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Summary 

This thesis studies extensively the nature of modular lattices and Boolean 

algebras. The modular lattices have been study by several authors 

including Abbott [2 ] , Birkhoff [ 3  1 and Rutherford [19 ]. A poset is 

said to form a lattice if for every a,b eL, avband aAb existsinL, 

where v , A are two binary operation .A lattice L is called modular 

lattice ifforall a,b,cELwitha>b,aA(bvc) =[bv(aAc)].In 

this thesis we give several results on modular lattices which certainly 

extend and generalized many result in lattice theory. 

In chapter one we discuss ideals , complete lattices , relatively 

complemented lattices and other results on lattices which are basic to this 

thesis . If every interval in a lattice is complemented the lattice is said to 

be relatively complemented. 

Chapter two discusses Embeddings, Kernels and dual homomorphisms. 

If L, M be two lattices, a one-one homomorphism 0 : L_> M is 

called an embedding mapping . Also in that case we say L is embedded 

in M. We prove that the definition of dual meet homomorphism and dual 

join homomorphism are equivalent. 

In chapter three we discuss on modular lattices and distributive lattices 

Distributive lattices have been studied by sever author including Cignoli 

[ 4  ] , Cornish [ 5  ] , Cornish and Hicman [ 6  ] and Evans [ 7  ] 

Nieminen [15 ], [16] . Hence we prove a lattice L is distributive if and 

only if 

(avb)A(bvc)A(cva)=(aAb)v(bAc)v(cAa) 

V a,b,cEL 

In chapter four we discuss Boolean algebras and Boolean functions 

Previously Boolean algebras, Disjunctive Normal forms and Conjunctive 

Normal forms have studied by Abbott [ 1 ] . Here we extend several 



Summary 

result on Boolean Algebras and also find the DN form of the function 

whose CN form is 

f=(xvyvz)A(xvyvz')A(xvy'vz)A(xvy'vz' )A 

(x'v y v z). 

-f 
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"Lattices, Sublattices and Complete lattices" 

1.1 Introduction 

In this chapter we discuss Ideals , Complete lattices and Relatively 

Complemented lattices .Complete lattices and semilattices have been 

studied by several authors Papert [18 ], Rozen [20 ] , Varlet [22 ] . A 

lattice L is called complete lattice if for every non empty subset of L 

has its Sup and Inf in L . In this chapter we also proved in any lattice the 

distributive inequalities 

aA(bvc)~! (aAb)v(aAc) 

av(bAc):!!~(avb)A(aAc). 

1.2 Relations, Lattices , Complete Lattices. 

Definition (Relation) : A relation R from A to B is a subset of A X  B. 

Example 1.2.1 :Let A{x,y} 

B={2,4,6} 

Then R = { (x, 2),(x, 6),(y, 4) } is a relation from A to B. 

Definition (Reflexive Relation): Let R = (A,A P(x, y)) be a relation in a 

set A, i.e., let R be a subset of A X A . Then R is called a 

reflexive relation if, for every a €A, 

(a, a)EA. 

In other words, R is reflexive if for every element in A is related 

to itself. 

Example 1.2.2: Let Y= {1,2,3,4,5} and 

R = {(1, 1),(2,2),(2,3),(3,3),(4,4),(3,4),(5,5)}. 

Then R is a reflexive relation. 

Definition (Symmetric Relation): Let R be a subset of A X  A i.e. let R 

be a relation of in A. Then R is called a symmetric relation if 

'I- 

'1 
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(a, b) E R implies (b , a) E R 

Example 1.2.3 : Let S = {l,2,3} and let 

R = {(1,2),(1,3),(2,3),(2,1),(3, 1),(3,2)} 

Then R is a symmetric relation. 

Definition (Anti-Symmetric Relation): A relation R in a set A i.e. a 

subset of AX  A is called an anti-symmetric relation if 

(a , b) E R and (b , a) E R implies a = b 

In other words, if a # b then possibly a is related to b or 

possibly b is related to a but never both. 

Example 1.2.4: Let A be a family of sets, and let R be the relation in A 

defined by "x is a sub set of y". Then R is anti-symmetric since 

CDandDcCimp1ies C=D. 

Definition (Transitive Relation): A relation R in a set A is called a 

transitive relation if (a, b) E R and (b, c) e R implies 

(a, c) E R 

In other words, if a is related to b and b is related to c, then a 

is related to c. 

Example 1.2.5: Let B = { a, b, c } and let 

R { (a, b),(c , b),(b, a),(a, c) } 
Then R is not a transitive relation since 

(c , b) ER and (b , a) €R but (c , a) 

Definition (Equivalence Relation) : A relation R in a set A is an 

equivalence relation if 

(1) R is reflexive, that is, for every a EA, (a , a) eR. 

(2 ) R is symmetric, that is, (a, b) ER implies (b, a) ER. 

(3 ) R is transitive, that is, (a, b) ER and (b, c) ER 
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implies (a, c) eR. 
X. 

Example 1.2.6: Let X = { a ,b, c } be a set and let 

R = { (a, a),(a, b),(a, c),(b, a),(b, b),(b, c),(c, a),(c, b),(c, c) } 

be a relation of AxA then the relation R is an equivalence 

relation, since 

(1) R is reflexive, (a, a),(b, b),(c, c) E R 

(2 ) R is symmetric, (a, b),(b, a),(a, c),(c, a) E R and 

(3 ) R is transitive, (a, c),(c , b),(a, b) E R. 

Definition (Partially ordered set) : A non empty set P, together with a 

binary relation R is said to form a partially ordered set or a poset 
1 if the following conditions hold: 

Reflexivity: (a, a) ER for alla E P. 

Anti-Symmetry : If (a, b) E R, (b, a) E R then a = b 

(a, b e P). 

Transitivity : If (a, b) € R, (b, c) E R then (a, c) E R 

(a, b, c E P). 

Example 1.2.7 : The set N of natural numbers under divisibility forms a 

poset .Thus here a :!~ b means a I b (a divides b). 

Definition (Greatest element) : Let P be a poset. If 2 an element a€ P 

such that x !!~ a for all x E P then a is called greatest or unity 

element of P .Greatest element if it exists , will be unique. 

Definition (Least element) : An element b E P will be called least or 

zero element of P if b::-~x VxEP.Itisdenotedby O.Least 

element if it exists, will be unique. 

Example 1.2.8: Let A = {1,2,3}. Then ( P(A),  ) is a poset. 

Let B= {4, {1,2},{2},{3}} 
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Then (B, c ) is a poset with j  as least element .B has no greatest 

element. 

Let C = {{1,2},{2},{3},{1,2,3}}. 

Then C has greatest element { 1,2,3 }, but no least element. 

If D= {4,{1},{2},{1,2}}. 

Then D has both least and greatest elements namely 1i and 

{1,2}. 

Again E = {{1},{2},{ 1,3}} has neither least nor greatest 

element. 

Definition (Bounded poset): If a poset P has least and greatest elements 

we call it a Bounded poset . Indeed 0 :!~ x :5 u V x P. 

Definition (Upper bound): Let S be non empty subset of a poset P. 

An element a E P is called an upper bound of S if x < a 

VxE S. 

Definition (Least upper bound): If a is an upper bound of S s.t., 

a :!~ b for all upper bounds b of S then a is called least upper 

bound (l.u.b) or supremum of S . We write Sup S for 

supremum S. 

It is clear that there can be more than one upper bound of a set. 

But Sup, if it exists, will be unique. 

Definition (Lower bound) : An element a € P will be call a lower 

bound of S if a :!~- x V x E S. 

Definition (Greatest lower bound) : If a is a lower bound of S then a 

will called greatest lower bound (g.l.b) or Infimum S (InfS) if 

b :!~ a for all lower bounds b of S. 

Example 1.2.9: Let (Z, ::~) be the poset of integers 

I] 



Chapter 1 Page no 5 

Let S = { ...... - 3, - 2, -1, 0, 1, 2, 3 ) then Sup S = 3. 

Again in the poset (R, :~) of real numbers if 

S={xERIx<0,x#0}then SupS=O(anditdoesnot 

belong to S). 

Definition (Chain): If P is a poset in which every two members are 

comparable it is called a totally ordered set or a toset or a chain. 

Thus if P is a chain and x, y E P then either x :!~ y or y :!~ x. 

Fig. 1.1 

Definition (Lattice) : A poset (L, :!~) is said to form a lattice if for every 

a,beL Sup {a, b) and Inf {a,b} existinL. 

In that case, we write 

Sup {a, b} =avb (read a join b) 

Inf {a, b} = a A b (read a meet b) 

Othernotation like a+band ab or aub and anbarealso 

used for Sup {a, b} and Inf (a, b). 

Examplel.2.10: Let A be a non empty set, then the post ( P(A),  c)  of all 

subset of A is a lattice .Here for X ,Y E P(A). 

XAY=XnYand 

XvY=XuY 
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As a particular case, when A= {a, b} 

P(A) {, {a}, {b} , {a,b}} 

{a,b} 

{a} 
{b} 

Fig. 1.2 

Example 1.2.11 : The set N of all natural numbers under divisibility 

forms a lattice .Here 

a A b = g. c . d (a, b) 

avb=l.c.m(a,b) forall a,beN. 

Example 1.2.12 : The set L = {1,2,4,5,10,20,25,50,100} of factors of 

100 forms a lattice under divisibility It is represented by the 

following diagram. 

100 

4 25 

Fig. 1.3 
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Example 1.2.13 : Every chain is a lattice .Since any two elements x, y 

of chain are comparable , say x :!~ y we find 

xAylnf{x,y}=x, xvySup{x,y}=y. 

Definition (Meet-Semi Lattice) : A poset (P, :!~) is called a meet-semi 

lattice if for all a, b EP Inf{a, b} exists. 

or 

A non-empty set P together with a binary operation A IS 

called a meet-semi lattice if V a, b, c E P 

(i) a A a = a 
1 

(j)aAb=bAa 

(jj) a A ( b AC) (a A b ) AC. 

Definition (Join-Semi Lattice) : A poset (P, :!~) is called a join-semi 

lattice if for all a, b P Sup{a, b} exists. 

or 

A non-empty set P together with a binary operation v is 

called a join-semi lattice if V a, b, c E P 

(I) a v a = a 

()avb=bva 

(jj) a v ( b v c ) = (a v b ) v c. 

Definition (Sublattice) : A non-empty subset S of a lattice L is called a 

sublattice of L ifa,bES='aAb,avbES. 

Example 1.2.14: Let L = {1,2,3,4,6,12} of factors of 12 under 

divisibility forms a lattice. Then A = {1,2} and 

B = {1,3} are sublattice of L. 
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lk 12 

3 4 

Fig. 1.4 

Definition (Convex sublattice) : The subset D of the lattice L is called 

convex, if a, b E D, C E L and a :!~ c :!~ b imply that c e D. 

Example 1.2.15 : For a, b € L a :!-~ b the interval [a, b] 

{x I a :!~ x < b} is an important example of a convex sublattice. 

Example 1.2.16: For a chain C a, b e C, a :!~ b we can also define the 

half-openintervals:(a,b]{xla<x :!~b} and 

[a, b) = {x I a :~ x <b} and the open interval: 

(a, b) = {x I a < x <b}. These are also examples of 

convex sublattices. 

Example 1.2.17 : In the lattice {1,2,3,4,6,12} under divisibility {l,6} is 

a sublattice which is not convex as 2,3 € [1,6] but 2,3 o {1,6}. 

Thus [1,6] Z {1,6}. 
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12 
11 

3 4 

Fig. 1.5 

Definition (Complete Lattice): A lattice L is called a complete lattice 

if every non-empty subset of L has its Sup and Inf in L. 

or 

A lattice L is called a complete lattice if for any subset H of L, 

Sup H and Inf H exists in L. 

Example 1.2.18 : Every finite lattice is complete. 

Example 1.2.19: The real interval [0,1] with usual :!~ form a complete 

lattice. 

i 
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1.3 Ideals, Binary Operations, Dual Ideals. 

Definition (Ideal): A non-empty subset I of a lattice L is called an ideal 

of L if 

(i) i,jEI ivjEl 

(jj) i I, aEL=aAiEI 

Example 1.3.1 : Let L = { 1 ,2,4,8} be lattice of factors of 8 under 

divisibility. Then {1}, {1,2}, {1,4},{1,2,4,8} are all the ideals 

of L. 

-1 

24 

1 

Fig. 1.6 

Definition (Dual Ideal) : A non-empty subset I of a lattice L is called a 

dual ideal (or filter) of L if 

(I) i,jEI => iAjEI 

()iEI,aEL=aviEI 

Example 1.3.2 : Let L = { 1,2,4,8} be the lattice under divisibility. 

Then A = {1,2} and {1,4} are ideals but not dual ideals. 

B = {2,8} and {4,8} are dual ideals but not ideals. 

C = {2,4} is neither an ideal nor a duel ideal. 

ft 
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Definition (Principal Ideal): Let L be a lattice and a e L be any 

element. Let (a] = (x ( x < a }, then (a] forms an ideal of L. It is 

called principal ideal generated by a. 

Definition (Principal dualideal): Let L be a lattice and a E L be any 

element. The set [a) = {x E L I a :!~ x } forms a dual ideal ofL, 

called the principal dualideal generated by a. 

Definition (Prime ideal) : An ideal P of a lattice L is called a prime 

ideal of L if P is properly contained in L and whenever a A b E P 

then either a e P or b E P. 

or 
I An ideal P of a lattice L is called a prime ideal if for all a, b eL, 

aAbEP implieseither aEP or bEP. 

Definition (Binary operation): If a is a non-empty set then a map 

f: A x A_> A is called a binary composition (or binary 

operation) on A. 

Thus binary composition is a rule by which we combine any 

two member of the same set. 

Multiplication is another familiar example of a binary 

operation on naturals or reals. 

We use different symbols like , o, ED etc. for binary 

compositions. 

If is a binary operation on a set A and a, b E A then by 

definition a * b E A. We sometimes express this by saying that 

A is closed under *. 

A 
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Example 1.3.3 : Let A = {0,1,2,3,4}. Define on A by for a, b E A, 

a b means the remainder got by dividing a + b by 5 . Then 

will be a binary composition on A .The following table gives us 

all the values and since all the values of a ED b for any a, b lie in 

A , we find A is closed under this composition. 

-I.-- 
In fact, the above is called addition modulo 5. One could 

generalize this on a set A = {O,l,2 ---------- n-I } addition 

Definition (Algebraic Lattice) : A non-empty set L together with two 

binary compositions (operations) A and v is said to form a 

lattice if V a, b, c E L the following conditions hold: 

Li : Idempotency: a A a = a, a V a = a 

L2 : Commutativity : aAb = bAa, avbbva 

L3 : Associativity : a A (b A c) = (a A b) A C, 

a v (b v c) (a v b) v c 

L4:Absorption: a A(avb)a, av(aAb)=a. 

Definition (Duality): Let 0 be a relation defined on a set A. Then 

converse of 0 (denoted by O) is defined a O b b 0 a, 

a ,b E A. 

-f 
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Definition (Dual) If (A, 0) be a poset then the poset ( A, 0), where 

A = A and O is converse of 0 is called dual of A. 

Problem 1.3.1 : If we consider the two chains with diagram 

C 1 = {0,1,2} and C2  = {O,1) then C1X  C2  is a lattice. 

(2,1) 

-4 

(0,1) (2,0) 

(0,0) 

Fig. 1.7 

Proof: C I =  {0,1,2} 

C2 ={O,1} 

:.0 iX  C2  = {(O,O) ,(0,1), (1,0) ,(1,1), (2,0), (2,1)}. 

Inf and Sup of any two elements of C1XC2  lie in Ci>  C2 . 

So C i X C2  satisfy the conditions of lattice. Hence C I X C2  is a 

lattice. 

Example 1.3.4: 

(0, 1) A (2,0) = (0,0) E C1x  C2  

(0,1) v (2,0) = (2,1) e C I X  C2 
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Theorem 1.3.2 : If L is any lattice, then for any a, b, c E L, the 

following results hold. 

 aAa=a, ava=a (Idempotency) 

 aAb=bAa, avb=bva (Commutativity) 

 aA(bAc)(aAb)Ac (Associativity) 

a v( b v c ) =(a v b) v c 

 aAb:!~a, b:~avb 

 If O,uEL,then 

OAa=O, 0 v a a 

uAaa, uvau. 

 a A (a v b) = a (Absorption) 

a v (a A b) = a 

Proof: 

aAalnf (a, a) = Inf {a}=a. 

avaSup{a,a} Sup{a}a. 

aAblnf{a,b} Inf{b,a}bAa. 

a v b = Sup{a,b} Sup{b,a}bva. 

Let bAc=d, then dlnf{b,c} 

=d:!~b, d:!~c 

Letelnf{a,d} then e:~a, e:5d 

Thus e < a, e :!~ b, e :!~ c. (using transitivity) 

Hence eaAdaA(bAc)lnf{a,b,c} 

Therefore a A(b Ac) = Inf {a, b, c} 

Similarly, we can show that (a A b) A c = Inf {a, b, c} 

Hence aA(bAc)(aAb)Ac. 

Againlet bvc=d,then d=Sup{b,c} 
4 
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=> d~!b, d ~ c 

Let e= Sup{a,d} then e~!a, e~!d 

Thus e ~ a, e ~! b, e ~! c (using transitivity) 

Hence eavd=av(bvc)= Sup{a,b,c} 

Similarly, we can show that (a v b) v c = Sup{a, b , c} 

Hence av(bvc)(avb)vc 

Follows by definitions of meet and join. 

Since 0 :!~ x :!~ u, for all x E L , the results are trivial for meet 

and join. 

a:!~avb By(4) 

... aA(avb)a [Since a:!~b<>aAba 

a v b = b 

Again aAb~a By(4) 

(a A b) v a= a 

Hence av(aAb)a. 

Problem 1.3.3: Show that idempotent laws follow from the absorption 

laws. 

Proof:Wehave aA(avb)a and av(aAb)a 

Take b=aAb infirstandweget aA(av(aAb))a 

or aAa=a. 

Similarly we can show a v a = a. 

Theorem 1.3.4 : In any lattice the distributive inequalities 

aA(bvc)~!(aAb)v(aAc) 

av(bAc):!~(avb)A(avc) 

-1 
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hold for any a, b, c. 

Proof: (I) aAb:!~a 

aAb:!~b:!~bvc 

=> a A b is lower bound of {a, b v c } 
=:> aAb:!~aA(bvc) (1) 

Again aAc:!~a 

aAc:!~c:!~b ye 

aAc:!~aA(bvc) (2) 

(1) and (2) show that a A (b v c) is an upper bound of 

-f {aAb,aAc} 

=' (aAb)v(aAc):!!~aA(bvc) 

Hence aA(bvc)>(aAb)v(aAc) 

avb~!a 

avb~!b~!bAc 

= a v b is an upper bound of {a,bAc} 

=> avb~!!av(bAc) (I) 

Again avc~!a 

avc~!c~:bAc 

=> avc~!av(bAc) (2) 

(1)and (2) show that a v(b Ac) is a lower bound of 

{ a v b, a v c} 

=av(bAc):!~(avb)A(avc) 

Theorem 1.3.5: In any lattice L, 

(aAb)v(bAc)v(cAa)~(avb)A(bvc)A(cva), 

for all a, b, c E L. 
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Proof: Since aAb:!~avb 
'¼ 

aAb:5b:!~bvc 

aAb:!~a::~cva 

We find 

(a A b) < (a v b) A (b v c) A (c v a) 

Similarly, (b A c) :!~ (a v b) A (b v c) A (c v a) 

and (cAa):!~(avb)A(bvc)A(cva) 

Hence (aAb)v(bAc)v(cAa):!~,(avb)A(bvc)A(cva) U 

Theorem 1.3.6 : The dual of a lattice is also a lattice. 

Proof:Let (L,R) be a lattice and let ( L, R)beitsdual.Then L=L 

and R is converse of R. Let x , y e L be any elements, 

then x,y E Land L isa lattice ,Sup{x,y} exists in L.Letit 

be x V y. 

Then xR(xvy) 

y R (x v y) 

(xvy)Rx 

(xv y) R y 

x v y isa lower bound of{x,y} in L. 

If z is any lower bound of {x , y} in L then 

zRx, zRy 

xRz, yRz 

=> z is an upper bound of {x, y} in L 

(xvy)Rz asxvy=Sup{x,y}inL 

= zR(xvy) 

or that x v y is greatest lower bound of {x , y} in L. Similarly 
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we can show xy will be Sup{x , y} in L. 

Hence L is a lattice. 

Definition (Complete Lattice) : A lattice A is called a complete lattice if 

every non-empty subset of A has its Sup and Inf in A. 

Example 1.3.5: Every finite lattice is complete. 

Example 1.3.6: The real interval [0 ,1] with usual :!~ forms a complete 

lattice. 

Example 1.3.7 : The lattice (Z, :!:,~) of integers is not complete as the 

subset 

K={x (=- Z I x> 0) does not have an upper bound and therefore a 

Sup inZ. 

Theorem 1.3.7: The dual of a complete lattice is a complete lattice. 

Proof: Let (A, 0) be a complete lattice and let ( A , 0) be its dual. 

Then ( A , 0) is a lattice. 

Let p # S c  A be any subset of A . Since A is complete, Sup S 

and Inf S exists in A. 

Let a Inf S in A 

Then a0x VXEA 

=> xOa VxeA 

a is an upper bound of S in A. 

Let b be any other upper bound of S in A. 

Then x0b VxEA 

bOx VxeA 

= bOa as a Inf S in A 

aOb orthat a isl.u.b.of S in A. 
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Similarly, we can show that Sup S in A will be Inf S in A. 

Hence ( A , O) is complete. 

Theorem 1.3.8 : If A and B are two lattices. Then the product A x B 

is a lattice. 

Proof: Given A and B be two lattices then we have 

AxB{(a,b) IaEA,bEB} 

is a poset under the relation :!~ defined by 

(a1 ,b1 ):!~(a2 ,b2)a1 :!~,a2  in A 

b1 :!~b2  in B. 

We show A x B forms a lattice. 

Let (a1  , b1) , (a2 , b2) E A x B be any elements. 

Then a1 ,a2 €A and b1 ,b2  EB. 

Since A and B are lattices, { a1  , a2  } and { b1  , b2  } have Sup 

and Inf in A and B respectively. 

Let ai Aa2  Inf {ai ,a2 }, b1 Ab2 = Inf {b1 ,b2 } 

then a1  A a2  :!~ a1 , a1  A a2 a2  

b1 Ab2 <b1 , b1 Ab2  b2  

=' (a1 Aa2,b1 Ab2)~(a1 ,bi) 

(a1  A a2 , b1  A b2 ) (a2 , b2) 

(a1  Aa2 ,b1  Ab2 ) is a lower bound of 

{(a1  ,b1),(a2 ,b2)} 

Suppose (c , d) is any lower bound of {(a1  , b1), (a2 , b2)} 

Then (c,d):!~(a1 ,b1 ) 

(c, d) :!~ (a2 , b2) 

=> c~a1,c:!~a2,d:!~b1,d:!~b2  

c is a lower bound of {a1 , a2} in A. 

-f 
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d is a lower bound of {b1, b2} in B. 

=' c:!~ai Aa2 =Inf{ai,a2 } 

d:!~b1  Ab2 lflf{bi,b2} 

(c , d) (a1A a2 , b1  A b2) 

or that (a1A a2 , b1  A b2) is g. 1 . b. {(a1,bi), (a2,b2)}. 

Similarly (by duality) we can say that 

(a1  v a2, b1  v b2) is 1 . u .b. {(a,,b1), (a2,b2)}. 

Hence A x B is a lattice. 

Also (a1, b1 ) A (a2 , b2) (a1  A a2 , b1  A b2) 

(ai,b1)v(a2 ,b2)=(a1  va2 ,b1 vb2). U 
4 

Theorem 1.3.9 : If (P, :5 ) is a poset with least element 0 such that 

every non empty subset S of P has Sup then P is a complete 

lattice. 

Proof: Let S be any non empty subset of P. We need prove that Inf S 

exists. 

Since 0 is the least element of P, 0:!~x Vx e P 

and thus 0:!~s VsES 

0 is a lower bound of S. 

subset of P and, therefore, by given condition Sup T exists. 

Let T = set of all lower bounds of 5, then T is a non empty 

subset of P and therefore, by given condition Sup T exists. 

Let k=SupT 

Now s E S=x:!~s, VxET 

=> each element of S is an upper bound of T 

=> k:!~s VsES 

k is a lower bound of S . But k being an upper bound of T 
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means x :!~ k V x E T i.e., x :!~ k V lower bounds of S 

k=JnfS 

Hence P is a poset in which every non empty subset has Sup 

and Inf and thus P is a complete lattice. U 

Theorem 1.3.10 : A lattice L is a chain if and only if every non empty 

subset of L is a sublattice. 

Proof: If the lattice is a chain then we have already shown that every non 

empty subset of L is a sublattice. 

Conversely, let L be a lattice s.t., every non empty subset of 

L is a sublattice. We show L is a chain. 

Let a, b e L be any elements. 

Then {a , b} being a non empty subset of L will be a sub lattice 

of L . Thus by definition of sublattice a A b e {a, b} 

=:> aAb=a or aAbb 

=> a:!~b or b:!~a 

i.e., a, b are comparable. 

Hence L is a chain. 

Theorem 1.3.11 : Intersection of two ideals is an ideal. 

Proof: Let X, Y be two ideals of a lattice L. 

Since X, Y are non empty, 3 some x E X, y E Y. 

Now xeX yEYçL=xAyeX. 

Similarly x A y E Y 

Thus XnY#p. 

Let u,v e Xr'Y beanyelements. 

=> u,v€X and u,vEY 

uvv e X and uvv E Y asX,Y are ideals. 

•1 
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UVVEX(ThY. 

Again, if a E X n Y and 1 c L be any elements then a E X, 

aY,l eL 

=aAl cx and ai cY 

=, al eXnY 

Hence X n Y is an ideal. 

The result can clearly be extended to intersection of more than two 

ideals. 

Problem 1.3.12: Show that union of two ideals may not be an ideal. 

Solution: 

12 

'I- 

I 

3 4 

I 

Fig. 1.8 

Take A = {1 , 2}, B = {1 , 3}. Then A, B are ideals of 

the lattice L = {1 , 2,3 ,4, 6, 121 under divisibility, but A u B 

isnotanideal.2,3 eAuB but 2v36AuB. • 

JI- 
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Theorem 1.3.13: Union of two ideals is an ideal if and only if one of 

them is contained in the other. 

Proof: One side of the theorem follows trivially. Let now A and B be 

two ideals of a lattice L s.t., A u B is also an ideal of L. 

Suppose AB and BA 

=' xeA s.t., xB 

yEB s.t., yA 

= x,ycAuB 

= xvyEAuB as AuB isanideal. 

= xvy€AorxvyeB. 
I 

If xvyeA, thenas yEBL 

yA(xvy)EA orthat y€A, acontradiction. 

Similarly x v y e B would lead us to the result that x E B which 

is not true. 

Hence either A c B or B c A. 

Theorem 1.3.14 : A non empty subset I of a lattice L is an ideal if and 

only if 

i,jEI=ivjEI 

iEI, x:!~i=x€I. 

Proof: Let I be an ideal of a lattice L. 

By definition of ideal (i) is satisfied. 

Let iEI, x:!~i,then xiAxEl (bydef.ofideal). 

Conversely, we need to show that i E I, a € L => a A I E I 

Since aAi:!~i and iEI 

I 
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By given condition a A I e I 

Hence I is an ideal. U 

Theorem 1.3.15: The set of all ideals of a lattice L forms an ideal under 

relation c. 

Proof:Let I(L)=  set ofall ideals ofa lattice L,then I ( L p as 

L E I (L). 

Clearlyalso(I(L),c) isaposet.Toshowthat 1(L) isa 

lattice we need find Sup and Infof {A, B} for any A, B e I (L). 

Since intersection of two ideals is an ideal and A r' B is the 

largest set contained in A and B it is obvious that 

AAB=Inf {A,B}=Ar'B 

Again, A u B is the smallest set containing A and B . But then 

A u B may not be an ideal, so it cannot work as our A v B. We 

consider the set 

X={x€LIx:!~avb forsomeaEA,bEB} 

Weclaim X=AvB 

ForanyaEA, a:!~avb forany beB 

aEX =AcX 

Similarly, B ç  X 

Thus X#p and AuBçX. 

We show X is an ideal of L. 

Let x , y e X be any elements. 

Then x:!~a1 vb1  

y:!~a2 vb2 forsome a1 ,a2 EA, b1 ,b2 EB 

xvy:!!~(ai vbi)v(a2 vb2) 

xvyEX as a1 va2 GA, b1vb2€B. 
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Again, for any x € X and I € L, Since x :!-< a v b, a e A, b € B 

wehave xAl:!~x:!!~avb. 

xAlEX which then isan ideal ofL. 

If C be any ideal of L containing A and B then X c C 

as x e X 

x:!~avb, forsome aeA,beB. 

Again a€AcC, beBçC gives avb€C and x:!~avb 

then yields x € C. 

Hence X is the smallest ideal of L containing A u B, 

i.e., XSup{A,B}AvB 
-4 

and we have established that (I (L ), c:) is a lattice. It is called 

the ideal lattice of L. U 

Probleml.3.16 : Show that an ideal of a lattice L which is also a dual 

ideal is the lattice itself. 

Solution : Let A be an ideal as well as a dual ideal of L, then A c L. 

Weshow LcA. 

Let 1 €L, XE A be any elements then lAx € A. 

Again, I A x :!~ 1 and, therefore, 1 € A 

= LçA 

Hence A=L. 

Thus no proper subset of a lattice can be an ideal as well as a 

dual ideal of the lattice. U 

Theorem 1.3J7: Every convex sublattice of a lattice L is the intersection 

of an ideal and a dual ideal. 

Proof: Let S be a convex sublattice of L 

Let A={xELIE1s€S,x:!~s}.Then A#pasSçA. 

1 
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Notice s:!~s VseS. 

We show A is an ideal of L. 

Let x, y E A be any elements. 

Then El  s1  , s2  e S s.t., x :!~ s1, y :!!~ s2  

=: xv y ~s1vs2 

= xvyEA as s1 vs2ES 

Again, let x E A and 1 E L be any elements. 

Then x :!!-~,, s for some s E S 

Now xAl:!~x<s 

X A I E A 
-4 

Hence A is an ideal of L. 

Let A' = { x c= L I s e S, s < x }, then by duality it 

follows thatA' isadual ideal of L.We show S'AA' 

S c A n A' (by definition of A and A') 

Let tEAnA. 

Then tEA and teA' 

sl,s2eS s.t., tes2, sl:!!~t 

i.e., sl:!!~t:!~s2 orthat te [si ,s2] 

Since S is convex sublattice, s1 , S2 e S 

[s1 ,s2 } C  S ='tES 

=AA'c S 

Hence S= Ar'A'. 

Theorem 1.3.18 : A lattice L is a chain if and only if all ideals in L are 

prime. 

Proof: Let L be a chain . Let A be any proper ideal of L . If 

'4 
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a A b e A then as a, b are in a chain, they are comparable. 

Let a:!-~ b. Then aAb=a. 

Thus aAbEA=aEAAisprime. 

Conversely, let every ideal in A be prime. To show that L 

is a chain, let a, b L be any elements. 

Let A = { x € L I x :!~, a A b } then A is easily seen to be an ideal 

of L. Thus A is a prime ideal. 

Now a A b E A, A is prime, thus a E A or b E A 

=> a:!~aAb or b:!~aAb 

=> aAb:!~a:!~,aAb 
-1 

or aAb:!~b:5aAb 

=aaAb or b=aAb 

a:!~b or b < a 

=> L isachain. U 

Definition (Dual Prime Ideal) A proper dual ideal I of a lattice is 

calledadual prime ideal if a v b El ='a (=- l orb €1. 

Problem 1.3.19 : Let I be a prime ideal of lattice L. Show that L - I is 

a dual prime ideal. 

Solution Since I is not empty, L - I is a proper subset of L. 

Let a,b€L—I.Then a,bEL, a,bI. 

-> aAbEL, aAbI 

as a A b € I => a e I or b E I as I is prime) 

aAbEL — I 

Again, let a € L —1, 1 EL 

Then aEL, aI, l€L 

= avlEL,aI 
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=> avlEL,av1I 

(as avl€I =aEI as a:!~avl) 

Thus av1EL—1 

i.e., L - I is dual ideal. 

Letnow avb(=- L—I, then avb€L,avbI 

a,bEL, aI or bI 

as a,bEI>avbEI) 

=> aeL—I or bEL—I 

or that L - I is a dual prime ideal. U 

I 
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1.4 Complemented and Relatively Complemented Lattices. 

Definition (Complements): Let [a, b] be an interval in a set L. 

Let x E [a, b] be any elements. If y E L s.t., 

xAy=a, xvy=b. 

We say y is a complement of x relative to [a, b], or y is a 

relative complement of x in [a, b]. 

Observations: 

If such a y exists then y lies in [a, b] 

as axAy<y:!~xvyb 

If y is relative complement of x , x will be relative 

complement of y. 

An element x may or may not have a relative complement. 

A relative complement may or may not be unique. 

Consider the pentagonal lattice given by the figure (1.9). 

U 

b L 

Fig. 1.9 

b has no complement relative to [o, a] 

a, b are both complement of c relative to [o, u] 

b has only one complement c relative to [o, u] 

I 
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(iv) a, b are unique complements of each 

other relative to [a, b] 

aAba , avbb 

Thus a, b are each other complements. 

Let x be any other complement of a 

relative to [a, b] 

Then aAb=a=aAx 

avbb=avx 

Now bavx(aAx)vxx 

Definition (Complemented) : If every element x of an interval [a, b] 

has at least one complement relative to [a, b], the interval 

[a, b] is said to be complemented. 

Definition (Relatively Complemented) : If every interval in a lattice is 

complemented the lattice is said to be relatively complemented. 

Suppose now L is a bounded lattice. If for any x € L, 

2y E Ls.t., xy=o, xvy=u, y is called complement of x 

(we need not say relative to [o, U] ). Further, if every element of 

L has a complement, we say lattice is complemented. 

Thus a bounded lattice is complemented if the interval [o ,u] = L 

is complemented. 

If L is a bounded lattice and is relatively complemented then 

L is complemented but not conversely. 

Consider the pentagonal lattice, 

-1 
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U 

Fig, 1.10 

[o , u] is complemented as a, c are each other complements 

b, c are each other complements 

and of course, o, u are each other complements. This lattice is 

not relatively complemented as b has no complement relative to 

[o , a] and so [o, a] is not complemented. 

The lattice given by the adjacent diagram is not 

complemented as a has no complement (relative to [o, u]). 

U 

a• b 

Fig. 1.11 

The lattice given by the figure below is both relatively 

'I 
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complemented as well as complemented. 

ajc 

Fig. 1.12 

Definition (Uniquely Complemented Lattice): If every element of a 

bounded lattice L has a unique complement, we say L is 

uniquely complemented. 

Theorem 1.4.1 : Let A be a non-empty finite set. Then ( P(A), c) is 

uniquely complemented lattices. 

Proof: Let A # 4. finite set and P(A) be the power set of A. We  know 

(P(A), c) forms a lattice with least element 4 and greatest 

element A. Also for any X , Y E P(A) 

XAYXnY and XvYXuY 

since XA(A—X)=Xn(A—X) 

Xv(A—X)Xu(A—X)A 

We find A - X is complement of X relative to [4 , A] 

Thus P(A) is complemented. 

Suppose Y is any complement of X , then 

XAY=XrY= 
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XvYXuYA 

i.e., XY=Xn(A—X) 

XuY=Xu(A—X) 

= Y=A—X 

or that A - X is uniquely complemented of X. 

So (P(A), ) is an uniquely complemented lattice. 

Now we prove P(A) is also relatively complemented. 

Consider any interval [X, Y] in P(A). 

Let Z E [X, Y] be any member. Then 

Zm(Xu(Y—Z))=(ZnX)u(Zn(Y—Z))=XuX 

Zu(Xu(Y—Z))(ZuX)u(Y—Z))Zu(Y—Z)Y 

Showing that X u (Y - Z) is complemented of Z relative to 

[X, Y ]. Since C was any element of any interval of P(A). 

Hence P(A) is relatively complemented. • 

Theorem 1.4.2 : Two bounded lattices A and B are complemented if 

and only if A x B is complemented. 

Proof: Let A and B be complemented and suppose o , u and o', u' 

are the universal bonds of A and B respectively. 

Then (o, o') and (u, u') will be least and greatest elements 

of Ax B. 

Let (a, b) E A x B be any element. 

Then a E A , b E B and as A , B are complemented, 

3 a'EA,b'EB 

s.t.,aAa'=o,ava'=u,bAb'o',bvb'=u'. 

Now 

'4 
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(a,b)A(a', b')=(aAa',bAb')=(o,o') 

(a, b)v(a', b') (a v a', b v b')( u, u') 

shows that (a', b') is complement of (a, b) in A x B. 

Hence A x B is complemented. 

Conversely, let A x B be complemented. 

Let a E A, b E B be any elements. 

Then (a, b) e Ax B and thus has a complement, say (a', b') 

Then (a,b)A(a',b')(o,o'), (a,b)v(a',b')=(u,u') 

= (aAa',bAb') (o,o'), (ava',bvb')= (u,u') 

-4 =:> aAa'o ava'u 

bAb'o bvb'=u' 

i.e., a' and b' are complements of a & b respectively. 

Hence A and B are complemented. U 

Theorem 1.4.3 : Two lattices A and B are relatively complemented if 

and only if A x B is relatively complemented. 

Proof: Let A, B be relatively complemented. 

Let [(a1, b1 ), (a2  , b2)] be any interval of A x B and suppose 

(x , y) is any element of this interval. 

Then 

(ai ,b1 )<(x,y):!~(a2 ,b2) a1 ,a2 ,xeA 

b1 ,b2 ,y e B 

a1  x a2  

b1  y b2  

= x E [a1 , a2] an interval in A 

-4 
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y e [b1  , b2 ] an interval in B 

Since A , B are relatively complemented, x, y have 

complements relative to [a1  ,a2 ] and [b1  , b2 ] respectively. 

Let x' and y' be these complements. Then 

xAx'a1, yAy'bi 

xvx'a2, yvy'b2  

Now 

(x,y)A(x' ,y')=(xAx', yAy' )=(a1 ,b1 ) 

(x,y)v(x' ,y')=(xvx', yvy')(a2,b2) 

= (x' , y') is complement of (x , y) relative to 

Thus any interval in A x B is complemented. 

Hence A x B is relatively complemented. 

Conversely, let A x B be relatively complemented. 

Let [a1  , a2  ] and [b1  , b2 ] be any interval in A & B. 

Let x E [ai  , a2 ], y € [b1  , b2 ] be any elements. 

Then 

a1  :!~ x a2  , b1  :!~ y :!~b2  

=' (a1 ,b1):!~(x,y):!~(a2 ,b2) 

(x,y) €[(a1,bi),(a2 ,b2)], an interval in AxB. 

( x , y ) has a complement, say (x ,y') relative to 

this interval. 

Thus 

(x,y)A(x' ,y')(a1, b1) 

(x,y)v(x' ,y')(a2 ,b2) 

-.4 
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(xAx' , yAy')=(a1,bi) 

(xvx', yvy' )=(a2 ,b2) 

=> xAx'=aJ, xvx'=a2 

yAy'=b1 , yvy'=b2  

= x' is complement of x relative to [a1  , a2 ] 

y' is complement of x relative to [b1  , b I 

which is turn imply that A, B are relatively complemented. U 

Theorem 1.4.4 : Dual of a complemented lattice is complemented. 

Proof: Let ( L , p) be a complemented lattice with o, u as least and 

.4 greatest elements. Let ( L, p) be the dual of ( L , p). Then 

u, o are least and greatest elements of L. 

Let a E L = L be any element. 

Since a E L, L is complemented, El a' € L s.t., 

aAa'o,ava'u inL 

i.e., olnf{a, a'} in L. 

opa, opa' 

=> ao,a'o in L 

=> o is an upper bound of {a, a' ) in L 

If k is any upper bound of {a, a '} in L then a p k, a' p k 

kpa, kpa' 

=> kpo asoislnf. 

=> opk 

i.e., o is l.u.b. {a, a'} in L 

i.e., ava'o in L 

-1 
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similarly, aAa'=urn L 

or that a' is complement of a in L 

Hence L is complemented. 

'4 
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1.5 Atoms and Covers. 

Definition (Atom) : An element a in a lattice L is called an atom if it 

is covers o. 

In other words a is an atom if and only if a # 0 and 

xAaa or xva=O V x eL. 

Definition ( Dual atom): An element b is called dual atom, if u , the 

greatest element of the lattice covers b. 

Definition ( Length  ) : A finite chain with n elements is said to have 

length n - 1 , (i.e., length is the number of 'links' that the chain 

has.) 

Definition (Cover): We say a covers b if b < a and there exists 

no c s.t., b<c<a. 

Definition (Height or dimension): Let L be a lattice of finite length 

with least element o . An element x E L is said to have height 

or dimension n if 1 [o , x ] = n and, in that case we write 

h (x ) = n. 

Problem 1.5.1 : Show that no ideal of a complemented lattice which is a 

proper sublattice can contain both an element and its 

complement. 

Solution : Let L be a complemented lattice. Then o, u E L. Let I an 

ideal of L such that I is a proper sub lattice of L. Suppose 3 an 

element x in I such that its complement x' is also in I. 

Then 

XAX'O, XVX'U 

since I is sublattice, x A x', xv x' are in I i.e., 0, U E I 

.4 
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Now if I EL be any element then as u El 

I AUEI 

lEI =LcI 

=> I = L, a contradiction. U 

Problem 1.5.2 : Let L be uniquely complemented lattice and let a be an 

atom in L . Show that a' the complement of a is a dual atom 

of L. 

Solution : Since L is uniquely complemented lattice, every element has 

a unique complement. 

Suppose a' is not a dual atom, then 3 at least one x 

s.t., a'< x <u 

a'va:!!~xva 

u:~xva:5u 

=:> uxva. 

Now if a:!!~x then x v a = x 

= x = u, not true. Again if a x, then 

aAx=o (note a is an atom) 

thus aAxo, avx=u 

x = a', again a contradiction. 

Hence a' is a dual atom. U 

Ik 

I 
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"Homomorphisms and Isomorphisms" 

2.1 Introduction. 

Here we discuss Homomorphisms , Isomorphisms , Meet 

homomorphisms and Join homomorphisms . We have prove the 

following problem .If L1  , L2 , M1  , M2  are lattices such that L1  M1  and 

L2  M2  then show that L1 x L2  MI x M2  M2  x M1. 

Let 0: L > M be an onto homomorphism . The set 

{x c= LIB(x)0' } where 0' is the least element of M is called the 

Kernel of 8 and is denoted by KerO . If M does not have the zero 

element, KerO does not exist. 

2.2 Meet and Join Homomorphisms, Isomorphisms. 

Definition (Meet & Join homomorphism): Let L and M be lattices. 

A mapping B: L > M is called a meet homomorphism if 

8 (a A b ) =0 (a) A 0 (b). 

It is called a join homomorphism if 

O (a v b ) = B (a) v 8(b). 

Definition (Homomorphism): If 0 is both meet as well as join 

homomorphism, it is called a homomorphism. 

A homomorphism is also sometimes called a morphism. 

Definition (Isomorphism): The map 0 is also 1-1 and onto we call 

B to be an isomorphism. 

If 8 is an isomorphism from L to L we call it an 

automorphism. 

A homomorphism from L to L is called endomorphism. 

If 0: L > M is onto homomorphism, we say M 

homomorphic image of L. 

•1 
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Example 2.2.1: Let L and M be lattices 
lk 

I RV  

a 

q 

x 

p 
co 

Fig. 2.1 

Define 9: L > M, I S. t., 

O(b)p O(u)=q 

Then 0 is a homomorphism. 

0(aAb)0(o)p, 0(a)AO(b)=qAp==p 

0(avb)=0(u)=q, 0(a)v0(b)=qvp=q. 

Problem 2.2.1 : If L1  , L2 , M1  , M2  are lattices such that L1  M1  and 

L2  M2  then show that L1  x L2  M1  x M2  M2  x M1. 

Solution: Let f: L1 > M1  and g : L2 > M2 be the given 

isomorphisms. Define 

0:L1 xL2 > M1 xM2 ,s.t., 

0((a,b))(f(a),g(b)) 

Then 0((a,b))=0((c,d)) 

(f(a),g(b))=(f(c),g(d)) 

f(a)=f(c), g(b)=g(d) 

-1 
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ac, b = d 

(a,b)(c,d) 

Shows that 0 is well defined 1-1 map. 

Again, 0((a,b)A(c,d))0((aAc,bAd)) 

= ( f( a AC), g ( b A d)) 

(f( a) A f( c), g(b)  A g ( d)) 

= ( f( a), g ( b  ) ) A  ( f( c) , g ( d)) 

0 ((a, b) ) A 9 ( (c , d)) 

Similarly, 0((a,b)v(c,d))=0((a,b))v0((c,d)) 

Showing thereby that 0 is a homomorphism. 
-4 

Finally, forany (m1 , m2 ) EM1  X M2 ,sincem1 EM1  &m2  EM2 

and f,g are onto, 

E L1,12 eL2 ,s.t.,f(11 )m1 ,g(12 )m2  

and 0((11 ,12 ))=(f(11 ),9(12 ))=(mi ,m2 ) 

shows that 0 is onto and hence an isomorphism. 

To show M1  x M2  M2 x M1  , we can define 

p:M1 xM2 > MxM1  s.t., 

p((m j  ,m2 ))(m2 ,m1 ) 

It is now easy to verify that p  is an isomorphism. U 

Theorem 2.22 : If B : L > M is onto homomorphism and 

x,yEM s.t., x<y then 3 a,bEL s.t.,0(a)=x, 

9(b)=y and a<b. 

Proof: Since 0 is onto and x 
, y E M, 3 a, c in L s. t., 

0(a)x, 0(c)=y 

Wehave 0(avc)0(a)v0(c)xvyy as x<y. 
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And a:!~avc 

If aavc then 0(a)0(a)v8(c)y 

= x y which is not true. 

Thus a<avc. 

Take b = a v c and we have the result proved. U 

Theorem 2.2.3 : Homomorphic image of a relatively complemented 

lattice is relatively complemented. 

Proof: Let 0 : L > M be an onto homomorphism and suppose L 

is relatively complemented. 

Let [a', b '] be any interval in M, since 0 is onto 

homomorphism, 3 pre images a and b for a', b' respectively 

suchthat0(a)a', 0(b)b' and a<b (as a'<b'). 

Thus [a, b] is an interval in L. 

Let yE[a',b'][O(a),O(b)] be any element then as 

before 3 apreimage x of y s.t., 0(x)y and 

a !~- x :!~ b. 

Now L relatively complemented implies that x has a 

complement x' relative to [a, b], 

i.e., xAx'a, xvx'=b 

=> 0(x)AO(x')O(a), 0(x)v0(x')O(b) 

= yA0(x ')=a', yv0(x')=b' 

= 0(x') is complement of y relativeto [a', b' ]. 

Thus each element in any interval in M has a complement, 

giving us the required result. U 

I 
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2.3 Embeddings, Kernels and Dual homomorphisms. 

Definition ( Embedding) : Let L, M be lattices. A one - one 

homomorphism 9 : L > M is called an imbedding 

(embedding ) mapping . Also in that case we say L is 

imbedded in M. 

Theorem 2.3.1 : Any lattice can be imbedded into its ideal lattice. 

Proof: Let I ( L) be the ideal lattice of L. 

Define 9:L > I(L),s.t., 

0 ( a) = ( a], the principal ideal generated by a. 

9 is then clearly well defined. 

I Also 0(a)0(b) 

(a](bj 

and aE(a] =aE(b] = a<b 

Similarly b ::~ a and thus a = b i.e., 0 is one-one. 

Again 0(aAb)=(aAb]=(a]A(b]=0(a)A0(b) 

9(avb)=(avb]=(a]v(b]0(a)v0(b) 

Hence 9 is one-one homomorphism. 

Definition ( Kernel): Let 0: L > M be an onto homomorphism. 

a. 
The set { x E L 10 (x ) = o' } where o' is least element of M 

is called Kernel of 8 and is denoted by Ker 9. If M does not 

have the zero element, Ker 0 does not exist. 

Theorem 2.3.2 : If 0 : L > M is an onto homomorphism, where 

L , M are lattices and o' is the least element of M, then Ker 0 

is an ideal of L. 

Proof: Since 0 is onto, o ' e M, thus Ker 9 # p as pre image of o' 

exists in L. 
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Now x,yeKerO 

= O( x )=zo'=O(y) 

O(xvy)=ø(x)v9(y)0' VO' =0' 

xvycKere. 

Again x E Ker e, 1 € L, gives O(x) = 0' 

Also O(xAl)0(x)A8(I)=o'Al=o' 

xA1EKer9. 

Hence Ker 0 is an ideal of L. 

Theorem 2.3.3: If 0 : L > L be a homomorphism, where L is a 

complete lattice then 3 some a E L, s. t., B (a ) = a. 

Proof:Let S={xEL I x!~0(x)}. 

Then S#p as oe S as o:!~0(o) (Note 0(0)EL). 

Thus S is a non empty subset of a complete lattice and therefore 

Sup S exists. Let Sup S = a. 

Now x:!~a VxeS 

0(x):!~0(a) V X E S 

x:!~0(x):!~0(a) VxE S 

8(a) is an upperbound of S 

a:!~0(a) (Def.of Sup 
 
) 

a E S by def. of S and hence a is greatest 

element of S. 

Also a:!!~9(a) =0(a):!~0(9(a)) 

(DefofS) 

a being greatest element of S then gives 8 (a ) :!~ a 

i.e., a:!~8(a):!~a. 

'4 
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Hence 0 (a ) = a, which proves our assertion. 

Definition (Dual meet & Dual join homomorphism) : A mapping 

B : L > M is called dual meet homomorphism if 

0(aAb)B(a)v0(b). 

and is a called dual join homomorphism if 

0(avb)=0(a)AO(b). 

Definition (Dual homomorphism) : It is called a dual homomorphism 

if it satisfies both the above conditions. 

Definition (Dual Isomorphism ) : A 1-1 onto dual homomorphism is 

called a dual isomorphism. 

The reader would recall that under posets we define a dual 

isomorphism to be a 1-1 onto map which satisfies a Rb 

e(b)R' 0(a )whereR and R' are the relations is L and M. 

Theorem 2.3.4: The defmition of dual meet homomorphism & dual join 

homomorphism are equivalent. 

Proof: To show the equivalence of two definitions, 

Let 0 : L > M be 1-1 onto s. t., 

0(aAb)0(a)vB(b) 

B(avb)=O(a)AO(b) 

Let aRb in L 

aaAb 

=> 0(a)=9(a)vB(b) in M 

0(b)R'O(a) 

Again B(b)R'O(a) = 0(a)=0(a)v0(b)= 

B(aAb). 

= aaAb as 0 is 1-1 

'4 
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= aRb inL 
L 

Conversely, let a, b E L be any elements. 

Then (aAb)Ra, (aAb)Rb 

=' 9(a)R'O(aAb) , 0(b)R'8(aAb) 

orthat 9(aAb) isanupperboundof {O(a),O(b) } 

Suppose yeM is any upper bound of {O(a),9(b)} then 

since 0 is onto, 3 x E L s . t., 0 (x ) = y. 

Now O(x) is an upper bound of { 0 (a), 0 (b) } gives 

0(a)R'O(x), 0(b)R'B(x) 

xRa, xRb 

x isalowerboundof { a,b} 

= xR(aAb), aAb=lnf{a,b} 

0(aAb)R'O(x)y 

i.e., 0(aAb) is a least upper bound of {0(a),0(b)} 

i.e., 9(aAb)0(a)vO(b). 

Similarly we can show 0(a)AO(b)9(avb). 

Hence the two definitions are equivalent. U 

p.  

'4 
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"Modular Lattices and Distributive Lattices" 
iL 

3.1 Introduction. 

Modular lattices and Distributive lattices have been studied extensively 

by many authors including Cigonli- [4 ] , Cornish [5 ] , Evans [7 ]' [8 ] 
and Nieminen [15 ] [16 ] . A lattice L is called a modular lattice if 

forall a,b,cEL with a>b 

aA(bvc) =[ bv(aAc)] 

In this chapter we also prove any non modular lattice L contains a sub-

isomorphic with the pentagonal lattice. Two intervals [a, b] and [ c , d] 

of a lattice are called transposed if b A c = a and b v c = d. 

- 3.2 Modular Lattices. 

Definition (Modular lattice) : A lattice L is called a modular lattice if 

Va,b,c E L, with a > b 

aA(bvc) =[bv(aAc)] 

(Dual of a modularity will read as 

Fora,b,c EL with a:!~b, av(bA C)= bA(avc) 

Hence dual of a modular lattice is modular) 

Example 3.2.1 : The lattice given by the following diagram are modular. 

0 

Fig, 3,1 Fig. 3.2 

-4 
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Example 3.2.2: A chain is a modular lattice. 
L 

Theorem 3.2.1 : A sublattice of a modular lattice is modular. 

Proof: Let S be a sublattice of a modular lattice L. If a, b, c E S 

with a~bthenas ScL, a,b,c EL and,therefore, 

aA(bvc) = bv(aAc). 

Since S is closed under A and v this result holds in S and 

hence S is modular. U 

Problem 3.2.2: Show that a lattice of length two is modular. 

Solution : If a lattice L has length 2, then 1 [o , u J = 2 and thus 

l[a,b] :!~2forany a,bEL, a:!~b. 

Let a, b , c e L be three elements s - t., a> b and c is 

not comparable with a or b.Then bAc<b<a<avc (at 

no place equality holds). Which shows 1 [b A c, a v c ] ~!! 3, 

which is not possible. Thus we cannot find any triplet a , b, c in 

L s . t., a> b and c is not comparable with a or b. Hence 

L is modular. 

Theorem 3.2.3 : Homomorphic image of a modular lattice is modular. 

Proof: Let 9 : L > M be an onto homomorphism and suppose 

L is modular. Let x, y, z e M be three elements with x > y. 

Since 0 is onto homomorphism, a a,b,c EL s.t.,9(a)x, 

9(b)y, 0(c)z, where a>b. 

Now L is modular, a,b,c EL, a>b, thusweget 

aA(bvc)bv(aA c) 

Now xA(yvz)9(a)A(0(b)v0(c)) 

9(a)A(0(bvc)) 

= 0(aA(bvc)) 

Gj 
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=9(bv(aAc)) 
Nk 

9(b)v9(aAc) 

=e(b)v[o(a)Ao(c)J 

yv(xAz) 

Hence M is modular. U 

Theorem 3.2.4: Two lattices L and M are modular if and only if 

L x M is modular. 

Proof: Let L and M be modular. 

Let (a1 ,b1 ),(a2 ,b2 ),(a3 ,b3 )eLxM be three elements 

with (a1 ,b1 )~(a2 ,b2 ). 

Then a1 ,a2 ,a3 EL, a1  a2  

b1  , b2  , b3  € M, b1  b2  

and since L and M are modular, we get 

a1A( a2 v a3  ) a2  v( a1  Aa3  ) 

b1 A(b2 vb3 )=b2 v(b1 Ab3 ) 

Thus 

(a1  , b1  ) A [(a2, b2  ) v (a3, b3  ) j = ( a1  , b1  ) A (a2  v a3 , b2  vb3  ) 

(a1  A(a2 v a3 ), b1  A(b2v b3)) 

=( a2 v ( a1 Aa3 ), b2  v ( b1A b3  ) ) 

a2  , b2  ) v (a1A a3  , b1 A b3 ) 

=( a , b2  ) v  ( a1 , b1 )A( a3  , b3  )J 

Hence L x M is modular. 

Conversely, let L x M be modular. 

Let a1  , a2, a3  € L, a1 a2  

b2 , b3  e M, b1 b2  

then (a1 ,b1 ),(a2 ,b2 ),(a3 ,b3 )eLxM and 

-1 
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(a1  ,b1 a2 ,b2 ). 

Since L x M is modular, we fiend 

(a1 ,bl )A[(a2 ,b2 )v(a3,b3)]=(a2,b2)vt(al,bl)A(a3,b3)] 

or (a1 ,b1 )A(a2 va3 ,b2 vb3 )=(a2 ,b2 )v(aiAa3,biAb3) 

or (a1 A(a2 va3 ),b1 A(b2 vb3 )=(a2 v(aiAa3 ),b2v(biAb3)) 

= a1 A(a2 va3 )=a2 v(a1 Aa3 ) 

b1 A(b2 vb3 )=b2 v(b1  Ab3 ) 

L and M are modular. 

Theorem 3.2.5 : A lattice L is modular if and only if I (L ) , the ideal 

lattice of L is modular. 
-4 Proof: Let L be modular. 

Let A, B , C E I (L) be three members s . t., B c A. 

Weshow Ar'(BvC)=Bv(AnC) 

Let x E A r' ( B v C) be any element. 

Then XEA and xEBvC. 

=:> xeA and x:!~bvc forsome bEB,ceC 

Since be BA, xvb EA. Let xvba 

Now x:!~bvc, xa => x:!~aA(bvc) 

=> x:!~bv(aAc) as a 2! b & Lismodular. 

Again, aAc:!~a, aEA =aACEA 

aAc:!~c, c€C =aAceC 

Thus aAcEAnC andas bEB wefind XEBV(AI'ThC) 

i.e., Ar'(BvC)çBv(AnC) 

B v ( A n C ) A n ( B v C) follows by modular inequality, 

or to prove independently, let y E B v ( A r C). 

Then y:!~bvk where bcB, k€A'mC 
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Thus y:!~bvk ,(beBcA,kcA=bvkcA) 
h. 

=:> yeA 

Also y:5bvk, bcB.,kcC =yeBvC 

i.e., yeAn(BvC) 

Showingthat Bv(AnC)cAn(BvC) 

Hence AA(BUC)=Bv(AnC) orthat 1(L) ismodular. 

Conversely, let I (L) he modular. Since L can be imbedded 

into I ( L), it is isomorphic to a sublattice of I (L) . This 

sublattice must be modular as I (L) is modular. Hence L is 

modular. U 

Theorem 3.2.6: If a, b are any elements of a modular lattice L then 

[aAb,a][b,avb]. 

Proof: We know that an interval in a lattice is a sublattice. We establish 

the isomorphism. 

Defineamap W:[aAb,a] > [h,avh], s.t., 

(x)xvb, xc[aAb,a]. 

Then q' is well defined as 

xc [aAb,a] =aAb:!~x:!~a 

=(aAh)vb:!~xvb:!~avb 

=b:5xvb~avb 

=xvh c [b,avh] 

Also x1 =x2 ='x1 vb=x2 vb 

zz> 'I' ( x1 ) = N' ( x2 ). 

w isone—oneas 

Let kll(xi)NJ(x2) [So x1 ,xe [aAh,a]] 

Then x1 vbx2 vb 

I 
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aA(x f vb)=aA(x2 vb ) 

x1 v ( a A b) x2  v ( a A b) using modularity, a ~!! x1  , x2  

=> x1 x2 as aAb.,!~x1 ,x2  

w is onto as 

Let y E [b,avb] beanyetement. Weshow ai'y isthe 

required pre image. 

ye [b,avb] =b:!~,y:!~avb 

=aAb:!~aAy:!~,aA(avb) 

=aAy C [aAb,a] 

Also W(aAy)=(aAy)vb. 
.4 

Soweneedshow y(aAy)vb. 

Now y:!~avb =yA(avb)=y 

='y=yA(bva)=bv(yAa) (usingmodularity) 

1-lence w is onto. 

Again, x1:!~x2 ='x1 vb:5x2 vb 

=> i (x1  ) ~ ( x2 ) 

And 

= x1vb:!~x2 vb 

aA(xi vb):!~aA(x2 vb) 

= x1v(aAb):!~- x2v(aAb) 

xi:!~x2 

Thus xi:!~x2 (xi)~ii(x2). 

Hence iji is an isomorphism. U 

Definition (Transposed) : Two intervals [a, b ] and [c, d ] of a 

lattice are called transposed if b A c a and b v c d. 

-1 
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Theorem 3.2.7 : Any non modular lattice L contains a sublattice 

isomorphic with the pentagonal lattice. 

Proof: Since L is non modular 3 at least three elements a, b, c a ~! b 

s.t., aA(bvc)#bv(aAc). 

In view of the remarks of definition, we must have a> b, 

and as in any lattice the modular lattice inequality 

(a b,aA(bvc)~:bv(aAc))holds, 

weget aA(bvc)>bv(aAc). 

Consider the chain 

aAc:!~bv(aAc)<aA(bvc):!~bvc (1) 

We show at all place, strict inequality holds. 

Suppose aAcbv(aAc) 

Then b:!~aAc (x=yvx=y:!~x) 

bvc:!~(aAc)vc 

bvc:!~c:!-~bvc 

bvc c 

=> aA(bvc) aAc, a contradiction to (1) 

Thus aAc<bv(aAc). Similarly aA(bvc)< bvc. 

.01 
Hence chain (1) becomes. 

aAc<bv(aAc)<aA(bvc)<bvc ---------------(2) 

Consider now the chain 

aAc:!~c:!~bvc 

As seen above b v c = c leads to a contradiction and similarly 

a A c = c would give a contradiction. 

Hence aAc<c<bvc (3) 

We thus have two chains ( 2 ) and ( 3 ) with same end points. 

I 
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We show c does not lie in chain (2 ). For this it is sufficient to 
A 

prove that c is not comparable with a A ( b v c). 

Suppose aA(bvc)<c 

Then aA(aA(bvc))!~aAc 

a A ( b v c ) :!~ a A c a contradiction to (2) 

Again,if aA(bvc)>c 

thenas a aA(bvc) 

We find a> c which gives a A c = c, a contradiction to ( 3). 

Hence the chain (2) and ( 3 ) form a pentagonal subset 

5{aAc, bv(aAc),aA(bvc),bvc,c} of L. 

a A( b v c 

C 

b v 

 

aAC 

Fig. 3.3 

We show now this pentagonal subset is a sublattice. For that 

meet and join of any two elements of S should lie inside S. 

Meet and join of any two comparable elements being one of 

them is clearly in S. 

Now [a A (b v c )] A c = a A [(b v c) A c] = a A C E S 

Also [aA(bvc)]vc~![bv(aAc)]vc by (2) 

•1 

b v c 
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bv[(aAc)vc]bvc 

and aA(bvc):!~bvc gives 

(aA(bvc))vc!~,(bvc)vc=bvc 

Thus [aA(bvc)]vcbvcES. 

Similarly, we can show [bv(aAc)]vcbvc ES 

b v ( a A C)] A C = a A C E S 

Hence S forms a sublattice of L. 

Theorem 3.2.8: A lattice L is modular if and only if for a, b, c E L, 

the three relations a~!b, aAcbAc, avcbvc imply 

a=b. 

Proof: Let L be modular and suppose a, b, c E L are such that 

a~!!b,aAcbAc, avcbvc. 

Then a=aA(avc)=aA(bvc)bv(aAc) 

= b v ( b A c ) = b. (using modularity and absorption) 

Conversely, suppose the condition holds. We want to show 

that L is modular. Suppose L is not modular. Then by above 

theorem El a pentagonal sublattice 

{ aAc,bv(aAc),aA(bvc),bvc,c} in L 

where aA(bvc) >bv(aAc) 

Put aA(bvc)x and bv(aAc)y then x>y. 

Thus we have the three relations 

X~!y, XACyAC( aAc) 

x v c = y v c ( = a v c). 

Thus by given condition, we must have x y which implies 

aA(bvc)bv(aAc) acontradiction. 

Hence L must be modular. 
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Theorem 3.2.9 A lattice L is modular if and only if no interval { x, y] 

of L contains an element which has two different comparable 

complements relative to [x , y]. 

Proof: Suppose L is modular. Suppose [x, y ] is an interval in L 

such that an element c in [x ,y I has two comparable 

complements a, b (a ~: b) relative to x , y]. 

Then cAacAb (=x) 

cvacvb (=y) 

Thus a=aA(avc)=aA(bvc)=bv(aAc) 

=bv(bAc) 

=b. 

i. e., no interval can contain an element which has two different 

comparable complements relative to the interval. 

Conversely, let the given condition hold. Suppose L is not 

modular. 

Then L contains a pentagonal sublattice 

{ ac, b v(aAc), aA(bvc), bvc, c } 

Put aA(bvc)t, 

bv(aAc)r, then t>r 

Also tAc=rAt=aAc=x (say) 

tvcrvtbvcy (say) 

ttAC:!~ tvcy 

=> x < y 

e., 3 an interval [x, y] in L which has an element c 

[x = t A C :!~ c :!~ t v c = y], 

with two different comparable complements t and r relative to 

I 



Chapter 3 Page no 58 

[x,y] a contradiction. 

Hence L is modular. U 

Theorem 3.2.10 : A complemented modular lattice is relatively 

complemented. 

Proof: Let L be a complemented modular lattice. 

Let [a, b ] be any interval in L and x E [a, b] be any 

element. Since L is complemented, x has a complement, say, x'. 

Then xAx'O, xvx'u, a:!~x:!~b. 

Take yav(bAx') 

Then xAyxA[av(bAx')] 

av(xA(bAx' ))[asx~!a,L ismodular] 

av(bAxAx') 

= a v ( b A o) = a v o = a. 

xvy = xv[av(bAx' )] 

=(xva)v(bAx') 

= xv(bAx') 

=bA(xvx') [as b~:x, Lismodular] 

=bAu 

=b. 

Hence y=av(bAx' ) isrelativecomplementof x in [a,b] 

proving our assertion. U 

I 



Chapter 3 Page no 59 

3.3 Distributive Lattice. 

Definition ( Distributive Lattice) : A lattice L is called a distributive 

lattice if 

aA(bvc)(aAb)v(aAc) V a,b,c EL 

Example 3.3.1 : The lattice (P (X), c ) is a distributive lattice as 

An(BuC)=(AnB)u(ArC). 

Example 3.3.2: A chain is a distributive lattice. 

Let a, b, c be any three members of a chain , then any 

two of these are comparable. 

Suppose a:!~b,a~:c,b:!~c 

4 then a<b:!~c:!~a => a=bc. 

Thus aA(bvc)a(aAb)v(aAc) 

If a:!~b,a~!c,c<b 

then c:!~a,a:!~b,c<b 

thus aA(bvc)aAba 

( aA b)v(a A c)zavca. 

* * A distributive lattice is always modular. Converse is not true 

as the lattice 

M5  given by 

U 

a C 

0 

Fig. 3.4 
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is not distributive, but modular. Notice 

aA(bvc)=a, whereas 

(aAb)v(aAc)o 

Theorem 3.3.1: A lattice L is distributive if and only if 

av(bAc)(avb)A(avc), V a,b,c EL. 

Proof: Let L be distributive. 

Now (a v b ) A  ( a v c ) = [(a v b ) A a] v [(a v b ) A c] 

av[(avb)Ac] [absorption] 

av[(aAc)v(bAc)] 

=[av(aAc)]v(bAc) 

av(bAc) 

Conversely, let a, b, C E L be any three elements , then 

(aAb)v(aAc)=[(aAb)va]A[(aAb)vc] 

a A [ ( a A b ) v c ] 

aA[(cva)A(cvb)] 

= [aA(cva)]A(cvb) 

aA(cvb) 

=aA(bvc) 

Hence L is distributive. 

Theorem 3.3.2: A lattice L is distributive if and only if 

(avb)A(bvc)A(cva)=(aAb)v(bAc)v(cAa) 

V a,b,cEL 

Proof: Let L be a distributive lattice. 

(avb)A(bvc)A(cva){aA[(bvc)A(cva)]}v 

b A [(b v c) A ( c v a)] }. 

= [ { a A ( c v a) } A (b v c)] v [ { b A ( b v c) }A ( c v a)] 

4 
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=[aA(bvc)]v[bA(cva)] 

=(aAb)v(aAc)v(bAc)v(bAa) 

=(aAb)v(bAc)v(cAa). 

Conversely, we first show that L is modular. 

Let x , y, z be any three elements of L , with x ~! y. 

Then xA(yvz)[xA(xvz)]A(yvz) (absorption) 

=(xvy)A(xvz)A(yvz) (x y) 

=(xvy)A(yvz)A(zvx) 

=(xAy)v(yAz)v(zAx) 

(yv(yAz))v(zAx) (x y) 

yv(xAz) 

i. e., L is modular. 

Nowforany a,b,c EL 

aA(bvc)[aA(avc)]A(bvc) 

=[aA(avb)A(avc)]A(bvc) 

aA[(avb)A(bvc)A(cva)} 

=aA[(aAb)v(bAc)v(cAa)] 

=aA[(bAc)v((aAb)v(cAa))] 

Now using modularity, a ~!! a A b, a ~! C A a gives 

a~!(aAb)v(cAa) weget 

a A (b v c )= [(a A b ) v  ( c A a)] v [(b A C ) A a] 

= ( a A b ) v [(c A a) v [ ( C A a ) A b]] 

(aAb)v(cA a) 

Hence L is distributive. 

Theorem 3.3.3: Homomorphic image of a distributive lattice is 

distributive 

I 
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Proof: Let 9: L > M be an onto homomorphism where L 

is a distributive lattice. 

Let x, y, z E M be any elements. Since 8 is onto, R 

a,b,cL s.t., 0(a)x,8(b)y, O(c)z 

Now xA(yvz)0(a)A[O(b)v9(c)] 

0(a)A(ø(bvc)) 

8(aA (bvc)) 

O((aAb)v(aAc)) 

=O(aAb)vO(aA c) 

=(O(a)AO(b))v(9(a)AO(c)) 
4 

(x A y ) v  ( x A z). 

Shows M is distributive. 
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"Boolean Algebras and Boolean Functions" 

4.1 Introduction. 

A complemented distributive lattice is called a Boolean lattice . Let 

(A , A, v, ') be a Boolean algebra. Expressions involving members of 

A and the operations A , v and complementation are called Boolean 

expressions . Any function specifying these Boolean expressions is called 

a Boolean function . A Boolean function is said to be in disjunctive 

normal form ( DN form) in n variables x1, x2, x3, --------------, x if it 

can be written as join of terms of the type 

f1(x1 ) A f2(x2) A f3(x3) A -------------A f(x). where f1  (x1) = x1  

for all i = 1 , 2 , 3 , ----------------, n and no two terms are same. 

4.2 Boolean Lattices , Boolean Subalgebras. 

Definition ( Boolean lattice) A complemented distributive lattice is 

called a Boolean lattice. 

Since compliments are unique in a Boolean lattice we can 

regard a Boolean lattice as an Boolean algebra with two binary 

operations A and v and one unary operation '. Boolean 

lattices so considered are called Boolean algebras . In other 

words, by a Boolean Algebra, we mean a system consisting of a 

non empty set L together with two binary operations A and v 

and a unary operation ',satisfying ( V a, b, c E L) 

aAaa, avaa 

aAbbAa,avbbva 

aA(bAc)(aAb)Ac, av(bvc)=(avb)vc 

aA(avb)a, av(aAb)a 

( v ) aA(bvc)(aAb)v(aAc) 

I 
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(vi) Va€L, 3 a'eL , s.t., aAa'=o,ava'u 

where o, u are elements of L satisfying 

0 :!-~X:!~U V X EL 

(a' will be unique and is the complement of a ) 

Example 4.2.1 : Let S be a non empty set, then ( P  ( S ), ) we know 

from a distributive lattice and each element has a complement. 

Thus 

(P ( S) , c ) is a Boolean lattice. 

Example 4.2.2 : Let S = Set of factors of 30 , then L forms a Boolean 

lattice under divisibility. 

Example 4.2.3: Let A = {o,a,b,u}.Define A,v and 

complementation 'by 

a 

 <> 

b 

Fig. 4.1 

MUMME 
MEN  no 

UUMEN quEuE 
UUMEU 

Nunng 
BEEN 
MEN 

u—Ag 

•1 NE 
Eq Eu UN 

Then A forms a Boolean algebra under these operations 

A,V, '. 

Definition ( Boolean subalgebra) A sub algebra ( or a Boolean sub 

algebra) is a non empty subset S of a Boolean algebra L s. t., 

a,bES =aAb,avb,a'ES. 

I 



Chapter 4 Page no 65 

We thus realize that a sub algebra differs from a sublattice in as 

much as it is closed under complementation also . Notice that if 

[a, b] be an interval in a Boolean algebra L , where a> o, 

then a, b J is a sub lattice of L, but is not a sub algebra as 

aE[a,b]a'E[a,b] 

='aAa E [a,b] 

='OE [a,b] 

which is not possible as a> o. 

Hence a Boolean sublattice may not be a Boolean sub algebra. 

(The converse being, of course, true) 

Problem 4.2.1 : Show that a non empty subset S of a Boolean algebra 

is a sub algebra if it is closed under v and complementation. 

Solution: We need prove that for any a, b c= S, a A b E S 

Now (aAb)'=a'vb' €S 

(aAb)=((aAb)')'ES 

similarly, one can show that S would be a sub algebra if it is 

closed under A and complementation. U 

Theorem 4.2.2 : In a Boolean algebra, the following results hold 

( a ' ) ' = a 

( a A b)' = a' v b' [De Morgan's law] 

( a v b)' = a' A b' [De Morgan's law] 

a:!~b 

( v ) a:!~b ' aAb'=oa'vb=u 

•1 
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Proof: (i ) Let (a ')' a'', then 
I.. 

aAa'=o, ava'=u 

a/\a''=Ø, a'va''=u 

= aAa'=a''Aa', ava'a''va' 

= a''=a 

Wehave (aAb)A(a'vb') 

[(a A b) A a] v [(a A b ) A b '} 

[(aA a')A b]v[aA(bA b')] 

=[oA bjv[aA 0] 

= OV° 

=0 

(aAb)v(a' vb')(a'vb')v(aAb) 

[(a'vb')va]A [(a'vb')vb] 

[(a'va)vb']A [a'v(b'vb)] 

(u v b') A ( a 'v u) 

U A U 

=u 

Hence (aAb)'=a'vb' 

Similar as (ii) 

(iv) a:!~b = a=aAb 

='a'=(aAb)'=a'vb' 

=> b' :!~ a' 

b':!~ a'= b' '~ a'' 

b~!a 

I 
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(v) a:-<b = aAb':!~bAb'o<aAb'<oa A b_ o  

Againlet aAb'=o. 

Then aaAu=aA(bvb' )(aAb)v(aAb') 

(aAb)vo=(aAb) 

a:5aAb 

Second result follows similarly. 

Problem 4.2.3: If A, B , C lattices such that B C , then 

AxBAxC 
Solution : Let f: B - C be the given isomorphism. 

Define 0: AxB ----> AxC,s.t., 

O((a,b))=(a,f(b)) 

thensince 0((a,b))=0((cd)) 

(a,f(b))=(c,f(d)) 

ac, f(b)=f(d) 

a = c, b = d (f being well defined I 
- I map) 

<> (a,b) = (c,d) 

We find 0 is a well defined 1 -1 map. 

Again,forany (x,y)eAxC, as yEC,f:B > C 
isonto, bEB, s.t., f(b)y. 

Now O((x,b)) = (x,f(b)) = (x,y) andthus 0 is 
onto. 

Finally, 

O ((a, b ) A  ( c, d ) ) = 0 ( a A c, b A d ) = ( a A C, f( b A d)) 

(aAc, f(b)A f(d)) 

(a,f(b)) A(C,f(d)) 
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= 0 ( ( a, b) ) A 0 ((c, d)) 
L 

Similarly, O((a,b)v(c,d)) 9((a,b)v0((c,d)). 

Hence 0 is an isomorphism. 

Theorem 4.2.4: Let L be a relatively complemented lattice with least 

element o. Then any ideal of L can equal the Kernel 

corresponding to at most one congruence relation. 

Proof: Let C be any congruence relation on L - Let a, b e L be any 

two elements .Then a A b E [ o , a v b ] and as L is relatively 

complemented, a A b has a complement, say p, relative to 

[o, a v b] . Thus 

aAbApo, (aAb)vp=avb or p:!~avb 

Let Kc  be the kernel corresponding to C , then 

K = { x L I x C o } 

Weclaim (avb)C(aAb) if and onlyif p€  K 

Let (avb)C(aAb) then as pCp 

pA(avb)CpA(aAb)=pCo =pEK 

Again pEK pCo 

=> pv(aAb)Cov(aAb) as(aAb)v(aAb) 

= (avb)C(aAb). 

1-lence (avb)C(aAb)p E K 

Then aCb pe Ke  

Suppose now I is any ideal of L such that it equals the 

Kernels K1 and K2 corresponding to two congruence relations 

C1  and C2  over L. 

Then I = Ki , 1 = K2 => K1 = K2 

Let a, b E L be any elements , then p exists and 

-1 
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aCb peK 1  peK aC2 b 
h. 

i.  e., C i  = C2  which proves our assertion. U 

Theorem 4.2.5 : If L is a Boolean algebra then any ideal of L equals 

the Kernel corresponding to one and only one congruence 

relation over L. 

Proof: Since L is distributive and has zero , then any ideal equals the 

Kernel corresponding to at least one congruence relation. 

Again , since L is relatively complemented the ideal cannot 

equal Kernels corresponding to more than one congruence 

relation. Hence any ideal will equal Kernel corresponding to just 

one congruence relation. U 

•1 
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4.3 Rings, Boolean Rings, Boolean Functions. 

Definition ( Ring) : A non-empty set R together with two binary 

operations, additions ( denoted " + " ) and multiplication 

(denoted by" •") is called a ring if it is satisfied the following 

laws: 

Associative law of addition: 

(a+b)+ca+(b+c) Va,b,c ER 

Existence of additive identity zero: 

0R => a+O=0+a, VaER 

Existence of additive inverse: 

aE R = - aER =a+(-a)=(-a)+a=O, VaE R 

Commutative law of addition: 

a + b = b + a V a,beR 

Associative law of multiplication: 

(a.b).c=a.(b.c) V a,b,cER 

Distributive laws: 

( i ) Left : a.(b+c)=a.b+a.c Va,b,cE R 

(ii) Right: (a+b).ca.c+b.c Va,b,c ER 

Definition (Ring with unity) : A ring R is called a ring with unity if 

thereexists an element 1#O ER suchthat a. 1=1 .a=a, 

V a E R where I is called the multiplicative identity or 

multiplicative unity. 

Definition ( Commutative ring) : A ring R is called commutative ring 

if under the binary operation of multiplication a. b = b . a 

V a,beR. 

Definition ( Ring with zero divisor): A ring R is called with zero 
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divisors if there exists at least two elements a and b of R 
VL 

such that a. b = 0 where a # 0 and b#0. 

Definition (Boolean ring) : A ring R is called a Boolean ring if 

a 2 = a V a.R. 

Theorem 4.3.1 : Every Boolean algebra is a Boolean ring with unity. 

Proof: A Boolean ring is a ring is which x 2 = x V x. 

Let (A , A ,v, ') be a Boolean algebra. 

Define two operations + and . on A by 

a.b = aAb 

a+b=(aAb')v(a 'Ab) a,bE A 

Then + and are clearly binary compositions on A. 

To show that <A, +,.> forms a Boolean ring, we verify all 

the conditions in the definitions. 

Let a, b, c e A be any members. 

a+b(aAb' )v(a' Ab)=(bAa' )v(b' Aa)b+a 

(a+b)+c[(a+b)Ac'jv[(a+b)' Ac] 

=[{ (aAb' )v(a' Ab) } Ac'] v[{ (aAb' )v(a' Ab) } 'Ac] 

= [(aA h' AC' )v(a' A b A C' )] v [(aA b' )' A(a'A b)'Acl 
10, 

= [(aA b' Ac' )v(a' A b A C' )] v [(a' v b)A(av b' )A c] 

= [(a Ab'A c' )v( a' A b AC' )] v  [{ (a' vb )A a) 

v { a' v b)A b'} Ac] 

[(aA b' AC' )v(a' AbA c')] 

v [ ( (a' A a ) v  ( b A a) v ( a' A b') v ( b A b ')} Ac] 

=(aAb' AC' )v(a' AbAc' )v[{(bAa)v(a' Ab' ) } Ad 

=(aAb' AC' )v(a' AbAc )v[(bAaAc)v(a' Ab'Ac)] 

4 
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=(aAb' AC' )v(a' A bAc' )v(bAaAc)v(a' Ab'Ac) 

Since the resulting value is symmetric in a, b, c it will also be 

equalto(b+c)+aa+(b+c) (by commutativity of + ) 

Hence + is associative. 

Again a+0(aAu)v(a'AO)aO+a. 

Also a+a(aAa')v(a'Aa)O. 

Thus (A, +) forms an abelian group. 

Since a b = a A b and A is commutative and associative. 

We find is also commutative and associative - 

Again, a(b+c)aA(b+c)aA[(bAc')v(b'Ac)] 

= (a A b Ac' ) v (a A b 'Ac) 

ab+ac(aAb)+(aAc) 

[(at.b )A ( aAc)' ]v [(aAb)' A ( c ) I 

= [(aAb)A(a' AC')] V [(a' vb' )A(aAc)] 

=[(aAbAa' )v(aAbAc' )v(aAcAa' ) 

v(aAcAb' )J 

(aAbAc' )v(aAb' Ac) 

Hence a(b+c)ab+ac 

Similarly, (b+c)aba+ca. 

Finally,since a-u=aAu=a=uAau-a. 

We find (A , +,. ) forms a commutative ring with unity u. 

Alsoas a•a =aAa=a Va 

we gather that A forms a Boolean ring. 

Theorem 4.3.2: Every Boolean ring with unity is a Boolean algebra. 

Proof: Let <A, +,-> be a Boolean ring with unity. 

I 
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We defined two operations A and v on A by 
V. 

aAba•b 

avba+b+ab 

Then since is commutative (a Boolean ring is 

commutative ) and associative we find A is commutative and 

associative. 

Again ava=a+a+aa=(a+a)a=O+a 

(In a Boolean Ring a + a = 0 V a, where 0 is zero of the ring ) 

Also avb=a+b+ab=b+a+ba=bva 

(avb)vc=(avb)+c+(avb).c 

=(a+b+ab)+c+(a+b+ab)c 

a+b+ab+c+ac+bc+abc 

Since, av(bvc)=(bvc)va ( by commutativity of v) 

By symmetry ,  , (b vc )v a b +c+bc+ a+b a+c a+abc 

Hence v is associative. 

Finally to check absorption , we find 

aA(avb)a(a+b+ab) 

= a 2  + a b + a 2  b 

=a+ab+ab 

a + 2 a b 

=a 

(as x+x0 V x) 

av(aAb)=avab=a+ab+aab 

= a + 2 a b 

=a 

Thus A is a lattice. 
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We leave distributively for the reader to verify. Let now a e A 

be any element. We show it has a complement , namely, a + I 

(where I is unity of ring A) 

Now aA(a+ 1 )=a(a+ 1) 

=a+a 

=0 

av(a+ 1 )a+a+ 1+a(a+ I) 

2a+l + a + a 

1+2a 

=1 

Showingthat a'a+l 

Notice, in the ring A, 0 a = 0 V a E A 

(0 being zero of ring ) 

=> 0Aa=0 VaEA. 

Again laa Va 

i.e., lAaa VaEA 

Thus 0 and 1 are least and greatest elements of the lattice A.• 

Definition ( Boolean function): Let (A, A, v, ') be a Boolean 

algebra. Expressions involving members of A and the 

operations A, v and complementation are called Boolean 

expressions or Boolean polynomials. For example, x v y' , x, x 

A 0 etc. are all Boolean expressions. Any function specifying 

these Boolean expressions is called a Boolean function. Thus if 

f ( x, y ) = x A y then f is the Boolean function and x A y is 

the Boolean expression ( or value of the function f ) . Since it is 

I 
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normally the functional value ( and not the function ) that we are 
J. 

interested in , we call these expressions the Boolean functions. 
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4.4 Disjunctive normal forms, Complete Disjunctive normal forms 
k 

Definition ( Disjunctive normal form ) : A Boolean function 

(expression) is said to be in disjunctive normal form 

(DN form )in n variables x 1 ,x 2 ,x 3  ---------- ,x ifitcan 

be written as join of terms of the type 

f1(x1)Af2(x2)Af3(x3)A -------------- Af(X) 

wheref(x)=x 1 orx'1 ,forall i1,2,3, ------------n 

and no two terms are same . Also, 1 and 0 are said to be in 

disjunctive normal form. 

Definition ( Minterms or minimal polynomials): The terms of type 

f1(x1)Af2(x2)Af3(x3)A --------------  Af(x) 

are called minterms or minimal polynomials. (A normal form 

is also called a canonical form). 

For instance,(xAyAz')v(x' A)" Az)v(x' AyAz) 

is in disjunctive normal form (in three variables ) and each of the 

brackets is a minterms. 

Problem 4.4.1 : Put the function 

f [( xAy')' v z' ] A( x' vz) ' in the DN form 

Solution: We have 

f [(x' vy' ')v z' ]A( Z' AX'') 

=(x' vyvz' )A(z' Ax) 

= (x' AZ' Ax)v(yAz' Ax)v(z' AZ' Ax) 

= 0 v( X A y AZ' )v(x AZ') 

=(xAyAz')v[(xAz' )A(yvy' )](Notethisstep) 

=(x A y AZ' )v [(x AZ' A y)v(x AZ' A)")] 

=(xAyAz')v(xAy'Az'). 
4 
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Definition (Complete disjunctive normal form): If a disjunctive 

normal form in n variables contains all the 2' minterms then it 

is called the complete disjunctive normal form in n variables. 

Example 4.4.1 : Forexample,(xAy)v(x' Ay)v(xAy')v 

(x 'A y ') is the complete disjunctive normal form in two variables. 

Problem 4.4.2: Write the function x v y' in the disjunctive normal form 

in three variables x, y, z. 

Solution: We have 

xv y '  = [x A ( y v y '  ) A  ( z v z' ) Iv [y'  A (xv x') 

A(ZVZ')] 

= [ { (x A y) v ( X A y '  ) } A (z v z' )] 

v[{(y' Ax)v(y'Ax' )} A(zAz') 

=(xAyAz)v(xAyAz' )v(xAy' AZ) 

v(xAy' AZ' )v(y' AXAZ )v(y' AXAZ') 

v(y' AX' A z)v(y' AX' AZ'). 

(xAyAz)v(xAyAz')v(xAy' AZ) 

v(x Ay' AZ' )v(x' A y' A z)v(x' A y '  AZ' ). 

Problem 4.4.3 : Find the Boolean expression for the function f given by 

I When x=z=l,y=O 

f(x,y,z) = x=l,y=z=O 

0 otherwise 

Proof: The function is specified by the minterms 

(xAy' Az) and (xAy' AZ') 

'4 
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i.e., the function in the DN form is 

(xAy'  Az)v(xAy'Az') 

Examp1e4.4.2: Let A= { 0,1 } and f:A2 > A, be defined by 

f(x,y)=(xAy)v(x'Ay)v(xAy')v(x'Ay') 

i.e., f is in complete DN form . We calculate all values of 

f(x,y), x,yEA. 

Now f(0,0)(0A0)v(I AO)v(OA l)v(l Al )=l 

f( 1 , 0 ) = (1 A 0 ) v  ( 0 A 0 ) v (1 A 1) v ( 0 Al ) = 

f(0, 1)(OA 1)v( IA 1)v(OAO)v( 1 AO) 1 

f( 1,1)( IA 1)v(OA 1)v( I AO)V(OAO) I 

(Note x0 <=> x'l) 

We thus notice that in each case, one minterm is 1 A 1 = 1 

and all others are zero . Also the resulting value of f( x , y) is 

always 1. 

If we go through similar process, with a function f which 

is in complete DN form in three variables x, y, z we will get 

the same result. we can generalize this result. 

Example 4.4.3 : Let A = { 0, 1 } and f: A3 > A be the 

function defined by f (x, y, z) = xA(yvz),thenthe 

functional values of f are given by 

f( 0 , 0 , 0 ) = 0 A ( 0 v 0 ) = 0 

f(I ,0,0)= I A(0V0)0 

f( 0, 1 , 0 ) = 0 A (1 v 0 ) = 0 

f( 0 , 0, 1) = 0 A ( 0 v I ) = 0 

f(l , 1,0)1 A( I vO)1 

.4 
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f(l,O,1)=IA(Ovl)=1 

f(O, 1 , 1 )0A( lvi )0 

f(1,1 ,1)=IA(lvl)=l 

which we sometimes write in the tabular form as 

x y z f(x,y,z) 

000 0 
100 0 
010 0 
001 0 
110 1 
101 
011 0 
11 1 1 

Problem 4.4.4.: Find the Boolean expression that defines the function f 

given by 

f(0,0,0) =0 

f(0,l,0) =1 

f(0,0,1) =0 

f(0,1,1)=O 

f(1,0,0) =1 

f( 1 '0, 1) = I 

f( 1,1,0) =0 

f( 1 , 1 , 1) = 1 

Solution: We consider those values of f( x , y, z) which are equal 

to 1 The minterms corresponding to f( 0, 1 , 0), f( 1 , 0 , 0), 

f( 1,0,1) andf( 1,1,1) will be 

.4 
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(x' A Y A z' ), (xA y' AZ' ),(xA y' Az), (xA Y A z) 

Hence the function in DN form is 

f(x,y,z)= (x' AyAZ' )v(xAy' Az')v 

(xAy' AZ)V(XAyAZ) 

which can be simplified 

=(x' AyAz' )vxA[ (Y'  AZ' )v(y' Az)v(yAz)] 

=(x' AyAz' )vxA [ { y '  A(z' vz)}v(yAz)] 

=(x' AyAZ' )vxA [y'v(yAz)] 

=(x' AyAz' )vxA[(y' vy)A(y' vz)] 

=(x' AyAz')vxA(y' vz) 

=(x' AyAz' )v[(xAy')v(xA.z)J. 

Example 4.4.4: Complete DN form in 2 variable is 

(xAy)v(x' Ay)v(xAy')v(x' Ay') 

Let f=(xAy) [anyone DN form] 

then f'(xAy)'x 'vy 

[x 'A(yvy ')]v[y '(xvx')] 

(x 'Ay)v(x 'y ')v(y 'Ax)v(y 'AX ') 

(x 'Ay)v(xAy ')v(x 'Ay '). 

Thus what we gather form here is that if we pick up any DN form 

from the compete DN form then complement of that DN form 

will contain the' left out' terms in the complete DN form. 

Take for instance, p=(XAy)v(x'Ay) 

then p'[(xAy)v(x'Ay)]' 

(xAy)' A(X' Ay)' 
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vy')A(xvy') 

(xAx' )vy' 

=y,  

y' A(XVX') 

AX)V(y' AX') 

the' left out' terms in the complete DN form. 

Problem 4.4.5: In a Boolean algebra, show that 

f( x , y ) = [XA f( 1 , y )]v [x' A f( 0, y)] 

Solution: We know that any function f (in 2 variables) in complete 

DN form is 

f(x , y )=(x A y)v(x' A y)v(x A y' ) v(x' A y') 

[xA(yvy')]v[x'A(yAy')] ------ (1) 

Put x = 1, x' = 0 and we get 

f( 1 , y ) = [ I A (y v y' )] v [0 A (y A y')] 

yvy' 

Again, by putting x0,x'1 weget 

f( 0, y ) = y v y' 

116, Thus (1) gives 

f(x.y)[xA f( 1,y)]v[x' A f(O,y)] 

-4 
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4.5 Conjunctive Normal Forms. 

Definition (Conjunctive Normal Form) : A Boolean function f is said 

to be in conjunctive normal form (CN form) in n variables 

xI,x2,x3, ------- x n  

if f is meet of terms of the type 

f1(x1)vf2(x2)v ---------------  f(x) 

where f(x)x 1  or x 1 'forall 1=1, 2,3 ------------n 

and no two terms are same . Also 0 and 1 are said to be in CN 

form. 

Problem 4.5.1 : Put the function 

f[(xAy')vz']A(x'vz)' in the CN form. 

Solution: We have 

f [(x' vy)v z' ] A( XA z') 

= (x' vyvz' )A[(xAz' )v(yAy')] 

=(x' vyvz')A{[(xAz')vy]A[(xAz')vy' ]} 

( x' v y v z' )A [(xv y)A( z' v y )A 

(xvy')A(z'vy') 

= ( x' v y v z' ) A  [ { x v y v ( z A z' ) }A 

{(z' vy)v(xAx' )} A {(xvy' )v(zAz' )} A 

{(z'  vy' )v(xAx' )} 

=(x' vyvz' )A(xvyv z)A(xvyvz' )A 

(z'  vy vx)A(z' vy vx' )A(xvy' vz)A 

(xv y'  v z' )A( z' v y '  v x)A ( z' vy' v x') 

=(xvyv z)A(x' vyvz' )A(xvyvz') 

A(xvy' vz)A(xvy '  vz ' )A(x ' vy '  vz'). U 
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Problem 4.5.2 : Put the function X A (y v z) in the CN form. 

Solution: xA(yvz)[xv(yAy )]A[(yvz)v(xAx' )] 

=(xvy)A(xvy')A(yvzvx)A(yvzvx') 

(xvy)v(zAz' )A(xvy' )v(zAz' )A(yvzvx) 

A(X'V yvz) 

=(xvyvz)A(xvyvz' )A(xvy' vz)A(xvy' vz') 

A(xvyvz)A(x' vyvz) 

=(xvyvz)A(xvyvz' )A(xvy' vz)A(xvy' vz') 

A(x' vyvz). 

( Problem 4.5.3 : Find the DN form of the function whose CN form is 

f (xv y  v z) A (xv y  v z' ) A (xv y'  v z ) A 

(xv y '  v z' ) A( x' v y v z) 

Solution : We know f ( f')' . Thus 

f[ {(xvy vz)A(xvyvz' )A(xvy' vz)A 

(xvy' vz' )A(x' vyvz)}' 1' 

= [(x vy vz)' v ( x vy v z' )' v ( x vy' v z)' v 

(xvy' vz')' v(x' vyvz)']' (by De Morgan's law) 

[(x' A y '  AZ' )v(x' A y '  A z)v( x' A y AZ' )v 

(x'AyAz)v(xAy'Az')]' (byDeMorgan'slaw) 

=(xAyAz)v(xAy' Az)v(xAyAz'). U 

Note By similar steps we can find the CN form of a function from 

its DN form 

Problem 4.5 4 : Find the CN form of the function 

f(xA(y'vz))vz' and then find its DN form from it. 
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Solution: f=(xA(y'vz))vz'  

(xvz' )A((y' vz)vz') 

= xvZ' 

= (xv z' ) v  ( y A y') 

=(xvyvz')A(xvy'vz') 

Now f(f')'[{(xvyvz')A(xvy' vz')}']' 

= [(xvyvz')'v(xvy'vz')]' 

=[(x'Ay'Az)v(x'AyAz)]' 

(xAyAz)v(x' AyAz' )v(xAyAz') 

v(xAy' Az)v(xAy'Az' )v(x' Ay' AZ') 

If we wish, we can get DN form independently, as 

f xv z' = [x A( y v y '  )]v [z' A (xv x')] 

=(xAy)v(xAy' )v(z' Ax)v(z' AX') 

=(XAy)A(zvz ')v(xAy')A(zvz')v 

(z' Ax)A(yvy' )v(z' AX' )A(yvy') 

=(xAyAz)v(XAyAZ ')v(xAy' AZ) 

v(xAy 'AZ')v(z' AxAy)v(z' AxAy') 

v(z'Ax' Ay)V(Z AX' Ay') 

(xAyAz)v(xAyAz' )v(XAy' AZ)V 

(xAy' A.z')v(x' AyAz' )v(x' AyAZ). • 

11 
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