
HEURISTIC APPROACHES FOR 
MAXIMIN DISTANCE AND 

PACKING PROBLEMS 

by 

Abdur Rakib Muhammad Jalal Uddin Jamali 
XXI Cycle 

\ 

A thesis submitted for the partial fulfillnmemmt of 
the requirements for the degree of 

Doctor of Philosophy 

Supervisor: Prof. Marco Locatetli 

Co-supervisor: Dr. Andrea Grosso 

Dipartimento di Informatica 
Ummiversità degli Studi di Torimmo 

Torino, Italia. 

Date: 18 - 02 - 2009. 





UNIVERSITA' DECLI STUDI DI TORINO 

DIPARTIMENTO DI INFORMATICA 

DOTTORATO DI RICERCA IN INFORMATICA 

CICLO XXI 

TITOLO DELLA TESI: 

Heuristic Approaches for Maximin Distance 

and Packing Problems 

TESI PRESENTATA DA: 

Abdur Rakib Muhammad Jalal Uddin Jamali 

TUTOR: 

Prof. Marco Locatdfli 

CO-ADVISOR: 

Dr. Andrea Crosso 

COORDINA TORE DEL CICLO: 

Prof. Pietro Torasso 

ANNI ACCADEMICI: 2005-2008 

SETTORE SCIENTIFICO-DISCIPLINARE DI AFFERENZA: INF/01 

J. 



Abstract 

In this thesis we mainly deal with two problems - experimental design and pack-
ing problems. In the field of experimental design problems we consider maximin 
Latin Ilypercube Designs (LHDs). In the field of packing problems we consider 
those of packing n equal or unequal circles in a circular container with minimum 
radius. Both problems can be formulated as optimization ones. The former is 
a combinatorial problem, while the latter is a continuous one. 

We propose heuristic approaches to tackle these problems. These are Iterated 
Local Search (ILS) heuristics for maximin LHDs, and Basin Hopping (BH) 
heuristics for packing problems. Actually, ILS and BH approaches have strong 
similarities and could be described within an unified framework. However, fol-
lowing the literature, where ILS approaches are mainly applied to combinatorial 
problems, while BH approaches are mainly applied to continuous problems, we 
will keep them apart. 

In order to deal with maximin LHDs, we propose two ILS variants, correspond-
ing to two distinct optimality criteria which are employed to drive the search 
among LHDs. Extensive experiments are performed for the investigation of 
the strengths and weaknesses of the algorithms. A remarkable finding is that 
the most efficient method, though time consuming, performs a non monotonic 
search, driven by an appropriate objective function, within the space of LHDs. 
The proposed approaches are extensively compared with the existing ones in 
the literature, and many improved results with respect to best known ones, are 
obtained. In particular, the proposed methods seem to outperform the existing 
ones when the dimension of the design points increases. Finally, we also discuss 
about the time complexity of the algorithms; by mixing theoretical results with 
experimental ones, we derive an empirical formula for each ILS variant, return-
ing the expected run time as a function of the number of design points and of 
their dimension. 

To deal with the problem of packing equal circles in a circular container with 
minimum radius, we propose a variant of BH, namely Monotonic BH (MBH) 
and its population based counterpart, Population BH (PBH). Extensive com-
putational experiments are performed both to analyze the problem at hand, 
and to choose in an appropriate way the parameter values for the proposed 
methods. Different improvements with respect to the best results reported in 
the literature are detected. The problem of packing unequal circles in a circu-
lar container with minimum radius is also attacked with the MBH and PBH 
approaches, but some components of these approaches are adapted in order to 
fully exploit the peculiarities of the problem with unequal circles (in particular, 
its combinatorial nature due to the different radii of the circles). Again exten-
sive computational experiments are performed and improvements with respect 
to the existing literature are detected. 

-S. 
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1. INTRODUCTION 

in an optimization problem we search for the (global) minimum (maximum) of 
a function over a given domain; we can formulate it as follows 

mm (or max) If (X) X E D c R} (1.1) 

where f is called objective function and maps R' to R, and D is called feasi-
ble set, usually defined by a set of equality and/or inequality constraints. The 
problem is called non-convex if f is not a convex function (or concave in max-
irnization problems) and/or D is not a convex set. The problem is said to be 
unconstrained if D = ll; when D C IRA, we are dealing with a constrained opti-
mization problem. If D is a discrete set, then we call the optimization problem 
a combinatorial one. If D is a continuous set we call the optimization problem 
a continuous one. 

Important definitions are those of local and global optimizers. A global min-
imizer (maximizer) is simnpiy the best point within the feasible region, i.e., the 
one with lowest (largest) objective function value if we are minimizing (maxi-
mnizing). More formally, X is a global minimizer of f over D if 

f(X) :5 f(X) V X E D (1.2) 

in order to define local minimizers we need to introduce the concept of neigh-
borhood. For continuous problems the natural choice is to consider as a neigh-
borhood, X,  for some X E D a n-dimensional sphere centered at X and with 
some positive radius , i.e. 

.Af, (X) = {Y: IlY - X2 :5 ij} (1.3) 

where I1II2 denotes the Euclidean distance. Then, in the continuous case we 
define X' a local minimizer, if for some 17 > 0, X' is the best point within 

(X') (i D, i.e., 

f(X') <f(X) V X E .N(X') fl D (1.4) 

For combinatorial problems the definition of a neighborhood is less obvious and 
often problem dependent. Anyway, once a neighborhood structure AIC  has been 
defined, the definition of a local minimizer is completely analogous to (1.4) with 
Ar,, replaced by .N. Note that any global minimizer is also a local minimizer (in-
dependently from the neighborhood). Also note that while efficient procedures 
for the detection of local minimizers are usually available, the task of finding a 
global minimizer is usually a much more challenging one. Exact methods exist, 
including branch-and-bound techniques, cutting algorithms, branch-and-cut al-
gorithms, dynamic programming. However, often only heuristic approaches are 
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possible because returning a certificate of optiinality would require unaccept- 
ably long computation Limes. The efficiency of these heuristic procedures often 
depends on an appropriate combination of general approaches (i.e., approaches 
which can be applied to general optimization problems) with specific problem 
knowledge. 

While there exists a huge variety of combinatorial and continuous optimization 
problems, in this thesis we will focus our itt,nion on twr, classes of optimization problems: maximin distance problems and packing problems. In the lirst class 
we have to place a given number of points in some given area in such a way 
that their minimal "distance" is maximized. Within this class we will consider 
a combinatorial problem, maximin Latin Hypercube Design (LHD), where the 
area is a grid of points with integer coordinate values (which is related to exper-imental design problem), and a continuous one, where the area is a circular one. 
In the second class we have to place objects within some area, whose dimension 
is controlled by some parameter, without overlapping and in such a way that 
the overall dimension of the area is as small as possible. In this class we will 
consider two continuous problems: the problem of packing equal circles within 
a circular container with minimum radius (which, in fact, is equivalent to the 
second maximin distance problem introduced above, as we will discuss more 
thoroughly later on), and the same problem with unequal circles. 

1.1 Statements of the problems 

Maximin distance problems aim at placing N points within a region C in such a 
way that they satisfy some properties P1, .. . ,P and that, given some distance 
d between pairs of points, the minimal distance between them is maximized. 
Formally, the problem is the following 

max min d(x1,x) 
XI,...,XNEC  

Xry satisfy properties P1 , . . . , 

I!I its most general formulation the packing problem can be defined as follows. 
Given a container which depends on a size parameter r and denoted by C(r) C R', and given n geometrical objects whose position in the d-dimensional space 
depends on u position parameters ci.....c, i.e., Di  = 

. , c) C R' 1,.. . ,n, we would like to choose the parameters in such a way that all the 
objects are packed into the container without overlapping (the objects can at 
most "touch" each other) and the size of the container is minimized. More 
formally, the problem is the following 

min r 

,) C  C(7)  
ij 

where D9 denotes the interior of D. 

As pointed out previously, in the thesis we will deal with two problems belong- 
ing to each of the two classes. The first maximhi distance problem is maximin 
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Latin Hypercube Design (LHD). In such problem with respect to (1.5) we have 
that 

C={0,l,...,N_l} 

for some dimension k, it = 1 and P1 requires that no two points have a common 
coordinate value (equivalently, for each single coordinate, the values of such 
coordinate for the N points must represent a permutation of 0, 1,.. . , N - 1). 
Being C a discrete set, the problem is a combinatorial one. The second maximin 
distance problem is related to placing points in a circular area, which, without 
loss of generality, can always be considered as the unit circle. In this case with 
respect to (1.5) we have that 

C={(x,y) x2 +y2 <1}, 

and points do not have to satisfy further properties. 

In the two packing problems we have to place (equal or unequal) circles in 
a circular container. With respect to (1.6) we have that: the objects are equal 
or unequal circles of given radius; the container is a circle; u = 2; the position 
parameters ai and a2 correspond to the coordinates of the center of circle i; 
the size parameter r is the radius of the circular container. 

We remark that the problem of packing equal circles in a circular container 
with minimum radius, and the problem of placing points in a circular area in 
such a way that their minimal distance is maximized, are in fact equivalent, in 
the sense that given an optimal solution and the optimal value for one of the two 
problems, we can easily derive through simple formulas an optimal solution and 
the optimal value also for the other problem. For this reason, in what follows 
we will only discuss one of the two problems, namely the packing one. 

1.2 Latin Ilypercube Designs: literature review 

Since physical experiments are inevitably very expensive and time consuming, 
computer experiments are widely used for simulating physical characteristics 
and for the design and development of products (for examples, see (671). A 
computer experiment is modeled as a realization of a stochastic process, often 
in the presence of nonlinearity and high dimensional inputs (see Sacks, Welch, 
Mitchell and Wynn [203]). In order to perform efficient data analysis and pre-
diction and in order to determine the best settings for a number of design pa-
rameters that have an impact on the response variable(s) of interest and which 
influence the critical quality characteristics of the product or process, it is often 
necessary to set a good design as well as to optimize the product or process 
design. In computer experiments, instead of physically doing an experiment on 
the product, mathematical models describing the performance of the product 
are developed using engineering/physics laws. Then the mathematical models 
are solved on computers through numerical methods such as the finite element 
method. A computer simulation of the mathematical models is usually time-
consuming and there is a great variety of possible input combinations. For these 
reasons, meta-models [13, 217] that model the quality characteristics as explicit 
functions of the design parameters are constructed. Such a meta-rnodel, also 
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called a (global) approximation model or surrogate model, is obtained by simu-
lating a number of design points. Since a meta-model evaluation is much faster 
than a simulation run, in practice such a meta-model is used, instead of the sim-
ulation model, to gain insight into the characteristics of the product or process 
and to optimize it. Therefore, a careful choice of the design points at which per-
forming simulations in order to build the meta-model, is of primary importance. 

As is recognized by several authors, the choice of the design points for computer 
experiments should at least fulfill two requirements (for details see Johnson et 
al. [125] and Morris and Mitchell [1781). First of all, the design should be 
space-filling in some sense. When no details on the functional behavior of the 
response parameters are available, it is important to be able to obtain infor-
mation from the entire design space. Therefore, design points should be evenly 
spread over the entire region. Secondly, the design should be non-collapsing. 
When one of the design parameters has (almost) no influence on the function 
value, two design points that diflr only in this parameter will collapse, i.e., they 
can be considered as the same point that is evaluated twice. For deterministic 
functions this is not a desirable situation. Therefore, two design points should 
not share any coordinate value when it is not known a priori which parameters 
are important. 

The latter requirement is fulfilled by employing Latin Hypercube Designs (LHDs). 
Such designs, proposed by Beckman, Conover and McKay [169), are evenly dis-
tributed in each one-dimensional projection and are thus non-collapsing. Un-
fortunately, randomly generated LHDs almost always show poor space-filling 
properties. On the other hand, inaxirnin distance designs, proposed by John-
son, Moore and Ylvisaker [125), have very good space-filling  properties but often 
no good projection properties under the Euclidean or the Rectangular distance. 
To overcome this shortcoming, Morris and Mitchell [178] suggested to search for 
inaximin LHDs when looking for "optimal" designs. Although the search for 
maximin LHDs will be one of the problems discussed in this thesis, it is impor-
tant to point out that also other definitions of "optimahity" for designs exist in 
the literature. These are not discussed in detail throughout the thesis (we refer, 
e.g., to the book of Santner et al. 1205]), but, for the sake of completeness, in 
the following literature review we will mention some of them, together with a 
short discussion of the methods employed to return "optimal" (according to the 
selected definition) designs. 

In [128] F. Jurecka et al. the concept of robust design is presented and the need 
for meta-models within this framework is elaborated. They also introduced a 
method to sequentially update the meta-models during the robust design opti-
mization process through strategies typically used in global optimization. 

Bates et al. (15] obtain designs for computer experiments by exploring so-called 
lattice points and using results from iiumber theory. 

Fang et al. in [65, 66] defined a uniform design as a design that allocates 
experimental points uniformly scattered on the domain. Uniform designs do 
not require orthogonality. They consider projection uniformity over all sub-
dimensions. hi [66] they classify uniform designs as space-filling designs. 
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In 12121 Sebastiani and Wynn considered maximum entropy sampling criterion 
for the optimal Bayesian experimental design. The main contribution of this 
paper is the extension of the MES principle for the estimation of the problems. 
Currin [47] also considered an entropy-based design criterion for Bayesian pre-
diction of deterministic functions. 

In [119] R. L. Iman and W. J. Conover proposed a design by minimizing a 
linear correlation criterion for pairwise factors. This is modified into a polyno-
mial canonical correlation criterion by Tang [238]. 

Johnson et al. in [123] and Morris and Mitchell in [178] proposed the max-
imin distance criterion which maximizes the minimum distance between design 
points. Note that a maximin design is certainly space-filling, but not necessarily 
non-collapsing, unless the LHD requirement is imposed. 

Stinstra et al. 12211 proposed sequential heuristic algorithms for constrained 
maximin designs by considering high number of design sites with small volume 
of feasible design space and other constraints. They also used their methods in 
many practical situations. 

Lee and Jung [145] proposed maximin eigenvalue sampling, that maximizes 
minimum eigenvalue, for Kriging model where maximin eigenvalue sampling 
uses eigenvalues of the correlation matrix. The Kriging model is obtained from 
sampled points generated by the proposed method. Note that the Kriging model 
[137] is used to compare the characteristics of proposed sampling design with 
those of maximum entropy sampling. 

The maximin design problem has also been studied in location theory. In this 
area of research, the problem is usually referred to as the max-min facility dis-
persion problem (see Erkut [631); facilities are placed such that the minimal 
distance to any other facility is maximal. Again, the resulting solution is cer-
tainly space-filling, but not necessarily non-collapsing. 

In statistical environments Latin Hypercube sampling is often used. In such 
an approach, points on the grid are sampled without replacement, thereby de-
riving a random permutation for each dimension (see McKay et al. [1691). 

Giunta et al. [77] give an overview of pseudo- and quasi-Monte Carlo sam-
pling, Latin hypercube sampling, orthogonal array sampling, and Hammersley 
sequence sampling. 

McKay et al. [169], Stein [218] and Owen [192] had shown that LHDs perform 
much better than completely randomized designs. More recently, algorithms 
have been used to construct systematic LHDs under various optixnality criteria. 
A LHD always has non-collapsing properties but not necessarily good space-
filling property. In particular, as already remarked, randomly generated LHDs 
often show poor space-filling properties. Therefore, the search for "optimal" 
LHDs has attracted attention (see, e.g., [178, 193, 237, 265, 266]). Different 
optiinality criteria for LHDs have been proposed, including maximum entropy 
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designs (Shewry and Wynn, 1214); Currin et al., [47]), Integrated Mean Squared 
Error (IMSE) of prediction (Sacks Ct. al. [203]) and minimax and maximin dis-
tance designs (Johnson et al. 1125) ). 

Hongquan Xu in [263] introduced the concept of universal optimality from op-
timum design theory into computer experiments, and then exhibited some uni-
versally optimal designs with respect to different distance measures. He showed 
that Latin Hypercubes and saturated orthogonal arrays are universally optimal 
with respect to Hamming distance [100], and that universally optimal designs 
with respect to Lee distance [143] are also derived from Latin Hypercubes and 
saturated orthogonal arrays. 

Lin in ]153] proposed several methods for extending the uniform sampling to 
higher dimensions. The method has also been used to construct LHDs with low 
correlation of first-order and second-order terms. It generates orthogonal LHDs 
that can include many more factors than those proposed by Ye [265]. 

Cioppa in his dissertation [40] developed a set of experimental designs by con-
sidering orthogonal Latin hypercubes and uniform designs to create designs hav-
ing near orthogonality and excellent space-filling properties. Multiple measures 
were used to assess the quality of candidate designs and to identify the best one. 

Tang in [238] proposed a Li-ID by the extension of the concept of Irnan and 
Conover in [119], namely minimizing a polynomial canonical correlation crite-
rion for pairwise factors. 

Park in [193] and Sacks in. [203] constructed optimal LHDs in which IMSE 
and entropy optimization criteria were considered. To construct optimal LHDs, 
Park presented all approach based on the exchanges of several pairs of elements 
in two rows. his algorithm first selects some active pairs which minimize the 
objective criterion value by excluding that pair from the design. Then, for each 
chosen pair of two points i 1  and i2, the algorithm considers all possible ex- 
changes Xijj, -' x 2 j1 ,. . . , xj, x.j, for k < I and find the best exchange 
among theni. 

Leary et al. [142] proposed orthogonal-array-based LHDs for obtaining bet-
ter space-filing property. As all optimal criterion, they consider the sum of 
(square of) reverse inter-site distances. 

Ye in 12651 constructed orthogonal LHDs in order to enhance the utility of LHDs 
for regression analysis. Ye defines an Orthogonal Latin Hypercube (OLHC) as 
a Latin Hypercube for which every pair of columns has zero correlation. Fur-
thermore, in Ye's OLHC construction, the element-wise square of each column 
has zero correlation with all other columns, and the element-wise product of ev-
ery two columns has zero correlation with all other columns. These properties 
ensure the independence of estimates of linear effects of each variable and the 
estimates of the quadratic effects and bilinear interaction effects are uncorre-
lated with the estimates of the linear effects. 

In [219] Steinberg and Lin constructed LHDs in wldcli all main effects are or- 
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thogonal. Their method can also be used to construct LHDs with low correlation 
of first-order and second-order terms. It also generates orthogonal LHDs that 
can include many more factors than those proposed by Ye [265). 

Morris [177) and Kleijnen [132] make it clear that many simulation models 
involve several hundred factors or even more. Consequently, factor screening is 
useful in computer experiments for reducing the dimension of the factor space 
before carrying out more detailed experiments. In [33] Butler proposed optimal 
and orthogonal LHDs which is suitable for factor screening. 

Fang et al. (65] proposed threshold accepting heuristic approaches for optimal 
LHDs to produce low discrepancy designs compared to theoretic expectation 
and variance. They considered centered L2-discrepancy for optimizing the de-
signs. 

Olsson [190] suggested Latin Hypercube sampling as a tool to improve the effi-
ciency of different importance sampling methods for structural reliability analy-
sis. Stocki [222] and Liefvendahl and Stocki [151] proposed probabilistic search 
algorithm, namely Column-wise Pair-wise (CP) search algorithms and Genetic 
algorithms to construct optimal LHDs. For the optimal criterion they consid-
ered energy function (the sum of the norms of the repulsive forces if the samples 
are considered as electrically charged particles) as proposed in [9]. To improve 
the reliability, Stocki [222] considered the pairwise correlation. Liefvendahl and 
Stocki [151] also compared the performance of the CP and genetic algorithms 
for optimal LHDs. 

By using the Latin Hypercube sampling method in [118], Hwan Yang performed 
the uncertainty and sensitivity analysis for the time-dependent effects in con-
crete structure. The results of the Latin Hypercube simulations were used to 
determine which of the model parameters are most sinificant in aectin the  ffg  
uncertainty of the design [120). For each sample, a time-dependent structural 
analysis was performed to produce response data, which were then analyzed 
statistically. 

G. Wang [248] used the Latin Hypercube Design (LHD) instead of the Cen-
tral Composite Designs (CCD), for improvement of Adaptive Response Surface 
Method (ARSM). Note that ARSM was developed to search for the global design 
optunum for computation-intensive design problems. Also note that Response 
Surface Method (RSM) plans a group of design alternatives and performs the de-
sign analysis and simulation simultaneously on these design alternatives. Then 
-in approximation model, called a response surface, is constructed. 

van Dam in [48] derives interesting results for two-dimensional minimax LHDs. 
Bates et al. [16) propose a permutation genetic algorithm to find optimal Auclze-
Eglais LHDs. Crary et al. [45] developed IOPTTMto  generate LHDs with mm-
imal IMSE. 

In Santner et al. [205], Bursztyn and Steinberg [32), [215], it is shown that 
maximirm optimal LHDs generally speaking yield the best approximations. 
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Jin et al. [122] proposed an enhanced stochastic evolutionary algorithm for 
finding maximin LHDs. They also apply their method to other space-filling 
criteria, namely the optimal entropy and centered L2  discrepancy criteria. 

van Dam et al. in [49] derive general formulas for two-dimensional maximin 
LHDs, when the distance measure is t°° or t,  while for the £2-distance measure 
(approximate) maximin LHDs up to 1000 design points are obtained by using 
a branch-and-bound algorithm and constructing (adapted) periodic designs. 

van Dam et al. in [50] proposed some bounds, for the separation distance of 
certain classes of maximin LHDs, which are useful for assessing the quality of 
approximate maximin LHDs. By using some of the special properties of LHDs, 
they were able to find new and tighter bounds for maximin LHDs. Besides these 
bounds, they presented a method to obtain a bound for three-dimensional LHDs 
that is better than Baer's bound for many values of N. They also constructed 
inaxitnin LHDs attaining Baer's bound for infinitely many values of N in all 
dimensions. 

Morris and Mitchell [178] adopted a simulated annealing (see, e.g.. [8]) to find 
approximate maximin LHDs for up to five dimensions and up to 12 design points, 
and a few larger values, with respect to the £_ and e2-distance measure. In Mor-
ris and Mitchell's algorithm, a search begins with a randomly chosen LHD, and 
proceeds through examination of a sequence of designs, each generated as a 
perturbation of the preceding one. A perturbation Dtry of a design D is gener-
ated by interchanging two randomly chosen elements within it randomly chosen 
column in D. The perturbation Dtry replaces D if it leads to an improvement. 
Otherwise, it will replace D with probability ir = exp[— {(Dtry ) - (D)} It], 
where t is the preset parameter known as the "temperature "and is some mea-
sure of the quality of the design. Li and \Vu [150] conSi(lere(l a class of Column-
wise Pair-wise (CP) algorithms in the context of the construction of optimal 
supersaturated designs. A CP algorithm makes exchanges on the columns in 
a design and can be particularly useful for designs that have structure require-
meiits on the columns. Note that each column in a LHD is a permutation of 
{0, . . . , N - l}. At each step, another permutation of {0, . . . , N - 11 is chosen 
to replace a column so that the LHD structure is retained. 

Joseph and Hung in [127] proposed a multi-objective optimization approach 
to find good LI-IDs by combining correlation and distance performance mea-
sure. They proposed a modified simulated annealing algorithm with respect to 
[178]. Instead of randomly choosing a column and two elements within that col-
umn, as in [178], they choose them judiciously in order to achieve improvement 
in their multi-objective function. 

Ye et al. [266] and Li and Ye [149] proposed an exchange algorithm for find-
ing approximate optimal LHDs, but they consider symmetric latin hypercube 
designs (SLHDs). The symmetry property is used as a compromise between 
computing effort and design optimality. However, one important change had 
made to accommodate the special structure of SLHD. For a SLHD two simulta-
neous pair exchanges were made in each column to retain the symmetry. Ye et 
al. [266] considered maximin as an optimal criterion, whereas Li and Ye [149] 
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considered both the maxiniin and the entropy optimal criterion. 

Husslage et al. in [116] constructed nested maximin designs in two dimen-
sions. They showed that difh.i-eiit types of grids should be considered when 
constructing nested designs and discussed how to determine which grid is the 
best for a specific computer experiment. 

Using (adapted) periodic designs and simulated annealing, Husslage et al. in 
[117] extended the known results and construct approximate niaximin Latin 
hypercube designs for up to ten dimensions and for up to 100 design points. 
All these designs rati be downloaded from http://www.spacefIllingdesigns.nl. 
Inspired by the paper [178], in which authors show that LHDs often have a 
nice periodic structure, Husslage et al. developed adapted periodic designs. By 
considering periodic and adapted periodic designs, approximate maximin LHDs 
for up to seven dimensions and for up to 100 design points are constructed. 
They have showii that the periodic heuristic tends to work well even for a small 
number N of design points at low values of the dimension k, but as k increases 
the periodic heuristic tends to get better than other approaches like simulated 
annealing only at large N values. 

In the simulated annealing algorithm of Husslage et al. in [117], four differ-
ent neighborhoods have been considered. In all four neighborhoods the main 
idea is to change two points of the current LHI) by exchanging one or more 
coordinate values. In three of the four neighborhoods, one point is required to 
be a critical point (a critical point is a point which is at separation distance, 
i.e., at a distance equal to the minimal one, from one of the other points). 
In the first neighborhood, one point ji  is selected randomly from all critical 
points and t he other point j2  randomly from all remaining points. This implies 
that the second point can either be a critical or noncritical point. Once the 
points are selected, the number of coordinates to change is randomly selected. 
Due to symmetry, at most [k/2j coordinates are changed. Subsequently, the 
coordinates to change are randomly selected. The values of the two points in 
these coordinates are then exchanged, which results in a new LHD. The second 
neighborhood is very similar to the first. The only difkrence is that always one 
coordinate is selected instead of a random number of coordinates. Note that for 
k = 3 the two neighborhoods are the same. In the third neighborhood, also one 
coordinate is changed, however, now the coordinate is not randomly selected. 
Instead, all coordinates are tried and the one which results in the neighbor with 
the largest separation distance is selected. If more coordinates result in the 
same separation distance, the one with the lowest index is selected. The fourth 
neighborhood is again very similar to the second neighborhood. The difference 
is that the first point is randomly selected from all points, instead of only the 
critical points. Although simulated annealing algorithms have been used before 
to deal with this type of problem, this adapted neighborhood structure, which 
is based on critical points, and the use of a different objective function, turned 
out to work well. 

/--\ 
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1.3 Packing problems : literature review 

The problem of optimally placing n non-overlapping objects belonging to Rd  of 
equal or different size, within a smallest container is a classical mathematical 
problem and has been widely considered in the literature. Besides being in-
terestiiig because of their complexity, the attractiveness of packing problems 
is also motivated by a very broad range of practical applications. Packing 
problems arise in many scientiflc and engineering fields including production 
and packing for the textile, apparel, naval, automobile, aerospace and food 
industries, in particular, to problems related to Cutting and Packing (C&P) 
[56, 60, 61, 71, 97, 224, 229, 230, 2531. Packing problems are bottleneck prob-
lems in Computer Aided Design (CAD) and Computer Aided Manufacturing 
(CAM) where designs plans are to be generated for industrial plants, electronic 
moclule.s, nuclear and thermal plants, etc. 1224, 106]. In the pulp industry, 
packing of cylinders of pulp with different diameters and equal lengths into a 
shipping container is a common problem which is discussed in [75]. In [152] 
Liii and Chen discuss about the layout of newspapers or homnepages. Dowsland 
et a]. in [58] discuss a circle cutting problems arising in the motor cycle in-
dustry (manufacture of sprockets-toothed wheel used in a chain drive). The 
visualization of hierarchical information structures is an important topic in the 
visualization community 1991. In [250] Wang et al. applied the circle packing 
algorithms for visualization of large hierarchical data. 

Although also higher dimensional packing problems have been considered (see, 
e.g., 162, 73, 74, 85, 98]), the literature about packing problems is mostly devoted 
to two-dimensional problems. Different two-dimensional objects have been con-
sidered. Chen et al. [39] investigated the mix-integer nonlinear model for con-
structing a 2-D selection problem, where placement objects were rectangles. 
The works of Marques et al. [166], Oliveira and Ferreira [189] and Correia et al. 
[42] discussed experiments with simulated annealing based meta-heuristic tech-
niqiles for problems of allocating non-convex objects on rectangular containers. 
However, in the Iiehil of packing problems with two-dimensional objects, those 
dealing with circles (often equal ones) certainly play a major role (the niathe- 
niatician R.L. Graham says that "the optimal packing of equal disks . . . is 
an ancient and extremely difficult problem. Some of these very simple problems, 
like how you pack 27 disks in a triangle, square, or circle, are very stubborn". 
For this reason a good deal of literature refers to the problem of packing circles 
into containers with different regular shapes (like squares, rectangles, triangles, 
circles). Probably, the most widely studied case is the problem of packing equal 
circles in a square. For this reason, although we will not focus our attention on 
this problem in the thesis, we will dedicate the next subsection to this special 
case, which has often inspired methods also for the other cases. Later on, we will 
dedicate a subsection to the problem of packing equal and unequal circles into 
a circular container, which will be the one considered in the thesis. We will not 
discuss packing in other shapes like triangles (see, e.g., [87, 171, 173, 185, 264)) 
or rectangular strips (see, e.g., [105, 139, 223, 225]). We also refer to the recent 
paper [35] for a detailed survey about methods and applications of circle packing 
problems. 
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1.3.1 Packing equal circles in a square 

This problem is about. 50 years old. In 1960, Moser was the first who studied 
circle packing in a square [182]. He guessed the optimal arrangement of 8 circles. 
Schaer and Meir [211] proved his conjecture and Schaer also solved the problem 
for n = 9 [208]. For a > 10 only the optimal packing of a = 14, 16,25,36 
have been proved by hand. Wengerodt published proofs for n = 14, 16,25 
[255, 256, 257], while Wengerodt and Kirchner published a proof for a = 36 
[130] by using theoretical tools. However, there are gaps in both proofs for n = 

25 and 36 according to the review MR1453444 in Mathematical Reviews [235]. 

To tackle larger numbers of circles, researchers turned to computer-aided meth-
ods. By using them, optimal packings have been derived up to n = 30 [164, 
165, 187, 1941. In [155] optimality within precision 105  has been proven for n 
up to 35 and for n = 38,39. Computer-aided optimality proofs turn out to 
be quite computationally demanding. It is interesting to observe that these 
proofs are usually based on subdivisions of the unit square into non-overlapping 
sub-rectangles, each of which is guaranteed to contain at most one point of an 
optimal solution, and on the subsequent analysis of all the possible combina-
tions of a such sub-rectangles. As a consequence, the computational burden 
does not increase regularly with a but has a sudden increase each time there 
is a need to increase the number of sub-rectangles (and then also the number 
of possible combinations) in order to guarantee that each of them contains at 
most one point of an optimal solution. 

Time difficulty of proving optimality led to the developimment of heuristic ap-
proaches aiming at improving best known results without giving optimality 
proofs for them. This represents the second main branch of research in the field 
of packing problems. Good approximate packings (i.e., packings determined by 
computer aided iiumerical computations without a rigorous proof) are reported 
in the literature for a up to 100 [235] (results for larger n values are also re-
ported in the Packomania web site [274], but only a few methods have been run 
over such larger instances). At the same time, some other related results (e.g., 
patterns, bounds and some properties of time optimal solutions) were published 
-is well [88, 231, 232, 235]. Below we give a short description of some of the 
emnployed methods. 

de Groot et al. [91] searched for packings with a < 22 circles employing the 
simplex and quasi-Newton BFGS algorithm. 

One technique that has proved effective simulates the idealized movements of 
billiard balls inside a circular or square table. In [88, 160, 162, 163] an event-
driven (billiard balls) simulation algorithm has been applied for solving packing 
problems of equal circles: given a number of poumts-tiny disks-randomly spread 
out over a circular or square area, the disks move around like billiard balls, 
colliding, rebounding, and changing speed. As the disks roam, their diameters 
gradually increase, so the disks have less and less space within which to move. 
Eventually, they get locked into some sort of packing. The procedure is applied 
hundreds of times for a given number of disks, started in random positions and 
at random velocities. 
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Nurrnela and Ostergârd, in [186] applied an energy minimization technique for 
solving the packing of equal circles problems. The authors define an energy 
function '\ ) 

E= (-' 23 

where dij is the Euclidean distance between points i and j, A is a scaling factor, 

and m is a positive integer. They adopt a multistart approach starting a local 
optimization from at least 50 randomly generated solutions. Noting that when 
the energy is minimized, the corresponding solutions converge to those of the 
packing problem as m -* oo, for each initial point the authors first perform a 

local search with a small 7fl value and once they have reached a local minimum 

they increase the value of rn, repeating this scheme until m becomes very large. 

The energy should be minimized over the box [0, 112n  but the authors transform 

the problem into an unconstrained one by an appropriate change of variable. In 
the same paper the authors also recognize some regular patterns of disks which 
are optimal or presumably optimal for small n values but become non-optimal 

for n large enough. The best known among such patterns is the square lattice 

packing of n = k2  points which is optimal for k up to 6 but is not for k = 7. 

Graham and Lubachevsky [88] considered the patterns proposed in [186] and 
extended them with new ones. Their billiards simulation method allows them 
to identify threshold indices above which it is guaranteed that the identified 
regular patterns become non-optimal. 

Boll et a). pro))oSed a two-phase approach in [27]. The first phase is an approx-
imation one. During this phase each point in turn is moved along appropriately 
chosen directions with a step-size which is exponentially decreased during the 
run. The second phase is a refining one where the result of the first phase is the 
starting point for the billiards simulation method. 

In [34] initially the unit square is subdivided into k x k sub-squares, where 

k = k/, and the initial solution is obtained by placing the n points at the 

center of n randomly selected distinct sub-squares. Then, each point is ran-
domly perturbed and the perturbed point may be accepted even when it is 
non-improving (i.e., backtracking is allowed during the search). Starting from 
the results in [341, Szabó in [231] discussed some new regular patterns of points. 

A recent development has been the application by Addis et al. [4] of Mono-

tonic Basin Hopping and Population Basin Hopping approaches. This allowed 
to get many improvements of the best known solutions, even for n up to 100, 

now reported in [274]. 

For a more detailed history of the problem we refer to the recent book [234] 

1.3.2 Packing circles in a circle 

To the author's knowledge, the first reference to this problem dates back to 
Kravitz [136], where solutions for the problem of packing n identical circles in a 
minimal circular container are reported for n up to 19 without any optimality 
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proof. Reis [200] extended the range of n to 25. 

Graham [86] proved optimality of packing with up to 7 circles. Fodor in [69, 701, 
exhibited the densest packing of ii = 12 as well as n = 19 congruent circles in 
a circle with the help of a mathematical tool based on Besicovitch's lemma, 
developed by Bateman and Erdös [14). 

Lubachevsky and Graham in [161] proposed a mathematical formulation for 
packing higher order identical circles in a large circle called curved hexagonal 
packing, when the number of circles can be formulated in a specific form. For 37, 
61, and 91 disks, the curved hexagonal packings were the densest they obtained 
by computer experiments using the so-called 'billiards'sirntilation algorithm. 

Iluang and Xii [258] gave a quasi-physical personification algorithm based on 
combining the quasi-physical approach with the personification strategy by sim-
ulating the movement system for packing unequal and equal circles into a circle 
container. 

An improved quasi-physical quasi-human (QPQH) algorithm has been given 
in [249]. This algorithm combines the quasi-physical approach and the quasi-
human strategy. 

The equivalent maximin distance problem for n points in a unit circle has been 
discussed and tackled with a standard greedy approach in [5]. 

In [268] Zhang and Huang presented a heuristic simulated annealing (HSA) 
algorithm to solve the (equal/unequal) circles packing in a circular container 
problem. For constructing a special neighborhood and jumping out of the local 
minimum trap, some effective heuristic strategies are incorporated in their SA 
based algorithm. The HSA algorithm inherits the merit of the SA algorithm, 
and can avoid the disadvantage of blind search in the simulated annealing algo-
rithm to some extent according to the special neighborhood. 

Zhang and Deng [269] proposed an hybrid algorithm for the packing of identical 
circles as well as unequal circles in a large circle. They combined the simulated 
annealing (SA) approach with tabu search (TS) approach to develop a hybrid 
algorithm to overcome the disadvantages of the two approaches taken by their 
own. The key of this algorithm lies in a powerful means for getting out of local 
minima. SA was introduced to escape from local optima with probability mech-
anisin. TS is mainly used for preventing cycling and enhancing diversification. 
The computational results based on some benchmark instances showed that the 
hybrid algorithm was effective and robust, and almost always outperformed TS, 
SA and QPQH for all benchmark instances. 

Mladenovié et al. in [174] proposed a Reformulation Descent (RD) heuristic 
method, which iterates among several formulations of the same problem until 
local searches obtain no further improvement to pack equal circles into a unit 
circle. RD exploits the fact that a point which is stationary w.r.t. one formula-
tion is not necessarily so with another. Therefore RD alternates between several 
formulations using a fast NLP code that stops in a stationary point. 

-4 
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PrunedEnriched-Rosenbiuth Method (PERM) [901, also called population con-
trol algorithm, is a powerful strategy for pruning and enriching branches when 
searching the solution space and it has shown to be very efficient for solving pro-
tein folding problems 11151  and [111]. In [159[ Lu and Huang presented a new 
method that incorporates the PERM scheme into the strategy of maximum cave 
degree for (equal/unequal) circles packing in a circle. The basic idea of their 
approach is to evaluate the benefit of a partial configuration (where some cir-
cles have been packed and others are outside) using the principle of maximum 
cave degree, and use the PERM strategy to prune and enrich branches efficiently. 

Huang et al. in 1114]  proposed two new heuristics to pack unequal circles into 
a two-dimensional circular container. In the first proposed heuristic they used 
the concept of maximal hole degree for selecting the next circle to place. 
In the second one they incorporate the concept of self look-ahead strategy 
to improve the first one. Recently, in (113] and [114] Huang et al. proposed a 
heuristic, based on the principle of maximum cave degree for corner-occupying 
actions (COAs), to select and pack the circles one by one, and they proposed a 
two level search strategy to improve the basic heuristic algorithm. 

In 11061 Hifi and M'Hallah proposeed a three-phase approximate algorithm. 
During its first phase, the algorithm successively packs the ordered set of cir-
cles. It searches for each circle its "best" position, given the positions of the 
already packed circles, where the best position minimizes the radius of the cur-
rent containing circle. During its second phase, the algorithm tries to reduce the 
radius of the containing circle by applying (i) an intensified search, based on a 
reduction search interval, and (ii) a diversified search, based on the application 
of a nwnber of layout techniques. Finally, during its third phase, the algorithm 
introduces a restarting procedure that explores the neighborhood of the current 
solution in search for a better ordering of the circles. 

In [3] Acldis et al. proposed a heuristic approach for the problem of placing 
n circles with increasing radii from 1 to n, which allowed them to win Al Zim-
mermann's Programming Contest about this problem. Their heuristic is based 
on the Monotonic and Population Basin Hopping approaches, but exploits the 
mixed nature, continuous (circle centers) and combinatorial (radii's values), of 
the problem to define proper perturbation moves. Moreover, some tricks are 
employed taking into account the special structure of the problem. 

We finally remark that, as for the problem of packing equal circles in a square, 
also for the problem of packing equal circles in a circle best known results are 
reported and continuously updated in the Packomania web site [274]. 

1.4 Goals and outlook of the thesis 

The main goals of the thesis are the following. 

• We want to propose heuristic approaches for the maximin and packing 
problems considered in this thesis. In particular, we will consider Iter-
ated Local Search (ILS) heuristics for the maximin LHD problem, and 

.01 
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Monotonic and Population Basin Hopping approaches for the problem of 
packing equal and unequal circles in a circular container. 

• For each proposed approach we want to perform a careful analysis aimed 
at selecting in the most appropriate ways the main components and pa- 
rameters on which the approach depends. 

We want to compare the proposed methods with those in the existing 
literature, in order to show that the proposed ones are competitive with 
(and, in some case, outperform) the already existing ones. 

The thesis is organized as follows. 

In Chapter 2 we present an overview about Iterated Local Search and Basin 
Hopping approaches. In order to show the superiority of MBH with respect to 
Multistart and the importance of the choice of the perturbation operator, an 
illustrating problem is also discussed. 

Mathematical background of maximin LHD is briefly discussed in Chapter 3. 
We present the details of our proposed Iterated Local Search (ILS) approaches 
for finding maximin LIIDs and we discuss two different objective functions driv-
ing the search within ILS. We discuss some local search procedures as well as 
perturbation moves. 

Extensive experiments regarding several important issues about a first variant 
of ILS are performed in Chapter 4. In this chapter we compare experimentally 
such variant of ILS with a simple random search approach as well as with a 
Multistart approach. We present a comparison with some results available in 
the literature. We also propose an empirical formula related to the stopping 
rule of ILS. Finally, a complexity analysis mixing theoretical considerations and 
computational experiments is also carried one. 

In Chapter 5 we discuss most of the issues already discussed in Chapter 4 
but now related to a second variant of ILS. 

In Chapter 6 we discuss the mathematical background about packing prob-
lems. We present the mathematical models of the packing problems which will 
be considered in the thesis. 

In Chapter 7 Basing Hopping algorithms, namely Monotomc Basin Hopping 
(MBH) and Population Basin Hopping (PBH), are proposed for solving the 
problem of packing identical circles in a circular container with minimum radius. 
We propose different perturbation moves for the two approaches, and present 
dissimilarity measures, which are an important ingredient PBH approaches. 

In Chapter 8 extensive experiments are performed regarding several issues 
related to MBH and PBII. Comparisons among different proposed versions of 
the algorithms are presented. Moreover we compare our experimental results 
with those available in the literature. 

In Chapter 9 we propose algorithms for solving unequal circles packing prob- 
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lems. We propose some new ingredients which exploit the inequalities between 
circles' radii. We perform extensive experiments related to different issues of 
the proposed approaches, and make a comparison with the existing literature. 

Finally in Chapter 10 we briefly discuss our motivation for considering two 
different (but, in fact, connected) types of problems as well as the correspond-
ing solution approaches. We summarize our achievements and limitations of 
the proposed approaches and we also point out some possible future research 
directions. 

Since both in maximin LHD and in packing problems we were able to improve 
some of the best known solutions, in Appendix A we list all such improvements 
for the two problems, while in Appendix B we report the coordinates or the 
figures of some of the improved solutions. 



2. OVERVIEW OF HEURISTIC APPROACFIES 

When dealing with an optimization problem, the first aim is usually that of 
finding an optimal solution for it. Unfortunately, the intrinsic difficulty of the 
problem and/or the limited availability of computation time for the particular 
application from which the problem arises (think, e.g., about real-time applica-
tions, where solutions are required in very short times) may make computation-
ally infeasible to return an optimal solution by the required time. 

When solving to optimality of a problem is not possible, the only possible alter-
native is the use of meta-heuristic approaches. In particular, these approaches 
are usually of primary importance when dealing with problems with, among 
others, the following characteristics: 

• NP-Hard; 

• multi-modality (many local optima); 

• non-differentiability or discontinuities (for continuous problems); 

• good quality solutions, though not necessarily optimal, are searched for. 

If the problem does not lit these requirements, one should probably search for 
other optimization tools, meta-heuristics should not be the best choice. Such 
approaches to optimization problems have developed dramatically in the last 
three decades. They have been successful in tackling many difficult problems 
for which finding a solution in a straightforward manner is computat.ionally 
infeasible, and have become more and more competitive. When designing a 
meta-heuristic, it is preferable for it to be simple, both conceptually and in 
practice. Naturally, it also must be effective, and if possible, general purpose. 
Of course, mneta-heuristics offer no guarantee of obtaining the global solutions: 
ease of implementation and quickness have to be paid with the fact that even it-
erating might not provide a good enough solution for some instances. Although 
being general purpose is one of the requirements which should be fulfilled by a 
mimeta-heuristic, the quest for greater performance often suggests to incorporate 
problem-specific knowledge to increase efficiency, with the consequence of loos-
ing both simplicity and generality [158]. 

The meta-heuristic approaches can be classified according to the particular char-
acteristics of each algorithm. This classification leads to a better understanding 
of what strengths and shortcomings each method contains. Some of the most 
widely used meta-heuristic techniques are inspired from naturally occurring sys-
temns. The systems are based on biological evolution, intelligent problem solving, 
physical sciences and swarm intelligence, etc. Meta-heuristics can be classified 
into two broad classes: population-based methods and point-to-point methods. 
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In the latter methods, the search invokes only one solution at the end of each 
iteration from which the search will start in the next iteration. They can also 
be viewed as single-path search methods, where a single trajectory of solutions 
is followed during a run. On the other hand, the population-based methods 
invoke a set of many solutions at the end of each iteration. They can also be 
viewed as multi-path search methods, where different trajectories of solutions 
are followed in parallel during a run, and usually collaboration mechanisms ex-
ist which guarantee a sufficient diversification of the followed trajectories. Ge-
netic algorithms [108, 831, Population Basin Hopping (PBH)[95] are examples of 
population-based methods; Simulated Annealing]131}, Tabu Search [78, 79, 821, 
Iterated Local Search(ILS) [20, 19, 21], Monotonic Basin Hopping (MBH)[141] 
are examples of point-to-point methods. 

In this chapter ILS and MBH meta-heuristic approaches are briefly presented 
and discussed. ILS approaches have been mainly applied to hard combinatorial 
optimization problems, where the search space is discrete. MBH approaches 
have been first applied to molecular conformation problems, which are special 
global optimization problems, and later extended to other continuous optimiza-
tioii problems. In fact, in spite of the different application fields, the description 
of the two methods will reveal that MBH can actually be viewed as a special 
ILS heuristic. However, in order to respect the existing literature and the differ-
ent terminology sometimes employed in the two approaches, we will treat them 
separately. Besides ILS and MBH, we will also briefly discuss PBH, which can 
be viewed as a population based version of MBH. 

2.1 ILS approach 

Iterated Local Search(ILS) is a meta-heuristic designed to embed another, prob- 
1cm specific, local search as if it were a black box.This allows ILS to keel) a more 
general structure than other meta-heuristics currently in practice. This simple 
type of search has been reinvented numerous times in the literature, with one 
of its earliest incarnations appearing in [154]. This simple idea [21] has a long 
history, and its rediscovery by many authors has lead to many diflreiit names 
for iterated local search like iterated descent [20, 191, large-step Markov chains 
[167], iterated Lin-Kernighan [123], chained local optimization [168], or combi-
nations of these [7]. 

ILS has many of the desirable features of a meta-heuristic: it is simple, easy 
to implement, robust, and highly effective. The essence of the iterated local 
search meta-heuristic can be given in a nut-shell: one iteratively builds a Se-
quence of solutions generated by the embedded heuristic, leading to far better 
solutions than if one were to use repeated random trials of that heuristic. Two 
main points in ILS are the following: (i) there must be a single chain that is 
being followed (this then excludes population-based algorithms); (ii) the search 
for better solutions occurs in a reduced space defined by the output of a black 
box heuristic. In practice, local search has been the most frequently used em-
bedded heuristic, but in fact any optimizer can be used, be it deterministic or 
not. The essential idea of ILS lies in focusing the search not on the full space 
of solutions but on a smaller subspace defined by the solutions that are locally 
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optimal for a given optimization engine. The success of ILS lies in the biased 
sampling of this set of local optima. How effective this 'approach turns out to 
be depends mainly on the choice of the local search, of the perturbations, and 
of the acceptance criterion. So far, in spite of its conceptual simplicity, ILS can 
often become a competitive or even state of the art algorithm without the use 
of too much problem-specific knowledge. Perhaps this is because ILS is very 
malleable, many implementation choices being left to the developer [158]. In 
what follows we will give a formal description of ILS and comment on its main 
components. 

2.1.1 Components of ILS Methods 

The pseudo-code of ILS is the following 

Procedure Iterated Local Search 

so  = GeneratelnitialSolution 
8* = LocalSearch(so) 

repeat 

= Perturbation(s, history) 
s 1  = LocalSearch(s') 

s = AcceptanceCriterion(s,s', history) 
until termination condition met 

end 

ILS involves four main components: 

creating an initial solution; 

a black-box heuristic that acts as a local search on the set S; 

the perturbation operator, which modifies a local solution; 

the acceptance criterion, which determines whether or not a perturbed 
solution will become the starting point of the next iteration. 

In practice, much of the potential complexity of ILS is hidden in the history 
dependence. If there happens to be no such dependence, the walk has no mem-
ory: the perturbation and acceptance criterion do not depend on any of the 

solutions visited previously during the walk, and one accepts or not s' with a 
fixed rule. 'l'his leads to random walk dynamics on 5 (where S is the locally 
optimal proper subset of S) that are "Markovian", the probability of making a 
particular step from sj to s depending only on s and s. Most of the work 
using ILS has been of this type, though recent studies show unambiguously that 
incorporating memory enhances performance [226]. 

When exploring the search space, it is important for the ILS procedure to ade-
quately search local regions. It is also important for the ILS procedure not to 
spend too much of its computational efforts around local optima, effectively lim-
iting the search to a few regions of the domain. The former need describes the 
idea of intensification (ensuring that the process thoroughly inspects each local 
minimum) of the search, while the latter describes the idea of diversification 
(making sure the process is not searching a subset of the domain). Actually, it 
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is well known that the effective balancing of intensification and diversification is 
one of the largest hurdles encountered when tailoring any meta-heuristic (and 
not merely ILS) for a specific problem. Multiple strategies exist for accorn-
inodating both. Note that among the diversification strategies a simple, but 
widely employed, one is restarting: when no progress is observed, the algorithm 
is restarted from a new randomly generated solution. 

Local search applied to the initial solution so  gives the starting point s of 
the walk in the set S. Starting with a good s can be important if high-quality 
solutions are to be reached as fast as possible. The initial solution SO used 
in the ILS is typically detected in one of two ways: (i) a random solution is 
generated or (ii) a greedy construction heuristic is applied. A greedy initial 
solution So  has two main advantages over random starting solutions: (i) when 
combined with local search, greedy initial solutions often result in better qual-
ity solutions s; (ii) a local search from greedy solutions takes, on average, less 
improvement steps and therefore the local search requires less CPU time. It has 
been shown, however, that this is true only in the short-term. Longer running 
algorithms see no significant difference in solution quality based on the initial 
solution [124, 227]. 

Ideally, the local search that provides the backbone of the ILS method should 
always return a local optimum and it should detect it as efliciently as possi-
ble. Since the behavior and performance of the overall ILS algorithm is quite 
sensitive to the choice of the embedded heuristic-LocalSearch, and since this 
step is usually the most time consuming (it occurs at each iteration of the 
meta-heuristic), one should optimize this choice whenever possible. Since ILS 
is usually applied to problems defined over discrete domains, choosing a good 
local search algorithm usually amounts to choosing a good neighborhood struc-
tiire. In practice, there may be many different neighborhood structures and, 
consequently, many different local search algorithms that can be used for the 
embedded heuristic. One might think that the better the quality of the solu-
tions returned by the local search algorithm, the better the corresponding ILS 
[124, 228]. But if we assume that the total computation time is fixed, it might be 
better to apply more frequently a faster but less eflctive local search algorithm 
than a slower and more powerful one. Clearly which choice is best depends on 
just how much more time is needed to run the better heuristic. If the speed 
difhrenee is not large, for instance if it is independent of the instance size, then 
it is usually worth using the better heuristic. In fact, it is difficult to make a 
priori this choice, as well as many others which have to be done when defining 
a ILS heuristic. A good strategy is always that of making choices only after 
extensive computational experiments. 

The main drawback of any local search algorithm is that, by definition, it 
gets trapped in local optima that might be significantly worse than the global 
optimum. Some meta-heuristic approaches like Simulated Annealing or Tabu 
Search, try to overcome this limitation by the introduction of non-improving 
move: local searches follow descent trajectories which are unable to make any 
progress once a local minimum has been reached, while norm-improvmg moves 
allow to escape from local minima through hill-climbing (or backtracking). The 
strategy employed by ILS to escape from local optima is represented by per- 
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turbat.ions to the current local niininunn. The perturbation scheme takes a 
locally optimal solution, s*, and produces another solution from which a local 
search is started at the next iteration. Hopefully, the perturbation will return 
a solution outside the basins of attraction of previously visited local minima. 
That is, it will be "near" a previously unvisited local optimum. Choosing the 
correct perturbation scheme is of primary importance, because it has a great 
influence on the inteiisi fication/diversi uication characteristics of the overall algo-
rithm. Generally, the local search should not be able to undo the perturbation, 
otherwise one will fall back into the local optimum just visited. Perturbation 
schemes are commonly referred to as "strong" and "weak ", depending on how 
much they affect the solution that they change. A perturbation scheme that is 
too strong has too much diversity and will reduce the ILS to an iterated ran-
dom restart heuristic. A perturbation scheme that is too weak has too little 
diversity and will result in the ILS not searching enough of the search space. 
The perturbation scheme should be chosen in such a way that it is as weak as 
possible while still maintaining the following condition: the likelihood of revisit-
ing the perturbed solution on the next execution of LocalSearch should be low 
[158]. The strength should remain as low as possible to speed up execution time. 
The desired perturbation scheme will return a solution near a locally optimal 
value. If this is the case, the local search algorithm should take less time to 
reach the next locally optimal value. Components from other meta-heuristics 
can sometimes be incorporated into the perturbation phase. Battiti and Pro-
tasi [17] use memory structures similar to tabu search [78, 79, 821 to control 
the perturbation. In doing so, one can force intensification when globally good 
values are reached and force diversification whieii the search stagnates in an area 
of the search space. I3orrowing from Simulated Annealing [131], temperature 
controlled techniques have been used to force the perturbation to change in a 
deterministic manner. Basic variable neighborhood search employs a determin-
istic perturbation scheme. 

When the current solution (which is a local optimum), s, is perturbed, the 
result is the new solution s'. s' is then passed to the black-box search heuris-
tic i.e. LocalSearch. The resulting local optimum s' must pass acceptance 
criterion for s" to be designated as the new "current solution". Just as per-
turbation can range from too much intensification (no perturbations) to too 
much diversification (perturb all elements of the solution), acceptance criterion 
choices affect the search in a similar way. The imiost dramatic acceptance cri-
terion on the side of diversification is to accept all perturbed solutions. This 
type of l)ractice can undermine the foundations of ILS, since it encourages a 
"random-walk" type search. Contrasting with this, the algorithm accept only 
solutions that are improvements to the globally optimal value (a sort of greedy 
strategy). Many implementations of ILS employ this type of acceptance strat-
egy [202]. This type of criterion, especially with a weak perturbation scheme, 
can restrict the search from escaping the current basin of attraction. Moreover, 
with this type of scheme the probability of reaching the same locally optimal 
value increases a trait that reduces the algorithm's overall effectiveness. In this 
case random restart when the search stagnates is a good way to ensure some di-
versification and to counterbalance the (possible) negative effects of too greedy 
a search. Large perturbations are only useful if they can be accepted. This 
only occurs if the acceptance criterion is not too biased toward better solutions 
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[157). The tabu search relies on occasionally moving the search into areas with 
worse objective functions in order to better search the solution space. In [226] 
author shows that acceptance criteria that accept some worse solutions outper-
form their best-only counterparts. 

For what concerns the stopping rule, generally the algorithm executes until 
one of the following conditions is met: 

• a predetermined number of cycles have occurred; 

• the best solution has not changed for a predetermined number of cycles; 

• a solution has been found that is beyond some predetermined threshold. 

Notice that the three rules constitute three different approaches: the first rule 
executes independently of the performance of the process (time); the second one 
stops executing when the performance of the method stops improving (perfor-

mance); the third one stops executing when a solution is found that is "good 

enough" (utility) 

The rationale behind ILS is supported by the proximate optimality principle 
(82). This principle assumes that good solutions are similar. This assumption is 
reasonable for most real-world problems. For example, the percentage of com-
mon edges in any two locally optimal solutions obtained by the Lin-Kernighan 
method is about 85 % on average. Based on this principle, search should take 
place in S around the best locally optimal solutions found so far. Perturbations 
should be such that the structure of a local solution is not disrupted and many 
of its "good" parts are also retained by the perturbed solutions and by the lo-
cal optimum reached when starting a local search from the perturbed solution. 
Even when using the most naïve implementations of the main components of 
ILS, one can do much better than with random restart. But with further work 
so that the different modules are well adapted to the problemim at hand, ILS can 
often become a competitive or even state of the art algorithm. This dichotomy 
is important because the optimization of the algorithm can be done progres-
sively, and so ILS can be kept at any desired level of simplicity. This, plus the 
modular nature of ILS, leads to short development times and gives ILS an edge 
over more complex meta-heuristics in the world of industrial applications. As 
an example of this, recall that ILS essentially treats the embedded heuristic as 
a black box; then upgrading an ILS to take advantage of a new and better local 
search algorithm is nearly immediate. 

2.2 MBH approach 

Monotonic Basin Hopping (MBH) is a heuristic approach for the global op-
timization of high-dimensional and highly multi-modal continuous functions. 
It has been first applied in the field of molecular conformation problems (see 
[141, 247]), where the global optimization of the mathematical model of the 
energy of a cluster of atoms allows to predict the geometrical structure of such 
cluster. MBH falls into the category of methods in which the function to be op-
timizeci is transformed to make searching easier without affecting the solution. 
In MBH the transformation maps the function onto a series of plateaus where 
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Fig. 2.1: A schematic diagram illustrating Funnel and MBH approach on one dimen-
sional example 

the barriers between local minima have been removed 1141] (see Figure 2.1(b)). 

The key idea of this approach is the measurement of the difficulty of the 
problems by the concept of funnel (see again Figure 2.1(b)). This concept was 
first introduced in the previously mentioned global optimization problems aris-
ing in computational chemistry. For many molecular conformation potential 
energy surfaces, the local minima can be organized by a simple adjacency rela-
tion into a single or at most a small number of funnels. A distinguished local 
minimum lies at the bottom of each funnel and a monotonically descending se-
quence of adjacent local minima connects every local minimum in the funnel 
with the funnel bottom. Thus the global minimum can be found among the 
comparatively small number of funnel bottoms, and a multistart strategy based 
on sampling funnel bottoms becomes viable. 

In order to roughly describe what a funnel is, here we give an definition based 
on neighborhoods of local minima (see also 141). Let P1 be a neighborhood struc-
ture defined upon the set X of all local minima of a given objective function f. 
Then, a funnel can be defined as a maximal subset Y CX of local minima with 
the following property: there exists a local minimum X E 31 such that for all 
X e 31 a decreasing sequence of neighbor local minima in 31 starting at X and 

ending at X exists, i.e. 

Xo,Xi,.,Xt :XEJ'f(X_i)flY i=1,2,,t 

f(X)<f(Xi) x0 =X, x=3?'. 

The common final endpoint of the sequences is called funnel bottom. We can 
also think of a graph whose nodes are local optima; two local optima Xi and 

X j  with f(X) f(X) are connected by a directed arc if from Xi it is possi-
ble to reach Xj. This possibility might be interpreted and defined in different 
ways. In chemistry and biology reachability corresponds to the situation in 
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which there exists a continuous path connecting the two configurations which 
never exceeds a given energy level. So we might define as connected by an arc 
two local minima such that there is a path connecting them along which the 
objective function never exceeds a given value (the red path in Figure 2.1(b)). 
Alternatively, we might say that Xj is reachable from Xi  if a local optimization 

started from a point in a neighbor of Xj  ends up at X . In any case, given a 
definition of reachability, a funnel bottom is defined as a local minimum with 
no outgoing arcs and a funnel is defined as a maximal set of local optima from 
which the same funnel bottom can be reached through a directed path. Thus, 
a funnel is a set of local minima characterized by the fact that for each of them 
there exists at least one decreasing sequence of "neighbor " local minima along 
a path leading to a unique local minimum corresponding to the bottom of the 
funnel. The number of funnels, together with their width, seems to be a much 
more appropriate measure for characterizing difficult CO problems with respect 
to the overall number of local minima. 

There exist in the literature simple but quite effective algorithms which are 
particularly well suited for functions of the above type: the Basin Hopping 
(BH) algorithm by Wales and Doye (247] and, the Monotonic Basin Hopping 
(MBH) algorithm by Leary[141] and some of its variants [2] proved to be ex- 
tremely efficient in detecting funnel bottoms. The basic structure of MBH, as 
given in [141] is the following, where MaxNolmp is a prefixed parameter. 

MBH: let X: initial local minimum 
Step 1. Compute Y :- (X) such that Y E AI(X) 
Step 2. if f(Y) <1(X)  then set X := Y 

else reject Y 
Step 3. Repeat Steps 1- 2 until 

MaxNolmp consecutive rejections have occurred; 
Step 4. return X; 

The local move 1 is usually defined as 

<T'(X) = L1(X + ), 

where A is usually a uniform random vector drawn from a box with given size. 
We observe that MBII performs a kind of mnonotonic depth-first search in search 
space S. Despite its simplicity, computational experiments reveal the effective-
ness of MBH when faced with GO problems with single funnel landscapes or 
with a large basin of attraction of the funnel containing the global optimum 
12, 1411. In fact, MBH cleverly copes with the structure of a funnel, generating 
a descent sequence of local minima; the current best solution is (heuristically) 
declared to be a funnel bottom after MaxNolmp non-improving iterations. 

But if we have a closer look to MBH, it will become immediately clear what 
we stated in the introduction of this chapter, i.e. that MBH is in fact nothing 
but aim ILS heuristic. Indeed, is nothing but the perturbation operator, the 
acceptance criterion is the monotonic one (only accepts improving moves), and 
the stopping criterion asks for stopping when no improvement is observed for a 
given number(MaxNolmp) of iterations. 
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2.3 Illustrating MBH (and ILS) through a toy problem 

In this section we present a simplified toy problem through which we show 
both the superiority of MBH with respect to a Multistart strategy (multiple 
local searches started from randomly generated points), and the importance of 
the choice of the perturbation operator (in particular, in this case we will only 
consider the dependency on the size of the perturbation). These issues will also 
be more thoroughly computationally investigated for the problems considered in 
this thesis, but the theoretical analysis of this simple example will also be useful. 
We only discuss MBH but a completely similar analysis could also be performed 
for any ILS approach. We will assume that our problem is a two-dimensional 
one with a set S made up by 25 local minimizers defined as follows 

= {(i,j) : i,j E {-2, —1,0, l,2}}. 

The objective function is simply x2  +y2, so that the global minimizer is obviously 
the origin. We build a graph G whose nodes are the local minimizers and 
two nodes/local minimizers are connected by an edge if they have a common 
coordinate value and a difference of one for the other coordinate value. We will 
make the following simplifying assumptions: 

• the computational effort to detect a local minimizer is the same for all the 
25 local minimizers; 

• the size of the region of attraction of each local minimizer is the same, or, 
equivalently, all local minimizers have the same probability 1/25 of being 
detected when starting a local search from a point uniformly generated 
over the feasible region. 

'l'he first assumption allows us to evaluate the effort to (Ictect the global mini-
mizer in terms of number of local searches performed. The second assumption 
immediately tells us that 

ELC[Mniti] = 25, 

i.e., the expected number of local searches (ELC) for Multistart is equal to 25. 

Now, let us compute the same value ELC for MBH. We first consider the case 
in which the neighborhood of a local minimizer employed for the perturbation 
is the one made up by all the local minimizers which can be reached from the 
current one through a path of length one in graph G (more simply, those local 
minimizers connected by an edge to the current one). This neighborhood will 
be denoted by N1. Because of symmetry, we can group together some local 
minimizers. In particular, we will recognize six different groups: 

Si = {(-2, —2); (-2,2); (2, —2); (2,2)1 
S2  = {(-2, —1); (-2,1); (2, —1); (2,1); (-1, —2); (1, —2); (-1,2); (1,2)1 
S3  = {(0,2); (2,0); (-2,0); (0,-2)} 
S4  = {(—i, —1); (- 1,1); (11 -1); (11  1)} 
S5  = {(1,0); (0, 1);(-1,0); (0,-01 
S6  = {(0,0)} 

We can represent the evolution of MBH through a Markov chain whose states 
are the six groups above, and whose matrix of transition probabilities (assuming 
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a uniform distribution over the neighborhood of a given local minimizer) is the 
following 

010000 
(I 1 1 1 

000 0 
000440 
000044 
000001 

The expected time to reach the global minimizer is equal to the expected time 
to reach the unique absorbing state (which, indeed, is the global minimizer). 
In order to compute the expected absorbing time from each starting state, we 
need to solve the following linear system 

Ii.' = /22 + 1 
P2=t2+/.L3+/24+1 
/13 = /i3 + /.L5 + 1 
94 = /14 + 4/25  + 1 

= 2Y5 + 4/26 + 1 
/26 = 0 

The solution of this system is the following 

/2i7 ft2 6  J235 /24=4 /25=2 ji=0 

Taking into account that the initial distribution of all local minimizers is the 
uniform one, we have that 

4 8 4 4 4 29 
ELCLMBH(A(i)] = /11 + 1L2 + /23  + /14 + /L5 + 1 = 

which is much inferior with respect to ELCIM'ultil. 

Next we try to show the dependency of the results form the size of the per-
turbation operator. We define a new neighborhood, denoted by JV, made up 
by all local minimizers reachable with a path of length at most 2 in graph C 
starting from the current local minimizer. Note that N2 is obviously a larger 
neighborhood with respect to N. Again we can perform an analysis based 
on Markov chains. We group the local minimizers as above. The matrix of 
transition probabilities is now the following 

10 
10 I 
100 
100 

F? 

g 

! 
F? 0 

1 
01 
01 
ii 

I 
1000 0 1 

ujil 
o 0 0 0 1 
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In order to compute the expected absorbing time from each starting state, we 
need to solve the following linear system 

Al = JL2 + /13 + 1/14  + 1 
112= P2+/13+ /14 +/15 +1 

113= 
/14 

= j/l4 
+ JL5 + /16 + 1 

ii/ + iL6  + 1 
= 0 

The solution of this system is the following 

41 27 77 32 
/1 /12-i- /L3 --  L4 p11 f25 0 

Taking into account that the initial distribution of all local minimizers is the 
uniform one, we have that 

4 8 4 4 4 977 
ELC[MBH(J'f2)] = + + + + +1 = 

which is inferior with respect to ELC[Multi] but clearly superior to ELC(MBH (P11 )], 
thus showing that a smaller neighborhood is more appropriate in this case. 

The assuniption that the distribution of all local minimizers is the uniform one 
is essential for the above result. If we drop it we can get to diffcrent conclusions. 
In particuiar. if we assume that all local minimizers, except the global one, have 
a small probability E > 0 but the global one has a very large probability 1 - 24, 
then we might expect that Multistart works better than MBH(iVi). This can 
also be confirmed through the usual analysis. It holds that 

ELC[Mniti] 
= 1 

=1 + 
1 —24e 

The matrix of transition probabilities (assuming that each transition is the 
restriction of the general distribution of local minimizers over the neighborhood 
P!1  of a given local minimizer) is the following 

0100 0 0 
nl 1' 

s as 
000 0 
000k * 0 
0 0 0 0 
0000 0 1 

In order to compute the expected absorbing time from each starting state, we 
need to solve the following linear system 

= 112 + 1 

I iL2IL2+/13+114+1 

J /13[L3+-/15+1 
/14 = /14 + /15 + 1 

3e 1-24e 
= TT/1 + + 1 

/16 = 0 



2. Overview of heuristic approaches 29 

Taking  into account that the initial distribution of all local minimizers , we have 
after some computations that 

ELC[ZvfBH(J1j)] = 1 + 88E + o(c), 

which, for c small enough, is larger than ELC[Multi]. 

2.4 Population Basin Hopping 

The solution of GO problems with a large number of funnels and/or a small 
basin of attraction for the funnel containing the global minimum is a much 
more difficult task. In these cases MBH often fails to reach the global optimum. 
In these cases many runs of MBH might be needed before ending up in the 
funnel bottom corresponding to the global optimum, i.e. many different single 
paths have to be followed. Basically, diversification is ensured through multiple 
restarts from randomly generated solutions. Unfortunately, a possible drawback 
is that many runs end up in a strongly attractive funnel bottom which, however, 
does not correspond to the global optimum. 

In these cases population based approaches might be better suited to solve such 
difficult problems. These approaches rely on an evolving collection - population 
- of solutions; evolution is driven by perturbation operators (crossover, muta-
tion) and selection/replacement mechanisms. Such mechanisms embed some 
device to enforce diversity among members of the population, in order to avoid 
that all or most of them converge to the same solutions. 

Inspired by the Conformational Space Annealing algorithm (see, e.g., [1441) 
in which the single path search is substituted by a multiple path search, Grosso 
et al. 195]  propOSe(l population based MBH approach called Population Basin 
Hopping(PBH) approach. Rather than following a single search like in MBH, 
P1311 searches over the solutions in a multi-search fashion. During the search, 
mneiribers of the population collaborate with each other in order to guarantee di-
vers ifi cation of the search and to avoid the greediness which might characterize 
a single path search. This way the previously mentioned drawback of multi-
ple runs of MBH ending up in the same non-global funnel bottom, is avoided 
by keeping far from each other the different paths followed during the search. 
When dealing with particularly hard molecular conformation problems (Morse 
clusters with large p values), PBH turned out to be quite clearly more efficient 
than MBH [95]. 

Including all components of MBH approach, there exist a new operator in PBH 
approach called dissimilarity measure V. The operator dissimilarity measure 
measures the diversity between two solutions. The concept of similarity is 
problem-specific; the only essential requirement for the similarity of two so- 
lutions, say, X, Y is V(X, Y) 0 if X = Y [95]. The dissimilarity measure 
is employed to avoid that "too similar" solutions are present at the same time 
within the current population. In particular, two equivalent solutions can not 
be present at the same time within the population. Ideally, this should bring 
to the situation where all the paths followed during a run of PBH end up in a 
distinct funnel bottom, thus avoiding the waste of computational effort caused 
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by multiple detection of the same funnel bottom. 

We do not give here the details of PBH and postpone their presentation to 
Section 7.2, where we will present a PBH approach for packing problems. For 
further details, we also refer to the paper [95]. 

4 

~ 

-41 



3. MAXIMIN LHD 

We will denote as follows the s-norm distance between two points xi  and x, 
V i,j=1,2,• ,N: 

dij = 11xi - xjll , (3.1) 

Unless otherwise mentioned, we will only consider the Euclidean distance niea-
sure (s = 2). In fact, we will usually consider the squared value of dij  (in brief 
d), i.e. d2  (saving the computation of the square root). This has a noticeable 
effect on the execution speed since the distances d will be evaluated many times. 

3.1 Definition of MiD 

A Latin Hypercube I)esign (LHD) is a statistical design of experiments, which 
was fIrst defined in 1979 11691. An LHD of k-factors (dimensions) with N design 
points, Xi = x 2 • ..rk) i = 0, 1,..., N—i , is given by a Nxk- matrix (i.e. 
a matrix w h N rows and k columns) V where each colunm of X consists of a 
permutation of integers 0, 1,- , N— 1 (note that each factor range is normalized 
to the interval [0, N - 1]) so that for each dimension j all x, i = 0, 1, , N - 1 
are distinct. We will refer to each row of X as a (discrete) design point and 
each column of X as a factor (parameter) of the design points. 

We can represent X as follows 

/X o \ / xoi 50k 

X=I 
J 

(3.2) 

X_ / \ X(N-1)1 X(N-1)k I 

such that for each j E {1, 2• , k} and for all p, q E 10, 1, , N - 11 with p 54  q 
5pj 5q j holds. 

Giveii a LHD X and a distance d, let 

D = {d(x,x): 1 < i <j < N}. 

Note that ID1 :~ (). We define D,.(X) as the r-th minimum distance in D, and 
J,.(X) as the number of pairs {x, x } having d(x, x) = Dr (X) jfl X. 

Th(- maximin liii) problem aims at finding a LILD X such that D1 (X) is 
as large as possible. However, a search which only takes into account the D1  
values is certainly not eflicient. Indeed, the landscape defined by the D1  values 
is "too flat". For this reason the search should be driven by other optimality 
criteria, which take into account also other values besides D 1 . In what follows 
we will present sonic of them. 
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Fig. 3.1: Some LIIDs and their corresponding (D1 ,,11 ) values. 

3.1.1 Optimality Criteria 

In order to drive the search through LHDs we need some criterion to compare 
them. Below we will de.scribe some of the criteria employed in the literature. 

Opt(Dj. .J) Optimality Criterion : Under this criterion a LHD Y can be 
considered better than another one X if a lexicographic ordering holds: 

Dj(Y)>D1 (X) or 
33) D1 (Y) = D1 (X) and J1 (Y) < J1 (X). 

In what follows we illustrate this optimality criterion through some examples. 
In Figure 3.1 (a) Xr is a randomly generated LHD with (k, N) = (2. 10) where 
Di(Xr) = 2 and J(Xr ) = 6; Figure 3.1 (b) presents all iuiiproved configuration 
X where D (X,) = 10 with J(X.) = 13. A third LHD XM is given in 
Figure 3.1 (c) where Di (Xj) = 10 and .11 (X, 1) = 11; by the Opt(Dj, .J) 
criterion this is the best configuration among the three. 

By generalizing this approach, we can con.sider the problem like a multi-
objective problem with priorities: maximize the objective with highest l)riOrity 
D1  : within the set of optimal solutions with respect to D11  minimize the ob-
jective with second highest priority J1 . Note that Johnson et. al. [125] first 
proposed this optiinality criterion. 

Opt(0) Optimality Criterion : As previously remarked, if there exist 
different LHDs with equal D1  and .J values, i.e. in case there exist at lca.st  
two Ll1Ds X. Y such that D1 (X) = D1  (Y) = D1  and J1 (X) = J1  (Y) = J, we 
could further consider the objective 1)2 and maxinjize D2(X), the second small-
est distance in X. and, if equality still hokls, minimize J2(X), the number of 
occurrence of D2(X), and so on. Then an optimal design X sequentially maxi-
mizes Ds and minimizes .Js in the following order: D. J1; D2, J2  .-. , D, J,. 
Morris and Mitchell [178] have used all the above measures to define a family of 
scalar-valued functions (to be minimized), which can be used to rank competing 
designs in such a way that a uuiaxirnin design receives the highest ranking. This 
family of functions, indexed by p, is given by 

Y11 I 
= 

•Jr(X) 1 
(3.4) 

where p is a positive integer parameter. Under this criterion, LHD Y is better 
than X if 

OP (Y) <ç5,,(X). 

OBJO(Jilddesh 0. 
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Note that for large enough p, each terni in the sum in (3.4) dominates all 
subsequent terms. Through p we can control the impact of the different Dr 
distances: as p increases, the impact of dlistance D1  becomes more and more 
relevant. In the form (3.4), the evaluation of O

p would be computationahly 
costly. However, it has a computationally cheaper form (see ]1221). Indeed, 
(3.4) can be simplified as 

I 
IN N 

c(X) = i , (3.5) 
j=i+1 13 

which can be computed without the need of detecting and ordering all the D 
values. 

An apparent drawback of the Opt() criterion, if we are interested in max-
imin values (maximum D1  value), is that LHDs with smaller (better ), can 
have a worse(smaller) D1 , i.e. we can have X and Y such that (X) < (Y) 
and Di (X) < D1 (Y). This Phenomenon has been frequently observed in our 
computational experiments (see Section 5.1). Nevertheless, a profitable choice 
is to work in order to minimize the Op  function but, at the same time, keep 
track of the best (D1 , .Ji) values observed during such minimization. This way 
the search in the solution space is guided by a kind of heuristic function. Such a 
mixed approach might appear strange but, as we will demonstrate experimen-
tally, it can be extremely effective. 

While the two criteria above are strictly related to maximin values and, as 
we will see, they will be widely employed in the definition of approaches for 
detecting maximin solutions, for the sake of completeness, we also mention that 
also other optirnahity criteria, not necessarily related with maximin values, are 
available in the literature. Below we present a couple of them. We point out 
that, while we could specialize our approach to these criteria, in the thesis we 
have not pursued experiments with them. 

Force Optirnahity Criterion : At first we introduce a function C which, 
in a physical analogy, is the sum of the magnitudes of repulsive forces if the 
sample points are considered as electrically charged particles (see [15, 151]). 

(3.6) 
i=1 j=i+I '3 

From the point of view of the physical analogy, it would have been natural with 
the power 1 (instead of 2) in the denominator of the terms of the sum. However, 
as we stated earlier, with the power 2 a computation of a square root for each 
terni is avoided, so that we have a cheaper computation. Then Y is better than 
X if G(Y) <C(X). 
Correlation Optimality Criterion: Iman and Conover [119], Owen[192], 
and Tang [238] propose to choose designs by minimizing correlations among 
factors within the class of LHDs. Owen, in (1921, used the following perfor-
mance measure for evaluating the goodness of the LHD with respect to pairwise 
correlations. It, is defined as follows 

çk 2 
2 - 
- 

L=i L. 3=+i ,°r j 
3 7 p k(k-1)/2 
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For calculating the correlation between each single pair of factors (say column 
q and column r), here we use Pearson's formula: 

Pqr 
N 5iq5ii - > 5iq Sir 

(3.8) = ______________________ 

NX Q  - ()2 N 2 
- (Xir)2  

where the sums are over i = 1, N. Here Y is better than X if p2(Y) < 
p2  (X). 

3.2 Proposed ILS heuristic for maxirnin LHD 

In Section 2.1 we have discussed a general scheme for ILS-based algorithms. 
Now we present the ILS based procedure for maxirnin Latin hypercube design. 
As we have stated earlier, the main components of ILS heuristic approaches 
are Initialization (Is), LocalSearch (CM), Perturbation Move (PM)  and the 
Stopping Rule (Sn); the pseudo-code of the proposed ILS heuristic for maximin 
LHD problems is the following: 

Step 1. Initialization : X = Is({O, 1,..., N - 11)) 
Step 2. Local Search : X = £M(X) 
while Sn not satisfied do 

Step 3. Perturbation Move :X' = PM(X) 
Step 4. Local Search: X = 
Step 5. Improvement test : if X is better than X, 
set X = X 

end while 
Return X 

Below we detail the components in order to fully specify our algorithm. 

3.2.1 Initialization (Is) 

The initialization (Is)  procedure embedded in our algorithm is extremely sim- 
ple: the first initial solution is randomly generated. In particular, the first initial 
solution generation is built as follows. For each component Ii E {1, .. . , k} a ran- 
dom permutation v, . . . , VN_ of the integers 0, 1, . . . , N - 1 is generated and 
we set 

Vr for all r E (0,..., N - 1}. 

Although more aggressive procedures could be designed, we chose random gen- 
eration because it is fast and unbiased. 

3.2.2 Local Search Procedure (Cs) 

In order to define a local search procedure (Cs),  we need to define a concept of 
neighborhood of a solution. Given a LHD X = (Si,... ,xN), its neighborhood 
is made of all other LHDs obtained by applying local moves to X. Before 
introducing some local moves, we first introduce the notion of critical point. 
Critical point: We say that xi  is a critical point for X, if 

mind(x1,xj) = 
jV_i 
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i.e., the minimum distance from xi is also the minimum one among all the dis-
tances in X. We denote by 1(X) c {1,.. . , N} the set of indices of the critical 
points in X. 

Local moves(1M): A local move is an operator that applies some form of 
slight perturbation to a solution X, in order to obtain a different solution. Differ-
ent local moves define different neighborhoods for local search. In the literature 
two different local moves are available: Rowwise-Pairwise (RP) exchange [193] 
and Columnwise-Pairwise (CP) exchange [178]. In Park's algorithm (193] some 
active pairs (pairs of critical points, in our terminology) are selected. Then, for 
each chosen pair of two active rows, say i1  and i2, the RP exchange algorithm 
considers all the possible exchanges of corresponding elements as follows: 

4* Xi 2 ,q  Vp,q= 1,2,...,k :pq, 

and linds the best exchange among them. The CF algorithm proposed by Mor-
ris and Mithchell [178] exchanges two randomly selected elements within a ran-
domly chosen column. But in (150], Li and \'Vu defined the CF algorithm in a 
bit different way: they randomly choose a column and replace it by its random 
permutations if a better LHD is obtained. 

Although we have also developed CF based local moves, in our proposed a!-
gorithins we mainly consider RP based local moves but a hit different than 
those of (193]. We propose two types of H.P moves related to two different 
optiinality criteria - namely Opt(D1, J1)  and Opt(). 

For Opt(Di , J1 ), we propose Rowwise-Pairwise Critical Local Moves (we call 
it £M,1,1 ) as follows. The algorithm sequentially chooses two points (rows) 

such that at least one of them is a critical point, then exchanges two corre-
sponding elements (factors) of the selected pair. If i E 1(X), r,j E {1, . . . , N), 
h, e e { 1, . . . , k }, swapping the £-th component gives the neighbor Y defined by 

f Xrh ifri,jorhe 

y,.h = xj, if i' = j and It = e (3.9) 
xp, ifr=i and h=8 

We remark that, if Opt(D j , J1) be the optimahity criterion, it perfectly makes 
sense to avoid considering pairs xi and x j  such that 1(X) fl {x, x} = 0 since 
any swap involving two non-critical points cannot improve the D1 value of the 
current LHD. 
When Opt() is adopted as optimality criterion, any exchange can, in general, 
lead to an improved value of 0. The RP local move for Opt() optimality crite-
rion is denoted by £MRP  and is equal to (3.9), the only difference being that 
we drop the requirement that at least one point must be critical. 

We now propose some examples in order to illustrate the previously dis-
cussed local moves. We consider the £MnD1 local move. Let a randomly 
generated initial solution be LHD A (see Figure 3.2(a)). Then a neighborhood 
solution of A, by considering points (1,2), (6,5) (here both are critical points), 
is LHD B, obtained after swapping the second coordinate of the points (1,2) 
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Fig. 3.2: Illustration of Neighborhood solutions for MJIDi based local search (LS) 
proced nrc 

and (6,5) (See Figure 3.2 (b)). Also note that LHD B is an improving neighbor 
of LHD A, since (D11 J1 )(B) = (2,1) whereas (D1 Jj)(A) = (2,4). Note that 
by using two non-critical points like (4,0) and (7,7) of LHD A, there would 
be no chance to get an improving neighbor by means of a local move. Finally 
Figure 3.2 (c) shows the maxirnin LHD produced by the Local search procedure. 

Acceptance Rule: We considered two types of acceptance rules, namely First 
Improve (Fl) and Best Improve (BI) for each type of neighborhood. For the 
FT rule, the first improving neighbor whenever detected is adopted as start-
ing point for a new neighborhood exploration. For the BI acceptance rule, the 
whole neighborhood of the current solution is searched for the best improving 
neighbor. 

We warn again the reader that the meaning of "Y is better than X" can be 
defined accordingly with the Opt(Di , J1 ) or Opt() optimality criterion. So for 
the Opt(Di, .J) optimality criterion: "Y is better than X" if 

D1(Y) > D1 (X) or (Di(X) = D1 (Y) and J1 (X) > Ji (Y)). 

-4 
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On the other hand for Opt() optimality criterion "Y is better than X" if 

Ø(Y) <cb,,(X), 

where 0,, is defined by (3.5). 

3.2.3 Perturbation Move ('PM) 

Perturbation is the key operator in ILS, allowing the algorithm to explore the 
search space by jumping froin one local optimum to another. Basically, a per-
turbation is similar to a local move, but it must be somehow less local, or, more 
precisely, it is a move within a neighborhood larger than the one employed in the 
local search. Actually the perturbation operator produces the initial solutions 
for all the local searches after the first one. Here we will propose mainly two 
types of perturbation operators namely 1. Cyclic Order Exchange (COE) and 
2. Pairwise Crossover (['C). 

x ,•_ I, I (1+1)1 

xii XUI)l 

Fig. 3.3: Illustration of Cyclic Order Exchange perturbation technique 

1. Cyclic Order Exchange (COE): Our first perturbation move proce-
dure is Cyclic Order Exchange (COE). 'rime operator COE produce a cyclic order 
exchange upon a randomly selected single component (column) of a randomly 
selected portion of the design points (rows). 1-lere we present three variant of 
COE perturbation move techniques: Single Cyclic Order Exchange (SCOE) per-
turbation operation, Multiple Components Cyclic Order Exchange (MCCOE), 
and Multiple Single Cyclic Order Exchange (MSCOE). 

la. Single Cyclic Order Exchange (SCOE): For SCOE, we randomly 
choose two different rows (points), say Tj  and xj, such that i <j and j - i > 2, 

-t 
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in the current LHD X. Then, we randomly choose a column (component), 
say e. Finally, we swap in cyclic order the value of component e from point 
xi  to point x j see Figure 3.3. The pseudo-code structure for SCOE is the 
following. 

Step 1: randomly select two different points xi  and xj 
such that i <j and j - i > 2 
Step 2: Randomly choose a component e 
Step 3a: set temporarily x =  Xjt 

for t=j,j—1,...,i—ldo 
Step 3b: Replace the component 5(t)€  by x(t.1)e 

end for 
Step 3c: and replace Xe by 

Note that we require j - i > 2 because otherwise the perturbation would 
be a special case of the local move employed in the local search procedure. We 
illustrate the SCOE perturbation by an example. Assume we have the current 
LHD X with N = 6 and k = 8 

fxi\ /0 1 234 5 5 4\ 
3450431 I 

x2J 

p X4 112 
2 

= 
3 

3 
4 

4 
5 

5 
0 

0 
1 

1 
2 

I 3 2 
(3.10) I 2 1  

X3  

45012310j 
XG  50 1 2 3 4 5/ 

Now we randomly choose two rows (points), say T2  and x5 and we randomly 
choose the column (component) e = 4. Then, after the SCOE perturbation we 
get the following LHD X' (bold faces denote the values modified with respect 
to X*), 

Si 0 1 2 3 4 5 5 4 
1 2 3 1 5 0 4 3 

x'— 53 
- 

2 3 4 4 0 1 3 2 
311 

X4 - 3 4 5 5 1 2 2 1 
4 5 0 0 2 3 1 0 
5 0 1 2 3 4 0 5 

Note that SCOE only slightly modifies the current LIID X but this exactly 
follows the spirit of ILS, where the perturbation should keel) unchanged large 
portions of the current solution and should not completely disrupt its structure 
(see the discussion in Section 2.1). 

1.b Multiple Components Cyclic Order Exchange (MCCOE): Our 
proposed MCCOE is a generalization of the single cyclic order exchange per-
turbation technique. In the MCCOE perturbation technique we perform SCOE 
operations on s > I columns instead of manipulating a single column. 

For example, consider the previous LI-ID X definid in (3.10); we randomly 
fix a pair of rows (points), say X2  and 55 and we randomly choose the number 
of columns (components), say s = 2 in which the perturbation is performed. 
Then we randomly choose two columns say f , = 4 and e2  = 8. Then, after 



3. Maximin LHD 39 

the MCCOE perturbation we get the following LHD X' (bold faces denote the 
modified values). 

/Xi\ /01 23455 4\ 
(X2 112 315040 

3 4 40 1 3 31 (3.12) x'=I 
53 

'2 

54 I I 3 4 5 5 1 2 2 2 I 
55 I 4 5 0 0 2 3 1 1 I 

\x) 50 1 2 340 5) 

lc. Multiple Single Cyclic Order Exchange (MSCOE): In this vari-
ant we perform the SCOE a random number of times raLlier than one time and 
each time we randomly select each SCOE operation. For illustration, consider 
the previous LHD X (3.10). In order to apply MSCOE we choose a number say 
s = 2 which indicate the iiuinhcr of times we perform SCOE operation. Then 
for the first SCOE we ramidoinly choose a pair of rows (points), say X2 and X5 

and a column, say e1  = 4. Let Xt be the resulting LHD Now we perform the 
second SCOE: we again randomly choose a pair of rows(points), say si  and x, 
and a column, say e1 = 1. Then after a SCOE perturbation on Xt we get the 
following final LHD X' (bold faces denote the values modified with respect to 
X), 

5 1 2 3 4 554 
2 0 2 3 1 5 0 4 3 

x'— 53 1 3 4 4 0 1 3 2 
313 

- X4 2 4 5 5 1 2 2 1 
X5 J 3 5 0 0 2 3 1 0 
X6) 4 0 1 2 3 4 0 5 

2. Pairwise Crossover: The second type of perturbation move that we 
consider is the Pairwise Crossover (PC). It is similar to biological crossover - 
we randomly select two points (rows) and then randomly selected portions of 
them which are interchanged. I-lere we propose three variant of PC namely 
Single Pair Crossover (SPC), Multiple Pair Crossover (MPC) and Critical-point 
Far-most Pair Crossover (CFPC). 

2a. Single Pair Crossover (SPC): For SPC, we first randomly select two 
rows, say, xi  and sj , i =A j, in the current LHD X; then we randomly select 
a component, say e > 2. Finally all the components 1, . . . , e of x are swapped 
with the corresponding components of x - refer to Figure 3.4. Note that we 
require e > 2 since otherwise it would be a single local mimove. It is also worth-
while to remark that the PC perturbation is meaningful only when number of 
factors of the LHD is grater than three. The pseudo code structure of SPC is 
as follows: 

Step 1: randomly select two different points xi  and x j  such that i 

3 
Step 2: Randomly choose a component £ such that e > 2 
for k = i,. . , do 

Step 3: swap(xjk, Xjk) 
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Fig. 3.4: Illustration of Single Pair Crossover perturbation technique 

end for 

21b. Multiple Pairwise Crossover (MPC): MPC is a generalization 
of the SPC perturbation technique. In the MPC perturbation technique we 
randomly choose multiple pairs of points rather than a single pair of points to 
perform crossover. 

It is worthwhile to remark that the randomly generated integer value s (how 
man) times SPC is performed in MPC) should be a small value, since if s be a 
large number, the produced MPC-perturbed LIID could not preserve much of 
the structure of the current local optimum. That is, MPC would become (prac-
tically) a random initialization procedure. For illustration of MPC perturbation 
moves, consider the LHI) X given by Eq. (3.10). Now we choose a number say 
s = 2 which indicate the number of times we perform SPC operations. Then 
for the first SPC we randomly choose a pair of rows (points), say x2 and x5, 
and randomly fix a column, say £ 1  = 4. After the SPC perturbation, we get the 
following LHD X (bold faces denote modified values ). 

0 1 2 3 4 5 5 4 
4 5 0 1 5 0 4 3 

- 
2 3 4 5 0 1 3 2 

314 
- 2:4 - 3 4 5 0 1 2 2 1 

1 2 3 4 2 3 1 0 
5 0 1 2 3 4 0 5 

Now we perform the second SPC: we again randomly choose a pair of rows 
(points), say x2 and x6, and randomly fix a column, say e2  = 2. Then after 
another SPC perturbation on Xt  we get the following final LHT) X' (bold faces 
denote the values modified with respect to Xe), 
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xi 0 1 2 3 4 5 5 4 
5 0 0 1 5 0 4 3 

x'- X3 
- 

2 3 4 5 0 1 3 2 
p315 

- X4 - 3 4 5 0 1 22 1 
X5 1 2 3 4 2 3 1 0 

4 5 1 2 3 4 0 5 

It is important to remark that when s> 1, MPC may also produce a so-called 
dead offspring - by this we mean the case where X' = X. An algorithm 
incorporating MPC should detect such events. 

2c. Critical-point Far-most Pair Crossover (CFPC): A point x2  is 
randomly selected, and the mate point xj involved in the crossover is selected so 
that xj has the maximum possible distance from x (with ties broken randomly). 
Both SPC and MPC can then be applied. 

3.2.4 Stopping Rule (Sn) 

We use a very simple stopping Rule (SE).  We introduce an integer parame-
ter called MaxNonlrup, and the algorithm will stop if the currently best local 
optimizer X cannot be improved for MaxNonlmp consecutive perturbations. 

.4- 



4. COMPUTATIONAL EXPERIMENTS AND DISCUSSION 

ABOUT ILS WITH OPT(D1, J1 ) 

In Section 3.2 we have proposed our algorithms and also have discussed details 
about them. Here we will report on experiments performed in order to inves-
tigate the diffi..rent components and their impact on the efficiency of the algo-
rithms. Since we have proposed algorithms driven by two different optimality 
criteria, at first we will perform experiments for the Opt(Di , J1 ) optimality cri-
terion, and in the next chapter for the Opt(çb) optimality criterion. We also per-
form some experiments to compare the results with those available in the litera-
ture. Since the first operator of our proposed ILS algorithms is Initialization 
and it is just simple random permutation on 10, 1,2. ... N - 11, we will perform 
experiments to investigate the performance of other operators like Local search 
procedure, Perturbation moves procedure and Sc> Ofl. 

4.1 Experiments on Local Search procedure 

Local search is the first relevant operator of our proposed ILS based algorithms. 
In order to appreciate the importance of this operator we will first make a 
comparison between the simplest Random Search (RS) method, in which there 
is no local search operator, and the simplest method based on multiple local 
searches, Multistart (MS), in which only local searches are performed. Moreover, 
we will study the impact of diflrent possible choices in the definition of the local 
search procedure. 

4.1.1 Impact of LocalScarch 

Our first goal is to assess that using a local search - and hence focusing only on 
local optima during the overall search - is a profitable choice. Thus we compare 
a trivial Random Search (RS) with a Multistart (MS) procedure equipped with 
a local search. We consider LHDs with N = 3,4, . . . ,25 and k = 3,5,7, 10; we 
do not report results for higher values of N, as RS is - quite expectedly 
strongly dominated by MS as N grows. For the MS based approach we adopted 
a RP local move with Fl acceptance rule based Local search procedure. 

We set the nuniber of runs for the MS approach to R = 1000 for all (N, k) 
considered pails, whereas we ran the RS approach with 50 times more runs than 
the MS approach for each (N, k) considered. In order to investigate the impact of 
LocalSearch operator, we compare the performance of the RS and MS mnethods. 
We plotted the N values on the x-axis and the percentage improvements (in 
terms of Maximin (Mmii) values) of MS over RS on y-axis, for each k = 3, 5, 7, 10 
(see Figure 4.1). We observe in the figure that the performance of the MS 
approach (in percentage) is approximately linearly increasing with N for all k 
values, and RS is dominated. 

-q 
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Fig. 4.1: Comparison of the performance of MS with that of RS (in percentage) 

This phenomenon is somehow expected, because the search space for RS 
comprises every feasible solution, so it is very large and its cardinality drastically 
grows with N like (N!)k_l  So RS has very few chances of finding "good" LI-IDs. 
On the other hand the search space of MS is a relatively small subset of the 
whole set of feasible solutions, composed of local optima. -4 

4.1.2 Impact of RP and Cl-' Local moves 

Since we have proposed two different types of local search moves - namely Row-
wise pairwise (RP) local moves and Column-wise pairwise (CP) local moves - 
we performed experiments to inve.stigate the impact of each type of local move. 

For the experiments we consider LHDs with N = 11, 2.....25, 5i} where 
= 6,7,. . . ,20, and k = 3,5.7, 10. We tested on each LHD a multistart (MS) 

procedure for a tiumber of runs R = 1000; in local search, we adopted the first 
improvement (Fl) acceptance rule for both RP and CP local moves. In Table 
4.1 we report the best LHD values (Mm values) over 1000 runs. We observe in 
the table that for k = 3, the RP based Local search generated a better LllD in 
13 cases, whereas the CP based Local search is the winner in 5 cases. On the 
other hand for k = 10, RP works better in 14 cases and CP in 16 cases. We 
also observe that the total computational cost of the two approaches is quite 
similar, see Table 4.1. 

We may conclude that there is no significant, difference between the perfor-
mances of RP and CP based local search procedure. 

4.1.3 Impact of Fl and BI Acceptance rule 

In Section 3.2 we have proposed two type of acceptance rules. namely Fl and B!. 
for the local search procedure; in this section we report about some exoerinients 
whose goal is investigating the impact of these acceptance strateeies. amnce 
we investigate the impact of acceptance strategy on Local Search technioucs. 

.2 
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Tab. 4.1: The Comparison of the performance of RP and Cl' with Fl acceptance rule 
based Local search orocedures 

N k = 3 k = 5 k=7 k=10 
RP CP RP CP RP CP RP CP 

3 6 6 8 8 13 13 19 19 
4 6 6 14 14 21 21 33 33 
5 11 11 24 24 32 32 50 50 
6 14 14 32 32 47 47 68 68 
7 17 17 40 39 61 61 90 89 
8 21 21 50 50 77 78 115 113 
9 22 22 59 61 91 92 140 140 
10 27 27 78 78 108 107 169 169 
11 30 30 78 78 125 127 201 200 
12 36 36 88 89 145 145 227 226 
13 41 41 99 100 169 167 259 258 
14 41 41 110 111 189 188 295 296 
15 48 43 123 122 209 207 336 334 
15 48 46 138 135 231 230 373 370 
17 53 51 147 148 252 255 411 412 
18 54 54 159 161 280 277 453 454 
19 56 57 171 174 304 301 501 499 
20 61 61 186 187 330 327 541 541 
21 65 65 199 200 356 335 590 590 
22 69 69 214 215 384 381 638 650 
23 72 72 232 229 413 411 686 690 
24 76 75 244 243 442 443 738 741 
25 78 77 257 256 477 472 791 798 
30 94 94 319 322 615 620 1063 1072 
35 116 113 402 410 785 786 1379 1386 
40 134 133 499 495 983 967 1739 1731 
45 153 158 597 590 1183 1196 2126 2115 
50 174 179 699 693 1392 1389 2550 2548 
55 202 202 805 795 1608 1640 2987 3003 
60 226 221 914 911 1866 1853 3483 3495 
65 248 245 1035 1029 2134 2106 3975 3988 
70 276 270 1153 1157 2409 2430 4524 4530 
75 293 290 1278 1275 2692 2695 5096 5119 
80 317 315 1398 1409 2989 2978 5742 5687 
85 344 344 1542 1549 3285 3292 6315 6357 
90 372 369 1673 1681 3606 3618 7014 6992 
95 398 401 1827 1836 3967 3926 7687 7741 
100 420 422 1981 1  1981 4313 4267 8406 1 8394 
No. of 13 5 12 17 19 13 14 16 
Bet. LHD 
T. Time 576 558 1661 1676 3501 3506 8919 8600 
(in_see)  

_______ 



4. Experiments about ILS with Opt (Di, J1) 45 

0 

0. 

C 

E 
0 

2 

E 

0 

S 
2 
0 
0. 
C 

2 
0 

a 

I 

k=5 

-11 

0 
0 

E 

0. 
2 

0 

0 
0. 

0 
o 

 

18 20 20 40 50 60 10 00 80 100 

(a) N 

20 

25 k7 

13 

1.3 

03 

03 - 

-05 

.00 

.15 

0 10 20 30 43 3 0 10 M 01 fl 

)c) N  

) N 

to 
IclO 

TO 

0,5 

0,0  

.05 

-Ic,  

'Is 

.2.0 . ....... 

0 00 20 30 40 60 68 710 30 68 16 

(d) N 

Fig. 4.2: Comparison of the performance of BI with that of Fl (in percentage) 

RP local moves; all other settings for the experiments are the same described 
in the previous sections. We ran the MS procedure with FL and BI acceptance 
rules respectively for all the LHDs defined above. 

For the investigation of the impact of acceptance criterion, we plotted on 
x-axis the N values, and on y-axis the percentage improvements in terms of 
Mm values of the BI based approach w.r.t. the F1 based apl)roach for each 
k = 3,5,7, 10 -- see Figure 4.2. Though it is not very clear from the figure, for 
lower values of N the Fl acceptance strategy performs slightly better for all k 
except k = 7. On the other hand for large N values, the BI acceptance strategy 
performs slightly better for all k except k = 7. By looking at the overall results 
we conclude that, from the point of view of solution quality, there is no relevant 
evidence of one acceptance rule dominating the other. 

Anyway we observe in Figure 4.3 that the Fl acceptance strategy based 
algorithm is always computationally cheaper than that of B! acceptance strategy 
based algorithm. The B! based algorithm needs more CPU time because a 
complete neighborhood is explored for each visited solution, whereas with the 
Fl acceptance rule only a partial exploration in most of the neighborhoods is 
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Fig. 4.3: Comparison of the elapsed time of F! and BI acceptance strategy based 
algorithm (in second) 

performed. 

4.2 Experiments on perturbation moves 

4.2.1 Impact of Perturbation Operator 

In 3rdcr to assess the contribution of the perturbation operator to the perfor-
litances of the ILS algorithm we compare ILS with a MS algorithm. We stress 
that using the perturbation operator for starting a new local search from a pre-
viously reached local optimum is the key feature distinguishing ILS from MS 
in MS the new starting point is drawn at rall(loln. 

For this set of experiments we consider the LIJDs with N = 3,4.....25 and 
k = 3. 5, 7. 10 (we do not report results for higher values of N, but remark that 
MS beconies strongly dominated by ILS on such tests). In both the MS and 
ILS procedures we use a Local Search equipped by the RP local move with F! 
acceptance rule. In the ILS based procedure we use SCOE perturbation moves 
procedure with MaxNonlmp = 1000 and number of runs for cacti (N, k) set to 
I? = 100. In order to have a fair comparison, on each (N, k) test we first ran the 
ILS based method and count the total number of local searches, call it L(N, k)t  
needed for optimized LHD with cacti pair value of (N, k). Then we ran MS with 
L(N, k) number of trials for the corresponding (N, k) pairs. 

\Ve plotted on the x-axis the N values, and on y-axis the percentage improve-
ments of Mm values obtained by ILS compared with those given by MS, for 
cacti k = 13, 5, 7, 10) (see Figure 4.4). \-Ve notice from the figure that ILS 
always has a performance at least as good as the one of MS and, in particular 
for large k values, the improvement guaranteed by ILS tends to increase with 
the number N of points. The cause of this fact is that cacti new starting point 
of MS is drawn at random and so it usually fails to preserve any "good" part 
of the previous locally optimal LI-ID. On the other hand, the starting points of 
the ILS based method are generated by applying to cacti local optimum a per- 

rA 
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Fig-. 4.4: Comparison of the performance of ILS with that of MS (in percentage) 

Tab. 4.2: The Comparison of the computational cost of MS and ILS (Di,Jj)(time is 
in second 

Lk  MS ILS 
3 811 416 
5 2179 1114 
7 4211 2117 
10 9589 4796 
Total 1679() 8443 
time 

turbation Operation, which is slightly larger than a local move. The perturbed 
local optimum usually preserves a good part of the configuration of the previous 
locally optimal LI-ID and at the sante time allows an effective exploration of the 
search space. 

Table 4.2 shows the elapsed time of MS and ILS based methods for each k 
value of the above described experiments. We observe that, although we allowed 
the same number of local searches for both ILS and MS, the running time for 
ILS was clearly inferior. Again, this is due to the fact that the starting points of 
local searches in ILS are only slight perturbations of local minimizers 

- with an 
already partially-optimized structure. Flence the local search procedure (often) 
reaches a new local optimum in fewer iterations with respect to the case of MS 
where starting points are completely random ones. 

In order to offer more details on how MS and ILS differ in their behaviors, 
we performed further experiments. With the same parameter setting, we first 
ran ILS with only one trial for (N, k) = (17,3) and then ran MS with same 
lulmt)cr of trial as the number of local searches needed by ILS. We display 
the partial search history of initial solutions of MS (where initial solutions are 
generated randomly) and ILS (where the initial solutions are generated by the 
perturbation operator frorn local optimizers except the fIrst one) apl)roachles 
in Figure 4.5. From this figure we notice that the initial solutions of ILS are 
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Fig. 4.5: Comparison of search history of initial solutions between MS and ILS for 
(N,k) = (17,3) (partial search space) 

almost always better than those of MS. 

Also, we display the partial search history of locally optimal solutions deliv-
ered by MS and ILS in Figure 4.6. We observe from Figure 4.6 that inalmost 
all the local searches ILS produces better local optimizers than MS. 

Figure 4.7 shows the partial search history of MS including both initial so-
lutions and corresponding locally optimal solutions for (N, A) = (17,3), and 
Figure 4.8 displays the same data collected for ILS. In both figures red balls 
denote initial solutions and black squares indicate locally optimal solutions. 

We can observe in Figure 4.7 that many initial solutions have small ob-
jective values (less than 15) and the corresponding local optimal solution also 
have relatively small values (less than 45). On the other hand we observe in 
Figure 4.8 that a large amount, of initial solutions have relatively large values 
(greater than 15) and corresponding local optimal solutions also have relatively 
large values (greater than 45). That is better initial solutions almost always pro-
(111cc relatively better solutions. But in Figure 4.8 we also observe that though, 
at local search step 735 of ILS approach, the initial solution is a good one, it 
produces a not so good local optimal solution. In spite of this counterexaniple, 
it is worthwhile to remark that though there is no guarantee that better ini-
tial solutions always provide better local solutions, this is, in fact, often the case. 

Another observation at step 725 of the local search of both MS and ILS ap-
proach: the initial solution of ILS is relatively worse than that of MS (see in 
Figures 4.7 and 4.8 the large blue circles, the initial solution of MS approach has 
value 11 whereas the initial solution of ILS approach has value 6) but the local 
optimal solution delivered by ILS is relatively better (it has value 42 whereas 
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Fig. 4.6: Comparison of search history of local optimal solutions between MS and ILS 
for (N,k) = (17,3) (partial search space) 
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Fig. 4.7: The partial Search history of MS local search including initial solutions and 
optimal solutions for (N, k) = (17,3) 
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Fig. 4.8: The partial Search history of ILS local search including initial solutions and 
local optimizer for (N,k) = (17,3) 

the local optimal solution detected by MS is 35). We might conjecture that 
in this case the perturbation move has considerably worsened a small portion 
of the current solution, but, being such portion quite limited, the local search 
procedure is able to "repair" it quite effectively thus leading to a good local 
optimum. 

4.2.2 hnpact of different, perturbation moves 

We have propose(l mainly two type of Perturbation moves procedures - COE 
and PC perturbation moves and for each of them several variants: in this sec-
tion we will investigate their performances. For all the experiments considered 
in this section, we used LI!Ds with N = (1,2.....25, 5i} where i = 6.7.....20, 
and k = 3,5. 7. 10. We consider RP local moves with BI acceptance rule based 
local search for all the approaches considered. We also set MaxNonlmp = 1000, 
and number of runs R = 10 for all the tests. 

We first present experiments about the impact of the three variants of COE 
perturbation moves procedures. Iii the table 4.3 we report the best Mm values 
(over 10 runs). In the table "B/E LIJD " means total number of better or equal 

4 lAID values (with respect to this comparison) obtained for each k dimension 
for each version. We observe that the ILS algorithm equipped with the SCOE 
perturbation outperforms the other two ILSs. ILS with MSCOE perturbations 
seem.s to perform somehow better than ILS with MCCOE, but worse than ILS 
with SCOE. Although ILS with the MCCOE perturbation is relatively cheaper, 
it frequently obtains worse Min values with respect to the other two tested per-
turbatiomis. hence we recommend the SCOE perturbation as the best choice 
among the three versions of COE perturbation moves. 

Our next experiment is about the impact of the three variants of PC per- 
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Tab. 4.3: Comparison among different COE perturbation move procedures. Note that 
in the table SCOE, MCCOE and MSCOE are denoted as SC, MCC and 
MS( 

fl 
3 muc - a I 3 1  m5u l5 3T T  I tic 

3 6 0 (1 8 8 8 13 13 13 19 19 19 
4 0 6 6 14 14 14 21 71 21 33 33 33 
5 11 11 11 24 24 24 32 32 32 50 50 50 
6 14 14 14 32 32 32 46 47 47 67 68 68 
7 17 17 17 38 38 40 60 60 61 89 89 89 
8 21 21 21 50 SI) 50 78 77 79 114 113 114 
1) 22 22 22 61 59 60 93 92 03 141 140 140 
10 26 27 27 78 76 78 108 108 108 172 171 172 
11 29 30 30 79 79 79 128 128 129 206 206 200 
12 33 33 33 88 89 91 152 150 151 23.1 232 234 
13 41 41 41 102 10! 102 179 173 176 271 296 269 
14 42 41 41 114 111 113 212 207 210 306 302 304 
15 48 43 45 129 123 122 223 219 215 343 3.10 342 
12 49 40 49 141 134 144 241 238 239 390 384 384 
17 51 51 51 124 148 154 292 256 229 431 417 432 
18 54 54 56 166 129 165 285 280 284 482 471 480 
10 59 36 57 181 176 178 312 307 313 539 532 537 
20 62 0 62 198 194 198 345 331 343 372 560 602 
21 66 65 66 215 200 212 372 364 370 630 600 025 
22 (19 66 70 227 214 222 406 387 304 609 660 668 
23 73 70 73 216 228 237 438 412 427 722 698 713 
24 77 75 76 225 242 220 465 449 460 783 760 766 
25 81 77 81 273 239 267 497 473 491 832 809 822 
30 10! 97 101 336 337 347 667 644 656 1130 1108 1130 
35 122 121 122 454 420 4.19 826 815 85.1 1491 1435 1467 
40 1.19 139 146 522 525 540 1052 1005 1025 1894 1804 1850 
43 166 128 168 662 611 658 1284 1229 1258 2312 2238 2270 
50 189 181 190 755 719 704 1023 1410 1200 1770 2956 2749 
55 210 206 211 890 832 867 1781 1682 1754 3203 3133 3235 
60 241 230 234 908 922 979 2028 1943 1909 3778 3046 3749 
65 266 250 261 1123 1007 1113 23.10 2213 2318 4383 4193 4328 
70 290 281 389 1262 1182 1235 2637 2475 2280 4912 4750 4853 
72 321 302 321 1404 1307 1387 2944 2769 2866 5644 23.17 5204 
80 3.1.1 333 345 1548 1434 1214 3286 3084 3168 6252 2085 6143 
85 374 35.1 371 1679 1591 1667 3588 3399 3551 6945 6046 6813 
00 304 378 404 1037 1712 1796 3934 3710 3890 7059 7340 7505 
93 420 406 333 1094 1867 1936 4355 4081 4108 8450 8037 8333 
100 454 427 453 2173 3004 3135 4676 4448 4667 9201 8749 9098 

LIID 29 12 27 33 5 14 31 5 10 35 6 10 
Tol. 
Tio.- 125 0.8.1 1.12 349 2 14 3.27 7.55 4.56 6.4 17.92 11.39 16.33 
(hro) 

* 
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Tab. 4.4:. Comparison among different PC perturbation move procedures 
6=3 6=5 1 6=7 6=10 

- - -n5—  NIPC CFPC 5i $j5 5'5 flc 15  
6 Ii 6 8 8 8 13 13 13 19 19 19 

4 6 6 6 14 14 14 21 21 21 33 33 33 
5 II II Il 24 24 24 32 32 32 50 50 50 
Ci 14 14 14 32 32 32 46 47 45 67 67 67 
7 17 17 17 39 39 38 60 CI 60 90 80 89 
Cl 21 21 19 48 51) 40 77 78 77 113 114 114 
9 22 22 22 59 61 59 90 93 91 140 141 141 
10 37 20 26 79 78 76 108 111 108 170 173 172 
II 30 30 29 80 80 78 125 129 129 205 208 206 
12 36 33 33 89 91 88 149 132 147 23.1 235 234 
(3 41 41 30 100 102 100 176 179 175 260 271 370 
(3 42 41 41 111 110 113 201 210 197 304 303 299 
15 44 44 44 127 128 122 217 219 214 342 342 343 
15 49 50 46 139 146 136 237 238 239 391 387 387 
17 51 53 51 151 156 152 201 203 259 435 433 427 
18 54 54 54 165 168 160 287 391 284 4" 477 476 
19 50 59 57 181 179 181 311 314 317 525 518 518 
20 02 62 59 199 199 195 340 347 340 575 586 571 
21 66 60 60 211 212 210 369 374 370 631 617 915 
22 70 69 69 230 232 225 401 406 401 674 068 661 
23 74 74 73 242 239 238 437 435 434 721 724 710 
24 77 77 77 254 258 251 406 403 407 777 779 780 
25 84 84 81 274 269 271 490 498 500 831 843 827 
30 105 102 101 353 355 363 075 076 663 1150 1145 1133 
33 125 129 123 459 458 354 862 866 865 1404 1504 1490 
40 146 149 145 550 503 553 1080 1071 1059 1907 1894 1899 
45 174 173 171 603 674 6.18 1311 1299 1290 2312 2330 2297 
50 200 197 (89 781 784 768 1530 1548 1535 2806 2783 2781 
55 224 225 210 908 911 890 1802 1799 1782 3310 3209 3295 
60 254 246 245 1017 1611 1021 2085 2093 2057 3808 3797 3813 
95 278 278 260 1163 1173 1136 2303 2359 2345 4407 4398 4391 
70 307 301 299 1291 1291 1278 2683 2681 2638 5022 5027 5017 
75 338 330 325 1427 1435 1419 2972 2992 2981 5639 5610 5663 
80 369 354 347 1506 1578 1576 3320 3343 3302 6369 6331 6320 
85 393 389 377 1723 1752 1716 3639 3693 3628 7027 6997 6971 
90 420 420 411 1508 189.1 1882 4048 4052 3994 7782 7738 7690 
92 460 453 434 2067 2056 2031 4408 4360 4368 8592 8528 8473 
100 483 481 473 2223 2233 2171 4770 4797 4814 9387 9749 9235 

OlE fl T 
LIII) 32 24 10 15 28 0 10 28 J 7 24 8

Tin, ff.II. 0.90 0.73 047 2.78 3.05 1.65 5.26 98<) 3.90 1303 1,32 

] 

turbation moves procedures. The results of the tests are reported in the table 
4.4. The meaning of "B/E LHD " in the table is the same discussed above. 
We observe that the performances of ILS with SPC and MPC perturbations 
are comparable whereas ILS with FCPC seems worse than the other two ap-
proaches. We also observe that the computational cost of SPC and MPC based 
approach are comparable; FCPC is cheaper but most of the times it produces 
worse LHDs with respect to the other two versions of PC perturbations. Hence 
we recommend SPC as the best choice among the three version of the PC per-
turbation moves considered. 

We finally wish to offer a comparison between COE and PC perturbations. 
For this comparison we consider SCOE and SPC, that turn out to be the best 
option for the two techniques. The comparison of the two approaches is dis-
played in the table 4.5. We comment on the results by splitting the table in 
two parts: the label "a " denotes the first section of the table, i.e. the tests for 
3 < N < 25 and "b " denotes the last part of the table, with tests for N > 25. 
In the row named "Bet LHD (a,b) " "a" and "b " denotes the total number 
of better (by the comparison of the two versions considered) LHD values in sec-
tion "a " and "b " respectively for each k value. We notice from the table that 
for small values of N, the SCOE perturbation works slightly better than SPC 
perturbation based approach except for k = 10, whereas for large values of N 
the results are reversed, and the SPC perturbation performs better than SCOE. 
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Tab. 4.5: Cornoarison between COE and SPC perturbation move procedurcs 
N (5 3 11 (5 5 (5=7 X. 10 

SCOE $PC I SCOE SPC SCOI., SlIc SCOE SPC 
3 6 6 8 8 13 13 19 19 
4 6 6 14 14 21 21 33 33 
5 11 11 24 24 32 32 50 50 
6 14 14 32 32 46 46 67 67 
7 17 17 38 38 60 60 89 90 
8 21 21 50 48 78 77 114 113 
9 22 22 61 59 93 90 141 140 
10 26 27 78 76 108 108 172 170 
11 29 30 79 80 128 125 206 205 
12 23 36 88 88 152 149 234 234 
13 41 41 102 100 179 176 271 266 
14 42 42 114 III 215 206 306 304 
15 48 44 128 127 223 217 343 345 
15 49 49 141 139 241 237 390 391 
17 51 51 154 151 262 201 431 43(5 
18 54 23 166 165 285 297 482 488 
19 59 56 181 181 315 311 539 525 
20 62 62 198 199 345 340 572 57(5 
21 66 66 215 211 372 369 630 631 
22 69 70 227 230 496 401 669 674 
23 73 74 246 242 438 437 722 721 
24 77 77 255 253 465 466 785 777 
25 81 84 272 274 497 499 832 831 
b 
30 101 105 356 353 607 675 1136 1150 
35 122 125 454 459 856 862 1491 1494 
40 149 146 552 556 1055 1080 1894 1907 
45 166 174 662 663 1284 1311 2315 2312 
50 189 200 755 781 1523 1540 2770 2806 
55 216 224 890 908 1781 1802 3293 3310 
60 241 253 998 1017 2028 2085 3778 3808 
65 206 278 1123 1163 2340 2363 4383 4407 
70 290 307 1262 129.1 2637 2683 4815 5022 
75 321 338 1404 1427 2944 2972 5644 5639 
80 344 369 1548 1596 3286 3326 6252 6369 
85 374 393 1679 1723 3588 3639 6045 7027 
90 393 420 1837 1908 3934 4048 7659 7782 
95 421) 460 1994 2067 4355 4408 8450 8592 
100 451 483 2173 2223 4676 4770 9201 9387 

Bct LULl if 
(2.1) (6.14) _3.1L (4.14) ft (15.0) (2.12) (10.2) (10.13) 

Tot. Tin1 ft 
(h,.) 1.25 0.90 .;9 2.78 7.55 5.26 17.92 13.03 

Also SPC seems to be relatively cheaper than SCOE. How can this behavior 
be explained? If we recall the details of the two perturbation techniques (see 
section 3.2, we can notice that SCOE perturbs more than one point but only 
by a single factor. On the other hand SPC perturhs only a pair of points but 
by more than one factor of that pair. 

A possible explanation for these results is the following. We already stressed 
that the size of the perturbation is crucial in order to get a good exploration 
of the search space: an excessively small sixe may prevent the exploration of 
different local optima, while an excessively large perturbation would simply 
result in a multistart search. For large instances, the perturbation offered by 
SCOE may be excessively small, whereas SPC gets larger changes in the current 
local optimum. On the other hand, on small instances, SPC may give excessively 
large perturbations, downgrading the performances toward those of a multistart 
search. It can be that, on larger instances, even SPC is not sufficient and larger 
iserturbations - for example, MPC - should be used. 

4.3 Impact of Stopping Rule 

We have already discussed in Section 3.2 about the stopping condition used in 
the proposed algorithms. This is driven by a simple integer parameter called 
MaxNonlmp (MNI): how long the perturbation operations (and subsequent local 
searches) are performed is defined by this parameter. 

The role of the MaxNonlrnp parameter is crucial for the effectiveness of the al- 

4. 



4. Experiments about ILS with Opt (Di , J j ) 54 

Tab. 4.6: The average performance of ILS based method for different MaxNonlmp 
value when k = 3 

N MNI- 
100 

MN!- 
500 

MN!- 
1000 

MN!- 
2000 

MN!- 
3000 

MN!- 
4000 

MN!- 
6000 

MN!- 
8000 

MN1- 
10000 

6 14 14 14 14 14 14 14 14 14 
8 20 20 20 20 20 20 20 20 20 
10 25 25 25 25 25 25 25 25 25 
12 32 33 33 33 33 33 33 33 33 
14 40 40 40 40 40 40 40 40 40 
16 44 46 46 46 46 46 46 46 46 
18 52 53 53 53 53 53 53 53 53 
20 57 59 61 61 61 61 61 61 61 
22 65 68 68 68 68 68 68 68 68 
24 71 74 75 75 75 75 75 75 75 
26 80 82 83 84 84 84 84 84 84 
28 87 90 90 90 90 90 90 90 90 
30 96 98 99 99 99 99 99 99 99 
32 103 106 106 107 107 107 107 107 107 
34 111 115 117 117 117 117 117 117 117 
36 118 122 124 125 125 126 126 126 126 
38 126 131 132 134 135 135 136 136 136 
40 135 139 142 142 143 143 143 144 144 
42 141 147 149 150 150 152 152 152 152 
44 153 157 J59 160 160 161 162 162 162 
46 159 164 168 170 170 170 172 173 173 
48 167 176 178 179 180 180 181 181 181 
50 178 185 188 1 190 191 192 192 192 192 

gorithms: an excessively small number of perturbations usually results in worse 
solutions delivered, but an excessively large number of perturbations results in 
a waste of CPU time. We believe that finding a "perfect" MaxNolmp value is 
almost impossible, because of the random nature of some components of the 
algorithm. This is why we would like to find out approximate MaxNonlmp values 
for the proposed ILS algorithm. Since in LHD there are two key parameters 
number of design points (N) and number of factors (k) - we want to investi-
gate the impact of N and k on the most appropriate value of the MaxNonlmp 
parameter. For this purpose we performed the experiments reported below. For 
all the experiments described in this section, we have the following parameter 
settiiig: Acceptance rule= Best lmprove(BI), LocalSearch=RP; Perturbation 
Technique=SCOE and MaxNonlmp= 1000. 

4.3.1 Impact of N on MaxNonlmp 

In order to investigate the impact of N, we consider the LHDs with k = 3, 5, 7, 10 
and N = 2i : i = 1,2, . . . ,25. We set MaxNonlmp= 10,000 as a stopping condi-
tion and number of runs I? = 10. For each run with MaxNonlmp =10,000, we 
also store (during the same run) the best results that would be obtained if 
MaxNonlmp=100, 1000, 2500, 2500, 5000, 8000, and 10,000 as well. 

At first we report the maximin LHDs in Tables 4.6-4.9 for all the tested 

I 

-01 
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Tab. 4.7: The average performance of ILS based method for different MaxNonlrnp 
value when k = 5 

N MNI- 
100 

MNI- 
500 

MNI- 
1000 

MNI- 
2000 

MNI- 
3000 

MNI- 
4000 

MNI- 
6000 

MNI- 
8000 

MN!- 
10000 

6 32 32 32 32 32 32 32 32 32 
8 48 48 48 48 48 48 48 48 48 
10 73 76 76 76 76 76 76 76 76 
12 87 88 88 88 88 88 88 88 88 
14 108 110 110 111 111 111 111 111 111 
16 133 135 135 135 135 135 135 135 135 
18 158 163 164 164 165 165 165 165 165 
20 185 189 191 191 191 191 191 191 191 
22 213 217 219 221 221 221 221 221 221 
24 241 248 249 250 251 251 251 251 251 
26 270 278 280 280 282 283 283 283 283 
28 297 307 310 312 314 314 314 314 314 
30 331 343 349 350 350 351 351 351 351 
32 366 377 379 382 383 383 383 385 385 
34 402 412 418 423 424 424 425 426 426 
36 441 452 457 461 464 465 465 465 465 
38 469 490 494 500 501 502 503 503 503 
40 514 531 534 538 541 542 546 546 547 
42 553 564 568 578 582 586 587 589 589 
44 593 607 613 618 619 621 622 623 623 
46 631 656 663 670 670 672 673 675 676 
48 672 699 707 714 714 716 718 720 722 
50 713 741 749 753 755 758 761 763 1  765 

It- 
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Tab. 4.8: The average performance of ILS based method for different MaxNonlmp 
usliin whon k = 7 

N MNI- 
100 

MNI- 
500 

MNI- 
1000 

MNI- 
2000 

MNI- 
3000 

MNI- 
4000 

MNI- 
6000 

MNI- 
8000 

MN!- 
10000 

6 45 46 46 46 46 46 46 46 46 
8 76 77 77 77 77 77 77 77 77 
10 106 107 108 108 108 108 108 108 108 
12 146 147 148 148 148 148 148 148 148 
14 188 199 199 199 199 199 199 199 199 
16 230 234 235 235 236 236 236 236 236 
18 278 282 283 283 284 284 284 284 284 
20 329 334 337 337 337 337 337 337 337 
22 385 393 398 398 399 400 400 400 400 
24 443 452 454 454 456 456 456 456 456 
26 505 514 517 517 523 524 524 524 524 
28 566 575 582 582 589 589 589 589 589 
30 641 655 659 659 661 662 662 664 664 
32 706 723 726 726 734 735 735 735 735 
34 780 805 808 808 813 813 814 815 815 
36 856 878 891 891 903 905 906 906 906 
38 924 947 955 955 966 971 972 972 972 
40 1017 1035 1045 1045 1055 1056 1058 1061 1061 
42 1091 1111 1119 1119 1141 1141 1143 1144 1146 
44 1175 1205 1207 1207 1225 1229 1230 1230 1231 
46 1263 1295 1304 1304 1323 1326 1327 1328 1331 
48 1359 1403 1418 1418 1430 1432 1441 1444 1446 
50 1447 1489 1497 1497 1512 1519 1522 1522 1523 
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flth. 4.9: The average performance of ILS based method for dffi'erent MaxNonlmp 
value when k =  10 

N 1NI- 
100 

MNI- 
500 

TIN1- 
1000 

MNI- 
2000 

vIN1- 
3000 

MNI- 
4000 

MNI- 
6000 

MNI- 
8000 

MNI- 
10000 

6 66 67 67 67 67 67 67 67 67 
8 112 113 113 113 113 113 113 113 113 
10 168 170 170 171 171 171 171 171 171 
12 230 232 232 233 233 233 233 233 233 
14 296 299 302 302 302 302 302 302 302 
16 374 375 381 382 383 383 384 384 384 
18 461 464 466 470 470 470 470 470 470 
20 547 554 559 560 561 561 561 561 561 
22 648 656 666 669 669 669 670 670 670 
24 749 757 766 773 775 776 776 776 776 
26 856 868 882 883 883 884 885 885 885 
28 973 982 1000 1005 1006 1006 1008 1008 1010 
30 1105 1114 1126 1131 1133 1136 1136 1136 1137 
32 1230 1243 1261 1263 1266 1267 1270 1270 1270 
34 1365 1383 1400 1407 1409 1414 1415 1415 1416 
36 1515 1530 1555 1562 1564 1567 1570 1573 1573 
38 1656 1672 1706 1711 1716 1717 1718 1720 1720 
40 1802 1826 1858 1862 1865 1871 1877 1879 1880 
42 1965 1993 2026 2033 2039 2041 2045 2045 2045 
44 2127 2160 2191 2205 2209 2211 2214 2215 2215 
46 2292 2314 2363 2378 2388 2391 2391 2398 2405 
48 2475 2512 2552 2556 2569 2573 2580 2591 2591 
50 1 2659 2674 2738 2756 2768 2768 2773 1  2781 1  2782 
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MaxNonlmp values. Note that we reported the average (integer-rounded) results 
rather than best maximin LHDs in the tables. We observe that though for small 
values of N MaxNonlmp = 100, 500 are usually sufficient to obtain the best LHD, 
these are excessively small values for higher N values, for all k. We also observe 
that for small values of k, MaxNonlmp = 1000 is more or less able to obtain the 
best LHD when N < 25. But when N > 25, improvements are still possible 
by taking larger MaxNonlmp values. Quite expectedly, on average, the suitable 
MaxNonlmp value is increasing with N for all k values. 

Figure 4.9 displays the experimental results. In the figure, we plot the N 
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Fig. 4.9: Impact of N on MaxNonlmp Parameter for Mm(Ds, J1 ) 

values on x-axis, versus the "Best-Average" MaxNonlmp values (y-axis) for each 
k value. By the "Best-Average" MaxNonlmp, we mean the minimum value of 
MaxNonlmp for which the algorithm obtained the best average maxirnin distance 
(Mm) value over 20 runs. 

We observe from the figure that the trends of the smoothed curves are 
quasi-linear for the k values considered. In particular, for k = 3, the trend 
of MaxNonlmp is increasing slowly for small values of N and then it is increas- 
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ing a bit more rapidly. Again for k = 10, we observe that the rate of change 
MaxNonlmp is decreasing for large value of N. For these large problems, we 
conjecture that the phenomenon happens because an even larger MaxNonlmp 
would be needed. We also observe that, on average, the slope of the curves are 
more or less similar, and linear, for all k, 20 < N < 45. We can conjecture 
the existence of a linear relationship relating the suitable MaxNonlmp to the N 
value. 

4.3.2 Impact of Dimension on MaxNonlmp 

For investigating the impact of k on the MaxNonlmp parameter, we consider 
the LHDs: N = 10, 20,30, 40 with all k = 3,4,. . . ,40. We set MaxNonlmp= 
10,000 as a stopping condition. For each run with MaxNonlmp = 10,000, we store 
(during the run) the best results for MaxNonlmp=100,1000, 2500, 2500, 5000, 
8000, and 10,000. We considered the average results as usual. 
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Fig. 4.10: Impact of k on MaxNonlmp parameter for Mm(Di ,Ji ) 

The experimental results are displayed in the Figure 4.10. We observe that 
when k is small - k < 11 - the value of MaxNonlmp increases in a roughly 
logarithmic way with respect to k for N = 10 For N = 20,30, the trend is 
cleaner and, again, somewhat logarithmic. But for N = 40 the observed values 
seem to saturate to MaxNonlnip=10000 for k > 15, which implies that a larger 
MaxNonlmp would be probably needed. 



4. Experiments about ILS with Opt (Di, J1) 60 

4.4 Empirical formula for MaxNonlrnp 

Up to now we have observed (in Section 4.3) that the (best observed) MaxNonlmp 
increases in a quasi-linear fashion with respect to N and increases roughly in a 
logarithmic fashion with k. It is also apparent that a constant MaxNonlmp 
value is not a good strate' for obtaining good maximin LHI)s for all N 
and k values. On the other hand, though a large MaxNonlmp value, namely 
MaxNonlmp= 10000, is able to obtain better LiIDs, of course it is computation-
ally costly. So, now we want to devise an empirical formula (EF) for computing 
a suitable MaxNonlmp value for the given N and k. In what follows we denote 
the MaxNonlmp value produced by EF as MNI-EF. 
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Fig. 4.11: The trend of (a) AAO MaxNonlmp w.r.t. N 

We first consider the experiments performed in Section 4.3. We observe in 
those experiments that sometimes within a large range of MaxNosilmp values the 
average maximin LHDs are unchanged and the change of maximin LHDs value 
with respect to changes of the MaxNonlonp value is small. By considering these 
circumstances, we display the approximate average optimal (AAO) MaxNonlmp 
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value with respect to N in Figure 4.11. We define the AAO MaxNonlrnp value 
as the MaxNonlmp value at which a result within a given small percentage of the 
best one (obviously reached for MaxNonlmp=10000) is obtained. In particular, 
we fixed the percentages 0.4, 0.3, 0.2 and 0.1% respectively for k = 3,5,7,10. 
Just. to make the definition clearer, let its consider the following example. For 
k = 10 assume that the best obtained result for MaxNonlmp=10000 is 1535. 
Then, the AAO MaxNonimp value is the first MaxNonlmp value at which a re-
sult at least equal to L1535 - 0.001 * 1535] = 1533 is reached. Basically, the 
idea is to consider MaxNonlrnp values which do not necessarily deliver the best 
results but for which a further increase of the MaxNonlmp value would only 
slightly improve (at a greater computational cost) the final results. 

We notice that the trends are polynomially increasing with respect to N for 
all k considered. As we also know by the experiments in section 4.3 that there 
is a logarithmic impact of MaxNonlmp on k, we may first assume the empirical 
formula is of the following form: 

MaxNonlrnp=cx (logk)m  x N+d, (4.1) 

where c, d, m and a are constant, N and k correspond to number of design points 
and number of factors respectively. In order to find out the approximate value 
of n in equation (4.1), we approximately fit the data for each k = 3,5,7,10 as 
shown in Figure 4.11 (the smooth red lines). We notice that the range of n is 
1.70 <n < 2.05. 

To validate the empirical formula (4.1), we first made some primary experi-
inents and then fixed up the values of a = 0.7, b = 50, p = 1.90 and q = 1.3 for 
equation (4.1): 

MaxNonlmp = 0.70 x (log k)' 3  x N 190  + 50, (4.2) 

Figure 4.12 plots the curves of MaxNonlmp values generated by formula (4.2) 
for the same set of problems considered in Figure 4.11: we observe that the two 
sets of curves are quite similar. 

4.4.1 Performance of the empirical formula 

In order to investigate the performance of the empirical formula (4.2) we con-
sider LHDs with k = 3,5,7, 10 and N = 2i : i = 3,4, . ,25. We configured the 
ILS to use H.P local moves with Fl local search and SCOE perturbation, and 
MaxNonlmp= 10000. Opt(D j, J,) is the optimality criterion for all the dimen-
sions and the points. We performed I? = 20 runs. During the runs we collected 
the intermediate best LHDs for 

• MaxNonlmp= 1000, 

• the MaxNonlmp value computed by the empirical formula (labeled MNI-
EF in the tables), and 

• MaxNonlmp= 10000. 

We only report the data collected in the experiments with k = 5 (displayed in 
Figure 4.13 and Table 4.10) since those for other k values lead to quite similar 
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Tab. 4.10: The performance of ILS based method for different MaxNonlnip values 
when k = 5 

average_LHD (Opt. LHD, no. of success) MNI-EF 
N MNI- MNI- MNI- MNI- MNI- MNI- parameter 

1000 10000 EF 1000 10000 EF value 
6 32 32 32 [32,191 [32,19] (32,19] 233 
8 48 48 48 [50,1] [50,1] [50,1] 294 
10 76 76 76 [82,1] [82,1] [82,1] 371 
12 88 88 88 [90,2] [90,2] [90,2] 462 
14 110 111 110 [114,2] [114,2] [114,2] 569 
16 136 136 136 [139,4] [139,4] [139,4) 690 
18 163 164 163 [168,1] [168,1] [168,1) 825 
20 191 192 191 [198,1] [199,1] [198,1] 975 
22 220 222 221 [229,1] [233,1] [229,1] 1139 
24 247 250 247 1255,11 [257,2] [255,1] 1317 
26 279 282 280 [288,1] 1288,2]  [288,1 1508 
28 311 314 313 [324,1] [324,2] [324,1] 1714 
30 348 352 350 [358,1] [363,1] [363,11 1933 
32 381 386 385 [394,2] [402,1] [402,1 2166 
34 415 425 421 [434,1] [439,2] [437,1 2412 
36 457 466 464 [473,1] [478,1] [476,1 2671 
38 495 505 501 [512,1] [526,2] [526,1 2944 
40 535 547 541 [549,1] [564,1] [554,2] 3230 
42 576 591 587 [602,1] [606,1]  1602,2] 3530 
44 613 628 627 [638,1] [652,1] 1652,1 3842 
46 658 673 671 [676,2] [696,1] 1690,1 4167 
48 707 723 719 [721,2] [738,1] (738,1 4506 
50 748 1  761 1  759 [768,1] 1 [781,1] [781,1] 4857 
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Fig. 4.12: The trcnd of AAO MaxNonlnip w.r.t. N 

conclusions. From Figure 4.13 as well as from Table 4.10, we make two obser-
vations. The first one is that when N is relatively small like N < 25 then the 
performance of the algorithin shows no significant difference among the three 
considered MaxNonlmp values, for any k values. But when the value of N is 
large then the algorithm with MNi-EF provides almost always better results 
compared to the case MaxNonlmp=1000. The second observation is that al-
though algorithm with MaxNonlmp= 10,000 provides better results with respect 
to that of the algorithm with MaxNonhmnp=MNI-EF for large values of N, the 
loss of performance for the MaxNonlmp=MNI-EF case is quite limited, while 
the computational saving is considerable (see Table 4.11). 

Now we would like to investigate the computational cost of the above performed 
experiments. The run times of the experiments are reported in Table 4.11 per-
formed on a machine with a AMD Optcron 1 GI-lz processor and 4 G13 RAM. 

As expected, the computational cost of the algorithm with MaxNonlrnp=MNI-
EF is slightly superior with respect to the one with MNI-1000 (the cost for the 
former is at most twice that of the latter for k = 10), whereas the computational 
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Fig. 4.13: The absolute improvement of MNI-EF and MNI-10000 w.r.t MNI-1000 
based approach 

Tab. 4.11: Total elapsed time for different MaxNonlmp values for the ILS approach with 
the Opt(D j, J1 ) optiniality criterion (time is in hours) 

Lk MNI-10000 I MNI-EF I MNI-150 

3 5.6 1.1 0.8 
5 20.0 5.7 3.9 
7 28.9 i 9.9 * 6.1 
10 56.2 19.4 I 9.8 

I Total T. II 110.7 I 36.1 I 20.6 I 

cost of the algorithm with MNI-10000 is significantly larger (up to six-seven 
times larger) than that of the algorithm with MNI-1000. 

Given that the gain in the quality with MNI-10000 with respect to MNI-
EF is not particularly significative, from these experiments we may claim that 
the MaxNonlmp value produced by formula (4.2) is a quite good compromise 
between quality of the result and computational cost. 

4.5 Comparison of ILS with the existing literature 

Now we will compare our results with those in the existing literature. A large 
number of works about LHDs is available in literature but few of them con-
sider maximin LHDs, because the concept of maximin LHD is relatively new. 
The works on maximin LHDs study general LHDs as well as special types of 
LHDs like orthogonal LHD, symmetric LHD and so on. For the comparison, 
here we consider general LHDs; in particular, we compare our results with those 
reported for the Simulated Annealing (SA) approach in [178] (labeled SA-1 in 
the following) and those of the Periodic Design (PD) and another Simulated An-
nealing in what follows denotes as (SA) approach presented in the recent paper 
[117] (also available at the web site http://www.spacefillingdesigns.nl). 

For ILS, we set RP local moves with B! acceptance rule in local search, SPC 

.01 

I! 
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Tab. 4.12: The setting of number of runs for the ILS approach 
k N it 
3-10 2-25 500 
3-10 26-50 100 
3,4,5 51- 100 50 
6-10 51-100 10 

perturbation and MaxNonlnip=1000. We also consider the Opt(D,, J1 ) optimal-
ity criterion. In what follows the approach will be simply denoted as ILS(D

1 ). 
For what concerns the number of runs for each LHD, we consider the settings 
given in Table 4.12. 

We report the best Inaximin squared distance for N up to 100 and k ranging from 3 to 10 in Table 4.13. 

At. first we compare our results with PD and SA reported in Table 4.13. We 
observe in the table that ILS(DI ) is always at least as good as the SA ap-
proach presented in (117] and it is interesting to note that the algorithm got 
improvements already at low values of N and the improvements tend to become very large as the dimension k increases. Another observation from the table is that ILS(D1

) is also often (much) better than I'D but it is dominated for N > 33,k = 3 and N> 95,k = 4. This is similar to what observed in [117]. In 
[I 17] it has been observed that there is a critical number of points above which 
PD tends to outperform SA. Such critical number quickly increases with the 
dimension k and, e.g., for k > 6 such value is certainly above N = 100 (note that in (I 17] results of PD for k ~ 8 are not even reported because they are 
clearly inferior to those of SA for N up to 100). We also remark that ILS(D) 
allows to increase the critical value where PD becomes better than ILS, but for 
N 

large enough also ILS(D,) gets dominated by PD for small k values. 

Although the quality of the results obtained by ILS appears to be quite good, 
it is important to see whether such results have only been obtained by brute 
force, i.e., 

at the cost of a very large computational effort. As computational 
cost is one of the important issue for the heuristic approaches, we report the 
computational cost of the above experiments in Table 4.14 

. The computational 
cost of PD and SA from [117] is also incorporated in the table. Even taking 
into account that our CPU is faster than the one of [117], our ILS algorithm is 
remarkably computationally cheaper. All the batch of tests ran within a week 
where as Husslage et. al [117] needed more than 4 months to get tile result in 
Table 4.13 for their SA approach. s  

Now we will compare the results of ILS(D,) as reported in Table 4.13 with 
SAil given in (178]. Note that in [178] only a limited number of such results is 
available'. The comparison is displayed in Table 4.15. Also note that the value 

Actually, in 11781 the best maxirnin distance for 
design points whose Components l)elolig to the set O, i} is reported, but here, with an easy transfor,natiomm w 

1) 
e report the corresponding rnaxirnin squared distance when the componelmts belong to the set {O, I..... N 
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Tab. 4.13: Comparison between PD, SA and ILS(D1) 
k3 k4 I h = 5 1 k6  

- 
it I'D SA ILS 1, A TE5 p A ILS 

2 3 3 3 4 4 4 5 5 5 6 6 6 
3 3 (3 6 4 7 7 5 8 8 0 12 12 
4 6 6 6 12 12 12 11 14 14 15 20 20 
5 6 11 11 12 15 15 31 24 24 15 27 27 
6 II 34 14 16 22 22 23 22 32 28 40 40 
7 14 17 17 16 28 28 23 40 40 28 52 52 
8 21 21 21 25 42 42 32 50 10 42 66 66 
8 21 22 22 25 42 42 39 61 61 43 76 76 

10 23 27 27 36 50 50 55 82 82 62 91 92 
11 24 20 30 39 55 55 55 80 81 62 108 110 
12 30 36 36 40 03 63 62 91 03 91 136 138 
13 33 41 41 51 68 70 64 101 103 91 136 140 
14 35 42 42 70 75 78 80 112 116 104 152 100 
15 42 48 48 71 83 87 88 124 131 111 167 173 
16 42 50 50 85 90 94 101 136 162 130 186 102 
17 42 53 54 82 97 100 113 150 158 131 203 210 
18 10 56 16 94 103 109 133 162 171 155 223 232 
19 57 59 82 94 113 118 139 174 187 169 241 209 
20 57 62 00 106 123 130 139 184 201 210 260 270 
21 61 66 69 116 127 143 165 201 224 210 283 299 
23 09 69 72 117 137 150 174 215 225 223 304 322 
23 72 74 77 130 140 158 178 224 247 236 324 343 
24 70 78 81 138 154 167 201 242 203 258 343 367 
25 91 81 80 156 103 177 205 255 377 289 368 395 
26 91 80 80 156 171 186 220 269 288 296 387 411 
27 91 90 91 157 178 195 238 287 307 310 410 441 
28 94 94 98 174 188 201,  258 302 320 339 427 408 
28 94 08 101 174 190 214 209 322 343 346 452 490 
30 102 102 105 194 209 233 310 331 303 390 473 520 
31 107 106 510 212 215 234 310 347 370 390 304 544 
32 114 110 110 212 228 346 341 371 360 419 529 573 
33 114 113 130 213 234 265 341 379 415 430 546 007 
34 133 117 123 230 244 206 358 403 437 470 186 038 
35 133 122 129 234 255 378 300 418 403 495 601 057 
36 133 129 132 250 261 200 400 427 483 518 631 080 
37 152 131 139 266 271 299 408 424 600 528 648 718 
38 153 134 142 283 279 300 415 464 525 561 681 755 
39 153 139 149 283 290 321 439 486 541 161 706 770 
40 155 130 110 291 301 332 492 505 602 632 739 810 
41 162 147 155 293 300 348 492 525 590 632 776 851 
42 108 122 162 319 325 355 496 533 005 670 791 885 
43 108 117 166 323 329 372 520 558 623 070 830 907 
44 180 101 174 331 349 378 548 182 853 696 502 043 
41 180 169 179 347 362 391 565 611 071 727 891 083 
46 186 169 182 360 370 403 592 615 600 797 918 1012 
47 180 173 189 378 378 417 911 633 719 797 940 1051 
48 180 178 190 413 385 433 632 673 743 857 976 1082 
49 190 180 201 411 399 443 634 680 707 893 1015 1110 
50 213 185 203 415 413 454 063 699 794 893 1042 1159 
51 213 189 206 421 426 400 092 727 804 917 1007 1179 
52 213 198 213 455 429 478 709 742 835 1003 1100 1224 
53 210 200 217 451 447 493 716 765 858 1003 1130 1252 
54 233 213 221 477 454 507 760 783 880 1019 1171 1295 
51 243 213 233 483 477 520 760 802 007 1082 1198 1363 
50 243 216 233 515 479 537 784 830 930 1104 1236 1384 
57 201 221 241 515 400 549 836 854 054 1126 1261 1411 
415 201 227 245 539 500 503 838 878 980 1166 1303 1450 
59 260 229 248 541 119 574 819 505 1018 1223 1328 1510 
60 273 237 234 168 530 591 004 928 1033 1242 1381 1549 
61 274 244 259 620 538 609 903 939 1075 1238 1413 1025 
62 283 213 266 620 154 021 934 991 1090 1306 1450 1005 
63 297 249 275 620 575 030 967 989 1110 1380 1497 1044 
64 267 218 278 021 579 045 981 1009 1137 1430 1520 1007 
65 314 260 281 630 582 002 997 1031 1170 1430 1162 1760 
66 314 209 290 666 602 077 1010 1051 1104 1176 1590 1803 
67 314 270 297 066 614 090 1072 1085 1236 1182 1640 5824 
68 314 218 297 685 623 707 1087 1119 1243 1138 1664 1809 
69 334 280 306 698 610 723 1112 1114 1271 1588 1704 1003 
70 325 285 300 716 658 737 1150 1135 1307 1633 1719 1946 
71 325 289 317 716 665 750 1150 1187 1320 1644 1783 2014 
72 341 296 321 720 078 702 1203 1197 1355 1708 1802 3073 
73 350 299 326 759 088 771 1229 1212 1383 1768 1872 2005 
74 350 300 332 767 703 704 1329 1209 1426 1774 1910 2151 
75 350 310 341 771 714 813 1274 1282 1444 1862 3063 2103 
76 363 324 346 813 750 818 1300 1318 1480 1635 2024 2307 
77 363 325 310 823 702 849 1308 1331 1508 1047 2051 2208 
78 387 337 356 81.1 761 855 1382 1360 1544 2014 2079 2333 
79 387 333 366 838 788 877 1382 139)) 1560 2037 2120 2307 
50 403 341 366 873 780 898 1391 1430 1006 2037 2152 2400 
81 400 336 374 010 782 907 1406 1331 1031 2064 2217 2446 
83 406 313 362 038 825 924 1475 1492 1651 2141 2239 2518 
83 417 309 387 040 829 926 1501 1509 1605 2141 2290 2562 
84 430 363 390 967 838 950 (534 1510 1728 2229 2325 3014 
85 420 309 398 667 877 970 1552 1566 1760 2222 2380 2093 
86 428 370 403 867 607 985 1573 1578 1783 2375 2437 2732 
87 459 374 410 970 677 1017 1598 1189 1811 2275 2476 2715 
88 437 374 420 1050 890 1017 1685 1629 1841. 2298 2513 2827 
80 443 378 422 1050 007 1045 1090 1654 1891 2400 2562 2850 
90 481 381 433 1000 910 1002 1710 1690 1909 2510 2933 2927 
91 481 393 424 1089 951 1074 1748 1724 1054 2110 2674 2970 
92 481 393 346 1089 906 1060 1805 1750 1988 2599 2729 3021 
93 481 402 446 1098 962 1110 1813 1795 2000 2604 2726 3073 
91 481 405 453 1124 986 1130 1881 1811 2049 2747 2788 3142 
95 481 413 401 1135 1010 1141 1901 1840 2000 2747 2817 3100 
96 500 414 466 1201 1023 1161 1965 1862 2128 2769 2911 3240 
97 515 410 373 1201 1027 1166 1965 1899 2130 2817 2960 3280 
98 531 429 477 1201 1055 1196 1965 1929 3170 2850 3001 3354 
99 535 449 480 1201 1040 1209 2009 1950 2217 2878 3043 3400 

100 554 451 494 1261 1074 1235 2053 1971 2225 3000 3117 3451 
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N (=7 k. 8 9 6=10 
?15 SA —IL5 SA ILs sx rtr — c -ir 

2 7 7 7 8 8 0 9 10 10 
3 7 13 13 14 14 18 18 19 19 
4 16 21 21 26 26 28 28 33 33 
5 16 32 32 40 40 43 43 50 50 
6 29 47 47 54 54 61 61 66 65 
7 31 61 61 70 71 80 81 89 00 
8 46 -10 80 91 91 101 102 114 114 
9 47 93 93 112 113 126 128 141 143 

10 68 110 111 130 132 154 157 172 174 
11 69 128 131 152 154 178 180 206 209 
12 81 150 154 176 181 20.1 208 235 238 
13 95 174 181 202 200 233 240 267 272 
14 119 204 215 228 240 265 275 208 309 
15 129 211 223 257 276 296 313 337 351 
16 155 238 244 286 320 330 304 378 301 
17 161 259 207 312 330 367 404 415 446 
18 186 281 293 344 300 398 447 458 496 
19 193 303 320 370 388 436 470 498 545 
20 226 332 348 403 424 472 505 542 007 
21 236 361 379 438 460 517 546 592 040 
22 270 384 408 467 405 555 687 043 687 
23 273 411) 444 501 530 596 035 685 733 
24 308 4.14 473 538 576 639 080 739 791 
25 330 467 508 582 615 688 732 792 847 
26 305 499 538 612 654 72(1 773 654 899 
27 382 526 509 648 690 780 828 690 965 
28 406 561 009 693 743 826 870 923 1021 
29 417 593 641 733 797 870 942 1015 1000 
30 458 620 681 787 838 925 1000 1086 1152 
31 4(12 657 714 812 888 976 1055 1138 1227 
32 518 695 757 860 032 1026 1116 1194 5287 
33 537 723 792 900 085 1084 1170 1253 1357 
34 561 751 828 935 1033 1135 1237 1329 1437 
35 086 811 870 1002 1081. 1190 1307 1399 1510 
36 636 831 910 1042 1136 1257 1359 1459 1554 
37 668 863 955 1079 1201 1300 1424 1516 1666 
38 709 923 1002 1127 1243 1367 1487 1597 1730 
39 726 938 1043 1192 1299 1434 1559 1661 1834 
40 780 970 1092 1224 1363 1480 1631 1742 1890 
41 802 1016 1133 1271 1431 1562 1707 1820 1996 
42 903 1064 1175 1333 1478 1639 1773 1920 2014 
43 903 1112 1210 1377 1530 1083 1857 1973 2176 
41 903 1140 1268 1463 1580 1752 1022 2072 2249 
45 920 1192 1319 1480 1653 1820 1907 2130 2336 
40 985 1243 1364 1248 1722 1906 2001 2208 2433 
47 985 1268 1418 1616 1775 1058 2101 2331 2534 
38 1054 1325 1451 1659 1840 2017 2239 236' 2017 
49 107.1 1359 1515 1729 1020 2103 2299 2.170 3T19 
50 1113 1397 1549 1772 1985 21 70 2404 2556 2808 
51 1101 1450 1590 1855 2029 2243 2640 2039 3908 
52 1231 1486 1043 1889 2105 2325 2647 2745 2990 
53 1241 1537 1700 1849 2102 2429 2617 2825 3079 
54 1288 1577 1751 2006 2217 2473 2690 2802 3108 
55 1325 1639 1800 208.1 2290 2570 2787 3054 3214 
56 1358 1701 1849 2162 2308 2623 2913 3100 3407 
57 1179 1721 1907 2194 2421 270.1 3900 3215 3530 
58 1479 1795 1903 2258 3487 2790 3058 3305 3631 
59 1509 1821 2028 2356 2504 2881 3134 3389 3700 
60 1377 1899 2070 2393 2668 2939 3240 3500 3810 
61 1615 1928 2139 2488 2728 2(121 3340 3588 3010 
02 1080 2023 2182 2541 2813 3132 3432 3700 4060 
6:1 1680 2035 2249 2807 2925 3215 3538 3767 4183 
64 1769 2093 2330 2734 2914 3282 3035 3955 4204 
65 1799 2132 2304 2723 3059 3327 3118 4034 4410 
60 1827 2180 2434 2831 3125 3474 3838 4143 4543 
67 1808 2238 2503 2868 3198 3543 3004 4223 4070 
68 1940 2295 2581 2956 3206 3647 4035 4361) 4750 
68 1865 2351 2805 3075 3355 3716 4124 4455 4913 
70 2130 2417 2672 3130 3450 38.11 4230 4538 5037 
71 2130 2351 2732 3161 3531 3936 4366 4680 5153 
72 2177 2503 2190 3220 3020 4027 4417 4812 5260 
13 22002598 2858 3305 3700 4134 4833 3873 5389 
74 22.1.1 2614 2000 2332 3807 4224 4058 5038 5621 
72 2295 2703 2084 3513 3803 4208 4751 5171 5595 
76 2375 2758 3085 3519 3972 4395 4890 5254 8806 
77 2403 2819 3134 3617 4044 4392 4989 5399 5033 
78 2505 2870 3184 3684 4110 4577 5103 5489 6040 
78 2525 2950 3243 3775 4215 3705 8170 5633 0192 
80 259(3 2979 3324 3877 4290 4807 6283 5773 0301 
81 2932 3096 3397 4001 4413 4888 5484 5901 6460 
82 2753 3118 3477 3998 4496 5030 5519 6013 0020 
83 2767 3195 3534 3076 4558 5102 5013 6097 0147 
84 2638 3227 3598 4183 4085 5222 5760 0273 6833 
85 2874 3299 3648 4324 4704 1330 5917 6397 7000 
86 3103 3335 3824 4397 4889 5423 0038 6401 7189 
87 3103 3430 3852 4374 4922 5538 0100 6622 7318 
88 3183 3500 3872 4524 5070 5667 0257 6803 7447 
89 3183 3531 3940 .1578 5140 1771 0301 6872 7608 
90 3190 3601 4019 4699 5215 5832 0440 7040 7753 
91 3234 3077 4149 4850 5325 5969 0077 7163 7973 
92 3277 3760 4328 4873 5404 0081 0141 7286 8128 
93 3361 3811 4244 4984 5531 6231 0869 7388 8198 
9.1 3.271 3888 4320 5007 5615 6329 0971 7536 8358 
91 3231 39.10 4408 5154 5754 6399 7137 7741 8523 
66 3039 4070 4463 5220 5871 6516 7308 7777 8005 
67 3930 4009 4592 5316 5945 6649 7300 8038 8710 
09 3690 4147 4644 5445 6111 6776 7643 8242 9070 
09 3731 421.1 4721 5477 0187 6912 7032 8334 0150 

10(1 3903  4335 4796 0507 0280 6983 1715 8350 0200 
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Tab. 4.14: Comparison of the elapsed time (in hrs) among PD, SA and ILS(D1 ) 
k PD SA ILS(D1) 
3 145 500 15 
4 61 181 15.53 
5 267 152 26.27 
6 108 520 11.92 
7 232 246 17.49 
8 - 460 24.61 
9 - 470 39.25 
10 - 470 48.24 
CPU 800 800 1000 

l',,o. lii P,,n. IT! AMO Opt.r. 

Tab. 4.15: Comparison between SA-1 and ILS(Di) 
- k=3 k=4 k=5 For other value of k & N 
N SAil ILS SAil ILS SA..M ILS (N;k) SA..N ILS 

(D1 )  (Di ) (D1 ) (D1 ) 
2 3 3 4 4 5 5 (6; 6) 40 40 
3 6 6 7 7 8 8 
4 6 6 12 12 14 14 (7; 7) 61 61 
5 11 11 15 15 24 24 (14;7) 219 215 
6 14 14 22 22 32 32 
7 17 17 28 28 40 40 (8; 8) 91 91 
8 21 21 42 42 50 50 
9 22 22 42 42 61 61 (9; 9) 126 128 
10 27 27 50 50 82 82 
11 29 30 55 55 80 81 
12 36 36 63(2) 63(1) 91 93  

within parenthesis in Table 4.15 correspond to J1  values. 
In spite of the fact that in [178] only results with few points are reported, 

ILS was able to obtain always at least the same quality except for the LHDs 
N = 14; k = 7 but also some improvements. In particular, the improvements 
are for: (N, k)= (11,3), (11,5), (12,5), (9,9). We have also an improvement 
regarding the J 1  value in (N; k)= (12; 4). For the single failure (N; k)= (14; 7), 
we mention that a slightly larger number of runs is sufficient to detect the 
missing best value 219. 

In the above experiments we considered PC perturbation based ILS ap-
proach. We remark that also Cyclic Order Exchange (COE) allows ILS to 
outperform SA. And we have already compared the PC perturbation based ILS 
approach with SA approach in the Table 4.13. In order to make a further 
comparison between the performance of PC and COE perturbation.-,, we also 
discuss the results obtained with COE. For this comparison we consider LHDs 
with N = 2,..., 100 and k = 5. We set MaxNonlmp= 1000 and II = 100 for all 
the cases. We display the results in Figure 4.14 in terms of absolute improve-
ment with respect to the SA based approach given in [117]. From this primary 
experiments, we observe in Figure 4.14 that both ILS approaches outperform 

1. 

a 
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Fig. 4.14: Performance of SPC and SCOE based ILS approaches with respect to SA 
approach in[1781 

SA. 
As we discussed earlier (see Section 4.2), for sniall values of N, the COE 

based ILS approach works slightly better than the PC perturbation based ap-
proach. On the other hand for large value of N. the PC perturbation based ILS 
approach works better than the COE perturbation based ILS approach. 

4.6 Experiments about the complexity analysis 

The aim of this section is to experimentally assess the computational cost of 
the proposed ILS(D1 ) algorithm. We will first derive the number of oper-
ations required by a single local search, and then those for a single run of 
ILS (from now on in this section we will give as understood that we are dis-
cussing the ILS(D1 ) version). For these experiments we consider k = 3,5.7, 10 

and N = 10i : i = 1,2,• , 10. We use the following parameter setting 
Acceptance criteria= Best lmprove(BI), LocalSearch=RP; Stopping criteria: 
MaxNoiilnip= 1000, Perturbation inoves=SCOE and number of trials is one if 
otherwise not defined. 

Assume that we are at iteration s of a local search and that. the current value 

is j(.) The basic operation in a local search is the swap one between two 
points i and j. In order to compare the new candidate solution with the current 4 

one, we need to evaluate D0+)  and +l)• Such operation (loeS not require to 
compute from scratch all the distances within the candidate solution. Indeed, 
only those involving points i and j are changed with respect to the current so-
lution. Therefore with a proper implementation we should only compute 0(N) 
new distances, each of which requires a number 0(1) of operations (indeed, we 
do not need to compute the distaiice from scratch but only update the part 
corresponding to the single coordinate whose value has been changed). In fact 
we do not always need to compute all the new distances: as soon as we compute 

a distance lower than we can stop, since the candidate solution is certainly 
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Fig. 4.15: The percentage of pairs involving and not involving critical points 

worse than the current one. Therefore, each swap operation requires at most 
0(N) operations. 

The number of swap operation is not known in advance. Indeed, swap moves 
are restricted only to those involving at least a critical point. In Figure 4.15 
the x-axis reports N and the y-axis reports the percentage of actually analyzed 

4. swap moves (those involving at least one critical point) over the total number 
of possible swaps in each run (those involving all possible pairs of points), for 
k = 3, 5, 7, 10. The black curve represents the percentage of analyzed swaps, 
the red curve rej)resents the percentage of "avoided" swaps, i.e. those not in-
volving critical points. We observe that for very small N (N < 14) most of the 
possible swaps are to be considered, but as N grows the percentage of swaps to 
be considered drops dramatically, quickly falling below 10% for N > 30. 

Figure 4.16 shows the history of the number of critical points during the local 
searches for the case (k, N) = (7,50). We observe that most of the times the 
number of critical points is 1 or 2, and only occasionally is greater than 6. Figure 
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Fig. 4.18: The impact of N on average Critical Points during history of evaluation 

4.17 shows with a bar diagram the maxinnirn number of critical points (MCP) 
obtained during the run of the algorithms for each (k, N). Apparently, we cannot 
observe any significant impact of N and k on the values of MCP. indeed such 
values are always below 20, and most of the time they are near 10. In Figure 4.18 
we report the average number of critical points in each neighborhood, rounded 
to the largest integer: this number is always stuck at 2, for all k = 3,5. 10. So 
we can confidently claim that the size of the problem has practically no impact 
on the number of critical points in each visited configuration. 
Since we need to consider all the swap moves involving at least one critical 
poult, the above considerations lead us to conclude that the total number of 
swap moves that we need to perform at a given iteration is simply O(kN) 
(factor N is due to the number of pairs involving at least a critical point, factor 
k is due to the fact that, given a pair, we have a swap operation for each possible 
coordinate). 

The last thing we need to consider in order to evaluate the number of op-
erations required by a local search is the number of times the \Vhile-Loop is 

executed, i.e. the number of times all improving solution is observed during a 
local search. We will denote this number by WL. \Ve will perform some ex-
periments in order to find the impact of N as Figure 4.19 shows time history 
of WL during LocalSearch for (a) (k, N) = (7,20)) and (b) (k, N) = (7. 50). 
We observe in Figure 4.19 (a) that most of the time WL lies near 10 and the 
largest value ol,served in the figure is less than 25. In Figure (b) we notice that 
most of the time the number WL lies near 30 and the maximum value of WL 
(MWL) is near 80. That is WL (average as well as maximum value) increases 
together with N. Figure 4.20 shows a eIemer representation of the impact of 
N on the number MWL. Apparently there exists a linear relation between WL 
and N. We can also observe an impact of the dimension k on WL. in order to 
investigate the dependence on k, we performed another series of experiments, 
fork = 5i : i = 1,2,.. ,10 and N = 10, 25, 50, 100. Note that for finding out 
the impact on the local search phase, WL is averaged over the corresponding 
number of performed perturbations. We observe in Figure 4.21 that there is a 
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significant impact of k for all N N = 10, 25,50, 100 on the average number of 
WL (AWL). 

We observe that the trend shown by WL is roughly 

T 

where 0 < c < 1, i.e. a fractional power functional dependence of WL on k. 
In conclusion, it has been experimentally seen that the number WL is O(Nkc). 

Now, if we sum up the time required by a single swap (at most 0(N)), the 
total number of swaps per iteration O(Nk), and the total number of iterations 
WL 0(Nkc),  we conclude that a local search requires at most O(k'N) for some 
r and q (in particular, we might conjecture that q is close to 3 and r ranges be-
tween 1 and 2). In order to validate this result we performed some experiments 
whose outcome is shown in Figure 4.22. In such figure we report the average 
computation time per local search as a function of N for thc three difhreimt 
values k = 3, 7, 10 (the time is the average per local search over 10 runs of ILS). 
We assume, as derived above, that the approximate time complexity for a local 
search of the ILS approach is 

T O(k'N"), 

and will try to determine practical values for r and q experimentally. In Figure 
4 4.22, we observe that, for each k, the curves of elapsed times grow non-linearly 

with respect to the increasing of N. To find out the approximate value of q we 
fitted the data in a linear regression for each k as 

log(T) = qlog(N) + rlog(k), 

where T = Average elapsed time in each LS. We observe from Figure 4.23 that 
the range of q is 2.5 < q :5 3. In particular, as k increases it seems that q tends 
to 3, which is the value previously conjectured. 

To find out the approximate value of r we performed some experiments by 
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Fig. 4.25: The impact of N on the number of perturbations 

considering LHDs k = 5i : i = 1,2, . . . ,10 with N = 10,25,50, 100. Figure 
4.24 shows the impact of k on average elapsed time in each LS. In the figure we 
observe that the average elapsed time T increases slightly more than linearly 
with respect to k. In order to find out the approximate value of r we have fitted 
the data (see figure 4.24). We notice that the range of r is 1 < r 2, which is 
again in accordance with what was previously conjectured. 

We remind the reader that this practical time complexity O(k"N), with 
r E (1,2) and q E (2,3), for LS has been estimated in the environment of ILS 
instead of evaluating a stand-alone local search. According to our observations, 
the local search usually performs less iterations in the ILS environment, due to 
the "partially optimal" structure preserved by the perturbations. 

In order to get to an empirical evaluation of the number of operations required 
by an ILS run, we still need to evaluate the number of perturbations (and, thus, 
of local searches) performed during an ILS run. Then, we would like to find 

out the impact of N as well as k on the number of perturbations during each 
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ILS run. For these experiments we performed ten runs of ILS and considered 
the average number of perturbations per run. For these experiments we consid-
ered LHDs with k = 3, 7, 10 and N = 3,11.....100. From the experiments (see 
Figure 4.25) we notice that there is a significant impact of N on the number of 
perturl,ation invoked for all k considered. It seems that the number of invoked 
perturbations is somewhat logarithmic with respect to N (see the (lot curve in 
Figure 4.25). In order to find the impact of k on the number of perturbations, 
we considered LHDs: for each N : N = 101 25,50. 100 k = Si: i = 1.....10. 
From the experiments we remark that there is no significan1 impact of k on the 
perturbation invoked during the run (see the bar diagram in Figure 4.26). 
Now, if we put together the observation that the overall number of perturba-
tions/local searches per ILS run is O(Jog(N)), and the previous one about the 
O(kT'N) about the complexity of local searches, we can conclude that a bound 
on the overall time required by a single ILS run is O(k"N" log(N)). a fact that 
is also experimentally confirmed by the analysis of the elapsed times per ILS 
run. 

.4 
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5. COMPUTATIONAL EXPERIMENTS AND DISCUSSION 
ABOUT ILS WITFI OPT() 

In Section 3.2 we proposed two different variants of the ILS approach based on 
two distinct optimality criteria, namely one corresponding to the pair of values 
(D1, J 1 ) and another corresponding to the previously defined 0 function. In 
Section 4 we have already performed experiments on ILS coupled with the opti-
mality criterion based on (D1 , J1 ) . In this section we will perform experiments 
in order to investigate the ILS approach coupled with the optimality criterion 
based on the tp function, and we will compare the relative efficiency of the two 
ILS approaches. 

5.1 Impact of the neighborhood structure and the optirnality 
criterion 

In Section 3.2 we have already discussed about the various types of local search 
procedures. Here we will always adopt Row-wise Pairwise (RP) local moves 
with Fl (First Improve) acceptance rule. 

First, we would like to investigate the impact of the neighborhood structure. 
We will consider RP local moves only involving at least one critical point, de-
noting them with £MRP DI , and local moves involving also non critical points, 
denoting them with £MR,,. We will investigate the optiinality criterion based 
on the pair (D1 , J1 ), denoted by Opt(D1 , J1 ), and the optiinality criterion based 
on function 0, denoted as Opt(). When adopting Opt(th), ILS will return the 
Mm value (i.e. D1  value) of its final solution. In fact, a simple but, as we 
will see, quite meaningful alternative is that of recording the different (D1  , ii) 
values observed during a run of ILS and finally returning the best one, which is 
not necessarily the final one. To distinguish this option from the previous one, 
we will use a different notation for the optiinality criterion, denoted in this case 

4 asOpt(Di,). 

We remark that local moves £M ;,i and CMR,0  do not deliver different re-
sults if the Opt(D j , .11) criterion is employed (as already commented, moves not 
involving at least one critical point can not improve the (D1 , J1 ) values), while 
with the two criteria based on the iP function different results can be readied. 
Note that the neighborhood based on local moves CMRp,5  is larger (approxi-
mately N times larger) than that based on local moves MR,,D1, so that we 
should expect larger computational costs when employing the latter local moves. 

Experiments are performed with k = 3 and N = 3,4, .. . ,25, 5i i = 6,7,. . . ,20 
(the conclusions are quite similar with other k values). We set MaxNonlmp= 100 
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'11th. 5.1: Computational experiments with different local moves and optmality crite-
ria for k = 3. Note that in the table Opt(D,, .J) is denoted as Opt(D). 

Cl C2 C3 I C4 11 C5 I C6 C7 C8 I C9 do I Cli 
N  Mm Values   0 Values  

T Opt(D) Opt(Di .) Opt(0) Opt(D) Opt(Di,) Opt(0) 
nbh CM CM CM CM CM CM CM CM CM CM 

RpD1 RpDI RpO RpDl Rpç J?pD1 RpDl Rp5 flpDl Rp0 
3 6 6 6 6 6 0.863 0.863 0.863 0.863 0.863 
4 6 6 6 6 6 1.227 1.227 1.227 1.227 1.227 
5 11 11 11 11 11 1.302 1.302 1.302 1.302 1.302 
6 14 14 14 14 14 1.441 1.441 1.441 1.441 1.441 
7 17 17 17 17 17 1.594 1.594 1.594 1.591 1.591 
8 19 21 21 19 19 1.731 1.739 1.730 1.723 1.723 
9 22 22 22 21 21 1.864 1.883 1.890 1.860 1.860 
10 27 26 27 26 27 1.935 1.956 1.935 1.951 1.935 
11 29 29 29 29 29 2.072 2.049 2.072 2.049 2.049 
12 33 33 36 33 36 2.129 2.130 2.101 2.114 2.101 
13 41 41 41 41 41 2.168 2.168 2.168 2.137 2.137 
14 41 41 41 41 41 2.284 2.309 2.304 2.282 2.280 
15 48 43 45 42 43 2.311 2.399 2.368 2.392 2.359 
16 46 49 50 49 49 2.461 2.459 2.447 2.459 2.428 
17 51 53 51 53 51 2.567 2.553 2.540 2.553 2.534 
18 56 54 54 54 54 2.624 2.647 2.631 2.647 2.598 
19 56 57 59 56 56 2.741 2.730 2.683 2.720 2.664 
20 61 59 62 59 62 2.792 2.800 2.753 2.800 2.742 
21 66 65 66 65 66 2.863 2.862 2.822 2.862 2.814 
22 69 68 74 66 72 2.911 2.932 2.856 2.927 2.849 
23 73 73 75 73 75 2.993 2.989 2.939 2.989 2.939 
24 77 76 77 76 77 3.044 3.053 3.007 3.053 3.007 
25 81 78 84 78 81 3.114 3.108 3.072 3.108 3.058 
30 98 98 105 98 104 3.443 3.411 3.335 3.410 3.303 
35 121 120 129 118 129 3.677 3.672 3.553 3.666 3.553 
40 146 145 150 142 146 3.870 3.895 3.781 3.894 3.764 
45 166 164 179 164 179 4.094 4.077 3.968 4.077 3.968 
50 187 186 204 163 181 4.318 4.318 4.162 4.032 4.110 
55 214 213 227 185 211 4.502 4.494 4.349 3.791 4.040 
60 238 238 258 209 234 4.679 4.655 4.506 4.176 4.397 
65 262 260 286 229 281 4.856 4.855 4.651 3.898 4.634 
70 294 292 309 254 288 4.986 4.998 4.809 4.312 4.709 
75 309 314 345 280 318 5.190 5.153 4.923 4.758 4.921 
80 342 341 371 300 341 5.315 5.297 5.084 4.229 5.077 
85 371 370 406 298 370 5.447 5.419 5.209 4.595 5.044 
90 398 401 437 384 389 5.582 5.506 5.324 5.276 5.007 
95 421 429 474 387 440 5.731 5.688 5.452 4.409 5.258 

100 454 458 494 389 473 5.851 5.826 5.577 4.245 5.174 
Tot. Time 

hrs ) 11 

Opt(D);CMjoi flöt(Dl,0);CMRpD1 Opt(Di,);CMn 

J = 0.24 = 10.14 =15.90 

I 
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Fig. 5.1: The absolute improvement (regarding average Mm values) of ILS with op-
timality criterion Opt(Di ,) and local moves £MUDI  (dark curve) and 

A4 (light curve) with respect to ILS with the Opt(Di, li) optimality 
criterion. 

when using the more time consuming local moves £MRP , and set MaxNonlmp= 1000 

when employing £MR,,Dj local moves. For all the cases we used the SCOE per- 
turbat ion moves and we considered a number R = 5 of ILS runs. The value of 

p, th: parameter of 0, has been fixed to 20 for all the experiments. 
All the results of the experiments are displayed in Table 5.1 and Figures 5.1 and 
5.2. Note that iii the figures the na-uses Cpt-nhh and NonCpt-nhls correspond 
to neighborhoods based respectively on £MRPD A  and LMRO local moves. 

Table 5.1 contaiiis the optimal Maximin (Mm) values and the corresponding 
values obtained with the two different local moves £MRP D1  and  LmRpo 

and the three different optimality criteria Opt(D j, J1 ), Opt(D1, ) and Opt(). 
Figure 5.1 displays the trend of the absolute improvement regarding average 

(over the 5 runs) Mm values obtained with the Opt(Di, ) optimality criterion 
and local moves L.A4RpDI  (dark curve) and L1t4 RpDL  (light curve), with respect 
to the corresponding values obtained by the Opt(Di, Ji) optimality criterion. 
Figure 5.2 displays the history of the average number of local moves per local 
search with different local moves and/or optimality criteria. 

In the following subsections we would like to discuss the outcomes of these 
experiments. 

5.1.1 A comparison between the Opt(Di, ) and Opt() optimality criteria 

We know that both when employing the Opt(D j,o) and when employing the 
Opt() optimality criterion, the search is driven by the 0 function which we 
aim at mitlilniY.illg. The only difference between the two strategies is that the 
latter returns the (D1 , J1) values of the final solution returned by ILS, while 
the former returns the best (D1, J) values observed during all ILS run. The 
cost of the two approaches is basically the same (with Opt(Di, ) we only have 

I 
S 
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Fig. 5.2: Average number of local nioves history among the three ILS approaches - 
(a) CMnpo, neighborhood structure with Opt(Di , .J) optimal criterion, (b) 
£MJO,,L, I  neighborhood structure with Opt(Do  , q5) optional criterion and (c) 

neighborhood structure with Opt(Di,) optimal criterion 

the additional mild cost of keeping track of the best values observed during a 
run). Moreover, it is guaranteed that the results with Opt(Do , ) are always at 
least as good as those with Opt(). This suggests that it is always advisable 
to employ Opt(D1, ). Here, however, we would like to give a measure of the 
improvements of Opt(Di ,) with respect to Opt(). In Table 5.1 columns C3, 
C4 report the best observed Mum values (with corresponding 0 values given in 
columns C8 and C9 respectively) obtained with Opt(D1, ), while columns CS, 
C6 report the corresponding Mm values for Opt(m) (the corresponding 0 values, 
which are also the best ones observed during the ILS runs, are given in columns 
CIO and Cli respectively). As expected, we observe that for both the neigh-
borhood structures considered here (the one based on £MRP DI  local moves and 
the one based on C.A4R,6  local moves), on based approaches, the Mm values ob-
tained by Opt(Di 

, ) are often better than those obtained by Opt(), but, even 
more important, we observe that the improvement becomes more consistent as 
we increase the number N of points. We also point out that, according to other 
experiments not reported here, further improvements are observed when also 
the dimension k is increased. 

By comparing the Mm values with the corresponding 0 values, it becomes clear 
what we previously already commented, i.e. that a monotonic search with re-
spect to q is not necessarily a monotonic one with respect to (D11  J j ), so that 
while performing a monotonic search with respect to 0 we are in fact performing 
a search through the (D1 , J1 ) values in which some sort of controlled backtrack-
hog (acceptance of worsening moves) is present. For instance, we see in 'fable 
5.1 that for the case (N, k) = (70.3), the minimum 020 values is 4.709 with 
corresponding Mm value =288 obtained with Opt(). On the other hand, with 
Opt(Di , 4) we obtain a better Mon value = 309, while the corresponding 0 value 
is worse, namely equal to 4.809 (recall that the 0 value has to be minimized). 
This is just an example but looking at columns C8-C11 many other similar 
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4 
examples can be found. 

5.1.2 Comparison of Opt(Di , J1 ) and Opt(Di , ) with 
MnDl local moves 

We have observed that it is always worthwhile to employ the Opt(D1 , ) rather 
than the Opt(0) one. Next, we compare Opt(Dj,) with Opt(Di,Ji). At first 
we will make the comparison when the local moves employed are only those 
involving at least one critical point, denoted by £MRpDi. 

We observe in the table (consider the columns C2 and C3) that the Mm 
values obtained by the ILS approaches with the to different optirnality criteria 
are comparable when we consider .CMRDi local moves. In Figure 5.1 we notice 
that for small N values the quality of the average Mm values of the two ap-
proaches is basically the same, while as N increases the quality with Opt(Di , 
gets slightly better. On the other hand, the computational costs of Opt(Di, J) 
are significantly lower than those with Opt(D1, ) (see the last row of the ta-
ble). The considerably larger times with Opt(Di,) and local move £MRD1 

with respect to those with Opt(Di , J1 ), were somehow not expected. A possible 
explanation is that, while the neighborhoods explored at each iteration by the 
local search are of similar size, the number of improvements detected during a 
local search (i.e. the number of times the While-Loop is executed (luring a local 
search) is much larger when the local search is driven by the objective function 

rather than (D1, J1 ). Seen in another way, we can say that the search land-
scape based on the (D1, .J) values is flatter (many configurations may have the 
same (D1 , J1 ) values but., at the same time different values). This way it is 
easier for the search based on the (D1, J1 ) values to get stuck at some solution 
without being able to make any progress, and the algorithm stops after fewer 
iterations than the one where the search is driven by the 0 values. 

5.1.3 Comparison of Opt(Di ,Ji ) with £MRP DI local moves and Opt(Di,t) 
with MRp local moves 

Here we will compare the results obtained by Opt(Dj, J1 ) and £MR,)Dl local 
moves (see column C2), with those obtained by Opt(Di,) and LmRpd, local 
moves (see column C4). We notice that the latter approach is able to obtain 
sigimiuicatively better Mm values compared to the former one. This can also be 
seen in Figure 5.1, where we considered the average Mm values returned by 
the R = 5 ILS runs rather than the best observed Mm value. On the other 
hand the computational cost of Opt(Di , J1 ) is considerably lower than that of 
Opt(Di , ). Then, we might conjecture that the higher quality is only due to the 
larger computational times. Of course, this is one reason but not the only one. 
To check this we made a further experiment: we increased the number of ILS 
runs with Opt(Di , J1 ) in such a way that the overall computational time with 
the two optimality criteria was similar, and then we compared the Mm values. 
It turns out that even with this larger number of runs ILS with Opt(Di, Ji) 
was unable to reach the same quality of ILS with Opt(Di, ). So which is 
the reason for the improved quality of the results obtained by Opt(Di , ) with 
£Mn local moves? It seems to US that there are two main causes: 

• the search space of the neighborhood based on £MRP , local moves is 
obviously larger than that based on £MRP DI local moves (approximately 
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Fig. 5.3: The comparison of different p values 

N times larger due to the inclusion of swap moves not involving critical 
points); 

• when performing a inonotonic search with respect to 0 we are in fact 
performing a noii monotonic one with respect to the (D1, J1 ) values, i.e., 
as already commented, we have some form of backtracking in the search, 
which prevents the algorithm from being too greedy. 

In particular, we point out that the second cause was not really expected before 
starting the experiments and we believe that the importance of this form of 
backtracking controlled by the values is a quite interesting observation. 

5.2 un pact. of parameter p 

In view of the previously obtained results, here we will only consider  CMRPO 
local moves with the Opt(Di , ) optimality criterion. We would like to discuss 
more thoroughly the choice of the parameter p appearing in the definition of 
the 0 function, which UI)  to now has been simply fixed to 20. Recall that for 
large enough p, each term in the sum of 0 (see (3.4 in Section 3) dominates all 
sul)seqllent terms and as p oc, the optimality criterion based on 0 becomes 
equivalent to that based on (D j , Jj). A practical issue is to establish a "good" 
value for p. Such value should not be too small, because it would not differentiate Al 

enough between the different D, J1  values, but at the same time it should not 
be too large, because too large a value would lead to the search based on the 
(D1 , .11) values, which, as previously observed, is too rigid, too greedy. In order 
to investigate the impact of parameter p, we considered ILS based on the 
function with the values p = 2, 10,20, 50, 70, 100. For all the p values, we set 
MaxNonlmp=100 with SCOE perturbation moves and number of runs R = 5. 
We considered N = 3,4. ... 25, Si : i = 6, 7. . . . , 20 and k = 7. The experimental 
results are reporte(i in Table 5.2 and are also displayed in Figure 5.3 

We notice in Thble 5.2 that p = 20 is able to obtain very often better Mm 
values, while p = 50 and p = 70 are able to obtain better Mm values only few 
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Tab. 5.2 ConiDulational exoerirnents with different v values 
N p=2 p=lO p=20 p=50 v=70 p100 
3 13 13 13 13 13 13 
4 21 21 21 21 21 21 
5 32 32 32 32 32 32 
6 47 47 47 .47 47 46 
7 61 61 61 60 61 60 
8 79 79 80 79 79 78 
9 88 93 94 93 92 92 
10 105 110 111 110 110 108 
11 127 129 132 132 132 128 
12 154 155 155 153 152 152 
13 181 181 182 182 179 178 
14 216 216 218 216 216 215 
15 207 219 224 224 224 223 
16 238 246 248 248 240 241 
17 251 266 270 270 267 266 
18 277 295 295 295 296 284 
19 300 322 327 324 324 320 
20 333 363 355 352 353 345 
21 366 382 385 384 382 381 
22 396 414 421 417 414 410 
23 435 453 455 457 451 449 
24 472 489 495 491 476 481 
25 513 518 527 526 522 511 
30 666 712 716 716 697 694 
35 879 919 936 924 900 900 
40 1053 1116 1141 1149 1128 1122 
45 1277 1360 1400 1389 1376 1302 
50 1561 1658 1696 1663 1643 1632 
55 1886 1978 2006 2043 1961 1870 
60 2030 2230 2277 2273 2240 2124 
65 2331 2482 2547 2579 2542 2421 
70 2586 2783 2856 2895 2861 2757 
75 2886 3130 3230 2895 3225 3141 
80 3262 3472 3586 3219 3597 3333 
85 3571 3862 3984 3641 3997 3804 
90 3943 4223 4362 4023 4400 4223 
95 4279 4617 4784 4394 4844 4613 
100 4664 4997 5206 4856 5099 5036 

Tot. Best 05 05 29 10 11 03 
value (40)  

Tot. time 122 294 324 186 148 60 
(hrs)  
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times. Very small p values (2,10), and very large ones (100), are unable to get 
the best results except at very small N values. If we have a look at the aver-
age Mm values (see Figure 5.3), then we notice that the extreme values p = 2 
and p = 100 still give poor results, while p = 10 delivers results of reasonable 
quality, although not the best ones. Even in this comparison the superiority 
of p = 20 is quite evident. Less evident is the reason why at p = 50 we have 
results which are not particularly satisfying. More investigations will be needed 
to clarify this fact. From these experiments we infer that the function is not 
effective in driving the search when either too many (small p) or excessively 
few (large p) distance values Di play a major role in determining the value. 
The best option seems to be an intermediate p value and, in particular, p = 20 
seems to be a robust choice (though not necessarily always the best one as we 
also observed in the experiments). 

Regarding the computational costs, we notice in the table that the higher qual-
ity obtained with p = 20 has somehow to be paid. Indeed, this choice needs 
more CPU time than all the other ones. We note that the cost tends to decrease 
with the p value. This is probably due to the fact that, apparently, increasing p 
causes a faster convergence to locally optimal solutions and a reduction of the 
exploration of the search space. 

5.3 Impact of MaxNonlrnp parameter 

We have already investigated the impact of the MaxNonlmp parameter in our 
proposed ILS approach for the Opt(D1 , J1 ) optimality criterion. Now we per-
form some experiments to investigate the impact of MaxNonlmp in the proposed 
ILS approach with the Opt(D1 

, ) optimality criterion. For these experiments 
we consider £M n local moves with Fl acceptance rule, and SCOE pertur-
bation moves; N = 2i : i = 3,4, . . . ,25 and k = 3, 7, 10. Tests are performed 
with the following values MaxNonlrnp= 50, 100, 250, 500, 750, 1000, 1250, 1500, 
1750 and 2000. We perform 11 = 5 runs of ILS for each LHD. The experimen-
tal results (average Mm values) are displayed in Tables 5.3-5.5, while the best 
observed Mm values and the corresponding number of times such values are 
attained out of 5 runs are reported in Table 5.6 (data in the square bracket -the 
first term indicates the best Mm value and the second term indicates number 
of times it has been attained). 

Though a bit irregular, the results in the tables show that: 

a good value of MaxNonlmp tends to increase with N and k (as largely 
expected); 

• with respect to Opt(D1, J1 ) it seems that appropriate MaxNonlmp values 
are considerably smaller (around ten times smaller); indeed, for instance, 
the best Min values at large k and N values tend to stabilize very often at 
MaxNonlxnp=1000 or even less, while with Opt(Di, .J) stability was often 
reached close to MaxNonlmp= 10000. This fact allows to partially coun-
terbalance the much higher computational times required by the search 
based on the Opt(D1, ) optimality criterion. 

As we have previously done with the Opt(D1, J1) optimality criterion, we could 
derive also here an Empirical Formula (EF) giving an appropriate value for 
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Tab. 5.3: &verage results with different MaxNonlmp values for k = 3 
N MNI- 

50 
MNI- 

100 
MNI- 

250 
MNI- 

500 
MNI- 

750 
MNI- 
1000 

MNI- 
1250 

MNI- 
1500 

MNI- 
1750 

MN!- 
2000 

6 14 14 14 14 14 14 14 14 14 14 
8 19 19 19 19 19 19 19 19 19 19 
10 26 .26 27 27 27 27 27 27 27 27 
12 33 33 33 34 34 34 34 34 34 34 
14 41 41 41 41 41 41 41 41 41 41 
16 48 49 49 49 49 49 49 49 49 49 
18 54 54 54 54 54 54 54 54 54 54 
20 62 62 62 62 62 62 62 62 62 62 
22 69 69 69 70 70 70 70 70 70 70 
24 76 78 79 80 81 81 81 81 81 81 
26 86 86 86 88 88 88 88 88 88 88 
28 94 95 96 97 97 97 98 98 98 98 
30 102 103 105 107 107 107 107 107 107 107 
32 111 113 114 116 116 116 116 116 116 116 
34 121 122 124 125 125 125 125 125 126 126 
36 128 129 132 132 133 133 133 134 134 134 
38 138 139 141 144 144 145 145 145 145 145 
40 148 148 151 153 153 153 153 153 153 153 
42 157 160 162 163 165 165 165 165 165 165 
44 168 170 174 175 175 175 176 176 176 176 
46 181 182 183 183 183 183 183 183 183 183 
48 188 190 195 196 197 197 197 197 197 197 
50 199 201 1 204 1 205 205 1 205 205 1 205 1 205 1 205 



5. Experiments about ILS with Opt(ç5) 89 

Tab. 5.4: Average results with different MaxNonlmø values for k = 7 
N MNI- 

50 
MNI- 

100 
MNI- 

250 
MNI- 

500 
MNI- 

750 
MNI- 
1000 

MNI- 
1250 

MNI- 
1500 

MNI- 
1750 

MN!- 
2000 

-6--  45 45 45 45 45 45 45 45 45 45 
8 78 78 79 79 79 79 79 79 79 79 
10 108 109 110 110 110 110 110 110 110 110 
12 152 154 154 154 154 154 154 154 154 154 
14 215 216 217 217 217 217 217 217 217 217 
16 246 247 247 248 248 248 249 249 249 249 
18 292 295 296 296 297 297 297 297 297 297 
20 353 358 359 359 359 359 359 359 360 360 
22 414 417 419 420 421 422 422 422 422 422 
24 488 489 492 492 493 493 493 493 493 493 
26 555 556 559 561 562 562 562 562 562 562 
28 626 630 634 634 637 637 637 637 637 637 
30 703 706 711 713 714 714 714 714 714 714 
32 789 793 796 796 797 799 799 799 799 799 
34 882 884 887 889 889 889 889 889 890 890 
36 957 962 968 971 971 971 971 971 971 972 
38 1040 1042 1044 1045 1048 1048 1048 1049 1049 1049 
40 1138 1140 1145 1147 1150 1150 1151 1151 1151 1151 
42 1233 1234 1236 1238 1239 1241 1241 1241 1241 1241 
44 1332 1337 1340 1342 1342 1342 1343 1343 1344 1344 
46 1440 1446 1449 1449 1452 1452 1453 1453 1453 1453 
48 1547 1560 1569 1570 1571 1572 1572 1572 1574 1574 
50 1684 1690 1694 1695 1697 1697 1699 1699 1699 1699 

Ak- 
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Tab. 5.5: Average results with different MaxNonImD values for k = 10 
N MNI- 

50 
MNI- 

100 
MNI- 

250 
MNI- 

500 
MNI- 

750 
MNI- 
1000 

MNI- 
1250 

MNI- 
1500 

MNI- 
1750 

MN!- 
2000 

6 67 67 67 67 67 67 67 67 67 67 
8 113 114 114 114 114 114 114 114 114 114 
10 172 173 174 174 174 174 174 174 174 174 
12 238 238 239 240 240 240 240 240 240 240 
14 311 313 313 314 314 314 314 314 314 314 
16 402 403 404 404 405 406 406 406 406 406 
18 505 507 508 509 509 509 509 509 509 509 
20 639 639 641 643 643 643 644 644 644 644 
22 698 699 700 702 702 703 703 703 703 704 
24 801 807 808 808 809 809 809 809 809 809 
26 922 927 930 933 933 934 934 934 934 934 
28 1053 1057 1060 1061 1061 1062 1062 1063 1063 1063 
30 1197 1198 1198 1199 1199 1200 1200 1200 1201 1201 
32 1341 1347 1349 1350 1351 1351 1351 1351 1351 1352 
34 1500 1502 1507 1511 1511 1511 1511 1511 1512 1512 
36 1670 1672 1675 1675 1676 1676 1676 1676 1676 1676 
38 1845 1848 1855 1855 1857 1857 1857 1857 1857 1857 
40 2067 2071 2077 2078 2078 2079 2080 2080 2080 2080 
42 2174 2178 2182 2189 2189 2190 2190 2190 2190 2190 
44 2350 2353 2358 2363 2363 2363 2363 2363 2364 2364 
46 2546 2549 2557 2558 2561 2562 2563 2563 2563 2564 
48 2742 2750 2757 2763 2763 2764 2764 2767 2767 2768 
50 2970 1  2974 1  2978 1  2980 1  2981 1  2981 1 2981 2981 2981 2981 
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Tab. 5.6: Best Mm values and number of times they are attained over R = 5 runs 
with different MaxNonlinp values 

k = 3  k = 7  k=!0  

MN!. MN!- 5iii- MN!. MS!. MN!- MN!- MN!- MN!- 
100 100(1 2000 100 1000 2000 100 1000 2000 

14,51 114.51 1151 (46,1) 47.11 1TF (67.4) (67.7( (67.5( 
8 (19,2) 21.11  (21,1) (79.1) (79.3) (79,3) (114.4) (114,2) (114.5) 
11! (27,1) (27.4) (27,4) 1110.11 (11!,!) (111.1) (174.1) (174,5) (173.5) 
12 (33.5) (36.!) [36,1) 1155.2) (155.3) (155.3) (240,1) (241,1) 1241.11 
14 (42.1) (42.2) (42.2) 1218.1] [218.1) 218.1) (314.2) (315.1) 1315.2) 
16 (50,1) (50.2) (50.2) 1250.11 (250,1) (250,2) [405.1) (407,21 1407,21 
(8 54.5) (56.1) (56.1) 297.11 [300.2) 300.2) (509.1) 1512.11 1512,11 
20 (62.5) (62.5) [02,5) 363.1) [364.1) (365.1) [642.1) 645,11 1645.11 
22 (70,1) (73.1) (73,1) (419.2) (435,1) (425.1) (701.1) (70.1,2) 1704,31 
23 (81.1) (81.5) (81,5) (490,2) (496,1) (486.1) (812,1) [813,1) (813.1) 
20 (86,5) (89.2) (89,2) 562,1) [565.1) [565,1) (932,1) (946.1) (646.1) 
28 [88,1) (98,3) (98,3) (635,1) (631.1) (641.1) (1070.1) (1070.1) (1070.2) 
30 (105.1) (108,1) (108,1) (712.1) (725.1) ['725.1) (1204,1) (1207.1) (1210.1) 
32 (116,1) (117.1) (117,1) (795,1) [800.3) [800.3) (1353,1) (1354,1) (1314,1) 
33 (123,1) (126,2) (126.3) (860.1) [897,1) 897.11 (1506.!) (1514,1) (1514.1) 
36 (131.11 (133.3) (134,5) (905.1) [978,1) (978.1) (1675,1) (1690,1) [1690.1) 
38 (140.1) (146,4) (146.4) [1047.1) (1053. 1) (1055,1) [1867.1) (1870,1) [1870.1) 
40 (150,!) (154,3) (154.3) [1145,1) (1162.1) (1162.1) [2088.1) (2102,1) (2102.1) 
42 (162,1) (166,1) (168.1) [1237.21 (1239.!) (1240,11 (2186.1) 12198.11 (2198.1 ) 
43 1 173.11 (178.1) (182,!) [1347.1) (1347,2) (1347,2) [2309.1) (2373,2) [2374,1) 
46 (184.11 (186.1) (186.1) (1461,1) (1470,1 ) 1 1470.11 (256'!,!) (2570.1) (2573,2) 
48 (165.11 (200,1) (201,11 (1569.11 (1586,1) (1586,1) (2759,1) 12774.11 (277-1,!) 
50 (203.1) (210.1) (1697.1) (1707.1) (1707.1) [2983.1) (2986.1) (2986.1) 

Tune 
1.73 16.14 25.96 17.51 116.21 190.17 28.83 187.81 325.3! 

MaxNonlrnp as a function of N and k. However, in what follows we will not look 
for the best compromise between quality of the results and computation times, 
but only perform experiments with MaxNonlmp= 100, which will turn out to be 
already quite significative. 

5.4 Further experiments 

In this section we compare the performance of ILS coupled with the Opt(D1 , ) 
optimality criterion with the existing literature as well as with the previously dis-
cussed ILS approach coupled with the Opt(D1, Jj) optimality criterion (whose 
results are already reported in Section 4.5). The experiments about ILS with 
Opt(Di, ) have been performed with the following settings:- Local search proce-
dure: local move £Mr), with Fl acceptance rule; perturbation moves: SCOE; 
MaxNonlmp=100; p = 20; LHDs : N = 2,3,.. .,100 with /c = 3,4,...,10. The 
number of runs for each (N, k) pair are reported in Table 5.2. In the same table 
we also recall the number of runs performed with Opt(Dj,Ji). Note that due 
to the larger computational times required by Opt(Di, ) with  LMR  local 
moves, we performed considerably fewer runs with this setting with respect to 
ILS with Opt(Di, J1 ). 

5.4.1 Comparison of ILS approaches based on the Opt(Di , J1 ) and 
Opt(D1, ) optimality criteria 

At first we compare the performance of ILS coupled with the Opt(Di, ) op-
tiniality criterion (in what follows simply denoted as ILS()) with that of ILS 
coupled with the Opt(Dj, J1 ) optimality criterion (in what follows simply de-
noted as ILS(D1) again). The experimental results are displayed in Figure 5.4. 
In Figure 5.4(a) we report the absolute improvement (regarding Mm values) of 
ILS() with respect to ILS(D1 ) for each N and k = 4,7, 10. Figure 5.4(b) dis-
plays the relative increase in the elapsed time of ILS() with respect to ILS(D1 ). 
We notice that for N <20 the performance of the two approaches are compara- 

.4 
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Tab. .5.7: The number R of ILS runs (with the optimality criteria Opt(Di , J1 ) and 
Opt(Di ,)) for the different (N, k) pairs 

k (a) Opt(Di,Jm ) (b)_Opt(Di,) 
N= N= N= N= N= N= 
2-25 26-50 51-100 2-25 26-50 51-100 

3 500 100 50 100 10 10 
4 500 100 50 100 10 10 
5 500 100 50 10 10 5 
6 500 100 10 10 10 5 
7 500 100 10 10 10 5 
8 500 100 10 10 10 5 
9 500 100 10 10 10 2 

10 500 100 10 10 10 2 

ble for all the k values considered both from the point of view of the quality and 
from the point of view of the computation times. But for N > 20, we notice in 
Figure 5.4(a) that the absolute improvement of ILS() increases quite quickly 
both with N and with k. In Figure 5.4(b) we notice that, in spite of the lower 
number of runs, ILS() is still more computationally demanding with respect 
to ILS(D1 ). The figure does not show a regular pattern due to the changes in 
the number of runs which occur at different N and k values. However, we can 
notice that there are minor differences up to N = 50, while for N > 50 the 
computation times for ILS() never gets larger than twice those of ILS(D1 ). 
However, it is worthwhile to recall, that according to some further experiments 
over a limited set of instances, increasing the computational cost of ILS(D1) at 
the same or even at a higher level with respect to that of ILS() by increasing 
the number of runs, was not enough to reach the same Mm values obtained 
by ILS() (see Table 5.8). We emphasize once again that the superiority of 
ILS(), mostly motivated by the non mnonotonic search through the D1  values 
induced by the monotonic search through the q5 values, appears to us as a quite 
remarkable fact. The searches performed by ILS() are definitely more costly, 
but, according to the results, such larger costs are well paid in terms of quality 
of the results. 

5.4.2 Comparison of ILS(0) with the existing literature 

Now we would like to compare our experimental results with those available in 
literature as well as the latest results available at the web site [2761. For the corn-
parison with the existing literature, we will refer to the same approaches already 
considered in Section 4.5, namely the approach in [178], denoted as SAJt'I , and 
the approaches proposed in [117], denoted as PD and SA approaches. We will 
denote the updated web site values as Web (or BestKnown) values. These are 
improvements obtained through the PD and SA approaches discussed in [117]. 
The last update was done in January, 21st 2008. Note that, differently from 
the results reported in the paper [117], the computation times to deliver the 
updates are not reported in the web site. 

At first we compare our approach with the SAil approach. The comparison 
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Tab. 5.8: Results for ILS(D1 ) and ILS() with comparable computation times (in 
seconds) over some instances 

(N,k) Mm Values elapsed times 
ILS(D1 )) ILS(() ILS(D1 )) ILS(4) 

(13, 5) 103 104 91.2 35.5 
(14,5) 115 116 113.1 60.1 
(17,5) 158 159 201.3 78.6 
(18,5) 171 172 240.2 160.3 

5) 187 189 315.1 255.4 
5) 201 206 375.8 312.0 
5) 224 229 438.4 307.3 
5) 263 269 690.1 452.9 
5) 277 286 781.9 737.4 

(11, 7) 131 132 96.8 65.4 
12(, 7) 154 155 126.7 94.7 
(14, 7) 215 217 200.3 135.7 
(25, 7) 508 531 1450.2 1269.1 

(12 , 10) 238 240 239.9 111.0 
(13 , 10) 272 275 309.5 191.9 
(14 , 10) 309 313 389.8 275.1 
(15 , 10) 351 358 492.5 418.8 

10) 397 406 623.0 600.1 
10) 445 458 757.9 800.2 
10) 496 509 927.0 942.5 
10) 545 560 1185.9 834.4 
10) 607 641 1441.4 692.3 
10) 640 648 1697.9 588.1 
10) 687 704 2031.0 1738.9 

(23 , 10) 733 750 2269.8 1881.3 
10) 791 818 2668.7 2925.3 
10) 847 875 3146.1 1914.0 

Tab. 5.9: Comparison between SAJI and ILS() 
N k = 3 k=4 k=5 Forot,hersk&N 

SAJ1 ILS SAil ILS SAil ILS (N;k) SAil ILS 
(,)  () () (0) 

2 3 3 4 4 5 5 (6; 6) 40 40 
3 6 6 7 7 8 8 
4 6 6 12 12 14 14 (7; 7) 61 61 
5 11 11 15 15 24 24 (14;7) 219 217 
6 14 14 22 22 32 32 
7 17 17 28 28 40 40 (8; 8) 91 91 
8 21 21 42 42 50 50 
9 22 22 42 42 61 61 (9; 9) 126 127 
10 27 27 50 50 82 82 
11 20 30 55 55 80 81 
12 36 36 63(2) 63(1) 91 93 

______ 

AI 
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Fig. 5.4: Comparison between the performance of ILS(D1 ) and ILS() 

results are given in Table 5.9. We observe that there are five improvements 
obtained by ILS(0) and a failure (the same as lLs(Di)). It is also worth-
while to remark that ILS() is even able to improve the solution for the ease 
(N, k) = (14, 7) (with a Mm value equal to 220, see Appendix A) and to get the 

41 same result as I1,S(D1) in the case (N, k) = (9.9) by increasing the iiumbcr of 
runs and/or changing different p values. 

Now we compare our approach with PD and SA approaches presented in [117] 
as well as with the updated results reported in [276]. The comparison results 
are displayed in Table 5.10. We observe that ILS() is able to detect a very 
large amount of improved solutions with respect to the best known ones. This 
is in particular true at large k values. For k > 6, with the exception of few 
number of low N values, all the solutions returned by ILS() are improvements 
of the best known results. 

It is interesting to have a closer look at the comparison with the PD approach. 
Although this usually delivers worse results, as already previously discussed, it 
seems that the PD approach tends to perform better and better as N increases. 
Figure 5.5(a) displays the absolute improvement and Figure 5.5(h) displays the 
relative improvement of the ILS approach with respect to the PD approach for 
k = 3, 4. Figure 5.6 displays the same information for k = 5,61 7. The improved 
performance of PD as N increases can be clearly noticed in Table 5.10 and in 
Figure 5.5 for k = 3, 4. But it can also be remarked in Figure 5.6(d) where we 
notice that the relative improvement of ILS() with respect to PD tends to de-
crease as N increases (although the absolute improvement is clearly increasing). 

We still need to comment about the computation times. As already remarked 
we do not have information about those required to obtain the Web results. It 
is however quite clear that ILS(0) is more computationally demanding with re-
spect to PD and SA. Such higher costs are clearly rewarded in terms of quality 
of the results but we might wonder about the quality of the results if we impose 
time restrictions on ILS. According  to some further experiments that we per- 
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Fig. 5.5: Comparison between PD and ILS() for k = 3,4 
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Fig. 5.6: Comparison between PD and ILS() for k = 5,6,7 

formed, we could realize that, especially at large k values, equivalent or better 
results with respect to the PD and SA ones, could quickly be reached by ILS(). 
Therefore, it seems that at large k values even few and short runs of ILS() are 
able to deliver results better than those reached by PD and SA. 

5.5 Experiments about the complexity analysis of ILS() 

In this section we perform some experiments to derive a formula connecting the 
computation times of ILS() with N and k. The analysis will be similar to 
the one previously done for ILS(D1 ). For these experiments we consider ILS(q) 
with the following setting: Local Search: acceptance criterion=First Improve 
(FT), local move=LM stopping criterion: MaxNonlmp= 100; Perturbation 
Technique=SCOE. 

—4 



5. Experiments about ILS with Opt() 96 

Tab. 5.10: Comparison between PD, SA, Web and ILS(0) results. Note that Times 
are in hours. 

6 = 3 k = 4 6=5 6=6 

TU S Wi it W1 ILS 1T5 K W1 TE 15 K W it 
(0) (6) (0) (6) 

1 3 3 3 4 4 4 4 9 5 5 5 6 6 6 6 
3 3 6 6 6 4 7 7 7 5 8 8 8 6 12 12 12 
4 6 6 8 6 12 12 12 12 11 14 14 14 15 20 20 20 
5 6 11 11 11 12 15 15 15 11 24 24 24 15 27 27 27 
6 14 14 14 14 16 22 22 22 23 32 32 32 28 40 40 40 
7 (4 17 17 17 19 29 28 28 23 40 40 40 28 52 52 52 
8 21 21 21 21 25 42 42 42 32 50 50 50 42 66 66 66 
0 21 22 22 22 25 42 42 42 30 61 61 61 45 76 76 70 
10 21 27 27 27 36 50 50 50 55 82 82 82 62 91 91 92 
11 24 30 30 30 30 55 55 55 55 80 80 81 62 108 108 110 
12 30 39 36 36 46 63 63 63 62 91 91 93 91 136 139 139 
13 35 41 41 41 51 68 70 70 64 101 103 104 91 136 138 140 
14 35 42 42 42 70 75 77 70 86 112 114 116 104 152 154 180 
15 42 .18 48 48 71 83 87 89 88 12.1 129 131 111 167 171 175 
16 42 50 50 50 85 00 93 04 101 136 151 154 130 186 160 194 
17 42 53 53 54 85 97 99 103 113 150 158 159 131 203 208 214 
18 50 56 56 57 94 103 108 111 123 162 170 173 155 223 231 245 
19 57 59 59 02 94 113 119 122 136 174 184 189 169 241 256 263 
2 57 62 65 06 106 

1 16 
123 
1 27 

130 
1 45 

137 130 
1 65 

184 
2o 1 

206 206 210 260 279 285 
2 

1  
~5 oG  68 69 149 223 229 210 283 302 306 

22 69 69 72 76 117 137 150 151 174 215 235 242 223 303 325 338 
23 72 74 75 77 (30 146 110 101 178 224 250 251 236 324 348 358 
24 76 79 81 83 138 154 170 170 201 242 266 269 258 343 374 378 
25 91 81 91 86 (56 162 178 181 205 215 282 286 286 366 400 408 
20 91 86 91 89 (56 171 188 189 226 269 302 306 296 387 426 430 
37 61 90 01 01 157 178 lOS 198 238 287 310 326 310 410 447 474 
28 94 04 04 08 174 188 210 313 258 302 331 340 339 427 470 494 
29 94 98 101 102 174 196 221 210 200 322 3.16 373 346 452 107 517 
30 101 102 101 101 194 200 233 230 310 335 367 403 300 473 531 545 
31 107 106 110 110 212 215 244 240 310 347 405 408 300 504 563 509 
32 11.1 11 0 1 14 118 212 228 253 252 341 371 413 418 41 9 529 587 590 
33 114 113 117 120 215 234 264 287 341 379 426 448 430 5.18 622 034 
34 133 117 133 (26 230 244 273 274 358 .103 441 460 470 586 648 608 
35 133 122 133 120 234 255 286 280 366 418 467 482 495 001 683 097 
36 133 129 133 130 210 261 297 298 400 427 480 502 118 631 719 739 
37 112 131 112 140 266 275 300 308 -108 454 520 530 528 648 744 775 
39 152 (34 152 142 283 279 321 322 415 464 531 557 561 681 788 813 
39 152 139 152 149 283 280 330 330 439 486 566 575 561 706 816 840 
40 (55 146 115 152 291 361 342 345 .192 105 175 590 632 730 876 886 
41 162 147 162 (57. 203 309 355 354 402 525 596 018 632 776 882 938 
42 168 152 168 162 319 325 367 371 496 5.13 626 041 670 791 807 088 
43 168 157 171 160 323 320 383 378 520 528 660 604 670 830 04' 090 
44 (96 161 186 178 331 349 306 393 548 582 680 088 696 862 992 1041 
45 186 106 186 179 317 362 407 405 165 615 698 706 737 891 906 1065 
46 186 160 189 185 366 370 421 421 592 615 723 728 797 018 106.1 1107 
47 186 173 180 199 378 378 438 426 651 034 754 702 797 940 1088 1113 
49 199 178 201 194 413 305 410 451 632 673 774 782 857 076 (1(8 1159 
49 19(3 180 203 201 415 399 46.1 463 634 680 803 799 893 1015 1167 1181 

50 213 185 213 206 411 414 478 473 663 699 830 830 993 5042 1203 1218 
51 213 (59 213 209 421 426 490 487 69-2 72 810 887 617 1067 1230 1258 
52 213 198 217 214 455 429 104 101 700 7.12 883 874 1003 (100 1274 1202 
53 216 200 219 221 411 447 111 510 716 761 894 901 1003 1136 1340 1340 
54 233 213 233 227 477 454 534 526 760 783932 939 1019 1171 1318 1392 
55 243 214 242 233 483 477 546 541 760 1305 956 960 1082 1198 1421 1432 
56 243 216 243 235 115 479 558 505 79.1 830 082 903 5104 1236 1431 1484 
17 261 221 261 241 115 490 574 570 846 854 1007 1018 1136 1205 1488 1523 
59 261 127261 246 139 500 59-1 591 846 878 1031 1048 1166 1303 1554 1550 
59 266 229 266 25.1 544 519 609 607 849 905 1063 1064 1223 1328 (563 1615 
60 373 237 273 258 568 530 618 622 004 928 1094 1101 1242 1381 1631 1647 
61 274 244 274 262 620 538 630 641 904 839 (128 1134 (218 1413 1667 1703 
62 283 245 283 269 620 553 657 645 934 091 1150 1150 1306 1450 1715 1750 
63 297 249 297 27.0 620 575 670 666 967 989 1178 1187 1380 1497 (781 1781 
64 297 258 297 281 625 579 684 678 985 1009 1206 1223 1430 1526 1804 1834 
65 314 260 31.1 286 630 182 694 701 997 1035 1216 1239 1.130 5161 1868 1884 
66 314 269 314 294 666 602 718 706 1050 1051 1201 1372 1476 1590 1874 1920 
67 314 270 314 207 666 614 735 726 1072 1085 (290 1283 5482 1646 1054 1977 
68 314 278 314 306 685 623 746 738 1087 (119 5339 1380 1539 1604 1983 2014 
69 324 280 324 310 698 650 761 754 1(12 111.1 1351 1399 1188 170.1 2028 2070 
70 327. 285 325 313 716 628 779 773 1(50 1135 1378 1439 1633 1759 2094 3110 
71 321 280 325 327.. 716 665 793 705 1150 1187 1413 1410 1644 1783 2541 2108 
72 341 296 341 32 (3 710 678 810 810 1203 1197 1430 1454 1768 (862 2136 2315 
73 350 209 350 329 77.9 688 834 958 1229 1242 1462 1669 1168 1872 2597 2262 
74 350 306 350 341 767 703 842 845 1229 1269 1512 1583 1774 (9(0 2291 2280 
75 310 310 350 341 771 714 867 854 1274 (282 1530 1571 

(8 97 
1862 1963 2303 2305 

76 363 324 363 349 813 710 882 877 1300 1318 1169 1932 2024 2387 2416 
77 363 325 363 357. 823 762 893 890 1308 1331 1591 1831 1047 2051 2433 2450 
78 387 337 387 362 844 761 910 600 1382 1360 1621 1654 2014 2079 2479 2602 
79 387 333 387 276 848 788 027 921 (382 1399 1639 1068 2037 2120 2498 2550 
80 403 334 403 371 873 786 949 943 1395 1430 1691 1690 2037 2112 252.1 2507 
81 406 338 406 381 016 782 963 972 1406 1431 2750 1731 2064 2217 2649 2005 
82 406 353 406 389 938 825 980 979 1475 1382 1742 1773 2141 2239 2680 3715 
83 417 369 317 401 940 829 (002 1008 1501 1509 1762 1904 2141 2290 2696 2753 
84 426 363 426 401 067 838 1021 10(5 1534 1550 1818 1825 2228 2321 2790 2803 
85 426 369 426 406 967 877 1043 1032 1152 1566 (866 1871 2232 2399 2819 2877 
86 428 376 328 422 967 867 1053 (0.17 1173 1178 1882 1890 2375 2437 21375 2020 
87 428 374 428 419 978 $77 1073 1062 1298 1589 1934 1922 2375 2476 2913 2088 
88 437 374 437 426 1020 890 1086 1070 1681 1629 1954 1903 2398 2513 2975 3075 
89 4.13 378 443 432 1050 907 1102 ((02 

1
600 197.4 1990 2009 2400 2262 3097 3104 
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Fig. .5.7: The history of WL values for (a)(k, N) = (7, 10); (b)(k, N) = (7,50) during 
LocalSearch 

We will first discuss the time required by a local search. We do not discuss 
the time required by each swap move: this is the same as in ILS(D1 ) and is at 
most 0(N). However, the number of swap moves which have to be attempted 
at each iteration is now different. Indeed, since we are considering the £M 1  
local move, we have to consider all possible pairs of points (also those not in-
volving critical points). Tlw:efore, the number of swap operations is 0(kN 2). 
Note that this is an upper bound: since we are employing the FT acceptance 
criterion, we perform swap operations only until an improvement is observed. 

Next, we need to derive some formula for the number of times the While-Loop 
is executed during a local search, i.e. for the number of iterations performed 
by a local search. As before, we will denote this number with WL. Note that 
with respect to ILS(D1 ) we made a change in the local search, adopting the 
FT acceptance criterion rather than the BI one. Figure 5.7 shows the history 

of WL values during different local searches for (a) (k, N) = (7, 10)) and (b) 
(k, N) = (7,50). We observe in Figure 5.7(a) that most of the time WL lies 
near 5 and never exceeds 12, whereas in (b) we notice that most of the time 
WL lies near 35 and the maximum value of WL is near 90. Therefore, it seems 
that WL increases together with N both for what concerns Average WL (AWL) 
values and Maximum WL (MWL) values. Figure 5.8 shows more clearly the 
relation between N and MWL as well as AWL. We observe that there is a linear 
impact of N. In order to establish the dependency of WL on k, we perform 
other experiments with k = 2i : i = 1,2,.. ,40 and N = 10,25,50,75. The 
relation between WL and k is not quite clear. Indeed, we observe in Figure 
4.21 that WL is increasing with k for k < 10 but after that it decreases and 
finally tends to get stable around a constant value. It seems that by enlarging 
k the local search is able to reach a local minimum in quite few iterations with 
respect to lower values of k. This might be due to the fact that by increasing 
k we also enlarge the size of the neighborhood explored at each iteration of a 
local search. In what follows we will neglect the dependency of WL on k and 
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Fig. 5.10: The Impact of k on execution of AWL during LocalScarch with FI(First 
Improve) in Opt(Di ,Ji) 

only consider WL as 0(N), but we should keep in mind that at small k values 

a dependency of WL on k is in fact present. Since when testing ILS(Di) we 
employed the 131 acceptance criterion, we would like to check, for completeness, 
if such phenomenon, i.e. the non dependency of WL on k at large k values, is 

somehow connected to the fact that we have considered the Fl acceptance crite-
rion. For this reason, we have performed another experiment with ILS(D1) but 

with the Fl acceptance criterion. We considered LHDs: k = 2i : i = 1,2,• ,40 

with N = 10,50. We observe in Figure 5.10 that WL increases quickly at small 

k values, while at large k values WL still increases, though more slowly. Such 
behavior is quite similar to the one observed in ILS(D1) with the BI acceptance 

criterion. 

If we put together the expected times for all the components of a local search, 
we can conclude that the approximate time required by a local search is 

T 

where we expect that the q value is close to 4, while the r value could range 

betwe'n I and 2. in order to find out the values of q and p experimentally, 
we performed the following experiments. At first we perform experiments to 
(md the approximate value of q. For these experiments we considered k = 5 

and N = 20,21, ,80 and run ILS() ten times for each LHD. In Figure 
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Fig. 5.11: Elapsed time per local search as a function of N 
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Fig. 5.12: Linear regression between log(T) and log(N) 

5.11, we plotted the average execution time per local search as a function of N. 

We observe that the increase with N is non linear. Therefore, we applied the 

logarithmic transformation 

logT = q(logN - 5), 

where T denotes the average elapsed time, and then fitted the data in a linear 
regression. According to the data, we have that the value of q is 3.92 (see Figure 
5.12), thus very close to the expected one, 4. 

Now to find out the approximate value of r we performed experiments by 

considering LHDs with k = 2i : i = 1,2,.. .,25 with N = 50. Figure 5.13 shows 

the impact of k on the average elapsed time per local search. In the figure we 

observe that T increases somewhat linearly with the increase of k. In order to 

find out the approximate time complexity with respect to k, we have fitted the 

data (see Figure 5.14) and detected a value of r approximately equal to 1.13, 

-4 
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Fig. 5.15: Relation between the number of perturbations and N 

again in accordance with what previously derived 

In order to derive the overall time complexity of ILS(q) we still need to derive 
a forniula for the number of perturbations (i.e. the number of local searches) 
performed during each ILS run. To find out the impact of N on such number 

we considered LFIDs with k = 5 and N = 3,4, .. . ,80 performing ten runs for 
each LHD. From the experiments (see Figure 5.15) we notice that there is a sig-
iiifieant impact of N on the number of perturbations. We also try to establish 
a functional relation between N and the number of perturbations. Similarly 
to what already observed for ILS(D1), the relation appears to be a logarithmic 
one with respect to N (see the dot curve in Figure 5.15). We point out that in 
both cases such logarithmic behavior is probably due to the fact that a fixed 
value for MaxNonlmp (100 for ILS(), 1000 for ILS(D1 )) has been employed in 
all these tests, so that the total number of perturbations tends to get stable as 
we increase N. 
To fInd out the impact of k on the number of perturbations, we considered LHDs 
with N = 50 and k = 2i : i = 1,.. ., 10. From the experiments we notice that, 
in spite of a peak at k = 6, there is no significant impact of k on the number of 
perturbations invoked during a run (see the bar diagram in Figure 5.16). 

In conclusion, summing up all the previous observations, we have that the 
time required for a single ILS(Ø) run appears to be O(kNQ  log(N)), with r 
slightly larger than 1 and q slightly lower than 4. 
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6. PACKING PROBLEMS: DEFINITIONS AND 
MATHEMATICAL MODELS 

The general problem of finding the densest packing of objects without overlap-
ping in a bounded space is a classical one which has a wide spectrum of appli-
cations in scientific as well as engineering fields 156, 60, 61, 224, 225, 229, 2301. 
The packing problem consists of packing a set of geometric objects of fixed di-
mensions and shape into a region Q of predefinecl shape, in such a way that 
the dimension of the region is as small as possible. In this thesis we consider 
two-dimensional packing problems. Moreover we focus on the special case where 
the n objects are identical (non-identical) circles, the region Q is circular and 
the objective function is to minimize the radius of the region Q. Therefore, we 
consider the Identical Circles Packing in a Circular Container (ICPCC in what 
follows) problem and the Non-Identical Circles Packing in a Circular Container 
(NICPCC in what follows) problem. If we denote by C the circular container, 
by r its radius, by C, i E I = {l,2,.. . ,n) the ii circles, and by r, i E I, the 
radii of the n circles, NICPCC amounts at searching for the smallest radius r of 
C such that Ci ç C V i E I, and CiO  n C9 = 0 for all i j, where C9  denotes the 
interior of circle C1  (circles do not overlap). Of course, ICPCC can be viewed 
as a special case of NICPCC where r1  = rj for all i, j 

6.1 Some definitions 

If the positions of n circles are fixed, we call the set of positions a configuration. 
In the Cartesian coordinate system a configuration is denoted as 

X = 

where (xi, y) denotes the position of the center of circle i. 

Definition 1: Given a configuration X, we say that two circles i,j overlap, if 

(xi _xj )2 +(yi _yj )2< rj +rj  

We also define the embedded depth Edij  between the i-th circle and the j-th 
circle as  

Edij  = max10,r + r 
- 

Similarly, we say that the i-th circle and the large container circle overlap (with 
radius r), if 

iJx + y > r - r 

The embedded depth Edoi  between them is defined as 

Ed04  = inax{0, r j  + + y - r} 
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Defiiiitioii 2: Two circles iJ are in touch (contact) if the distance between their 
centers is equal to the sum of their radii, i.e., 

(x—z3 )2 +(y,--y)2 =r1 +r 

Definition 3: A circle is said to be free if the center of this circle can be moved 
by a positive distance in some direction without causing overlapping with other 
circles and with the circular container. Note that if a packing contains one or 
more free circles then the solution is obviously not unique. 

See also Figure 6.1 for a graphical illustration of the definitions. 

6.2 Mathematical models 

Although the NICPCC and ICPCC problems are geometrical ones, they can be 
easily reformulated as global optimization ones. A possible mathematical model 
for the NICPCC problem is the following: 

min r (6.1) 

subject to 

iEI (6.2) 

/(xj_xj)2 +(yj_yj)2 ~!rj+rj i,jEI, i<j (6.3) 

LBr <7 (6.4) 

where LBr  = Inaxj r (of course, ICPCC can be viewed as the special case of 
NICPCC where 7-1  = 1 for all i c I). Constraints (6.2) indicate that each circle 
i is within the container. There are n such constraints, one for each circle (6') 
(that is Edoi = 0 for all i E I). Constraints (6.3) guarantee the non-overlap 
condition for any pair of distinct circles (Ci , c) (that is Edij  = 0 for all i, j E I, 
i j). There are n(n - 1)/2 such constraints. Constraint (6.4) provides a posi- 
tive lower bound for the radius r of the container circle [1061. It substitutes the 
non-negativity constraint. The model makes the NICPCC problem unbounded 
if we eliminate this constraint. Then, the model has a total of (1 + n(rm + 1)/2) 
constraints, and 2n + 1 variables: Among the 2n + 1 variables, 2n variables 
representing the coordinates (xi, y) : i E I of the n circles, and one variable 
being the radius of the container circle C (whose center is assumed to be the 
origin). 

The above model can be niodified in such a way that we can get rid of the 
square roots. The equivalent model is the following 

min r 

subject to 

x+y?—r 2 +2r2r~r i E I 

(xj—xj )2 +(yj—yj)2 >(r j +r,)2  i,5EI,  i<i (6.5) 

LI3r  <r 
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This way the problem becomes a quadratic one (even with a linear objective -4 
function). Unfortunately, the quadratic constraints are "nasty" (non-convex) 
ones, thus making the problem a hard global optimization one with many local 
minimizers "hiding" the global one. 

We finally remark that the optimal solutions of these problems need not be 
unique. For instance, if the optimal solution has free circles (see Delinition 3), 
then we can move them around, thus obtaining an infinite set of solutions all 
with the same optimal radius of the container. 

6.3 Problems equivalent to ICPCC 

We conclude this chapter by observing that problem ICPCC is equivalent to a 
few other ones, namely: 

• Problem E-1: Find the value of the maximum circle radius such that n 
identical non-overlapping circles can be placed in a unit circular container. 

• Problem E-2 : Locate n points in a unit circular container such that 
the minimum pair-wise distance d between any two points is maximal 
(maxilnin distance problem). 

• Problem E-3 : Instead of fixing the radius of the circular container and 
searching for the maximum radius of the circles in the packing, one can 
equivalently search for the minimum ratio of the radius of the container 
to the radius of the circles in the packing without fixing them. 

For a given number n of circles, let r be the optimal value of problem E-1, 
d,, be the optimal value of problem E-2, and D the optimal value of problem 
ICPCC. Then, it is well known that the following relations hold between such 
optimal values (see, e.g., [88]) 

_ D1, - 1/rn d,, = 
27- 

D T, 1 + 
2 
- (6.6) 
d 

This is basically a consequence of the fact that given a collection of points in 
the unit circle at distance at least d from each other, the points can serve as 
the centers of a collection of circles of diameter d that will pack into a circle of 
diameter 1 + d as also illustrated in Figure 6.2. 



Ia 

-3. 

6. Packing problems: def. & Math. model 108 

Fig. 6.1: Graphical illustration of the definitions 

(1) (1+d) 

Fig:(a) Fig:(b) 

Fig. 6.2: Relation between points and circle packing 



7. BASIN FlOPPING ALGORITHMS FOR TFIE ICPCC 
PROBLEM 

As a mathematical model for the ICPCC problem we will employ model (6.5) 
with r, = 1 for all i E I. For the sake of completeness, we point out that 
other models, like, e.g., (6.1)-(6.4), or any other model which can be obtained 
by any monotonic transformation of the objective function, are all theoretically 
equivalent to model (6.5) but might have a different practical impact on the 
performance of the algorithms (for a discussion about this subject we refer to 
[4, 52]). As already commented, the problem turns out to be a hard global 
optimization one, with the number of local minimizeis tending to increase quite 
quickly with the number n of circles (this fact will be experimentally verified in 
Section 8.1). Such large number of local minimizers indicates that the simplest 
approach based on multiple local searches, Multistart , where we simply start 
different local searches frormi randomly generated initial points, is deemed to 
failure. As an alternative to Multistart here we are proposing a Monotonic 
Basin Hopping (MBH) approach. 

7.1 MBII approach for ICPCC problem 

The MBH approach is quite close to Multistart (they only (liff(r in the mecha-
nism for the generation of the initial points) but at the same time will also turn 
out to be dramatically more efficient than Multistart, at least for this problem. 
For ease of reference we report here the short pseudo-code of a MBH approach 

Monotonic Basin Hopping 
Step 1(lnit): Let X0  be randomly generated initial solution 
Step 2: Let X = r(Xo ) be a local minimum 
While SR not satisfied 

Step 3(PM): Let Y := (X) 
Step 4(LS): Let X' := r(Y) 
Step 5(AR): If f(X') < 1(X) , then X := X' 
Endlf 

End While 
Return X 

The main ingredients of the method (highlighted in the code) are: an Initializa-
tion step (mit), a Local Search procedure (LS) denoted here by r, a Perturbation 
Move (PM) denoted here by (, an Acceptance Rule (AR) and a Stopping Rule 
(SR). 

In the next subsections we will detail our choices of mit, LS, PM, AR and 
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"- 
SR for the problem at hand. 

7.1.1 Initialization 

The initialization step is rather simple: we randomly generate an initial solution 
X0  within a large enough region, and then we start a local search from it. Note 
that this is exactly what Multistart performs at each iteration. The difference in 
MBH is that only the first local minimizer is detected in this way, all the others 
are detected by local searches starting at points generated by the perturbation 
move. 

7.1.2 Local search procedure 

As shown in (6.5), our problem can be viewed as a non-convex one with objec-
tive and constraint functions continuously differentiable infinitely many times. 
Therefore, any local search method for this kind of problems can be employed. 
However, according to our experience, SNOPT [761 appears to be particularly 
well suited for these problems. Of course, constraint satisfaction in SNOPT (in 
particular for what concerns the non-convex non-overlapping constraints) can 
only be guaranteed within a given tolerance (we set such tolerance to 10- 12  for 
all the experiments). However, we remark that even in case of slight infeasibility 
of a given solution, we can easily restore feasibility by multiplying each variable 
by all appropriate factor (slightly) larger than 1. 

7.1.3 Acceptance rule 

Although in the pseudo-code above, following the monotonie principle, we have 
only defined a rather simple acceptance rule (namely, accept a candidate con-
figuration only if it improves the current one), we would like to point out here 
that, following other heuristic approaches, like simulated annealing, also non-
improving moves (backtracking) could be accepted. In fact some sort of back-
tracking is advisable, since MBH tends sometimes to get trapped into local and 
not global minimizers, but, according to our experience, randomly restarting 
the search when no more progress is observed (see also the discussion about the 
stopping rule SR) seems already a quite reasonable option. 

7.1.4 Perturbation move 

The perturbation move is certainly the main ingredient of MBH. We have al-
ready discussed that a good move should guarantee that the structure of the 
current local minimizer is not completely disrupted by the perturbation. This 
way, the method does not simply perform a random search among the local 
minimizers (as in Multistart), but it moves between diffiffeilt but "close" lo-
cal minimizers, performing a sort of meta-local search (a local search in the 
space of local 'minimizers). In the case of equal circles we propose three simple 
perturbation moves, based on uniform random perturbation of some or all the 
coordinates of each circle's center within some interval [-s, [. The moves 
are called Full Jerk (FJ) , Random Partial Jerk (RPJ), and Fixed Partial Jerk 
(FPJ) and are briefly introduced below. 
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(a) Full Jerk perturbation move 

The FJ perturbation move is rather simple - all the center of the circles are dis-
placed by some random quantity uniformly sampled within an interval (—A, A). 
The single parameter A, on which the perturbation depends, is of great impor-
tance. If A is too small, the starting point will be very likely in the basin of 
attraction of the current local minimizer (we are not disrupting at all the struc-
ture of the current local Ininilnizer); on the other hand, if A is too large, the 
method becomes basically equivalent to a Multistart method (which disrupts 
the structure too much). In Section 8.3 we will further discuss the choice of 
A and perforin experiments in order to select an appropriate value for it. The 
pseudo-code structure for the FJ move is as follows 

Pseudo-code of FJ 

Step 1: Let Z= {zI1,zj2,...,z l,z 2} bea local minimum 
do i = 1 to n 

do k = 1 to 2 
Step 2: select Az1k E (—A, A) randomly 
Step 3: set Zk := Zj + AZk 

End do 
End do 
return Z' = {z 1,z 21 . . . ,z 1,z,2 } 

(b) Random Partial Jerk perturbation move 

The RPJ perturbation move is similar to FJ, the only dif1remmce being that 
not all the circle centers are perturbed but only a limited number of them, 
selected at random (the position of all the other circles is left unchanged). The 
pseudo-code of the RPJ technique is as follows 

Pseudo-code of RPJ 

Step 1: Let Z = .,z1,z2} be a local minimum and set Z,  = Z 
Step 2: select An E (1,n) randomly; 
Step 3: randomly select a set I c I of cardinality An; 
do i =1 to n 
If i E I then 

do k = 1 to 2 
Step 4: select Azlk E (—A, A) randomly 
Step 5: set Zk := Zik + AZk 

End do 
End if 
End do 
return Z' = 

(c) Fixed Partial Jerk perturbation move 

The proposed FRI perturbation move is a variant of RPJ where the number 
An of perturbed coordinates is not randomly selected but is fixed in advance. 
The pseudo-code structure of the FPJ technique is as follows 

-V 
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Pseudo-code of FPJ 

Step 1: Let Z = {2 11,z12, .. . ,zni,z,1 } be a local minimum and set Z' = Z 
Step 2: set An E (1, n) deterministically 
Step 3: randomly select a set I C I of cardinality n; 
do i =1 to n 
Ifi El then 

do k = 1 to 2 
Step 4: select lZjk E (-s, ) randomly 
Step 5: set zik := Zik + AZik 

End do 
End if 
End do 

/_1/ I / I reurn - iZ11 ,21 2,. . 

It is worthwhile to remark at this point that the initial configuration pro-
duced by any PM operation may be (and, in fact, often is) unfeasible. But 
we can easily restore feasibility by multiplying each variable for a large enough 
factor (unless the quite unlikely case of two circle centers being the same point 
occurs), or, alternatively, we can simply start the local search LS from the 
unfeasible point, letting LS itself restore feasibility. 

7.1.5 Stopping rule 

Ideally we would like to stop a method as soon as no more progress can be 
expected. For the Multistart method, for which, under mild assumptions, t 
can be proved that it is able to detect the global minimizer with probability one 
if we allow for an inlinite number of local searches, this would mean stopping 
when the global minimizer has been detected. Instead, a single run of MBH 
does not necessarily lead to a global minimizer and might get stuck into a local 
minimizer from which it is unable to escape. In such case what we can do 
is simply to restart MBH from a new random starting point, thus ending up 
with a sort of Multist.art where local searches are substituted by MBH runs (as 
already commented in Section 7.1.3, the alternative is to introduce backtracking 
in the search by changing the acceptance rule AR in such a way that also 
non-monotonic moves are performed). In practice, if no special information is 
available, we are unable to stop though when we are really sure that no more 
progress will be possible. The best we can do is to stop when no improvement 
has been observed for a sufficiently large number of iterations (of course, this 
is just a heuristic rule with no guarantee that improvements are not possible 
any more). The number of iterations without improvements after which we stop 
MIMI is denoted by the parameter MaxNonlmp. The choice of this parameter is 
particularly important: we should not stop too early (which could mean that 
we are not patient enough to reach the global minimizer) or too late (which 
would mean a waste of computational effort). The choice of this parameter will 
be computationally investigated in Section 8.2. 

7.2 Population Basin Hopping for IGPCC Problem 

Each run of MBH follows a single path through the space of local minimizers. 
An alternative to MBH is Population Basin Hopping (PBH) [95], inspired by 
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the Conforinational Space Annealing algorithm (see, e.g., [144]), in which the 
single path search is substituted by a multiple path search. During this search, 
members of the population collaborate with each other in order to guarantee 
divers zJicatiom of the search and to avoid the greediness which might characterize 
a single path search. All components of MBH are present in PBH. The new 
ingredient in PBH is the dissimilarity measure V. New parameters are N (the 
size of the population) and dcut (a threshold dissimilarity value). If we denote 
by S the space of the solutions at which we are interested (in ICPCC basically 
the local minimizers), the dissimilarity measure can be defined as the following 
function 

V: $ x S -* 

which, for a given pair of solutions, quantifies the diversity between them. Ide-
ally, given two solutions X, Y E 5, V(X, Y) should be close to zero only if 
X, Y € S are very "similar "and, in particular, equal to 0 only if they represent 
(modulo symmetries, rotations, translations, numbering of circles, and so on) 
the same solution. We allow the concept of similarity to be problem-specific; the 
only essential requirement we impose is that for similarity of a solution X e S 
with itself, it must hold that D(X, X) = 0 

Given the dissimilarity measure, the pseudo-code for PBH is the following. 

Population Basin Hopping 
Step 0(lnit): Let X0  be a set of N, randomly generated solutions 
Step l(LS): Compute X = r(Xo ) (initial population) 
While the stopping rule SR is not satisfied 
Step 2(PM): Compute X := ((Xi) : Xi € X, i = 1,2,... 
Step 3(LS): let y := 'i-(X') : X € X', i = 1,2,... ,N (pert. pop.) 
Sequential Replacement: Repeat 1' € Y, V i = 1,2, ...,Np  

Step 4 let X,, E X such that V(Y,X,,) is minimum 
Step 5 (AR): if V(, X,,) <dcut and f(Yj) < f(X,) then 

set X:=X/ {X,,}u{Y1} 
Endlf 
else if V(Y2 , X,,) > dcut then 
select X3  E X such that f(X3) is maximum, and 
if f(Y) < 1(X3) then 

set X:=X/ {X3}u{Y2 } 
Endlf 

EndRepeat 
End While 
Return X 

Basically, at each iteration: a set Y of new candidates is generated through 
the application of the perturbation move to each member of the population; 
each new candidate Yk, k = 1,. . . , N, competes either with the member X,, 
of the current population X most similar to it with respect to the dissimilarity 
measure V (if D(X,,, Yk) ~ dcut), or with the worst member X3  of the pop-
ulation (if V(X,, Yk) > dcut, i.e., Yk is dissimilar enough with respect to all 

-r 
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r 
members of the current population); if it wins (i.e., if it has a better function 
value), it replaces Xh (or X8) in the population for the next iteration. Note 

that MBH is, in fact, a special case of PBH where N = 1. There is a trade off 

between two conflicting objectives in choosing N. We have already outlined 

above the (possible) advantages of PBH: increasing N increases diversification 

and decreases greediness. On the other hand, increasing N also increases the 

computational effort per iteration. We will discuss appropriate choices for N 

in Section 8.5. 

The local search procedure and perturbations techniques of the PBH approach 
are the same as those for the MBH approach. Each individual is independently 
perturbed and a local search starts at the perturbed point. The real difference 
in PBH is represented by the acceptance rule. A candidate replaces the mem-
ber of the population with which it competes only if it has a better function 
value as in MBH, but the member with which it competes is not necessarily 
(and, in fact, often it is not) the member of the population whose perturbation 
led to the candidate. Formally, a candidate Y does not necessarily compete 

with its "father" X. This means that Y could enter the new population even if 

f(Y) > f(X) (a backtracking move which is not allowed in MBH), but also that 

Y might not enter the new population even if f(Y) < f(X) (this is called hes-

itation and might be profitable in order to avoid the drawbacks of a too greedy 
approach). The stopping rule SR is basically the same employed for MBH: we 
stop if the best member of the population does not change for a fixed number 
MaxNonlmp of iterations. In the following subsection we discuss our choices for 

the dissimilarity measure and the dcut value. 

7.2.1 Dissimilarity measure 

Since the dissimilarity measure V is the core component of the proposed PBH 
approach, we will discuss below a couple of possible choices of such m easures 
for packing problems. Note that in [95) there are several dissimilarity measures 
proposed for molecular conformation problems. For what concerns the choice 

of the dcut value, we adopted in our PBH algorithm a simple definition: it is 
equal to half the average dissimilarity within the initial randomly generated 
population. 

(a) Distance dissimilarity measure 

Let X = {(i, c2)}i=i....... and Y = {(f31,f312)}1=1 ...... be two distinct local 

minimizers. Let p,,(X) be the distance of circle It from the barycenter of the 

centers of all circles in the local minimizer X, i.e., if we move the barycenter to 
the origin 

p,,(X) = hl 2 

and define p(Y) in a similar way; let 8x  be the vector whose components 

are the distances p,,(X) V h = 1,.. . , n ordered in a nondecreasing way, i.e., 

8x111 :5 5x[21 .. !~- 6x[k] !~ ... 
:5 ôx[n] where ôx[k] denotes the k-th 

component of the vector Sx. Similarly for the local minimizer Y. Then, the 

-f 
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distance dissimilarity measure is defined as follows 

V(X, Y) = 6x[kj - 5y[k]l. (7.1) 

(b) Objective-distance dissimilarity measure 

The objective-distance dissimilarity measure is very similar to the distance mea-
sure dissimilarity but also takes into account the difference between objective 
function values. More precisely, we define the objective-distance dissimilarity 
measure as follows 

V(X, Y) = 1(X) 
- f(Y)I * I5x[k] - y[kjI. (7.2) 

k= I 

The reason for this slight modification is due to free circles. When a configura-
tion X has free circles, then we can move them around thus obtaining different 
configurations with a positive distance dissimilarity but a null objective-distance 
one with respect to X. 

-r 



8. COMPUTATIONAL EXPERIMENTS AND DISCUSSION 
ABOUT ICPCC PACKING PROBLEMS 

In this chapter we discuss the computational experiments about ICPCC that 
we have performed both to analyze the properties of the problem under inves-
tigation and to select the components and the parameter values for MBH and 
PBH in an appropriate way. All the tests have been performed on a Pentium 
IV: 2.4 GHz Processor and 1GB Ram. 

8.1 Number of local minimizers 

Our first set of experiments aims at showing how the number of local minimizers 
increases with the number n of circles. In order to recognize distinct local 
minimizers we consider their objective function values (i.e., the radius of the 
container). We adopt a conservative criterion by declaring two local minimizers 
different if they have a large enough difference in their objective function values. 
Taking into account the precision of the local solver, the threshold value above 
which two local minimizers are considered as distinct ones on the basis of their 
objective function values has been fixed to 10-8.  Note that, according to this 
criterion, we may consider as equal also diflireiit minimizers. In spite of this, 
the increase in the number of distinct local minimizers turns out to be very 
(1fliCk. 

Indeed, in Figure 8.1 we report the total number of distinct local minimizers 
which have been detected over 50,000 local searches starting from randomly 
generated (over a sufficiently large box) initial points for 12 up to 40. We, also, 
investigate the total number of distinct local minimizers for the same local search 
by considering as distinct local minimizers when their difference between the ob- 
jective function values is above the threshold (a) iO and (b) 10_ 1 m .  These 
are displayed in Figure 8.2. We remark that the overall trend of the number 
of local minimizers is quite similar, though the number clearly increases as the 

A. threshold decreases. 

The trend of increase of the number of local minimizers is not a regular one, 
but at the same time quite clear, showing a rapid increase with the number of 
circles. This gives a clear indication that Multistart is most likely not an ap-
propriate method to tackle this problem, which will be confirmed by the results 
reported in Section 8.4. 
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Fig. 8.1: Empirically determined number of local minima with the threshold value of 
objective function 10_8.  

8.2 Choice of the stopping parameter MaxNonImp) 

As already pointed out in Section 7.1, our stopping rule SR depends on the 
parameter MaxNonlmp (sometimes also shortened to MNI in what follows). This 
parameter is an important one for MBH. Too low a value would cause to stop 
the algorithm before convergence is reached, while too large a value would cause 
a waste of cniiiputatioiial effort. Also in this case we can hardly expect that 
there exists an optimal choice for all n values. So our aim is to look for a ro-
bust choice of this parameter value. For the experiments we consider the Full 
Jerk (FJ) perturbation technique with fixed A = 0.8 (such choice for A will be 
justified by the following experiments). We tested the following set of values: 
MaxNonlrnp € {50, 100,200,300,400, 500}. The first set of results over 5 runs 
of MBH for each value n = 30,31,...,100 is reported in Table 8.1. 

The column BestKnown reports the best known solution according to (274) for 
a given n value. Column OurResult reports the best result we obtained over 
the 5 MBH(FJ) runs. In boldface we report the results which improve those 
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Fig. 8.2: Empirically determined number of local minima with threshold value of ob-
jective function (a) 10 5  and (b) lOu. 

reported in [274], while in emphasized text we report the failures. In Column 
NrSuccesses we report for each MaxNonlmp value the number of times the best 
solution reported in [274] has been reached (or improved). Finally, in Column 
CPU time we report the overall computation time (in seconds) for the 5 runs 
MBH(FJ), referred to the value MaxNonlmp=500. 

We remark that in 19 cases we could obtain improvements with respect to 
[274]. At the the same time, we also have some failures. In particular, we have 
13 failures with MaxNonlmp=50, but these immediately drop down to 9 with 
MaxNonlmp=100 and progressively decrease to 5 with MaxNonlmp=500. As a 
further test we decided to enlarge the number of MBH runs from 5 to 50 for the 
9 cases where a failure occurred with MaxNonlmp= 100. The results are reported 
in Table 8.2. In what follows we denote these 9 cases as Hard Instances with 
respect to MBH(FJ). We notice that n = 31 turns out to be an extremely hard 
case for MBH(FJ): only with MaxNonlmp=500 a single success could be obtained. 
This case will be further discussed in Section 7.2 where we will consider a dif-
ferent (and more successful over this instance) approach. In all the other cases 
we always have at least one success (with the only exception of the failure for 
n = 83 with MaxNonlmp=50) and in three cases, namely n = 78,83 and 92, we 

4 
have further improvements with respect to [274]. 

In Figure 8.3 we have reported the total elapsed time (in hours) of 50 MBH runs 
with different MaxNonlmp values, namely MaxNonlmpE {50, 100, 200, 300,400, 500} 
over the Hard Instances, We remark that though MBH(FJ) with MaxNonlmp 
= 500 is always able to obtain the best known value, the computational effort is 
high compared to the MBH(FJ) approach with MaxNonlmp= 100 or 200. On the 
other hand, though the MBH(FJ) approach with MaxNonlmp=50 is computa-
tionally cheaper than that with MaxNonlmp= 100, its performance is relatively 
poor. 
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Thb. 8.1: Overall results for 5 MBH(F.fl runs with differont. MaxNoTmn v1,i 
Nrluccesses 

n 8ostXnown OurResult 50 100 200 300 400 500 CPU time 

30 6.197741070879 6.1977.11070879 5 5 5 5 5 5 110.49 
31 6.291502022129 6.352805480965 0 0 0 0 0 0 130.11 
32 6.429462970950 6.429462970950 5 5 5 5 5 5 151.14 
33 6.486703123560 6.486703123560 5 5 5 5 5 5 164.69 
34 6.610957090001 6.610957090001 5 5 5 5 5 5 174.41 
35 6.697171091790 6.697171091790 5 3 5 5 5 5 179.81 
36 6.746753793424 6.746753793424 5 5 5 5 5 5 247.81 
37 6.758770483144 6.758770483144 5 5 5 5 5 5 240.7 
38 6.961886965228 6.961886965228 5 5 5 5 5 5 213.43 
39 7.057884162624 7.057884162624 5 5 5 5 5 5 231.1 
40 7.123846435943 7.123846435943 5 5 5 5 5 5 283.29 
41 7.260012328677 7.260012328677 4 4 4 5 5 5 264.59 
42 7.346796406943 7.346796406943 4 5 5 5 5 5 294.11 
43 7.410944856341 7.419944856341 5 5 5 5 5 5 449.45 
44 7.198036682995 7.498036682995 4 4 5 5 5 5 313.27 
45 7.572912326368 7.572912326368 0 2 3 3 3 3 482.36 
46 7.650179914694 7.65017991.1691 5 5 5 5 5 5 414.0 
47 7.724170052598 7.724170052598 3 5 5 5 5 5 428.22 
48 7.791271430559 7.791271430559 4 4 5 5 5 5 467.42 
49 7.886870958803 7.886870958803 1 1 1 1 2 2 775.54 
50 7.947515274784 7.917515274784 2 2 4 4 4 4 655.69 
51 8.027506952410 8.027506952419 5 5 5 5 5 5 542.55 
52 8.084717190690 8.084717190690 5 5 5 5 5 6 699.28 
53 8.179582826841 8.179582826841 1 2 3 3 3 3 807.84 
54 8.203982383469 8.203982383469 2 3 3 3 3 3 701.1 
55 8.211102550928 8.211102550928 3 3 4 4 4 4 1178.43 
56 8.383529922579 8.383529922579 5 5 5 5 5 5 732.19 
57 8.447184653410 8.447184653410 5 5 5 5 5 5 952.84 
58 8.524553770140 8.524553770140 3 4 4 5 5 5 1078.31 
59 8.592499959370 8.592499959370 5 5 5 5 5 5 1495.39 
60 8.646219845458 8.646219845458 0 5 5 5 5 5 1168.12 
61 8.66129757540 8.661297575540 5 5 5 5 5 5 1031.43 
62 8.829765408972 8.829765408972 2 3 4 4 4 4 1400.12 
63 8.892351537551 8.892351537551 3 4 5 5 5 5 1363.18 
6.1 8.901071108486 8.061971108486 0 1 1 1 1 1 1266.97 
65 9.017397323209 9.017397323209 3 3 3 3 3 3 1708.53 
66 9.006665836768 9.090279428924 3 3 3 3 4 4 1813.23 
67 9.169119588389 9.188971881784 1 1 2 2 2 2 2563.13 
68 9.229773746751 9.2340773401 0 0 0 0 0 0 1390.52 
69 9.269761266641 9.269761266641 5 5 5 5 5 5 1831.42 
70 9.346055334486 9.345653194048 1 2 3 3 3 3 2391.79 
71 9.416206538907 9.415796896871 4 5 5 5 5 5 2187.81 
72 9.473890856713 9.473890856713 3 3 3 3 3 3 2246.99 
73 9.510509504650 9.540346152138 1 1 1 1 1 2 2806.35 
74 9.589239161626 9.589232764339 1 2 2 2 2 2 2543.33 
75 9.672029634515 9.072029631947 1 2 2 2 2 2 3034.33 
76 9.720596802162 9.729596802162 1 1 1 1 2 3 3927.92 
77 9.798987197420 8.708911924507 1 1 3 4 4 4 3694.47 
78 9.857712212603 9.857709899885 0 0 0 0 0 2 4852.32 
79 9.905063167661 9.909306621540 0 0 0 0 0 0 3590.06 
80 9.968151813153 9.969802931195 0 0 0 0 0 0 4032.13 
81 10.010864241201 10.010864241201 2 2 2 3 3 3 5293.59 
82 10.050824223451 10.050824223451 I 3 4 4 4 4 5432.51 
83 10.116864426926 10.118857875102 0 0 1 2 2 2 7914.08 
84 10.140530867236 10.149530867236 4 5 5 5 5 5 4780.79 
85 10.163111465877 10.163111465877 3 4 4 4 5 5 7532.68 
86 10.298701310984 10.298701053110 3 4 5 5 5 5 5128.9 
87 10.363209161980 10.363208505078 2 5 5 5 5 5 4927.78 
88 10.432342147160 10.432337602732 4 4 4 4 4 4 5578.01 
89 10.500627671551 10.500401814574 2 2 2 3 3 3 4874.01 
90 10.546069177954 10.546069177954 3 3 3 3 3 3 5059.66 
91 10.566772233506 10.566772233506 2 3 3 3 3 3 6113.41 
92 10.684689759023 10.687984877108 0 0 0 0 0 0 10041.7 
93 10.733386127679 10.733352600200 0 1 2 3 3 3 7251.63 
94 10.778032163883 10.778032100252 1 2 2 2 2 2 7831.68 
95 10.840205021597 10.840205021507 0 0 0 0 1 1 13635.1 
96 10.883669894312 10.883669894312 1 1 1 1 1 1 9701.68 
97 10.938791648300 10.938590110073 1 1 1 2 2 2 9259.48 
98 10.979383128207 10.979383128207 0 0 0 2 5 5 19099.9 
99 11,037197388568 11.035161002003 4 5 5 5 5 5 7533.95 
100 11.082527292540 11.082149724310 1 2 4 5 5 5 15311.6 
T loproveincrit 1. 
Total failure 13 9 8 7 1 6 
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Fig. 8.3: The time comparison of 50 MBH runs with different MaxNonlmp parameter 
values in some hard instances 

Tab. 8.2: Overall results for 50 MBH(FJ) runs with different MaxNolmp values over 

NrSuccesses 
BestKnon OurResult 50 100 200 300 400 500 

31 6.291502622129 6.291502622129 0 0 0 0 0 1 
68 9.229773746751 9.229773746751 10 16 18 19 21 21 
78 9.857712212603 9.857709899885 4 6 9 16 18 21 
79 9.905063467661 9.905063467661 1 1 2 2 2 2 
80 9.968151813153 9.968151813153 3 3 3 3 4 4 
83 10.116864426926 10.116857875102 0 3 9 13 19 21 
92 10.684689759023 10.684645847916 1 3 3 4 5 5 

L
95 10.840205021597 10.840205021597 4 9 15 17 18 19 

10.979383128207 10.979383128207 12 22 28 35 41 41 

rA 
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Thb. 8.3: linoact of MaxNolrno with re.snc't to Niirnhiw i-if Mim hi MRT-1(T?1 

NrSuccesses 
ii BestKnown OurBestResult 11=50 R=25 R=13 R=5 

MNI=50 MNI=iQO MN1=200 MNI=500 

60 8.64621984545799 8.646219845458 47 25 13 5 
61 8.66129757554045 8.661297575540 50 25 13 5 
62 8.82976540897208 8.829765408972 2 1 6 4 
63 8.89235153755063 8.892351537551 28 15 II 5 
64 8.96197110848576 8-961971108486 18 16 7 4 
65 9.01739732320879 9.017397323209 40 2 0 1 
66 9.09666583676771 9.096279426924 19 19 12 4 
67 9.1691195883894 9.168971881784 3 2 5 2 
68 9.22977374675067 9.229773746751 6 10 6 3 
69 9.2697612666411 9.269761266641 3 3 2 3 
70 9.34605533448601 9.345653194084 4 1 5 4 
71 9.41620653890748 9.415796896871 4 6 10 5 
72 9.47389085671311 9.473890856713 1 0 0 0 
73 9.5405095046495 9.540346152138 1 2 3 3 
74 9.58923946162617 9.589232764339 0 7 5 3 
75 9.67202963451537 9.672029631947 2 4 4 2 
76 9.72959680216164 9.729596802162 25 1 8 4 
77 9.79898749742039 9.798911924507 0 0 3 3 
78 9.85771221260262 9.857709899885 4 3 2 2 
79 9.90506346766104 9.905063467661 0 0 0 0 
80 9.96815181315344 9.968151813153 0 0 0 0 
Sum of successes 257 141 115 62 
Total Num. of improvements 7 8 9 9 
Total Nuin. of failures 4 4 4 3 
Total elapsed Time (in lirs) 11.09 10.95 11.39 10.83 
Total number of LS 56667 56375 59272 57022 



8. Corn p. Experiments about ICPCC 122 

One can also see things in a different way : what happens if we decrease the 
number of runs as we increase the value MaxNonlmp in such a way that the 
overall effort is basically the same? In other words: are many short runs bet-
ter than few long runs? For this reason we perform another experiment by 
considering MaxNonlmp = 50, 100, 200, 500 with the corresponding number 
of runs R = 50, 25, 13,5 respectively. For this experiment we only consider 
n = 60.....80. We report the results in Table 8.3. We notice that, though 
the number of local searches and the total elapsed time are comparable, the 
performance of MBH(FJ) in terms of number of successes vs number of failures 
tends to get stable with MaxNonlmp=100, which appears again as a reasonable 
choice. 

As a general comment about the results we obtained, we notice that even a very 
aggressive strategy like choosing MaxNonlmp=50 is often successful (of course, 
the number of successes is lower in this case, but this is counterbalanced by the 
lower computational effort). All the same with this choice failures occur more 
often (even over 50 runs). For this reason we believe that less aggressive choices 
like MaxNonlmp= 100 or MaxNonlmp=200 represent the best compromise between 
the ability of reaching a good solution and the computational effort required. 

8.3 The impact of the parameter A with different perturbation 
moves 

We have already commented about the importance of parameter A. We remark 
that a good choice of A depends on two conflicting objectives. We define sue-

cessfnl a run of MBH leading to a global minimizer. On one hand, we would 
like that a successful run of MI3H converges to the global minimizer as fast as 
possible; on the other hand, we would like to maximize the probability that a 
run of MBH is successful. Note that the first goal is achieved when A is very 
small: in such case a successful run is just one where the initial point is already 
the global minimizer. On the other hand, this is exactly the situation where 
the second goal is lost. The second goal is achieved when A is very large (any 
run converges to the global minimizer in this case), but in this case the first 
objective is completely lost (the convergence is very slow, basically the same as 
the one of Multistart). 

In this section we want to investigate computationally appropriate choices for 
the value A. The results of the experiments with the three proposed perturba-
tion methods are reported in Tables 8.4-8.6. In such tables OurBestResult is 
the best overall result we obtained in our tests for a given n value (as usual, 
results in boldface denote improvements with respect to [274] ). 

As we have proposed three different perturbation strategies, we will investi-
gate the impact of A for each strategy. For all these experiments, we consider 
n = 60, 61,.. . , 80 and a number of runs H = 5. Our first experiment is with the 
perturbation strategy l'J. We tested four different values A E {0.6,0.8, 1.0, 1.21 
in MBH(FJ). In all the tests we fixed MaxNonlmp to 100 (as suggested by the 
previous experiments), but for A = 0.8, 1.2 we also performed additional tests 
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Tl 5 4. Inirpt nf A in P.1 nnrhirhation based MBH Method 

nl OurBestflesult NumberofSuccesses in Mill-I(FJ) 

- 

(inMBHMethod) MaxNonlmp_= 100 I MaxNonlmp=200 

=0.6 =0.8 =1.0 =1.2 =0.8 =1.2 

60 8.646219845458 3 5 5 3 5 5 

61 8.661297575540 5 5 5 5 5 5 

62 8.829765408972 0 1 2 0 3 1 

63 8.892351537551 1 4 1 0 5 0 

64 8.961971108486 1 3 0 2 3 3 

65 9.017397323209 1 0 3 1 1 1 

66 9.096279426924 1 4 0 0 5 0 

67 9.168971881784 0 1 0 0 1 0 

68 9.229773746751 3 1 0 0 1 0 

69 9.269761266641 1 1 2 0 1 0 

70 9.345653194084 0 2 0 0 2 0 

71 9.415796896871 1 1 1 0 4 1 

72 9.473890856713 1 0 3 0 1 0 

73 9.540346152138 0 1 0 0 2 0 

74 9.589232764339 0 1 1 0 2 1 

75 9.672029631947 0 1 1 0 1 0 

76 9.729596802162 0 1 4 0 3 0 

77 9.798911924507 0 0 1 0 1 0 

78 9.857709899885 0 0 0 0 0 0 

79 9.905063467661 0 0 0 0 0 0 

80 9.968151813153 0 1 0 1 0 0 0 1 0 

No.ofimprovement 2 6 4 0 7 2 

No.of success 10 15 12 4 18 7 

No.offailure 11 6 9 17 3 14 

Totalelapsedtime (iii hrs) 3.02 4.06 6.73 8.55 4.62 10,44 
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Tb. 8.5: Imoact of A in RPJ oerttirbat ion based MB}-I Method 
n OurBestResult Number of Successes in MBH (RPJ) 

(in MBH Method) MaxNonlmp(MNI) =100 MNI=200 
L L I 

=0.8 =1.0 =1.2 =1.6 =1.2 
60 8.646219845458 5 5 5 4 5 
61 8.661297575540 4 5 5 5 5 
62 8.829765408972 0 1 0 1 3 
63 8.892351537551 3 3 3 2 4 
64 8.961971108486 2 2 1 1 1 
65 9.017397323209 0 3 3 1 3 
66 9.096279426924 2 1 4 0 5 
67 9.168971881784 0 1 0 0 0 
68 9.229773746751 0 0 1 1 2 
69 9.269761266641 2 2 4 2 5 
70 9.345653194084 2 3 2 1 2 
71 9.415796896871 2 2 2 1 2 
72 9.473890856713 5 3 1 3 5 
73 9.540346152138 0 0 1 0 1 
74 9.589232764339 1 1 1 1 2 
75 9.672029631947 0 0 0 0 0 
76 9.729596802162 0 0 2 1 4 
77 9.798911924507 1 2 1 1 4 
78 9.857709899885 0 0 2 0 2 
79 9.905063467661 0 2 1 1 1 
80 9.968151813153 0 0 1 0 2 
No. of improvement 5 6 6 4 6 
No. of success 12 15 18 15 19 
No of failure 9 6 3 6 2 

Total elapsed time(in hrs) 4.69 5.03 4.56 10.33 7.56 
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Tab. 8.6: Impact of A in FPJ perturbation based MBH Method 
n OurBestResult Number of Successes in MBH (FPJ)  

- (MBH Method ) MaxNonlmp_(MNI)=100_____ MNI=200 

=1.0 =1.6 =1.8 =2.0 = 2.2 = 2.4 =3.0 = 2.2 
60 8.646219845458 4 5 5 5 5 5 5 5 
61 8.661297575540 5 5 5 5 5 5 5 5 
62 8.829765408972 0 0 1 2 2 1 2 3 
63 8.892351537551 5 2 2 3 3 3 3 5 
64 8.961971108486 0 2 2 3 1 1 1 3 
65 9.017397323209 0 1 3 5 5 1 2 5 
66 9.096279426924 0 2 3 1 2 1 0 2 
67 9.168971881784 0 1 0 0 0 0 0 0 
68 9.229773746751 0 0 0 1 1 1 0 1 
69 9.269761266641 1 0 2 1 1 1 0 1 
70 9.345653194084 0 0 2 1 1 0 2 1 
71 9.415796896871 0 2 2 0 1 1 0 1 
72 9.473890856713 0 0 3 5 2 1 2 4 
73 9.540346152138 0 0 0 0 0 0 1 0 
74 9.589232764339 0 0 0 0 1 0 1 1 
75 9.672029631947 0 0 0 1 1 1 1 3 
76 9.729596802162 1 0 1 2 2 5 1 2 
77 9.798911924507 0 1 2 2 1 0 0 1 
78 9.857709899885 0 0 0 1 0 2 1 0 
79 9.905063467661 0 0 0 0 0 0 0 1 
80 9.968151813153 0 0 1 0 1 0 2 2 
No. of improvement 0 4 4 5 6 4 4 6 
No. ofsuccess 6 9 1 13 j 15 17 14 14 18 
No of failure 15 12 1 7  1 6  1 4 1 7 7 3 
T. elapsed timc(hrs) 1.95 1.93 1 2.61 1 3.11 1 3.56 1 3.32 3.96JJ _5.83 
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with MaxNonlmp=200. All the results of this experiment are reported in Table 
8.4. From the results reported in this table, it seems that for A = 0.8, the 
MBH(FJ) approach performs relatively better compared to all other A values 
considered. Therefore, we may consider A = 0.8 as a good value on average 
for MBH(FJ). Note that here we are searching for a robust choice for A, i.e. a 
choice working reasonably well for all n values. Indeed, the best possible choice 
for A usually varies with n. 

For A = 0.8, 1.2 we have also performed tests with MaxNonlmp = 200. In 
particular, for A = 1.2 this is justified by the fact that a larger neighborhood 
may require more iterations before detecting a better local minimizer. We no-
tice that with MaxNonlmp=200 the results do improve both for A = 0.8 and for 

= 1.2 and that A = 0.8 is still clearly the better option. Of course, as we 
increase MaxNonlmp, we also increase the computational effort (see the last row 
of the table with the total elapsed time). 

Our next experiment is with the perturbation strategy RPJ. We tested four 
different values A e {0.8, 1.0, 1.2, 1.6} in MBH(RPJ). In all the tests we fixed 
the parameter MaxNonlmp to 100, enlarging this value to 200 only for A = 1.2 
(the choice which will turn out to be the most robust one). All the results of 
this experiment are reported in the Table 8.5. From this table, it seems that for 

= 1.2, the MBH(RPJ) approach produces relatively better results compared 
to all the other A values considered. So A = 1.2 appears as the most robust 

choice for the MBH(RPJ) approach (we point out again that we are looking 
for a robust choice, since the best possible choice for A usually varies with 
n) . Wliemi increasing MaxNonlmp to 200 for A = 1.2, the results are slightly 
improved compared to those with MaxNonlmp = 100 (but recall that also the 
computational effort increases). 

Finally, we performed another experiment for the perturbation strategy FPJ. We 
tested seven different values A E {1.0, 1.6, 1.8,2.0,2.2,2.4,3.0} in MBH(FPJ). 
We fixed to 10% the percentage of circles, which are randomly perturbed in 
each iteration. In all the tests we fixed the parameter MaxNonlmp to 100, but 
for A = 2.2 (the choice which will turn out to be the most robust one), we also 
performed another experiment with MaxNonlmp to 200. All the results of this 
experiment are reported in the Table 8.6. From this table, it seems that for 

2.2, the MBH(FPJ) approach produces relatively better results compared 
to all other A values considered and appears as the most robust choice. With 
MaxNonlmp = 200, at the cost of a larger computational effort, the results with 

2.2 slightly improve. 

We remark that, in all the experiments reported in Tables 8.4-8.6, the elapsed 
time tends to increase with the A value (for a fixed MaxNonlmp value). This can 
be explained with the fact that as we increase A,  we also increase the neighbor-
hood to be explored, thus presumably increasing also the number of iterations 
needed before observing an improvement. 

We also note that for A values larger thami the most robust one for the given 
perturbation move, the performance tends to decrease as A increases. This is 
reasonable because, as we discussed earlier, a too large perturbation may de- 



8.omp. Experiments about ICPCG 127 

stroy the structure of the current local minimizer and the algorithm fails to 
preserve the "good" parts of the current configuration. Instead, for too small 
values the performance tends to be poor because the algorithm can more easily 
get trapped in a configuration which is not a global minimizer. 

Finally, we remark that the most robust choice for A is inversely proportional 
to the percentage of circles perturbed. Indeed, the FJ perturbation perturbs 
all the circles and its robust choice is 0.8, the RPJ perturbation perturbs on 
average 50% of the circles and its robust choice is 1.2, the FPJ perturbation 
perturbs 10% circles and its robust choice is 2.2. Basically, this means that 
when we perturb all the circles, in order not to destroy completely the struc-
ture of the current configuration we need to perform small perturbations of the 
circles, while as we decrease the number of the circles perturbed we may allow 
for larger perturbations still preserving the structure of the current one. 

8.4 Comparison among different perturbation 
strategies 

'fib. 8.7: Comparison among Different perturbations based MBH methods (with 
MNI=200, R=5) as well as MS approaches 

'-"i" Bestk,iowri Ourl3cstl1csult Number of Successes 
(Literature) (MBH Method ) FJ RPJ FPJ MS MS (In MS) 

(0.8) (1.2) (2.2) (L) (D)  

60 8.646219845158 8.646219845458 5 5 5 4 7 8.64621 
61 8.66129757554 8.661297575540 5 5 5 71 128 8.66129 
62 8.829765408972 8.829765408972 3 3 3 1 2 8.82976 
63 8.892351537551 8.892351537551 5 4 5 1 1 8.89235 
64 8.961971108486 8.961971108486 2 1 3 0 0 8.96395 
65 9,017397323209 9.017397323209 1 3 5 2 8 9.01739 
66 9.096665836768 9.090279426924 5 5 2 0 0 9.09678 
67 9.169119588389 9.108971881784 1 0 0 0 0 9.17621 
68 9.229773746751 9.229773746751 1 2 1 0 0 9.23535 
69 9.269761266641 9.269761266641 1 5 1 0 0 9.28787 
70 9.346055334486 9.345053194084 2 2 1 0 0 9.34587 
71 9.416206538907 9.415796896871 4 2 1 0 0 9.41689 
72 9.473890856713 9.473890856713 1 5 4 0 0 9.47518 
73 9.540346152138 9.540346152138 2 1 0 0 0 9.55517 
74 9.589239461626 9.589232704339 2 2 1 0 0 9.61087 
75 9.672029631515 9.672029031947 1 0 3 0 0 9.67643 
76 9.729596802162 9.729596802162 3 4 2 1 1 9.72959 
77 9.79898749742 9.798911924507 1 4 1 0 0 9.79926 
78 9.857712212603 9.857709899885 0 2 0 0 0 9.85884 
79 9.905063467661 9.905063467661 0 1 1 0 0 9.92100 
11 1 9.968151813153 9.968151813153 0 2 0 0 0 9.97399 
No. of improvement 8 7 6 6 0 0  

No. of success 21 18 19 1 17 1 6  

No. of failure 0 11 3 1 2 4 1 15 1 15 11  

Total elapsed time (hrs) 11 4.6 1 7.6 1 5.8 1 25.8 1 40.1 11  

The efficiency of the MBII approach strongly depends on the appropriate 
selection of the perturbation move. Here we will perform some experiments 
with the three different perturbation strategies that we have identified: (a) Full 
Jerk (FJ) (b) Random Partial Jerk (RPJ) and (c) Fixed Partial Jerk (FPJ). 
For the FPJ perturbation technique , we fixed to 10% the percentage of cir-
cles which are randomly selected to be perturbed. For these experiments we 
consider the number of circles 12 = 60,61,... ,80, we fix MaxNonlmp to 200, we 
set A = 0.8, 1.2,2.2 for the MBH(FJ), MBH(RPJ) and MBH(FPJ) approaches 
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4. 

respectively (as suggested by the experiments in the previous section), and we 
fix to H = 5 the number of runs for each it value and perturbation technique. 
We report the results of the experiment in Table 8.7. In this experiment we 
also tested the Multistart (MS) algorithm. For a fair comparison, we allowed 
a number of local searches in MS (a) slightly larger than the largest number 
of local searches required by MBH with the three perturbation moves (we will 
denote these Multistart runs with MS(L) in what follows) (b) equal to twice 
the same number of local searches (we will denote these Multistart runs with 
MS(D) in what follows). The results obtained by the two MS approaches are 
also incorporated in Table 8.7. 

We remark that with the different perturbation strategies, we obtained overall 8 
improved results in the range 60 < n < 80, namely n = 166, 67,70, 71, 75, 77,781, 
with respect to those in [274] (as usual, in the table improvements are reported 
in boldface). Taking into account the overall results we have no failure (result 
worse than the one reported in [2741), although each single strategy has its own 
failures. We notice that: MBH (FJ) failed to obtain OurBestKnown result in 
three cases, namely n = 78,79,80, but with 7 (out of 8) improvements in the 
results; MBH(RPJ) has two failures, namely ii = 67, 75, but with 6 (out of 8) 
improvements; MBH(FPJ) has four failures, namely n = 67,73,75,80, and 6 
improvements. Therefore, from the point of view of the quality of the results 
MBH(RPJ) appears as mildly superior with respect to the two other strategies, 
but the differences are not particularly significative. On the other hand, we 
notice from Table 8.7 that MBH(FJ) turns out to be coxnputationally cheaper. 

As largely expected, the results obtained with Multistart are usually quite poor, 
and are clearly inferior with respect to those obtained with MBH. In spite of the 
larger number of local searches allowed for MS, such algorithm is able to reach 
the best known solution only in few cases, and only in a single case (namely 
it = 61) the best known solution is reached quite regularly1  (see also figure 
in Appendix B). We notice that MS(L), which performs a number of local 
searches basically equivalent to those performed by MBH with the three per-
turbation strategies is able to obtain only 6 successes, while MS(D) slightly 
improves MS(L) from the point of view of the number of times the best known 
solution is reached when a success occurs, but the overall number of successes 
as well as number of failures are same for both the cases. 

Since the computational cost is an important factor when evaluating an algo-
rithm, we have also incorporated the total elapsed time of each approaches in 
the Table 8.7. We notice that the total running time of MS(D) is about twice of 
that of MS(L), which is exactly what we expected. What was less expected is 
that the total elapsed time of MS(L) approach is about four times that of all the 
M131-1 approaches. We also display the time history of MS(L) and MBH(FJ) for 
the above experiments in Figure 8.4. Though the number of local searches in 
MS(L) and MBH(FJ) is almost equivalent, the running time of MS(L) oscillates 
between twice and eight times that of MBH(FJ) for each n. We also observe in 
that figure that, though not regularly, the gap tends to slightly increase with 

The case it = 61 belongs to the regular sequence n = 3k(k - 1) + 1, k = 1.....for which 
the (presumably) optimal solution has a circle centered at the origin and, around it, successive 
layers, each made up by 6j circles, j = 0, 1.....k - 1 
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Fig. 8.4: Comparison of elapsed time (in second) between MS(L) and MBH(FJ) with 
respect to n 

a. The reason for such gap is that MBH local searches are not started from 
completely random points as in Multistart, but in the neighborhood of a previ-
ously detected local minimizer, so that in the MBH approach, the local search 
procedure is able to converge in fewer iterations and the cost of a single local 
search is definitely lower. 

71 l3estKnown OurBestResult I Number of Successes 
(In Literature) (in MBH Method ) FJ RPJ FPJ 

(0.8) (1.2) (2.2) 
67 9.169119588389 9.168971881784 12 2 0 
73 9.54050950465 9.540346152138 11 2 2(s) 
75 9.672029634515 9.672029631947 12 3 19 
78 9.857712212603 9.857709899885 9 8 4 
79 9.905063467661 9.905063467661 2 1 2 
80 9.968151813153 9.968151813153 3 17 6 

Tab. 8.8: Performance of MBH(FJ), MBI1(RP.1) and MBH(FRJ) approaches (with 
MNI=200, 11 = 50) 

In the above experiments reported in the Table 8.7 we observed that there 
are three failures (n = 78,79,80) in MBH(FJ), two failures (a = 67,75) in 
MBH(RPJ), and four failures (n = 67,73,75,80) in MBH(FPJ) over 5 runs 
with MaxNonlmp= 200. Therefore, we have performed another experiment for 
it = 67, 73, 75, 78,79, 80 with 50 runs and all the three strategies (MaxNonlmpis 
still fixed to 200). The results are reported in Table 8.8. We observe that all the 
approaches are able to obtain OurBestResults except for the instances n = 76 
and it = 73 in the MBH(FPJ) approach. In a = 67, 50 runs MBH(FPJ) are 
unable to obtain at least BestKnown value. Again in n=73, 50 runs MBH(FPJ) 
are unable to obtain OurBestResults but can obtain a better value than the 

1' 

U 
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BestKnown value, namely s = 9.540350146. It is worthwhile to remark that with 
a slightly larger number of runs, MBH(FPJ) is able to obtain OurBestResults 
values which are better than the BestKnown value (see the table) for both the 
cases 

BestKnown OurBestResult Number of Successes 
(In Literature) (in MBH Method ) FJ RPJ FPJ 

(0.8) (1.2) (2.2) 
31 6.291502622129 6.291502622129 1 24 1 
68 9.229773746751 9.229773746751 21 37 18 
78 9.857712212603 9.857709899885 21 19 16 
79 9.905063467661 9.905063467661 2 7 6 
80 9.968151813153 9.968151813153 4 20 11 
83 10.116864426926 10.116857875102 21 23 5 
92 10.684689759023 10.684645847916 5 4 2 
95 10.840205021597 10.840205021597 19 20 10 
98 10.979383128207 1  10.979383128207 41 1 39 36 
Total Success 135 1 193 105 

Tab. 8.9: Comparison among MBH(FJ), MBII(RPJ) and MBH(FRJ) approaches in 
Hard Instances (with MNI=500, R=50) 

Finally, we would ilke to compare the three strategies MBH(FJ), MBH(RPJ) 
and MBH(FPJ) over the previously defined lime Hard instances. We consid-
ered the number of runs 1? = 50 and we fixed MaxNonlmp to the larger value 
500. The results are reported Table 8.9. All strategies are able to reach the best 
known value at least once. Taking into account the overall number of success-
ful runs, we observe that MBII(RPJ) performs best, while MBH(FJ) performs 
better than MBH(FPJ). Therefore, in spite of the fact that the Ml3H(RPJ) ap-
proach previously appeared as the most time consuming (see Table 8.7), it also 
appears as a quite robust one, guaranteeing a large number of successes also on 
the hardest instances. 

8.5 Experiments with the PBII approach 

8.5.1 Comparison with MBH on hard instances 

In the first experiment we compare the behavior of PBH and MBH on the pre-
viously identified Hard Instances for MBII. We might think that the difficulty 
of such instances is clue to the existence of different funnels, so that many runs 
of MBH are needed before hitting the (putative) global optimum. In this case 
the multi-path search performed by PBH should allow to detect the solution 
more easily, though at a higher computational cost (approximately, a single 
run of PBH has a cost which is N times larger than a single run of MBH, 
where N denotes the size of the population). We will compare MBH(FJ) and 
PBH(FJ) setting A = 0.8 and MaxNonlmp = 500 in both cases, setting N;, = 10 
and employing the distance dissimilarity measure in PBH. In order to have 
a comparable overall computation time, we perform 50 runs of MBH and 5 of 
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Fig. 8.5: Comparison between MBII and PBFI regarding average elapsed time per 

success in some hard instances 

PBH. The results are displayed in Table 8.10, where for each instance we re-
port the percentage of successes. The results reported in the table suggest that 

PBH with a relatively large N,, value is certainly a robust approach, able to 
detect with a high percentage of success (often 100%) the solution of the hard 
instances. On the other hand, we should recall the higher computational cost 

of a PBH run. 

Tab. 8.10: Comparison between MBFI and P1311 with N,, = 10 approaches in some 

(in PHIL) II P13H{1V,, = LU) I ±vlrr 
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For this reason, we compare the two approaches on the basis of the elapsed 

time per success. Figure 8.5 displays the average elapsed time per success of 

1%,IBI1(1"J) and PBH(FJ) on the hard instances. The figure shows that, with 

the remarkable exception of the n = 31 case, where PBH strongly outperforms 

MBH, the two approaches are often comparable but MBH is, usually, slightly 

superior. 

8.5.2 Impact of population size N,, in PBH 

in the previous experiments we considered P13F1(FJ) with N,, = 10. Now 

we would like to investigate more thoroughly the impact of the population 
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size in PBH. In these experiments we consider PBH(FJ) with population sizes 

N = {1, 2,4.,8, 10}. We set MaxNonlmp = 100, A = 0.8, and employ the 

distance dissimilarity measure. The experiments are performed on the large 

instances n = 80... 100. Note that N = 1 corresponds to the MBH ap-' 
proach. In order to have a comparable computation time, the number of runs is 

1? = 50,25, 13,6,5 for N = {1, 2,4,8, 101 respectively. The results are reported 

in Table 8.11 in form of percentage of successes. 

0 11. Vh.. T,r,,of -.f N,,mhc,r of Ponulations in PI3H approach 
OurBestResult Success (in %) with MNI= 100 

ii (in PHIl) N5=1 N=2 N4 N5=8 Np=lO 

80 9.96815181315344 4 8 25 50 100 

81 10.0108642412007 38 68 83 100 100 

82 10.0508242234505 58 92 100 100 100 

83 10.116857875102 4 4 25 67 60 

84 10.1495308672362 100 100 100 100 100 

85 10.1631114658768 100 100 100 100 100 

86 10.29870105311 72 100 100 100 100 

87 10.363208505078 18 100 100 100 100 

88 10.432337692732 74 100 100 100 100 

89 10.500491814574 28 68 75 50 100 

90 10.5460691779537 68 100 100 100 100 

91 10.5667722335056 64 100 100 100 100 

92 10.684645847916 0 0 0 17 0 

93 10.73335260028 18 12 25 17 20 

94 10.778032160252 36 28 42 50 60 

95 10.840205021597 0 40 50 100 60 

96 10.8832027597222 4 0 0 0 

97 10.938590110073 4 42 67 100 

98 10.979383128207 100 100 100 100 

99 11.0331411514456 

J14 

16 50 83 100 

100 11.08214972431 64 83 100 100 

Total No. Failure  1 2 1 2 

Number of 100 % success 8 9 12 1 15 

The results somehow confirms those in the previous subsection: indeed, in spite 

of one or two failures, the largest tested N values, say N, e {8, 101, usually 

guarantee the highest percentage of successes (very often 100% successes), con-

firming that for large N5  values 1BH turns out to be a quite robust approach. 

On the other hand, in many cases also small N5  values (even N5  = 1, i.e. Ml3H, 

although this is also the case with the largest number, 4, of failures) quite of-
ten guarantee a high percentage of successes (at a lower computational cost 

per success with respect to large N5  values). Basically, it seems that for these 
problems single or few path searches are often already quite efficient and that 
the benefits coining from the greater diversification guaranteed by PBH with 

larger N5  values are overridden by the larger computational cost per iteration. 
It is worthwhile to remark that we could obtain two further improvements at 

71 = 96,99 (see Figure 8.11) 



8. Comp. Experiments about IGPCC 133 

8.5.3 Comparison of different dissimilarity measures 

Since we have previously proposed two dissimilarity measures, we would like to 
perform a final experiment to compare the performance of PBH(FJ) with the two 
dissimilarity measures Distance Dissimilarity (DD) and Objective-Distance Dis-
similarity (ODD). For this experiments we consider the instances ii = 80... 100 

plus the hard instances with n < 80, set MaxNonlmp = 200 and 500, A = 0.8. 

We also consider three population sizes N = {2, 5, 101 and always perform 

I? = 5 runs. The results are displayed in Table 8.12. We notice that the (liffer-
ences between the two dissimilarity measures are not particularly significative, 
although, with the only exception of N = 10 and MaxNonImp200, DD usually 
has a slightly lower number of failures and higher number of improvements. As 
a final remark, we point out that DD and ODD are reasonable measures but 
certainly not the only possible ones. A possible aim for future researches is that 
of proposing and testing new measures. 

Tb. 8.12: The Comparison between different dissimilarity measures in PBH approach 
with N p  = 2,5,10. Note that in this tabic OurBestResult is denoted as 
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9. PACKING PROBLEMS: NON-IDENTICAL CIRCLES IN A 

SMALLEST CIRCULAR CONTAINER 

In Chapter 6 we have given the mathematical formulation for the problem of 
packing equal/unequal circles into a circular container and also proposed algo-
rithms for solving the problem with equal circles, called Identical Circles Packing 
in a Circular Container (ICPCC) problem. In order to deal with the case of 
unequal circles one may think to extend the approaches employed for the case 
of equal circles with a slight variant in the perturbation moves: for instance, for 
the FJ perturbation strategy the coordinates of each circle i are displaced by a 

uniform random perturbation within the interval [ — r, Arij, where ri denotes 

the radius of circle i (for RPJ and FPJ the displacement is restricted to a subset 
of circles). But, as we will see through some experiments, this simple extension 
is not the best way to tackle the problem. Indeed, the case of unequal circles 
has some peculiarities which have to be taken into account. The combinatorial 
side of this problem, represented by the different radii of the circles, can (and 
actually should) be exploited in some ways. In particular, we will propose a 
further possible perturbation move which is only suitable for the unequal circle 
packing problem. Moreover, we will also propose another strategy, again only 
suitable for unequal circles, where we first optimize a fraction of relatively larger 
circles, and then insert one or a part of the remaining smaller circles sequen-
tially and simultaneously optimize them. All these issues, together with some 
computational experiments will be discussed in the following sections. 

9.1 Proposed Sequential Insertion Based MBH 

At first we discuss the strategy based on first removing and later re-inserting 
"small" circles. The basic idea is that, once a configuration with large circles is 
available, we can easily find some rooln for the smaller circles within the circu-
lar container without having to enlarge the radius of the container, or by only 
mildly enlarging it. Having removed "small" circles, we have the advantage of 
dealing with a smaller and simpler problem. 

The technique is rather simple. First we select some circles to be removed; 
then, we apply MBII (or PBII) on the reduced set of circles; finally, the algo-
rithmn sequentially inserts the missing circles (following a non increasing order of 
the radii). In what follows we define this approach as Sequential Insertion Based 
MBH or PBH (SIB-MBH or SIB-PBFI). The new procedure, which exploits the 
different radii of the circles, performs the following steps: 

apply the Removal Strategy to remove "small" circles; 

apply MBH (or PBH) on the remaining subset of larger circles; 
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Fig. 9.1: Illustration of Insertion Rule 

• (c) apply Insertion Rule for sequentially inserting the missing circles. 

Besides all components of the MBH (or PBH) approach, there are two further 
components in this new approach namely (i) Removal Strategy (RemS) and (ii) 
Insertion Rule (Iz).  Before giving a formal description of SIB-MBH, we de-
scribe these two new components. 

Removal Strategy (RemS). It is observed from the experiments that 
small circles are sometimes relatively easily inserted in holes of optimized con-
figurations for some subset of the larger circles without having to enlarge the 
container or with just a small eiilargement. According to our Removal Strategy, 
circles are indexed in decreasing order with respect to their radius. Then, a 
fraction of circles — "small" circles — is removed. 

Of course, we need to define what a "small" circle is. We define a circle i 
as a small circle if its radius is at least four times smaller than the largest one, 
i.e., circle i is small if 

r < Max rj.  

Let us denote the set of initially removed circles as Siz;  theii 

= { : r max rj} (9.2) 
V 

'l'his strategy strongly simplifies some instances of the problem through a con-
siderable reduction of the search space during the first phase where some circles 
are removed. 

Insertion Rule (In).  In the insertion process of a given circle c in 
Siz, first the algorithimi creates a regular grid of points over a square region con-
tairting the circular container. The step of the square grid is half of the inserted 
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circle's radius. The edge length of the square region is the sum of the diameter 
of the container and the radius of the circle to be inserted, so that the circular 
container, which is optimized previously by the reduced circles, is fully enclosed 
within the square (both have the origin as their common center). Next, the 
algorithm searches for "free" spaces where to insert circle c5. Given a point 

(xi, 
y) over the grid, we declare the space around it as free, if its distance from 

the other circles' centers is at least equal to r5, the radius of the circle to be in-

serted. In other words, if we place circle c with center in point (x1, y) over the 

grid, the other circles' centers are not in the interior of such circle. Note that at 
least one free space certainly exists. Indeed, according to the above definitions, 
all the corners of the square certainly correspond to free spaces. It is worthwhile 
to note that the definition of "free"space does not mean that the space is large 
enough to contain circle c3 witil  no overlap with the other circles: a partial over-
lap is permitted and, actually, if the circle to be inserted is small compared to 
other circles, then even full overlapping may occur during the insertion process. 
It may also happen that the new circle is not fully (or even not at all) contained 

in the circular container. In spite of this partial or full overlap with other circles 
and of the possibility of crossing the border of the circular container, a local 
search procedure started at the new configuration with the added circle is able 
to adjust it in such a way that no overlap occurs without enlarging the radius of 
the circular container or with all as small as possible enlargement of such radius. 

We may illustrate the Insertion Rule by Figure 9.1. Suppose we have 9 un-
equal circles in which 5 circles are "small". So after that we have found a 
configuration with the four larger circles by any algorithm like, e.g. MBH or 
PBH (see Figure 9.1(a)), next the insertion algorithm searches for a space in 
the given four-circle configuration by exploring the grid of points to insert the 
remaining largest circle (green color) in S1. Once tile algorithm finds a "free" 
space, it picks up the green colored (largest) circle from the set S7Z  and places 

its center at the point of the grid where a "free" space has been detected (see 
Figure 9.1(b)). Notice in Figure 9.1(b) that the inserted circle partially over-
laps with some of the other circles and also crosses the border of the container 
circle. After having detected a "free" space, the algorithm starts a local search 
from the newly created configuration in order to r move possible overlaps and 
reduce as much as possible the radius of the circular container. The algorithm is 
stopped when all free spaces have been tested. The new configuration with the 
added circle will be the one with the smallest radius of time circular container. 
In case during the search a configuration is detected with the same radius of 
the circular container as before the addition of the circle, then the algorithm 
stops returning this configuration. Once the new configuration is returned, the 
algorithm removes the added circle from SIZ, selects the next largest circle in S7 

(the blue circle in the example), and repeats the above procedure until S7Z  be-

conies empty. The pseudo-code structure of the insertion rule 17Z starting from 

all initial configuration X and trying to add circle s is as follows (r denotes the 

local search procedure, while I returns the radius of the circular container for 

a given configuration): 

I(X, s) 
Step I (mit) Set mznrad = +00 
Step 2 (Grid): create a regular grid T on the square region 



9. Packing Problems: Non-identical circles 137 

containing the circular container 
For each (sj,y) E T 

If the space around (xi, Vt)  is "free" Then 
Set Y =XU{(x1,y1)} 

Set X' = T(Y) 

If f(X') < rninrad Then 
Set X = X' 

If f(X') = 1(X) Then 
return X' 

EndFor 

Return X• 

Once we have defined the insertion procedure, we are ready to give a formal 
description of the whole algorithm: 

Sequential Insertion Based MBH 
Step 1(RemS): remove the set S7z of all the "small" circles 
Step 2(M13H): Apply MBH on the reduced problem. 

Let X be the outcome of MBH 
While SR 54 0 

Let s E argmax{ri  : i E Siz} 
Set X =IR(X,$) 
Set SR = SR \ {s} 

End\Vhule 
Return X 

In the above algorithm MBH can be easily substituted by any other algorithm 
returning a configuration in the reduced space. In case MBH is replaced by 
PBH, the insertion procedure can be either applied to the best member of the 
final population, or, alternatively, to all members of the final population. 

9.2 New perturbation moves 

As already pointed out, when dealing with unequal circles, we can add new 
perturbation moves to the slight variant of the perturbation moves employed 
for equal circles. In particular, here we propose two further perturbation moves 
namely (1) the Random Jump (RJ) perturbation move and (ii) the Radius Based 
Random Swap (RBRS) perturbation move. The former could actually be em-
ployed also with equal circles (in fact, we will see that it is basically equivalent to 
the Jerk Perturbation move but less "local"). The latter can only be employed 
with unequal circles. 

9.2.1 Random Jump (RJ) perturbation move 

In Section 8.4 we have developed the Jerk Perturbation (JP) move technique 
in which circles' centers are perturbed within a neighbor space. The proposed 
Random Jump (Ri) perturbation move is actually quite similar: circles are 

1. 
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Fig. 9.2: Illustration of RJ perturbation move 

randomly selected but rather than being slightly perturbed, they can jump 
within a large region (actually, in some sense the JP move can be regarded 
as a special case of the LU perturbation move, in which only small jumps are 
allowed). Figure 9.2 illustrates the move. In Figure 9.2(a) we have a locally 
optimal configuration. In the example the RJ perturbation move randomly 
selects a single circle (the red one in the figure). Then, after the RJ perturbation 
the new configuration is displayed in Figure 9.2(b). Notice that the red circle 
jumps within a square region whose edge is E ri and is delimited by the clotted 
line in the figure, but crosses the border of the container and also overlaps with 
another circle. As usual, the local search procedure adjusts all the circles So that 
no overlaps occurs, and the circular container in such a way that its radius is as 
small as possible. The pseudo-code of the RJ perturbation moves is given below 
(the value of BR, the diameter of the square boundary, is fixed to rj): 

The pseudo-code of the RJ perturbation 

Step 1: Let Z = (Z] 1, z121  . . . , z, 1, z2} be a local minimum and set. Z' = Z 
Step 2: select n E (1, n) randomly 
do i= I to An 

Step 3: select i E { 1, . .. , n} randomly 
Step 4: select ZIt E (—BR, BR) randomly 

do k = I to 2 
Step 5: set z := z, + 

End do 

Step 6: set z' = z' n {z} / (zj 

End do 
return Z' 
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Fig. 9.3: Illustration of RBRS perturbation move 

9.2.2 Radius Based ILandom Swap 

In the Radius Based Random Swap (RBRS), first one or few pairs of circles are 
selected in such a way that in each pair the radii of the two circles are different. 
(it will be soon clear that if two circles in a pair have the same radius, thou & 

the RBRS perturbation is meaningless). Then, we keep fixed the centers of the 
circles but swap their radii. For illustration, let Figure 9.3(a) represent a local 
optimal configuration; let the red and blue circles form the randomly selected 
pair. Then, after RBRS perturbation the new configuration is given in Figure 
9.3(b). Notice that after swapping the radii, overlaps between circles occur and 
the red circle gets (slightly) outside the circular container. As usual, the local 
search procedure will adjust the situation in order to recover a feasible solution. 
'rue pseudo-code of the RJ3RS perturbation move is given below: 

The pseudo-code of RBRS perturbation 

Step 1: Let Z = {zji. 212,..., z,., z2} be a local minimum and set Z' = Z 
Step 2: define An E (1,n/2) randomly/deternuinistically 
Step 3: randomly select An distinct circles' pairs (ik,jk), k = 1, .. . , An 

so that r2k r fl.. 
do k= I to An 

Step 4: swap the two radii (rik I 7*jk) 

End do 
return Z' 

9.3 Experiments and discussion 

In this section we will perform some experiments to investigate different issues. 
In particular we will study: 

the performance of the proposed perturbations; 

• the performance of the Sequential Insertion Based MBH (SIB_MBH) ap- 
proach; 
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the impact of the population. 

Thh 01 Test set with uncaual circles 

Test n. I._!.L Radii - 
BestKnocm 

1 6 ri_a = 10, r4_6 ---4.826  21.5480 

2 9 Tl_4=1, r5 . 9 =0.41415 2.4142 

3 9 ri_s = 10, r.t_g = 3.533 21.5470 

4 12 r1_3 = 10, r4 _ 9  = 3.533, ro_, = 2.3 21.5470 

5 13 fi_3 = 10, r4_9 = 4.826, r7-12 = 2.371, f13 = 1.547 21.5470 

6 19 ri-3 = 10, r4_5 = 4.826, r7-12 = 2.371, f3 = 1.547, 
f14-9 = 1.345  

21.5470 

7 19 f1_3 = 10, r_g = 3.533, rio-12 = 2.3, f-i = 1.8, 
r19  = 1.547  

21.5470 

8 22 ft-3 = 10, f4-6 = 4.826, f712 = 2.371, 

T13 = 1.547, r1.1 ig = 1.345, r2022 = 1.161, 21.5470 

9 25 T1_ = 10, r4 _ 9  = 3.533, r,0_2 = 2.3, rio_is = 1.8 
f19_=_1.547,_T20_25_= 1.08 21.5470 

10 28 f-3 = 10, f4-6 = 4.826, f7-12 = 2.371, na = 1.547 
r1.1_19 = 1.345, f20-22 = 1.161, T2a-28 = 0.9 21.5470 

11 10 ri50, r=40, r3_ 5.=30, r6 =21 
r7 =20, r8 =15, r=12, r10 =10 99.8850 

12 11 T1-2 = 25, r3 _ 4  = 20, ro = 15, f6 = 14 
r7 = 12, rg = 11, ntt = 10.5, rio = 10, r1i 8.4 60.8900 

13 14 ru =40, f2=38, r3=37, r4=36, r5 =35 
r = 31, T7 = 27, r8 = 23, rg = 19, riG = 17, nit = 16 

r12 = 15, r13  = 14, r4 = 11 
114.9800 

_________ 

14 17 r, = 25, r2 = 20, T3_4 = 15, T5_7 = 10, T8-17 = 5 40.6837 

15 12 ri_a = 100, r.j_ = 48.26, f7-12 = 23.72 215.4700 

16 15 r1 =1, Tj -Fifi+l, 1,... 14 39.3700 

17 17 r14 = 100, ns_9 = 41.415, fi017 = 20 241.4214 

18 162 f1_3 = 1.8, r4 = 1.75, r5.-16 = 1.3, r17_29 = 1.05 

r26-40 = 0.9, r41-71 = 0.8, V72 = 0.75, r73-93 = 0.7 

T84-137 =0.05, r138-162 = 0.55 
11.7300 

The test instances which will be considered are those reported in 11061. These 
are 18 test instances for the case of unequal circles.' The characteristics of 
each test are indicated in Table 9.1. In such table column Test n. denotes the 
identifier of the instance; column n denotes the number of circles of the instance; 
column Radii denotes the different radii of the circles in the instance; column 
BestKnown denotes the best known value in the literature for the instance. 

9.3. 1 Experiments with different perturbation moves and with the sequential 

insertion strategy 

The different perturbation moves which will be tested are the Full Jerk (FJ) one 

(with perturbation range Ai = 0.8r for the coordinates of the i-th circle), the 
Random Jump (Ri) perturbation move (with a number of randomly selected 

Actually, in the paper 11061 24 test problems are reported, but four of them are with equal 
circles (namely, tests n.2, 21-23), and two of thent are equivalent to other problems within the 
test set (namely, test n.7 is equivalent to test n.19, and test n.13 is equivalent to test n.20). 

-A 
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Tab. 9.2: The Impact of Removal Strate' in Sequential insertion based approach 
Test n. it Reduced circles 
_1 6 6 

29 9 
39 9 
412 9 
513 6 
619 6 
7 

_ 
19 9 

822 6 

925 9 
10 28 6 

11 10 8 

12 11 11 
13 14 14 
14 17 7 
15 12 6 

16 15 12 
17 17 9 
18 162 162 

Tab. 9.3: The performance of MBH approaches with different perturbation moves and 
insertion strategies. Note that in this table OurBestResults is denoted as 
flflfls 

lost n. 0 B FLsI No. of success (Result) 
of MBU approach 

No. of success (Result) 
ofSIB-MBHapproach 

EJ Ri RBRS FJ Ri RIIRS 

-- 21.5480 50 15 50 50 15 50 

- - 2.4142 12 15 37 12 15 37 

21.5470 11 10 40 14 10 40 

- - 21.5470 8  1  19 14 10 40 

- - 21.5480 3  0 5 
_ 

3 2 9 

- - 21.5470 0  0 
_ 

19 11 50  
- - 21.5470 0 14 10 40 

- 21.5180 0  0 
_ 

20 16 50 

- - 21.5470 Th  0  0 
_ 

14 15 38 

10 21.5470 0  Th  0 
_ 

20 15 24 

11 90.885)) Th  12 0 0 50 

12 80.7099 0 12 
(60.7099) 

0 0 12 
 (60.7099) 

13 113.5552 

(4) 
10 
(114.0814) 

0 6 
 (113.5846) 

10 
114.0814) 

0 6 
 (113.5846) 

14 49.1873 1 
(49.31945) 

10 
(49.6498) 

1 
(49.2.170 ) 

6 
(49.1873) 

100 
(49.1873) 

50 
(49.1873) 

15 215.4700 5 0 7 31 16 50 

16 38.8380 1 
(38.9189) 

10 
(39.2062) 

1 
38.8380 

0 3 
 (39.3534) 

5 
(38.8380) 

17
________  __ 

241.4214 0 0 7 7 8 

18 11.5110 
(4) 

1 
(11.5336) 

5 
(11.6599) 

1 
(11.5.122) 

1 
(11.5336) 

5 
(11.6599) 

1 
(11.5422) 

Failure 0 11 8 11 5 3 3  0 

Success 18 10 7 13 15 15 18 

Imp. 5 4 3 5 13 1 3 5 

B. Imp. 5 11 0 1 0 1 2 11 1 1 3 
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circles, on which the perturbation is carried on, equal to f7z/20 + 1]), and the 
Radius l3ased Random Swap (RBRS) one (with ln/20 + 11 randomly selected 
pairs of circles on which the perturbation is carried on). Experiments are per-
formed both with the standard MBH approach and with the sequential insertion 
strategy, i.e. with the SIB-MBH approach. In all cases we set MaxNonlmp =200. 
The number of runs is R = 50 for all tests except for the highly computationally 
demanding Test n. 18 for which we reduced the number of runs to R = 6. 

For what concerns SIB-MBH, we report in Table 9.2 for each test instance 
the total number it of circles for the instance and the reduced number of circles 
after removal of the 'small" circles. We observe from the table that for some 
test instances like, e.g., n. 6-10 a large number of "small" circles is removed. 
For some other instances a lower number of circles is removed (like, e.g., in-
stances ii. 4 and 11). Finally, for the test instances n. 1, 2, 3, 12, 13 and 18 
there is no "small" circle and, consequently, the MBH and SIB-MBH approach 
are equivalent ones. 

The results are reported in Table 9.3. Column Test a. denotes the identifier of 
the test instance as indicated in Table 9.1. Column OBRs (OurBestResult) de-
notes the best results we could obtain during all our experiments. Note that in 
all cases a value (in the Column OBRs) at least as good as the BestKnown one in 
the literature as reported in Table 9.1, is reached and that values in boldface 
indicate better results compared to the BestKnown ones, The next following 
three columns report the number of successes on each instance for each of the 
three perturbation moves tested (FJ, RJ, RBRS) with MBH approach. The last 
three columns report the number of successes on each instance for each of the 
three perturbation moves tested (FJ, RJ, RBRS) with SIB-MBH, i.e. with the 
use of the sequential insertion strategy. It is worthwhile to explain here what 
do we mean by number of successes. When the number of successes is equal to 
0, this means that the approach was unable to reach the best known result in 
the literature. For all the instances for which the best result obtained by all 
approach was at least as good as the best known one in the literature, the num-
ber of successes is the number of runs where the best result has been obtained. 
In the latter case, when a result better than the best known one in the litera-
ture could he obtained, we also report within parenthesis such result. We also 
remark here that for Test n.13, we have obtained the best result - 113.5552* 

by the 500 runs of SIB-MBH(RBRS) approach 2,  while for Test 11.18 we have 
obtained the best result- 11.5119k by the SIB-PBH(FJ) approach discussed 
later on. 

In the table the row named Failure reports the total number of instances 
where tIme approach was unable to reach the best known result in the literature 
(or, equivalently, the number of instances for which the number of successes is 
equal to 0). Similarly, row Success reports the total number of instances where 
the approach was able to obtain a solution at least as good as the best known 
one. Row Imp. reports the total number of instances for which the approach 
was able to obtain all improved solution and, finally, row B. Imp. indicates 
the total number of instances for which the approach was able to obtain an 
improved solution which is also the overall best among all those obtained in the 

2 Such cxperiiiient is not discussed here but can be found in l6l. 
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dillerent experiments. 

Now we briefly discuss the results reported in Table 9.3. At first we consider 
the performance of the different perturbations moves within the standard MBH 
approach, i.e. MBH without sequential insertion strategy. We observe that the 
MBH(RBRS) approach was able to obtain success in 13 instances out of 18; in 

it wis able to improve the available BestKnown value and in three 
cases the improvement is a u,... TmntFm1ately, there are also five failures. 
Note that enlarging the number of runs only partially  
extended the number of runs to H = 500, we could get at least one success for 
all the instances but still two failures, namely for the two tests ii. 9 and 10. 
The situation is even worse for the MBH(FJ) and MBH(RJ) approaches, for 
which the number of failures is clearly higher compared to that of the MBH 
(RBRS) approach; moreover, though there are some improvements in both the 
approaches, none of them has a best improvement. 

Things get definitely better when we consider the performance of the differ-
ent perturbations moves in the SIB-MBH approach. The SIB-M13H(RBRS) ap-
proach has no failure, five improvements and three best improvements; both SIB-
MBH(FJ) and SIB-MBH(RJ) approaches, though inferior with respect to SIB-
MBI-1(11I316), have only three failures but one best improvement. If we focus 
our attention on the comparison between MI3H(RSBS) and SIB-MBH(RSBS), 
we can remark that the five failures in MBH(RSBS) occur with instances n. 
6-10, for which the SlB-MBH(RSBS) approach first removes a relatively large 
number of ("small ") circles. Once such circles are removed, the problems get 
quite easy ones and the following sequential insertion can always be carried on 
relatively easily without having to enlarge the radius of the circular container 
(i.e., all the missing circles can be inserted in the "holes" of the container). 
This is not always the case. Instance n. 14 deserves some attention. The dif-
ferent runs of 1%,1131-1 over the reduced space return two distinct solutions with 
the seven remaining circles, one with radius 48.6111 and the other with radius 
4.922, so that the first one is clearly better than the second one. But when 
moving to the second phase (sequential insertion of the missing circles), the 
situation is reversed: the first solution leads to a solution with radius 49.2296, 
while the second one leads to a better solution with radius 49.1873. Basically, 
the second solution has a worse radius but larger holes where the missing circles 
can be placed. Therefore, what we can conclude from this is that it is often a 
good strategy to perform the insertion of missing circles not only from the best 
solution returned by the first phase, but also from some suboptimal solutions 
obtained during the first phase, because the latter may lead to better solutions 
after insertion of the missing circles. 

The final indications of this set of experiments are quite clear: 

• the use of the sequential strategy clearly enhances the performance of all 
the approaches, independently from the perturbatiomi move employed (for 
a given perturbation move the performance with the sequential strategy 
is almost always better than the one without); 

• the RBRS move is a clear winner with respect to the FJ and RJ moves 
with a lower number of failures, a higher number of improvements and best 
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Tab. 9.4: The total elapsed Cpu times of the experiments for SIB-MBIl(RBRS) ap-
proach 

Test n. Elapsed time (see) 
1 39 
2 75 
3 104 
4 440 
5 35806 
6 17607 
7 3778 
8 11768 
9 63890 

10 52967 
11 213 
12 264 
13 468 
14 4975 
15 813 
16 249 
17 3130 
18 407137 

improvements, and with a number of successes almost always larger than 
those obtained with the other moves. The only exception is represented by 
instance n.18. The peculiarities of this instance and a possible explanation 
for the worse behavior of RBRS with respect to FJ on it, will be discussed 
later on. 

Some attention should be focused on instance n.13 and, even more, on instance 
n.lfi. In both cases all radii are different and the different between two con-
secutive radii is relatively small. In these cases the MBH(RBRS) approach (or 
the SIB-MBH(RBRS) approach) works much better than the approaches with 
other perturbation moves. For instance n.16 we observed a large variability of 
the final solutions and, in spite of the relatively small dimension, this instance 
turns out to be J)articularly challenging. We remark that instance n.16 is one 
(actually of moderate size) among those proposed in the Circle Packing Contest 
(see http://www.recmath.Org/COflteSt/CirC1ePaCkiflg/ifldeX.PhP),  and its 

difficulty seems to eoiifirin that such instances are more challenging than the 
other test instances with unequal circles reported in the literature. More gener-
ally, our impression is that the hardest instances for the case of unequal circles 
are those with many circles with slightly different radii. For a discussion about 
how to (leal with the instances of the contest we refer to [3]. 

As a final comment, we emphasize once again that the proposed approaches 
and, in particular, the SIB-MBH(RBRS) one, turn out to be extremely efficient 
when compared with the existing literature, being able to get at least the same 
results and, in some cases, also to considerably improve the best known results 
as reported in [106] (and in Table 9.1). We also report in Table 9.4 the overall 
computation time required for 1? = 50 runs on all the test instances except for 
the instance ii.18, for which R = 6, as already mentioned. 

! 
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'nib. 9.5: Impact of Population in RBR.S perturbation moves on sequential insertion 
based anoroach. Note that in this table OurBestResults is denoted as OBRs. 

OBf0. I  No. of In % (rnook)  

NrI N,2 Ny,4 N8 5 Np=S 5010 

1 21.5460 100 100 100 100 100 101) 

2 2.4142 74 100 100 100 100 100 

3 21.2470 60 100 100 100 100 100 

4 2) 2470 80 100 100 100 100 100 

2 21.2400 18 100 100 100 100 100 

6 21.5470 100 200 100 100 100 100 

7 21.5470 80 100 100 100 100 100 

O 21.5400 100 100 100 100 100 100 

9 21.5470 70 100 100 100 100 100 

10 21.2470 48 100 100 100 100 100 

11 09.0050 '100 100 100 100 100 100 

13 60.7089 24(00.7099) 44(60.7099) 67(00.7099) 80(60.7099) 33(00.7009) 80(80.7099) 

13 113.55524' 12(113.5846) 12(113.7753) 10(213.8370) 40(113.0434) 33(114.02909) 100(113.50409) 

14 40.1873 100(49.1873) 06(49.1873) 100(49.1873) 100(40.1873) 100(49.1873) 100(40.1873) 

25 215.4700 100 100 10 100 100 100 

26 38.8380 10(38.8380) 28)38.8380) 42(38.8380) 70(38.8380) 50(38.8380) 80(38.8380) 

47 231.4214 56 100 100 100 100 100 
6 11.01194  12 (11.5422) 8(11.5256) 50(11.5410) 30(11.5410) 100(11.5416) 60(11.5360) 

10(1 % So.. fl 0 13 13 12 15 ] 15 

50% <So.. < 1)10% -n 1 I 0 0 ] 3 
5% <So.< 50% 0 4 4 3 3 ] 0 
B-1 hop,o 3 3 3 3 3 ) 3 

9.3.2 Impact of population 

in  this section we investigate the PBII approach with different population sizes. 
Following the indications obtained from the previous set of experiments, we will 
first restrict our attention to SIB-PBH(RBRS) (sequential insertion will be per-
formed starting from all the members of the final population). 

We consider the population sizes N = 2,4,5,8, 10 as well as N,, 1 (i.e. 
the SlB-MBH(RBRS) approach). In Table 9.5 we report the results in terms of 
percentage of successes obtained with: 50 runs of SIB-MBH(RBRS), 25 runs of 
SIB-PBH(RBRS) with N = 2, 12 runs of SIB-PBH(RBRS) with N,, = 4, 10 
runs of SIB-PBH(RBRS) with N = 5, 6 runs of SIB-PBH(RBRS) with N = 8, 
and 5 runs oiSIB-PBH(RBRS) with N = 10. This way the overall computa-
tional effort with the different population sizes is approximately the same. We 
set MaxNoiilmnp =200 for all the population sizes. 

The distance dissimilarity measure in SIB-PBH(RBRS) approach is similar to 
(7.1), the one employed with equal circles, but with a slight difference. Given 
a local minimizer X, in vector 5x we first place the distances with respect to 
the barycenter of the circles with largest radius, ordered in a nondecreasing 
way, then the distances with respect to the barycenter of the circles with sec-
ond largest radius, ordered again in a nondecreasing way, and so on for all the 
different radii. Then, we clefiuie the dissimilarity measure as follows: 

V(X, Y) = Iöx[k] - sy[k]I. 

We observe in the table that both IvIBH as well as PBH based approaches are 
able to obtain at least the best known value in the literature (no failure is 
observed) , and in some cases, to improve it. Even MBH turns out to be able 
to reach good percentage of successes in most instances. On the other hand, 
as we increase the population size, the robustness of the method also increases, 
reaching 100% in almost all instances (15 out of 18) for N ~! 5. 
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Thb. 9.6: The impact of FJ and RBRS perturbation moves on sequential insertion 
based approaches in presents of population. Note that in this table OurBe- 
st1tcsu1s is denoted as 1J15Ks. 

1t ft BoatKnol,n OBits Results for Results for 

ft (BK.) N,, = S with Il = 10 N = 10 with 11 = 5 

ft FJ I RBRS FJ RBRS 

1T 60.8000 80.7099 61.8213(1) 60.7090 (8) .3821(1) 60.7099 (4) 

13 114.9800 113.5552 115.8722(1) 113.0434(4) 5.7018(1) 113.50499(5) 
14 49.6837 49.1873 49.1873 (1) 49.1873 (10) F49.1873 (1) 49.1873 (5) 
16 39.3700 38.8380 39.4056(1) 38.8380(7) .4980(1) 38.8380(4) 
18 11.7300 11.5119 11.52.12(1) 11.5410(3) .5119 (1) 11.5369(3) 

Ttai Failure 0 3 ] 0 3 ] 0 

Best IiiprovC 5 i i i 1 j 3 2 ] 3 

9.3.3 Comparison of 11 BHs with different, perturbation moves 

We decided to perform also some experiments to compare the performance of 
PI3H (actually, SIB-PBH) with the FJ perturbation move as well as with tile 
RBRS perturbation move. We only considered N = 5, 10 with the number of 

runs R = 10, 5 respectively. We also restricted the instances to the five ones 
for which we were able to improve the best known results in the literature, 

i.e. Tests n. 12, 13, 14, 16 and 18. The experimental results are reported 

in Table 9.6. It can be clearly seemi that in all cases, except instance n.18, 

the FJ perturbation move, which does not take into account the combinatorial 

nature of the problem, delivers results inferior to those obtained with the RBRS 

perturbation move based on swapping the centers of circles with different radii. 

Test n.18 deserves a separate comment. For this case it SCCS that the 
FJ perturbation move is better than the RBRS one (this was also observed 
in Table 9.3). If we look at this instance, we notice that it contains a large 
number of circles with the same radius (e.g., 54 circles, one third of the total 
number of circles, have radius equal to 0.65). It is possible that such circles 
occupy a portion of the container which can not be optimized by swapping 

moves (recall that such moves only involve circles with different radii), while 

it can be optimized efficiently by random perturbations. Seen in another way, 

we have two distinct aspect in a problem with unequal circles: a continuous 
one, represeiìtcd by tile fact that circle centers have to be chosen in R2, and 

a combinatorial one, clue to the different radii of the circles. In the case of 

circles with all equal radius tile coimibinatorial component simply does not exist, 

while in case there are a lot of (or even all, as in instances 11.13 and 16) circles 

with different radii, the combinatorial component is more relevant than the 
continuous one. In case of test n. 18, with few different radii and many circles 

with the same radius, it seems that taking into account the continuous aspect 

(through the use of tile random FJ perturbation) is more important than taking 

into account the combinatorial aspect (through the use of swapping moves). 
Something which could be explored in the future is a mixed strategy, where 
both swap moves and random ones are employed. 



10. CONCLUSION AND FUTURE RESEARCH 

In the thesis we have dealt with two optimization problems, maximin Latin 
Hypercube Design (LHD) and packing equal and unequal circles into a circular 
container. Such two classes of optimization problems differ for the nature of 
their feasible region: in the former the feasible region is a discrete set (the prob-
lem is a combinatorial optimization one), while in the latter the feasible region 
is continuous. Moreover, such problems usually arise in different contexts and 
applications. However, in spite of these differences, there are many similarities 
between them: in both we have to place "objects" (respectively, design points 
and circles) in a region (respectively, a hypercube and a circular container) in 
such a way that some constraints are satisfied (respectively, no common coor-
dinate of the design points and no overlapping between circles' interiors) and 
some quality measure is optimized (respectively, the minimum distance between 
the points to be maximized, and the radius of the circular container, to be miii-
imized). The similarities are even stronger between maximin LHD and the 
problem of packing equal circles. Indeed, the latter is equaivalent to the prob-
hem of placing points within a circular container with fixed radius in such a way 
that their minimum distance is maximized, exactly like in maximin LHD. 

The similarities between the problems suggested to study similar heuristic ap-
proaches for them. Maximin LHD has been attacked with Iterated Local Search 
(ILS) heuristics, while packing problems have been attacked with Monotonic 
Basin Hopping (MBH) heuristics and their population-based variant PBH. In 
spite of the different names (used to follow the current terminology in the lit-
erature) the two approaches are quite similar and, in fact, MBH can be viewed 
as the continuous counterpart of ILS (typically used in the context of combina-
torial optimization problems). 

Below we summarize tile main findings of the thesis and discuss about possible 
future research directions. 

10.1 Contributions 

In the thesis we have proposed and comnputationally tested different variants 
of ILS and MBH approaches respectively for the maximin LHD and packing 
problems. The proposed algorithms achieve a breakthrough to obtain optimal 
solutions compared with existing methods. In the following subsections we 
discuss about such achievements. 
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'I 

10.1.1 Maximin LHD 

In the definition of ILS approaches for maximin LFID a major role has been 
played by the definition of the perturbation move operator. We have proposed 
mainly two Perturbation Moves (PM) named Cyclic Order Exchange (COE) and 
Pairwise Crossover (PC) and their variants. Both PM operators turn out to be 
effective and efficient. COE is better when (N, k) are small, while PC is better 

when (N, k) are relatively large. A quite relevant finding is that higher qual-
ity results can be obtained if the most natural optimality criterion Opt(Di, J1 ), 
which only takes into account the minimum distance D1  in a LHD and the numn-

bem Jj of its occurences, is substituted by the optimality criterion Opt(Di, ), 
where LHDs are compared through function 0, which takes into account all 
distances in a LHD (with a decreasing weight as the distance gets larger). In 
our ol)uuon,  a remarkable finding of the thesis is that a nionotonic search with 
respect to values but non mono tonic with respect to the D1  values, returns 
(much) better results with respect to a simple monotonic search with respect 
to the (D1 , J) values. It seems that the search through the 0 values allows 
effective backtracking moves with respect to the (D1, J1 ) values. 

We have also discussed about the time complexity of the ILS algorithms. It 
is not possible to give an exact time complexity of the ILS approaches but, mix-
ing theoretical considerations and computational experiments, we have derived 
empirical formulas returning computation times as a function of the N and k 

values. 

Finally we have compared the proposed ILS approaches with the existing liter-
attire. Experimentally it is shown that such approaches are competitive with 
existing ones and in many cases they outperform them. The algorithms have 
been able to obtain a large number of improved maximin LHD values which have 
been recently uploaded in the web site http: //www. spacefillingdesigns . nil 

(see [2761). 

Though the proposed algorithms have been able to come state-of-the-art, there 
is still place for improvements. In particular, for small k values it has been 
observed that a different approach, Periodic Desin (PD), is still able to out-0

pertbrm the proposed ILS approaches for sufficiently large N values. 

10.1.2 Packing problems 

For these problems we discussed the Monotonic and Population Basin Hopping 
approaches. Their performance turned out to be quite good (with many im-
provements with respect to the existing literature). But besides deriving such 
results, our aim were that of analyzing the each components of the approaches 
in order to study their impact and to choose carefully their definition. In par-
ticular, the experiments revealed that: 

• local searches alone are not enough: the simple Multistart approach, where 
local searches are started from randomly sampled pomts, performs much 
worse than a carefully designed MBI-I approach; 

9 in the case of equal circles, the "optimal" size A of the perturbation where 
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circles are randomly shifted within a region whose size is controlled by A, 

is inversely proportional with respect to the number of perturbed circles; 
moreover, it also appears that an intermediate choice between perturbing 
only few circles or all of them is the best option; 

• in the case of unequal circles, the better choice between a random shift 
of the circles like in the case of equal circles, and a combinatorial move 
where radii of the circles are swapped, depends on the ratio between the 
number of different radii's values and the total number of circles: as the 
ratio increases, combinatorial moves become preferable; 

• the experiments show that there is not an optimal choice for the stopping 
parameter MaxNonlmp (sometimes even for small n values, like n = 31, a 
longer search is better) but they identify robust choices for it; 

• in the case of unequal circles, removal of small circles is often essential 
to solve the problems, but it is important to observe that there is not a 
monotonic relation between partial and complete configurations, i.e. while 
a partial configuration has a better radius than another one, the situation 
can be reversed when adding missing circles; 

• on average, the best performance is obtained with MBH or with PI3H with 
a small population, but PBH with a larger population seems to guarantee 
more robustness, with good results also over the instances where MBH 
has to struggle. 

10.2 Future Research 

Though extensive experiments have been performed for a careful choice of the 
algorithms' components and of the parameter values, and for a comparison with 
the existing literature, we believe that a major issue for the future is a further 
analysis, not merely from the experimental point of view but also from the the- 
oretical one, of the algorithms as well as of the problems at hand. Exploiting 
theoretical properties of the problems could allow, e.g., to reduce the search 
space and improve the quality of the results. 

Moreover other possible directions for future works could include: 

• testing the proposed ILS approaches with other optimality criteria; 

• investigate and improve the Local Search as well as I'erturbatiomm Move 
operators; 

• improve the code to reduce time complexity; 

• extend the approaches to other packing problems; 

• develop more robust perturbations moves; 

• develop more robust dissimilarity measures. 
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A. OVERALL IMPROVED VALUES 

A. 1 Overall improved radii in ICPCC 

Here we display all the improved values (radii of the circular containers) for 
LCPCC. For n = 2,. .., 100 our proposed algorithms are able to reach all the 
best known values in the literature (available in [274]) and to obtain 21 improved 
configurations, whose radii are reported in Table A.1. 

A.2 Overall improved radii in NICPCC 

Here we display all the improved values for NICPCC. As we mentioned in Chap-
ter 9, we consider the instances given in [1061.  For these instances our algorithms 
were able to reach all the best known results and to improve some of them, whose 
radii are reported in Table A.2. 

nq:n( 

KU[T
aangladesh 

V 



A. Overall improvc 

Thb. Al: The overall improved 
n radii 
66 9.096279426924 
67 9.168971881784 
70 9.345653194084 
71 9.415796896871 
73 9.540346152138 
74 9.589232764339 
75 9.672029631947 
77 9.798911924507 
78 9.857709899885 
83 10.116857875102 
86 10.298701053110 
87 10.363208505078 
88 10.432337692732 
89 10.500491814574 
-- 10.684645847916 
93 10.733352600260 
94 10.778032160252 
96 10.883202759722 
97 10.938590110073 
99 11.033141151446 
100 11.082149724310 

Tab. A.2: The overall improved radii for NICPCC problem 
Test n. n OurBestflesults 
12 11 60.7099 
13 14 113.5552 
14 17 49.1873 
16 15 38.8380 
18 162 11.5119 



B. SOME IMPROVED SOLUTIONS 

B. 1 Examples of improved LHDs 

In Tables B.1-B.4 we report few examples with the coordinates of LHDs which 
improve the best known ones reported in [276] 
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Tab. Bit Examples of improved Maximin LilDs for k = 3,4,5 
improved w.r.t the values available in 12761) 

Pts I Factors/Coordinates Pts I Factors/Coordinates Pts I Factors/Coordinates 
(N, k) = (17,3); Mrn=[54,18] (N, k) = (14,4); Mm=[79,8] (N, Ic) = (11, 5); Mm=182,61 
10 4 13 10 3 5 7 10 7 105 0 
2 1 3 4 2 1 9 114 2 1 8 2 6 4 
3 2 108 3 2 124 9 3 2 5 9 2 8 
4 3 1216 4 3 8 2 1 4 3 0 6 8 2 
5 4 9 1 5 4 4 1211 5 4 1 1 1 7 
6 5 163 6 5 1 102 6 5 3 4 9 10 
7 6 1 9 7 6 5 3 13 7 6 6 5 0 1 
8 7 1510 8 7 0 0 6 8 7 107 105 
9 8 6 14 9 8 137 3 9 8 9 3 3 9 
10 9 8 7 10 9 119 12 10 9 4 0 7 3 
11 10 2 2 11 10 7 13 5 11 10 2 8 4 6 
12 11 11 0 12 11 10 1 8 (N,  k) = (39,5); Mni=[575,2] 
13 12 13 15 13 12 2 8 10 1 0 33 12 23 20 
14 130 11 14 136 6 0 2 1 9 288 13 
15 14 14 6 3 2 11 4 16 26 Nk)=(36,4);Mm=[298f 
16 15 7 12 4 3 18 25 13 36 T 0 13 10 13 - 
17 16 5 5  2 

3 
4 

1 
2 
3 

23 
30 
8 

21 
27 
30 

22 
6 
27 

5 
6 
7 

4 
5 
6 

21 
6 
29 

22 
31 
37 

36 
30 
20 

7 
24 
15 

(N,k) = (33, 3); Mrn=f122,11 
T 0 14 9 
2 1 25 13 5 4 9 12 31 8 7 26 18 12 0 
3 2 17 21 6 5 27 4 23 9 8 35 23 2 22 
4 3 5 17 7 6 12 289 10 9 17  13  35  35 
5 4 8 29 8 7 286 5 11 105 7 9 4 
6 5 28 24 9 8 32 31 32 12 11 1 10 32 14 
7 6 4 4 10 9 0 19 17 13 12 22 0 27 6 
8 7 26 3 11 10 1 2 14 14 13 37 27 29 32 
9 8 15 1 12 11 10 8 0 15 14 27 1 5 17 
10 9 19 30 13 12 26 15 35 16 15 32 9 14 38 
11 10 32 14 14 13 34 18 15 17 16 10 35 24 3 
12 11 12 12 15 14 25 34 16 18 17 8 14 0 27 
13 12 0 25 16 15 22 20 1 19 18 7 38 10 28 
14 13 22 18 17 16 15 0 28 20 19 19 19 19 19 
15 14 11 23 18 17 17 29 33 21 20 36 6 34 23 
16 15 1 11 19 18 16 17 19 22 21 24 34 1 8 
17 16 29 27 20 19 3 22 3 23 22 0 17 21 34 
18 17 20 7 21 20 5 32 20 24 23 38 21 25 5 
19 18 9 2 22 21 2 11 29 25 24 15 33 31 37 
20 19 6 32 23 22 20 1 11 26 25 25 32 38 16 
21 20 31 8 24 23 31 5 25 27 26 31 36 11 29 
22 21 18 28 25 24 14 35 4 28 27 2 26 6 9 
23 22 3 20 26 25 33 25 26 29 28 14 16 33 1 
24 23 16 16 27 26 4 7 10 30 29 20 11 3 2 
25 24 30 19 28 27 35 9 7 31 30 12 8 37 25 
26 25 23 0 29 28 29 26 8 32 31 16 2 15 33 
27 26 2 6 30 29 21 16 34 33 32 4 5 17 12 
28 27 27 31 31 30 19 33 21 34 33 34 15 4 21 
29 28 13 5 32 31 18 13 2 35 34 3 29 28 18 
30 29 10 26 33 32 6 24 30 36 35 28 3 22 11 
31 30 24 10 34 33 11 3 24 37 36 30 20 26 31 
32 31 21 22 35 34 7 23 12 38 37 13 24 7 30 
33 32 7 15  36 35 24 14 18 

- 
39 38 23 30 18 10 

4- 

'I 
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Tab. B.2: Examples of improved Maximiii LHDs for k = 6, 
improved w.r.t the values available in 127611 

Pts Factors/ Coordinates Pts -  Factors/Coordinates 
- (N, k) = (9,6); Mm=[82,6] - (N, k) = (7,7); Mm=162,71 
10 8 5 5 4 4 10 5 3 1 0 2 4 
2 1 1 2 3 2 0 2 1 4 6 6 4 5 3 
3 2 0 6 7 7 5 3 2 0 0 5 2 3 1 
4 3 2 8 1 1 6 4 3 2 2 0 5 6 5 
5 4 3 0 4 3 8 5 4 6 I 3 6 1 2 
6 
7 

5 
6 

4 
5 

4 
1 

0 
8 

8 
6 

3 
1 

6 
7 

5 
6 

1 
3 

4 
5 

4 
2 

3 
1 

0 
4 

6 
0 

8 7 7 3 2 0 2 - (N,ic) = (43,7); Mrn=[1301,1] 
9 1 8 6 7 6 5 7 10 

2 
3 

1 
2 

17  
24 
11 

24  
20 
2 

9 
15 
11 

22  
3 
18 

27  
34 
7 

2 
34 
28 

(V,k) = (41,6); Mm=[938,1] 
1 0 14 14 24 38 14 
2 1 38 24 30 11 22 4 3 20 21 38 25 16 40 
3 2 7 39 22 17 16 5 4 7 26 30 2 12 16 
4 3 28 6 17 25 37 6 5 29 1 20 32 36 26 
5 4 17  17  18  6 0 7 6 106 36  33  17  8 
6 5 6 10  26  5 29 8 7 14  34  18  34  0 21 
7 6 15 27 39 26 35 9 8 36 5 26 6 15 11 
8 7 30 34 13 36 27 10 9 39 22 4 27 14 35 
9 8 37  11  10  27  8 11 10  26  23  42  13  40  9 
10 9 2 23 9 30 33 12 11 38 29 31 41 23 14 
11 10 21 33 14 7 38 13 12 19 41 16 31 38 31 
12 11 23 2 38 16 10 14 13 37 42 29 9 18 25 
13 12 27 32 33 28 2 15 14 0 10 22 14 42 18 
14 13 5 1 7 20 13 16 15 2 32 0 11 21 27 
15 14 31 4 12 1 21 17 16 30 30 3 7 3 10 
16 15 12 28 4 32 4 18 17 4 14 7 42 24 23 
17 16 32 37 8 10 9 19 18 33 7 8 37 10 5 
18 17 0 19 35 21 7 20 19 3 39 33 28 25 6 
19 18 36 15 34 37 24 21 20 42 25 10 19 41 12 
2)) 19 18 31 37 0 15 22 21 27 27 39 20 1 3 
21 20 4 25 5 2 18 23 22 35 0 28 30 4 33 
22 21 8 3 31 31 31 24 23 25 17 21 0 5 39 
23 22 22 9 2 40 25 25 24 8 33 35 5 32 38 
24 23 40 21 3 18 32 26 25 13 19 41 38 39 29 
25 24 2)) 12 36 8 36 27 26 40 13 34 15 33 37 
26 25 9 36 27 39 20 28 27 1 11 13 17 9 4 
27 26 34 40 32 19 30 29 28 22 3 2 8 28 20 
28 27 13 8 6 12 39 30 29 18 31 17 1 29 1 
2)) 28 19 7 23 35 1 31 30 6 4 23 21 22 42 
30 29 3)) 18 28 9 5 32 31 28 36 27 36 13 41 
31 30 3 29 29 13 34 33 32 23 38 6 35 19 7 
32 31 16 38 1 23 28 34 33 21 8 25 29 35 0 
33 32 24 13 0 14 6 35 34 15 9 40 4 20 17 
34 33 10 5 25 4 12 36 35 16 18 1 26 2 32 
35 34 35 30 15 34 11 37 36 32 35 5 10 26 36 
36 35 11 35 20 15 3 38 37 9 40 24 12 6 22 
37 36 23 22 21 33 40 39 38 34 12 12 40 30 30 
38 37 33 0 19 22 23 40 39 12 15 32 39 8 19 
39 38 1 16 11 29 19 41 40 31 37 37 23 31 15 
40 39 20 20 40 24 17 42 41 41 16 19 16 11 13 
41 40 26 26 16 3 26 

- 
43 1 42 5 28 14 24 37 24 

or- 
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Thb. B.3: Examples of improved Maxitnin LHDs for k = 8,9 
(improved w.r.t the values available in 1276]) 

Pts Factors! Coordinates Pi - Factors/Coordinates 
(N, k) (7,8); Mrn=[71,1I (N, k) = (7,9); Mm=[80,11 

I 0 6 2 3 0 5 3 4 1 0 6 1 5 1 4 2 3 5 
2 1 1 3 6 4 4 6 1 2 1 1 5 2 5 6 6 4 4 
3 2 0 4 4 3 2 0 6 3 2 4 4 0 4 2 0 6 1 
4 3 3 1 0 6 1 5 5 4 3 5 3 3 6 0 5 0 3 
5 4 4 6 1 5 6 2 2 5 4 0 0 6 3 1 3 5 2 
6 5 2 0 2 1 3 1 0 6 5 3 2 1 0 5 4 I 0 
716 5 5 5 2 0 4 3 7 6 2 6 4 2 3 1 2 6 
- (N, k) = (43.  8); Mni=11635, II (N, k) = (43, 9); Mrn=[195711 
T 0 30 8 12 14 8 8 28 1 0 11 26 5 22 11 13 16 40 
2 1 23 34 27 37 36 23 11 2 I 28 42 28 33 16 11 13 9 
3 2 2 18 35 17 20 38 22 3 2 17 35 29 19 41 23 39 28 
4 3 26 31 36 3 17 14 6 4 3 31 17 31 9 14 36 3 32 
5 4 I 36 13 12 14 7 26 5 4 16 9 37 42 15 31 27 27 
6 5 21 12 3 31 24 42 29 6 5 14 10 35 12 34 3 8 19 
7 6 28 27 20 5 31 28 42 7 6 2 30 33 6 6 22 26 11 
8 7 25 13 26 36 2 34 5 8 7 37 0 13 21 31 18 28 36 
9 8 11 14 4 19 29 18 0 9 8 35 4 26 20 2 14 22 3 
10 9 42 7 21 9 25 36 10 10 9 15 20 0 37 18 28 33 5 
II 10 33 41 5 28 6 19 14 II 10 36 15 22 28 40 35 12 4 
12 II 10 19 7 32 39 5 36 12 11 7 11 9 1 39 34 20 21 
13 12 7 II 34 33 15 2 13 13 12 33 31 6 3 17 9 37 15 
14 13 17 3 30 4 41 11 20 14 13 3 37 20 30 27 42 6 20 
15 14 12 32 22 41 10 24 41 15 14 30 25 41 15 9 6 30 39 
16 15 29 4 41 30 26 27 37 16 15 20 27 4 7 12 26 1 2 
17 16 41 30 33 29 16 1 30 17 16 18 19 16 11 8 40 42 37 
18 17 0 0 14 15 18 20 40 18 17 38 39 1 29 28 33 23 33 
19 18 31 39 37 21 II 40 24 19 18 1 5 18 24 23 5 41 24 
20 19 37 33 9 8 37 6 15 20 19 25 28 32 40 37 16 7 41 
21 20 16 25 6 0 5 35 19 21 20 10 33 3 25 42 4 15 17 
22 21 36 2 11 42 22 12 16 22 21 5 16 25 38 5 7 2 18 
23 22 14 20 39 7 0 15 34 23 22 42 21 12 18 19 1 0 25 
21 23 8 42 1 23 33 31 23 24 23 26 8 38 2 29 25 40 12 
25 24 18 29 28 6 42 39 0 25 24 40 22 27 36 33 2 36 14 
26 25 10 38 40 20 35 13 31 26 25 39 34 36 26 10 37 32 13 
27 26 4 40 29 22 9 25 3 27 26 13 2 17 0 3 12 14 30 
28 27 35 16 42 26 32 16 1 28 27 4 23 39 32 35 19 24 0 
29 28 5 9 23 39 38 30 17 29 28 29 40 34 4 36 21 10 16 
30 29 38 10 15 24 1 33 35 30 29 6 41 23 39 13 17 35 31 
31 30 39 28 19 3.5 40 29 32 31 30 12 6 2 31 26 20 4 31 
32 31 32 17 18 13 3 4 4 32 31 0 18 40 13 25 30 18 38 
33 32 6 15 2 34 4 17 18 33 32 9 7 24 23 4 41 10 6 
34 33 13 1 31 11 13 32 7 34 33 32 12 8 34 0 15 31 29 
35 34 27 5 0 tO 34 26 25 35 34 21 38 19 16 1 27 5 35 
36 33 19 35 17 38 30 3 8 36 35 23 1 7 17 30 10 21 1 
37 36 24 37 8 16 12 10 39 37 36 22 14 21 35 38 38 38 26 
38 37 3 21 16 2 28 9 12 38 37 41 13 11 5 21 39 17 22 
39 38 31 26 10 27 19 37 2 39 38 34 3 42 27 20 20 11 23 
10 39 40 22 32 1 23 22 27 40 39 8 36 10 8 24 32 34 10 
41 40 9 23 24 18 21 41 38 41 40 24 24 15 10 32 8 20 42 
42 41 20 6 25 23 27 0 33 42 41 19 29 30 14 7 0 25 8 
43 1 42 22 21 38 40 7 21 21 1 43 1 42 27 32 14 41 22 24 9 7 
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Tab. B.4: Examples of improved Maximin LIIDs for k = 10 
, t t lii ,wailable in 12761) 

Pts - Factors! Coordinates 
. 

(N,k) = (7, 10); Mm=[90,1 
1 064234054 5 

2 1 1 55503204 

3 2 3204 1 4 06 1 

4 300625 1 3 5 2 

5 4 23 1 1 6 5 1 1 6 

6 5514636633 
7 64630224 20 

(N,k) = (10, 10); Mmr1174,11 

1 0772 1 57470 

2 1 95781 4 2 1 6 

3 2233982932 

4 36140605 59  

5 4095276307 

6 5309329 74 3 

7 6 1 8650 1 694 

8 754879 508 5 

9 886 1 648868 

10 9 4 2 0 4 3 3 1 2 1 

(N,k) = (23,10); Mm=[750,11 

1 0 5 18 14 15 18 10 2 5 9 

2 1 2 6 18 7 0 15 11 15 16 

3 2 12 21 10 11 5 0 18 20 11 

4 3 20 15 4 0 4 9 3 7 15 

5 4 13 4 0 21 7 11 12 10 3 

6 5 22 14 19 16 12 21 17 9 14 

7 6 7 2 2 4 16 19 15 3 19 

8 7 10 8 12 3 20 16 14 21 1 

9 
10 

8 
9 

18 
1 

1 
9 

16 
13 

14 
18 

14 
21 

3 
7 

4 
22 

19 
14 

17 
20 

11 10 19 12 8 8 19 1 20 1 8 

12 11 8 17 1 13 11 18 6 22 21 

13 
14 

12 
13 

14 
4 

0 
10 

20 
22 

2 
17 

9 
6 

13 
4 

7 
19 

0 
8 

5 
0 

15 14 16 16 17 12 1 14 0 17 2 

16 
17 

15 
16 

6 
11 

22 
13 

5 
11 

9 
19 

8 
2 

20 
6 

16 
9 

4 
2 

4 
22 

18 17 0 7 3 5 10 2 5 11 7 

19 18 9 20 21 1 15 8 10 13 18 

20 19 21 11 6 10 22 17 1 6 12 

21 20 3 3 15 20 13 22 8 12 10 

22 21 17 5 7 6 3 12 21 16 13 

23 1 22 15 19 9 22 17 5 13 186 
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B.2 Examples of solutions for ICPCC 

In Figure B.1 best known solutions for ICPCC with n = 61,. . . ,72 are displayed. 

Some of these solutions, namely those with n = 66,67,70,71, belong to those 

improved by our methods. 

4, 
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Fig. B. 1: Few examples of best known solutions for LCPCC for n = 61 - —72, among 
which the solutions for n = 66,67, 70, 71 have been obtained by our methods 
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