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ABSTRACT

The electronics components are becoming progressively smaller, gate scaling process has
become saturated and the limits to Moore's Law are frequently considered. To overcome
the difficulties of downscaling problems new structures and materials have been studied.
The discovery of graphene has gained tremendous attention as the most promising
materials for high speed electronic devices. Graphene, a flat mono layer of sp® carbon atoms
tightly packed into a two-dimensional (2D) honeycomb lattice, has recently attracted broad
attention for future electronic device applications because of their excellent electronic
characteristics such as high carrier mobility and high saturation velocity. The novel electronic
properties of graphene lead to intense research into possible applications of this material in field
effect transistors and nano scale devices.

In this thesis, the performance of a graphene MOSFET is analyzed in large area and ballistic
limit. The performance of a dual-gated large area graphene MOSFET is analyzed using
analytical approach. The quantum transport simulation based on the NEGF formalism is used to
analyze the performance of a top-gated graphene MOSFET in ballistic limit. The NEGF
formalism is self-consistently coupled to the 1D Poisson equations. The Poisson equation is
solved in 1D coordinate using the finite difference method (FDM).

In large area dual gate graphene MOSFET, we have calculated sheet charge density
dependent quantum capacitance self consistently considering charged impurities in the gate
oxide layer. It is observed that with increasing. It is observed that with increasing charged
impurities concentration the quantum capacitance increases near the Dirac point due to the
limited density of states. With increasing the value of impurities concentration in the gate oxide
layer,the minimum value of the quantum capacitance is also increased. Ultimately quantum
capacitance is controlling the gate capacitance as well as the sheet charge density of graphene
channel.

A quasi-saturation of drain current called "kink" is observed in the output characteristics of
both in large area and ballistic graphene MOSFET. This behaviour occurs due to the
ambipolar nature of graphene channel. An ambipolar behavior occurs for a change in the
conduction type at the drain end of the channel from p-type to n-type is clearly shown in
transfer characteristics. Such a behavior is specific for G-MOSFETS, caused by the gapless
nature of the channel due to the zero bandgap, and does not occur in conventional field effect
transistors.

The variation of sheet charge density with channel length at different drain bias (Vg) is
also shown. As Vg is decreased negatively the corresponding sheet charge density
decreases up to dirac point. After dirac point we obtain a positive gate to channel voltage at
drain end which gives rise to an accumulation of electrons and corresponding increase
in sheet charge density. The carrier drift velocity is increasing linearly with electric field
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but at a electric field of E=75.06 kV/cm, carrier drift velocity saturates to the average
Fermi velocity of 2. 12x107cms™.

In ballistic graphene MOSFET, The I-V characteristics shows standard MOSFET type
behavior along with the high drain current current density reaching to approximately 12,000
HA/um which is promising. The reason for the high current density can be attributed to the light
effective mass of graphene and high carrier velocity. At lower gate voltage, a pronounced ’kink’
is observed in drain current characteristics. At higher gate voltage this ‘kink’ behavior almost
disappears. With the help of transfer characteristics, it is noticed that the dirac point shifts
when the drain-source voltage is varied. The dirac point voltage, Vi shifts significantly
towards right at positive drain bias where as Vg shifts slightly towards left at negative
drain bias. Therefore, the shift of dirac point voltage Vg, in positive drain bias is more
prominent than negative drain bias. Also, the p-n assymetry in transfer characteristics is
the signature of short channel effect.

The output transconductance of the device is obtained in the range of = 4500 uS/
um which is very much promising for high speed nano transistors. The variation of output
transconductance, g, with the channel length is also shown. It is found that drain
transconductance decreases at longer channel length. But, as the channel length scales down to
50 nm, the drain transconductance (ggs) rises significantly due to electrostatic gate effect.
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CHAPTER 1

Introduction

1.1 Background

Graphene is a single layer of sp>-bonded carbon atoms, that are packed in a honeycomb
lattice. It wasn't until the year 2004 that Andre Geim and Konstantin Novoselov managed
to produce graphene flakes with a technique called mechanical exfoliation. Geim and
Novoselov were awarded the Nobel Prize in Physics in 2010 for their discovery of
graphene. It is, therefore, easy to claim that 2010 has been the year of graphene [1].

Many theoretical and experimental works have been involved in investigating mechanical,
electrical, and chemical properties of graphene. This one-atom-thick fabric of carbon
uniquely combines many supreme properties that have been exceeded those obtained in
any other material, with some reaching theoretically predicted limits: room-temperature
electron mobility of 2.5x10° cm’V's”, high saturation velocity [2]-[4], very high thermal
conductivity (above 3,000 WmK™), ability to sustain extremely high densities of electric
current (a million time than copper) [5] and ballistic transport of charge carriers. The
combination of these properties suggest that graphene could replace other materials in
applications [6-14], including high speed and high frequency electronics,
optoelectronic devices, touch screens, light emitting diodes, solar cells, sensors, individual
gas molecules detectors, the applications where high sensitivity to electric charge,
magnetic field and mechanical strength are required, and electrode material for capacitors
in rechargeable batteries.

In addition, all the extreme properties are combined in one material means that glaphene
could also enable several disruptive technologies. The combination of transparency,
conductivity and elasticity will find use in flexible electronics, whereas transparency,
impermeability and conductivity will find application in transparent protective coatings
and barrier films; and the list of such combinations is continuously growing. A schematic
of the high quality high quality large domain graphene by advanced synthesis method
along with the current and future applications is shown in Figure 1.1.

Due to its high carrier mobility and ultrathin body, graphene has attracted tremendous
attention as a channel material for future high speed nano-electronic devices. It is very
interesting that, unlike other semiconduotors, graphene does not require impurity doping
to conduct electricity. Graphene displays a phenomenon that is often called self-doping
which refers to the electric field effect in graphene. It allows the charge carrier type and
concentration to be controlled with an outside electric field, or rather gate voltage. In
graphene, the charge carriers in the two dimensional channel can change from electrons to
holes with the application of an electrostatic gate, with a minimum density point (or Dirac
point characterizing the transition. The graphene band structure allows the conduction to
shift from electrons to holes by changing the Fermi level. As explained above, Graphene is
unique as a channel material for high speed field effect transistors.

1]Prage
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Figure 1.1: A schematic showing the high quality large domain graphene by advanced
synthesis method along with the current and future applications.

1.2 Motivation

In an era when electronics components are becoming progressively smaller, saturation of
conventional silicon technology and the limits to Moore's Law are frequently considered,
the isolation of a single graphene layer represents a major technological achievement.
Graphene is attractive for high speed field effect transistors and nanoelectronic
applications due to its excellent electric properties. So, Graphene is very much promising
material and considered as the best replacement of silicon for future generation transistor.

As the graphene is predicted to be potential candidate for electronic logic and RF
applications, research is going on designing and fabrication of graphene FETs. However,
the progress in designing and fabricating of graphene FETs is at initial stage. In order to
fabricate high performance graphene FETs, understanding of detailed device modeling
and performance evaluations is urgently required. There have been few works mostly on

2P




Large area graphene field effect transistors (GFETs), but they are not sufficient for clear
understanding of device physics and modeling. In addition, the works on ballistic GFET is
very limited although GFET is promising for nanodevices. So, we have strongly motivated
to work both on large area and ballistic graphene MOSFETs.

The aim of this thesis is to analyze the performance of a graphene MOSFETin large area
and ballistic limit. The performance of a dual-gated large area graphene MOSFET is
analyzed using analytical approach. The quantum transport simulation based on the NEGF
formalism is used to analyze the performance of a top-gated graphene MOSFET in
ballistic limit. The NEGF formalism is self-consistently coupled to the 1D Poisson
equation. The Poisson equation is solved in 1D coordinate using the finite difference
method (FDM).

1.3 Outline of Thesis

This dissertation is focused on study of graphene MOSFETs in aspects of large area and
ballistic limit. The study has tried to gain insight into the potential of graphene MOSFETs
for various applications by focusing on various figures of merit as applicable to different
applications.

In chapter 2, Fundamentals of graphene MOSFET is reviewed.

Chapter 3 starts with the simulation approach including device model, analytical solution
and bench marking of numerical solution of NEGF transport equation self consistently
with Poisson equation.

Chapter 4 shows Performance of Graphene MOSFET in large area. The C-V
characteristics is shown. Impurity Concentration Dependency of quantum capacitance is
thoroughly investigated. The Current Voltage (I-V) Characteristics of large area graphene
MOSFET and Channel Potential profile as well as sheet charge density profile is evaluated
here.The velocity-field relationship is also illustrated.

In the chapter 5, a top gated graphene MOSFET is modeled in ballistic limit and

corresponding I-V characteristics and transconductance profile is shown.

Finally, chapter 6 provides a summary of the most relevant results, combined with an
outlook on possible future research directions.

3 l A
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fevered work was done to explore the unusual electronic properties of Graphene (online
information). There may arise a question such as: Why is graphene such an exciting
material? Firstly, graphene is great conductor; electrons are able to flow through graphene
more easily than through even copper. The electrons travel through the graphene sheet as
if they carry no mass, as fast as just one hundredth that of the speed of light. Secondly, the
ways electrons behave in graphene make it very useful to study some fundamental
physical properties. Graphene’s near perfect crystal lattice mean it is a very clean system
in which to experiment. Graphene is a one atom thick sheet made of carbon atoms,
arranged in a honeycomb (hexagonal) lattice. Its height was measured to be just 0.33 nm,
almost one million times thinner than a human hair!Graphene is the ultimate 2-
dimensional carbon molecule. Graphite, the well-known 3-dimensional carbon allotrope
found in our pencils, is nothing more than a stack of several graphene planes.Graphene
shares its structure with two other materials which are exciting today’s scientists: carbon
nanotubes and fullerenes (also called bucky-balls), seen as a 1-dimension and 0-dimension
rolled pieces of graphene, respectively.In 2004 Observation of graphene’s ambipolar field
effect by Andre Geim and Kostya Novoselov. In 2008 Measurements of extremely high
carrier mobility of graphene was done by Bolotin also. New graphene related discoveries
are in nanotechnology news almost every other day. Graphene is used in logical operations
as well as radio-frequency applications.

2.2 Electronic Properties of Graphene
2.2.1 Electronic Band Structure

The electronic band structure of any material is responsible for its whole electronic
behavior. Therefore it is important to understand where the band structure comes from and
what assumptions were made. In this chapter, we will use the tight binding approach to
calculate these energy bands. Graphene has a honeycomb (hexagonal) structure of sz_
bonded atoms. The electronic band structure of graphene can be solved with tight binding
approximation (TBA) or the similar linear-combination of atomic orbitals (LCAQ), which
is more commonly used in chemistry. The honeycomb lattice has 2 atoms per unit cell;
hence the m bands of graphene have 2x2 Hamiltonian. The diagonal elements of the
Hamiltonian describe the nearest neighbor interactions, while the off-diagonal elements
describe the three nearest neighbor interactions in different sub lattices. The derivation of
the electronic band structure is omitted here, but a detailed derivation in [16].

To calculate the electronic band structure, we have to consider the real space lattice.
Graphene consists of sp?-hybridized carbon atoms which are all situated in one plane and
arranged in a honey comb lattice (Fig. 2.2(a)). Therefore, every carbon atom has three
nearest neighbors and six next nearest neighbors. Each carbon atom possesses four
valance electrons. Three of these electrons form tight ¢ bonds with the three neighbors
atoms and do not contribute to the conductivity of graphene. The fourth electron is
unbounded and considered to be in the 2p, state. It has a node in the lattice plane and a
symmetry axis perpendicular to it. The wave functions of all unbounded electrons overlap
with those of neighbors, which is the reason for the conductivity of Graphene. First we
define the unit cell of the graphene lattice (green dashed line in Fig. 2.2(a)). It has the
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shape of the parallelogram and contains two different carbon atoms labeled I and II. The
two vectors of the unit cell are labeled as @;and @,. Since the crystal has a periodic
structure one can conclude that probability to find an electron at the position 7 is equal to

the probability to find an electron at the position 7+R.
W@F =y + B @1

Where R is the discrete lattice vector and it can be expressed as a linear combination of
the unit vectors?
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Figure 2.2: (a) The unit cell of the graphene real-space lattice is colored in green. It
consists of two atoms labeled I and II. Atom I has three nearest neighbors colored in
darker blue and 6 next nearest neighbors colored in light blue. Atom II has also three
nearest neighbors colored in yellow and six next nearest neighbors colored in pink. The
unit vectors of the lattice are labeled d, and d,(b) Displayed is the first Brillouin zone
with the position of each K-point.

The band displayed in blue or orange in Fig. 2.3(a) is the conduction band or valance
band, respectively. At 0 Kelvin the valance band is completely filled and the conduction
band is empty. Therefore we might expect graphene to be an insulator or semiconductor,
but the conduction band touches the valence band at the K-point of the Brillouin zone (Fig.
2.3(b)). Therefore the energy band gap of graphene is zero and Ec = Ey = Ecy. Since the
density of states at the intersection of the two bands is also zero graphene is a semi-metal.
This osculation point if often referred to as the Dirac point. The background of this
nomenclature is that the Hamiltonian of graphene around the K-point can also be written
as the Dirac Hamiltonian.

Figure 2.3: (a) The band structure of graphene is displayed. The valance band is colored in orange
and the conduction band is colored in blue. (b) A magnified section around the K-point is shown.
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We knew that, E(K)=a:p ’3 +w(®)+Y(K) 2.2)

Here,K is the wave vector, E is the energy eigenvalue, a is the self-energy, f is the hopping
energy between nearest neighbors and Y is the hopping energy between next nearest
neighbors. We can simplify eq. (2.2) by the Taylor series expansion:

E(K)=a+jaBlk|+3y (23)

The wave vector k is measured from the K-point as point of origin, whereas K has its
point of origin in the r-point. Therefore an electron with |k] = 0 is situated at the K-point of
the Brillouin zone or in other words at the Dirac point. Since only the absolute value of k
is regarded, we will write k instead of lfc'l. If we set @ +3y =Ey, we obtain:

E (k) ~Ecy = £ H(*20)k (2.4)

Where, v = (222£) i the Fermi velocity. With § = —3 €V, v becomes: v = 970811 ms

which is close to the value of v = 10° m/s which is usually found in papers and used in
the following. Finally eq. (2.2) can be written as:

E(K) —Ecy =E (k) —Ecy = shvgk (2.5)

Where s = +1 in the conduction band and s = —1 in the valence band and h is the reduced
Plank constant. Since the energy dispersion is linear around the K-point, one can see the

energy band in the relativistic limit of the famous Einstein equation: E =,/m2c* + p2¢?,
where m is the mass, c the speed of light and p the impulse. If we set m to zero and ¢ tovg
we recover eq. (2.5). Therefore charge carriers in this linear part of the band structure are
often referred to as mass-less particles with an effective speed of light of vp. The energy
dispersion is linear around the K-point; therefore the velocity of an electron in the ballistic
limit is independent of its energy E:

10E
V= -ﬁ--az-sv,.-(zﬁ)

Graphene is a 2D material, but distinctions can be made between bi-layer graphene and
few-layer graphene (FLG) [17]. Bilayer graphene has two layers, but the electronic band
structure is already quite different from single layer graphenme. Band gaps of some
hundreds of milli electron volts have been achieved with bilayer graphene by applying a
perpendicular electric field to the bilayer [18]. The gap in Bernal stacked bilayer graphene
arises from the forming of pseudospin between the layers, thus making it possible to
electrically induce a band gap [19]. There are still many properties of graphene that have
not been thoroughly investigated. Even the existence of a band gap in large area graphene
is controversial. In addition to band gap opening in bilayer graphene by applying an
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electric field, it is possible to create band gap by quantum confinement, i.e. by fabricating
graphene nanoribbons [17]. Band engineering of graphene is essential if graphene is ever
to compete with silicon CMOS technology [19]. The energy gap is important for logic
gate purposes to keep the power consumption at minimum i.e. going to a non-conductive
state. The band-structure of graphene differs from the band-structures of semiconductors
in that the energy dispersion around the band edges is linear instead of quadratic [20]. The
mobility of charge carriers is limited by defects in the supporting material or defects in
graphene. The previous claim is backed up by the much higher mobilities achieved with
suspended graphene sheets. Electronic transport that is limited by scattering is called
ballistic transport. Ballistic transport is possible in very pure and defect free graphene.
Naturally, obtaining clean and defect free graphene is difficult and is often not achieved.
The linearity of band dispersion in graphene means that the velocity of electrons is
independent of energy or momentum. Furthermore, the velocity of electrons in graphene is
at maximum the Fermi velocity, which is 1/300 of the speed of light. Another intriguing
property is that backscattering through phonons or charged impurities is forbidden and the
mean free path is in the range of hundreds of nanometers. The electrical properties of
graphene have been studied extensively, but much is still un-known about the mechanical
and thermal properties [21]. Mechanical and thermal properties of graphene are similar to
those of carbon nanotubes. Measurements show that the breaking strength of graphene is
around 40 N/m, and thermal conductivity in the range of 5000 W/mK, and yet the
thermodynamic properties of graphene are largely unknown [21]. The chemistry of
graphene is in early phases, but shows much promise. Graphene can absorb and desorb
different atoms and molecules, such as K and OH. Adsorbents can affect the electronic
properties of graphene. There is even the possibility of localized doping. In addition, the
stability of graphene under various circumstances has not received much attention.

2.2.2 Density of States (DOS)

For the calculations of electronic properties not only the electronic band structure, but also
the density of states (DOS) plays an important role. This quantity describes how many
states per unit energy are available for occupation. It can be calculated in general using the
following expression:

A

2D _
~8 Gny?

J5p dk2nkS(E—E (K)) 2.7)

Where g is the degeneracy factor, A the area, k the wave vector, E the energy and § the
Delta function. The integral of the Delta function is defined as fj: 6 (x)dx=1, i.e. every

time the argument in the Delta function becomes zero the integral over the Delta function
becomes one. Therefore, while integrating over the area in k-space in eq. (2.7), the Delta
function simply counts the number of all the states where E = E (k). In a periodic crystal
each state can be occupied by an electron with spin up and with spin down which is
expressed by a degeneracy factor of two. Furthermore the graphene unit cell contains two
atoms (Fig. 2.1 (a)). The result is that each Brillouin zone contains two equivalent K-
points, which gives an additional degeneracy factor of two. Since only electrons around
the Fermi level are responsible for the electronic behavior it is sufficient to calculate the



DOS in the vicinity of the Dirac point. Therefore we can use eq. (2.7) to describe the E (k)
behavior such as:

2 ]
D3 aphene= [y AkKS(E—Ecy —shvgk) (2.8)

This results in a density of states (DOS) as described [27]

2D "N
Dgraphene 7 by I k=E;::;'”

(2.9)

DD _2A[E-Ecyl

graphene™ = (hvp)? (2.10)

The density of states for electrons and holes is always positive and increases linearly with
energy. At the intersection of the valence and conduction band, i.e.E = Ecythe DOS is
zero. This behavior is different from two dimensional electron gases where the effective
mass approximation can be applied. There the DOS is a Heaviside function and is not
increasing linearly with energy.

2.2.3 Mobility of Graphene

The most frequently stated advantage of graphene is its high carrier mobility at room

temperature. Mobilitiesof10,000-15,000cm2V—1s~1 are routinely measured for
exfoliated graphene on SiO,covered silicon wafers and upper limits of

be:twccn40,[l{)l)and‘I"O,OO[}cmz‘\f'_1 s~1 have been suggested. Moreover, in the absence of
charged impurities and ripples, mobilities of 200,000cm2V~1s~1 have been predicted

and a mobilityof106 em2V—1s™1 was recently reported for suspended graphene
[22]—[26].Finally, for epitaxial graphene on silicon carbide, themobility depends on
whether the graphene is grown on the silicon face or the carbon face of SiC. Although

graphene grown on the carbon face has higher mobility(valucsof-—S,OOOcsz_ls_l have

been reported compared with~1,000cm2 V~1s~1 for graphene grown on the silicon face,
it is easier to grow single-layer and bilayer graphene on the siliconface,which makes the
silicon face of SiC more suited for electronic applications. In early graphene MOS
structures, the mobility was affected by the use of a top-gate dielectric. However, there has
demonstration of mobilities of around 23,000cm2V—1s~1 intop-gated graphene MOS
channels and the observation of similar mobilities before and after top-gate formation show
that high-mobility graphene. The high mobilities mentioned above related to large-area
graphene, which is gapless.

As general trend for conventional semi-conductors is that the electron mobility decreasesas
the bandgap increases, and a similar trend has been predicted for carbon nanotubes(CNTs)
and graphene nanoribbons. Therefore, although the high mobilities offered by graphene can
increase the speed of devices, they come at the expense of making it difficult to switch
devices off, thus removing one of the main advantages of the CMOS configuration—its low
static power consumption.
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2.2.4 High-Field Transport

In the days when FETs had gates several micrometers long, the mobility was the
appropriate measure of the speed of carrier transport. Strictly speaking, however, the
mobility describes carrier transport in low electric fields; the short gate lengths in modern
FETs result in high fields in a sizeable portion of the channel, reducing the relevance of
mobility todevice performance. To illustrate this, let us consider a FET with a gate100 nm
long and a drain—source voltage of 1 V. If we assume a voltage drop of 0.3V across the

series resistances, the average field in the channel is 70kVem™! [27]. At such high fields,
the steady-state carrier velocity saturates, and this saturation velocity becomes an other
important measure of carrier transport. For graphene and the nanotube, maximum carrier
velocities of around 4x107cms™1 are predicted, in comparison with 2x107 cm s~1 for GaAs
and 107 cms™! for silicon. Moreover, at high fields the velocity in graphene and the
nanotube does not drop as drastically as in the III-V semiconductors [17].
Unfortunately, there is at present no experimental data available on high-field transport in
graphene nano ribbons and in large-area graphene. However, other measurements suggest
high-field carrier velocities of several 107cm s~ ! in graphene [28]—[29]. Thus, regarding
high-field transport, graphene and nanotubes seem to have a slight advantage over
conventional semiconductors. Finally, it is worth noting that reported mobilities for
graphene devices need to be interpreted carefully because there are several definitions for
the MOSFET channel mobility and they are difficult to compare. Furthermore, the
techniques used to measure mobility are only vaguely described in some papers.

2.3 Further Option of Graphene Devices

It has become clear that graphene devices based on the conventional MOSFET principle
suffer from some fundamental problems.This has motivated researchers to explore new
graphene device concepts, such as tunnel FETs and bilayer pseudo spin FETs.In a
tunnelFET, the band-to-band tunneling across the source—channel junction can be
controlled using the gate-source voltage.The big advantage of tunnel FETs is that their
subthreshold swings are not limited to 60mV per decade, as in conventional MOSFETs,
which should lead to steeper subthreshold characteristics ad better switch-off. In
particular, the bilayer graphene tunnel FET is now consider ed to be a promising device
for a number of reasons: narrow nanoribbons are not needed, the small bandgap opened
by a vertical field applied across the two layers is sufficient to suppress band-to-band
tunneling in the off-state and thus enables effective switch-off; and the possibility of
sub-threshold swings below 60mVper decade should make high on—off ratios possible.
Although graphene tunnel FETs and bilayer pseudo spin FETs are both still at an
embryonic stage, they have already gained considerable attention in the electron-device
community. It might also be possible to make interconnects from graphene, which would
open the possibility of all-graphene integrated circuits in which both the active devices
and the wiring were made of graphene. It has been shown that graphene inter connects
compete well with copper interconnects; indeed, graphene can support current
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densities greater than108 Acm™2 (which is 100 times higher than those supported by
copper)and has a thermal conductivity of around 30-50 Wem—1K~l(which is 4
Wem™ 1K1 for copper).

11|Page



CHAPTER III

Simulation Approach

3.1 Introduction

In earlier, The simulation of graphene MOSFET has been studied using different
approaches. In this thesis, simulation of performance of graphene MOSFET is done in
large area and ballistic limit. Analytical approach is used to simulate device performance
large area graphene MOSFET. On the other hand, the Non-Equilibrium Green’s Function
(NEGF) [30] is used to simulate device performance in ballistic limit. The detailed
theoretical discussion and formulation is given in this section.

3.2 Modeling of large area Graphene MOSFET

This thesis is about the modeling of large-area graphene metal-oxide semiconductor field-
effect transistors (Graphene MOSFETs). Therefore a short revision of the basic working
principle and the common nomenclature for field-effect transistors (FETs) is given. In
every FET an electric field is used to change the conductivity of the channel. This electric
field is generated by applying a gate voltage to the gate terminal. It controls how many
electrons can pass through the channel. There are two other terminals in all FETs which
are essential. These are the source and the drain terminal. Their names refer also to their
functions. If a positive drain-source voltage is applied to these terminals, electrons are
injected from the source into the channel and collected by the drain. The resulting current
is referred to as the drain current. The feature which distinguishes GFETSs from other FETs
is that the channel is made of graphene.

i Top-uate -
Source e Drain

L e .
b l

e S e l
——

B 5 B
Hack gate oanle (51821

Doped Si Wafler

I!‘.ul‘k-;_:.'llr
Figure 3.1: The cross section of the modeled graphene MOSFET with top- and back-gate.

A simple model of the GFET which is described in this thesis is shown in Fig. 3.1. Here
the channel is made of large-area single-layer graphene, which has a zero band gap. It is
located on a heavily doped oxidized silicon wafer. This acts as a second gate and is
referred to as the back-gate. It is used to control whether the graphene is p- or n-
conducting by applying a back-gate voltage. The source terminal is grounded and a drain-
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source voltage can be applied to the drain terminal. Both contacts between these terminals
and the channel are considered to be ohmic. The top-gate is separated from the graphene
channel by an insulator and is used to control the charge carrier density and therefore the
conductivity in the channel.

3.2.1 Charge carrier calculation

All considerations made in this chapter are for equilibrium conditions, i.e. no current is
flowing. Therefore the drain-source voltage is OV. Furthermore the source terminal is
considered to be grounded. The number of electrons in any material is calculated by
performing the following integral [3]

N= fE‘:‘ dED(E)f(E) @3.1)

Where, D (E) is the density of states and f (E) is the Fermi function which is defined as
E-Ep

(e *s™ + 1)~ Inserting the density of states for graphene (eq. 2.10) and dividing by the
area results in the charge carrier density n:

N @ 2 E-E, 1
=== dE = —2 e 3.2
R -[Ec,u T (hvg)? e%}gﬂ S

Where, E is the Fermi energy, g the element my charge, kgthe Boltzmann constant and T
is the temperature. The same formalism can be applied for holes. Holes are defined as
states in the valance band which are not occupied by electrons.

P=[" dED(E)(1 - f(E)) (33)

Dividing by the area and inverting eq. (2.10) results in as mentioned below:

P rEcyp 2 |[E=Ecyl| 1
p=—= —cxl} dE._ L (1 - ) (34)
A . (hvg)? eTé—TE+1
— |IE-Ecyl 1
p=—[; dEZ—= ( - ) 3.5)
Ecy 2 (hvp)? ejkTS-E+1

We substitute E with —E, because we only want to deal with positive energies:
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@ E+E  §
p=[. dEZ—<X (———) (3.6)
Ecp 2 (hvp)? E"—BET o

For a gate voltage the Fermi energy of graphene is exactly between the conduction band

and valence band (Fig. 3.2) as shown.
. '

E

= Ecy=0

Figure 3.2: Fermi energy in undopedgraphene for zero gate and drain-source voltage.

This means that Er = E;, = 0. Hence eq. (3.2) and eq. (3.6) simplify to as the following:

n=p= rr(hv y2 Jo f dE (F_—H) (37)

Since, this equation is equal for electrons and holes there is charge neutrality in the

graphene layer. After substituting u = ﬁ we get. The integral can be solved analytically
B

and giv e
1IVES—.
g S12

n=p=—2e(kgT)? f du (=) (3.8)
n=p=n=5 (%) (39)

We call this density the intrinsic charge carrier concentration. This means, if there are no
impurities in graphene, n; increases quadratically with the temperature and not
exponentially due to the absence of a band gap and the linear dispersion relation [31].
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If we apply a positive gate voltage to the gate terminal the energy bands are down-shifted
by qV., where V,, is the channel potential (Fig. 3.3) and is defined as:

chhz EF - EC,V (310)

Thus a positive gate voltage results in a positive V. Note that V., is normally not equal to
Vy. The Fermi energy remains at zero (Er = 0), since it is pinned to the drain and source

Fermi level. Keep in mind that there is still no current flowing.

ch.‘r

A J

Figure 3.3: The energy bands are down-shifted with respect to the Fermi energy if a
positive gate voltage is applied.

The carrier concentration can now be determined by solving the Fermi integral. Since E¢y
is down-shifted by gV, with respect to Ep the lower integral boundary is —qVy,.

2 ® | E'vqVen
g dE | ——= : (3.11)
hvp)? I— Ve ( E )
w(hve)? *—qVcn BT,
Where E' is the energy. Now substitute E = E’ + gV, to change the integral boundaries.

S z.f dE(—_'-;;;—) (3.12)
{Fex) 'E_"q—uﬂ

€

If qV> 3kgT the Fermi-Dirac distribution Eq. (3.12) reduces to as the following:

n= 7" dEE (3.13)

n‘{ﬁvp)z
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=i(ﬂ'i)2 (3.14)

w\ hvp
The electron concentration increases quadratically with V., for positive gate voltages.

Now we make the same considerations for holes while we are applying a positive gate
voltage. The conduction band is again down-shifted byqV,,. The lower integral boundary
is - E¢ ywhich becomesqV,;,. Therefore eq. (3.6) results in:

2 @ E'—qVch
p= [ dE (____) (3.15)
w(fivp)? YqVen 3 Ei_f+1

Where, E' is again the energy, set E = E' — qV,is made to change the integral boundaries.

2 ® E
pra— | iR (—_5+th ) (3.16)
m(hvg)? 70 g_k_LBT i

If qV.p> 3kpT is then we can neglect the 1 in denominator, similar to the non-degenerate
approximation in silicon. After performing this integral we obtain:

0 2 E _E+ qvch
— 1Ly kgT
p=[, dBsese *s (3.17)
kgT
m_) (3.18)

The hole concentration reduces exponentially with V,;, for positive gate voltages. Since the
electron concentration increases only quadratically, there is no simple law of mass action
as in the case of silicon.

2 Ve ’
n— kBT) e kBT (3.19)
hvp
_1(qVen 2
pe(tR) 620

Note that, V., is also negative in this case. In some of the following calculations we are
only interested in the sheet carrier density pgysince the current is carried by both types of
discharge carriers simultaneously. In this case it is convenient to neglect the minority
charge carrier concentration and write:
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2
- chh)

Psh n ( hvp 321
This equation becomes not only exact in the limit of zero Kelvin, but is also a rather good
approximation for finite temperatures, since the minority charge carrier concentration is
always decreasing exponentially. Sometimes it is useful to rewrite this expression by
substitution gV, withEr — E¢ .

| Er — Ecyl = hvpTtpsy (3.22)

3.2.2 Quantum Capacitance

The concept of quantum capacitance was first introduced by S. Luryi in 1988 [32] for a
two dimensional electron gas (2DEG) and will now be applied to graphene. The effect of
the quantum capacitance is rather negligible in devices with a large density of states
(DOS). Although the effect of quantum capacitance has not drawn attention in the past,
since the devices were too large. By the time carbon nanotube transistors where
intensively investigated, the quantum capacitance became again more important. Later on
the concept was introduced first for graphene nanoribbons and afterwards also for large-
area graphene. It will be shown that the quantum capacitance has a strong influence on the
total gate capacitance and must therefore be included into the modeling.

The quantum capacitance has a non-zero minimum at the Dirac point and a linear increase
on both sides of the minimum with relatively small slopes. The theoretical nature of C,
curve is not same as the experimental curve because charged impurities also influence the
quantum capacitance. The long-standing puzzle about the interfacial capacitance in
carbon-based electrodes has a quantum origin. The electron transport properties of
graphene devices are very critical and these properties are still incomplete. One of the
most important matters is the minimum in the conductivity at the Dirac point. This
minimum is due to charged impurities that induce of electrons and holes in the graphene.
To fully understand the transport properties it is important to such factors which are
related to C,.

1) The scattering of the carriers by the charged impurities.
ii) The density of the carriers at and near the Dirac point.

Electron transport in graphene on the field-effect transistor (FET) configuration in which
graphene sample is placed on SiO; substrate and connected to the source and drain
electrodes. The graphene is used as the channel of the MOSFET.

The parallel plate capacitor with capacitance, C= % uFem™. Where €,, and t,,are the

dielectric constant and the thickness of the substrate oxide layer which acts as the insulator
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substrate. The oxide capacitance i.e. top gate capacitance or back gate capacitance does
not strongly dependent on the gate potential i.e. top gate potential or back gate potential.

The quantum capacitance (C,) depends on the net channel charge density which comes
from the term two dimensional electron gas (2DEG). The overall net mobile sheet charge
density Q,, is simply the difference between the hole and electron sheet densities
multiplied by the elementary charge. An exact derivation for C, will now be given for
large-area graphene. Since C,is the first derivative of the net charge per unit area in the
graphene sheet with respect to V., we will first have a look at Qs Generally it can be
calculated by:

Osw = q (p-n) (3.23)

Where n and pare the electron and hole concentration, ¢ is the elementary charge. Since
only the net charge is regarded, electrons have to be subtracted from holes. By inserting
€q. (3.12) and eq. (3.16) this expression can be expanded to:

2 oo 1 1
Qﬂ* = q w(hvg)2 J’o dE E ( E+q“i-"_,l - E—qV . p ) (324)
+1

e BT 41 ¢ kB

The quantum capacitance is defined as the derivative of the net channel sheet charge
density Q,;, with respect to V., [31]

— dQsh 2
o = (3.25)
The minus sign indicates that a more positive gate voltage results in a more positive
channel voltage and thus leads to a more negative charge in the channel. The expression
for quantum capacitance was derived based on a two dimensional electron gas (2DEG)
model [33]. The exact equation for the quantum capacitance C, as follows [31]

_ 2q’kgT QVen
Cq I~ w(hvg)2 In {2( 1 + COSh (kBT) )} (3'26)
3x108

Where, vg = ¢/300 = 60 = 1x10% ms™ = 1x10® cms™ is the Fermi velocity of the Dirac

electron and V,=Ep/g is the potential of the graphene. Here, kg is the Boltzmann
constant, his thereduced Plank’s constant and T is the Kelvin temperature.

For ¢V,>3KgT= 75 meV we can neglect the 1 in the logarithm and then equation (3.26)
can be simplified to as the following [33]

~ 22 WVenl |
Coe 2 2odl (3.27)
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_2q%°qVen _ 247
97 mhvp)2 VJrh v,:ﬁ (3:28)

Vipsops : :
Where n = }'lr (‘:IT")Z is the carrier concentration of the grapheme channel of a GFET.
F

3.2.3 Impurity Concentration Dependency of Cp

The impurity concentration has a great effect on the quantum capacitance [33]. Several
important features are worth noting to calculate the quantum capacitance C,.

i) The quantum capacitance has a minimum value at the Dirac point (Cg,min)-
ii) The minimum value of the quantum capacitance (Cy,min) is close to zero.
iii) The capacitance increases linearly with V,;, with a fixed slop (uF. em V7).
iv) The shape of the C,— V. curve is symmetric with respect to the Dirac point.

Several distinct discrepancies: the measured quantum capacitance minimum (Cgmin) is
round and the measured minimum (Cg,ni») is much greater than the predicted value of C,.
If the value of V, is zero then cosh(0) = 1. So the minimum value of C,, is as follows:

_2q%kgT
q,min = (b vp)2 In[z + (1 + 1)] (3.29)
_2G%kgT
Cq,min = (R vp)2 Zﬂ-[‘;'] (330)

At room temperature T = 298K the value of Cypmin= 0.8358 chm'2 and if 7= 300K then
the value of Cy = 0.8414 pFem™ i.e. approximately Cy = 0.8 pFem™. The theoretical
model is based on the assumption of pure and perfect graphene. In reality, various
impurities and defects exist in the oxide substrate. The recent theoretical and experimental
results have shown that charged impurities have a key role in the transport properties of
graphene near the Dirac point. It has been reported that charged impurities in substrates
cause local potential fluctuations and electron or hole puddles in graphene. Additional
carrier density n induced by the impurities. This additional carrier density should take
into account by expressing the total carrier concentration as [31]:

n=|ng|+|n| (3:31)

Where nzand n" are the carrier concentrations caused by the gate potential and the charged
impurities respectively. Combining equation (3.28) and (3.31) we can calculate the
quantum capacitance of graphene as a function of the graphene potential and the different
impurity concentration of the oxide substrate which is used as the insulator of a GFET:
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_20%qVen _ _2¢*
9 mhvp)2 Vmhop

Ingl + [n*] (3.32)

Vv s . . z
Where n, = \%h": )” is the carrier concentration due to gate voltage and channel potential.
F

Now we have to think about the residual charge concentration n” as a function of charged
impurity concentration 7;,, for two different dielectric material HfO; (€,,= 16) and SiO;
(€0x=3.9)[35]. Because we have used HfOas the top gate dielectric material, so the
impurity concentration has to be considered for this type of material also.

In our model we have used only single impurity density (n"=8%10"" cm™®) throughout the
total model or characteristics of the GFET. The inclusion of the impurity contribution
explains the experimental results well. First, at zero channel potential (V. = 0) the value
of n,=0 and the quantum capacitance is finite and determined by the effective or residual
concentration n" [35]. Secondly, the slopes of the linear regime on both sides of the
capacitance minimum are reduced by the charged impurities. Thirdly, the capacitance
minimum regime is round. As the value of residual concentration or carrier concentration
caused by charged impurities n increases, the minimum region becomes increasingly
round and the slopes decrease. There are some procedures to calculate the value of carrier
concentration caused by charged impurities of the substrate layer [35].

To determine the peculiar interfacial capacitance of the carbon electrodes has a quantum
origin. Finally, the quantum capacitance model is consistent with the recent observation of
Dirac fermions or two dimensional electron and hole gases (2DEG, 2DHG) at the surface
of graphite. A complete interfacial capacitance theory includes both the quantum
contribution and impurities are yet to be developed. The importance of charged impurities
(n") is for both mobility (#) and quantum capacitance (C,).

3.2.4 Self-Consistent Quantum Capacitance
The charge carrier density py in the graphene channel is the absolute value of the net

amount of mobile charge carriers Qy;, divided by the elementary charge g [33]

Qi =—5 CqVen (333)
psi =—% ColVenl (3.34)

If we assume V;, to be positive we would obtain a negative charge which corresponds to
an accumulation of electrons. Note that eq. (3.33) is the Poisson equation in one
dimension, what is much easier to solve than the usual second order differential equation.
One should mention that in this simple equation the minority charge carriers are neglected,
this is a very good approximation due to their exponential decrease with V. It is also
worth to mention that in contrary to a parallel plate capacitor where Q = C.V, we get an
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additional factor of % for graphene. This can be explained by the fact, that C,is a function

of V., and cannot be pulled out of the integral, as in the case of a parallel plate capacitor.

In general it is more useful to calculate pg, in terms of Vgrather than in terms ofVcy.
Therefore V,y, in eq. (3.33) has to be expressed byVj. From the equivalent capacitive
circuit in Fig. 4.1 we can write,

Oun == CaVen= —CoxVox (335)

Now, we get for V.5, and the relation betweenV,, V,, and V; are mentioned below such as:

Ver=Vor 12 (3.36)
2-q
Vox=Vyg — Ven (3.37)

By combining the eq. (3.36) and eq. (3.37) we can get the exact relation as the following:

Vi (3.38)

1
g 3Cq+Cox

An easy and quite general way to solve eq. (3.38) numerically is to perform a self-
consistent loop, i.e. the equations for Cgand V,,, have to be solved simultaneously. In the

following the algorithm is briefly explained.

Ca-ota = Cq (3.39)
Ven = Ven(Cq-ota) (3.40)
Cq = Cq(Vgs-top: Vgs-backVen) (3.41)

First an initial C;must be guessed. Afterwards we assign Cj to Cy_s4 then Cyis calculated
using eq. (3.32) and subsequently C, is calculated using eq. (3.38). Then the new Cj is
compared with C,_,4. If their difference is larger than a certain limit &, the loop is started
again. The loop terminates if [Cy_pq — C4| < 6. The smaller & is chosen the better is the
approximation we get for C,, but the more interactions are needed. Therefore a
compromise between accuracy and computing time is necessary.

Now we substitute eq. (3.38) into eq. (3.33) and get as
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_Cq ng

-y -2
Osh I_fg % Cq*Cox (3.42)
We can express this also in terms of charge carrier density
| oo 343
L _l gl—;Cq+Cox (3.43)

Thus the self-consistent quantum capacitance could be found. And the theory is
consistent.

3.2.5 Equivalent Capacitive Circuit

If we add the back gate-oxide capacitance Cpy.pack to the series connection of Cpand Cox-rop,
it should not make a difference which of the two capacitances belongs to the top-gate and
which to the back-gate. If we set one of these capacitances to zero, we should end up with
a series connection of the remaining oxide capacitance and the quantum capacitance.
Since we also want to describe non-equilibrium conditions i.e. we allow carrier transport
by applying a drain-source voltage V, , an additional parameter V(x) is introduced. It takes
the voltage drop inside the graphene channel, due to the current flow, into account. It is
V=0 at x = 0 and V4 at x = L. The new equivalent capacitive network is displayed in Fig.
34.

Cox-top Cox-back

Vgs-!opCD = n GD Vgs-back -
h C&

Figure 3.4: Equivalent capacitive circuit of a graphene MOSFET with both top-gate
and back-gate. Here, C,rip Corbackare the top-gate and back-gate oxide capacitance
respectively. The applied top-gate voltage is V.. and the applied back-gate voltage is
Ves-back- The potential drop due to the finite resistance in the channel is V(x) and the
difference between the Fermi energy and the conduction band minimum is V; [33]
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Since we can calculate all components In the equivalent capacitive circuit, we are able to
determine the charge in the graphene channel Qg in terms of Vigrpand Vespak. By
applying Kirchhoff’s laws to the equivalent circuit in Fig. 3.4 we end up three equations:

Ves.top— V(%) = Qortop/Coniop + Qst/5C, (3.44)
Vs back = V(%) = Qoc-bacl Coxback + Qu/5C,q (3.45)
Q.\‘h = Qo.x-mp + Qa.r-bac‘k (346)

Now we have three independent equations with three unknowns Qs Qox-topr Qox-back-

Therefore we can solve these equations and write an expression for V,;, = Q;;,/%Cq.

Cove € ox—Fiack
Ver = (Visiop ~V(%)) ==_F. + (Ves-back =V(¥)) e (3.47)
: i Cox—tﬂp+co —back+%cq i Cax—tap'l'cox—back"'%cq

If we set Coy.pack and V(x) to zero we would end up with eq. (3.38), because Fig. 3.2 is only
a special case of Fig. 3.4.. The charge carrier density is calculated by using eq. (3.33) as:

1 Cox—ton C. 1+ Cooc=binck Cq
ox—top Lq ox—bac
- + (Vgs-back —V(x)) : 1 (3 48)
Cox—topt Cor—back“‘icq

=0 = (V, -lop =V(x))
- Cax—top'l'cox—back"'%cq

In terms of charge carrier density equation (3.48) modifies to as the following:
gosp = 1=Osnl (3.49)

The influence of this electrical potential can be modeled by the additional voltages Vg;.iop,0
and Vs packo. The voltage Vi,.p0 is the voltage which needs to be applied to the top-gate
in order to move the Fermi level Er to Ecy and the voltage Vespacko is defined
analogously.

1
3 Cox-top Cq

qPsh = (Vgs—top =Wix)— Vgs—top,{l)

1
Cox—toptCox-back+5Cq
2

}'COJ.'— aci c
(Vgs=back =V (¥) = Vygs—back,o) —2—r | (3.50)

1
Cox—toptCox—back ""icq I

In real graphene there are defects and thermally induced charge carriers [33]. To
determine the real charge carrier density we simply add this residual density (pgp,0) to
the pspasbelow:

Preal = Psh (Vgs-.'op; Vgs-back, Vx) +psh,u (35 1)
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3.2.6 Channel Potential Calculation

The channel potential of dual gated, large area graphene MOSFETs can be
calculated in different techniques. We have followed the model [36]. The main feature
of this model is to feed a drain current into the device and applying the top-gate and back-
gate voltages to calculate the resulting channel potential as well as drain source voltage
[34]. Here, only the drift current is considered and the effect of the self-consistent
quantum capacitance is taken into account using eq. (3.32) and eq. (3.47). First, the
channel length is divided into several equidistant segments as shown in Fig. 3.5. The
length of the small segment is Ax = L/N, where L is the channel length and N is the
total number of small segments. Initially a drain current I is feed into this model and top-
gate voltage V.., back-gate voltage Vis.paads applied and using the parameters in Table-
I1I the channel potential is calculated. Since the current is negative the channel acts as
a p-type MOSFET. To get the channel potential V(x) which is dependent on the position
of the channel length x from O to L, the parasitic source-drain resistances (i.e.R,
and R,) are not considered for potential calculation.

Top Gate

|

Top-gate oxide (Hf0-)

x=0 Back-gate oxide (5i0,) X

Doped Si Wafer

!

Back Gate

Figure 3.5: The cross section of the discretized Graphene channel.

At position x=0 the initial values V(x), p(x), v(x), E(x) are calculated. At x=0,
the channel potential is V(x=0)=V(i=0)=0. The first step is to divide the GFET
channel into equidistant pieces in space (Fig. 3.5). If the number of discretization is N,
the length of one element is Ax = L/N. It is mentioned that x=i{ X Ax, where i =0
to Nie. the number of the values of i is N+I. Using V(x)=0 the self-consistent
quantum capacitance C,(iAx =0) is calculated as mentioned in section 4.4. Then
potential across the quantum capacitance V; (iAx =0) is calculated by using
(3.47). The corresponding sheet charge density pg(iAx =0), saturation velocity vy, (iAx
=0) are calculated by using (5.1), (5.3) respectively. Due to the current continuity the

24 I Pape



drift velocity v(i Ax =0), electric field E(i Ax =0) are calculated as the following

% equations [34].

psh{idxzo) = _:_ch (EAx = 0) Vch (iﬂx = U)I + Psho

3 . . Ig
V(iAx=0) = o (a=0)
) 2h0 . ho\2
Vsar(iAx=0) = T2h2vppgp (IAx=0) Ju-(ﬁvi")zpsh (Lﬂx = 0) - (?)

[v(iAx=0)IX vsqe(iAx=0)

iy Vsqe(iAx=0)?~ v(iAx=0)?

The channel potential in the next segment i.e. i=i+1 iscalculated by:

E(iAx=0) =

VI(i+1)Ax = Ax] = V(iAx = 0)—E(iAx=0)X Ax

(3.52)

(3.53)

(3.54)

(3.56)

(3.57)

This algorithm is repeated by calculating the sheet charge density at x = (i+1) X Ax. Thus
applying this procedure until ;=N and the total channel potential V (NAx) is calculated. If
the drift velocity v(iAx) exceeds the saturation velocity (2vs/z) then the sheet charge

density p(iAx) will be too small to guarantee current continuity. In this condition the drift

velocity is set to maximum saturation velocity and sheet charge density is set to as follows

[36].
Wilx) = vea = 2vp/n

. I ml
p(idx) = —4— = —4
qWvsar 2qWup

(3.58)

(3.59)

When v(x) = vy (x) the electric field E,, would be infinitely large and E,, is calculated by

v(iAx) _ i 2vp

E(iAx)=a i

(3.60)

Where a is an empirical factor such as 4 or 5 used only in the region of constant electric
field at v(x) = va(x). By this procedure the channel potential of graphene MOSFET is

calculated.

3.2.7 Saturation Characteristics

The saturation current is computed by the Landauer formula as derived by here briefly

[34]

2
_2qwQ 2 hQ
Lo [m(Bve)pan — (5

And the corresponding saturation velocity is given by:
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2
Vs J (hwe)2ph — (— (3.62)

mh2vE psp 2
Therefore the saturation velocity (vs,) depends on sheet charge density (ps,) which is a
specific feature of graphene and has to be considered in the calculations.

The saturation velocity is linked to the saturation current Iy, by:

2vF

Ly sa= qW Tpgh (3.63)
The equation (5.1 1) we can get the relation between v, and v as:

=2 (3.64)

Vsat
n

The index 1 is only introduced to distinguish between saturation velocity above and the
one which will be obtained in the next step. It is interesting to note that this saturation
velocity corresponds to the average velocity of electrons moving in +x direction, which is
simultaneously the ballistic velocity. The saturation velocity is considered in our model

[36].

3.2.8 DC Characteristics

There are some methods of simulating GFET characteristics into computer. In this section
one method to model the output characteristics of graphene FETs is mentioned. Here, a
different approach is developed.The main procedure of this model is to calculate the drain-
source voltage (V) for a given drain current (I;). The current-voltage characteristics of
the dual gated GFET are fully discussed by this model [34]. The drain-source current
versus drain-source voltage (I;—Vy;) characteristics was found with different values of
top-gate and back-gate voltages. On the other hand the drain current versus top-gate
voltage (Iss—Vgs10p) and the drain current versus back-gate voltage (Iz—Vgs-back) With
different drain-source voltages were also found. The drift velocity (v4.) and electric field
(Ey) were discussed by this method. The parasitic drain and source resistance are taken
into account also. After all the saturation velocity and saturation current characteristics
were also found. Finally, the maximum DC characteristics of GFET were calculated and
discussed in this section.

The assumptions made in the previous model are mentioned below which are essential.

i. Only the drift current is considered and diffusion current is neglected.

il. The effect of the quantum capacitance on the charge carrier density is taken
into account throughout the whole procedure of this model.

iii. Only the majority charge carriers (electrons or holes) are included in this model
and the minority charge carriers (holes or electrons) are neglected here.

iv. A velocity-electric field characteristic with soft saturation is considered.
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V. The saturation velocity depends on the charge carrier density but can’t exceed
2VE
the value — ever.

vi. The electric field in the region where v = vy, is set to be constant also.
vii.  The parasitic source and drain series resistance are taken into account.

The current-voltage characteristics are found by following both the section 4.4 and section
5.3 approximations. Here, I;—Vj; characteristics of graphene MOSFETs are found by
setting channel potential at source end with IR, at x = 0[34].

V(x=0) = V(i=0) = IR, (3.65)

By applying the procedure of Section 5.3 until i = N and adding potential I; R;to get the
drain-source voltage Vy;, as given by: '

Vas= V(NAx) + 1; Ra (3.66)

Now the drain current and gate voltage (i.e. top gate voltage or back-gate voltage)
characteristics are calculated for different values of drain-source voltages. Here, the given
drain source voltage V.cons is mentioned with the fixed parameters of Table-II and a
condition is applied such that if drain source voltage by eq. (3.66) is same as the Vj;.
consithen this current I, is the desired current for the gate voltage. Such the I;Vey.i0p OF It
Ves-back Characteristics can be found. The necessary parameters of our proposed GFET are
given here.

Table-1.The Parameters of our modeled granhene MOSFET
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Parameters with Units Parameters Values
L(um) 5
W (um) 1
lox-top (nm) 15
Lox-ack (m) 285
Vgs—topln (V) 1 .45
Vgs—back,ofvj 2.70 N
Psnol cm"zj 1.5x10
Rs - Rn* (m 900 ”
n'(cm?) 8x10
Hp = Uy (Cm'ZV’s"') 1500
hQ (meV) 55




3.3 Modeling of ballistic top gated graphene MOSFET
3.3.1 Device Model

Top gated graphene MOSFETs as shown in Fig.1 were simulated. The simulated device has a
top gate insulator thickness of t;;;=2 nm and dielectric constant of (H{O;)k;,=9, which result in a
gate insulator capacitance of Ciy = 3984 nF/cm’ to minimize the gate electrostatic effect.No gate
underlap is assumed, and the gate length is equal to the channel length L,=L=10 nm. The
difference between the metal Fermi energy level and the Dirac point of graphene is Ep-Ep= —0.2
eV, which is typical for a high work function metal source or drain contact (such as Pd). The
contact makes better contact for hole conduction as compared to electron conduction. Using the
model shown in Fig. 1, the DC characteristics and RF performance of top-gate Graphene
MOSFET: at ballistic limit is evaluated.

Source - Gate Drain
Top-gate oxide (5i0>)
Graphene
Substrate

Fig.3.6: Cross section of the modeled top gate-graphene MOSFET
3.3.2 Non-Equilibrium Green’s Function (NEGF)

MOS transistors with channel lengths as small as 10 nm are now being actively studied both
theoretically and experimentally [37]. At the same time recent demonstrations of molecular
switching make molecular electronic devices seem a little closer to reality [38]. It is clear that
quantitative simulation tools for this new generation of devices will require atomic-level
quantum mechanical models. The non-equilibrium Green function (NEGF) formalism
(sometimes referred to as the Keldysh or the Kadanoff-Baym formalism) provides a sound
conceptual basis for the development of this new class of simulators. 1D quantum devices like
tunneling and resonant tunneling diodes have been modeled quantitatively using NEMO [39]
which is based on the NEGF formalism. Although the transport issues in MOS transistors or
molecular electronics are completely different, the NEGF formalism should provide a suitable
conceptual framework for their analysis as well. However, this formalism is based on concepts
that are unfamiliar to most device physicists and chemists and as such remains relatively obscure
despite the obvious value of a fundamentally sound approach on which practical simulation tools
for nanoscale devices can be based.

Most device physicists are familiar with the Schrodinger—Poisson solver. So let us start by
recapitulating how the Schrodinger—Poisson solver works for a device in equilibrium (Fig. 3.7a).
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The first step is to identify a suitable Hamiltonian H that provides an adequate description of the
isolated device. For example, if the device operation involves only the electrons in a parabolic
conduction band then we could use the effective mass Hamiltonian H = —(h2/2m) V2.

Hamiltonian commonly used to provide an accurate description of the valence band. When the
device is connected to the contacts there is some charge transferred into or out of the device,
which gives rise to a potential, U(r) that has to be calculated self-consistently. The Schrodinger—
Poisson solver (Fig. 1B) iterates between the Poisson equation which gives us the potential U(r)
for a given electron density n(r).

—n(r)
€ (3.67)

V2U(r) =

and the law of equilibrium statistical mechanics which tells us that the electron density n(r) for a
given potential profile U(r) is obtained from

n(r="3 ¥, ("’|fy (e, - 1)

(3.68)
By filling the eigenstates ¥, (r) of the Schrodinger equation
[H+UMN, (r)=5,Y.() (3.69)
According to the Fermi function
Jo(E-p)=(1+exp[(E-p)/ kyT])™ (3.70)

H being the Fermi level.

[H+U]

Hi
Device he

AP»~HZonNn
MNHAPBHZ00O

=3

2] (2]
(a)
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(b)

Fig. 3.7.(a) A device driven out of equilibrium by two contacts with different Fermi levels p,
and p; (b)self-consistent procedure for determining the density matrix from which all quantities
of interest (electron density, current etc.) can be calculated.

Periodic Boundary Conditions

The density matrix can be written as (I: identity matrix of the same size as [Hy])

[p1= " p = Fy([H, ~ p) (3.71)
k
We solve eqn (3.5) self-consistently with the Poisson equation
AU q°
o= %[ND —n] (3.72)

using the standard finite difference method to write the Schrodinger equation on a discrete lattice
we obtain

EY, =¥ +(E,+2t+U))¥, -1, ' (3.73a)
at the left end of the lattice.The problem is that we want to get rid of ‘¥, in order to truncate
[H_] to a finite size. We have the same problem at the right end

E¥, =¥, +(E,+2+U,)¥, —1¥,., (3.73b)

where we would like to get rid of ¥,,, . If we simply truncate the matrix, we are in effect setting

¥, =W¥,,, =0 which makes the calculated electron density go to zero at the ends. This would be

an appropriate boundary condition if we had an infinite potential wall at the ends. However,
what we actually have is an open boundary and this is better described by periodic boundary
conditions which effectively wrap the right end around and connect it to the left end by setting
Hi(1,N)= Hi(N,1)=-t. The electron density then approaches the constant bulk value near the
ends as we would expect. However, it is important to note that we are getting rid of end effects
by artificially wrapping the device into a ring. We are not really doing justice to the open
boundary that we have in the real device. The self-energy method that we will describe later in
this section allows us to do that. But before we can describe this method, we need to discuss the
Green’s function approach for calculating the density matrix.

The density matrix can be written in the form
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[p] = [ dEFy(E — ) S([EI - H,)) (3.74)

Using the standard expression for the delta function (0*: positive infinitesimal)

3 2 i i i
2méd(x) = Lim ( ) = — rit
(x) 20" \J2 12 YHio*  z—jor e can wrile

8(EI - Hy) = ——([(E +i0")] — H,]™* = [(E — i0")] — H,]™. (3.75)

Equations (3.8) and (3.9) can be rewritten in the form
1 +o
o = 5= | dEf(E + &~ IA®)]
TJ_«

o] = o [ dEFy(E - i)[A(E)] (3.76)
where [A(E)] is known as the spectral function

[A(E)] = i([G(E)] - [G(E)]*) (B.77)

[G(E)] being the retarded Green’s function defined as
[G(E)] = [(E +i0*)I — H,]™! (3.78)

One can see from eqn (3.76) that the spectral function [A(E)] /2x can be interpreted as the
available density of states which are filled up according to the Fermi function to obtain the
electron density. Indeed the diagonal elements of [A(E)] /2x in the real space representation give
us the local density of states at different points in space (a quantity that can be measured with
scanning probe microscopy).

Device Reservoir
H Hg
H+2,

Fig. 3.8: The interaction of a device with a reservoir can be represented by a self-energy matrix
Z.

Self-energy
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The concept of self-energy is used in many-body physics to describe electron—electron and
electron— phonon interactions. In the present context, however, we are using this concept to
describe something much simpler, namely, the effect of a semi-infinite contact. But the principle
is the same. In general, we have a ‘device’ connected to a large reservoir and the overall
Hamiltonian matrix has the form shown in Fig. 3.8 [40]

& Al

: HR

where the dimension of Hgis huge compared to that of H . The overall Green function has the
form

[ G GRD] B [(E +i0*)[ - H ~T -
Grp Grl -t (E +i0%)I — Hy
We are only interested in G (and not in Gg, Grp or Gpr), because we only care about the details
inside the device and not inside the reservoir. It is straightforward to show that (see p. 146, Ref.
[41])

G=[(E+i0")-H-Y]"' ~[EI-H-X]" (3.79)
Where
T=1g.r andg, =[(E+i0")[—H,]" (3.80)

This shows that the effect of the coupling to the reservoir can be accounted for by adding a self-
energy matrix X to the Hamiltonian H (Fig. 3.2). This is a very general concept that allows us to
eliminate the huge reservoir and work solely within the device subspace whose dimensions are
much smaller. Note that ¥ is not necessarily an infinitesimal quantity (unlike 0%); it can be finite
with a value defined by the coupling to the reservoir. We will discuss the physical meaning of X
further at the end of this section.

We could use eqn (3.80) in general to calculate the self-energy for arbitrary reservoirs and
coupling matrices. It may seem that we have not gained much since we need to invert a huge
matrix to obtain gg which we need to evaluate the self-energy from eqn (3.80):

Z(m: n-) = Z T(m’ #)SR (ﬂ; v)T+ ('IJ, Tl)
wy

The indices m, n refer to points within the device while p, v refer to points inside the reservoir.
However, the coupling matrix couples the points within the device to a small number of points
on the surface of the reservoir, so that we only need gg(u,v) for points (i,v) that are on the
surface. This surface Green’sfunction can often be calculated analytically assuming a given
model for the reservoir.

For the simple 1D problem at hand, the self-energy can be obtained from fairly elementary
arguments without worrying about surface Green’s functions. The self-energy matrix X,( E ) that
accounts for the semi-infinite lead on the left is given by (t=h%*2ma’ as defined earlier before
eqn (2.5))
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(3.81a)
Where E = E. + U; + 2t(1 — cosk,a)

In other words all we need is to add a term -t exp(i k;a) to Hy(1,1) and we have accounted for
the semi-infinite lead exactly, as far as calculating the Green’s function is concerned. We can
derive this result using an elementary argument. We stated earlier (see eqn (3.73a)) that the basic
question at the boundary is how to eliminate ¥, from the equation

Elpl = —tlpu + (Et.' + Zt + Ul)q'll - tq’lz

With infinite wall boundary conditions we set ¥, equal to zero while with periodic boundary
conditions we set it equal to Wy . In the self-energy method we assume that we only have
outgoing (not incoming) waves at the ends. The fact that an actual device has incoming waves as
well from the contacts is irrelevant when calculating G. G is the retarded Green’s function
representing the response of the system to an impulse excitation within the device: [E] — H —
Z]G = I, and hence the appropriate boundary condition for G is that we only have outgoing
waves at the ends. This means that when calculating G we can write

Yy = Wiexp[ik;a]
So that eqn(3.81a) becomes

Elpl = -t exp[l'kla] lpi + (Zt + Ul)lpl = t‘pz

showing that we can take care of the open boundary condition simply by adding a term -t exp[i
kia] to pointl, as stated above. Similarly the self-energy matrix X,(E ) that accounts for the
semi-infinite lead on the right has only one non-zero term at point N which is given by

2,(N,N;E)=—texp(ik,a) where E=E_+U, +2t(1-cosk,a) (3.81b)

The Green’s function is obtained from
G(E)=[EI-H,-Y,-%,]" (3.82)

where the self-energy functions £,( E )and Z,( E )account for the open boundary conditions
exactly. The spectral function A(E) is then obtained from egn (3.8) from which the electron
density is obtained using eqn (3.73). However, it should be noted that the periodic boundary
conditions merely get rid of end effects through the artifact of wrapping the device into a ring
while the self-energy method treats the open boundary condition exactly. An open system has a
continuous energy spectrum, while a ring has a discrete energy spectrum. The electron density is
obtained by integrating over energy and is relatively unaffected by the discretization of the
spectrum at least at room temperature. But the difference would be apparent, if we were to look



at the density of states, that is, the spectral function. The full power of the self-energy method
becomes apparent when we model a device under bias—a problem that cannot be handled with
periodic boundary conditions.

Broadening

It might appear that the self-energy method is just another method for handling boundary effects.
With infinite wall boundary conditions we set W¢=¥n:+1=0; with periodic boundary conditions
we set Wp = Wy; in the self-energy method we set Wy = Wiexpl[i k;a] and Wn:1 = P expli kal.
However, there are two factors that distinguish Zi(E)and Z,(E)from ordinary Hamiltonians.
Firstly, they are energy dependent. Secondly, they are not Hermitian. We can write

HL+Z.+ZZ={HL+Z‘+Z' +zz+zz+]+[z,—z. +22—>:2J
2 2 2 2

=Hy—iT,/2~iT, /2

Where T, =f[Zl —Zl+], I, =i[Zz '*Z;J

The point we want to make is that the self-energy terms have two effects. One is to change the
Hamiltonian from Hito; which changes the eigenstates and their energies. But more
importantly, it introduces an imaginary part to the energy determined by the ‘broadening’
functions Iand ;. The former represents a minor quantitative change; the latter represents a
qualitative change with conceptual implications.

One way to understand the meaning of these functions is to imagine a representation which
diagonalizes H;. This representation will not necessarily diagonalize I and I;—indeed
interesting quantum interference effects often arise from the non-diagonal elements of Ijand I5.
But if [ and I are also simultaneously diagonalized then the eigenenergies of
(H+Z+Z2) will be given by

E—i(y,+7,)/2

Where &, y,, and y,are the corresponding diagonal elements of Hy, I and Iyrespectively. This
could be viewed as a broadening of the energy level from a delta function 6(E— &) into a line of

the form ntv .
E—ey+| B +:/2J
(E-¢) ( 5

which could have a non-Lorentzian shape sinceland2 are in general energy dependent. The
imaginary part of the energy implies that the wavefunction and the associated probability decays
withtime which can be written in the form (neglecting any energy dependence of 1 and 2

i t A
oo ol e 2
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2 expf— Y2 o[ 22t
|¥|2~ exp[~ 2] exp[— 2 (3.83)

An electron initially placed in that state will escape into the left and right leads with time
constants h/y,and %/ y,respectively. The quantities y, /h and y, /A thus represent the rates at
which an electron initially in

(a) ()

Fig. 3.9: A discrete level is coupled to a reservoir with a Fermi level p. The broadening is the
same regardless of whether the reservoir states are empty or filled. (a) Level coupled to empty
states (b) level coupled to filled states.

particular state will escape into the left and right states respectively. For example, we have seen

that a 1D lead gives rise to a self-energy that is purely diagonal in real space representation (see
eqn (3.15a))

¥(1,1) = —texp(ika) - I'(1,1) = 2tsin(ka) = hv/a

which is quite reasonable since we expect the rate of escape from a lattice site of size ‘a’ to be
v/a.

Coherent transport

We have seen in the last section that the equilibrium density matrix is obtained by filling up the
available density of states (or spectral function [A])according to the Fermi function (see eqn
(3.10)).

Devie —»

Fig. 3.10. The eigenstates of a composite contact—device—contact structure can be divided into
two groups associated with incident waves from the A, left contact and; B, the right contact. If
we neglect scattering processes under bias, then under bias the ‘left’ eigenstates in A remain in
equilibrium with contact 1 () and the ‘right’ eigenstates in B remain in equilibrium with
contact 2 ().

35| Page



The next problemis to find the density matrix if the device is connected to two contacts with
different Fermi levels 1 and 2 (see Fig. 3), and hence different Fermi functions. The solution in
general is quite involved: non-equilibrium statistical mechanics is a far more complex subject
than equilibrium statistical mechanics. However, the answer is relatively simple, if we neglect
scattering processes within the device (that is, if we assume transport to be coherent). This turns
out to be a fairly accurate assumption for many ultra short devices like resonant tunneling
diodes. The eigenstates of the composite contact—device—contact structure can then be divided
into two groups associated with waves incident from the left and right contacts respectively (see
Fig. 3.10). When a bias is applied, these ‘left’ eigenstates and ‘right’ eigenstates remain in
equilibrium with the left contact and the right contact respectively. The ballistic conductor is a
relatively simple example of this principle where the left eigen states are the ‘+k’ states and the
right eigenstaes are the -k’ states.

This simple observation (some might call it an ansatz) leads to an enormous simplification and is
at the heart of the transmission formalism that is widely used in mesoscopic physics[40-42]. It
allows us to treat a non-equilibrium problem using equilibrium statistical mechanics. At
equilibrium, we fill up the full spectral function[A,] according to the Fermi function. Under bias,
we fill up part of it (the left spectral function [A;]) according to the Fermi function in the left
contact and part of it (the right spectral function [A;]) according to the Fermi function in the
right contact. The density matrix is given by (cf. eqn (3.10))

dE
P =J-2_[f0(E+£k —H)A + fo(E+e,— p,)A,]
T
dE
So that p=zpk :J-z_[Fo(E“ﬂl)A:+F0(E_au2)Az] (3.84)
k E

The Green’s function formalism provides a simple way to separate the total spectral function [A]
into a left spectral function [A;] and a right spectral function [A;]:

4 =EHET, A =6hE" | (3.85)
G=[E1-H,-%,-%,]" (3.86)
rl.z = iIZI,Z _Zl_z+] (3.87)

We can prove that the total spectral function is indeed equal to the sum of the left and right
spectral functions:

A=i[G—-G*] = A, + A, = GTyG* + GT,G? (3.88)
By writing equation (3.87) as
G'=El-H,-Y,-Y, and [G']'=E-H -3 -%,

Sothat G —[G*]" =il +il,
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Premultiplying by G and post multiplying by G, we can prove eqn (3.20).

Current expression

An alternative expression for the current can be obtained from a rate equation point of view by
writing the outflux from the device into contact 1 as [40]

Iyt = (—q/h [ dEtrace(T}p) (3.89)

which can be understood by noting that the density matrix is like the electron density while 01 =
N h represents the rate at which electrons escape into the contact. The influx from the contact
into the device can be written by equating it to the outflux we would have if the device were in
equilibrium with that contact:

Iin = (=3) [ dEtrace(Typy)
where
2n[p, (E) = F,1[A{(E)] + F1[A(E)] (3.90)

represents the density matrix we would have if F2 were equal to F1 . The net current is given by
IDIin Iout. Making use of eqns (3.87), (3.89)~(3.90) we obtain

I = (—q/h) [ dE trace(I}4,)[F, — F,). (3.91)

We could go through a similar argument regarding the influx and outflux at the other interface to
obtain an equivalent expression for the current:

I = (—q/h) [ dE trace(T,A,)[F, — E]. (3.92)

Equations (3.91), (3.92) provide alternative expressions either of which can be used to calculate
the terminal currents without explicitly calculating the density matrix.

Relation to the transmission formalism

An interesting aspect of eqns (3.91) and (3.92) is that the expression for the current has exactly
the same form that is used in the transmission formalism [40]

I=(-3) [dET(E)(F, - F). (3.93)
The function T . E / is typically interpreted as the probability that an electron will transmit from

the left to the right contact. Equation (3.93) is often used to calculate the current in tunneling and
resonant tunneling devices. Comparing eqn (3.93) with eqns (3.91), (3.92) it is clear that

T(E) = trace(I}A,) = trace(I,4;)
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= t!'ace(l"lFl"zG+) = trace(rz GF]_G+) (394)

The NEGF formalism, applied to a coherent device, can thus be viewed simply as a convenient
method for evaluating the transmission probability. The basic physics is identical.

CHAPTER IV
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Large area Graphene MOSFET

4.1 Introduction

In this chapter the performance of dual gate large area graphene MOSFET is analyzed using
analytical approach.Here we have used device length as 5 pm and width as 1 pm respectively.
The detailed simulation results are given below.

4.2 C-V characteristics

The quantum capacitance as a function of gate voltage is investigated in this section. The effect
of the quantum capacitance on the overall gate capacitance is also mentioned. The effect of the
impurity concentration in the substrate layer is also considered. The quantum capacitance has a
vital effect on the total DC characteristics as well as radio-frequency characteristics. Our
simulation results using MATLAB are illustrated here.

From the beginning of our given model we investigate the effect of the quantum capacitance on
the overall gate capacitance. We simulate this quantum capacitance by using the following data
on the given table. Here a 3 nmSiO, top-gate dielectric, zero Vis.p0 and zero applied Vgi.e.
without feeding current into the model is considered. The effect of the impurity concentration
n'is taken into account. The value of the impurity concentration n" is considered as 4x10" cm™
as shown in Table—II:

Table-II: Different parameter symbol and values of Graphene MOSFET

Parameters symbol of GFET Parameters value of GFET
! ox-10p (N11) 3
Coxtop (UFem™) 1.15
Vg.s-.rop,ﬂ (V) 0
* i 11
n (cm”) 4x10
Vds (V} 0
Ve (cm s") 1x10®

The quantum capacitance and the potential across the quantum capacitance is solved by self-
consistent method by using the values of Table—II.
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Figure 4.1: Quantum capacitance Cy(blue), top-gate oxide capacitance Cor.ipp (red) & gate
capacitance C, (green) of a graphene MOSFET structure as a function of top-gate voltage.

The minimum value of the quantum capacitance was found as 1.7325 pFem™ at zero top-gate
voltage and the maximum value was found as 23.5009 chm’z for both top-gate voltage —1V
and +71V also at Fig. 4.1. The shape of the quantum capacitance is fully symmetrical on the both
side of the Dirac point i.e. at the point where the minimum value of C, is found.

4.3 Impurity Concentration Dependency of C,

In this case we have used the value of the parameters as mentioned on Table-II. The quantum
capacitance was shown for different values of the impurity concentrations n" from 1x10" cm™
to 10x10"" cm™ [35]. With the increasing value of n' the minimum value of the quantum
capacitance is also increased. But the shape of C;—Vg,.ip curve is unchanged i.e. symmetrical
with both the voltage-axis or the top-gate voltage. By taking different values of n from 1x10"
cm to 10x10" cm? the quantum capacitance C, is found as shown below:
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curves are about same shape with respect to both sides of the top-gate voltage axis. We can
conclude that the impurity concentrations may affect more for the Cymisthan the Cpma(for a
given range of gate voltage). Though the C, i,is being changed then the gate capacitance is also
being changed because Cy is related to C, as a series combination of the C,, and C,. Impurity
concentration has a great effect at C, i,or Dirac point [34].

4.4 Current Voltage (I-V) Characteristics

In our model we give the drain current as input and the corresponding drain-source voltage is
found. But in this curve we simulate drain-current versus gate-voltage (i.e. top-gate or back-
gate) for different fixed value of drain-source voltage (Vy). For every iteration we set a fixed
value of drain-source voltage (V). Then according to the above procedure we calculate the
drain-source voltage (V) for a given range of drain current (/). In our total simulation the
impurity concentration is considered as n = 8x10"" cm™. This value is considered through-out
the total simulation of our model also.

The output characteristics from Fig. 4.3(a) deserve a closer inspection. While in the shown Vi
range the upper three curves for Vi, yp,= —3.0V, —2.25V, —1.50V and—0.75V seemingly have a
shape as known from conventional FETs, i.e. a linear region followed by a saturation of the
drain current, the curve for Vj..,,= 0.0V shows a kink-like shape with an inflection point
followed by a subsequent increase in I(like a “second” linear region). First, I; increasesalmost
linearly with V. Afterwards the drain current will saturate and reaches a plateau. Up to now the
GFET behaves similarly to a conventional MOSFET. However, then a second increase of I is
observed. This kink-like shape of the output characteristics is very distinctive for GFETs with
large-area graphene channels and will now be examined in detail.

This behaviour arises from the transistors of p-type into n-type conduction at the drain end of the
channel. It should be noted that at higher drain-source voltages the I-V curves for more negative
gate voltages also show an inflection point. This behaviour occurs for a change in the conduction
type at the drain end of the channel from p-type to n—type [25]. Fig. 4.3(a) and 4.3(b) shows the
I-V characteristics of the graphene MOSFET for different V., at two back gate bias
conditions, Vs pack of +40V and —40V respectively. Fig. 4.3(a) shows that the drain current I, is
increasing with increasing drain to source voltage Vj; for different top-gate voltages at constant
back gate bias Vi.pacx=+40V. The similar curves are displayed on Fig. 4.3(b) for Vi, pax=—40V
also. The drain current I; as a function of drain-source voltage Vy; is illustrated for dual-gated
large-area graphene MOSFET using the parameters as Table-1.
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The Fig. 4.4(a) and 4.4(b) show the I-V characteristics of the graphene MOSFET for different
values of top-gate voltage Vi.p= 0.0V, +0.75V, +1.50V, +2.25V and +3.0V for back-gate
voltage Vspack = +40V and —40V respectively.
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Figure 4.4: (a) The drain current I; as a function of drain source voltage Vy for five different
values of Vys_sop at Vgspack = +40 V. (b) The drain current I as a function of drain source

voltage Vg, for five different values of Vys_yop at Vgs.pack = —40 V.



The Fig. 4.5(a) and 4.5(b) show the I-V characteristics of the graphene MOSFET for different
values of back-gate voltage Vgs.pack= 0.0V, —20V, —40V and—80V for top-gate voltage Vs.rop =
+1.5V and —1.5V respectively.
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Figure 4.5: (a) The drain current I; as a function of drain source voltage V; for five different
values of Vys_pack at Vesiop = +1.5 V. (b) The drain current I; as a function of drain source

voltage V, for five different values of Vgs—back at Vgsaop=—1.5 V.
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The Fig. 4.6(a) and 4.6(b) show the I-V characteristics of the graphene MOSFET for different
back-gate voltages at two top gate bias conditions, of +1.5V and —1.5V respectively. Fig. 4.6(a)
and 4.6(b) shows the transfer characteristics and it is seen that Dirac point shifts when the drain-
source voltage is varied.
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Figure 4.6: (a) The drain current I; as a function of drain source voltage V, for five different
values of Vgs_pack at Vesyop = +1.5 V. (b) The drain current I; as a function of drain source

voltage Vy; for five different values of Vys_pack at Vo= —1.5 V.
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Figure 4.7: (a) The drain current I; as a function of top-gate voltage V.1 for four different
values of Vyg at Vge_pacr = +40V. (b) The drain current I as a function of top-gate voltage Vg,
0p for four different values of Vg at Vys_pacr = —40V.

The Fig. 4.7(a), 4.7(b) and 4.8show the transfer characteristics for different values of drain-
source voltage Vg are computed with the parameters from Table-1. In all curves the drain-current
15 is first decreasing with increasing Vis-t0p UP 10 a certain point where it reaches a minimum and
raises again forwards. This can be understood as follows: For zero Ves-10p the majority charge
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carriers are holes, since the energy bands are slightly up-shifted with respect to the Fermi
energy, due to the back-gate voltage Vs pack of —40V.

If Vis.0p increases negatively, the channel potential will be lowered resulting in a smaller hole
concentration. At the point, where V., is zero, i.e. Ecy= Er, the minimum carrier concentration is
reached. A further increase of V.., would result in a negative V,;, and therefore electrons would
accumulate and over compensate the decrease of holes. Thus the current is increasing again.
Such a behaviour involving both electrons and holes is called ambipolar. A qualitative
explanation of why the minimum shifts with Vy is observed. It can be seen that the Dirac point

shifts when the drain-source voltage is varied. Such a shift is observed in experimental GFETs
[33].
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Figure 4.8: The drain current /; as a function of back-gate voltage V,.pqfor four different
values of Vg (—0.5V, —1.0V, —1.5V and —2.0V) at Vys_op = +1.5V.

Kink Effect of I-V Curves

The variation of gate voltage directly affects the channel potential, V.. The quantum capacitance,
C, and the graphene potential, V4 are varied self-consistently with V, which influences the sheet
charge density, py;. Thus the drain current, I; which is a function of gate voltage (V.iop O Vyback)
and sheet charge density, py, is also changed. The I, curve from Fig. 4.3(a) for Vis..p=0.0 V,
which shows a pronounced ‘kink’ in the characteristics signify the presence of an ambipolar
channel. For our device in Fig. 3.1, with channel length L, V(L)=Vy; so that for Vi < Vasxini= Vs
wp-Vo, current is carried by holes throughout the length of the channel [5]. For Vg = Vis.im, the
vanishing carrier density produces a ‘pinch-off ’ region at the drain that renders the current in
the channel relatively insensitive to V and results in the pronounced kink seen in the I-V
characteristics. The V> Vis.tink, gives rise to an accumulation of electrons in the drain side and a
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corresponding increase in the carrier density leading to a further increase in the drain current.
Thus there produces an ambipolar regime in the graphene channel. The pinch-off point becomes
a place of recombination for holes flowing from the source and electrons flowing from the drain.
Because there is no band gap, no energy is released in this recombination [25].

4.4 Effects of Channel Potential

The parasitic series resistance (R;) is considered for the following simulation curves by using
MATLAB. But there may arise a question: Why channel potential is not start from the 0.0V
at the starting point of the source side? And this channel potential should be equal to the Vat
the channel length x=L. Because IR, voltage is considered here at the source end.
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Figure 4.9: (a) The channel potential V(x) at V= —1.0VforVys.pp = —1.5V and Vi pack =
+40V.(b) The channel potential V(x) at Vy= —1.5V, —1.75V, —=2.0V, =2.75V, —3.0V forVgs..pp

= —=1.5V and Vs pacx = +40V.
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Fig. 4.9(a) shows the simulation of potential on graphene channel with fixed Vs =
=1.0V, Vys—top = —1.5V and Vys_paer = +40V. At the source end i.e. at x=0, channel
potential is zero. As the channel length increases the corresponding channel potential increases
and becomes equal to drain voltage at the drain end voltage equal to —1.0 V.

The graphene MOSFET structure having double gate, with series resistances while the
remaining parameters are shown in Table-I. The Fig. 4.9(a) and Fig. 4.9(b) show the conditions
in the channel for two different drain-source voltages Vy of —1V and five different values
respectively. Let us start the discussion for an applied V..o, = —1.5V and zero V. Then the hole
concentration is constant at any position in the channel and no current is flowing. If we gradually
vary Vg to —1V, an increasing current flows and the hole concentration at x = L decreases for
increasing absolute V. At V= —1V the Fermi level at the source end of the channel (x =0) is at
0 eV and at the drain end (x = L) it is shifted downwards by 1 eV due to V. Thus, the local gate-
to-channel voltage is — / V at x = 0 and zero at x=L as shown in Fig. 4.9(a). The bottom of the
conduction band is shifted upwards by V,;, with respect to Er at the source end of the channel,
which results in a p-type (i.e.hole) conduction. At x=L, the bottom of the conduction band is
located just at Er -this corresponds to the Dirac condition, i.e. zero gate-induced carriers in the
graphene and pg, = psho. We are now at the inflection point of the Id —¥; characteristics.

If Vg is further decreased to several values from —1.5V, —1.75V, —2.0V, —2.75V and—3.0V
gradually (see Fig. 4.9(b)), we will obtain a positive gate-to-channel voltage of + 0.5 V (for Vg
= —1.5V) at x = L. This gives rise to an accumulation of electrons and a corresponding increase
in the carrier density leading to a further increase in the current. Now the majority charge
carriers are holes at the source end of the channel and electrons at the drain end. In other words,
ambipolar conduction occurs and the conductivity type of the channel changes between source
and drain. Such a behavior is specific for GFETSs, caused by the gapless nature of the channel
due to the zero bandgap, and does not occur in conventional field-effect transistors. If we
consider other values of Vy; for Fig. 4.9(b) the above explanation is true for all these conditions.
These same criteria can applicable for Fig. 4.10(a) and 4.10(b) for sheet charge density; Fig.
4.11(2) and 4.11(b) for graphene potential; Fig. 4.12(a) and 4.12(b) for both E., and V(x)
respectively. From Fig. 4.9 to Fig. 4.12 it is very clear that the ambipolar conduction occurs at
the channel of graphene MOSFET.
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Fig. 4.10 (b) shows the variation of sheet charge density with channel length at different Vy. As
Vs is decreased negatively the corresponding sheet charge density decreases up to Dirac point.
After Dirac point we obtain a positive gate to channel voltage at the drain end which gives rise
to an accumulation of electrons and corresponding increase in sheet charge density.
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Figure 4.10: (a) The variation of the sheet charge density p,, with channel length at Vg,.
o= —1.5V, Vispa=+40V with V4=—1.0V. (b) The variation of the sheet charge
density p,;, with channel length at Vys1,=—1.5V and Vyspao=+40V with Vo= =15V,
—=1.75V,-2.0V, —2.75Vand —-3.0 V.
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Figure 4.11:(a) The graphene potential gV, at Vg= —1.0VforV,,p = —1.5V and Vegpack =
+40V.(b) The graphene potential gV, at V= —1.5V, —1.75V, =2.0V, —2.75V, —3.0V forV,,.
top = —1.5V and Vigpack = +40V.
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4.6 Velocity Field Characteristics

The drift velocity and electric field is closely related to each other. In our simulation model we
have the assumption to describe this effect also. With increasing values of electric field the drift
velocity is also increased but after a certain range as the electric field is increased the drift
velocity is not increased. Then drift velocity is limited to the average value of the Fermi velocity
also. Fig. 4.13 shows the velocity-field relation for graphene MOSFET. It can be seen that the
drift velocity increases linearly with the applied electric field and becomes saturated (2.12x107
cms-1) at 75.06 kV/cm similar to [45], [46].
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Figure 4.13: (a) The velocity-field relation for graphene MOSFET at Vgq.40p= —1.5 V and Ve pack=
+40V when V4= —3.0V. (b) The velocity-field relation for graphene MOSFET at Vi,
wp= —1.5 Vand Vs paex= +40 Vwhen V= —2.5V, —2.75Vand—3.0 V.
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CHAPTER V
Ballistic Top Gate Graphene MOSFET

5.1 Introduction

In this chapter the performance of a top gate graphene MOSFET in ballistic limit is analyzed
using quantum transport simulation using NEGF formalism. Here we have used the device
length as 10 nm. The detailed simulation results are given below.

5.2 Output I-V Characteristics

Fig. 5.1 shows the simulated drain current (I;) as a function of drain voltage (Vs4) for different
gate voltages. The I-V characteristics shows standard MOSFET type behavior along with the
high drain current density reaching to ~12000 pA/ pm which is promising. The reason for the
high current density can be attributed to the light effective mass of graphene and high carrier
velocity [45].

As the FET is biased in the saturation regime, the average carrier injection velocity at the source
end of the device is found to remain almost constant with regard to the applied gate voltage over
a wide voltage range, which results in significantly improved transistor linearity compared to
what a simpler model would predict. Physical mechanisms for good linearity are explained,
showing the potential of graphene FETs for analogue electronics applications [46].
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Fig. 5.1 I-V Characteristics of a top-gated graphene MOSFET
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Fig. 5.2 In—Vsp Characteristics of graphene MOSFET.

At lower gate voltage, (Vg < 0.2) a pronounced ‘kink’ is observed in drain current
characteristics. At higher gate voltage (V> 0.4) this kink effect almost disappears. At a gate
voltage, V;=0.1V, there observed a significant ‘kink’ which is shown more details in Fig. 5.2.

It is observed there are three regions in Ip—Vsp characteristics shown in Fig. 5.2 such as First
Linear Region (I), Quasi Saturation Region (IT), Ambipolar Region(Second Linear Region, III).

I. First Linear Region:

In the first linear region, the drain current is carried by holes throughout the length of the
channel which is shown in the Fig. 5.3(I)

II. Quasi Saturation Region: At a lower gate voltage there produces a kink in the drain current
characteristics which was first reported in simulated and experimental results [47], [48].

For Vsd=Vsd-kink, the vanishing carrier density produces a ‘pinch-off * region at the drain (Fig.
5.3, I0) that renders the current in the channel relatively insensitive to Vsd and results in the
pronounced kink seen in the I-V characteristic [49]. This region is called unipolar or Quasi-
saturation region. Although the channel saturates at Vsd=Vsd-kink, the drain end of the channel
may not experience charge neutrality at this potential. This quasi saturation behavior is due to
the drain Fermi level aligning with the Dirac point profile in the channel, followed by the onset
of ambipolar regime. The low density of states around the Dirac point gives rise to decrease in
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current increment and explains the saturation observed for voltages where drain Fermi level is in
vicinity of conduction band in channel. Since the density of states is low only in a very small
energy range around Dirac point, graphene MOSFETs do not exhibit complete saturation seen in
conventional silicon MOSFETSs. The length of the Quasi-saturation region is dependent on the
Fermi level. At a gate voltage Vg = 0.1 and 0.2 V a visible quasi-saturation region is noticed,
where at Vg = 0.4 and 0.6 V the Quasi-saturation saturation region almost disappears.

III. Ambipolar Region (Second Linear Region):

An additional increase in the drain voltages beyond Vg , i.€. for Vsd>Vsd-kink the charge
neutrality point is pushed into the deeper of the channel, toward the source (Fig. 5.3, III). As a
result, electrons are injected into the channel from the drain end. These electrons are mobile
rather than having depleted region between the point of pinchoff and the drain terminal with
fixed negative charges. This is as a result of a zero bandgap in 2-D bilayer graphene, and the
phenomenon is known as ambipolar transport [49]. In this bias range the carriers in the channel
on the source side of the dirac point are holes, and those on the drain side are electrons. In this
ambipolar regime, the pinch-off point becomes a place of recombination for holes flowing from
the source and electrons flowing from the drain. No energy is released in this recombination due
to absence of bandgap. In this region, the channel conduction is carried out by both electron and
holes so it is called ambipolar region. However, in the ambipolar saturation region, the drain
current increases with an increase in the drain voltage, and this behavior has been referred to as a
second linear region [52] as shown in Fig. 5.2, I1L

Fig. 5.3 Schematic demonstration of the carrier concentration under the top gate region. At point
I (Vsa < Viakink), the channel charge at the drainend begins to decrease as the minimal density
point enters the channel. At point I (Vg = Vg.kink), the minimal density point forms at the drain.
For V4> Viaink (point III), an electron channel forms at the drain [47].
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5.3 Transfer Characteristics:

Fig. 5.4 (a) and (b) shows the calculated transfer characteristics of a top gated graphene
MOSFET. It can be seen that the dirac point shifts when the drain-source voltage is varied. It is
noticed that dirac point voltage, Vg shifts significantly towards right from 0.4 to 0.6V at
positive drain bias shown in Fig. 5.4(a). This is due to the change of channel conductivity from p
type to n type. Where as Vg shifts slightly towards left from 0.25 to 0.15V at negative drain
bias shown in Fig. 5.4(b). So, the shift of dirac point voltage Vinc in positive drain bias is more
prominent than negative drain bias. Also, the p-n asymmetry is due to short channel effect.
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Fig. 5.4 (a) L4 — V, curve for top gated graphene MOSFET at positive drain bias.
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Fig. 5.4 (b) I — V, curve for top gated graphene MOSFET at negative drain bias.
5.4 Tranconductance characteristics

Fig. 5.5 shows the variation of transconductance with the gate voltage. The maximum simulated
transconductance for ballistic condition is gn= 4500 pus/pmat V,=0.07V which leads to high
cut-off frequency for Graphene MOSFET. With increasing gate bias the corresponding
transconductance decreases.
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Fig.5.5 Transconductance, g, vs Gate voltage,V, of a top-gated graphene MOSFET
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Next part focuses on studying scaling of small signal parameters such as transconductance with
the channel length under ballistic conditions. Fig. 5.6 shows the variation of transconductance
with channel length varying from 10 nm to 80 nm. The output transconductance, gn, increases
with the decrease of the channel length as shown in here. The decrease in transconductance is
becoming more prominent at longer channel lengths.
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Fig.5.6.Transconductance, g, vs Length of a top-gated graphene MOSFET

Fig. 5.7 shows the output transconductance, gg,as a function of the channel length. As the
channel length scales from 80 nm to 50 nm, the ballistic output transconductance increases only
very slightly. As the channel length scales down to 50 nm the output transconductance, ggs,
however, rises significantly due to electrostatic gate effect. At short channel length (10-40 nm)
the transconductance becomes constant that helps to keep the constant cut-off frequency in short
channel lengths.
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Fig.5.7. Drain Transconductance, gy vs Length of a top-gated graphene
MOSFET.
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5.5 Dependence of Fermi energy on gate vol

tage and density of states (DOS)

Fig. 5.8 displays the dependence of Fermi energy, Er on gate voltage, Vrg for three different

values of Cg. As expected, an increase of |Ef] with increasing |VTG| is observed. This effect is

strong at small voltages. Close to VIG = 0,

a linear behavior is observed leading to a large

increase in Ef for small changes of VIG. The (unphysical) saturation portion indicated in

Fig.5.8 is due to the dominating cable capacitance. The Density of States (DOS) which is

directly proportional to quantum capacitance

is a function of Fermi Energy. Here the DOS is

plotted against Fermi Energy for different oxide capacitance (Cg).
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Fig. 5.8 Gate voltage (VTG) vs Fermi Energy (Ej) curve for different Cg

Fig. 5.9 represents the DOS vs Ef

D(E,)= —).Here, the variation of

(,)

Dirac point is zero.
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curve for ideal graphene given by equation.

DOS with respect to Ey is linear. DOS at the
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Fig. 5.9: Density of states as a function of Fermi energy for ideal case

Fig. 5.10 depicts that the value of DOS at the charge neutrality point (Dirac point) is non zero
which is not identical with the theoretical density of states for ideal graphene shown in fig. 5.9.

* In contrast to theory, there is a finite number of states close to the charge neutrality point. This is
due to the presence of local potential variations within the graphene sheet.
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Fig. 5.10: Density of states as a function of Fermi energy for different oxide
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CHAPTER VI

Conclusions and Recommendations

6.1 Conclusions

In this dissertation, the theoretical performance of graphene MOSFET is studied in large area
and ballistic limit. In case of simulating large area graphene MOSFET, an analytical approach is
applied. On the other hand the performance of graphene MOSFET in ballistic limit is evaluated
using quantum transport simulation based on the NEGF formalism.

We have calculated sheet charge density dependent quantum capacitance self consistently
considering charged impurities in the gate oxide. With increasing charged impurities
concentration the quantum capacitance increases near the Dirac point. A maximum value of
quantum capacitance 23.564 pFcm™ is obtained at Vis-op= *1Vwith the chargedimpurities
concentration of 8x10'' cm™. The linear channel potential profile is also evaluated.

The effects of dual gate voltage on the I-Vcharacteristics of graphene MOSFET is illustrated
here. The double gate provides superior control of short channel effects and higher currents
compared to a single gate MOSFET. The kink-like shape of the output I-V characteristics with
large-area graphene MOSFET is observed. In large area graphene it is found that current
conduction is occurred by electron or hole or combination of both depending on the drain bias
which is the proof of the ambipolar nature of graphene channel.

The transfer characteristics show the p-n symmetry with respect to minimum conductivity point
or dirac point in the large area graphene channel. The dirac point shifts towards right with
increasing drain bias negatively. High saturation velocity is obtained along with high drain
current. The sheet charge density profile decreases up to Dirac point (minimum conductivity
point) as drain bias is decreased negatively. After Dirac point we obtain a positive gate to
channel voltage at the drain end which gives rise to an accumulation of electrons and
corresponding increase in sheet charge density.+

In the ballistic limit, the performance of a top gate graphene MOSFET with 10 nm channel
length is simulated. The current—voltage characteristics of the device is computed. The resulting
high drain current density ~12000 pA/pm indicates high on-current for GMOSFETSs. The shift of
dirac point voltage Vg in positive drain bias is more prominent than negative drain bias. Also
the p-n asymmetry in transfer characteristics is the signature of short channel effect. The output
transconductance of the device is obtained in the range of = 4500 pS/pm which is very much
promising for high speed nano transistors.

The output tansconductance, g, increases with the decrease of the channel length. The
decrease in transconductance is becoming more promiminent at longer channel lengths. On the
other hand, as the channel length scales from 80 nm to 50 nm, the ballistic drain
transconductance, gy increases very slightly. As the channel length scales down to 50 nm the
output transconductance, gds, however, rises significantly due to electrostatic gate effect. At
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short channel length (10-40 nm) the drain transconductance becomes constant that helps to keep
the constant cut-off frequency in short channel lengths.

6.2 Recommendations

This work can be extended in following ways:

(1) As graphene FETs suffer from low I,/ I ratio, opening of band gap in bilayer graphene
has made graphene a viable replacement for semiconductors. Since the device physics of bilayer
graphene transistors is still in embryonic stage, the knowledge of graphene and semiconductors
can be extended to analyze the behavior of bilayer graphene and prospects in nano photonics and
nano scale electronics.

(2) A band gap is opened in bilayer graphene by applying an electric field perpendicular to the
layers that breaks the sublattice symmetry of the lattice.In addition to band gap opening,
another electronic property that can be harnessed in design of logic transistors based on bilayer
graphene is a pseudo spin degree of freedom associated with the electron-density difference
between the two layer. A model for pseudo spin based bilayer graphene FETs can be
developed.

(3) A preliminary 1D Poisson and Schrodinger analysis is used here. For better understanding of

device physics 2-D analysis is essential. So our future plan is to analyze the whole work in 2-D
structure.

(4) Here we have ignored the scattering effects including acoustic and phonon. We will include
all the scattering effects further.
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