$ is distributive.
For $x, y, z, \in S(L), x \wedge z \leq x \vee(y \wedge z)$ and $y \wedge z \leq x \vee(y \wedge z)$;
there fore $x \wedge z \wedge(x \vee(y \wedge z))^{*}=0$
implies that $x \wedge\left(z \wedge(x \vee(y \wedge z))^{*}\right)=0$
implies that $z \wedge(x \vee(y \wedge z))^{*} \leq x^{*}$
Again $y \wedge z \wedge(x \vee(y \wedge z))^{*}=0$
Or $y \wedge\left(z \wedge\left(x \vee(y \wedge z)^{*}\right)=0\right.$
$\therefore z \wedge(x \vee(y \wedge z))^{*} \leq y^{*}$
We can write $z \wedge(x \vee(y \wedge z))^{*} \leq x^{*} \wedge y^{*}$
Consequently, $z \wedge(x \vee(y \wedge z))^{*} \wedge\left(x^{*} \wedge y^{*}\right)^{*}=0$,
which implies that $z \wedge\left(x^{*} \wedge y^{*}\right)^{*} \leq(x \vee(y \wedge z))^{* *}$.
Now the left- hand side is $z \wedge(x \vee y)$ [ by for $\mathrm{a}, \mathrm{b} \in \mathrm{S}(\mathrm{L})$.
$\left.\operatorname{Sup} s_{(L)}\{a, b\}=\left(a^{*} \wedge b^{*}\right)^{*}\right]$
and the right hand side is $x \vee(y \wedge z)$ [ by $a \in S(L)$ iff $a=a^{* *}$ ].
Thus we $z \wedge(x \vee y) \leq x \vee(y \wedge z)$ which is distributivity.

Theorem 3.2.5: Let $L$ be a pseudocomplemented lattice.
Then $a^{* *} \vee b^{* *}=(a \vee b)^{* *}$ for all $a, b \in L$.
Proof: We know that if L is a pseudocomplemented meet semi-lattice. then $a \vee b=\left(a^{*} \vee b^{*}\right)^{*}$ where $a, b \in S(L)$.
Now for $a, b \in L, a^{* *}, b^{* *} \in S(L)$
So $a^{* *} \vee b^{* *}=\left(a^{* * *} \wedge b^{* * *}\right)^{*}$

$$
\begin{aligned}
& =\left(a^{*} \wedge b^{*}\right)^{*} \\
& =(a \vee b)^{* *}
\end{aligned}
$$

implies that $a^{* *} \vee b^{* *}=(a \vee b)^{* *}$.
Theorem 3.2.6: Let $L$ be a pseudocomplemented meet semi-lattice and let $a, b \in L$ then $(a \wedge b)^{*}=\left(a^{* *} \wedge b\right)^{*}=\left(a^{* *} \wedge b^{* *}\right)^{*}$
Proof: Since $L$ is a pseudocomplemented meet semi-lattice.
Then $a \leq a^{* *}$ implies that $a \wedge b \leq a^{* *} \wedge b$
implies that $(a \wedge b)^{*} \geq\left(a^{* *} \wedge b\right)^{*}$.
Again $b \leq b^{* *}$ implies that $a^{* *} \wedge b \leq a^{* *} \wedge b^{* *}$
implies that $a^{* *} \wedge b \leq(a \wedge b)^{* *}$
implies that $\left(a^{* *} \wedge b\right)^{*} \geq(a \wedge b)^{* * * *}$
implies that $\left(a^{* *} \wedge b\right)^{*} \geq(a \wedge b)^{*}$.
Form (i) and (ii) we have $(a \wedge b)^{*}=\left(a^{* *} \wedge b\right)^{*}$. (iii)

Again, $b \leq b^{* *}$ implies that $a^{* *} \wedge b \leq a^{* *} \wedge b^{* *}$
Implies that $\left(a^{* *} \wedge b\right)^{*} \geq\left(a^{* *} \wedge b^{* *}\right)^{*}$.
Again, $a^{* *} \leq a^{* * * *}$ implies that $a^{* *} \wedge b^{* *} \leq a^{* * * *} \wedge b^{* *}$

$$
=\left(a^{* *} \wedge b\right)^{* *}
$$

implies that $\left(a^{* *} \wedge b^{* *}\right)^{*} \geq\left(a^{* *} \wedge b\right)^{* * *}$ implies that

$$
\begin{equation*}
\left(a^{* *} \wedge b^{* *}\right)^{*} \geq\left(a^{* *} \wedge b\right)^{*} . \tag{v}
\end{equation*}
$$

From (iv) and (v)

$$
\begin{equation*}
\left(\mathrm{a}^{* *} \wedge \mathrm{~b}\right)^{*}=\left(\mathrm{a}^{* *} \wedge \mathrm{~b}^{* *}\right)^{*} \tag{v}
\end{equation*}
$$

From (iii) and (vi)

$$
(a \wedge b)^{*}=\left(a^{* *} \wedge b\right)^{*}=\left(a^{* *} \wedge b^{* *}\right)^{*} .
$$

Theorem 3.2.7: Let $L$ be a pseudocomplemented distributive lattice. Then for each $a \in L,(a]$ is a pseudocomplement distributive lattice in fact the pseudocomplement of $x \in(a]$ in $(a]$ is $x^{*} \wedge a$.

Proof: Let $x \in(a]$ then $x \wedge\left(x^{*} \wedge a\right)=\left(x^{*} \wedge a\right)=\left(x \wedge x^{*}\right) \wedge a=0 \wedge a=0$. Further if $x \wedge t=0$ then $t \leq x^{*}$ implies that $t \wedge a \leq x^{*} \wedge a$ implies that $t \leq x^{*} \wedge a$ implies that $x * \wedge a$ is the pseudocomplement of $x$, implies that (a] is a pseudocomplemented distributive lattice.
Theorem 3.2.8: Let $\wedge$ be a binary operation on $L$, let * be a unary operation on $L$ (that is, for every $a \in L, a^{*} \in L$ ) and let 0 be a nulary operation (that is $0 \in L$ ). Let us assume that the following hold for all $a, b, c \in L: a \wedge b=b \wedge a$.
$(a \wedge b) \wedge c=a \wedge(b \wedge c), a \wedge a=a, 0 \wedge a=0, a \wedge(a \wedge b)^{*}=a \wedge b^{*}$,
$a \wedge 0^{*}=a,\left(0^{*}\right)^{*}=0$. Show that $\langle L ; \wedge\rangle$ is a meet semi-lattice with 0 as zero, and for all, $a \in L, a^{*}$ is the pseudocomplement of a (R. Balbes and A. Horn [1970a])

Proof: Let $a \in L, a^{*} \in L$ then
i) $a \wedge a=a$ [by given condition]
ii) $\quad a \wedge a=b \wedge a$ [by given condition]
iii) $\quad a \wedge(b \wedge c)=(a \wedge b) \wedge c$ [by given condition]

Define ' $\leq$ ' on $L$ by $a \leq b \Leftrightarrow a=a \wedge b$.
$\therefore<L ; \wedge>$ is a meet semi-lattice.
Now $0 \wedge a=0 \forall a \in L$ implies that $0 \leq a$
So, 0 is the zero element of $L$.
Second part: $0=a \wedge 0=a \wedge 0^{* *}=a \wedge\left(a \wedge 0^{*}\right)^{*}=a \wedge a^{*}$ and $a \wedge x=0$.
Then $x \wedge a^{*}=x \wedge(x \wedge a)^{*}=x \wedge 0^{*}=x=x \wedge a^{*}=x$ implies that $x \leq a^{*}$

Hence $a *$ is the pseudocomplement of $a$.
Theorem 3.2.9: For as pseudocomplemented distributive lattice $L$. Define the relation $R$ by: $x \equiv y(R)$ if and only if $x *=y *$. Then R is a congruence on $L$ and $L \mid R \cong S(L)$.

Proof: Given that $x \equiv y(R) \Leftrightarrow x^{*}=y^{*}$, then $x^{*}=x^{*}$ implies that $x=x(R)$ implies that $R$ is reflexive. Also if $x \equiv y(R)$, then $x *=y^{*}$ implies that $y^{*}=x *$ implies that $y \equiv x(R)$ implies that $R$ is symmetric. Let $x \equiv y(R)$ and $y \equiv z(R)$, then $x *=y^{*}$ and $\quad y^{*}=z *$ implies that $x *=z *$ implies that $x \equiv z(R)$ implies that $R$ is transitive.implies that $R$ is an equivalence relation.
Now, suppose $x \equiv y(R)$ and $t \in L$ then $x^{*}=y *$ implies that $x * *=y * *$.
Now, $(x \wedge t) * *=x * * \wedge t * *=y * * \wedge t * *=(y \wedge t) * *$
implies that $(x \wedge t) * *=(y \wedge t) * *$
implies that $(x \wedge t) *=(y \wedge t) *$
implies that $x \wedge t \equiv y \wedge t(R)$
and $(x \vee t)^{*}=x * \wedge t *=y * \wedge t *=(y \vee t)^{*}$ implies that $x \vee t \equiv y \vee t(R)$.

So $R$ is a congruence relation on $L$.
Define $\varphi: L / R \rightarrow S(L)$ by $\varphi((a] R)=a * *$,
then $\varphi([a] \wedge[b])=\varphi([a \wedge b]) * *=(a \wedge b)^{* *}=a * * \wedge b * *$

$$
=\varphi([a]) \wedge \varphi([b])
$$

And $\varphi([a] \vee[b])=\varphi([a \vee b])=(a \vee b) * *=(a * \wedge b *) *$

$$
\begin{aligned}
& =(a * * * \wedge b * * *) * \\
& =a * * \vee b * * \\
& =\varphi([a]) \vee \varphi([b])
\end{aligned}
$$

$\therefore \varphi$ is a homomorphism.

To show that $\varphi$ is one- one. Let $a * *=b * *$
implies that $a *=b *$
implies that $a \equiv b(R)$ implies that $[a]=[b]$,
$\therefore \varphi$ is one- one.
Let $a \in S(L)$ then $a=a * *$ implies that $a=\varphi[a]$
implies that $\varphi$ is onto.
Hence $\varphi: L / R \rightarrow S(L)$ is an isomorphism.
Therefore $L / R \cong S(L)$.

## CHAPTER FOUR

## STONE LATTICES

Introduction: Stone lattices have been studied by several authors including Cornish [5], G. Gratzer \& E.T. Schmidt [9], Katrinak [11], T.P.Speed [25], J.Verlet [26]. In this chapter, we discuss the Stone lattices, Stone algebras and some basic concepts to Stone lattices. In section 1 of this chapter, we give some basic properties of Stone algebra which will be needed in the next part.

In section 2 of this chapter, we have given characterization of minimal prime ideals of a pseudocomplemented distributive lattice. Then we have shown that every pseudocomplemented lattice is generalized Stone if and only if every two minimal prime ideals are co-maximal.

Definition (Stone lattice): A distributive pseudocomplemented lattice $L$ is called a Stone lattice if for each $a \in L, a^{*} \vee a^{* *}=1$.


Figure 4.1

Definition (Stone algebra): A pseudocomplemented distributive lattice $L$ is called a stone algebra if and only if it satisfies the condition $a^{*} \vee a^{* *}=1$ which is called stone identity, for each $a \in L$.

Definition (Generalized stone lattice): A lattice $L$ with 0 is called generalized stone lattice if $(x]^{*} \vee(x)^{* *}=L$ for each $x \in L$.

## 1. Properties of Stone Lattices.

Theorem 4.1.1: For a distributive lattice $L$ with pseudocomplementation, the following conditions are equivalent.
i) L is a Stone algebra
ii) $\quad(a \wedge b) *=a * \vee b *$ for all $a, b \in L$
iii) $\quad a, b \in S(L)$ implies that $a \vee b \in S(L)$.
iv) $\quad S(L)$ is a sub algebra of $L$.

Proof: (i) implies (ii), Let L be a Stone algebra, we shall show that $a^{*} \vee b^{*}$ is the pseudocomplement of $a \wedge b$, Indeed.
$(a \wedge b) \wedge(a * \vee b *)=(a \wedge b \wedge a *) \vee\left(a \wedge b \wedge b^{*}\right)$
$=(0 \wedge b) \vee(a \wedge 0)$
$=0 \vee 0$
$=0$
If $(a \wedge b) \wedge x=0$ then $(b \wedge x) \wedge a=0$.
and so $b \wedge x \leq a *$, Meeting both sides by $a * *$
Yields, $b \wedge x \wedge a * * \leq a * \wedge a * *=0$;
that is, $b \wedge(x \wedge a * *)=0$, implying that $a^{* *} \wedge x \leq b^{*}$
We have, $a * \vee a * *=1$, by Stone 's identity.
$\therefore x=x \wedge 1=x \wedge\left(a^{*} \vee a^{* *}\right)=\left(x \wedge a^{*}\right) \vee\left(x \wedge a^{* *}\right) \leq a^{*} \vee b^{*}$.
implies that $a * \vee b *$ is the pseudocomplement of $a \wedge b$
implies that $(a \wedge b) *=a * \vee b *$.
(ii) implies (iii).

Let $a, b \in S(L)$, then $a=a * *, b=b * *$
$\therefore a \vee b=a * * \vee b * *=(a * \wedge b *) *=(a \vee b) * *$
implies that $a \vee b \in S(L)$
(iii) implies (iv), For $a, b \in S(L), a \vee b \in S(L)$

Also $a=a * *, b=b * *$
Now, $a \vee b=a * * \vee b * *=(a * \wedge b *) *=(a \vee b) * *=a \vee b$
i.e. $S(L)$ is a sub algebra of $L$.
(iv) implies (i) Let $S(L)$ is a sub algebra of $L$.

Then $a * \vee a * *=(a \wedge a *) *=0 *=1$.
Hence $L$ is a Stone algebra.
Theorem 4.1.2: If L is a complete Stone lattice, then so is $I(L)$.
Proof: Let $I^{*}=(a]$, where $a=\wedge(x * \mid x \in I)$ and let $x \in I \cap I^{*}$, then $x \in I$ and $x \in I^{*}=(a]$ implies that $x \in I$ and $x \in(a]$ implies that $x \in I$ and $x \leq y * \forall y \in I$ implies that $x \leq x *$ implies that $x=x \wedge x^{*}=0$, implies that $I \wedge I^{*}=(0]$,

Let $I \wedge J$, choose any $j \in J$, then $i \wedge j=0 \forall i \in I$ implies that $j \leq i^{*}, i \in I$ implies that $j \leq \wedge\left(I^{*} \mid i \in I\right)$ implies that $j \leq a$ implies that $j \in I^{*}$ implies that $J \subseteq I^{*}$ implies that $I^{*}$ is a pseudocomplemented. Since $0 \in L$, so $I(L)$ is complete. Finally, we have to show that $I^{*} \vee I^{* *}=L$.

Now $I^{*} \vee I^{* *}=(a] \vee(a]^{*}=(a]^{* *} \vee(a]^{*}$

$$
\begin{aligned}
& =(a * *] \vee(a *] \\
& =(a * * \vee a *] \\
& =L
\end{aligned}
$$

Hence $I(L)$ is a Stone.
Thus $I(L)$ is a complete Stone lattice.
Theorem 4.1.3: A distributive pseudocomplemented lattice is a Stone lattice if and only if $(a \vee b) * *=a * * \vee b * *$ for $a, b \in L$.

Proof: Let $L$ be a Stone lattice. Then we have $(a \wedge b) *=a * \vee b *$ for $a, b \in L$. Now $(a \vee b) * *=(a \vee b *)^{*}=\left(a^{*} \wedge b^{*}\right)^{*}=a * * \vee b * *$

Conversely, let $(a \vee b) * *=a * * \vee b * *$ for $a, b \in L$.

$$
\begin{aligned}
& \text { Since } L \text { is a pseudocomplemented lattice. Then for } a \in L, a \wedge a *=0 \\
& \text { implies that }(a \wedge a *) * *=0 * * \\
& \text { implies that } a * * \wedge a * * *=0 \\
& \text { implies that } a * * \wedge a *=0 \\
& \text { Now, }(a \vee a *) *=a * \wedge a * *=0 \\
& \text { implies that }(a \vee a *) * *=0 * \\
& \text { implies that } a * * \vee a * * *=1 \\
& \text { implies that } a * * \vee a *=1 \\
& \text { Hence } L \text { is a Stone lattice. }
\end{aligned}
$$

## 2. Minimal prime ideals.

A prime ideal $P$ of a lattice $L$ is called minimal if there does not exists a prime ideal $Q$ such that $Q \subset P$.

The following lemma is a fundamental result in lattice theory;
e.f. [7], lemma 4pp. 169]. Though our proof is similar to their proof, we include the proof for the convenience of the reader.

Theorem 4.2.1: Let $L$ be a lattice with 0 . Then every prime ideal contains a minimal prime ideal.

Proof: Let P be a prime ideal of $L$ and Let $R$ denote the set of all prime ideals $Q$ contained in $P$. Then $R$ is non-void, since $0 \in Q$ and $Q$ is an ideal; infact, $Q$ is prime. Indeed, if $a \wedge b \in Q$ for some $a, b \in L$, then $a, b \in X$ for all $X \in C$; since X is prime, either $a \in X$ or $b \in X$. Thus either $Q=\cap(X: a \in X)$ or $Q=\cap(X: b \in X)$ proving that a or $\mathrm{b} \in Q$. Therefore, We can apply to $R$ the dual form of Zorn's lemma to conclude the existence of a minimal member of $R$.

Lemma 4.2.2: Let $L$ be a pseudocomplemented distributive lattice and let $P$ be a prime ideal of $L$. Then the following four conditions are equivalent.
i) $\quad P$ is minimal.
ii) $\quad x \in P$ implies that $x * \notin P$.
iii) $\quad x \in P$ implies that $x * * \in P$.
iv) $P \cap D(L)=\phi$.

Proof: (i) implies (ii).
Let $P$ be minimal and (ii) fail, that is $a * \in P$ for some $a \in P$. Let $D=(L-P) \vee[a)$, We claim that $0 \notin D$. Indeed, if $0 \in D$, then
$\mathrm{q} \wedge \mathrm{a}=0$ for some $q \in L-P$, which implies that $q \leq a \in P$, a contradiction. Thus (by theorem 1.4.8) there exists a prime ideal Q disjoint to $D$. Then $Q \subseteq P$ since $Q \cap(L-P)=\phi$, and $Q \neq P$. since : a $\notin \mathrm{Q}$, contradicting the minimally of $P$.
(ii) implies (iii)

Indeed, $x * \wedge x * *=0 \in P$ for any $\mathrm{x} \in L$ thus if $x \in P$, then by (ii) $x * \in \mathrm{P}$, implying that $x * * \in \mathrm{P}$.
(iii) implies (iv)

If $a \in P \cap D(L)$ for some $a \in L$, then $a * *=1 \notin P$, a contradiction to (iii), thus $P \cap D(L)=\phi$.
(iv) implies (i)

If P is not minimal, then $Q \subset P$ for some prime ideal $Q$ of L .
Let $x \in P-Q$. Then $x \wedge x *=0 \in Q$ and $x \notin Q$ : then $x * \in Q \subset P$, which implies that $x \vee x * \in P$. By theorem 3.1.1. (xvi), $x \vee x * \in D(L)$; thus we obtain $x \vee x * \in P \cap D(L)$, contradicting (iv).
Hence $P$ is minimal.
Theorem 4.2.3: In a Stone algebra every prime ideal contains exactly one minimal prime ideal.
Proof: Let $L$ be a stone algebra and let $P$ be a prime ideal of L. We need prove that $P$ contains exactly one minimal prime ideal. Suppose $P$ contains two distinct minimal prime ideals $Q_{1}$ and $Q_{2}$.
Choose $x \in Q_{1}-Q_{2}\left(Q_{1} \not \subset Q_{2}\right.$, since $Q_{2}$ is minimal
and $Q_{2}=Q_{1}$, hence $Q_{1}-Q_{2} \neq \phi$ );
Since $x \wedge x *=0 \in Q_{2}, x \notin Q_{2}$ and $Q_{2}$ is prime, so $x * \in Q_{2}, L-Q_{1}$ is maximal dual prime ideal, hence it is a maximal dual ideal of $L$.
Thus $\left(L-Q_{1}\right) \vee[x)=L$ and so, $x \wedge a=0$ for some $a \in L-Q_{1}$. Therefore, $x * \geq a \in \mathrm{~L}-\mathrm{Q}_{1}$ implies that $x^{*} \in Q_{1}$. Hence $x^{*} \in Q_{2}-Q_{1}$. Similarly, $x * \in Q_{1}$, so $x *$ and $\mathrm{x} * *$ both contained in $P$.
implies that $1=x * \vee x * * \in P$, which is a contradiction that $P$ is a prime ideal of $L$. Thus in a Stone algebra every prime ideal contains exactly one minimal prime ideal.
Theorem 4.2.4: A prime ideal $P$ of a Stone algebra $L$ is minimal if and only if $\quad P=(P \cap S(L)) \mathbf{L}$.
Proof: Suppose $P$ is minimal, Let $x \in(P \cap S(L)]_{L}$. Then $x \leq r$ for some $r \in P \cap S(L)$ implies that $r \in P$ and $r \in S(L)$ implies that $x \in P$ implies that $r \in P$ and $r \in S(L)$ implies that $r \in P$ implies that $x \in P$.
implies that $(P \cap S(L)]_{L} \subseteq P$
Again let $x \in P$, since $P$, is minimal so, $x * * \in P$, Then $x \in P \cap S(L)$, as $x \leq x * *$. So $x \in(P \cap S(L)]_{L}$. implies that $P \subseteq(P \cap S(L)]_{L}$
Form (i) and (ii) $P=(P \cap S(L)]_{L}$
Conversely, let $P=(P \cap S(L)]_{L}$ and let $x \in P$ then $x \leq r$ for some $r \in P \cap S(L)$, implies that $x * * \leq r * *=\mathrm{r}$ implies that $x * * \in P$.
Hence $P$ is minimal.
Theorem 4.2.5: A distributive lattice with pseudocomplementation is a Stone algebra if and only if every prime ideal contains exactly one minimal prime ideal (G. Gratzer and E. T Schmidt [1957b])
Proof: Let $L$ be distributive lattice with pseudocomplementation. If $L$ is a Stone algebra, then by theorem 4.2.3 every prime ideal contains exactly one minimal prime ideal.
Conversely, let $L$ is not a Stone lattice and let $a \in L$ such than $\mathrm{a}^{*} \vee \mathrm{a}^{* *} \neq$ 1. Then there exist a prime ideal R such that, $a * \vee a * * \in \mathrm{R}$. We claim that $(L-R) \vee[a *) \neq L$. If $(L-R) \vee[a *) \neq L$ then there exist an $x \in L-R$ such that $x \wedge a *=0$. Then $a * * \geq x \in L-R$ implies $a * * \in L-R$. Which is a contradiction. So $(L-R) \vee[a *) \neq L$. Let $F$ be a minimal dual prime ideal containing $(L-R) \vee[a *)$ and let $G$ be a minimal dual prime ideal
containing $(L-R) \vee[a *)$. We set $P=L-F$ and $Q=L-G$. Then $P$ and $Q$ are minimal prime ideals such that $P, Q \subseteq R$. Moreover $P \neq Q$, because $a * \in F=L-P$ and hence $a * \notin P$; thus $a * * \in P$ but $a * * \notin Q$.

Theorem 4.2.6: Let $L$ be a distributive with 0 and 1 . For an ideal $I$ of $L$. We set $I^{*}=\{x \mid x \wedge i=0$ for all $i \in I\}$. Let $P$ be a prime ideal of $L$. Then $P$ is minimal prime ideal if and only if $x \in P$ implies that $(x]^{*} \subseteq P$ (T. P. Speed).
Proof: By the definition of $I *,(x]^{*}=\{y \mid y \wedge x=0\}$ as $x * \wedge x=0$ implies that $x * \in(x] *$ implies that $(x *] \subseteq(x] *$, again let $z \in(x] *$, then $z \wedge x=0$ implies that $z \leq x *$ implies that $z \in\left(x^{*}\right]$ implies that $(x]^{*} \subseteq(x *]$ implies that $(x]^{*}=(x *]$. Now suppose $P$ be a minimal prime ideal and $x \in P$, then by the theorem $x * \notin P$, implies that $(x *] \not \subset P$ implies that $(x *] \subseteq P$.
Conversely, if for $x \in P,(x]^{*} \not \subset P$ and if possible. Let $P$ is not minimal then there exist a prime ideal $Q$ such that $Q \subset P$. Let $x \in P=Q$.
Now $x * \wedge x=0 \in Q$ implies that $x * \in Q$ implies that $x \in P$ implies that $\left(x^{*}\right] \subseteq P$ implies that $(x]^{*} \subseteq P$, which is a contradiction.
Hence the proof.

Theorem 4.2.7: Every Boolean lattice is a Stone lattice but the conversely is not necessary true.
Proof: Let $L$ be a Boolean lattice. Then for each $a \in L$, it's complement $d$ is also the pseudocomplement of a.
Moreover, $a^{*} \vee a * *=d \vee d^{\prime \prime}=d \vee a=1$. Hence $L$ is also Stone.
Observe that 3- elements chain is a Stone lattice.

For $a * \vee a * *=0 \vee 0 *=0 \vee 1=1$. But it is not Boolean, as a has no complement.


## Figure - 4.2

In theorem 4.2.3, we have proved that in a Stone lattice every prime ideal contains a unique minimal prime ideal. In the following lattice, observe that (c] is a prime ideal and it contains two minimal prime ideals $(a]$ and (b].
Hence it is not a Stone lattice.


Figure - 4.3

Also by 4.1.1. we know that in a Stone lattice $L, a \wedge b \in S(L)$ for all $a, b \in L$. In above lattice observe that $a \vee b=c \notin S(L)$.

Hence $L$ is not Stone.

Definition(Skeleton of a lattice): Let $L$ be a Stone lattice, then $S(L)=\{a *: a \in L\}$ is called skeleton of $L$. The elements of $S(L)$ are called skeletal. L is dense if $S(L)=\{0,1\}$,
$<S(L) ; \wedge, \vee, *, 0,1>$ is a Boolean algebra.
Corollary 4.2.8: A finite distributive lattice is a Stone lattice if and only if it is the direct product of finite distributive dense lattices that is finite distributive lattices with only one atom.

Proof: By theorem 4.1.1 a Stone lattice $L$ has a complemented element $a \notin\{0,1\}$ iff $S(L) \neq\{0,1\}$; thus the decomposition of theorem 2.1.14 can be repeated until each factor $L_{i}$ satisfies $S(L)=\{0,1\}$. In a direct product, * is formed component wise: Therefore all the $L_{i}$ are Stone lattices; For a finite lattice $K$ with $S(K)=\{0,1\}$ the condition that $K$ has one atom is equivalent to $K$ being a Stone lattice.

Theorem 4.2.9: A distributive pseudocomplemented lattice is a Stone lattice $L$ if and only if for any two minimal prime ideals $P$ and $Q$,

$$
P \vee Q=L
$$

Proof : Suppose $L$ is a Stone lattice and $P, Q$ are two minimal prime ideals. If $P \vee Q \neq L$ then by theorem 2.1.17 there exists a prime ideal $R$ containing $P \vee Q$. This means that R contains two minimal prime ideals, which is a contradiction to theorem 4.2.5. as $L$ is a Stone, there fore $P \vee Q=L$.
Conversely, suppose the given condition holds and $R$ is a prime ideal of $L$. Then $R$ can not contain two minimal prime ideals $P$ and $Q$, as other wise $R \supset P \vee Q=L$, Therefore again by theorem 4.2.5. L is Stone.

Definition (Dense set): $D(L)=\{a \in L: a *=0\}, D(L)$ is called the dense set. $D(L)$ is a filter or Dual ideal, $\quad 1 \in D(L)$.
We can easily cheek that $D(L)$ is a dual ideal of $L$ and that $\mathrm{I} \subset D(L)$; thus $D(L)$ is a distributive lattice with 1 . Since $a \vee a \subset D(L)$ for every a $\in L$, we can interpret the identity $a \vee a * * \wedge(a \vee a *)$.
To mean that every $a \in L$ can be represented in the form $a=b \wedge c$. Where $b \in S(L), c \in D(L)$. Such an interpretation correctly suggests that if we know $S(L)$ and $D(L)$ and the relation ships between element of $S(L)$ and $D(L)$,


Figure: 4.4

Then we can describe $L$. The relation ship is expressed by the homomorphism $\varphi(L): S(L) \rightarrow \wp(D(L))$ defined by $\varphi(L): a \rightarrow\{x \mid x \in D(L) ; x \geq a *\}$

Now we prove a theorem which givens an ideal of construction of Stone algebra's.

Theorem 4.2.10: (C. C. Chen and G. Gratzer [1969b] ) Let L be a Stone algebra. Then $S(L)$ is a Boolean algebra $D(L)$ is a distributive lattice with $L$ and $\varphi(L)$ is a $\{0,1\}$ homomorphism of $S(L)$ into $\wp D(L))$. The triple $<S(L) . D(L) . \wp(L)>$ characterizes $L$ up to isomorphism.

Proof: The first statement is easily verified. For $a \in S(L)$,
set $F_{a}=\{x: x * *=a\}$.
The sets $\left\{F_{a} \mid a \in S(L)\right\}$ form a partition of $L$; for simple example figure 4.4. Obviously, $F_{0}=\{0\}$ and $F_{1}=D(L)$; The map $x \rightarrow x \vee a^{*}$ sends $F_{a}$ into $\quad F_{I}=D(L)$; infact the map is an isomorphism between $F_{a}$ and $\mathrm{a} \varphi(L) \subseteq D(L)$. Thus $x \in F_{\boldsymbol{a}}$ is completely determined by a and $x \vee a * \in a \varphi(L)$ - that is by a pair $\langle a, z>$ where $a \in S(L), z \in a \varphi(L)$ - and every such pair determines one and only one element of $L$. To complete our proof we have to show how the partial ordering on $L$ can be determined by such pairs.
Let $x \in \mathrm{~F}_{\mathrm{a}}$ and $y \in \mathrm{~F}_{\mathrm{b}}$. Then $x \leq y$ implies that $x * * \leq y * *$, that is $\mathrm{a} \leq \mathrm{b}$. Since $x \leq y$ if and only if, $a \vee x \leq a \vee y$ and $x \vee a * \leq y \vee a *$ and since the first of these two conditions is trivial, we obtain: $x \leq y$ iff $a \leq b$ and $x \vee a * \leq y \vee a *$. Identifying x with $\langle x \vee a *, a\rangle$ and y with $\langle y \vee b *, b\rangle$, we see that the preceding conditions are stated in terms of the components of the ordered pairs, except that $y \vee a *$ will have to be expressed by the triple. Because $\varphi(L)$ is a $\{0,1\}$ homomorphism and $a * *$ is the complement of $a *$, we conclude that $a^{* *} \varphi(L)$ and $\mathrm{a}^{*} \varphi(L)$ are complementary dual ideals of $D(L)$. Therefore, by theorem 2.2.3. for any $z \in D(L),[z)$ is the direct product of $[z \vee a *)$ and $[z \vee a * *)$. Thus
every z can be written in a unique fashion in the form $z=z(a *) \wedge z(a * *)$, where $z(a *) \in a \varphi(L)$ and $z(a * *) \in a * \varphi(L)$. Let $y \rho_{\alpha}$ denoted the element $(y \varphi(L))(a *)$ and observe that $\rho_{a}$ is expressed interims of the triple. Finally, $y \vee a *=y \vee b * \vee a *=(y \varphi(L)) \vee a *=y \rho_{\alpha}$. Thus for $\mathrm{u} \in a \varphi(L)$ and $v \in b \varphi(L)$, we have $\langle u, a\rangle \leq\langle v, b\rangle$ if and only if $a \leq b$ and $u \leq v p_{a}$.

## CHAPTER FIVE

## MODULAR AND DISTRIBUTIVE LATTICE WITH n-IDEAL.

Introduction: An idea of standard n-ideals of a lattice was introduced by A.S.A.Noor and M.A. Latif in [20]. Then they studied those $n$-ideals extensively and included several properties in [19] and [21]. Moreover, in [22] Latif has generalized isomorphism theorems for standard ideals in terms of $n$-ideals. In this section we give a nice idea of distributive and modular lattice with $n$-ideals.
An $n$-ideal S of a lattice $L$ is called a standard $n$-ideal if it is a standard element of the lattice $I_{n}(L)$. That is, $S$ is called standard if for all

$$
I, J \in I_{n}(L), \quad I_{n} \wedge(s \vee J)=(I \cap s) \vee(I \cap J) .
$$

Distributive elements and ideals were studied extensively by Gratzer and Schmidt in [9]. On the other hand [24] have studied the distributive elements and ideals in Join semi lattices which are directed below: An element d of a lattice $L$ is called distributive if for all $x, y \in L, d \vee(x \wedge y)=(d \vee x) \wedge(d \vee y)$. An ideal $I$ is called distributive if it is a distributive element of the ideal Lattice $I(L)$.
In [24] Talukder and Noor have given an idea of a modular element and a modular ideal of a Lattice. According to them, an element n of a lattice $L$ is called modular if for all $x, y \in L$ with $y \leq x, x \wedge(n \vee y)=(x \wedge n) \vee y$. An ideal of $L$ is called modular if it is a modular element of $I(L)$.

An element $s \in L$ is standard if for all
$x, y \in L, x \wedge(s \vee y)=(x \wedge s) \vee(x \wedge y)$

An element $n \in L$ is called neutral if it is standard and for all $x, y \in L,(a \wedge x) \vee(x \wedge y) \vee(y \wedge a)=(a \vee x) \wedge(x \vee y) \wedge(y \vee a)$ That is, n is dual distributive.

In section 1, we have introduced some idea of distributive lattice with nideals. We have given several characterizations of distributive lattice with $n$-ideals. For a distributive lattice of $n$-ideal $I$ of a lattice $L$ we have also given some definition of $\Theta(I)$. The congruence generated by $I$. We have also explained neutral element n of a lattice $L$, Principal $n$-ideal $\langle a\rangle_{n}$ or $P_{n}(L)$ in distributive Lattice.

## 1. n-Ideal of a lattice.

A non-empty subset I of a lattice L is said be an ideal of L if
(i) $a, b \in I \Rightarrow a \vee b \in I$
(ii) $a \in I, l \in L \Rightarrow a \wedge l \in I$.

If $L$ is bounded then $\{0\}$ is always an ideal of $L$ and is called the zero ideal. The $n$-ideal of a lattice have been studies extensively by A.S.A Noor and M.A. Latif in [19], [20], [21], [22] and [23]. For a fixed element n of a lattice $L$, a convex sub lattice containing n is called an $n$-ideal. If $L$ has " o ", then replacing n by " o " an $n$-ideal becomes a filter by replacing $n$ by 1 . Thus the idea of n-ideals is a kind of generalization of both ideals and filters of lattices. So any result involving n-ideals of a lattice $L$ will give a generalization of both ideals and filters of lattices. So any result involving n-ideals of a lattice $L$ with give a generalizations of the results on ideals if $0 \in L$ and filters if $1 \in L$.
The set of all n-ideals of a lattice $L$ is denoted by $I_{n}(L)$. Which is an algebraic lattice under set inclusion. Moreover, $\{\mathrm{n}\}$ and L are respectively the smallest and the largest elements of $I_{n}(L)$, while the set theoretic intersection is the infimum. For any two $n$-ideals $H$ and $K$, of a lattice $L$, it is easy to say that $H \cap K=\{x: x=m(h, n, k)$ for some $h \in H, k \in K\}$

Where $m(x, y, z)=(x \wedge y) \vee(y \wedge z) \vee(z \wedge x)$ and $H \vee K=\left\{x: h_{1} \wedge k_{1} \leq x \leq h_{2} \vee k_{2}\right.$, for some $h_{1}, h_{2} \in H$. and $k_{1}, k_{2} \in K$. The $n$-ideal generated by $p_{1}, p_{2}, \ldots \ldots \ldots . . . . . . ., p_{m}$ is denoted by $\left\langle p_{1}, p_{2} \ldots \ldots \ldots \ldots \ldots . . . . . . p_{m}\right\rangle_{n}$,
clearly, $\left\langle p_{1}, p_{2}\right.$ $\qquad$ ,$\left.p_{m}\right\rangle_{n}=\left\langle p_{1}\right\rangle_{n} \vee\left\langle p_{2}\right\rangle_{n} \vee$ $\left\langle p_{m}\right\rangle_{n}$.

The $n$-ideal generated by a finite number of elements is called a finitely generated $n$-ideal. The set of all finitely generated $n$-ideal is denoted by $F_{n}(L)$, is a lattice. The $n$-ideal generated by a single element is called a principal n-ideal. The set of all principal n-ideals of a lattice $L$ is denoted by $P_{n}(L)$. We have $\langle a\rangle_{n}=\{x \in L: a \wedge n \leq x \leq a \vee n\}$.

Standard element of a Lattice: An element s of a lattice $L$ is called standard if $x \wedge(s \vee y)=(x \wedge s) \vee(x \wedge y)$ for all $x, y \in L$.

Theorem 5.1.1: If $I_{n}(L)$ be an $n$-ideal of a lattice $L$ is distributive if and only if $\left(I \vee\langle a\rangle_{n}\right) \cap\left(I \vee\langle b\rangle_{n}\right)=I \vee\left(\langle a\rangle_{n} \cap\langle b\rangle_{n}\right)$. for $a, b \in L$.

Proof: Let $J$ and $K$ be two ideals of a lattice $L$ and $I$ is distributive lattice. Again let $x \in(I \vee J) \cap(I \vee K)$.

Then $x \in I \vee J$ and $x \in I \vee K$.
Then $i_{1} \wedge j_{1} \leq x \leq i_{2} \vee j_{2}$ and $i_{3} \wedge k_{3} \leq x \leq i_{4} \vee k_{4}$.
for some $i_{1}, i_{2}, i_{3}, i_{4} \in I, j_{1}, j_{2} \in J$ and $k_{3}, k_{4}, \in K$.
Now, $n \leq x \vee n \leq i_{2} \vee j_{2} \vee n$ implies that $x \vee n \in I \vee\left\langle j_{2} \vee n\right\rangle_{n}$
Similarly, $\mathrm{n} \leq x \vee n \leq i_{4} \vee k_{4} \vee n$ implies that
Thus, $x \vee n \in\left(I \vee\left\langle J_{2} \vee n\right\rangle_{n}\right) \subseteq(I \vee(J \cap K))$.
If I is distributive, then the condition clearly holds from the definition. To prove the converse, suppose given equation holds for all $a, b \in L$, let $J$ and $K$ be any two n-ideals of $L$.

Obviously, $I \vee(J \cap K) \subseteq(I \vee J) \cap(I \vee K)$.
Theorem.5.1.2: An element $a$ of a lattice $L$ is distributive if and only if the relation $\theta_{a}$ defined by $x \equiv y \theta_{a}$ if and only if $x \vee a=y \vee a$ is a congruence.
Theorem5.1.3: If I be $n$-ideal of a lattice $L$, is distributive if and only if the relation $\Theta(I)$ defined by $y \equiv x \Theta(I) \forall x, y \in L$ if and any if
$x \vee i_{1}=y \vee i_{1}$ and $x \wedge i_{2}=y \wedge i_{2}$ for some $i_{1}, i_{2} \in I \quad$ in the congruence generated by $I$.

Proof: At first we shall show that
$y \equiv x \Theta(I)$ if and only if $\langle y\rangle_{n}=\langle x\rangle_{n} \Theta_{1}$ in $I_{n}(L) . \quad$ Let $y \equiv x \Theta(I)$,
Then $y \vee i_{1}=x \vee i_{1}$ and $y \wedge i_{2}=x \wedge i_{2}$. for some $i_{1}, i_{2} \in I$.
Now $y \wedge i_{2}=x \wedge i_{2} \leq x \leq x \vee i_{1}=y \vee i_{1}$ implies that $x \in\langle y\rangle_{n} \vee I$.
Therefore, $\langle y\rangle_{n} \vee I=\langle x\rangle_{n} \vee I$.
Which implies that $\langle y\rangle_{n} \equiv\langle x\rangle_{n} \Theta(I)$ in $I_{n}(L)$.
Conversely, $\langle y\rangle_{n}=\langle x\rangle_{n} \Theta_{1}$ in $\quad I_{n}(L)$
then $\langle y\rangle_{n} \vee I=\langle x\rangle_{n} \vee I$.
Again, $y \in\langle x\rangle_{n} \vee I$, and os $x \wedge n \wedge i_{1} \leq y \leq x \vee n \vee i_{2}$.
Similarly $y, x \wedge n \wedge i_{3} \leq x \leq y \vee n \vee i_{4}$.
This $y \leq x \vee n \vee i_{2} \leq y \vee n \vee i_{2} \vee i_{4}$
Which implies $y \vee n \vee i_{2} \vee i_{4}=x \vee n \vee i_{2} \vee i_{4}$.
Similarly $y \wedge n \wedge i_{1} \wedge i_{3}=x \wedge n \wedge i_{1} \wedge i_{3}$.
That is $y \vee i=x \vee i$ and $y \wedge j=x \wedge j$
Where $i=n \vee i_{2} \vee i_{4}$ and $j=n \wedge i_{1} \wedge i_{3}$.
Therefore $y \equiv x \Theta(I)$.
Above proof shows that $\Theta(I)$ is a congruence in $L$ if and only if $\Theta_{1}$ is a congruence in $I_{n}(L)$. But by lemma 5.1.2 $\Theta_{1}$ is a congruency if and only if $I$ is distributive in $I_{n}(L)$ and completes the proof.

Theorem: 5.1.4: If n be a neutral element of a lattice $L$ and $P_{1} \wedge n, \ldots \ldots \ldots . . ., P_{m} \vee n$ are distributive in $L$. Then finitely generated n-ideals $\left\langle P_{1}, P_{2}, \ldots \ldots \ldots . . ., P_{m}\right\rangle_{n}$ is distributive.

Proof: Suppose $P_{1} \wedge n, \ldots \ldots \ldots ., P_{m} \wedge n$ are dual distributive and $P_{1} \vee n, \ldots \ldots \ldots \ldots . . P_{m} \vee n$ are distributive in a lattice $L$. let $J, K \in I_{n}(L)$. Suppose $x \in\left(\left\langle P_{1}, \ldots \ldots ., P_{m}\right\rangle_{n} \vee J\right) \cap\left(\left\langle P_{1} \ldots \ldots \ldots ., P_{m}\right\rangle_{n} \vee K\right)$.

Then by using distributivity of $P_{1} \vee n, \ldots \ldots \ldots \ldots . . . . P_{m} \vee n$.
We have, $x \leq\left(P_{1} \vee \ldots \ldots \ldots . . \vee P_{m} \vee n \vee j\right) \wedge\left(P_{1} \vee \ldots \ldots \ldots . . \vee P_{m} \vee n \vee K\right)$
$=\left(p_{1} \vee n\right) \vee\left[\left(p_{2} \ldots \ldots \ldots \ldots \vee p_{m} \vee n \vee j\right) \wedge\left(p_{2} \vee \ldots \ldots \ldots \vee p_{m} \vee n \vee k\right)\right]$
for some $j \in J, k \in K$.

$$
\begin{aligned}
& =\left(p_{1} \vee n\right) \vee\left(p_{2} \vee n\right) \vee \ldots \ldots \ldots \ldots \ldots \vee\left(p_{m} \vee n\right) \vee(j \wedge k) . \\
& =\left(p_{1} \vee p_{2} \vee \ldots \ldots \ldots \ldots . . . . p_{m} \vee n\right) \vee[(j \vee n) \wedge(k \vee n)]
\end{aligned}
$$

But, $(j \vee n) \wedge(k \vee n)=m(j \vee n, n, k \vee n) \in J \cap K$.
Dually using the dual distributivity of $p_{1} \wedge n, \ldots \ldots \ldots . p_{m} \wedge n$,
It is easy to see that,
$p_{1} \wedge p_{2} \wedge \ldots \ldots \ldots \ldots \wedge p_{m} \wedge n \wedge\left(\left(J_{1} \wedge n\right) \vee\left(K_{1} \wedge n\right)\right) \leq x$
for some $j_{1} \in J, k \in K$.
Moreover, $\left(j_{1} \wedge n\right) \vee\left(k_{1} \wedge n\right)=m\left(j_{1} \wedge n, n, k_{1} \wedge n\right) \in J \cap K$.
Thus by convexity, Since the reverse in inclusion is $x \in\left\langle p_{1}, p_{2}, \ldots \ldots \ldots \ldots, p_{m}\right\rangle_{n} \vee(J \cap K)$.
so $\left\langle p_{1}, p_{2}, \ldots \ldots \ldots . \quad p_{m}\right\rangle_{n}$ is distributive.
It should be mentioned that the converse of above result is not necessarily true. For example consider the following lattice.


Figure: 5.1

Here $\langle a, f\rangle_{n}=L$ which is of course distributive in $I_{n}(L)$.
But neither $a \vee n$ nor $f \vee n$ is distributive in $L$.
But the converse holds for principal n-ideals.
Definition (neutral element of a lattice): An element $n \in L$ is called neutral if it is standard and for all $x, y, \in L . n \wedge(x \vee y)=(n \wedge y)$. By
[15], we know that $n \in L$ is neutral if and only if for all $x, y \in L$.
$m(x, n, y)=(x \wedge y) \vee(x \wedge n) \vee(y \wedge n)=(x \vee y) \wedge(x \vee n) \wedge(y \vee n)$.
Ofcourse 0 and 1 of a lattice are always neutral, of course every element of a distributive lattice is distributive, standard and neutral.

Theorem : 5.1.5: Suppose n be a neutral element of $I_{n}(L)$. Then $a \wedge n$ is dual distributive and $a \vee n$ is distributive if and only if $\langle a\rangle_{n}$ is distributive.

Proof: Suppose $\langle a\rangle_{n}$ is distributive and $b, c \in L$.
Then $\langle a\rangle_{n} \vee\left(\langle b\rangle_{n} \cap\langle c\rangle_{n}\right)=\left(\langle a\rangle_{n} \vee\langle b\rangle_{n}\right) \cap\left(\langle a\rangle_{n} \vee\langle c\rangle_{n}\right)$.
Thus, $[a \wedge n, a \vee n] \vee([b \wedge n, b \vee n] \cap[a \wedge c \wedge n, a \vee c \vee n])$
$=[a \wedge b \wedge n, a \vee b \vee n] \cap[a \wedge c \wedge n, a \vee c \vee n]$
This implies,
$a \wedge n \wedge((b \wedge n) \vee(c \wedge n))=(a \wedge b \wedge n) \vee(a \wedge c \wedge n)$
and $a \vee n \vee((b \vee n) \wedge(c \vee n))=(a \vee b \vee n) \wedge(a \vee c \vee n)$
That is $(a \wedge n) \wedge(b \vee c)=(a \wedge b \wedge c) \vee(a \wedge c \wedge n)$
and $(a \vee n) \vee(b \wedge c)=(a \vee b \vee n) \wedge(a \vee c \vee n)$,
as n is neutral Therefore, $a \wedge n$ is dual distributive and $a \vee n$ is distributive in a lattice L .

To prove the converse, suppose $a \wedge n$ is dual distributive and $a \vee n$ is distributive. Then by theorem 5.1.4 $\langle a\rangle_{n}$ is distributive.

Theorem: 5.1.6: Let I be a distributive $n$-ideal of a lattice $L$. Then $I_{n}(L)$ is isomorphic with the lattice of all $n$-ideals of $L$ containing $I$, that is, with $[\mathrm{I}, \mathrm{L}]$ in $I_{n}(L)$.

Proof: Let $\varphi$ be the homomorphism $\mathrm{x} \rightarrow[x] \Theta(I)$ onto $\frac{L}{\Theta(I)}$.
Then it is easily to see that the map $\psi: K \rightarrow K \varphi^{-1}$ maps $\mathrm{I}_{n}\left(\frac{L}{\Theta(I)}\right)$ into [I,L]. To show that $\Psi$ is onto, it is sufficient to see that [J] $\Theta(I)=J$ for all $j \supseteq I$. Indeed, if $j \in J$ and $a \in L$ with $j \equiv a \Theta(I)$, then $J \vee i=a \vee i$ and $j \wedge i_{1}$ for some $i, i_{1} \in I$. Thus $j \wedge i_{1} \leq a \leq j \vee i$. Since $j \wedge i_{1}, j \vee i \in j$, so by convexity $a \in J$. Moreover, $\Psi$ is obviously an isotone and one-one. Therefore, it is an isomorphism.

## 1. n-Ideal of a lattice.

A non-empty subset I of a lattice L is said be an ideal of L if
(i) $a, b \in I \Rightarrow a \vee b \in I$
(ii) $a \in I, l \in L \Rightarrow a \wedge l \in I$.

If $L$ is bounded then $\{0\}$ is always an ideal of $L$ and is called the zero ideal. The n-ideal of a lattice have been studies extensively by A.S.A Noor and M.A. Latif in [19], [20], [21], [22] and [23]. For a fixed element n of a lattice $L$, a convex sub lattice containing n is called an $n$-ideal. If $L$ has " o ", then replacing n by " o " an n-ideal becomes a filter by replacing $n$ by 1 . Thus the idea of $n$-ideals is a kind of generalization of both ideals and filters of lattices. So any result involving $n$-ideals of a lattice $L$ will give a generalization of both ideals and filters of lattices. So any result involving $n$-ideals of a lattice $L$ with give a generalizations of the results on ideals if $0 \in L$ and filters if $1 \in L$.
The set of all $n$-ideals of a lattice $L$ is denoted by $I_{n}(L)$. Which is an algebraic lattice under set inclusion. Moreover, $\{n\}$ and $L$ are respectively the smallest and the largest elements of $I_{n}(L)$, while the set theoretic intersection is the infimum. For any two $n$-ideals $H$ and $K$, of a lattice $L$, it is easy to say that $H \cap K=\{x: x=m(h, n, k)$ for some $h \in H, k \in K\}$

Where $m(x, y, z)=(x \wedge y) \vee(y \wedge z) \vee(z \wedge x)$ and $H \vee K=\left\{x: h_{1} \wedge k_{1} \leq x \leq h_{2} \vee k_{2}\right.$, for some $h_{1}, h_{2} \in H$. and $k_{1}, k_{2} \in K$. The $n$-ideal generated by $p_{1}, p_{2}, \ldots \ldots \ldots \ldots \ldots . . p_{m}$ is denoted by $\left\langle p_{1}, p_{2} \ldots \ldots \ldots \ldots \ldots \ldots, p_{m}\right\rangle_{n}$,
clearly, $\left\langle p_{1}, p_{2} \ldots \ldots \ldots \ldots \ldots ., p_{m}\right\rangle_{n}=\left\langle p_{1}\right\rangle_{n} \vee\left\langle p_{2}\right\rangle_{n} \vee$. $\qquad$

## 2. Modular n-ideals of a lattice

Introduction: An $n$-ideal $M$ of a lattice $L$ is called a modular n-ideal if it is a modular element of the lattice $I_{n}(L)$. In other words is called Modular if for all $H, K \in I_{n}(L)$ with $K \subseteq I$,
$H \cap(M \vee K)=(H \cap M) \vee K$.
We know from [24] that a lattice $L$ is modular if and only if its every element is modular. Also from [20]. We know that for a neutral element n of a lattice $L, L$ is modular if and only if $I_{n}(L)$ is so.

Thus for a neutral element $n$, the lattice $L$ is modular if and only if it every $n$-ideal is modular. Following result gives a characterization of modular n-ideals of a lattice.

Theorem :5.2.1: An $n$-ideal $M$ of a lattice $L$ is modular if and only if for any $J, K \in P_{n}(L)$ with $K \subseteq J,(J \cap M) \vee K=J \cap(M \vee K)$.

Proof: Suppose $M$ is modular lattice of $I_{n}(L)$. The above relation obviously holds from the definition. Conversely, Suppose $(J \cap K) \vee K=J \cap(M \vee K)$ for all $J, K \in P_{n}(L)$ with $K \subseteq J$. Let $S . T \in I_{n}(L)$ with $T \subseteq S$.
We have to show that, $(S \cap M) \vee T=S \cap(M \vee T)$.
Clearly, $(S \cap M) \vee T \subseteq S \cap(M \vee T)$.
To prove the reverse inclusion let $x \in S \cap(M \vee T)$.
Then $x \in S$ and $x \in(M \vee T)$.
Then, $m \wedge t \leq x \leq m_{1} \vee t_{1}$. for some $m_{1} m_{1} \in M, t, t_{1} \in T$.
Thus, $x \vee n \leq x \leq m_{1} \vee t_{1} \vee n$.
Which implies $x \vee n \in\left\langle m_{1} \vee n\right\rangle_{n} \vee\left\langle t_{1} \vee n\right\rangle_{n} \subseteq M \vee\left\langle t_{1} \vee n\right\rangle_{n}$
Moreover, $x \vee n \in\left\langle x \vee t_{1} \vee n\right\rangle_{n}$ and $\left\langle x \vee t_{1} \vee n\right\rangle_{n} \supseteq\left\langle t_{1} \vee n\right\rangle_{n}$.

Hence by the given Condition, $x \vee n \in\left\langle x \vee t_{1} \vee n\right\rangle_{n} \cap\left(M \vee\left\langle t_{1} \vee n\right\rangle_{n}\right)$ $=\left(\left\langle x \vee t_{1} \vee n\right\rangle_{n} \cap M\right) \vee\left\langle t_{1} \vee n\right\rangle_{n} \subseteq(S \cap M) \vee T$.

By a dual proof of above we can easily see that $x \wedge n \in(S \cap M) \vee T$. Thus by Convexity $x \in(S \cap M) \vee T$.

Theorem.5.2.2: Suppose $n$ is a neutral element of a lattice $L$. Then $M \in I_{n}(L)$ is modular if and only if for and only if for any $x \in M \vee\langle y\rangle_{n}$ with $\langle Y\rangle_{n} \subseteq\langle x\rangle_{n}, x=\left(x \wedge m_{1}\right) \vee(x \wedge y)=\left(x \vee m_{2}\right) \wedge(x \vee y)$ for some $m_{1}, m_{2} \in M$.

Proof: Suppose $M$ is modular and $x \in M \vee\langle y\rangle_{n}$.
Then $x \in\langle x\rangle_{n} \cap\left(M \vee\langle y\rangle_{n}=\left(\langle x\rangle_{n} \cap M\right) \vee\langle y\rangle_{n}\right.$.
This impels $p \wedge y \wedge n \leq x \leq q \vee y \vee n$.
for some $p, q \in\langle x\rangle_{n} \cap M$.
By Proposition 1.1.1, $q \in\langle x\rangle_{n} \cap M$.
Implies that $q=(x \vee q) \vee(x \wedge n) \vee(q \wedge n)=(x \wedge(q \vee n)) \vee(q \wedge n)$.
Thus, $x \vee n \leq(x \wedge(q \vee n)) \vee y \vee n \leq x \vee n$,
which implies $x \vee n=(x \wedge(q \vee n)) \vee y \vee n=$
$(x \wedge(q \vee n)) \vee y \wedge(x \vee n)) \vee n$.
$=(x \wedge(q \vee n)) \vee(x \wedge y) \vee n$, an $n$ is neutral. Hence by the neutrality of n again, $x=x \wedge(x \vee n)=x \wedge[x \wedge(q \vee n)) \vee(x \wedge y) \vee n]$ $=(x \wedge[(x \wedge(q \vee n)) \vee(x \wedge y)]) \vee(x \wedge n)$
$=(x \wedge(q \vee n)) \vee(x \wedge y) \vee(x \wedge n)$.
$=(x \wedge(q \vee n)) \vee(x \wedge y)$,
Which is the first relation where $m_{1}=q \vee n \in M$.
A dual Proof of above establishes the second relation.

Conversely, let $\langle y\rangle_{n} \subseteq\langle x\rangle_{n}$, By theorem 5.2.1, we need to show that $\langle x\rangle_{n} \cap\left(M \vee\langle y\rangle_{n}\right)=.\langle x\rangle_{n} \cap\left(M \vee\langle y\rangle_{n}\right)=$
Clearly R.H.S $\subseteq$ L.H.S.
To prove the reverse inclusion let $t \in\langle x\rangle_{n} \cap\left(M \vee\langle y\rangle_{n}\right.$.
Then $t \in\langle x\rangle_{n}$ and $t \in M \vee\langle y\rangle_{n}$.
Then $m \wedge y \wedge n \leq t \leq m_{1} \vee y \vee n$. for some $m, m_{1} \in M$.
Thus, $t \vee y \vee n \leq m_{1} \vee y \vee n$, and so $t \vee y \vee n \in M \vee\langle y \vee n\rangle_{n}$
and $\langle y \vee n\rangle_{n} \subseteq\langle t \vee y \vee n\rangle_{n}$.
So by the given condition $t \vee y \vee n=\left((t \vee y \vee n) \wedge m^{\prime}\right) \vee(y \vee n)$ for some $m^{\prime} \in M$. Since $t, y \in\langle x\rangle_{n}$,

So $t \vee y \vee n \in\langle x\rangle_{n}$.
Moreover, by the neutrality of n ,
$\left((t \vee y \vee n) \wedge m^{\prime}\right) \vee(y \vee n)$
$=\left((t \vee y \vee n) \wedge\left(m^{\prime} \vee n\right)\right) \vee y$.
$=m\left(t \vee y \vee n, n, m^{\prime}\right) \vee y \in\left(\langle x\rangle_{n} \cap M\right) \vee\langle y\rangle_{n}$.
Therefore, $t \vee y \vee n \in\left(\langle x\rangle_{n} \cap M\right) \vee\langle y\rangle_{n}$.
By the dual proof we can show that $t \wedge y \wedge n \in\left(\langle x\rangle_{n} \cap M\right) \vee\langle y\rangle_{n}$.
Thus, by the convexity, $t \in\left(\langle x\rangle_{n} \cap M\right) \vee\langle y\rangle_{n}$.
Therefore, $\langle x\rangle_{n} \cap\left(M \vee\langle y\rangle_{n}\right)=\left(\langle x\rangle_{n} \cap M\right) \vee\langle y\rangle_{n}$.
and so by Theorem 5.2.1, $M$ is Modular.
Theorem.5.2.3: Let $M$ is a modular n-ideal and $I$ be any n-ideal of $L$ and $I$ be only $n$-ideal of $L$ and $n$ be a neutral element of a lattice $L$. Then $I_{n}(L)$ is principal if $M \vee I=\langle a\rangle_{n}$ and $M \cap I=\langle b\rangle_{n}$.

Theorem.5.2.4: Let $I$ and $J$ be ideals of a join Semi-lattice then $I \vee J=\{t / t \leq i \vee j, i \in I, j \in J\}$.
Proof: Suppose a modular lattice $L$ is distributive. Then clearly, R.H.S $\leq I \vee J$. Now let, $t \in I \vee J$.

Then we have $t \leq i \vee j$ for some $i \in I$ and $j \in J$.
$\therefore t=t \wedge(i \vee j)$.
$=(t \wedge i) \vee(t \wedge j)$
$=i^{\prime} \vee j^{\prime}$ where $i^{\prime}=t \wedge i \in I$ and $j^{\prime}=t \wedge j \in J$.
Hence $t \in$ R.H.S.
$\therefore I \vee J \leq R . H . S$.
Therefore, $I \vee J=\{i \vee j / i \in I, j \in J\}$
Conversely, Suppose $L$ is not distributive.
Therefore it contains elements $\mathrm{a}, \mathrm{b}, \mathrm{c}$ is $\mathrm{M}_{5}$ or $\mathrm{N}_{5}$.


Figure-5.2

Let $I=(b]$ and $J=(c]$ since $a \leq b \vee c$, Then we have $a \in I \vee J$.

However a has no representation as in given theorem. For if $a=i \vee j, i \in I, J \in J$

Then $j \leq a$. also $j \leq c$
Therefore $j \leq a \wedge c<b$. Thus $j \in I$
Which gives a contradiction.
Hence $L$ is distributive.

## REFERENCES:

1. Birkhoff, Lattice Theory, Amer. Math. Soc. Colloq. Publ. 25. $3^{\text {rd }}$ Edition. (1967).
2. W. H. Cornish n-Normal Lattices,Proc.Amer. Math. Sco. 1(45) (1974), 48-54.
3. W. H. Cornish, Pseudocomplemented modular semilattices.
J. Austral. Math. Soc. 18 (1974), 239 - 251.
4. W. H. Cornish, The multiplier extension of a distributive lattice, J. Algebra 32 (1974), $339-355$.
5. W. H. Cornish , Normal Lattices J. Austral. Math. Soc. 14 (1972), 200-215.
6. A. Davey. Some annihilator conditions on distributive lattices.

Alg. Univ. 3(4) (1974). 316-322.
7. G. Gratzer, lattice theory, First concepts and distributive lattices, Freeman, San Francisco, 1971.
8. G. Gratzer, General lattice theory, Birkhauser, Verlag. Basel and Stuttgart, 1978.
9. G. Gratzer \& E. T. Schmidt, On a problem of M. H. Stone. Acta. Math. Acad. Sci. Hung. 8(1957), $455-460$.
10. Katrinak, Congruence lattices of distributive P - algebras, Algebra Universalis, 7 (1977), 265 - 271.
11. Katrinak, Remarks on Stone lattices. Math. Fyz. casopis 16 (1966). 128 - 142.
12. T. Katrinak \& P. medarly, constructions of p-algebras .

Algebra Universalis. 17(1983), 288-316.
13. H. Lakser, principal congruence's of pseudocomplemented distributive lattices, proc. Amer. Math. Soc. 37 (1973), 32 - 36.
14. H. Lakser, The structure of pseudocomplemented distributive
lattices I. Subdirec decomposition. Trans. Math. Amer. Soc. 156 (1971). 335 - 342.
15. K. B. Lee, Equations classes of a distributive seudocomplemented lattices, Canad. J. math. 22 (1970) $881-891$.
16. P. Medarly, A characterization of modular pseudocomplemented semilattices, Colloq. Math. Soc. J. Bolyai. Szeged. 14 (1975), 231 - 248.
17. D. E. Rutherford, Introduction to lattice theory, Oliver and Boyd. 1965.
18. Vijay K. Khanna, Lattices and Boolean algebras (First concepts).
19. A. S. A. Noor \& M. A. Ail- Minimal prime n-ideal of a lattice, The Journal of Science Math. Bangle University Review, India 9 (1), (1998), $32-36$.
20. A. S. A. Noor \& M. A. Latif- Standard n-ideal of a lattice, SEA. Bull. Math. 4 (1997), 185 - 192.
21. A. S. A. Noor \& M. A. Latif, Properties of n-ideals of a lattice, SEA. Bull. Math. 24(2000), 1-7.
22. A. S. A. Noor \& M. A. Latif, Two isomorphism theorem for standard n-ideals of a lattice, presented in the $5^{\text {th }}$ west Bengal science congress, India. Math. 4 (1997), 185-192.
23. A. S. A. Noor \& M. A. Latif, Permutability of standard n- congruence's, Rajshahi University Studies (Part-B), journal of science Vol. 23-24, (1995-96), 211-214.
24. M.R. Talukder \& A.S.A. Noor, Standard ideals of a join semilattices directed below, SEA. Bull. Math. 21(4),(1997), 435-438.
25. T. P. Speed- On Stone lattices, J. Austral. Math. Soc. 9 (1969), 297 - 307.
26. J. Verlet- On the characterization of Stone lattices, Acta Sci. Math.
(Szeged) 27 (1996), $81-84$.

## 2. Modular n-ideals of a lattice

Introduction: An n-ideal $M$ of a lattice $L$ is called a modular n-ideal if it is a modular element of the lattice $I_{n}(L)$. In other words is called Modular if for all $H, K \in I_{n}(L)$ with $K \subseteq I$,
$H \cap(M \vee K)-(H \cap M) \vee K$.
We know from [24] that a lattice $L$ is modular if and only if its every element is modular. Also from [20]. We know that for a neutral element n of a lattice $L, L$ is modular if and only if $I_{n}(L)$ is so.

Thus for a neutral element $n$, the lattice $L$ is modular if and only if it every $n$-ideal is modular. Following result gives a characterization of modular n-ideals of a lattice.

Theorem :5.2.1: An $n$-ideal $M$ of a lattice $L$ is modular if and only if for any $J, K \in P_{n}(L)$ with $K \subseteq J,(J \cap M) \vee K=J \cap(M \vee K)$.
Proof: Suppose $M$ is modular lattice of $I_{n}(L)$. The above relation obviously holds from the definition. Conversely, Suppose $(J \cap K) \vee K=J \cap(M \vee K)$ for all $J, K \in P_{n}(L)$ with $K \subseteq J$. Let $S . T \in I_{n}(L)$ with $T \subseteq S$.

We have to show that, $(S \cap M) \vee T=S \cap(M \vee T)$.
Clearly, $(S \cap M) \vee T \subseteq S \cap(M \vee T)$.
To prove the reverse inclusion let $x \in S \cap(M \vee T)$.
Then $x \in S$ and $x \in(M \vee T)$.
Then, $m \wedge t \leq x \leq m_{1} \vee t_{1}$. for some $m_{1} m_{1} \in M, t, t_{1} \in T$.
Thus, $x \vee n \leq x \leq m_{1} \vee t_{1} \vee n$.
Which implies $x \vee n \in\left\langle m_{1} \vee n\right\rangle_{n} \vee\left\langle t_{1} \vee n\right\rangle_{n} \subseteq M \vee\left\langle t_{1} \vee n\right\rangle_{n}$
Moreover, $x \vee n \in\left\langle x \vee t_{1} \vee n\right\rangle_{n}$ and $\left\langle x \vee t_{1} \vee n\right\rangle_{n} \supseteq\left\langle t_{1} \vee n\right\rangle_{n}$.

