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Abstract 

The traveling salesman problem (TSP) is well-known combinatorial optimization 

problem. TSP requires to find the shortest circular tour visiting every city exactly 

once from a set of given cities. TSP is the most famous combinatorial problem and 

interest grows in recent years to solve it new ways. Almost every new approach for 

solving engineering and optimization problems has been tested on the TSP as a 

general test bench. Recently nature inspired population based methods including 

PSO has drawn great attraction to solve TSP. in this thesis introduce a Particle 

Swarm Optimization (PSO) base algorithm to solve TSP in different way which is 

defined as Velocity Tentative Particle Swarm Optimization (VTPSO). Existing 

method introduced the idea of Swap Operator (SO) and Swap Sequence (SS) in 

PSO to handle TSP. In TSP, each particle represents a complete tour and velocity is 

measured as a SS consisting with several SOs. A SO indicates two positions in the 

tour that might be swapped. In the existing method, a new tour is considered after 

applying a complete SS with all its SOs. Whereas, every SO implantation on a 

particle (i.e., a solution or a tour) gives a new solution and there might be a chance 

to get a better tour with some of SOs instead of all the SOs. The objective of the 

study is to achieve better result introducing using such partial search option for 

solving TSP. The proposed Velocity Tentative Particle Swarm Optimization 

(VTPSO) algorithm is shown to produce optimal solution within a less number of 

generations than Self-Tentative PSO (STPSO) and Swap Sequence based PSO 

(SSPSO) in solving several benchmark TSP probJms. . 
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Chapter 1 

Introduction 

Particle Swarm Optimization (PSO) is a population based optimization technique on the 

metaphor of social behavior of flocks of birds or schools of fishes and has found 

popularity in solving difficult optimization problems. Each particle adjusts its position 

in the search space from time to time according to the flying experience of its own and 

of its neighbors. PSO has been proven to succeed in continuous problems (e.g., function 

optimization) as it was proposed for such problems and much work has been done 

effectively in this area. PSO has also found as an efficient method to solve 

combinatorial problems such as Traveling Salesman Problem (TSP). In this thesis, 

given attention to solve TSP with existing PSO based methods and investigate Partial 

Search mechanism in its velocity operation and finally develop Velocity Tentative 

Particle Swarm Optimization (VTPSO) algorithm. 

1.1 Particle Swarm Optmizatioi and is Aptlication 

Particle Swarm Optimization (PSO' [1-3] is a population based optimization technique 

on the metaphor of social behavior of flocks of birds or schools of fishes. PSO is a 

simple model of social learning whose emergent behavior has found popularity in 

solving difficult optimization problems. It firstly generates a random initial population, 

the population contains a nunibe of particles, each particle represents a potential 

solution of system, and each particle is rprescnted by three indices: position, velocity 

and fitness. At every step. each particle calculates its new velocity considering its 

previous best position and the best one among all the particles in the population. Each 

particle then moves to a new position (i.e., search a new point) based on the calculated 

velocity. These processes of iteration continue until the stopping criterion is reached. 

PSO has been investigated on various continuous optimization (e.g.. function 

optimization) [4] and combinatorial optimization (e.g., Traveling Salesman Problem) 

tasks [5-6] and found it as an effective method [1-4. 7-22]. 

PSO has been proven to succeed in continuous problems (e.g., function optimization) as 

it was proposed for such probfr;m.; and much work has been done effectively in this 

area. In function optimization domain. the position of the i-th particle is represented as 



Xi = tXl1,X2,XL3 ...,xiD} in the D-diniensional search space. At every step each 

particle changes position based on its velocity represented as V1  = 

(v11, v12, , vf). The velocity of a particle depends on its previous best position, 

Pi = (PP and the best one among all the particles in the population 

G = (91,92 ...q)  also known as global best solution [23] 

PSO has also found as an efficient method to solve combinatorial problems such as 

Traveling Salesman Problem (TSP). TSP is a well-studied combinatorial optimization 

problem in which a salesman is required to complete a tour with the minimum distance 

visiting all the assigned cities exactly for once. To solve TSP with PSO, a different 

consideration for the particle's posion and velocity is required. Each PSO particle 

represents a complete tour to solve TSP nd velocity is something to change a tour to a 

new tour. 

A number of PSO based methods have been investigated in the recent years [23-30] and 

most of the methods use Swap Sequence (SS) for velocity operation [23, 31]. A Swap 

Sequence (SS) is a collection of several Swap Operators (SOs) and may define 

as = (S01,S0 2,S0 3, --- ,507 ). where Sc; denotes Swap Operator [23, 31. 32]. A SO 

indicates two positions in the tour tha. might be swapped. All SOs of a SS are applied 

maintaining order on a particle and gives a new tour, i.e., a particle having new solution 

in the PSO [31, 32]. 

The first PSO [31] based method lbr TSP, basic SS based PSO (SSPSO), transformed 

the operations of PSO of fiiiction up1iInzaLioa to TSP. The SSPSO calculates velocity 

SS for each particle coiisideiing its previous best position and the best one among all 

the particles in the popu!:iicn. IL not conceive any additional operation in PSO. 

Conceiving the idea of SSPSO other algorlhms to solve TSP are Self-Tentative PSO 

and Enhance Self Tentative PSO [33]. Self-Tentative PSO (STPSO) introduces 

tentative behavior in BSSPSO t11 trit: improve each particle placing a node in a 

different position. Enhance Self-Tentat ive PSO (ESTPSO) tries to improve individual 

particle with block of nodes adjustment in addition to individual node adjustment of 

STPSO [33]. 



1.2 Objectives of the Thesis 

In the existing PSO based algorithms, the new tour of TSP is considered after applying 

all the SOs of a SS and no intermediate measure is considered. it is notable that every 

SO implantation results in a new tour: and therefore, there might be a chance to get a 

better tour with some of SOs instead of all the SOs. The objective of the study is to 

achieve better result introducing such partial search in the SS based PSO for solving 

TSP. 

The study will be carried ou Wi1 - h2 followng specific objectives: 

> Review existing Particle Swarm Optimization (PSO) based methods for solving 

Traveling Salesman Probiem (i'SP). 

Investigate Partial Search mechamsin in velocity SS operation and develop 

Velocity Tentative Particle Swann Optimization (VTPSO) that might be an 

efficient method i:i solving !SP, 
p 

> Compare performance of the proposed VTPSO with exiting SS based PSO 

methods in solving hnchrnark TSPs. 

1.3 Organization of the Thesis 

The main attraction of this thesis is to present new PSO based algorithm to solve TSP. 

The thesis has five chapters. An introduction to PSO and its applications to solve 

optimization tasks has been given in Chapter 1. Chapter wise overviews of rest of the 

thesis are as follows. Cnapteu Ii is for lerature review that includes brief description 

about TSP. PSO and previous related work to solve TSP by PSO based algorithms. The 

chapter also indentifies the lcgguig of xitfng methods and gives motivation to develop 

of new method. Chapter T explains the pr000sed Velocity Tentative Particle Swarm 

Optimization (VTPSO) to solve TSP detail. Chapter IV reports the experimental 

result of VTPSO and conlçares Derlormance of the proposed VTPSO with exiting PSO 

methods to solve berchrik TSPs. Chapter V is for the conclusions of this thesis 

together with the outline of future diractions of research opened by this work. 



Chapter II 

Literature Review 

The Particle Swarm Optimization (PSO) is a population based search algorithm based 

on the simulation of the social behavior of birds, bees or a school of fishes. Each 

individual within the swarm is represented by a vector in multidimensional search 

space. This vector has also one associated vector which determines the next movement 

of the particle and is called the velocity vector. The PSO algorithm also determines how 

to update the velocity of a particle. Each particle updates its velocity based oii current 

velocity and the best position it has explored so far and also based on the global best 

position explored by swarm. With the success to solve difficult continuous optimization 

problems. PSO has also found as an efficient method to solve combinatorial problems 

such as Traveling Salesman Problem (TSP). The TSP is an NP-hard in combinatorial 

optimization problem whose solution space is discrete. In this chapter, we will discuss 

about Traveling Salesman Problem, Basic PSO algorithm and some PSO based 

algorithms that solved TSP. 

2.1 Traveling  Salesman Problem (TSP) 

The traveling salesman problem (TSP) is a well-known combinatorial optimization 

problem [30. 34]. TSP requires to find the shortest circular tour visiting every city 

exactly once from a set of given cities [28]. The TSP problem can be formally 

described as follows, suppose that there is one salesman who wants to visit N number 

of cities, and his objective is to find out the shortest Hamiltonian cycle though which 

lie can visit all the cities once and only once, and finally returns to the starting city. 

More formally, given N cities. TSP requires a search for a permutation ir: fO, ... , N - 

1) -* (0, N - 1), using a cost matrix C = [c], where c j  denotes the cost of the 

travel from city I toj, which minimizes the path length [34]: 

f(ir, C) = E N-1
=o ir( (1+1) mod N)' (2.1) 

where ir(i) denotes the city at 1th  location in the tour. 

TSP can be modeled as an undirected weighted graph, such that cities are the graph's 

vertices, paths are the graph's edges, and a path's distance is the edge's length. It is a 

4 
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minimization problem starting and finishing at a specified vertex after having visited 

each other vertex exactly once. Oflen, the model is a complete graph (i.e. each pair of 

vertices is connected by an edge). If no path exists between two cities, adding an 

arbitrarily long edge will complete the graph without affecting the optimal tour. There 

are two types of TSP: syininefric and a.synnnelric. In the symmetric TSP, the distance 

between two cities is the same in each opposite direction, forming an undirected graph. 

This symmetry halves the number of possible solutions. In the asymmetric TSP, paths 

may not exist in both directions or the distances might be different, forming a directed 

graph. 

Ideas related to the TSP have been around for a long time. In 1736, Leonard Euler 

studied the problem of finding a round trip through seven bridges in Konigsberg. In 

1832, a handbook was published for German travelling salesmen, which included 

examples of tours. In the 1850s, Sir William Rowan 1-lamilton studied Hamiltonian 

circuits in graphs. He also marketed his Icosian Game, based on finding tours in a graph 

with 20 vertices and 30 edges. In the early 1930s, Karl Menger discussed the problem 

with colleagues in Vienna and Harvard. In the late 1930s, the problem reappeared at 

Princeton University Hassler Whitney called it the TSP. Fig. 2.1 indicates an optimal 

tour for TSP with several typical cities marked in dot. 

/ 
Figure 2.1: An optimal tour for a typical Traveling Salesman Problem 

(TSP). 



TSP is a popular NP-hard problem and has several applications even in its purest 

formulation, such as planning. logistics, and the manufacture of microchips. Slightly 

modified, it appears as a sub-problem in many areas, such as DNA sequencing, drilling 

a printed circuit board, computer wiring, order picking problem in warehouses, vehicle 

routing. X-Ray crystallography. In these applications, the concept city represents, for 

example, customers, soldering points, or DNA fragments, and the concept distance 

represents travelling times or cost, or a similarity measure between DNA fiagments. In 

many applications, additional constraints such as limited resources or time windows 

make the problem considerably harder. 

TSP is the most popular combinatorial problem and interest grows in recent years to 

solve it new ways. Almost every new approach for solving engineering and 

optimization problems has been tested on the TSP [3, 5. 6, 22, 34-49] as a general test 
7- 

bench. Recently nature inspired population based methods including PSO has drawn 

great attraction to solve TSP [23-33, 50-60]. 

2.2 Particle Swarm Optimization (PSO) 

PSO optimizes a problem by having a population of candidate solutions, here dubbed 

particles, and moving these particles around in the search-space according to simple 

mathematical formulae over the particles position and velocity. PSO was originally 

designed and introduced by Eberhart and Kennedy [1]. Each particle's movement is 

influenced by its local best known position (P) and is also guided toward the best 

known positions in the search-space r"G, which are updated as better positions are 

found by other particles. Formally in PSO, each particle changes position X = 

(x11, x 2, x 3  ... , X) based on its calculated velocity V1  = (v11, v 2, , v) that 

depends on its previous best position, P1 = (PI1'P12 PiD) and the best one among all 

the particles in the population G = (g11g2 
•.. 

YD). In each of iteration, each particle 

calculates its velocity according to the following formula. 

V(t) = Co + c1 * r1 
(p(t_1) 

- Xt_1)) + c2 * r2 (G(t_1) - 4t_1)) (2.2) 

Where w is inertia factor, c1  and c2  are learning factors, and r1  and r2  are vectors of 

random values between (0,1). 



After calculating vj(t)we  can get the new position in next iteration by using the 

following formula: 

X(t) = + 
t) (2.3) 

Step 1: Initialization: define number of particles, termination criterion. Assign a random 
solution and random velocity to each of the particle. Consider previous best solution as 
current solution and global best solution as the best one among them. 

Step 2: Calculate the velocity and position of the particles according to Eq. 2.2 and 2.3. 

Step 3: Update Pi  if the new solution Xt)  is superior to P 

Step 4: Update G if there is new solution Xt)  is superior to G 

Step 5: Loop to Step 2 until a termination criterion is met, usually a sufficiently good fitness or 
a maximum number of iterations. 

Step 6: Take the global best solution G as an outcome. 

Figure 2.2: Steps of PSO Algorithm. 

At every iteration step, for each particle, PSO calculates a new velocity value which I 

used to find the next position of particles. These processes of iteration continue until 

reaching stopping condition. Fig. 2.2 shows the steps of PSO algorithm and Fig. 2.3 is 

the flowchart of PSO algorithm. 

[ Start J 

REAl): size of swarm, termination 

criterion, tour cost, random (our 

Calculate the and X of the particles according to Eq. 

2.2 and 2.3 

Update P1  if the new solution is SuperiOr to P 

Update C itthcrc is nc\V solution Xt)  is superior to c 

ES 

Emd 

Figure 2.3: Flowchart of Basic PSO Algorithm. 
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The basic PSO is successfully applied to function optimization problems. There are 

4. some other variations to the basic PSO that can be included to improve its performance 

such as Adaptive PSO [21], Hybrid PSO [12, 15, 16, 50, 51]. These variants of PSO 

have also several applications in various fields such as to solve traveling salesman 

problem [23-33, 50-60], solve time tabling problem 17,  20], improve power system 

reliability and security. system identification, intelligent control, planning, logistic. 

manufacture of microchips and soon [2, 8. 10- 19, 21, 60]. 

2.3 Particle Swarm Optimization to Solve TSP 

TSP is a popular combinatorial optimization problem and a number of PSO based 

methods [23-33, 50-60] have been investigated for solving TSP up to date. A particle 

represents a tour and velocity is to change the tour towards a new tour when PSO [23. 

low 25-33. 50-60] handle TSP. The methods use different techniques and parameters for 

calculating the velocity and then find new tour for particles. Among the methods, a 

number of prominent methods use the parameters Swap Operator (SO) and Swap 

Sequence (SS). Following subsections explain the operator SO and SS in detail and 

then explain the prominent methods. 

2.3.1 Swap Operator (SO) 

A Swap Operator (SO) contains a pair of indexes that indicates two cities may swap in 

a tour. Suppose, a TSP problem has 5 cities and a solution is S = (1 - 3 - 5 - 2 - 4). 

Let a Swap Operator is S0(2,4) then new solution with the following SO like below 

5= S + S0(2,4)= (1-3-5-2-4)+ 50(2,4) = (1-2-5-3-4), 

here +' means to apply SO on the solution S [31]. 

Swap Operator is the most important in solving TSP problem and its operation is 

similar to mutation operation of Genetic Algorithm. 

2.3.2 Swap Sequence (SS) 

A Swap Sequence (SS) isa collection of one or more Swap Operator(s) that might be 

applied on a solution one after another sequentially. To solve TSP, the velocity of PSO 

is represented as SS. The Swap Sequence can be defined as: 

12 = (SO1, SO2, S03,...S0) (2.4) 

8 



where 501,502,503,.. .S071  are Swap Operators. Swap Sequence acts on a solution 

4 applying all its SOs maintaining its sequence and then finally produces the new 

tour[31]. This can be described by the fbllowing formula: 

= S + S512  = S1  + (Sol, S02, S03, ... ,SO) (2.5) 

The order of SOs in a SS12  is important because implication of same SOs in different 

order may give different solutions from the original solution [3!]. Considering Eq. 2.5 

SS12  may get from solutions Si  and 52  in the following formula: 

= 2 -  Sl  = (S0, 502, S03, ... ,SO) (2.6) 

here -' means need to apply SOs of SS12  on solution Si  to get S2. 

As an example, if S = (1 - 2 - 3 - 4 - 5) and 2 = (2 - 3 - 1 - 5 - 4) then 

12 = SO(1,3),SO(2,3), SO(4,5). 

Moreover, several SSs may be merged into a new SS-, the operator ® defines as 

merging operation [31]. If SS,SO(1.2). 50(5.2) and SS2=SO(53), 50(4,1) then new 

Swap Sequence SS(new) merging 1S5'i  and SS is 

SS'new,.)=SS j  ® S52  = {SO(1,2), S0(5,2) ®{SO(5,3). SO(4,I)} (2.7) 

= SO( 1.2), SO(5,2), 50(5,3), 50(4, I) 

2.3.3 Basic Swap Sequence (BSS) 

It is notable that different SSs acting on the same solution may produce the same new 

solution. All these SSs are named the equivalent set of SSs. In the equivalent set, the 

sequence which has the least SOs is called Basic Swap Sequence of the set or Basic 

Swap Sequence (BSS) in short. 

As an example, both swap sequences SS112  = SO(1,3),SO(2,3),SO(4,5) and 

SS212  = SO(1,2), SO(2,1), SO(1,3), SO(2,3), SO(4,5) give same new solution 

= (2-3-1-5-4) if applied on S=  (1-2-3-4-5) individually [31]. 

Therefore S511 7 is the Basic SS. It also find using Eq. 2.6 i.e., S2  - S,. 

2.3.4 Swap Sequence based PSO (SSPSO) to Solve TSP 

To solve TSP with PSO, the pioneer method [31] considered Swap Sequence (SS) as 

the velocity: we hereafter call the method as Swap Sequence based PSO (SSPSO) for 

TSP. In SSPSO, each particle represents a complete tour and conceives SS as a 

velocity of it. The algorithm gives a new tour and ultimately gives a complete tour after 



applying all the SOs in a SS. Each particle changes position to new tour solution based 

on its SS which consists of a set of SOs that depends on its previous best position and 

the best one among all the particles in the population. For TSP, equations 2.2 and 2.3 

are modified as follows: 

V(t) = V1(t_1) ® a(p.(t_1) 
- Xt_1)) ® (G(t_1) - Xt_1)) a,fl€[1,o] 

V(t) = 
(t-1) 

® aA ® f3B a, fk[1,01 (2.8) 

X (t) = Xt_1) + V(t) (2.9) 

Where a, /i are random number between 0 and I. a(p
j
(t_1)  - Xt_1)) means all Swap 

Operators in Basic Swap Sequence A = 
(p(t_1) 

- Xt_1)) should be maintained with 

the probability of a, it is the same as B = (G(t_1)  - Xt_1)). From here the bigger the 

Ar 
value of a, the greater the influence of P1, for more Swap Operators in A will be 

maintained, it is also the same as fl B [31]. For each particle, after calculating velocity 

SS using Eq. 2.8 each particle moves to a new tour solution (Xt))  applying velocity SS 

on previous solution (Xt_)  using Eq. 2.9. Fig. 2.4 shows the steps of SSPSO 

algorithm to solve TSP and Fig. 2.5 shows the flowchart. 

Step 1: Tnitialization: define number of particles, termination criterion, tour cost. 
Assign a random tour and random Swap Sequence as velocity to each of the 
particle. Consider previous best tour as current tour and global best tour as the 
best one among them. 

Step 2: For each particle Xi  in the swarm 

111 a. Calculate velocity t)accorcling  to Eq. 2.8. 

Update solution Xt) = Xt_1) + Vt)  using Eq. 2.9 

Update Pi  if the new solution Xt)  is superior to p1  

Update G ifthe new solution Xt)  is superior to G 

Step 3: Loop to Step 2 until a termination criterion is met, usually a sufficiently good 
fitness or a maximum number of iterations. 

Step 4: Take the global best solution G as an outcome. 

Figure 2.4: Steps of Swap Sequence based PSO (SSPSO) Algorithm for TSP. 

4,  
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Figure 2.5: Flowchart Swap Sequence based PSO (SSPSO) for TSP. 

2.3.5 Self-Tentative PSO (STPSO) to Solve TSP 

Self-Tentative PSO (STPSO) introduces tentative behavior in SSPSO that tries to 

improve each particle placing a node in a different position. STPSO algorithm is just 

like the man kind that student must have to study and understand the knowledge by 

himself after his learning from his teacher's. Like that particle not only needs its 

cognitive experience and population knowledge to adjust behavior but also need 

tentative behavior of its own. At the later stage of evolution, this tentative behavior is 

important when random adjustment operators are hard to improve the solutions [33]. 

Operation for tentative behavior tries to improve each particle at the end of each 

generation. For each particle, from the second node to the end tile following actions are 

done: delete the node from the original position; place it to the different positions and 

measure fitness values; use pointer P which records the best position. If the changes 

cant improve the fitness, it can be inserted to the original position, then try to insert it 

to other position. If the change can improve the present fitness, then record this position 



in the pointer P and the fitness changes, then try other positions, and so on. After these 

actions, each particle would get a better position if any single node changes can 

improve its fitness [33]. 

PSO calculates SS based velocity and change position of each particle using calculated 

velocity and action for tentative behavior is out of PSO operations. In each of iteration, 

each particle calculates its velocity according to the following formula. 

V(t) 
= w vt1)® c1.r1 

(p(t_1) 
- Xt_1)) ® c2.r (G(t_1) - Xt_1)) (2.10) 

Where w is inertia factor, c1  and c2  are learning factors. and r1  and r2  are vectors of 

random values between (0,1). Eq. 2.10 is more closer to original PSO equation Eq. 2.2 

than Eq. 2.8 of SSPSO. After calculating V(t)  the new position of a particle (i.e., tour 

for TSP) is calculated as like SSPSO by using the following formula: 

/ Xt) = + V(t) (2.11) 

Step 1: Jnitialization: define number of particles, termination criterion, tour cost. Assign a 
random tour and random Swap Sequence as velocity to each of the particle. Consider 
previous best tour as current tour and global best tour as the best one among them. 

Step 2: For each particle X1  in the swarm 

Calculate velocity Vt)accol.ding  to Eq. 2.10 

Update solution Xt) = Xt_1) + t' using Eq. 2.11 

Update Pi  if the new solution Xt)  is superior to p 

Update G if the new solution Xt)  is superior to G 

Step 3: Tentative Operation on Each larticle X 
Single Node Adjustment. 

Update Pi  and G if the new solution Xt)  is superior to P1  and G respectively. 

Step 4: Loop to Step 2 until a termination criterion is met, usually a sufficiently good fitness 
or a maximum number of iterations. 

Step 5: Take the global best solution C as an outcome 

Figure 2.6: Steps of Self-Tentative PSO (STPSO) for TSP. 

12 

I 



Start 

REA D: size of swarm, termination 

Criterion, tour cost, random tour 

Calculate velocit taceording 10 Eq. 2.10 

Update solution = Xt_1) + V(t)  using Eq. 2.11 

Update Pi  if the new solution is superior to P 

Update G if the new solution X is superior to G 

Single Node Adjustment 

Update l and G if the new solution Xt)  is superior to Pand 

G respectively 

NO 

s!is 

End 

Figure 2.7: Flowchart of Self-Tentative PSO (STPSO) for TSP. 

The steps of Self-Tentative PSO (STPSO) algorithm to solve the TSP are shown in Fig. 

2.6 and Fig. 2.7 shows the flowchart. In STPSO steps the Step 3 is only the addition to 

SSPSO that try to improve individual particle with single node adjustment. 

It is notable that single node adjustment might not be sufficient to get optimal result in 

some cases. It is hard to get the better position if the situations like this. For example, 

assumeone particle's position isX= (1 — 2 — 3 — 4 — 5 — 6 — 7 — 8 — 9 — 10) and 

the best one is Y = (1-2-6-7-8-3-4-5-9-10), if there is no other 

better solution than A' between theni, it's hard to get Y from X using the single node 

adjustment algorithm [33]. 
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2.3.6 Enhanced Self-Tentative (ESTPSO) to Solve TSP 

Enhance Self-Tentative PSO (ESTPSO) introduces block node adjustment in STPSO 

[33]. ESTPSO tries to improve each particle placing a block of nodes in a different 

position after the single node adjustment of each particle. It may overcome limitation of 

single node adjustment but to select block length is difficult to determine. If block 

length is set from 2 to N-2. it is hard to end in the limited time. If the length is set to one 

constant, the adjustment process becomes stable and hard to find the better solution. 

Therefore, ESTPSO adopted a dynamic strategy based on generation. Alter the basic 

PSO operation and the single-node adjustment, the block size k is determined as a 

random number between 2 and And changes according to the generation I 

and its calculation method are shown below. 

IF (N> 50 and 1<30% of THEN Kiiiax  = [(1 / 10) Ni 
/ 

ELSEIF (1> 65% of t THEN Kl?I(x  = [(1 / 3) Ni 

ELSE 'max = 1(1/5) Ni 

In this way, the subsequence max length (Kniax) becomes longer with the t becomes 

bigger, it just comply with evolution process. Because at the beginning time each 

particle's position is random, and it's hard to find a better one if the adjustment length 

of the subsequence is longer. Secondly, for particle I. from the second node to N - k + 

1, each subsequence as a whole, which length is k, should be done the actions same 

like the single node adjustment. 

For the above example, particle's position is X = (1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 

9 - 10), assume k = 3, then the first subsequence is (2,3,4), delete it and record the 

deleted position in the pointer P = 2. get (1 - 5 - 6 - 7 - 8 - 9 - 10) , trying insert 

(not really) it to other position, for example after the node 5 and get a new solution 

(1 - 5 - 2 - 3 - 4— 6— 7— 8-9 - 10), if the new solution is better than X, record 

the new position P = 3, else P didn't change. Then try other positions, and so on, until 

after the node 10, and then insert the subsequence to the position P. if there is no 

solution better than X that is P = 2, X can be gotten again. The second subsequence is 

(3 - 4 - 5), and the last subsequence is (8 - 9 - 10), doing the same actions above. If 

the best solution isY = (1-2-6-7-8 - 3-4-5-9-10), then in the second 
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time. Y must be getting after trying to insert the subsequence (3 - 4 - 5) after the node 

8. The steps of Enhanced Self-Tentative PSO (ESTPSO) algorithm to solve the TSP are 

shown in Fig. 2.8 and Fig. 2.9 shows the flowchart. In ESTPSO steps the block node 

adjustment (Step 3.b) after single node adjustment of Step 3.a is only the addition to 

STPSO as of STPSO. A modification on ESTPSO is also available that try to get better 

result trough reverse placement of a block is called Improved ESTPSO (IESTPSO) 

[33]. 

Step 1: Initialization: define number ol particles, termination criterion, tour cost. Assign a 
random tour and random Swap Sequence as velocity to each of the particle. Consider 
previous best tour as current tour and global best tour as the best one among them. 

Step 2: For each particle X1  in the swarm 

a. Calculate velocity V(t)d to Eq. 2.10 
p 

b Update solution Xt) = Xt_1) + V(t) using Eq 2 I I - 

c Update Pi  if the new solution X( t)  is supei ior to i 

d Update G if the new solution Xt)  is superior to G  

Step 3: Tentative Operation on Each Particle X 
Single Node Adjustment. 

Block Node Adjustment 

Update P1  and G if the new solution X is superior to P1and G respectively. 

Step 4: Loop to Step 2 until a termination criterion is met, usually a sufficiently good fitness 
or a maximum number of iterations. 

Step 5: Take the global best solution G as an outcome 

Figure 2.8: Steps of Enhanced Self-Tentative PSO (ESTPSO) to Solve TSP. 

2.4 Limitations of existing approaches 

The velocity for solving TSP in the above discussed PSO based methods (i.e.. SSPSO, 

STPSO and ESTPSO) is the Swap Sequence (SS) with several Swap Operators (SOs). 

All SOs of a SS are applied maintaining order on a particle and gives a new tour i.e., a 

particle having new solution in the PSO. In the existing methods, the new tour is 

considered aller applying all the SOs of a SS and no intermediate measure is 

considered. It is notable that every SO implementation gives a new tour, and therefore. 

there might be a chance to get a better tour (having better tour cost) with some of SOs 

IN 



instead of all the SOs. The objective of the study is to achieve better result introducing 

such partial search in the SS based velocity implication in PSO for solving TSP. 

/ 

:i 

H 

Figure 2.9: Flowchart of Enhanced Self-Tentative PSO (ESTPSO) for TSP. 
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Chapter III 

Velocity Tentative Particle Swarm Optimization to Solve TSP 

This chapter explains proposed partial search based Velocity Tentative Particle Swarm 

Optimization (VTPSO) to solve TSP. Proposed VTPSO considers Swap Sequence (SS) 

as velocity and calculates as like conventional standard SS based PSO methods 

described in the previous chapter. But VTPSO conceives a measure (called partial 

search) to apply such velocity to change particles position (for TSP to get a new tour). 

It measures the performance of a new tour applying each of SO and final velocity is 

considered for which it gives better tour. Therefore, the final velocity may be a portion 

(from the beginning) of calculated tentative velocity SS. Moreover. VTPSO conceives a 

moderate self-tentative technique that might improve its performance. The chapter 

/ starts with aspect of partial search and then explains the proposed algorithm. It also 

explains why proposed method might be efficient with respect to the exiting methods. 

3.1 Aspect of Partial Search solving TSP 

Partial search seeks better result with portions of calculated tentative velocity Swap 

Sequence (SS). A SS is a collection ol several Swap Operators (SOs) and consider as 

velocity that may apply on a solution (i.e., a tour) to get a new tour [23. 31, 32]. In the 

tradition methods, all the SOs of a velocity SS applied on a tour and generate a new 

tour. But implementation of every successive SO transforms the previous tour to a new 

tour and reaches the final tour for the SS. While a traditional method ignores the 

intermediate tours, the partial search technique explores the option of getting better tour 

considering those. Therefore, the partial search enhances the capability of getting better 

tour from a SS applying SOs one by one [3 1 1. 

In Partial Search (PS) technique, the intermediate tours are considered as tentative tours 

and final tour is the best tentative tour. Eq. 3.1 and Eq. 3.2 are for velocity measure and 

position update of particles in existing PSO based method [23. 31]. The PS technique 

modifies the velocity implementation of Eq. 3.2. 

V(t) = (t_1)® - 
4t_1)) ® 

- Xt_1)) a, e[1,0] (3.1) 

Xt) = Xt_1) 
+Vi (3.2) 

Suppose Vt) = so1, s02, S03. ...  so then 
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Xt) = Xt_1) + so1  

Xt) = xt) + so2 = + so1 + so2 

X(t) = X1_t) + so71 
1(t) In the above cases X ..

2(t)

1 , . ......, X
(t)

1 are the tentative tours and the final tour 

X(t)  is a tentative tour havin(Y the minimum tour cost. 

Xt) =  Xt) (33) 

j(t) 1(t) 2(t) j(t) n(t) where X g belons minimum tour cost among X , , ... ... ... X 

Finally the velocity considered is 

Vi 
(t) 

= 1j<n 

The final velocity may also get from new and previous position of the particle 

Vt) = Xt) - Xt_1) (3.4) 

The above scenario may describe clearly with an example. Consider a tour X/' of 10 

cities where city position is the number of the city. 

Xt_1)= 1-2-3-4-5-6-7-8-9-10 

If velocity SS is SS = 50(1,4), SO(2,5),50(2,4) the tentative tours are: 

Xt) = Xt_1)+ 50(1,4)= 4-2-3-1-5-6-7-8-9-10 

Xt) = + SO(2,5)= 4 — 5 — 3 — 1 — 2 — 6 — 7 — 8 — 9 — 10 

Xt) Xt) + SO(2,4)= 4-1-3-5-2-6-7-8-9-10 

The implementation of the SS gives two intermediate tours (i.e., Xt)  and  Xt))  and 

finally reached at Xt). Traditional methods only consider the last one as the final tour 

. e., Xt) = Xt)) without evaluating the intermediate tours. On the other hand, the 

PS evaluates the intermediate tours too since all are the complete tours and an 

intermediate one (here X1(t) 
 or  X2(t) 

) iii u.ht be better than the final one (i.e., X3(t) 
). In 

1(t) 2(t) 3(t) PS technique all three tours (i.e.. X , X and X ) are considered as tentative 

tours and velocity SS is considered as the tentative velocity. The final tour in PS 

technique is the best one among the three. If tour cost of X 2(t) 
 is better (i.e., lower) 

than Xt)  and  Xt)  then Xt)  is considered as the final tour (i. e., Xt) = Xt)) and 

final velocity is t) 
= 50(1,4), sO(2,5) that contains first two SOs of the calculated 

velocity SS [31]. 
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3.1.1 Difference bePveen Partial Search and Local Search 

Partial search is not similar to local search. Local search explores surroundings of a 

solution in order to get a better candidate solution. A local search algorithm moves 

from solution to solution in the space of candidate solutions (the search space) by 

applying local changes, until a solution deemed optimal is found or a time bound is 

elapsed. On the other hand, PS checks the intermediate solution points while move 

from the old solution point towards a destined solution point. 

3.1.2 Effect of Partial Search in Tour Cost Calculation 

Partial search might not increase computational cost. It seems that evaluating the 

intermediate tours might increase computational cost of PS technique because it 

evaluates all the tentative tours while traditional methods only evaluate last one. But the 

technique of tour cost calculation minimizes the gap. A tour cost is the sum of 

individual link costs. To evaluate a tour, if all the links' cost are accumulated PS 

technique will take much time, in general (n-i) times of a traditional method if velocity 

SS contains ii SOs. But it does not require considering all the links to get cost of a new 

tour from a tour which cost is known because a SO only changes four links because it 

index two cities in the tour which may interchange positions. So implementation of a 

SO need to discard costs of fours links and add costs four new links that associate with 

the indexed cities before and after interchange, respectively. As an example, to apply 

SO"1,4) on Xt_1) = 1-2-3-4-5-6-7-8-9-- 10 to get Xil 
 t) = 

Xt_1) + 50(1,4) = 4-2 -3-   1 - 5 - 6 - 7 - 8 - 9 - 10 it needs to discard 

cost of 1-2. 10-I, 3-4 and 4-5: and need to add cost of4-2, 10-4, 3-I and I-S. 

It will be more understandable when comparison of tour cost calculation between (1) 

method updating cost of the previous tour for city interchange, called Updating Method 

(UM) and (2) method accumulating all the links' cost, called Total Accumulating 

Method (TAM), which does not require previous tour cost. Suppose, I is the required 

time to read a link cost and n is the number SOs in the velocity SS. In IJM, the time to 

get a tentative tour applying a SO is 

To = 81, 

And time for velocity SS with n SOs implementation is 
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7s(UM)= ii*iQ = 81,11. (3.5) 

On the other hand, time requires in TAM, tour is calculated after each SO 

implementation, is 

T5,3 = fl*t1V= ntN. (3.6) 

Since the number of cities in the benchmark TSP problems in TSPLIB [61] varies from 

14 to 493 (i.e.. N>>8  in most of the cases) then tour cost calculation in UM is much 

efficient than TAM. 

On the other hand, when intermediate tour costs are not required in the traditional 

methods, the required time in both UM and TAM methods are as follows. 

T(UM) = 8n (3.7) 

T(TAM)=iN (3.8) 
/ 

It is remarkable from Eq. 3.7 and Eq. 3.8 that TAM is better than UM for problem 

having few cities but UM might be efficient with respect to TAM for large sized 

problems. Moreover, time to calculate tour cost using update method is same (i.e.. 8i1) 

for both proposed partial search technique and traditional methods as seen from Eq. 3.5 

and Eq. 3.7. Finally, partial search technique is used in this study may explore better 

result evaluating intermediate tentative tours without increasing computational time. 

3.2 Velocity Tentative Particle Swarm Optimization to Solve TSP 

Figure 3.1 shows the steps of the proposed Velocity Tentative Particle Swarm 

Optimization (VTPSO) to solve TSP considering the partial search technique; and brief 

description of the steps of VTPSO is given below. Like other population based 

algorithm. VTPSO initializes the population with random solutions and tries to improve 

solutions at every generation step. In initialization (Step I) VTPSO defines number of 

particles in the population, termination criterion, and tour cost. It also assigns a random 

solution (here tour) and a random velocity (here Swap Sequence) to each of the particle. 

At this initial stage, previous best solution of each particle (Ps ) is considered as the 

current random tour of it and Global best solution (G) is the best tour among them. 

At each iteration step VTPSO updates position of each particle conceiving proposed 

partial search based velocity tentative behavior (Step 2 in Fig. 3.1). The velocity Swap 

Sequence (SS) that it calculates (Step 2.a) using Eq. 3.1 is same as traditional methods. 
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Step 1: Initialization: define number of particles, termination criterion, tour cost. Assign 

a random tour and random Swap Sequence as velocity to each of the particle. 
Consider Previous best (P,) solution of each particle is considered as the current 
random tour and Global best (G) solution is the best tour among theni. 

Step 2: For each particle X1  in the swarm 

a. Calculate tentative velocity Vt)according  to Eq. 3.1. II Similar to Cony. 
Methods 

b. Update Solution Xt)Partial  Search manner using Eq. 3.3 

c. Self-Tentative Operation and Update P1  if the new solution Xt)  is superior to P1  

Apply Self-Tentative Operation on Xt) 

Update P1  with new solution Xt) 

d. Update G if the new solution Xt)  is superior to G 

Step 3: Loop to Step 2 until a termination criterion is met, usually a sufficiently good 
fitness or a maximum number of iterations, 

/ 
Step 4: Take the global best solution G as an outcome. 

Figure 3.1: Steps of Velocity Tentative PSO (VTPSO) Algorithm for TSP 

For the velocity calculation of a particle, VTPSO considers (i) Last applied velocity ((i  

I)), (ii) Previous best (P,) solution of the particle and (iii) Global best (G) solution of the 

swarm. The calculated velocity does not apply on a position of the particle to get the 

new position like a traditional method. But VTPSO considers the calculated velocity as 

tentative velocity as its name regards. With the tentative velocity SS a number of 

tentative tours is evaluated and particle moves to the best one among those. The 

velocity SS that gave the best tour considers previous velocity (1't_1)) 
of the next 

iteration of Eq. 3. 1. Finding the best tour is considered as the partial search and is the 

main "attraction" of VTPSO; therefore. Step 2.b in Fig. 3.1 for the operation is marked 

in bold-faced. The fitness of every new position of a particle is checked with P, IfX1  is 

found better than P, VTPSO applies Self-Tentative operation on (X) owing to improve 

it furthermore and then updates P, (Step 2.c). 

The Self-Tentative (ST) operation of VTPSO (Step 2.c (i)) consists with Single Node 

Adjustment of STPSO/ESTPSO and a simplified version of ESTPSO Block Node 

Adjustment. The block size k is determined as a random number between 2 and K,,,a 

and the value of K,,, is defined as i'//2, i.e., half of total cities of the problem. 

Moreover. ST operation is applied on it particle (i.e., a solution Xt))  when it is found 
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superior to P, instead of all the particles as of ESTPSO. The ST operation on the 

selected particles might be helpful to improve overall performance of VTPSO with a 

minimal time complexity. The ST operation on selected particles is logical because 

single best solution (e.g., Global best U) is considered as the outcome. After ST 

operation Pi  is updated (Step 2.c(ii) of-  Fig. 3.1) with new solution X,. The fitness of 

every new position (X of a particle is checked with G and updates G if Xj  is shown 

better than G (Step 2.d). 

VTPSO checks termination criterion at the end of each iteration (in Step 3 of the Fig. 3.1) 

and terminates if criterion is met. Usually a sufficiently good fitness of U or a maximum 

number of iterations is considered as the termination criteria. ha termination criterion does 

not meet, VTPSO continues updating positions of the particles again as indicates the loop 

to Step 2 from Step 4 in Fig. 3.1. Fig. 3.2 shows the flowchart of the VTPSO. 

- 
Start 

READ: size ofswariri. 

termination criterion. 

(Our cost, random tour 

Calculate tentative velocity V °according 

to Eq. 3.1. 

Update Solution Xt)Partial  Search 

manner using Eq. 3.3 

Opeiation and Update YFS 

operation on 

Update G tithe new solution X t1nhie P it lim solutiuii X °  

Superior to G H 

N!____czIiITII Is termination 

condition? 

+ YES 

Output 

Ind 

Figure 3.2: Flowchart of Velocity Tentative PSO (VTPSO) for TSP 
40 
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3.2.1 Comparison and Contrast of VTPSO with the Traditional Methods 

Proposed Velocity Tentative PSO (VTPSO) introduced different way of getting new 

position with calculated velocity Swap Sequence (SS). VTPSO calculates velocity SS 

similar to conventional SS based methods (such as SSPSO, STPSO, ESTPSO), but in 

case of velocity implementation oii a particle (i.e., current tour) VTPSO follows a 

different way. A conventional method gets new tour applying all the Swap Operators 

(SOs) [2,15,23] in the calculated velocity SS. On the other hand, VTPSO considers the 

calculated velocity as tentative velocity and evaluates a number of tentative tours 

applying SOs one after another sequentially. The final tour is considered as the best 

tentative tour and final velocity is also the part of SS from the beginning that gave the 

best tour. Although VTPSO evaluates a number of intermediate tours more than a 

conventional method it might not increase computational cost as explained in Section 

3.1. On the other hand, VTPSO might converge faster than a conventional method 

because VTPSO may use yield instead a better tour with a part of SS than the tour with 

whole SS. 

VTPSO conceives Self-Tentative behavior in order to achieve better outcome like 

Enhanced Self-Tentative (ESTPSO) but in a different way. After position update with 

PSO operation, both STPSO (described in Section 2.3.5) and ESTPSO (described in 

Section 2.3.6) try to improve every individual particle with single node adjustment. 

ESTPSO also follows a block node adjustment based Self-Tentative operation after 

single node adjustment. Thus, the tentat ive operation of STPSO and ESTPSO obviously 

add large computational cost with PSO operations since each and every particle is 

considered for tentative operation. On the other hand. VTPSO conceived Self-Tentative 

behavior of ESTPSO on the selected particles that might not increase computational 

cost much. Therefore, Self-Tentative operation might enhance performance of VTPSO 

with velocity tentative operation. Finally, VTISO seems to be a cost effective method 

to solve TSP and return better tour. The coming chapter explains the effectiveness of 

the proposed VTPSO with experimental results to solve benchmark TSPs. 
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Chapter IV 

Experimental Studies 

This chapter experimentally investigates the efficacy of proposed Velocity Tentative 

Particle Swarm Optimization (VTPSO) algorithm to solve TSP. A set of benchmark 

problems were chosen as a test bed and the performance of VTPSO compared with two 

popular PSO based methods that are Swap Sequence based PSO (SSPSO) and 

Enhanced Self-Tentative PSO (ESTPSO). For fair comparison the experimental 

methodology were chosen carefully. Finally, an experimental analysis has been given 

for better understanding of the way of performance improvement in proposed method 

for solving TSP. 

/ 4.1 Bench Mark Data and General Experimental Methodology 

In this study a suite of 30 benchmark problems are considered from TSPLIB [61] where 

number of cities varied from 14 to 200 and give diverse test bed. A numeric value in 

the problem name presents the number of cities in that tour. For example, hurnia]4 and 

ra1195 have 14 and 195 cities, respectively. A city is represented as a coordinate in a 

problem. Therefore the cost is found after calculating distance using the coordinates. 

To investigate the proficiency of the proposed VTPSO, the study also implemented 

SSPSO and ES1'PSO, and compared the experimental results among the three methods. 

The algorithms are implemented on Visual C++ of Visual Studio 2010. The 

experiments have been done on a Computer (Dell RM7 I 0. Intel (R) Xeon (R) CPU 

E5620 2.40 Gl-Iz, 16 GB RAM) with Windows Server 2008 Datacenter OS. 

In the experimnets, the velocity inertia factor (i.e., w) was considered as 1.0 and the 

values of learning factors (i.e., ci and c2) were taken randomly between (0, 1). For the 

fair comparison, the population size was 100; the number of generation was set at 500 

as termination criteria for the algorithms. The selected parameters are not optimal 

values, but selected for simplicity as well as for fairness in observation. 

'I 
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4.2 Experimental Results and Performance Comparison 

I 
This section presents experimental results of the proposed Velocity Tentative Particle 

Swarm Optimization (VTPSO). Swap Sequence based PSO (SSPSO) and Enhanced 

Improved Enhanced Self-Tentative PSO (ESTPSO) and make a comparison among the 

results. SSPSO is the pioneer PSO based method to solve TSP and ESTPSO is the 

improved version of SSPSO and so far achieved good result. Table 4.1 compares tour 

cost achieved and required time to solve by the methods from 20 individual runs. Since 

experiments are conducted in a single machine with same experimental settings for all 

the methods. comparison of required time is a good choice to identify proficiency of a 

method. The bottom of the table shows the summary of the presented results. 

The results presented in the Table 4.1 clearly indicate the effectiveness of the proposed 

VTPSO to solve TSP. The proposed method is shown the best method on the basis 

average tour cost of 30 problems. The average tour cost achieved by VTPSO is 

21555.92; on the other hand SSPSO and ESTPSO achieved average tour costs of 

160362.61 and 22246.28, respectively. Pair wise Win/Draw/Lose summary in the 

bottom of the table identified that VTPSO is better than SSPSO for all 30 problem 

individually. VTPSO is found better than ESTPSO for 21 cases out of 30 problems and 

preformed worse or equal for rest nine problems which are small sized problems such 

as burina14 (problem with 14 cities) and ulyssesló (problem with 16 cities). 

Between two conventional methods, ESTISO outperformed SSPSO for all the cases as 

it is observed from Table 4. 1. As an example, SSPSO achieved tour cost of 1989.80 for 

e1176 problem, but ESTPSO achieved much better than SSPSO for the problem that is 

583.93. Self-Tentative (ST) operation in ESTPSO is the clement to get good result 

since such ST employment in ESTPSO is the main difTerence from SSPSO. But 

ESTPSO took on average 63.69 seconds to solve the same ei176 problem which is much 

larger than SSPSO of 350.66 seconds. On average, ESTPSO took near about double 

time than SSPSO for most of the problems although SSPSO took larger time for few 

small sized problems such as burn,a/4. That indicates ST operation is costly solution to 

improve performance. 

.1 
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Table 4.1: Comparison among SSPSO, ESTPSO and VTPSO on basis of average tour cost achieved 
and required time to solve benchmark TSPs. The results are the average of20 independent runs. 

ISIProblem 
Average Tour Cost (Standard Deviation) Aver a°e Required Time in 

Millisecond 

SSPSO ESTPSO 
} VTPSO SSPSO ESTPSO VTI'SO 

T I burrna14 34.6/ (1.16) 30.87 (0.00) 30.87 (0.00) 4768 3041 24.39 
2 ulyssesl6 83.94 (3.69) 73.99 (0.00) 74.00 (0.01) 56. 78 44.41 28.12 
3 gr17 32/5.50 (260.48) 2332.60 (0.00) 2342.80 (20.90) 60.82 39.23 29.56 
4 u1ysscs22 1/0.19 (4.59) 75.36 (0.09) 75.35 (0.08) J).1 57.93 38.47 
5 g1-24 2295.50 (105.69) 1249.80 (0.00) 1249.80 (0.00) 27 51.87 42.77 
6 fr126 /229/0 (73.02) 635.58 (0.00) 637.41 (4.94) 2.74 67.38 45.85 
7 bays29 /7777.00 (655.35) 9074.20 (0.00) 9092.90 (52.32) /09.57 82.99 56.29 
8 6151 /2/8.60 (61.57) 408.26 (4.86) 419.30 (5.76) 214.69 273.49 117.35 
9 berhn52 22046.00 (769.74) 7750.70 (173.37) 7864.40 (192.15) 220.07 295.32 125.21 

10 st70 283/80 (77.18) 709.15 (17.70) 721.29 (19.43) 314.78 467.49 188.13 
II 6176 /989.80 (54.33) 583.93 (11.87) 574.67 (6.90) 350.66 563.69 230.90 
12 ir96 2693.10 (60.72) 561.68 (22.45) 547.87 (16.43) 473.45 777.36 316.78 
13 rat99 66/5.80 (186.85) 1402.30 (35.13) 1337.80 (31.52) 493.56 740.07 325.03 
14 kroa100 132626.00 (3282.70) 23021.00 (1130.40) 22436.00 (445.41) 461.56 748.65 339.78 
15 idloo 44747.00 (933.99) 8825.50 (265.82) 8470.50 (162.87) 423.63 67556 318.30 
16 elI 101 2800.80 (51.55) 694.07 (13.45) 678.21 (11.08) 503.45 895.13 372.05 
17 Iin105 96405.00 (2576.40) 16249.00 (811.70) 15805.00 (431.74) 540.92 9/9.78 367.17 
18 p'.124  562623.00 (11019.00) 66905.00 (2164.90) 63888.00 (1743.90) 668.14 /22620 490.94 
19 b1er127 5344/6.00 (9366.90) 128088.00 (3116.90) 124534.00 (2346.30) 687.77 /3/4.50 564.20 
20 ch130 38976.00 (570.14) 6640.60 (135.48) 6455.90 (132.63) 716.89 /36/80 561.55 
21 pr136 68/844.00 (10731.00) 108154.00 (3747.30) 104560.00 (2825.30) 757.34 1444.40 584.41 
22 gr137 4948.20 (128.08) 807.59 (21.75) 775.87 (23.03) 765.93 557.98 
23 prl 44 679328.00 (II 166.00) 67777.00 (1670.50) 64511.00 (2389.40) 826.83 

#-. 

632.31 
24 ch 150 45/70.00 (1101.10) 7321.00 (191.25) 7045.50 (183.45) 874.67 728.94 
25 kroA150 21/527.00 (5224.30) 29333.00 (752.22) 28611.00 (.153.60) 872.64 /485.20 726.30 
26 p'.152  815025.00 (17158.00) 78990.00 (2319.80) 77184.00 (1903.80) 893.50 1248.10 638.04 
27 u159 375685.00 (4953.10) 47143.00 (2080.70) 45617.00 (1288.40) 944.10 /45720 764.97 
28 ra1195 /9201.00 (282.06) 2673.20 (35.38) 2575.50 (45.33) 1188.00 21/940 1126.20 
29 dl 98 /54767.00 (3406.70) 17307.00 (230.09) 16616.00 (274.63) 1173.70 206/10 1096.20 
30 kroA200 288649.00 (4083.30) 32572.00 (775.18) 3193600 (506.54) 1124.00 222-.501 1131.10 = Average 160362.61 22246.28 21555.62 534.52 909.36 418.97 

- 
l3estAVorst 0/30 9/0 21/0 0/7 0/23 1  30/0 

- PairviseWin/Draw/LoseSum mary 

Method 

on Tour Cost 
___________________  

on Required Time 

SSPSO ESTPSO VTPSO SSPSO ESTPSO VTPSO 
SSPSO 

- 30/0/0 30/0/0 - 0/0/30 

_ 

30/0/0 
ESTPSO 

- 2 1/2/7 
- 30/0/0 
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The interesting observation from results of Table 4.1 is that VTPSO is much more time 

efficient with respect to SSPSO and ESTPSO but provide suitable solution with 

minimal tour costs. It is already mentioned that population size was 100 and the number 

of generation was set at 500 as termination criteria for each of SSPSO, ESTPSO and 

• VTPSO for results presented in the Table 4. I. Since the algorithms are tested on the 

same machine with defined fair setting (unbiased to any one of those), the time to get 

solution is also a good measure to identify proficiency of a method that differs due to 

algorithmic matter. Moreover, finding better result with lesser time is more interesting 

that provides VTPSO. Partial search and moderate Self-Tentative operation are the 

additional operation in VTPSO with respect SSPSO. Both operations help to find better 

solution early and size of velocity SS reduces with generation that might be reason to 

take less time by VTPSO than SSPSO for same number of generations with fixed 

population size. On the other hand, Self-Tentative operation on each particle at each 

iteration make ESTPSO coniputationallv much expensive than SSPSO in general. Self-

Tentative operation on selected particles and velocity partial search makes VTPSO 

faster convergence and therefore return good result with less time. As example, VTPSO 

took 318.30 seconds for rdlOO problem. For the same problem, SSPSO took 423.63 

seconds and ESTPSO took more than double time of VTPSO i.e.. 673.56 seconds. But 

VTPSO achieved best result for the problem with tour cost of 8470.50. In general, 

VTPSO took 80% time of SSPSO and less than half of ESTPSO. Finally, on the basis 

of tour cost and required time VTPSO is the best method. 

Table 4.2 compares Minimum and Maximum tour costs among SSPSO, ESTPSO and 

VTPSO from 20 independent runs for which the average results presented in Table 4.1. 

For few small sized problems both ESTPSO and VTPSO achieved same minimum tour 

cost for all 20 independent runs. For the problems (e.g.. burinal4, gr24) maximum tour 

cost is same as minimum tour cost and Standard Deviation along with the average 

result in the Table 4.1 is 0.0. On the other hand, most of the cases, especially for large 

sized problems, VTPSO is shown better than ESTPSO showing lower (i.e., better) 

value on the basis of minimum and maximum tour costs. Out of 30 cases. VTPSO is 

shown better than ESTPSO for 15 and 20 cases on the basis ofminiimini and maximum 

values, respectively. On the other hand, both ESTPSO and VTPSO outperformed 

SSPSO for all 30 cases. Finally, on the basis of results of Table 4.2 SSPSO is the worst 

and VTPSO is the best. 
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Table 4.2: Comparison among SSPSO, STPSO and VTPSO on the basis of Minimum and 
Maximum tour cost achieved in the 20 independent runs to solve benchmark TSPs. 

SI. Problem 

Sri  - 

 
Minimum Tour Cost (No of Times Mm. Cost Maximum I our Cost 

Achieved) 

SSPSO ESTPSO VTPSO SSPSO ESTPSO VTPSO 

I hurma14 3L84 (1) 30.87 (20) 30.87 (20) J 37.20 30.87 30.87 

2 j  ulysseslô 71 (I) 73.99 (20) 73.99 (8) 23 73.99 74.00 

3 grl7 2772.53 (I) 2332.58 (20) 2332.58 (16) 3600.13 2332.58 2399.21 

4 u1vsses22 99.88 (I) 75.31 (IS) 75.31 (15) 1/7.43 7 5. 51 75.51 

5 1  gr24 2021.14 (1) 1249.82 (20) 1249.82 (20) 2442.4() 1249.82 1249.82 

6 fri26 /089.92 (1) 635.58 (20) 635.58 (17) 1371.62 635.58 656.30 

7 1  bays29 /6092.24 (I) 9074.15 (20) 9074.15 (16) /8535.93 9074.15 9390.83 

8 eil5l /076.10 (I) 403.19 (7) 408.47 (I) /3/5.28 416.52 431.85 

9 herlin52 /9629.93 (I) 7544.37 (3) 7544.37 (I) 22758.80 8189.69 8140.00 

10 st70 2587.43 (1) 677.11 (I) 682.57 (I) 2904.96 738.01 748.27 

11 1  e1176 1785.90 (I) 564.34 (I) 564.53 (1) 2041.14 614.10 591.53 

12 gr96 2583.57 (I) 521.24 (1) 518.83 (I) 2772.27 594.24 584.30 

13 rat99 6/20.98 (1) 1306.32 (1) 1283.23 (I) 6875/0 1475.45 1396.22 

14 roaI00 125296.17 (1) 21307.44 (I) 21335.5 (1) 138458.56 25609.86 23186.78 

15 rd lOU 42307/9 (1) 8311.79 (I) 8201.04 (1) 462/4.23 9202.88 8847.30 

16 eil101 2704.97 (I) 674.58 (I) 653.81 (I) 2893.52 728.74 706.69 

17 lin105 87/55.78 (I) 14855.59 (I) 14855.59 (I) 99386,6/ 17456.15 16607.62 

18 pF124 534928.73 (1) 62870.01 (I) 60726.57 (1) 580861.71 72217.81 69760.96 

19 b1er127 512662. 15 (I) 123984.40 (I) 120237.56 (I) 544356.11 135696.90 130742.53 

20 ch 130 377/0.67 (I) 6395.06 (I) 6297.31 (I) 39745,47 6849.52 6852.59 

21 pr136 655352.06 (1) 99067.00 (I) 99447.33 (I) 696218.21 116870.40 110281.53 

22 gr137 4589.89 (I) 767.64 (I) 716.40 (I) 5085/7 855.11 803.98 

23 pr144 653534.68 (I) 63075.73 (I) 59900.08 (I) 697861.41 70246.12 68097.54 

24 ch150 42972.08 (I) 6894.51 (1) 6718.71 (1) 46525.76 7563.81 7459.16 

25 kroA150 19568/34 (1) 27983.97 (I) 27869.67 (I) 2/8763.84 30687.62 29305.50 

26 prl 52 829997.63 (I) 74490.45 (I) 74894.94 (I) 897840/9 83866.68 82723.01 

27 u159 366524.64 (I) 43979.37 (I) 43750.50 (I) 383569/0 50808.34 48236.22 

28 rat195 /8437.56 (I) 2600.18 (I) 2507.77 (I) 196/1.62 2739.74 2661.76 

29 d198 /484/0.07 (1) 16989.01 (I) 16065.36 (I) /59704.54 17810.34 17004.08 

30 kroA200 V9599. 07 (I) 31577.63 (I) 31080.45 (I) 29497/95 34165.11 32994.25 

= Average 153127.79 21010.44 20657.76 164564.37 23629.19 22734.67 

Best/Worst 0/30 15/0 24/0 0/30 10/0 23/0 

- Pairwise \Vin/Draw/Lose Sum mary 

Method 
on Minimum Tour Cost on Maximum Tour Cost 

SSPSO ESTPSO VTPSO SSPSO ESTPSO VTPSO 

SSPSO - 30/0/0 30/0/0 - 30/0/0 30/0/0 

ESTPSO - 15/9/6 - 20/3/7 
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4.3 Experimental Analysis 

This section first investigates why VTPSO require less time than SSPSO and ESTPSO 

to get the solution on the basis of size of velocity Swap Sequence over generation. This 

section also investigates the effect of different parameters on the performance of 

SSPSO. ESTPSO and VTPSO. The size of swarm (i.e., number particles in the 

population) and the number of iterations were varied to observe their effect on the 

methods. Three problems with different size were selected for the analysis in this 

section; the problems are ei176, gr99 and cil101. 

4.3.1 Velocity Swap Sequence and Time over Generation 

Figure 4.1 presents size of average velocity Swap Sequence (SS), i.e., average number 

.11 of Swap Operators (SOs) in it, and time elapsed from the beginning for sample runs of 

three different problems. A total of 100 particles are trained for 500 generations for 

each of SSPSO. ESTPSO and VTPSO: SS in the flgure is the average value of the 

particles at different generations. A velocity SS holds several SOs operation of a SS is 

the collective operations of individual SOs of it. Therefore, a large velocity SS (having 

many SOs) requires more time to calculate as well as to implement for getting a new 

tour than a small one. A particle's position or solution (X,) closer to particle best (P) 

and/or Global best (G) generates smaller velocity SS. 

The velocity SS in the SSPSO (Eq. 2.8) is the accumulation of previous velocity (v'') 

and a portion (that is selected based on parameter a and /3) of calculated SS considering 

present solution particle best (P) and Global best (G). Therefore, size of SS 

increases for any problem and reaches saturation level as it is seen in the Figure 4. I. 

ESTPSO tries to improve every individual particle through Self-Tentative operation 

and considers a portion of previous velocity (ref to Eq. 2.10) in the present velocity 

calculation. Both the things might be the reason to give smaller SS than SSPSO as it is 

seen the Fig. 4.1 for all three problems. But due to Self-Tentative operation on all the 

particles at each generation ESTPSO demands much time than SSPSO (as it is seen for 

all three problems in Figure 4.1) although size of velocity SS of ESTPSO is smaller 

than SSPSO. 

-I- 

29 



11 

60 600 VTlSO 
VTPSO SSPSO 

45 . ssPso 450 ESTPS() 

3° !::o 

ZOO 

\0 

0 100 200 300 400 500 0 100 200 300 400 500 

Generation Generation 
ei176 

750 
80 . _____ vrpso 

VTPSO 600 SSPSO 
60 SSPSO ESTPSO 

J 

I: 

. 

150 

0 100 200 300 400 500 0 100 200 300 400 500 
Generation Generation 

gr96 

100 ..................................-...  800 

80 VTPSO 
VTPSO 
ssiso 

.........ssso 600 ESTPSO 
60 ESTPS() E ...... 

. 

20 200 

0 100 200 300 400 500 0 100 200 300 400 500 
Generation Generation 

eu 101 

Figure 4.1: Velocity Swap Sequence size and time over generation. 

VTPSO induce partial search in velocity SS implication and apply Self-Tentative 

operation on a particle when it is found better than particle best (P,). Therefore. VTPSO 

30 



seems slower than ESTPSO at early stage of generation when Self-Tentative operation 

- is perform on most of the particles and later on (after 100 generations for eil101) it took 

less time than ESTPSO. On the other hand, the size of velocity SS for VTPSO 

decreases over generation, at the initial stage it is equal to SSPSO and after 1 00-200 

generations it is less than ESPSO, in general. Finally, Partial Search and selected Self-

Tentative operations make VTPSO faster convergence as well as time efficient. 

4.3.2 Effect of Population Size and Total Generation on Tour Cost and Required 

Time 

This section investigates performance of SSPSO, ESTPSO and VTPSO varying 

population size (i.e., number of particles in the swarm) and number of generation. The 

result presented in Tables 4.1 and 4.2 are for the fixed number of population size 

( 100) and generation (500) for all the problems. It is interesting to observe how the 

algorithms perform on the variation of both the parameters. The experiments performed 

on the same machine explained before. 

Figure 4.2 shows the achieved tour cost and required time for different population sizes 

from five to 500. The presented results are the average for ten independent runs. Since 

SSPSO perform is much worse result (having larger tour costs) than STPSO and 

VTPSO, its values are presented after scaling down for better visibility. It is seen from 

Fig. 4.2 that for very small population (e.g., 5) all three methods found to show worst 

tour cost and improve up to a certain population size. With tour cost improvement with 

population. VTPSO is shown better than ESTPSO for all any population size. 

Moreover, On the basis of required time. VTPSO is the best taking lowest time and 

ESTPSO is the worst taking largest time. 

Figure 4.3 shows the achieved tour cost and required time for different fixed number of 

generations from 10 to 1000. The presented results are the average for ten independent 

runs. As like Fig. 4.2, the tour costs of SSPSO are presented in Fig. 4.3 after scaling 

down for better visibility. It is seen from the figure that all three methods are shown the 

worst tour costs for generation 10 and improve rapidly up to a certain value (e.g.. 250 

for eil76) and after that improvement is not significant. However, on the basis of 

achieved tour cost. SSPSO is the worst and VTPSO is the best for any value of 
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generation. VTPSO is also the best on the basis of time requirement taking lowest time. 

Finally, the Figs. 4.2 and 4.3 ascertain VTPSO is a good method for solving TSP. 
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Figure 4.2: Variation effect of population size on tour cost and require time. 
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Figure 4.3: Variation effect of fixed no of generation on tour cost and require time. 
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Chapter V 

Conclusions 

Optimization has been an active area of research for several decades. Traveling 

Salesman Problem (TSP) is the most popular combinatorial optimization problem and 

interest grows in recent years to solve it new ways. Recently nature inspired population 

based methods had drawn great attraction to solve TSP. This thesis investigates a new 

Swap Operator (SO) based Particle Swarm Optimization (PSO) method for solving 

TSP. This chapter will now give a short summary of the main points described in this 

thesis. Also, it discusses possible future works based on the outcome of the present 

work. 

OVA 
5.1 Achievements 

For TSP. each particle represents a complete tour and velocity is measured as a Swap 

Sequence (SS) consisting with several SOs. In the existing method, a new tour is 

considered after applying a complete SS with all its SOs of the velocity calculated. 

Since every SO implementation on a solution gives a new solution, we introduced a 

Partial Search and checked all the solutions for the calculated velocity SS to get best 

solution with velocity SS. The proposed Velocity Tentative PSO (VTPSO) is shown to 

produce optimal solution within a minimal time than conventional methods such 

SSPSO and Enhanced Self-Tentative PSO in solving benchmark TSPs. The reason 

behind the less time requirement is revealed from the experimental analysis is that 

VTPSO converge faster due to intermediate tour evaluation. 

5.2 Perspectives 

There are several future potential directions that follow from this study. This study 

considered partial search maintaining sequence of SOs in the velocity SS and 

indentifies that a portion of SS may give better than whole SS implementation. It is 

notable that SOs may be applied independently without sequence because velocity SS 

comes from three different sources: previous velocity, distance to previous best solution 

and distance to global best solution. Such consideration may give better result. 
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