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ABSTRACT 

The advent of research work to analyze massive multiway oriented electroencephalogram (EEG) 
signals with low configurable computer is a great challenge. This thesis presents an algorithm for 
extracting underlying frequency components of such EEG data. Frequency components of these 
data play a vital role to realize brain-body condition. Usually, a huge amount of time and 
specially built computers are essential to process these EEG data having different subjects. It 
also restricts to visualize inherent frequency of EEG for a general practitioner. An algorithm is 
developed using two-stage cascaded architecture of canonical correlation analysis with neural 
network named neural canonical correlation analysis (NCCA) to address three major challenges 
for extracting frequency components from EEG data, such as: (a) It processes massive data 
which are feed sequentially into neural network, rather than feeding whole data at a time, (b) It 
uses the conventional personal computer instead of special computer built for such application, 
(c) It spends very short time for a moderate data set consisting of several ways (time, trials and 
channels). (d) It considers the nonlinear correlation among the data groups while statistical CCA 
ignores it. In order to get reliable and robust result, the experimental are carried out with 
different structures of network such as linear, nonlinear and nonlinear feedback structures. The 
inherent dominant frequency of 1 Hz having a quite resemblance with EEG landscape has been 
found. This provides a great opportunity in analyzing brain-body function. 

Although it is possible to recognize frequency of massive EEG data at shorter time with NCCA 
than statistical CCA, but subjects differentiation is still a great challenge. In this view, this paper 
presents a new feature selection (FS) approach based on NCCA. In order to get robust features 
subset having maximum correlation and minimum redundancies, NCCA is devised to search 
highly correlated subsets by maximizing correlation among several subdivisions of raw data and 
pruning the features of lightly scored weights of CCA network. The result of NCCA is very 
robust in terms of accuracy. In this sense, frequency recognition is very easy using selected EEG 
features than original features which are inspected from correlation profiles. The computational 
complexity is also greatly reduced if selected features are used to recognize frequency which is 
proved theoretically and experimentally. In this connection, elapsed time is calculated and 
observed that NCCA is about 2 to 33 times faster to recognize frequencies from selected EEG 
features than original set. 
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CHAPTER I 

Introduction 

In this chapter we develop the basic ideas of frequency recognition from the perspective that the 
standard treatments already contain the motivations for the necessity to know the behavior of 
human brain-body functions. In this regard, we evaluate electroencephalogram (EEG) signal 
which is generated from human brain and related to body functions. This signal is roughly less 
than 100 .tV and can be measured with electrodes placed on the scalp, noninvasively. The braines  
electrical charge of signals is maintained by billions of neurons. Neurons are electrically charged 
by membrane transport proteins that pump ions across their membranes. Neurons are constantly 
exchanging ions with the extracellular milieu, for example to maintain resting potential and to 
propagate action potentials. Ions of similar charge repel each other and when many ions are 
pushed out of many neurons at the same time, they can push their neighbors, who push their 
neighbors, and so on, in a wave. This process is known as volume conduction. When the wave of 
ions reaches the electrodes on the scalp, they can push or pull electrons on the metal on the 
electrodes. Since metal conducts the push and pull of electrons easily, the difference in push or 
pull voltages between any two electrodes can be measured by a voltmeter. Recording these 
voltages over time gives us the EEG [1]. 

The frequency recognition from massive multiway [2] EEG data is a great challenge for 
computational scientists. This requires high capacity machine which are specially built for a 
particular EEG application and are not available for general users or practitioners. Therefore, a 
comfortable and user friendly faster method is essential to process multiway data with limited 
computational resources such as an ordinary personal computer. In this regard, to solve this 
problem we propose implementation of Canonical Correlation Analysis (CCA) with Neural 
Network (NN) called Neuro-Statistical CCA. 

1.1 Motivations 

Frequency components recognition from a signal gives us knowledge about analyzing a 
waveform to learn something about the source, propagation of waves, simplifies the waveform to 
understand easily. EEG [3] is one kind of electrical signal which always reflects the summation 
of the synchronous activity of thousands or millions of neurons that have similar spatial 
orientation. If the cells do not have similar spatial orientation, their ions do not line up and create 
waves to be detected. Pyramidal neurons of the cortex are thought to produce the most EEG 
signal because they are well-aligned and fwe together. There are different kinds of potential 
whose are generated from brain; Steady State Visual Evoked Potential (SSVEP) is one of them. 
It is evoked over occipital scalp areas, with repetitive external visual stimulation such as flashes, 
reversing patterns or luminance-modulated images [4]. The strongest responses of SSVEP are 
occurred in the primaiy visual (striate) cortex, although other brain areas are also activated in 
varying degrees. 

The EEG is typically described in terms of rhythmic activity. The rhythmic activity is divided 
into frequency bands. These rhythmic activities within a certain frequency range were noted to 
have a certain distribution over the scalp or a certain biological significance. Frequency bands 
are usually extracted using spectral methods (for instance Welch) as implemented for instance in 
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freely available EEG software [5]. A series of operation is repetitively required to get final 
frequency components if a conventional software or frequency analyzer algorithm is used. 
Moreover, there has been computational intractability if the data are massive and multiway. 

Recent approaches try to find inherent underlying frequency components of these EEG signals. 
However, EEG signal may be contaminated by noise and it is still a challenge to detect the 
rhythmic activities of such signals especially at low stimulus frequency [6]. There have been a 
number of approaches to recognize frequency of EEG signals. A traditional and widely used 
method for EEG signal recognition is power spectral density analysis (PSDA). PSD is estimated 
from the EEG signals within a time window typically by Fast Fourier Transform (FFT), and its 
peak is detected to recognize the target stimulus. It takes longer time window to estimate 
spectrum with sufficient resolution [7]. Some studies also took the PSDs as features and applied 
linear discriminate analysis (LDA) or support vector machine (SVM) classifier to classify the 
desired frequency [8] which may limit the real-time implementation. 

Lin has found out the correlations between a set of EEG signals of multiple channels and a set of 
reference sine-cosine signals with different stimulus frequencies using statistical Canonical 
Correlation Analysis (CCA) [9]. The desired stimulus is then recognized from conversed 
correlations by maximization process. It provides better recognition performance than that of the 
PSDA since it delivers an optimization for the combination of multiple channels and improves 
the noise tolerance. A comparative analysis between the CCA and PSDA was also discussed in 
[10]. They also adopted the sine-cosine waves as reference signals used in the CCA for SSVEP 
recognition. Tensor CCA is an extension of the statistical CCA, which addresses on inspecting 
the correlation between two multiway data groups, instead of two sets of variables [11]. 
Multiway CCA (MCCA) [12] has been proposed to address the real time implementation of 
brain computer interface system. They remove inter subject variability and trial to trial variability 
in finding the optimized reference signals, although it requires specially built computers which 
are not available for general purpose. The inatlab program for MCCA requires very long time to 
execute. However, the detail insight realization of correlation profile is still missing. 

In this thesis we implement three types of CCA networks such as - (i) linear, (ii) nonlinear and 
(iii) nonlinear feedback networks to extract underlying frequency components of EEG signals 
using a two-stage structure of neural CCA which maximizes correlation between a set of sine 
cosine signals and a set of EEG signals. As a result, an optimized reference signal is obtained in 
the first stage. In the second stage, a test set of EEG signals and optimized reference signal are 
applied to the same network to find another optimized signal. Finally, frequency components of 
EEG data set are determined from above two optimized signals where their correlation becomes 
maximum. This does not require high capacity machine and it performs better than others since 
special NN cascade architecture is incorporated. 

The SSVEPs of EEG can be processed for different visual stimulation with standard EEG system 
for different trials of a subject, but there have no significant variability among trials for a subject 
at same stimulation [13]. If every trail of any subjects is concatenated together for analysis, the 
data size is so high as well as every feature is not similarly important. The processing of such 
massive data is a great challenge for computational scientists. In this sense, we search salient 
features of such high dimensional data with reduced size which will carry important information. 
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- In order to process these kinds of data, huge computational time and resources are often required. 
In many pattern recognition applications, there have a large number of features those are not 
equally important for a specific task [14]. Some of the variables may be redundant or even 
irrelevant. Usually by discarding such variables better performance may be achieved [15]. 
Moreover, the number of training samples required grows exponentially when the number of 
features grows [16]. Therefore, dimensionality reduction of the data is most important in many 
practical applications. Feature Selection (FS) algorithms attempt to reduce insignificant attributes 
and these are widely applied as a pre-processing tool for pattern recognition, data mining, text 
categorization, image mining, and frequency recognition etc [17]. 
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Fig. 1.1: Representation of the wrapper and filter approach 

There are three basic types of FS approaches such as wrapper, filter and hybrid [18]. In case of 
wrapper approach, predetermined learning model is assumed and features are selected that justify 
the learning performance of the particular learning model. On the other hand, statistical method 
is utilized without any learning model in case of filter approach. The classification of them is 
shown in Fig. 1. The hybrid model takes advantage of the complementary strengths of the 
wrapper and filter approaches by using their different evaluation criteria at different search 
stages [19]. Different types of search processes are attempted for subsets generation. The search 
process starts with an empty set and successively adds features in case of sequential forward 
search (SFS) [20], where sequential backward search (SBS) [21] option starts with a flill set and 
features are successively removed. On the other hand search processes start from both ends and 
add and remove features simultaneously, for bidirectional selection [22]. A fourth approach [23] 
is to start a search process with a randomly selected subset using bidirectional or sequential 
strategy. 

There have been several approaches attempted to select important features. Broadly FS 
techniques can be categories as evolutionary and non-evolutionary. Evolutionary algorithms 
need very long time to converge due to its very high search spaces [24]. On the other hand, non-
evolutionary algorithms require very short time to converge and are useffil for online application. 
Among the non-evolutionary approaches principal component analysis (PCA), canonical 
correlation analysis (CCA), independent component analysis (ICA), information gain (IG) are 
worth mentioning. 
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- PCA is a classic tool to seek linear combinations of the data variables that capture a maximum 
amount of variance [25]. It ranks the variables to explain greatest variation of data and identify 
the most important variables from amongst large set of possible influences. But there are few 
restrictions using PCA. One of them is its dealing with only one set of variables. On the other 
hand, it may consider noisiest variables because they account for most of the variation, where 
data normalization cannot always be the solution as well as it may not cope with data having 
class attributes. The most important limitations of PCA however is that each principle 
component is a linear combination of all variables in the dataset which ends up being very 
difficult to interpret. There are also different space reductions methods such as SVD (singular 
value decomposition) and LSA (least square approximation) those are very similar to PCA but 
only difference is in basis evaluation approach. Although ICA was successful in several attempts 
for FS [26], it requires non-Gaussian constraints. The performance of ICA depends on the nature 
of the task and the algorithm used. Moreover there is no statistical difference between ICA and 
PCA [27]. 

However it is crucial to identify a subset of features that are informative and significant for 
classification, easy to interpret and is not sensitive to scale effect. Mutual information based 
feature selection overcomes all of those challenges. Here, features are selected in a greedy 
manner [27] by measuring the mutual dependence of two variables. Attribute that gains the most 
information from a decision tree are chosen [28]. It is very popular due its robustness and 
excellent speed, although it can sometimes over fit training data, resulting large trees. Important 
variants can also be identified according to strong interactions of data sets using recursive 
elimination of features (Relief-F), but it is sensitive to presence of noise in the attributes [29]. 
This can be overcome by removing variables iteratively with the worst Relief-F scores and 
update the scores of the remaining variables [30]. A composite score is created from Relief-F and 
information gain (IG) called evaporative cooling (EC) which demonstrate greater power than 
iterative Relief-F to detect the continuum of independent and pure interaction effects. But 
computing IG is sensitive to real valued continuous feature set [31], so discretization of numeric 
features is required prior to computation 1G. 

The selection of feature subspaces can be found using a generalized CCA framework using a 
minimum mean-square-error criterion [32], but it considers only linear combination of two data 
stream ignoring the nonlinear relationship. Finding the canonical variates is not very difficult 
while interpretation is cumbersome due to presence of noise in the attributes. Due to the high 
volume of data available in recent years, it is not easy to analyze such data using classical 
methods. These problems can be resolved by combining neural network (NN) with statistical 
standard CCA, so that any linear and nonlinear correlation can be optimized. 

We propose a framework for FS based on Cohn Fyfe's CCA network [33] that is a simple 
implementation of statistical CCA with NN called CCA network (NCCA). To search the 
important features using the framework, firstly entire EEG data of a particular subject are 
divided into three groups intentionally. Then highly correlated feature subsets are obtained using 
maximization process through CCA network training and pruning consequently. The joint use of 
NN and statistics strengthen the FS process and exhibit robust results. 

Although expected frequencies can be recognized using whole of the data set, but all features of 
these high dimensional data are not equally important and may also have noise corrupted data as 
well. Hence, difference of correlation points between expected frequencies with others is very 
low. In this sense, firstly features are selected using NCCA approach and then performances of 
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above three networks are analyzed to recognize the frequencies. It is observed that in this case 
networks can recognize frequencies with higher accuracy and lower computational cost as well 
as it can differentiate among subjects easily. 

1.2 Goals and Approaches 

Our goal is to recognize frequencies which is generated from human brain and recorded as 
SSVEP. Due to the challenges to recognize underlying frequency components of high 
dimensional EEG signals, it is imperative to take an iterative approach to successfully develop 
high-performance signal processing loom that extract frequencies with higher accuracy and 
lower computational cost. In this thesis, we search salient features and underlying frequency 
components of EEG signals with neuro-statistical method. 

1.2.1 Neuro-Statistical Aspects 

CCA is a statistical method which finds linear relationship among multivariate data. It search 
correlation considering whole dataset at once, therefore it degrade the generalization 
performance of machine and takes very long time to execute a program. In this regard, NN is 
implemented with CCA which is called Neuro-Statistical CCA. This gives several advantages 
such as i) it does not require high capacity machine, ii) it uses NN, since it exhibits enhanced 
correlation than standard statistical methods [35], iii) a set of data out of entire one, is entered 
sequentially in the NN instead of complete data at a time, iv) remove noisy features easily 
because it uses training and pruning consequently. 

SSVEP is one kind of potential of EEG signal. It is evoked over occipital scalp areas with the 
same frequency as the visual stimulus and may also include its harmonics when subject focuses 
on the repetitive flicker of a visual stimulus [3, 8]. Recent approaches try to find inherent 
underlying frequency components in EEG signals. There have been a number of approaches to 
recognize frequency of EEG signals. A traditional and widely used method for EEG signal 
recognition is PSDA. PSD is estimated from the EEG signals within a time window typically by 
Fast Fourier Transform, and its peak is detected to recognize the target stimulus. It takes longer 
time window to estimate spectrum with sufficient resolution [21]. CCA was used to find the 
correlations between the EEG signals of multiple channels and reference signals of sine-cosine 
with different stimulus frequencies as proposed by Lin et al. [9]. Then, the target stimulus is 
recognized through maximizing these correlations. We implement CCA with NN in original and 
selected features of EEG, since NN is well known for their powerful capacity [33, 34]. 

The EEG data can be configured using different ways such as time, channels and trials. When 
these data are recorded with higher number of channels for various trials of a subject, then it 
contains large feature set. The processing of such massive data is a great challenge for 
computational scientists. This high dimensional EEG data cause learning to be more difficult and 
also degrade the generalization performance of the learned models. To simpli' and improve the 
quality of dataset, it is needed to select the salient features of high-dimensional datasets. 
Generally for this purpose FS is used in machine learning. Ordinarily, spurious features are 
deleted from the original dataset using FS without sacrificing generalization performance [14]. In 
this sense we employed CCA with NN called neuro-statistical CCA (NCCA) for selecting 
important features from large EEG dataset. 

In this thesis, we try to find frequency components of such EEG signals using neuro-statistical 
CCA. It is observed that remarkable result is obtained from both original data and selected 



Page 16 

feature set in this test, but computational cost is greatly reduced when feature selection is 
performed prior to frequency recognition. 

1.2.2 Feature Selection (FS) 

In this thesis, we search salient features of massive EEG data with reduced size. SSVEP is one of 
most important EEG signal which detects the human brain condition at various modes such as 
reading, writing, watching TV etc that is on the view of opening eyes. But all of these data is not 
equally important; also handrng of such high dimensional data is not an easy task. The correlated 
data is most important to find the brain conditions. For that motive, we search salient features of 
EEG data on the basis of NCCA. The correlation coefficient is computed from subdivision of 
EEG signals. The entire FS scheme is exposed in Fig. 1.2. 

I- [Start J 
EEG signal 
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Update N 
com 
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No Delete 

-H respective 
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Figure 1.2: General overview of feature selection. 
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High dimensional EEG data are organized into three different groups using wavelet clustering 
method. This class information is added together with EEG according to pattern. Then NCCA is 
applied on EEG data to search salient features where statistical analysis of the feature set is 
utilized without assuming predefined learning model as filter approach [36]. Then spurious 
features are deleted according to low correlation using pruning. Finally well defined back-
propagation (BP) algorithm of NN is used for measuring classification accuracy of selected EEG 
features. 

1.2.3 Frequency Recognition 

Frequency recognition from a signal is an important issue that gives us information about the 
source of signal. Propagation of signal through a medium generally depends on frequency which 
may say that the waves of different frequencies propagate with different velocities. EEG is one 
kind of electrical signal which is generated from human brain and related to body functions. To 
find the behavior of a signal or activities of human brain, we decompose the EEG signal into its 
different frequency components. It also gives us easy understanding of the signal. The EEG 
signal is collected from brains with electrodes (channels) placed on the scalp, noninvasively for a 
sufficient time. Frequency components extraction from this EEG signal play great role for 
determining brain functions. It is crucial to take an iterative approach to successfully develop 
high-performance signal processing loom that recognize frequencies with higher accuracy and 
lower computational cost. This iterative process is divided into the following tasks as shown in 
Fig. 1.3, most of which are to be pursued simultaneously. 

1_i~~ 
Subject's selection 

First stage 

Sine-Cosine EFO data 

reference signals for training 

CCA Network f4J 
Second stage 

Optimized Test subject 

reference signal 

CCA Network 

Optimized 
reference signal 

Correlation  

Fig. 1.3: General overview to recognize frequency from selected EEG features. 
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In this thesis, underlying frequency components of EEG signals are recognized on the basis of 
correlation maximization with CCA networks. EEG data is collected fronì EEG database [37]. 
There are four subjects with five trials of each at three (8 Hz, 14 Hz and 28 Hz) stimulus 
frequencies. Every trials of a subject are concatenated and about equally subdivided into tM 
subsections prior to present in the network. In this way, expected features are selected from high 
dimensional EEG data. These selected features are presented into three different CCA networks 
one by one to recognize frequencies. In this case, two-stage CCA network are utilized where 
three subjects are concatenated for first stage and rest is used as a test set in the second stage. In 
the first stage, a reference signal is generated with the sine-cosine set. Correlation maximization 
is done to find two optimized signals one from first stage and other from second stage. Both of 
the optimized signals carry the information of subject specific and trial to trial variability because 
of these are created from EEG signals. Then frequency is recognized from these two optimized 
signals with maximization process. 

Finally, accuracy of selected features is tested with well known BP rule. Comparative analysis of 
recognizing frequencies from selected and non-selected features are also analyzed with three 
different CCA networks at three harmonic situations. It is seen that maximum correlations are 
found at 1 Hz for every network at every situation, because of checkerboard was flickered at this 
frequency. We can also differentiate among subjects using selected EEG features. The outcome 
of this work will enable us to design an efficient and user-friendly Brain Computer Interface in 
future. 

1.3 Organization of the thesis 

This thesis focuses on an integrated approach to recognize frequencies by optimizing SSVEP of 
EEG signals. This is accomplished by investigating the brain responses to continuous visual 
flicker stimulation with very small checkerboards. The motivations and scope of thesis work is 
described in Chapter 1. It also gives an overview of the potentiality of neuro-statistical aspects to 
select salient features as well as recognize frequencies from noisy high dimensional EEG data. 

Background information and literature review on frequency recognition of EEG signals are 
described in Chapter II. Rhythmic activities of brain signal as well as EEG data collection 
scheme and various types of EEG potentials are also explained in this chapter. 

The proposed framework of neuro-statistical CCA is presented in Chapter III. In this chapter FS 
and frequency recognition procedures are also addressed with traditional CCA. 

Outcome of the thesis is discussed in Chapter IV. Features are selected on the basis of correlation 
maximization and accuracy is tested with NN. Frequency is recognized with three CCA networks 
at three harmonic Situations from original EEG features as well as from selected features. All of 
the above are analyzed in this chapter V with their comparative analysis. 

Detail summarization of the thesis work is illustrated in chapter V. A comprehensive suggestion 
for future works is also presented in this chapter. 



Page 1 9 

CHAPTER H 

Background and Literature Review 

The aim of this chapter is to show the necessity of recognizing frequency from a signal to 
understand about human-brain behavior. In this perspective we evaluate the behavior of EEG 
signal, collection of EEG data and critical literature review on frequency recognition from both 
original EEG signals and selected features. 

EEG is a neurological test that uses an electronic monitoring device to measure and record 
electrical activity in the brain. The human brain is obviously a complex system and exhibits rich 
spatiotemporal dynamics. Among the noninvasive techniques for probing human brain dynamics, 
it provides a direct measure of cortical activity with millisecond temporal resolution. It measures 
voltage fluctuations resulting from ionic current flows within the neurons of the brain [38]. 
Traditional EEG tracing is now interpreted in much the same way as it was done 50 years ago. 
More channels are used now and much more is known about the clinical implication of the 
waves, but the basic EEG display and the quantification of the waves is quite similar to those of 
their predecessors of a half century ago. There is no taxonomy of EEG patterns that delineates 
the correspondence between those patterns and brain activity. The clinical interpretation of EEG 
records is made by a complex process of visual pattern recognition and association on the part of 
the clinician and significantly more often in the last years (with the introduction of the personal 
computers) through the use of the Fourier transform. Quantitative EEG analysis as a field 
includes a wide variety of techniques. These are frequency analysis (Spectral analysis), 
topographic mapping, compressed spectral arrays, significance probability mapping and other 
complex analytical techniques [39-41]. Anyway, the most diffused quantitative method in 
clinical practice is the spectral analysis together with a visual assessment. 

2.1 Electroencephalography (EEG) 

EEG is the recording of electrical activity along the scalp that measures voltage fluctuations 
resulting from ionic current flows within the neurons of the brain. It is a tool to image the brain, 
while it is performing a task. This allows us to detect the location and magnitude of brain activity 
involved in the various types of functions. In clinical contexts, EEG refers to the recording of the 
brain's spontaneous electrical activity over a short period of time, usually 20-40 minutes, as 
recorded from multiple electrodes placed on the scalp. It allows us to view and record the 
changes in our brain activity during the time we are performing the task. 

EEG recordings are achieved by placing electrodes of high conductivity (impedance <5000) in 
different locations of the head. Measures of the electric potentials can be recorded between pairs 
of active electrodes (bipolar recordings) or with respect to a supposed passive electrode called 
reference (monopole recordings). These measures are mainly performed with good mechanical 
and electrical contact of electrodes on the surface of the head (Scalp EEG) or by using special 
electrodes placed in the brain after a surgical operation (Intracranial EEG). The changes in the 
voltage difference between electrodes are sensed and amplified before being transmitted to a 
computer program to display the tracing of the voltage potential recordings. 
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Figure 2.1: One second of EEG signals 

2.1.1 Brain rhythemicities 

The rhythmic activities of EEG are divided into bands by frequency. To some degree, these 
frequency bands are a matter of nomenclature (i.e., any rhythmic activity between 8-12 Hz can 
be described as "alpha"), but these designations arose because rhythmic activity within a certain 
frequency range was noted to have a certain distribution over the scalp or a certain biological 
significance. Frequency bands are usually extracted using different spectral methods. Most of the 
cerebral signal observed in the scalp EEG falls in the range of 1-20 Hz (activity below or above 
this range is likely to be artifactual, under standard clinical recording techniques). 

The study of different types of rhythmicities of the brain and their relation with different 
pathologies and functions keep the attention of researchers since the beginnings of EEG. Brain 
osillations were divided in frequency bands that have been related with different brain states, 
functions or pathologies [42]. Beta activity is closely linked to motor behavior and is generally 
attenuated during active movements [43]. It is seen usually on both sides in symmetrical 
distribution and is most evident frontally. Low amplitude beta with multiple and varying 
frequencies is often associated with active, busy or anxious thinking and active concentration. 
Rhythmic beta with a dominant set of frequencies is associated with various pathologies and 
drug effects. It may be absent or reduced in areas of cortical damage. It is the dominant rhythm 
in patients who are alert or anxious or who have their eyes open. It is best defined in central and 
frontal locations that have less amplitude than alpha waves and enhanced upon expectancy states 
or tension. It is traditionally subdivided in 13' and 132  oscillations. 

Alpha waves are neural oscillations in the frequency range of 8-13 Hz arising from synchronous 
and coherent (in phase or constructive) electrical activity of thalainic pacemaker cells in humans. 
They appear spontaneously in normal adults during wakefulness, under relaxation and mental 
inactivity conditions. They are best seen with eyes closed and most pronounced in occipital 
locations. They are also called Berger's wave in memory of the founder of EEG. They are 
reduced with open eyes, drowsiness and sleep. Historically, they were thought to represent the 
activity of the visual cortex in an idle state. More recent papers have argued that they inhibit 
areas of the cortex not in use, or alternatively that they play an active role in network 
coordination and communication [44]. Occipital alpha waves during periods of eyes closed are 
the strongest EEG brain signals. In addition, there are other normal alpha rhythms such as the mu 
rhythm (alpha activity in the contralateral sensory and motor cortical areas that emerges when 
the hands and arms are idle; and the third rhythm (alpha activity in the temporal or frontal lobes) 
[45]. Alpha can be abnormal; for example, an EEG that has diffuse alpha occurring in coma and 
is not responsive to external stimuli is referred to as alpha coma. 

Theta activity refers to EEG activity within the 4-8 Hz range, prominently seen during sleep and 
play an important role in infancy and childhood. It is seen normally in young children and 
drowsiness or arousal in older children and adults; it can also be seen in meditation [46]. In the 
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awake adult, high theta activity is considered abnormal and it is related with different brain 
disorders. It can be seen as a focal disturbance in focal subcortical lesions, generalized 
distribution in diffi.ise disorder or metabolic encephalopathy or deep midline disorders or some 
instances of hydrocephalus. On the contrary this range has been associated with reports of 
relaxed, meditative, and creative states. Delta oscillations reflect low-frequency activity upto 4 
Hz, typically associated with sleep in healthy humans and neurological pathology. In adults, 
delta power has been shown to increase in proximity of brain lesions [47] and tumors [48], 
during anesthesia and during sleep. It may occur focally with subcortical lesions and in general 
distribution with diffuse lesions, metabolic encephalopathy hydrocephalus or deep midline 
lesions. It is usually most prominent frontally in adults (e.g. FIRDA - Frontal Intermittent 
Rhythmic Delta) and posteriorly in children (e.g. OIRDA - Occipital Intermittent Rhythmic 
Delta). 

Brain Waves: EEG Tracings 
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Figure 2.2: Different types of brain rhythrnecities related to frequency band 

Gamma oscillations have been associated with attention, arousal, object recognition, top-down 
modulation of sensory processes and in some cases, perceptual binding [49]. They are thought to 
represent binding of different populations of neurons together into a network for the purpose of 
carrying out a certain cognitive or motor function. 
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Figure 2.3: Gamma wave 
 

Some features of the EEG are transient rather than rhythmic. Spikes and sharp waves may 
represent seizure activity or interictal activity in individuals with epilepsy or a predisposition 
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toward epilepsy. Other transient features are normal: vertex waves and sleep spindles are seen in 
normal sleep. The normal Electroencephalography (EEG) varies by age. The neonatal EEG is 
quite different from the adult EEG. The EEG in childhood generally has slower frequency 
oscillations than the adult EEG. 

2.1.2 EEG Potentials 

EEG potentials are generated typically in microvolt range when electrodes are placed on the 
scalp, that is present in a spontaneous way or can be generated as a response to an external 
stimulation (e.g. tone or light flash) or internal stimulation (e.g. omission of an expected 
stimulus). The alteration of the ongoing EEG due to these stimuli is called event related potential 
(ERP), in the case of external stimulation also called evoked potential (EP). An ERP is the 

-' measured brain response that is the direct result of a specific sensory, cognitive or motor event 
[50]. More formally, it is any stereotyped electrophysiological response to a stimulus. The study 
of the brain in this way provides a noninvasive means of evaluating brain functioning in patients 
with cognitive diseases. Evoked potentials studies measure electrical activity in the brain in 
response to stimulation of sight, sound or touch. Stimuli delivered to the brain through each of 
these senses evoke minute electrical signals. These signals travel along the nerves and through 
the spinal cord to specific regions of the brain and are picked up by electrodes, amplified and 
displayed for a doctor to interpret. 

There are mainly three modalities of stimulation [51]: 

Auditory: These stimuli are single tones of a determined frequency or clicks with a broad 
band frequency distribution. This test can diagnose hearing ability and can indicate the 
presence of brain stem tumors and multiple sclerosis. Electrodes are placed on the scalp and 
earlobes. Auditory stimuli, such as clicking noises and tones are delivered to one ear. 

Visual: This test can diagnose problems with the optic nerves that affect sight. Electrodes are 
placed along the scalp. The patient is asked to watch a checkerboard pattern flash for several 
minutes on a screen and the electrical responses in the brain are recorded. These stimuli are 
produced by a single light or by the reversal of a pattern as for example a checkerboard. 

Somatoseusory: These stimuli are elicited by electrical stimulation of peripheral nerves. 
This test can detect problems with the spinal cord as well as numbness and weakness of the 
extremities. For this test, electrodes are attached to the wrist, the back of the knee or other 
locations. A mild electrical stimulus is applied through the electrodes. Electrodes on the scalp 
then determine the amount of time it takes for the current to travel along the nerve to the 
brain. 

The first two modalities can be combined in what is called bimodal stimulation. Current brain 
signal processing approaches distinguish between 'spontaneous' and 'evoked' EEG. 
Spontaneous EEG refers to the measurement of continuous brain waves, including the delta (up 
to 4Hz), theta (4-81-1z), alpha (8.12Hz), beta (12-301-1z) and gamma (30-100+Hz) waves, while 
evoked EEG represents brain potentials with limited duration which are recorded in response to 
specific stimuli, such as visual, auditory, somatosensory or olfactory. But there have also 
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different paradigms that can be based on both spontaneous and evoked brain signals such as 
motor imagery BCI (brain computer interface) using modulation of spontaneous 'mu' and beta' 
waves or SSVEP-BCI (steady-state visual evoked potentials) using periodically evoked visual 
responses. 

Steady-State Visual Evoked Potentials (SSVEP) is brain responses that are precisely 
synchronized with fast repetitive external visual stimulation such as flashes, reversing patterns or 
luminance-modulated images. In neurology, SSVEP are signals that are natural responses to 
visual stimulation at specific frequencies. When the retina is excited by a visual stimulus ranging 
from 3.5 Hz to 75 Hz [52], the brain generates electrical activity at the same (or multiples of) 
frequency of the visual stimulus. This responses can be measured within narrow frequency bands 
(such as ±0.1 Hz) around the visual stimulation frequency or using other signal processing 
methods that exploit the specific characteristics of the SSVEP signal such as rhythmicity and 
synchronization. The strongest responses occur in the primary visual (striate) cortex, although 
other brain areas are also activated in varying degrees 

While part of the differences in the reported frequency dominance may be due to the diversity of 
the captured brain processes and areas depending on the recording modality, SSVEP stimulus 
parameters such as spatial frequency, luminance, contrast and color also play a crucial role. 
Regan showed that patterned checkerboard stimuli with small checks (such as 0.2° arc side) 
exhibit low-frequency preferences with response peaks at —7 Hz, while patterns with larger 
checks (such as 0.7° arc side) have a higher frequency preference, similarly to un-patterned 
flicker stimuli [53]. 

2.2 Data Collection 

EEG data is collected from SSVEP database [37], where a single small reversing checkerboard 
was displayed in the middle of a black screen. Three separate reversal frequencies were used 
sequentially (8 Hz, 14 Hz and 28 Hz) in order to cover different components in the brain 
frequency response. Five trial repetitions were used for each frequency. Each trial consisted of 5s 
baseline rest (black screen) and I 5s stimulation [54]. 

2.2.1 Experimental Orientations 

Four healthy subjects participated in both studies. The average age of the group was 38.2 ± 2.4 
years. All subjects had normal or corrected-to-normal vision. The participants were Fally 
informed of the procedures in advance. In preparation for the experiments, each subject was 
screened for histoiy of epilepsy and photosensitivity, and signed an informed consent form 
including a statement that she/he had no known neurological disorders. In addition, before each 
experlment the subjects were shown a brief stimulus sequence with increasing frequency in order 
to test for photosensitive epilepsy and to further decrease the probability of seizure. Subjects 
were seated 0.9m from a 21' CRT computer display operated at a high vertical refresh rate 
(setting 170 Hz, measured —168 ± 0.4 Hz). SSVEP stimulation was achieved using small 
reversing black and white checkerboards with 6 x 6 checks. Each check was 0.3° arc in size so 
that the diameter of the pattern was 2.5° arc which is slightly larger than the approximate size of 
the fovea. The stimulus luminance for the white checks and for the black ones (Michelson 
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contrast of 99.2 %) were 12.5cd/m2  and 0.05cd/m2  respectively. Each pattern included a small red 
fixation point in its center and subjects were instructed to position their gaze on that point. The 
actual light stimulation which was emitted by the display and reached the eyes was verified using 
a small photosensitive semiconductor sensor. A chin rest was used by all subjects to prevent 
excessive contamination of the EEG data with EMG artifacts due to upper body muscle 
movements. 

2.2.2 EEG Data Acquisition - EEG system 

Brain signal acquisition was performed using a BIOSEMI EEG system with sintered Ag/AgCl 
active electrodes. Active electrodes contain miniature electronics to allow substantially higher 
EEG signal-to-noise ratio and better sensitivity to weak brain signals. Two additional electrodes, 

/ the passive Driven Right Leg (DRL) electrode and the active Common Mode Sense (CMS) 
electrode [55], both located just posterior to the vertex, were used to determine the common 
mode voltage of the Biosemi EEG system against which all other electrode measurements were 
recorded. This active electrode arrangement replaced the traditional reference electrode(s) used 
by previous passive EEG systems. 
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Figure 2.4: Position of 128 electrodes in head to record EEG signal 



2.2.3 Characteristics of data 

In this study, the experiments were performed with a 128-channel whole-head configuration, 
using the highest available sampling rate of 2,048 Hz. These 128 channels are used as 128 
patterns of collected SSVEP data. When these data are collected for 15s stimulation with 5s 
baseline rest, more than 6,330 sampling points or attributes are found for a single trial as shown 
in Table 2.  1. 

Table 2.1: Number of features that's are collected SSVEP data; Si, S2, S3 & S4 
indicate subjects 1 to 4 respectively 

Stimulus Frcqucncy Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 
8Hz SI 6330 6361 6361 6330 6361 

S2 6361 6361 6330 6361 6393 
S3 6330 6361 6361 6330 6330 
CA J.t (ju1  tjl VJ.)U VJ..)V VJJ'J VJU 

14Hz SI 6343 6361 6379 6379 6398 
S2 6367 6379 6398 6382 6343 
S3 6361 6361 6343 6361 6379 
('A i1,1 

UJVI 
1fl 

U.) I 7 U.) 17 
.,00 

VJOJ VJOO 

28Hz 51 6370 6379 6379 6389 6388 
S2 6379 6370 6407 6407 6379 
53 6352 6388 6379 6389 6379 

6389 6379 1 6379 L 6379 6388 

These high dimensional attributes are found as an EEG wave that's collected with 128 active 
electrodes. A single trial SSVEP response is shown in Fig. 2.5. It is seen that trial to trial 

- variability of a specific subject is almost negligible. In this regard, five trial of a specific subject 
are concatenated together to recognize frequency. It is realize that there are more than 30,000 
attributes with 128 patterns for a single subject at a specific stimulus frequency. It takes longer 
time to execute a program and also degrade the generalization performance. In this sense, FS is 
performed prior to frequency recognition. 

SSVEP SSVEP 
Onset Offset 

SSVEP 
response (l.tV) 0.5 

Time (sec) 

Figure 2.5: Single-trial SSVEP response with 128 Bio-semi active electrodes. 
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In this thesis frequency components of high dimensional SSVEP data are extracted with low 
computational cost using neuro-statistical method. Visual stimulations are used to flicker the 
checkerboard and at the same time EEG signal are recorded from brain with 128 active 
electrodes. Then frequency components of these EEG signals are extracted with neuro-statistical 
method. The entire procedures are depicted in Fig. 2.6 schematically. 
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Figure 2.6: Schematic diagram to extract frequency from recorded SSVEP. 

2.3 Aspects of Frequency Recognition 

It has been well over a century since it was discovered that the mammalian brain generates a 
small but measurable electrical signal. The EEG of small animals was measured by Caton in 
1875 and in man by Berger in 1925. It had been thought by the mathematician Wiener, among 
others, that generalized harmonic analysis would provide the mathematical tools necessary to 
penetrate the mysterious relations between the EEG time series and the ftinctioning of the brain. 
The progress along this path has been slow however and the understanding and interpretation of 
EEG's remain quite elusive. 

A recent approach to the problem of the quantification of EEG series has been presented by 
nonlinear dynamics [56-62]. The morphology and topography of sharp transients have been 
conelated with seizure type and therapeutic response to different medications and surgeiy. An 
essential component of the traditional visual interpretation of the clinical EEG is the 
characterization of infrequent, morphologically variable transient events, especially those 
associated with the epilepsies (spikes, spikes and waves etc.) accordingly, a great deal of energy 
has been spent over the years in efforts to search automatically long recordings for these 
phenomena and epileptiforn3 transient detection, but with different results [39-40]. Anyway, the 
most diffused quantitative method in clinical practice is the spectral analysis together with a 
visual assessment [41]. 
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According to frequency domain the EEG activities can be divided into three different categories: 
(i) spontaneous non-paroxysmal or background, (ii) spontaneous paroxysmal activity and (iii) 
activity evoked by external sensory stimulation. Consequently, it is quite obvious that in the 
frequency domain representation, rhythmic components are relatively enhanced at corresponding 
frequencies, whereas transients (epileptic spikes, isolated paroxysm, etc.) are smeared over the 
spectrum and therefore are no longer recognizable. From this, it follows that the principle field of 
spectral analysis is the background activity, which means the first category mentioned above, 
whereas in the other two categories there exist only special cases to which standard spectral 
analysis can be successfully applied [39]. 

The methods mentioned above are applied to the activity analysis in a single channel, 
independently of the activity of the other channels. The most common methods of studying 
interactions between two channels are cross correlation and the cross spectral analysis [63]. The 
average amount of mutual information and nonlinear correlation are recently developed methods 
[64-66]. These methods all try to determine whether two channels have a common activity and 
often whether one channel contains activity induced by the activity in the other channel. Clearly 
providing causality is extremely difficult, but it can sometimes be inferred by measuring time 
differences. 

From another point of view, an EEG may be considered as a time series measured on a 
dynamical system that represents brain activity. This subject has caught the attention of several 
researchers in this field, having found the important feature that an attractor [60]. The treatment 
of EEG series using the approach of nonlinear dynamic systems has opened new possibilities for 
knowledge of the brain dynamic. However, the aims are not limited to this, but also to obtaining 
new forms to quantili differences in the EEG series that have some kind of clinical application. 
The metric approach usually employed in nonlinear dynamical analysis is based on distances and 
assumes the stationary of the data sets. Distances between points in appropriate embeddings of 
the data are used to compute a set of metric properties. These quantities are difficult to compute, 
require large data sets and degrade rapidly with additive noise [67]. 

Mayer-Kress and Layne [57] used the reconstruction techniques in the time series of the EEG to 
obtain their phase portrait. These diagrams suggest chaotic attractors with divergent trajectories 
and therefore EEG series seem non stationary. This means that the average position of a series 
defined over some interval changes in another. Layne, Mayer-Kress and Holzfuss [56] conclude 
that the EEG series are non stationary and present high dimensionality, in which case the 
concepts of attractor and fractal dimension would not be applied because these are asymptotic or 
stationary properties of dynamical system. However, Babloyantz and Destexhe [60] focused their 
attention on the fact that this non stationary is strictly true for awaking states but could be 
different for states of the sleep cycles or for patients with certain pathologies. 

This problem has not been well studied and it has brought about a great variety of results 
exposed by different authors [58, 60]. Due to great extension of EEG series that is necessary for 
nonlinear metric treatment (satisfying the entire mathematical hypothesis) a criterion is almost 
impossible to satisfy in practice. Consequently, if the time series are non stationary, the metric 
algorithms must not be used. Statistical tests of stationary EEG have revealed a variety of results 
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depending on conditions, with estimates of the amount of time during which the EEG is 
stationary ranging from several seconds to several minutes [68-70]. However as a practical 
matter, whether or not the same data segment is considered stationary depends on the problem 
being studied, the type of analysis being performed and the measured (features) used to 
characterize the data. 

The time evolution of the frequency rhythm of an EEG signal and visualized the frequency 
engagement during epileptic activity as well as paroxysm activities are analyzed in [70]. In these 
case the conealtion between the obtained frequency evolution series for the differnt channels and 
bands are used to obtain some knowledge about the interaction and consequently causality 
between channels and bands. Recently EEG based Brain-Computer Interface (BC!) uses 
electrical signals from the cortex to control external devices like a computer or other systems and 
is aimed to facilitate communication for subjects with severe motor impairments. As also 
reported by numerous authors [71], we use the principle of SSVEP. The SSVEP is a periodic 
response to a visual stimulus which has the same ftindamental frequency as that of the visual 
stimulus as well as its harmonics. The SSVEP can be recorded from the surface of the scalp over 
the visual cortex. 

Many characteristics of SSVEP, such as the amplitude, distribution and available frequency 
range, show great user variation [72]. So in many of the previous research, parameter 
optimization and channel selection for each subject to improve the performance of BC! have 
been widely adopted [71, 73]. These optimizations limit the practical applicability of the SSVEP. 
Moreover, the SSVEP has the same ftindamental frequency as the visual stimulus as well as its 
harmonics. The traditional SSVEP detection techniques cannot identif' the targets flickering at 
harmonic frequencies. Thus, stimuli with harmonic frequencies cannot be used in the previous 
system [74-76]. This limits the number of targets. This disadvantage looms large in a system 
with a monitor as the stimulus. In a monitor, the number of stimulus frequencies is limited due to 
the small variability of the screen refresh rate and many of the obtainable stimulus frequencies 
are a whole-number multiple of some others (i.e. harmonics). Thus, the previous BC! system that 
used PC monitors as a visual stimulator usually had only two to four targets [75]. A method 
which can recognize the frequency with a harmonic relationship can greatly improve the 
performance of the SSVEP recognition. 

A multiple-channel SSVEP recognition may be able to improve these disadvantages. Recently, 
many methods were proposed for frequency recognition from multiple-channel EEG signals. 
Friman et at [76] proposed a minimum energy method (MEC) which shows many advantages 
such as high detection accuracy and no calibration data. A traditional and widely used method 
for SSVEP recognition is PSDA. PSD is estimated from the EEG signals within a TW typically 
by FFT and its peak is detected to recognize the target stimulus [73]. Lin et al [9] proposed the 
use of CCA method for multi-channel SSVEP detection and also showed highly increased 
detection accuracy. Linet al's method was tested in offline data and channel selection was 
required which indicates that CCA is a very promising method for the multi-channel SSVEP 
recognition. The matlab program for this statistical CCA requires very long time to execute. 
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In this regard, we implement CCA networks to recognize underlying frequency components of 
EEG signals which does not require high capacity machine and performs better than others since 
special NN cascade architecture is incorporated. Though SSVEPs of EEG can be processed for 
different visual stimulation for different trials of a subject, it comprises with a high dimensional 
feature set. The processing of such massive data is a great challenge for computational scientists. 
In order to process these kinds of data, huge computational time and resources are often required. 
In many pattern recognition applications, there have a large number of features those are not 
equally important for a specific task. In this sense, FS is performed prior to frequency 
recognition. 

FS performance is greatly dependent on the search technique in finding the salient features from 
a given dataset [77]. Among different FS algorithms, most are involved with either sequential 
search [21] or global search technique [31]. On the contrary, the existing FS algorithms can be 
categorized into three ways on the basis of search strategies and evaluating the generated subset, 
such as, wrapper [20], filter [78] and hybrid [79]. In addition, there are several works, where 
various FS techniques can also be found in [18]. 

In solving FS, filter approaches estimate the performance of features without any learning model 
assumed between outputs and inputs of the data for that reason they are faster to implement. 
Using predefined criteria, such as, mutual information [80], feature weighing [81], principal 
component analysis [25], independent component analysis [82], class separability measure [83], 
or variable ranking [84] are used for feature selection or removal. Though it is computationally 
efficient, but the saliency of the selected features is insufficient, because biases of classification 
models are not considered. There have a significant number of filter approaches in the literature. 
Among them ranking (or score), distance, statistics based attempts are worth mentioning. 
'Laplacian Score' selects feature by calculating its local preserving power [85]. On the other 
hand, Fisher Score' seeks a feature on the basis of highest discriminative distance between 
patterns of different classes [86]. They however are sensitive to noises [87]. Diffusion score is 
another approach which preserves the diffusion distance computed with error minimization and 
Markov matrix [88]. The authors applied this diffusion distance technique to select features from 
cartoon images only. Although it improves the recognition rate, it needs to compute Markov 
Matrix which is computationally very expensive. 

A number of algorithms have been proposed [21] for wrapper model that use the sequential 
search strategy for FS. By following the SFS strategy, significant features are added sequentially 
to the NN during training in [20], where progresses of the process were depended on the 
improvement of NN performance. Kabir et al. [89] proposed an idea on the basis of SFS-based 
FS, where these approaches have provided the correlation information of input features to the 
NN classifiers during training.  The least salient features are deleted in stepwise fashion during 
the training of NN in [90], those are SBS based FS process. Different algorithms use different 
heuristic strategies for finding saliency of the individual features. For example, at a time only 
one feature is used in the input layer for NN training in. Also full feature set is used in the NN 
training scheme on different weight analysis-based heuristic techniques [91]. Each feature is 
temporarily deleted in training, with a cross check of NN performance. In addition, for selecting 
salient features Guyon et al. [92] uses a recursive feature elimination process that is a variant of 
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SBS. The least ranking features are deleted in each step during the training of SVMs for 
expected feature. 

In this case, neuro-statistical (CCA network) method [33] is proposed to address several 
problems of previous methods mentioned above. This system mainly consists of two phases. In 
the first phase, entire feature set of a particular problem are divided into several groups of 
features to train the CCA network. Highly and lightly correlated feature subsets are then obtained 
by pruning a large number of features from corresponding lightly and heavily weights of CCA 
network respectively. Since the information is lost due to pruning in the first phase, highly and 
lightly correlated subset are undergone to CCA network training in the second phase. In this way 
informative features which carry maximum correlation and minimum redundancies are found. 
The joint use of NN and statistics strengthen the FS process and exhibit robust results. This 
approach is different from previous methods on the following aspects. (i) A number of feature 
groups are used instead of the traditional use of individual features. (ii) The system is noise 
tolerant due to presence of training. (iii) No additional search algorithms are required except 
CCA network. (iv) It is faster than other approaches due to the use of less number of instructions 
and there was no huge computational burden in the program. (v) CCA network searches global 
correlation among feature groups instead of traditional computation of mutual correlation 
between two variables. 

In this thesis, neuro-statistical CCA is utilized for both FS and frequency recognition. It removes 
computational complexity and extra burden. It is observed that frequency can be recognized from 
selected features as well as from original EEG data. When FS is performed prior to frequency 
recognition, it reduces computational complexity, time and cost. Also harmonics frequencies and 
differentiations among subjects can easily be identified if frequencies are recognized from 
selected features. 
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CHAPTER III 

The Proposed Framework: Neuro-Statistical CCA 

CCA finds two bases, one for each variable and corresponding correlation that is a way of 
measuring the linear relationship between two multidimensional variables [93]. The 
dimensionality of these new bases is equal to or less than the smallest dimensionality of the two 
variables. The standard statistical CCA is an extension of multiple regressions, where the second 
set contains multiple response variables. The variables in each set are linearly combined in a low 
dimensional space such that the linear combinations have a maximal correlation. Where, it 
avoids nonlinear relationship between datasets. Incorporating NN with standard CCA (called 
neuro-statistical CCA) can consider nonlinearity to find correlation among two or more sets of 
variables [33] and remove noisy features easily because it uses training and pruning 
consequently. This chapter describes this framework to search important features and recognize 
frequencies. 

3.1 Neuro-Statistical Technique 

Artificial Neural Networks (ANNs) is well known for their capacity as implementations of 
powerful statistical transformations. Some of the first demonstrations of this came from the 
family of networks [94] which extract the Principal Components of the input data. These give 
the best (in the sense of least mean square error) linear compression of a data set. Nonlinear 
extensions of PCA networks have been shown to be capable of more sophisticated statistical 
techniques such as Exploratoty Projection Pursuit [95], Factor Analysis [96] etc. On this basis, 
Cohn [33] proposed NN with CCA called Cohn' s CCA network. Canonical Correlation Analysis 
[97] is used when there have two or more data sets which we believe have some underling 
correlation. Consider two sets of input data, from which we draw two input matrices as x1  and x2. 
Then we attempt to find the linear combination of the variables that gives us maximum 
correlation between the combinations as described in Fig. 3.1. Let 

y WjXj E, w1 x13 (3.1) 
Yz W2X2-  Zj w2 x2 (3.2) 

Wherej is the number of attributes in every pattern. Then the values of ,v1  and w2  are searching 
that maximize the correlation between yl  and y2. 

Yi J Maximize correlation I Y2 Output 

Wi Weights I I \ W 

Imuputs 

Figure 3. 1: The CCA network, by adjusting weights, w1  and w2, the correlation between yi  and 
Y2 is maximized. 
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Whereas Principal Components Analysis and Factor Analysis deal with the interrelationships 
within a set of variables, CCA deals with relationships between two sets of variables. If the 
relation between y and Y2 is believed to be casual, then it may be viewed that the process as one 
of finding the best predictor of the set X2 by the set x1, and similarly of finding the most 
predictable criterion in the set x2  from the x1  data set. 

The input data comprises two matrices x1  and X2. A complete column for a row of a particular 
subject is entered in the CCA network at a time as input (xi and X2).  In this way, every row is 
presented in the network sequentially. Activation is fed forward from each input to the 
corresponding output through the respective weights w and W2. 

For input matrices x, and X2,  correlation maximization is done as E(y1y2) where EQ denotes the 
expectation which will be taken over the joint distribution of x1  and x2. It may be regarded that 

this problem maximize the function as g () = E(y1y2) which is defined to be a function of 

the weights, Wj given the other set of parameters, w2. This is an unconstrained maximization 
problem that has no finite solution and so we must constrain the maximization. Typically in 

CCA, constraint E(y = 1) is added and similarly when maximize g2 (n), constraint E(y = 

1) is added with Y2.  Usiiig the method of Lagrange multipliers, this yields the constrained 
optimization functions, 

= E(y1y2 )+(1/2)21(l—y) (3.3) 

.12  = E(y1y2 )+ (1/2)1.2(1 —v) (3.4) 

In this way following equation can be equivalently use 

= E'1)'2 )+(1I2)A1(l—v)+(l/2)A(I—y) (3.5) 

But it will be more convenient to regard these as separate criteria which can be optimized 
independently by implicitly assuming wj is constant when iv2 is changing and vice versa. Cohn' 5 

wish to find the optimal solution using gradient ascent and so to find the derivative of the 
instantaneous version of each of these functions with respect to both the weights w1  and w2, and 
the Lagrange multipliers A. and X2. The relative strength of the constraint, compared to the 
optimizing function is changed by varying the Lagrange multipliers in proportion to the 
derivatives of J. This allows to smoothly maximizing the function in the region, where the 
constraint is satisfied. 

Noting that 

091 (w1 /w2)/0w1  = a(y1 v2)/aw1  = a(w1 x1 y2)1aw1  = xl y2 (3.6) 

These yields, respectively 
&J1  /5w, = x1 y2  - Ayx1  = - 2y1 ) (3.7) 

ai, /5w1 00(1—y 2 ) (3.8) 
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Similarly, with the J2  function w2  and X2. This gives a method of changing the weights and 
Lagrange multipliers on an on line basis. Finally the following joint learning rules are used for 
linear correlation. 

w1 llXlj (' - A1y1) (3.9) 
LA1  io(1—y) (3.10) 
AW2j =  TlX(Y 2Y2) (3.11) 

= 0(1—y) (3.12) 

Where A1  and A2  are Lagrange multipliers, w1j  is the f" element of weight vector, w1, etc. It has 
been found empirically that best results are achieved when TIO  >> r. 

1 
3.2 Traditional CCA 

Canonical analysis is one of a family of correlation techniques. Generally there are three basic 
types of correlation those measures relationship among data, such as 

Product Moment Correlation (PMC) measures the relationship between the observed values 
of two variables. 

Multiple Regression Analysis (MRA) measures the relationships between the observed 
values of one variable, and the observed values of a set of variables. 

Canonical Correlation Analysis (CCA) measures the relationships between the observed 
values of two sets of variables. 

CCA is a way of measuring the linear relationship between two multidimensional variables [98]. 
It finds two bases, one for each variable, that are optimal with respect to correlations and, at the 
same time, it finds the corresponding correlations. In other words, it finds the two bases in which 
the correlation matrix between the variables is diagonal and the correlations on the diagonal are 
maximized. The dimensionality of these new bases is equal to or less than the smallest 
dimensionality of the two variables. 

CCA can also be defmed as the problem of finding two sets of basis vectors, one for x and the 
other for y, such that the correlations between the projections of the variables onto these basis 
vectors are mutually maximized. Consider the linear combinations x = XT I4 and y= y TiVly  of 
the two variables respectively. This means that the function to be maximized is 

E[xy] E[ixyT] 
p = JE[x2]E[y2] = = JwxrcxxwxwyTcyywY 

(3.13) 

The maximum of p with respect to w and w, is the maximum canonical correlation. The 
subsequent canonical correlations are uncorrelated for different solutions, i.e. 
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(E[xx] = E[w1xxTwXi ] = wCw = 0 

. E[y1 y1 ] = E[w 1xxTw 1 ] = wC,w)?J  = 0 for i # j (3.14) 

(. E[Xyj ] = E[wxyTwy3 ] = wc,w1 = 0 

/ 

The projections onto w and WY  i.e. x and y are called canonical variates. 

Calculating canonical correlations 

Consider two random variables x and y with zero mean. The total covariance matrix is a block 
matrix where C and ci,), are the within-sets covariance matrices of x and y respectively and 
CXY =Cyx  is the between-sets covariance matrix. 

= 
[Cxx  Cx)'] 

=E ~(
X) (X Ti 

Y ) Y 
(3.15) 

The canonical correlations between x and y can be found by solving the Eigen value equations 

"C 1C C1Cyxi2?x = P 2 'x I xx xy yy 
1 Cyy1Cyx C xx 1Cxyiiiy = P 2 y 

(3.16) 

Where the Eigen values p2  are the squared canonical correlations and the eigenvectors i' and 
wy  are the normalized canonical correlation basis vectors. The numbers of non-zero solutions to 
these equations are limited to the smallest dimensionality of x and y . As an example, if the 
dirnensionality of x and y is 8 and 5 respectively, the maximum number of canonical 
correlations is 5. 

Only one of the Eigen value equations needs to be solved since the solutions are related by 

= 

Cy,/ = pACi4i (3.17) 

Where 

A
x 

 = A (31.8) -

F 
_____ y  

3.3 The Framework 

The general frequency recognition framework is exposed in Fig. 3.2. Our aim is to extract the 
frequency components from large EEG data. In order to make it possible we devise two stage 
cascade CCA. First stage determines optimized reference signal from a set of sine-cosine 
reference signals and a set of EEG data. Second stage determines another optimized signals from 
the first stage optimized signals and a new set of EEG data. Then correlation coefficient is 
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computed from two optimized signals. This process is repeated at different stimulus frequency or 
time window. We determine the target frequency by maximizing correlation. 

Start J 

CCA 
Subject's selection Network 

Weight update 4 

e N0  
complete? 

First stage I Yes 

Sine-Cosine EEG feature 
reference signals for training 

L NCCA  

Optimized 7 
reference signal I 

Second stage 

Test EEG 
feature 

NCCA I 

Optimized 
reference signal 

Correlation 

Figure 3.2: Framework of the two-stage cascaded Neuro-Statistical CCA. 

3.4 Feature Selection Procedure 

A major problem of much data processing is its high dimensionality. In order to process these 
kinds of data, huge computational time and resources are often required. In many pattern 
recognition applications, there have a large number of features those are not equally important 
for a specific task. Some of the variables may be redundant or even irrelevant. Usually by 
discarding such variables better performance may be achieved. In order to get informative 
feature subset having maximum correlation and minimum redundancies, CCA network is 
devised here. To explain the complete work, three subsections are made as clustering using 
wavelet, data preparation and FS with CCA network. 
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3.4.1 Clustering using wavelet 

Clustering [99] is the process of organizing data or objects into groups whose members are 
similar in some way. It is the most important unsupervised learning problem that deals with 
fmding a structure in a collection of unlabeled data. Cluster analysis is the task of grouping a set 
of objects in such a way that objects in the same group are more similar to each other than to 
those in other groups. It is a main task of exploratory data mining and a common technique for 
data analysis, used in many fields, including machine learning, pattern recognition, image 
analysis, information retrieval, and bioinformatics. 

Cluster analysis itself is not one specific algorithm, but the general task to be solved. It can be 
achieved by various algorithms that differ significantly in their notion of what constitutes a 
cluster and how to efficiently find them. Popular notions of clusters include groups with small 
distances among the cluster members, dense areas of the data space, intervals or particular 
statistical distributions. Clustering can therefore be fonnulated as a multi-objective optimization 
problem. The appropriate clustering algorithm and parameter settings depend on the individual 
data set and intended use of the results. Cluster analysis as such is not an automatic task, but an 
iterative process of knowledge discovery or interactive multi-objective optimization that involves 
trial and failure. It will often be necessary to niodi1' data preprocessing and model parameters 
until the result achieves the desired properties. Cluster analysis was originated in anthropology 
by Driver and Kroeber in 1932 and introduced to psychology by Zubin in 1938 and Robert Tryon 
in 1939 [100] and famously used by Cattell beginning in 1943 for trait theory classification in 
personality psychology. 

Two or more objects belong to the same cluster if they are close according to a given geometrical 
distance called distance-based clustering. Another kind of clustering is conceptual clustering 
where two or more objects belong to the same cluster if this one defines a concept common to all 
that objects. In other words, objects are grouped according to their fit to descriptive concepts, not 
according to simple similarity measures. 

Though there have so many clustering algorithms, we use wavelet for clustering EEG signals. 
When a small oscillatory wave concentrates its energy in time is called a wavelet. It is a suitable 
tool for transient, non-stationary or time-varying signals analysis, which has ability to allow 
simultaneous time and frequency analysis. Clustering signals using wavelet is proposed in [101], 
where a classical clustering strategy is applied to a suitably chosen set of wavelet coefficients 
that offers a useful tool to carry out both significant noise reduction and efficient compression. 

Wavelets are short wavelike functions that can be scaled and translated. These are mathematical 
functions that cut up data into different frequency components and then study each component 
with are solution matched to its scale. They have advantages over traditional Fourier methods in 
analyzing physical situations where the signal contains discontinuities and sharp spikes. 
Wavelets were developed independently in the fields of mathematics, quantum physics, electrical 
engineering and seismic geology. Interchanges between these fields during the last ten years 
have led to many new wavelet applications such as image compression, turbulence, human 
vision, earthquake prediction and radar. 

'4. 
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Wavelet transforms take any signal and express it in terms of scaled and translated wavelets. The 
resulting wavelet transform is a representation of the signal, at different scales. Many time series 
in geophysics exhibit non-stationary in their statistics. While the series may contain dominant 
periodic signals, these signals can vary in both amplitude and frequency over long periods of 
time. 

A I -D multi-signal is a set of 1-D signals of same length stored as a matrix organized row-wise 
or column-wise. In this process we decompose EEG signal using wavelet decomposition (WD) 
for clustering according to row. WD includes multiple bases and different basis will result in 
different classification performance and covers the shortage of fixed time—frequency 
decomposition in discrete wavelet transform [102]. The WD splits the original signal into two 

1' sub spaces as V and W. Complementaiy to each other, with V being the space that includes the 
low frequency information about the original signal and W includes the high frequency 
information. The decomposition of the low frequency subspace V was repeated and WD only 
partitions the frequency axis fmely toward low frequency. 

It is well known to any scientist and engineer who work with a real world data that signals do not 
exist without noise, which may be negligible (i.e. high SNR) under certain conditions. However, 
there are many cases in which the noise corrupts the signals in a significant manner and it must 
be removed fiom the data in order to proceed with further data analysis. The process of noise 
removal is generally referred to as signal de-noising or simply de-noising. 

De-noising and compressing are two of the main applications of wavelets, often used as a 
preprocessing step before clustering. Threshold is a technique used for signal de-noising. 
Wavelet Transform has emerged as a powerlül mathematical tool for signal compression. When . we decompose a signal using the wavelet transform, we are left with a set of wavelet coefficients 
that correlates to the high frequency sub bands. These high frequency sub bands consist of the 
details in the data set. If these details are small enough, they might be omitted without 
substantially affecting the main features of the data set. Additionally, these small details are often 
those associated with noise; therefore, by setting these coefficients to zero, we are essentially 
killing the noise. This becomes the basic concept behind threshold set all frequency sub band 
coefficients that are less than a particular threshold to zero and use these coefficients in an 
inverse wavelet transformation to reconstruct the data set. 

Multi-signal I -D wavelet decomposition is used for EEG signal analysis in matlab environment. 
We exploit 7 levels near symmetric wavelet according to rows (128 channels). Universal 
threshold is utilized for signals de-noising, where level dependent estimation of level noise is 
used for rescaling. Signals are compressed using energy ratio with threshold '99'. Then three 
clusters are made using cell array that contains the list of EEG data to classify, also signals with 
coefficients of approximation at level 7 is used. 

3.4.2 Data Preparation 

There were four subjects for SSVEP acquisition. EEG data were collected for every subject with 
three different stimulus frequencies (8Hz, 14Hz and 28Hz). For that reason, there are total three 
datasets for one subject and total of 12 datasets for four subjects. For every subject, there have 
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more that 31500 attributes for 128 patterns. Class information was fixed for every patterns found 
by wavelet. The class information of subject I are concatenated with EEG data of subject I, where 
j= 1, 2, 3 and 4 respectively. Then for one set of EEG data with size of S x F, three subsections 
with sizes of S x k, S x m and S x n are created manually. For first subsection k =1 to 10,500 
columns, m = 10,501 to 21,000 columns for second subsection and n =21,001 columns to rest 
are used for third subsection. 

3.4.3 FS with CCA Network 

The Cohn's CCA network is implemented for selecting features according to weight 
maximization. It takes the advantages of correlation maximization and pruning process. Firstly 
whole dataset is subdivided into three subsections and they are fed sample by sample into the 
CCA network. Then highly correlated features are selected by discarding minimum weight 
respective attributes from original dataset. For the sake of simplicity,  a brief description of feature 
selection process is presented here. 

Step 1. Consider entire dataset of size S x F, where S is the number of samples and F is the 
number of features. 

Step 2. Three multivariate datasets x,, x2  and x3  with dimensions of S x k, S x m and S x n 
respectively are generated from S x F, where F = k + m + n. 

Step 3. Initialize Lagrange multipliers X1, , and learning constant rjn. ti.  Generate random 
weight w,, w2  and w3  according to the dimensions of x1, x2  and x3. 

Step 4. Update weights and Lagrange multipliers according to following joint learning rules. 
Where, j is the number of features for every sample. 

yi w1x1 w13 x11  (3.1) 

Y2 W2X2 j WjX2  (3.2) 
3 W3X3 j W3 X3  (3.19) 
W1  =i1X11y2 -A1y1) (3.9) 

&.i= (3.10) 
W2 11X(Y —A2Y2) (3.11) 

= 71(1 y) (3.12) 
AW3j =  11X1(y1 - A3y3) (3.20) 

= i 0(1—y) (3.21) 

Step 5. Select a S x p matrix from S x k, S x m and S x n matrices by discarding (k + m + 
n) 
- 

p features according to maximizing correlated features, where p '< (k + m + n). 

The CCA network is applied for EEG dataset. Though it starts with different initial random 
weight for every run, but it did not show any significance difference for weight maximization as 
well as subset selection. Also it did not show any variation with change in the value of learning 
constant and Lagrange multipliers. Weights were normalized for finding representative result. 
The FS process using CCA network is explored in Fig. 3.3. 
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Figure 3.3: FS using CCA network 

For SSVEP recognition, CCA works quite well and correlation is very important in order to 
assess the relationship between two time series. The joint weight update rules of eq. 3.7 to eq. 3.8 
and eq. 3.15 to eq. 3.21 are applied to find the canonical correlations with different subjects. The 
correlations and weight maximization are made among most important features of a signal. 
Features are deleted those show lightly correlated weight. We want to keep only 15, 30 and 60 
features from more than 31,500 features. For that reason, only 5, 10 and 20 features exist 
accordingly for every subset of a subject. It is done using pruning process i.e: whose correlation 
is lowest it is deleted firstly. In this way every samples are deleted without our expected features. 
Then outputs of every subset are added sequentially for select final feature of a subject. The 
algorithm of CCA network for selecting features is outlined in A3.1 below. 

A3.1: Feature selection algorithm using CCA network 

Input x1, x2  and x3  are three subsections of EEG data of one sub/cct corresponding to S 
sampling points. 
Output: Correlation S, 
for m1IoSdo 

Random initialization for w1, n'2  and w3  
repeat 

Find w1, w2  and w3  which maximize correlation between yj andy2, Y2  andy3  & y3  andy1  
by the CCA 

until the maximum number of iteration is reached 
Compule the optimized signalsy j, Y2  andy3  

end 
Compute update weight w1, w2  and w3for correlation Sn, 
Select the features for weight maximization 
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- 3.5 Procedure for Frequency Recognition 

Humen brain generated EEG signals have a certain frequency range that was noted to have a 
certain distribution over the scalp or a certain biological significance. To recognize these 
frequencies from collected SSVEP of EEG, we devise three types of CCA networks. The entire 
methodology for frequency recognition is examined in three subsections as reference signal, 
Cohn' s CCA network and extraction of frequency components respectively. 

3.5.1 Reference Signal 

Usually a signal can be represented in tenns of sine-cosine waveform according to theoiy of 
Fourier transform. Therefore we consider sine-cosine as reference signals in order to determine 
underlying frequency components in the EEG data. The reference signals are constructed by 
sine-cosine waves at the n2-th stimulus frequencyf,, (m = 1, 2... M) as follows [12]: 

sin(2ltfm1/fs) 
COS(2iifm 1/f) 

sin (2ltHfm  1/fe) 
cos (2TtUfm l/fs) 

S1fl (21tfmJ/fs) 
cos(2itfmJ/fs) 

........Sjfl(21tHfm j/fs) 
COS (2ltHfm j/fs) 

(3.22) 

Where H denotes the number of used harmonics, J is the number of sampling points and f 
represents the sampling rate. These signals are used in first stage of Neural CCA to find an 
optimized reference signal. Since pure sine-cosine reference signals do not contain any 
information on EEG data, we generate this kind of optimized reference signals with CCA 
network. 

3.5.2 Implementation of Colin's CCA Network 

CCA is a multivariable statistical method to reveal the underlying correlation between two sets 
of data [98]. It finds two bases, one for each variable, that are optimal with respect to correlations 
and at the same time, it finds the corresponding correlations. The standard statistical CCA avoids 
nonlinear relationship between datasets. Extension of standard CCA with NN can overcome this 
problem [33]. A brief description of neural CCA is presented here for the sake of simplicity. In 
this paper we use three kinds of neural networks - linear, nonlinear and nonlinear with feedback 
and they are described briefly below. Consider one set of reference signals x1  and one set of EEG 
signals or selected feature sets of EEG signals x2, and then we attempt to find the linear 
combination of the signals that gives us maximum correlation between the combinations. Let 

y' WiXi  Zj WjX11 (3.1) 
Y2 W2X2 W23 X 23 (3.2) 

Where j is the number of column in every row, there were total 128 rows for 128 electrodes. 
Then we wish to find those values of w1  and w2 that maximize the correlation between y j  and y2. 
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The input data comprises two vectors x1  and x2. A complete column for a row of a particular 
subjects/reference signals are entered in the CCA network at a timeas input (xi, x2). In this way, 
every row is presented in the network sequentially. Activation is fed forward from each input to 
the corresponding output through the respective weights, w1  and w2. We use the joint learning 
rules for linear correlation. 

= rx j  (Y2 - (3.9) 
AX - y) (3.10) 

= T1X2j(Y1 - X2y2) (3.11) 
AX2  = 0(1—y (3.12) 

/ 
Where X1  and X2  are Lagrange multipliers, w  i j is the j"' element of weight vector, w1, etc. 

To find the nonlinear and nonlinear  feedback combination of the signals that gives us maximum 
correlation between the reference signals set x1  and EEG data set x2, let 

y w1f1= Y j w11  tanh(v1 x1 ) (3.23) 
Y2 w2f2= Zj  W2j  tanh(v2  x21) (3.24) 

The joint learning rules for nonlinear correlation are 

AWli = 41(y2 - X1y1) (3.25) 

AVIi =  rxijw11y2 - Xy1)(1 - f) (3.26) 
AX1  = - y?) (3.27) 

42 (y1  - X2y2) (3.28) 
Av2  = rx jw2j(y2  - X1y1)(1 - f) (3.29) 
AX2 = q0(1—y) (3.30) 

The joint learning rules for nonlinear feedback network are 

Aw1 (t) = rf1(y2(t) - X1y1(t)) + 0.5y1(t —1) (3.31) 
Av1 (t) = X11W11(y2(t) - X1y1(t))(1 - f) + 0.5y1(t - 1) (3.32) 
Aw2 (t) = 42(y1 (t) - X2y2 (0) + 0.5y2(t - 1) (3.33) 
Av2 (t) = ix2 w2 (y2 (t) - - f) + 0.5y2(t - 1) (3.34) 

3.5.3 Extraction of Frequency Components 

We here visualize how the frequency components of EEG signals are extracted using CCA 
network. Since there is no information of EEG signals on sine-cosine signals, we optimize 
reference signals from sine-cosine and EEG signals. We use four-fold cross validation i.e. three 
subjects consisting of 45 trials are taken for training in the first stage and remaining subject (15 
trials) is used for finding final optimize reference signal in the second stage. We concatenated 45 
trials for first stage and 15 trials for second stage before presenting in the neural network. In this 
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way channel wise EEG patterns are presented in the network and updated as visualize in Fig. 3.4. 
We use three different types of networks such as linear, nonlinear and nonlinear with feedback. 
The correlation coefficient S. which reflects the relationship betwen Y2  and Y4 is calculated as: 

Sm  - J1 
II2  

- 
IIY2Y4 

- IIyz-E[y41112  
(3.35) 

where 11.11 denotes norm. Larger Sm implies more significant relationship between Y2  and y [31]. 
From correlation Sm, we find target frequency f by using 

- max' 
ft - fm m (3.36) 

Where, fm  is the stimulus frequency of sine-cosine reference signal. We consider time 
window(TW) -. At different f, we have a correlation profile. The maximum correlation 

hn 
converges at one or more frn  value(s) which is (are) our desired frequency component(s). 
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The correlation is very important in order to assess the relationship between two time series. 
Experiments were done using time series of EEG signals of different subjects and sine-cosine 
reference signals with different harmonics. Lin et al. [9] introduced the CCA to recognize 
SSVEP for the first time. Tensor CCA is an extension of the standard CCA, which focuses on 
inspecting the correlation between two multiway data arrays, instead of two sets of vector-based 
variables [1 1], where a first-order tensor is a vector, a second-order tensor is a matrix and higher 
order is a tensor. Borrowing the idea of Multiway CCA which maximizes the correlation 
between multiway data (tensor) and two-way data (matrix) to optimize the reference signals used 
in correlation analysis for SSVEP recognition, we introduce two-stage multiway neural CCA to 
find frequency components of EEG data set. We consider that EEG data from the trials with a 
specific stimulus frequency form a third-order (three-way) data tensor, (channel x  time x  trial) 
and an original reference signal matrix (harmonic x  time) is constructed by the sine-cosine 

-' signals with frequencies as the stimulus frequency and its higher harmonics. Our aim is to find 
more efficient reference signals for SSVEP recognition from different domains and then to find 
underling frequency components of EEG data set, based on the optimized reference signals of 
sine-cosine and multiway data arrays. A brief description of two-stage CCA network algorithm is 
outlined in A3.2 below. 
A3.2: Algorithm for recognizing freuuencies usinu two-stage CCA network 

Input: EEG data x1, x2, x3, .x,,, E R' and reference sine-cosine signals Y, (iz=I, 2. ...M) E Ithtxl corresponding 
toM stimulus frequencies. Here ) I, K and H indicate the total number of channels, sampling points, trials and 
harmonics respectively. 
Output: Frequencyf, 

Begin ioop 
for m=1 to Mdo 

begin stage 1 
Input: Training subjects (EEG data set) and reference sine-cosine signals Y. 
Output: Optimized signals yj  andy2 

Random inilialization of WI and w2  
fori=I loldo 

repeal 
update w1  and w2  

until the maximw,z number of iteration is reached 
end 

Compute the optimized signals y j  andy2  
end s/age I 
1YL'gtii %tegc 2 
Input: Testing subject (EEG data set,) and optimized reference signal )'2 
Output: Optimized signals )' andy., 

Random initialization for weight w3  and w4  
for i::i to/do 

repeal 
Update iv, and w, 

until the nzimum number of i/era/ion is reached 
end 

Compute the optimized signals 13 andy., 
cod stage 2 

Compute correlation Sm from Y2  andy., 
fori= Itoldo 

repeat 
(:oniplite S. 

until the maximum nwnber of i/era/ion is reached 
end 
Recogmzefrequenciesf,fronz maximum S, 

End loop 
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CHAPTER IV 

Experimental Studies 

The basic objective of this chapter is to evaluate the experimental results of our proposed CCA 
network. Firstly evaluations of selected features are done using NN where data are subdivided 
into three subsections prior to FS. Then performance of CCA network to recognize frequencies is 
evaluated. In this case, we implemented two-stage CCA network which gives the advantage of 
EEG signal optimization perfectly by reference signal. Finally it is found that fiequency 
recognition is perfect and advantageous when FS is performed prior to recognize frequency. A 
comparative study between these two cases and among other standard methods with our 
proposed method is discussed at the end of this chapter. 

4.1 Experimental Setup 

SSVEP are one kind of potentials collected from brain by standard EEG systems. It is related to 
the visual stimulation. If a checkerboard is flickered with a definite frequency and seen by any 
subjects, then this frequency related potentials will be adopted to the brains of corresponding 
subjects. It is possible to determine the corresponding frequency by analyzing SSVEP of the 
subjects. In this situation, CCA network is applied to the SSVEP data to extract the 
corresponding frequencies. Here, SSVEP data were collected for 5s with 128 standard Biosemi 
active electrodes. There were four subjects with five trials of each one. For this reason, there 
were 128 patterns with more than 30,000 features of a subject. All of the features of this high 
dimensional data are not similarly important. It also takes longer time to execute as well as 
frequency detection is not sharp. In this sense, firstly effective features are selected using CCA 
network and then applied to the three types of CCA network to extract the corresponding 
frequency. In this case, it is seen that FS is made with higher accuracy as well as frequency 
extraction is sharp and quick where subjects can be differentiated easily. 

The performance of proposed FS algorithm and frequency recognition with CCA network has 
been evaluated on SSVEP based EEG datasets. Classification accuracy as well as Sum Square 
Errors (S SE) of selected features was measured using NN classifier. We performed the program 
by an Intel(R) Core(TM) i5-2450M CPU with 2.5GHz, 4.00 GB of RAM, Operating system 64-
bit computer using mnatlab 2012. In case of FS, firstly whole attribute of a dataset is subdivided 
into possible equal three subdivisions with including classes of dataset. There are more than 
F=3 1,500 attributes of a subject for definite stimulas frequency. Then they are subdivided as 
4r10,500, m=I0,500 and n'21,001 columns to rest attributes for Xi, X2 and x3  respectively. This 
is applied for other subjects as well, where all attributes are subdivided into three subdivisions 
almost equally. Then random weight is generated within a certain small value those have 
dimensions as original subdivisions. In case of frequency recognition, two sets are made to 
provide to the CCA network - one set is created from reference signal and other set is obtained 
from original EEG subjects or from selected features. 
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associated output pattern. The power of neural networks comes to life when a pattern that has no 
output associated with it, is given as an input. In this case, the network gives the output that 
corresponds to a taught input pattern that is least different from the given pattern. 

The Back-propagation (BP) algorithm is most effective learning method that use gradient descent 
to tune network parameters to best fit a training set of input-output pairs. The activation 
functions in BP, denoted by (p(x), defines the output of a neuron in terms of the net input x. 
Sometimes it referred as transfer function since it limits and rectifies the output signal according 
to its characteristics. The sigmoid function is the most common form of activation function 
used in construction of artificial neural network, defined by 

cp(x) 
= 1+exp(—x) 

(4.1) 

1.11 
The input from unit i into unitj is denoted x, and the weight from unit ito unitj is denoted w 2. 
For each (x, 1), in training examples, propagate the input forward through the network [103]. 

Standard BP (training_examples, i) 
Each traing example is a pair of the form (, t), where x is the vector of 

input values, and t is the target output value, i is the learning rate. 

• Initialize each w, to some small random value 
• Until the termination condition is met, Do 
• Initialize each Ltw1  to zero 
• For each (x, L) in training_examples, Do 
• Input the instance x to the unit and compute the output o 
• For each linear unit weight w, Do 

w1 +(t—o)x1  
• For each linear unit weight w, Do 

Wi - Wi + EWi 

Figure 4.2: Weight updates process of a generalized Standard BP 

The BP with feed forward NN model is shown in Fig. 4.3. BP is a common method of training 
artificial neural networks so as to minimize the objective function. 

Hidden 

Figure 4.3: NN model for accuracy measurement of selected features. 
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Arthur E. Biyson and Yu-Chi Ho described it as a multi-stage dynamic system optimization 
method in 1969 [104]. It wasn't ul1til 1974 and later, when applied in the context of neural 
networks and through the work of Paul Werbos [105]. NN generally refers to the interconnected 
groups of nodes in the different layers of each system, akin to the vast network of neurons in a 
brain. Three layers are used in this system. EEG signals are fed into the input neurons of input 
layer. There are 128 attributes for every (15, 30 and 60) EEG feature set. So these are fed into 
128 input neurons of one input layer. Firstly 128 attributes of first feature is fed and accordingly 
all feature are fed to input layer one by one. These input neurons send data via synapses to the 
hidden layer of neurons. There are 7, 15 and 30 hidden neurons in one hidden layer for 15, 30 
and 60 samples respectively and they send data via synapses to the output layer of output 
neurons. There are three output neurons in one output layer for three classes of EEG data. The 
synapses store weights to manipulate the data in the calculations. The sigmoid activation 
function is used here to convert a neuron's weighted input to its output activation. Each circular 
node in Fig. 4.3 represents an artificial neuron and an arrow represents a connection from the 
output of one neuron to the input of another. 

NN are also used for finding sum squares errors (SSE), as shown in eq. 4.2, where 'P' denotes 
the numbers of patterns, '0' denotes the numbers of output, 't' for target output and 'a' for actual 
output. 

SSE = (4.2) 

Subdivided EEG data is entered into the CCA network sequentially. Weight is updated for 
correlation maximization according to CCA networks weight update rules shown in Eq3. 1 to 
Eq3.2 and Eq3.9 to Eq3. 12 of chapter III. Then features are selected according to pruning 
process. According to minimum correlated weight respective features deletion maximum 
correlated features are selected. We accept three subsets for a subject at one stimulus frequency. 
We choose 15, 30 and 60 attributes for three subsets of each subject. So there are nine subsets for 
a subject and total of 36 subsets. These subsets are analyzed using BP rule of NN In this way, 
the accuracy is measured for the selected features. In BP network 7, 15 and 30 hidden nodes are 
used for IS, 30 and 60 features accordingly. TABLE I shows the accuracy for every subject at 
different stimulus frequency for various sizes of subsets. We choose 75% (96 rows) for training 
set and 25% (32 rows) for testing set. We take average accuracy of five runs for every feature 
set. It is shown from Table 5.1 that for subject 4 at 8 Hz, classifier cannot classify nine attributes. 
Also classifier cannot detect one attributes for subject I and 2 at 14 Hz. It is for noise 
contamination of EEG signals at that time when data is collected from brain. But for every other 
sector classifier shows 100 percent accuracy. For that reason, we can say that NCCA is a great 
tool for feature selection. This method is suitable for converting very high dimensional data into 
veiy low feature set which may contain almost same information as original set. 
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Table 4.1- Accuracy (%) for different subsets of selected features. 'Acc' indicate Accuracy. 

Stimulus 
Freuency 

- No. of 
selected 
features 

Acc 
(%) 

No. of 
selected 
features 

Acc 
(%) 

No. of 
selected 
features 

Acc 
(%) 

8Hz SI 15 100 30 100 60 100 

S2 100 100 100 

S3 100 100 100 

S4 72 72 72 

14Hz SI 15 97 30 97 60 97 

97 97 97 

S3 100 100 100 

S4 100 100 100 

2814z Si 15 100 30 100 60 100 

-i-o-  100 100 

-- -i-oo-  100 100 

-i-oo-  100 100 

To find SSE, 1000 iterations are made for a selected feature as shown in eq. 4.2 of chapter IV. 
The error curve with 100 iterations is shown in Fig. 4.4. We explore 8Hz_Sub2_30 for 30 
features of second subject at 8 Hz stimulation. In this way, other features are kept in the figure. 
For 1000th  iteration, errors 0.001869, 0.002549 and 0.001869 are found for 8Hz Sub2_30, 
14Hz_Sub130 and 28Hz_5ub4_30 respectively. Thus errors are less than 0.3% which shows 
performance of CCA network is better. 

0.25 1 —8Hz Sub2 30 

0.2 —14HzSubl15 

0.15 
\ 28Hz Sub4 60 

0.1 

0.05 

— — r-0000O\C\ 

Iterations 

Figure 4.4: Iterations vs. error curve for three sets of selected features. 
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This EEG data contains brain conditions of human being. it may vary with subject's variations as 
well as with different stimulations. But though these are the time varying signals, they show 
coherency with one another on the basis of subjects and stimulations. Also, since NCCA finds 
out the features among the subdivision of entire EEG data via correlation maximization, there 
must have some kind of dependency among selected attributes. We observe this dependency with 
NN by varying the testing set with different subjects and stimulations. Table 4.2 shows 
dependency with different stimulus frequency as a confusion matrix for 15 attributes of subject 
4. We have total 128 patterns, 75% (96 patterns) of them are used as training set and rest (32 
patterns) are used as a testing set. It is shown from Table 4.2 that there has no coincidence when 
test by 14 Hz stimulation but trained by 8 Hz stimulation; because all test data are misclassified 
with training set. But 56.25% test dataset of 28 Hz are coinciding with trained set of 8 Hz. 

' Table 4.2: Confusion Matrix for 15 Features of Subject 4 

Training dataset 

8Hz 14 Hz I 28 Hz 

Test 
dataset 

8Hz 23 4 I 8 
I 

14Hz 
I 
I 0 

I 
I 32 15 

28 Hz 
I 
I 18 

I 
13 I 32 

We also find recognition rate by considering different subjects as testing set. Table 4.3 shows 
these rates for 15 attributes of 28 Hz stimulation. In Table 4.3, we denote subject 1 as Si and in 
this way for others. Firstly, we train the network using 96 patterns of Si, and then we test using 
32 patterns of S 1, S2, S3 and S4 accordingly, which shows that 32 patterns are classified for S 1, 
21 for S2, 13 for S3, but all are misclassified for S4. That's why we can say that 100% of Si, 
64.73% of S2, 40.63% of S3 data are coincide with Si, but no coincidence data between S4 and 
Si. So, we can say that though brain signals are time varying quantity, it is possible to test the 
coincidence between signals from selected features of CCA network. It is compatible and 
reliable, because highest classified are found for own dataset. Also it shows low computational 
time. 

Table 4.3: Confusion Matrix for 15 Features of 28 Hz Stimulation 

Training dataset 

Si S2 S3 S4 
SI 32 16 21 09 

Test S2 21 32 23 01 
dataset S3 13 10 32 17 

S4 1 0 1 09 14 32 

In our EEG datasets, there have almost above 31,500 sampling points for a subject. When such a 
high dimensional data are feed into statistical CCA or NN separately, it takes very long time to 
find features. On the other hand, we divide the whole dataset into three subdivisions and they are 
feed into NCCA network sequentially. From these subdivisions of data one can find out feature 
subsets of any desired length. It also shows computation only within a few seconds for find a 
feature subset. 
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4.3 Results of Frequency Recognition (FR) 

Human-body conditions can be known by recognizing the frequencies of brain signal. Here, we 
utilized CCA network to recognize frequency from SSVEP of EEG. The SSVEP is collected for 
various trials of a specific subject, but there have no significant difference among trials for a 
specific subject. When frequency is recognized from high dimensional EEG data of a specific 
subject, it takes longer time to execute and degrade the generalization performance. Thus 
informative features are selected using training and pruning which remove noisy features as well 
as improves the recognition quality. These results are evaluated into following subsections. 

4.3.1 FR from Original EEG data 

The CCA algoritlmi is used to extract underlying frequency components of multiway EEG data. 
The idea is to find maximum correlation points between reference sine-cosine signals and EEG 
signals of different subjects. Initially random weights are generated for both stages of the 
networks. Weights are updated according to update rules and normalized after presenting each 
data into the network. Three harmonic settings are utilized for each types of network. The 
harmonic settings of reference sine-cosine signals are regarded as Hi E Fundamental and 
multiple of thndamental, H2 E2' Harmonic and multiple of 2'"' Harmonic, H3 E3"' Harmonic 
and multiple 0f31d  Harmonic. Subjects Ito 4 are denoted as SI, S2, S3 and S4 respectively 

Figures 4.5, 4.6 and 4.7 describe correlation profiles against time (Lj,,) in seconds. At Hi, 
maximum correlation occurs at 1 Hz stimulus frequency for different subjects as observed in 
Figure 4. It is seen that maximum correlation occurs at 5 Hz and 1 Hz with linear network for Si, 
S2, S3 and S4 as shown in Figure 4.5 (a). Similar results are also observed with nonlinear 
feedback network as shown in Figure 4.5 (c). However, maximum correlation becomes 1 Hz 
only with feedback free nonlinear network across all subjects as shown in Figure 4.5 (b). 

At H2, when 2'"' Harmonic and multiple of 2'"' Harmonic are used as sine-cosine reference 
signals set, it is found that maximum correlation is found at 0.5, 1, 2.5 and 5 Hz with linear 
network, as shown in Figure 4.6 (a). We also use nonlinear and nonlinear feedback networks, as 
observe in Figures 4.6 (b) and 4.6 (c) respectively. In the last two cases, maximum correlation is 
found at 1 Hz stimulus frequency only. 

At H3, when 3"' Harmonic and multiple of 3"' Harmonic are used as sine-cosine reference 
signals set, it is found that maximum correlation is found at 0.625, 0.71, 1, 1.672 and 5 Hz with 
linear network, these are shown in Figure 4.7 (a). Nonlinear and nonlinear feedback networks 
are also studied. The results are plotted in Figures 4.7 (b) and 4.7 (c). Maximum correlation is 
found at 1 Hz stimulus frequency for both cases. In this sense, we claim that a frequency of 1 Hz 
is dominant for these experimental EEG data of different subjects. The appearance of maximum 
correlations at frequencies other than 1 Hz may be due to the harmonic and subjects variations. 

CCA networks involve a number of used specified parameters such as learning rate (i  r) and 
Lagrange multipliers (X1, 2).  The values of them are selected with few initial trial runs. It has 
been found empirically that best results are achieved when, 710  >> i. We choose A1  =0.0005, 
A2  =0.000002, 110 = 0.0005 and 11 =0.00000015 for representative result. Correlation profile 
does not change significantly if these values of constants are increased or decreased. Iteration is 
one of important factors for the convergence of NN. If iteration is increased the correlation 
profile is improved, resulting no change in frequency characteristic. 
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One can determine brain condition of a particular subject using this approach which is easy to 
program in an ordinary machine. Usually massive parallel EEG data requires a number of days to 
observe the fmal result. Our approach is simple to execute within a minute and does not require 
special machine. 
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Figure 4.5: Correlation coefficient of NCCA with (a) linear network, (b) nonlinear network, and 
(c) nonlinear network with feedback for Hi settings. 
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Figure 4.6: Correlation coefficient of NCCA with (a) linear network, (b) nonlinear network, and 
(c) nonlinear network with feedback for H2 settings. 
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Figure 4.7: Conelation coefficient of NCCA with (a) linear network, (b) nonlinear network, and 
(c) nonlinear network with feedback for H3 settings. 
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4.3.2 Subjects Variability Realization 

The CCA network is now used to compare inter subject variability and variability with reference 
sine-cosine signal of different subjects using MATLAB. Also trial to trial variability is studied. 
Initially random weight is generated and used to update for final output. In this situation, eq. 3.22 
is utilized as reference signals set and eq. 3.35 is to compute correlation. The entire process can 
be understood from Fig. 4.8. The CCA algorithm to realize variability is outlined in A4. 1 below. 

,-- 

Figure 4.8: Illustration of NCCA approach for inter-subject variability 

A4. 1: NCCA algorithm for inter subject variability test 

Input: EEG data x1, x2, x3........x, E RJXK  and sine-cosine signals y,,, nz =1,2, A1) E R21"' 
corresponding to M stimulus frequencies, respectively. 
Output: Correlation S, 
for m=] toMdo 

Random inilializalionJbr wj and w2  
repeat 

Find w1  and w2  which maximize correlation between yi andy2  by the CcJ4 
until the maximum number of iteration is reached 
Compute the optimized signals yj andy2  

end 
Compute correlation S, 
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- It is seen that 100% correlation for a subject of the same frequency, but it differs with different 
frequency for same subject. Like Subl (8Hz), it shows 100% correlation with Subl (81-1z), but 
98% with Subl (14 Hz) and 97.6% with Subl (28Hz) which is shown in Fig. 4.9. In this figure, 
the horizontal numbers 1 to 4 for 8Hz, 5 to 8 for 14Hz and 9 to 12 for 28 Hz are used for four 
subjects accordingly. There is very low correlation with Sub3 (8Hz) and Sub4 (14Hz), which is 
almost 23%. 

CC = Canonical Correlation 

12 
'Subjectl (8 Hz) USubject2(8Hz) 

Subject3 (8Hz) •Subject4 (8 Hz) 

0.8 
0.6 

0.4 

0.2 11lii1ih1litill1liliil 
1 2 3 4 5 6 7 8 9 10 11 12 

Si to S4 for 8, 14&28Hz 

Figure 4.9: Inter subject variability with 8 Hz frequency 

There is 100% correlation for Subl (14Hz) with Subl (14Hz) or Sub3 (14Hz) with Sub3 (14Hz), 
but for Sub3 (14Hz) with Sub3 (8 Hz) and Sub3 (281-1z), they are 97.8%and 95% respectively, as 
shown in Fig. 4.10. There is very low correlation with Sub3 (14Hz) and Sub4 (14Hz), that is 
about 15%. 

CC = Canonical Correlation 
• Subject! (14 Hz) • Subject2 (14 Hz) 

1.2 
Subject3 (14 Hz) • Subject4 (14 Hz) 

0.8 

0.6 

0.4 

0.2 

1 2 3 4 5 6 7 8 9 Ii Ii 12 
SI toS4 for 8, 14&28Hz 

Figure 4.10: Inter subject variability with 14 Hz frequency 

In this way, we have seen 100% correlation for Sub2 (28Hz) with Sub2 (28Hz) or Sub3 (28Hz) 
with Sub3 (28Hz), but for Sub3 (28Hz) with Sub3 (8 Hz) and Sub3 (14Hz) correlations are 90% 
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and 96% accordingly. Very low correlation (about 18%) is found between Sub3 (8Hz) and Sub4 
(28Hz). 

Sine-cosine reference signals are used to test the correlation of different trials of different 
subjects. There are total 20 trials for every stimulus frequency. We use respective stimulus 
frequency for sine-cosine signal. It is seen that almost same correlation for every trial of a 
subject with sine-cosine signals as shown in Fig. 4.11. Highest correlation is found with Sub3 of 
28Hz (about 94%) for trial5 of sub3 at 28Hz stimulus frequency. But lowest correlation is found 
with Subi of 14Hz (about 26%) for triall of subi at 14Hz stimulus frequency. 

I 

N 8 Hz (per trial) • 14 Hz (per trial) 28 Hz (per trial) 

CC = Canonical Correlation 

i.i. ihf 11111 I 11111 i 
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Sine-cosine reference signal 

0.8 

0.6 

0.4 

r 

Figure 4.11: Trial to trial variability with sine-cosine reference signal 

There was no big difference among trail to trail correlations for same subject. For example, 
correlations of mall to trial5 of subjecti at 28 Hz stimulus frequency with trial5 of subject2 at 
14Hz stimulus  fi7equency are 62.39% to 62.90%, which is shown in Fig. 4.12. 

1.2 1 CC = Canonical Correlation 

J 
I 8 Hz N 14 Hz i4z 28 Hz 

1 

0.8 

C-) 

0.4 

0.2 

0 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
Trail5 of Sub2 at 14Hz 

Figure 4.12: Trial to trial variability for trial5 of sub2 at 14 Hz 

The trial to trial variability is checked for almost every subject and it is almost negligible. 
Finally, we apply sine-cosine reference signal to test the correlation of different subjects. We use 
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- respective stimulus frequency for sine-cosine signal. Highest correlation is found with Sub3 of 
28Hz and it is about 91.91%. But lowest correlation is found with Subi of 1411z and it is about 
26.77% as shown in Fig. 4.13. 

1 CC = Canonical Correlation 08 Hz I 14 Hz 28 Hz 

0.8 

u 0.6 -i 

0.4 1 

Sine-Cosine reference signal 

Figure 4.13: Inter subject variability with sine-cosine signal 

From this study, it is realize that inter subject variability is most considerable candidate because 
correlation varies significantly with different subjects whether trial to trial variability of 
correlation is almost unchanged for a particular subject. When sine-cosine reference signal is 
used in place of a subject, higher correlation is found with subject 3 for 28Hz stimulus frequency 
and lower correlation with subject 1 for 14Hz stimulus frequency. 

4.3.3 FR from Selected Features 

In this case, underlying frequency components of EEG data are extracted from selected features. 
Firstly, update rule CCA network is applied to select the 15, 30 and 60 features from every EEG 
subjects. Two-stage CCA network is further applied in the selected features, to extract the 
underlying frequency components of each subject. In this sense, we use three different networks 
as - (i) linear CCA, (ii) nonlinear CCA and (iii) nonlinear CCA with feedback. Initially random 
weights are generated for every networks and correlation is maximized by different updates rule 
that is shown in chapter HI. There have analyzed three harmonic conditions of sine-cosine 
reference signals for every selected features set. These harmonic conditions are denoted as HI, 
H2 and H3. Here, Hi denotes the fundamental and multiple of fundamental frequencies, H2 
denote the 2 nd  Harmonic and multiple of 2 Harmonic as well as H3 denote the 3" Harmonic 
and multiple of 3  rd  Harmonic. Subjects I to 4 are denoted as Si, 52, 53 and S4 respectively. We 
use fourfold cross validation that is when S4 is in the second stage as a test set, other three 
subjects are cascaded in the first stage as a traui.0 g set and this is rounded for every subject. The 
test set subjects are indicated in the figures. 

Firstly, we apply the linear CCA network on various selected features of different subjects at 
three harmonic conditions as shown in Fig. 4.14. Highest correlation is found at 1 Hz for every 
selected features of S3 at Hi condition as shown in Fig. 4.14(a). In this case, S3 is the test set. 
Though correlation variation is also found at 5 Hz, but negligible correlation is originated for 
every other frequencies. In this sense, the govern frequency is 1 Hz for S3. The dominating 
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frequency for S4 is 1 Hz and 5 Hz that is shown from Fig. 4.14(b). It is also found that 
dominating frequency is 1 Hz for SI and S2 at HI condition. At H2 condition, the dictated 
frequency is found at 1 Hz for every subject as shown in Fig. 4.14(c) for SI, although variation is 
analyzed at 0.5, 2.5 and 5 Hz which is the effect of the second harmonic. Dominating frequency 
of 1 Hz is also found when test with H3 condition as shown in Fig. 4.14(d) for S2, though 
variation is explored at 1.67 and 5 Hz for the effect of third harmonic. While the flickering of 
checkerboard is done at 1 Hz stimulus frequency, the result is acceptable. Although variation is 
found for subject and harmonic variation but dominating frequency is 1 Hz. 
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Figure 4.14: Correlation profiles of 53, (b) S-I, (c) Si and (d)S2 with linear CCA network. 

The correlation profiles are also shown in Fig. 4.15 those are found by nonlinear CCA network. 
The maximum correlation is obtained at 1 Hz with Hi condition for every subject as an example 
it is seen from Figs. 4.15(a) and 4.15(b) for S-I and S3 respectively. Though effects of harmonics 
are different for different subjects, it is also explored that maximum correlation is occurred at I 
Hz stimulus frequency for every subject. This is proven by Figs. 4.15(c) and 4.15(d) for S2 at 112 
and H3 conditions respectively. 



HI - Nonli;ear Feedback NCCA, S4 (a) 
0.6 
0.5 

.2 0.4 M 15 Features 
0.3 U3Ø Features 

IN-MI&KA-w 
0.2 U 60 Features 

" -" $LIL  
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 5 

Time 

Page 150 

1.2 Hi - Nonlinear NCCA, S4 (a) I J 1 HI - Nonlinear NCCA, S3 (b) 

0.8 

15 Features 0.6 8 15 Features 
W 30 Features i I M 30 Features 
U60Features 0.4 

-  

0.2 
U6OFeatures 

0  

_kiJ I 0  "-W-MLM-WM- RUA* 

.2 0.8 

0.6 

0.4 

0.2 

0 

0.8 

0.6 
5 0.4 - 
I- 
0 

0 0.2 

0 

0.20.40.60.8 1 1.21.41.61.8 2 5 
Time (s) 

H2 - Nonlinear NCCA, S2 (c) 

W 15 Features 
if 30 Features 
U 60 Features 

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 5 

Time (s) 

0.8 H3 - Nonlinear NCCA, S2 (d) 

0.6 
.9 Ja 15 Features 
-40 0.4 M 30Features 

U 60 Features 
0.2 Li 

0 i1L$Lt .4.ILL 
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 5 0.20.40.60.8 1 1.2 1.4 1.6 1.8 2 5 

Time (s) Time (s) 

Figure 4.15: Correlation profiles of (a) S4, (b) 53, (c) S2 and (d) S2 with nonlinear CCA network. 

The correlation profiles of different selected features with nonlinear feedback CCA network are 
shown in Fig. 4.16. The maximum correlations of every subject are shown at 1 Hz with Hi 
condition as an example for S4, is explored at Fig. 4.16 (a). The correlations are also maximized 
at 1 Hz for H2 and H3 conditions, but due to harmonic variations maximize correlation points 
are also found at 0.5 Hz for H2 and at 1.67 Hz for H3 that is explored from Figs. 4.16 (b) and 
4.16 (c). In Fig. 4.16 (d), maximum correlation is found at 1 Hz for SI, but variations are also 
found at 1.67 and 5 Hz due to effect of 3I  harmonics and multiple of 3" harmonics. Finally we 
may say that though variations of maximum correlation points are found at different frequencies 
for the effect of harmonics and subjects variations, but exact dominant flickering frequency is I 
Hz. 
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Figure 4.16: Correlation profiles of (a) S4, (b) S2, (c) 52 and (d) SI with nonlinear feedback 
CCA network. 

4.4 Comparative Study 

CCA networks need lower computational complexity and time than other methods though it 
utilizes training and pruning. It removes noisy features which increases generalization 
performance. When features are selected prior to recognize frequency, it greatly increases the 
performance of networks. In this way, subject's differentiation and stimuli at harmonic 
frequencies can easily be identified. 

4.4.1 Correlation Point of View 

Frequencies of EEG data are recognized by observing the maximum correlation points. In this 
sense firstly EEG data are concatenated for five trials of a subject and applied to the two-stage 
CCA network to find out exact frequencies. On the other hand, features are selected for a 
concatenated subject and obtained the maximum correlation points from two-stage CCA network 
at a define frequency. Fig. 4.17 shows the comparative outline for original and selected EEG data 
set at different harmonic conditions. 

The correlation profiles for SI at HI condition is shown in Fig. 4.17 (a). Maximum correlations 
are found at 1 Hz for original and selected EEG data set. In the case of 1.25 Hz, it is seen that 
correlation is 0.701 for SI but 0.0898, 0.0924 and 0.0957 for three types of selected features of 
SI. The correlation point's variation is not high for original EEG, but selected features show high 
correlation differences between expected frequency and others that are examined from Fig. 4.11. 
There have little bit correlation variations at 5 Hz for original and selected EG features at HI 
condition that is verified from Fig. 4.17 (a). It is the effect of fundamental and multiple of 
fundamental frequencies of a definite subject. The effect of 2nd  harmonic and multiple of 2' 
harmonic is shown at 0.5 Hz for S2 that is examined from Fig. 4.17 (b). The effect of HI at 
different frequencies is negligible for 53 that is examined from Fig. 4.17 (c). We may also select 
a subject or differentiate among subjects to see the correlation profiles at different frequencies. It 
is seen from Figs. 4.17 (a) and 4.17 (c) that correlation variations are found at 5 Hz for SI but not 
for 53 where both are in HI condition. The effect of 311 

 harmonic and multiple of 31  harmonic is 
explored at 5 Hz and 1.67 Hz for S-I which is examined from Fig. 4.17 (d). 
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In all of the above cases we see that maximum correlations are found at 1 Hz due to the fact that, 
the checkerboard is flickered at this frequency. In this sense, the network is suitable for finding 
the recognized frequency as well as it can be differentiated among subjects by observing the 
correlation profiles. Although highest correlations are found at 1 Hz for all of the above cases, 
but negligible correlations are found at other frequencies for selected features but not for original 
EEG data. In this sense, expected frequency can easy be obtained from correlation profiles of 
selected EEG features than original one. 
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Figure 4.17: Correlation profiles of (a) Si, (b) 52, (c) S3 and (d) 54 for original and selected 
features of EEG data. 

4.4.2 Computational Complexity 

Original EEG: Two-stage CCA networks are utilized for frequency recognition. Let, there are 
'F' numbers of feature for each subject. Three subjects are concatenated in the first stage, so 
computational complexity for these concatenated subject is 0(3F). The number of sampling 
points of reference sine-cosine signals depends on stimulus frequency fm. When,  fm = 1 the 
sampling points are same as total number of features '31-' that's why computational complexity 
for reference signals can be denoted as fm X 0(3F). The number of sampling points is increased 
with increasing stimulus frequency. In the first stage total computational complexity is found 
as fm x 0(3F) + 0(3F). The size of the optimized reference signal of first stage is 'F/128', 
where total number of patterns is 128. The computational complexity for first stage optimized 
reference signal is 0(F/128) << fm x 0(3F) + 0(3F). There is a subject as test set in the 
second stage which has 'F' number of features. The computational complexity for the test EEG 
features is 0(F). In this sense, total computational complexity for two-stage NCCA network 
is fm x 0(3F) + 0(3F) + 0(F). Further another optimized reference signal is generated from 
second stage that's has a complexity of 0(F/128) << fm x 0(3F) + 0(3F) + 0(F). The total 
computational complexity for frequency recognition from original EEG data is fm X 0(3F) + 
0(3F) + 0(F). 

Selected EEG features: In this case, EEG data is subdivided into three subsections before 
selecting features denoted as in, n and k respectively. The total number of features for a given 
dataset is F = m + n + k, and then the cost of measuring correlation is 0(m) + 0(n) + 0(k). 
In addition there require 0(mlog(m)) + 0(nlo,g(n)) + 0(klog(k)) for pruning process. In this 
case, m, n, and k are reduced by one in each course of pruning. It is obtained that 0(m) + 
0(n) + 0(k) >> 0(mlog(in)) + 0(nlog(n)) + 0(klo,q(k)). The number of selected features 
of a subject is p << (m + n + k) and computational cost for selecting this features is 0(m) + 
0(n) + 0(k) + 0(p) 0(m) + 0(n) + 0(k). 

Here frequency is recognized from 'p number of features not from 'F number of features 
where p << F. In this sense computational cost for frequency recognition from selected EEG 
features is fm x 0(3p) + 0(3p) + 0(p) << fm x 0(3F) + 0(3F) + 0(F). the total 
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4.4.3 Comparison with Standard Methods 

The most widely used frequency detection method in SSVEP is PSDA but it might still be 
sensitive to noise, shows higher inter-subject variability, and cannot easily identify stimuli at 
harmonic frequencies. The traditional CCA method has shown significantly better recognition 
performance than PSDA. A potential problem of CCA is that all parameters for recognition are 
estimated from test data since the reference signals of sine-cosine waves do not include features 
from training data. Hence, the CCA method often does not result in the optimal recognition 
accuracy of SSVEP frequency due to possible over fitting. 

The multi-way CCA method [12] (use tensor data) has shown unproved recognition performance 
of SSVEP frequency compared to the CCA method. On the other hand, a phase constrained CCA 
method (PCCA) [106] has also been proposed for SSVEP frequency recognition. The PCCA 
method achieved significant accuracy improvement in comparison with the CCA method, by 
embedding the phase information estimated from training data into the reference signals. 
However, the procedures of reference signal optimization in both the multi-way CCA and the 
PCCA methods are not completely based on training data but still need to resort to the pre-
constructed sine-cosine waves. Multi-set CCA was developed as an extension of CCA to find 
multiple linear transforms that maximize the overall correlation among canonical variates from 
multiple sets of random variables [107]. Although multi-set CCA method is completely based on 
training data and outperforms on different CCA methods for SSVEP recognition, but it is only 
suitable for a small number of channels. 

In this thesis, we use high dimensional SSVEP data which have 128 patterns with more 30,000 
features of a single subject. When we use above traditional CCA methods to recognize frequency 
from these data, it takes very long time (about 24 to 25 hours) to execute a matlab program with 
a traditional computer. In this regard, we provide training and pruning by introducing NN with 
CCA that's we called CCA network. This method may be solved above problems clearly because 
it is completely based on training data and reduces computational time and cost. 
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CHAPTER V 

Conclusions and Future Works 

5.1 Conclusions 

Frequency recognition from SSVEP plays a vital role to know the brain conditions due to visual 
stimulations. In this study, two-stage CCA approach is proposed to recognize the stimulus 
frequency. CCA network is implemented between the EEG data and reference sine-cosine 
signals to get optimized reference signals in the first stage. It is also applied in the second stage 
to inspect the correlation between the test EEG data and optimized reference signals of the first 
stage. Both optimized signals contain information of subject-specific and trial-to-trial variability 
meaning that NCCA converges to underlying frequency components. Finally frequency 
components are extracted from two optimized signals. Three different networks such as - (i) 
linear CCA, (ii) nonlinear CCA and (iii) nonlinear feedback CCA are used to recognize 
frequencies at three different harmonic situations. It is seen that though maximurn correlations 
are found at different frequencies for different subject but 1 Hz frequency is dominant for every 
subject. The proposed CCA method can executes a program within a single minute with user 
friendly ordinary computer, whereas the statistical CCA take several hours for execution. 

Although it is possible to find the expected frequencies by using whole of the data, but all 
features of these high dimensional data are not equally important and may also have noise 
corrupted data as well. In this sense, the CCA approach is employed for feature selection (FS) of 
high dimensional EEG dataset. Firstly, every attribute of a subject is classified using wavelet 
clustering method. Then class information is added to the original dataset. Expected subsections 
are created from whole database of a subject. CCA network is applied for finding correlation by 
weight maximization. Then features are deleted from original dataset according to weight 
minimization process. Thus only maximum weights respective features are remained. These 
features are tested according to Back-propagation (BP) rule, where training is done by 75% 
attributes and rests are used for testing. Finally, we get 100% accuracy mostly for every dataset 
except subject 4 for 8 Hz stimulation due to higher level of noise. So, CCA network is a suitable 
choice for FS with a low computational cost. 

It is also possible to recognize frequency of SSVEP to know the brain condition from selected 
EEG features with higher accuracy and lower computation cost. In this view, correlations are 
computed using above three networks with three harmonic situations. It is seen that maximum 
correlations are obtained at 1 Hz because of the checkerboard was flickered at this frequency. It 
is observed from correlation profiles that difference between correlated and non-correlated points 
is higher for selected EEG features than original EEG features due to the removal of noisy 
features. It can also be differentiated among subjects that are observed from correlation profiles 
as well. CCA networks are also very much computationally inexpensive to recognize frequencies 
from selected EEG features than original one. The linear CCA network is shown about 2 to 21 
times faster as well as nonlinear CCA and nonlinear feedback CCA networks are shown about 
2.5 to 33 times faster to recognize frequencies from selected EEG features due to different 
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stimulus frequencies. Therefore CCA network is quite suitable choice for FS as well as to 
recognize frequencies from EEG signals with higher accuracy. 

5.2 Future Works 

The brain technology has limitless possibilities to aid the disabled users and assist the healthy 
people in society. The ernergences of successful Brain-Computer 1nterfces (BCI) based on 
noninvasive scalp EEG have become an increasingly active research area. The SSVEP are 
precisely synchronized brain responses with the fast repetitive external visual stimulation. These 
brain responses are found from subjects with the use of EEG data acquisition system. CCA 
network is a suitable choice to detect the existence of the SSVEP and determine its frequency. 
The command will be created by determining these frequencies to control the device which will 
be our further study. 

This research will be helpful to patients with motor disabilities to improve their quality of life. 
This technology can also be used to improve the performance of normal healthy users. Overall, it 
will be advantageous to employ emotional-face video stimuli in SSVEP-based practical 
applications such as BCI. 
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