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ABSTRACT 

The electronics components are becoming progressively smaller, gate scaling process has 
become saturated and the limits to Moore's Law are frequently considered. To overcome 
the difficulties of downscaling problems new structures and materials have been studied. 
The discovery of graphene has gained tremendous attention as the most promising 
materials for high speed electronic devices. Graphene, a flat mono layer of sp2  carbon atoms 
tightly packed into a two-dimensional (21)) honeycomb lattice, has recently attracted broad 
attention for future electronic device applications because of their excellent electronic 
characteristics such as high carrier mobility and high saturation velocity. The novel electronic 
properties of graphene lead to intense research into possible applications of this material in field 
effect transistors and nano scale devices. 

In this thesis, the performance of a graphene MOSFET is analyzed in large area and ballistic 
limit. The performance of a dual-gated large area graphene MOSFET is analyzed using 
analytical approach. The quantum transport simulation based on the NEGF formalism is used to 
analyze the performance of a top-gated graphene MOSFET in ballistic limit. The NEGF 
formalism is self-consistently coupled to the 1D Poisson equations. The Poisson equation is 
solved in 1D coordinate using the finite difference method (FDM). 

In large area dual gate graphene MOSFET, we have calculated sheet charge density 
dependent quantum capacitance self consistently considering charged impurities in the gate 
oxide layer. It is observed that with increasing. It is observed that with increasing charged 
impurities concentration the quantum capacitance increases near the Dirac point due to the 
limited density of states.With increasing the value of impurities concentration in the gate oxide 
layer,the minimum value of the quantum capacitance is also increased. Ultimately quantum 
capacitance is controlling the gate capacitance as well as the sheet charge density of graphene 
channel. 

A quasi-saturation of drain current called "kink" is observed in the output characteristics of 
both in large area and ballistic graphene MOSFET. This behaviour occurs due to the 
ambipolar nature of graphene channel. An ambipolar behavior occurs for a change in the 
conduction type at the drain end of the channel from p-type to n-type is clearly shown in 
transfer characteristics. Such a behavior is specific for G-MOSFETs, caused by the gapless 
nature of the channel due to the zero bandgap, and does not occur in conventional field effect 
transistors. 

The variation of sheet charge density with channel length at different drain bias (VdS) is 
also shown. As Vds  is decreased negatively the corresponding sheet charge density 
decreases up to dirac point. After dirac point we obtain a positive gate to channel voltage at 
drain end which gives rise to an accumulation of electrons and corresponding increase 
in sheet charge density. The carrier drift velocity is increasing linearly with electric field 



VI 

but at a electric field of E=75.06 kY/cm, carrier drift velocity saturates to the average 
Fermi velocity of 2.12x 107cms 1. 

In ballistic graphene MOSFET, The IN characteristics shows standard MOSFET type 
behavior along with the high drain current current density reaching to approximately 12,000 
.tA4tm which is promising. The reason for the high current density can be attributed to the light 
effective mass of graphene and high carrier velocity. At lower gate voltage, a pronounced 'kink' 
is observed in drain current characteristics. At higher gate voltage this 'kink' behavior almost 
disappears. With the help of transfer characteristics, it is noticed that the dirac point shifts 
when the drain-source voltage is varied. The dirac point voltage, VdIC  shifts significantly 
towards right at positive drain bias where as Vdirac  shifts slightly towards left at negative 
drain bias. Therefore, the shift of dirac point voltage Vdiac  in positive drain bias is more 
prominent than negative drain bias. Also, the p-n assymetry in transfer characteristics is 
the signature of short channel effect. 

The output transconductance of the device is obtained in the range of = 4500 .tS/ 
urn which is very much promising for high speed nano transistors. The variation of output 
transconductance, gm  with the channel length is also shown. It is found that drain 
transconductance decreases at longer channel length. But, as the channel length scales down to 
50 nm, the drain transconductance (g) rises significantly due to electrostatic gate effect. 
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CHAPTER I 

Introduction 

1.1 Background 

Graphene is a single layer of sp2-bonded carbon atoms, that are packed in a honeycomb 
lattice. It wasnt until the year 2004 that Andre Geim and Konstantin Novoselov managed 
to produce graphene flakes with a technique called mechanical exfoliation. Geim and 
Novoselov were awarded the Nobel Prize in Physics in 2010 for their discovery of 
graphene. It is, therefore, easy to claim that 2010 has been the year of graphene [1]. 

Many theoretical and experimental works have been involved in investigating mechanical, 
electrical, and chemical properties of graphene. This one-atom-thick fabric of carbon 
uniquely combines many supreme properties that have been exceeded those obtained in 
any other material, with some reaching theoretically predicted limits: room-temperature 
electron mobility of 2.5x 105  cm2V's, high saturation velocity [2]-[4],  very high thermal 
conductivity (above 3,000 WmK5,  ability to sustain extremely high densities of electric 
current (a million time than copper) [5] and ballistic transport of charge carriers. The 
combination of these properties suggest that graphene could replace other materials in 
applications [6-14], including high speed and high frequency electronics, 
optoelectronic devices, touch screens, light emitting diodes, solar cells, sensors, individual 
gas molecules detectors, the applications where high sensitivity to electric charge, 
magnetic field and mechanical strength are required, and electrode material for capacitors 
in rechargeable batteries. 

In addition, all the extreme properties are combined in one material means that glaphene 
could also enable several disruptive technologies. The combination of transparency, 
conductivity and elasticity will find use in flexible electronics, whereas transparency, 
impermeability and conductivity will find application in transparent protective coatings 
and barrier films; and the list of such combinations is continuously growing. A schematic 
of the high quality high quality large domain graphene by advanced synthesis method 
along with the current and future applications is shown in Figure 1.1. 

Due to its high carrier mobility and ultrathin body, graphene has attracted tremendous 
attention as a channel material for future high speed nano-electronic devices. It is very 
interesting that, unlike other semiconduotors, graphene does not require impurity doping 
to conduct electricity. Graphene displays a phenomenon that is often called self-doping 
which refers to the electric field effect in graphene. It allows the charge carrier type and 
concentration to be controlled with an outside electric field, or rather gate voltage. In 
graphene, the charge carriers in the two dimensional channel can change from electrons to 
holes with the application of an electrostatic gate, with a minimum density point (or Dirac 
point characterizing the transition. The graphene band structure allows the conduction to 
shift from electrons to holes by changing the Fermi level. As explained above, Graphene is 
unique as a channel material for high speed field effect transistors. 

1 
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Figure 1.1: A schematic showing the high quality large domain graphene by advanced 
synthesis method along with the current and future applications. 

1.2 Motivation 

In an era when electronics components are becoming progressively smaller, saturation of 
conventional silicon technology and the limits to Moore's Law are frequently considered, 

the isolation of a single graphene layer represents a major technological achievement. 

Graphene is attractive for high speed field effect transistors and nanoelectronic 

applications due to its excellent electric properties. So, Graphene is very much promising 
material and considered as the best replacement of silicon for future generation transistor. 

As the graphene is predicted to be potential candidate for electronic logic and RF 

applications, research is going on designing and fabrication of graphene FETs. However, 

the progress in designing and fabricating of graphene FETs is at initial stage. In order to 

fabricate high performance graphene FETs, understanding of detailed device modeling 

and performance evaluations is urgently required. There have been few works mostly on 

2J 



Large area graphene field effect transistors (GFETs), but they are not sufficient for clear 

understanding of device physics and modeling. In addition, the works on ballistic GFET is 
very limited although GFET is promising for nanodevices. So, we have strongly motivated 

to work both on large area and ballistic graphene MOSFETs. 

The aim of this thesis is to analyze the performance of a graphene MOSFETin large area 

and ballistic limit. The performance of a dual-gated large area graphene MOSFET is 

analyzed using analytical approach. The quantum transport simulation based on the NEGF 

formalism is used to analyze the performance of a top-gated graphene MOSFET in 

ballistic limit. The NEGF formalism is self-consistently coupled to the 1D Poisson 
equation. The Poisson equation is solved in 1D coordinate using the finite difference 
method (FDM). 

1.3 Outline of Thesis 

This dissertation is focused on study of graphene MOSFETs in aspects of large area and 
ballistic limit. The study has tried to gain insight into the potential of graphene MOSFETs 

for various applications by focusing on various figures of merit as applicable to different 
applications. 

In chapter 2, Fundamentals of graphene MOSFET is reviewed. 

Chapter 3 starts with the simulation approach including device model, analytical solution 

and bench marking of numerical solution of NEGF transport equation self consistently 
with Poisson equation. 

Chapter 4 shows Performance of Graphene MOSFET in large area. The C-V 

characteristics is shown. Impurity Concentration Dependency of quantum capacitance is 

thoroughly investigated. The Current Voltage (I-V) Characteristics of large area graphene 

MOSFET and Channel Potential profile as well as sheet charge density profile is evaluated 

here.The velocity-field relationship is also illustrated. 

In the chapter 5, a top gated graphene MOSFET is modeled in ballistic limit and 

corresponding IN characteristics and transconductance profile is shown. 

Finally, chapter 6 provides a summary of the most relevant results, combined with an 
outlook on possible future research directions. 

31. 
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fevered work was done to explore the unusual electronic properties of Graphene (online 
information). There may arise a question such as: Why is graphene such an exciting 
material? Firstly, graphene is great conductor; electrons are able to flow through graphene 
more easily than through even copper. The electrons travel through the graphene sheet as 
if they carry no mass, as fast as just one hundredth that of the speed of light. Secondly, the 
ways electrons behave in graphene make it very useful to study some fundamental 
physical properties. Graphene's near perfect crystal lattice mean it is a very clean system 
in which to experiment. Graphene is a one atom thick sheet made of carbon atoms, 
arranged in a honeycomb (hexagonal) lattice. Its height was measured to be just 0.33 nm, 
almost one million times thinner than a human hair!Graphene is the ultimate 2-
dimensional carbon molecule. Graphite, the well-known 3-dimensional carbon allotrope 
found in our pencils, is nothing more than a stack of several graphene planes.Graphene 
shares its structure with two other materials which are exciting today's scientists: carbon 
nanotubes and fullerenes (also called bucky-balls), seen as a 1-dimension and 0-dimension 
rolled pieces of graphene, respectively.In 2004 Observation of graphene's ambipolar field 
effect by Andre Geim and Kostya Novoselov. In 2008 Measurements of extremely high 
carrier mobility of graphene was done by Bolotin also. New graphene related discoveries 
are in nanotechnology news almost every other day. Graphene is used in logical operations 
as well as radio-frequency applications. 

2.2 Electronic Properties of Graphene 

2.2.1 Electronic Band Structure 

The electronic band structure of any material is responsible for its whole electronic 
behavior. Therefore it is important to understand where the band structure comes from and 
what assumptions were made. In this chapter, we will use the tight binding approach to 
calculate these energy bands. Graphene has 'a honeycomb (hexagonal) structure of sp2-
bonded atoms. The electronic band structure of graphene can be solved with tight binding 
approximation (TBA) or the similar linear-combination of atomic orbitals (LCAO), which 
is more commonly used in chemistry. The honeycomb lattice has 2 atoms per unit cell; 
hence the it bands of graphene have 2x2  Hamiltonian. The diagonal elements of the 
Hamiltonian describe the nearest neighbor interactions, while the off-diagonal elements 
describe the three nearest neighbor interactions in different sub lattices. The derivation of 
the electronic band structure is omitted here, but a detailed derivation in [16]. 

To calculate the electronic band structure, we have to consider the real space lattice. 
Graphene consists of sp2-hybridized carbon atoms which are all situated in one plane and 
arranged in a honey comb lattice (Fig. 2.2(a)). Therefore, every carbon atom has three 
nearest neighbors and six next nearest neighbors. Each carbon atom possesses four 
valance electrons. Three of these electrons form tight a bonds with the three neighbors 
atoms and do not contribute to the conductivity of graphene. The fourth electron is 
unbounded and considered to be in the 2Pz  state. It has a node in the lattice plane and a 
symmetry axis perpendicular to it. The wave functions of all unbounded electrons overlap 
with those of neighbors, which is the reason for the conductivity of Graphene. First we 
define the unit cell of the graphene lattice (green dashed line in Fig. 2.2(a)). It has the 
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shape of the parallelogram and contains two different carbon atoms labeled I and B. The 
two vectors of the unit cell are labeled as a—land . Since the crystal has a periodic 

structure one can conclude that probability to find an electron at the position is equal to 

the probability to find an electron at the position 

= + )l2 (2.1) 

Where R is the discrete lattice vector and it can be expressed as a linear combination of 
the unit vectors? 
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Figure 2.2: (a) The unit cell of the graphene real-space lattice is colored in green. It 
consists of two atoms labeled I and U. Atom I has three nearest neighbors colored in 
darker blue and 6 next nearest neighbors colored in light blue. Atom H has also three 
nearest neighbors colored in yellow and six next nearest neighbors colored in pink. The 
unit vectors of the lattice are labeled d and d2(b) Displayed is the first Brillouin zone 
with the position of each K-point. 

The band displayed in blue or orange in Fig. 2.3(a) is the conduction band or valance 
band, respectively. At 0 Kelvin the valance band is completely filled and the conduction 
band is empty. Therefore we might expect graphene to be an insulator or semiconductor, 
but the conduction band touches the valence band at the K-point of the Brillouin zone (Fig. 
2.3(b)). Therefore the energy band gap of graphene is zero and Ec = Ev = Ec.v. Since the 
density of states at the intersection of the two bands is also zero graphene is a semi-metal. 
This osculation point if often referred to as the Dirac point. The background of this 
nomenclature is that the Hamiltonian of graphene around the K-point can also be written 
as the Dirac Hamiltonian. 

a) b) 
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Figure 2.3: (a) The band structure of graphene is displayed. The valance band is colored in orange 
and the conduction band is colored in blue. (b) A magnified section around the K-point is shown. 
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We knew that, E (R)= a ± t3F3+ o)(k) +Y(K) (2.2) 

Here,R is the wave vector, E is the energy eigenvalue, a is the self-energy, fi is the hopping 

energy between nearest neighbors and I is the hopping energy between next nearest 
neighbors. We can simplify eq. (2.2) by the Taylor series expansion: 

a+— aofllk (2.3) 

The wave vector / is measured from the K-point as point of origin, whereas K has its 

point of origin in the r-point. Therefore an electron with iii = 0 is situated at the K-point of 

the Brillouin zone or in other words at the Dirac point. Since only the absolute value of k 

is regarded, we will write i instead of I1I. If we set a +3y we obtain: 

E (k) —E ± n(.)k (2.4) 

Where, vp = (3-v) 
is the Fermi velocity. With fi = —3 eV, VF becomes: VF = 970811 m/s 

which is close to the value of VF = 106  m/s which is usually found in papers and used in 
the following. Finally eq. (22) can be written as: 

E (1?) -EC,V  = E (k) —E,v  = ShVFk (2.5) 

Where s = +1 in the conduction band and s = —1 in the valence band and h is the reduced 
Plank constant. Since the energy dispersion is linear around the K-point, one can see the 

energy band in the relativistic limit of the famous Einstein equation: E =,Jm2c4  + p 2c2, 
where m is the mass, c the speed of light and p the impulse. If we set m to zero and c tOVF 
we recover eq. (2.5). Therefore charge carriers in this linear part of the band structure are 
often referred to as mass-less particles with an effective speed of light of VF. The energy 
dispersion is linear around the K-point; therefore the velocity of an electron in the ballistic 
limit is independent of its energy E: 

V
1 äE 

Graphene is a 2D material, but distinctions can be made between bi-layer graphene and 
few-layer graphene (FLG) [17].  Bilayer graphene has two layers, but the electronic band 
structure is already quite different from single layer graphene. Band gaps of some 
hundreds of milli electron volts have been achieved with bilayer graphene by applying a 
perpendicular electric field to the bilayer [18].  The gap in Bernal stacked bilayer graphene 
arises from the forming of pseudospin between the layers, thus making it possible to 
electrically induce a band gap [19]. There are still many properties of graphene that have 
not been thoroughly investigated. Even the existence of a band gap in large area graphene 
is controversial. In addition to band gap opening in bilayer graphene by applying an 



electric field, it is possible to create band gap by quantum confinement, i.e. by fabricating 
graphene nanoribbons [17]. Band engineering of graphene is essential if graphene is ever 
to compete with silicon CMOS technology [19].  The energy gap is important for logic 
gate purposes to keep the power consumption at minimum i.e. going to a non-conductive 
state. The band-structure of graphene differs from the band-structures of semiconductors 
in that the energy dispersion around the band edges is linear instead of quadratic [20]. The 
mobility of charge carriers is limited by defects in the supporting material or defects in 
graphene. The previous claim is backed up by the much higher mobilities achieved with 
suspended graphene sheets. Electronic transport that is limited by scattering is called 
ballistic transport. Ballistic transport is possible in very pure and defect free graphene. 
Naturally, obtaining clean and defect free graphene is difficult and is often not achieved. 
The linearity of band dispersion in graphene means that the velocity of electrons is 
independent of energy or momentum. Furthermore, the velocity of electrons in graphene is 
at maximum the Fermi velocity, which is 1/300 of the speed of light. Another intriguing 
property is that backscattering through phonons or charged impurities is forbidden and the 
mean free path is in the range of hundreds of nanometers. The electrical properties of 
graphene have been studied extensively, but much is still un-known about the mechanical 
and thermal properties [21]. Mechanical and thermal properties of graphene are similar to 
those of carbon nanotubes. Measurements show that the breaking strength of graphene is 
around 40 N/rn, and thermal conductivity in the range of 5000 W/mK, and yet the 
thermodynamic properties of graphene are largely unknown [21]. The chemistry of 
graphene is in early phases, but shows much promise. Graphene can absorb and desorb 
different atoms and molecules, such as K and OH. Adsorbents can affect the electronic 
properties of graphene. There is even the possibility of localized doping. In addition, the 
stability of graphene under various circumstances has not received much attention. 

2.2.2 Density of States (DOS) 

For the calculations of electronic properties not only the electronic band structure, but also 
the density of states (DOS) plays an important role. This quantity describes how many 
states per unit energy are available for occupation. It can be calculated in general using the 
following expression: 

D 2D - A 
— 

00 

g 
(27r)2  BZ 

dk2 irkS (E—E (k)) (2.7) 

Where g is the degeneracy factor, A the area, k the wave vector, E the energy and S the 

Delta function. The integral of the Delta function is defined as f S (x)dx= 1, i.e. every 

time the argument in the Delta function becomes zero the integral over the Delta function 

becomes one. Therefore, while integrating over the area in k-space in eq. (:'7), the Delta 

function simply counts the number of all the states where E = E (k). In a periodic crystal 

each state can be occupied by an electron with spin up and with spin down which is 

expressed by a degeneracy factor of two. Furthermore the graphene unit cell contains two 

atoms (Fig. 2.1 (a)). The result is that each Brillouin zone contains two equivalent K-

points, which gives an additional degeneracy factor of two. Since only electrons around 

the Fermi level are responsible for the electronic behavior it is sufficient to calculate the 
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DOS in the vicinity of the Dirac point. Therefore we can use eq. (2.7) to describe the E (k) 

behavior such as: 

D2D f graphene A dkkö(E-Ecv  -ShVFk) (2.8) 

This results in a density of states (DOS) as described [27] 

D2D = 2Ak 
graphene r hv1 k=-- 

(2.9) 
hv, 

D 2D _2A IE-Ec.i,I 
.graphene7 (hv1)2 (2.10) 

The density of states for electrons and holes is always positive and increases linearly with 

energy. At the intersection of the valence and conduction band, i.e.E = Ec,vthe DOS is 

zero. This behavior is different from two dimensional electron gases where the effective 

mass approximation can be applied. There the DOS is a Heaviside function and is not 

increasing linearly with energy. 

2.2.3 Mobifity of Graphene 

The most frequently stated advantage of graphene is its high carrier mobility at room 

temperature.Mobilitiesof 1 0,000-15,000cm2V 1  s are routinely measured for 
exfoliated graphene on SiO2covered silicon wafers and upper limits of 

between40,000and70,000cm2V's 1  have been suggested. Moreover, in the absence of 

charged impurities and ripples, mobilities of 200,000cm2V 1s 1  have been predicted 

and a mobilityof 106  cm2V 1s' was recently reported for suspended graphene 
[22]-[26].Finally, for epitaxial graphene on silicon carbide, themobility depends on 
whether the graphene is grown on the silicon face or the carbon face of SiC. Although 

graphene grown on the carbon face has higher mobility(va1uesof-5,000cm2Vs have 

been reported compared with-1,000cm2  V's 1  for graphene grown on the silicon face, 
it is easier to grow single-layer and bilayer graphene on the siliconface,which makes the 
silicon face of SiC more suited for electronic applications. In early graphene MOS 
structures, the mobility was affected by the use of a top-gate dielectric. However, there has 

demonstration of mobilities of around 23,000cm2Vs 1  intop-gated graphene MOS 
channels and the observation of similar mobilities before and after top-gate fcimation show 
that high-mobility graphene. The high mobilities mentioned above related to large-area 
graphene, which is gapless. 

As general trend for conventional semi-conductors is that the electron mobility decteases as 
the bandgap increases, and a similar trend has been predicted for carbon nanotubes(CNTs) 
and graphene nanoribbons. Therefore, although the high mobilities offered by graphene can 
increase the speed of devices, they come at the expense of making it difficult to switch 
devices off, thus removing one of the main advantages of the CMOS configuration—its low 
static power consumption. 



2.2.4 High-Field Transport 

In the days when FETs had gates several micrometers long, the mobility was the 
appropriate measure of the speed of carrier transport. Strictly speaking, however, the 
mobility describes carrier transport in low electric fields; the short gate lengths in modem 
FETs result in high fields in a sizeable portion of the channel, reducing the relevance of 
mobility to device performance. To illustrate this, let us consider a FET with a gate 100 nm 
long and a drain—source voltage of I V. If we assume a voltage drop of 0.3V across the 

series resistances, the average field in the channel is 70kVcmH [27]. At such high fields, 
the steady-state carrier velocity saturates, and this saturation velocity becomes an other 
important measure of carrier transport. For graphene and the nanotube, maximum carrier 

velocities of around 4x107cms 1  are predicted, in comparison with 2407  cm s 1  for GaAs 

and 107  cms 1  for silicon. Moreover, at high fields the velocity in graphene and the 
nanotube does not drop as drastically as in the rn-v semiconductors [17]. 
Unfortunately, there is at present no experimental data available on high-field transport in 
graphene nano ribbons and in large-area graphene. However, other measurements suggest 

high-field carrier velocities of several 107cm s 1  in graphene [28]—[291.  Thus, regarding 
high-field transport, graphene and nanotubes seem to have a slight advantage over 
conventional semiconductors. Finally, it is worth noting that reported mobilities for 
graphene devices need to be interpreted carefully because there are several definitions for 
the MOSFET channel mobility and they are difficult to compare. Furthermore, the 
techniques used to measure mobility are only vaguely described in some papers. 

2.3 Further Option of Graphene Devices 

It has become clear that graphene devices based on the conventional MOSFET principle 
suffer from some fundamental pmblems.This has motivated researchers to explore new 
graphene device concepts, such as tunnel FETs and bilayer pseudo spin FETs.In a 

tunnelFET, the band-to-band tunneling across the source—channel junction can be 
controlled using the gate-source voltage.The big advantage of tunnel FETs is that their 
subthreshold swings are not limited to 60rnV per decade, as in cxiivQiticrial MOSFETs, 

which should lead to steeper subthreshold characteristics ad better switch-off. In 
particular, the bilayer graphene tunnel FET is now consider ed to be a promising device 

for a number of reasons: narrow nanoribbons are not needed, the small bandgap opened 

by a vertical field applied across the two layers is sufficient to suppress band-to-band 

tunneling in the off-state and thus enables effective switch-off; and the possibility of 

sub-threshold swings below 60mVper decade should make high on—off ratios possible. 

Although graphene tunnel FETs and bilayer pseudo spin FETs are both still at an 
- embryonic stage, they have already gained considerable attention in the electron-device 

community. It might also be possible to make interconnects from graphene, which would 

open the possibility of all-graphene integrated circuits in which both the active devices 

and the wiring were made of graphene. It has been shown that graphene inter connects 
compete well with copper interconnects; indeed, graphene can support current 
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densities greater than 108  Acnc2  (which is 100 times higher than those supported by 

copper)and has a thermal conductivity of around 30-50 Wcnr'K 1(which is 4 

WcmK for copper). 
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CHAPTER ifi 

Simulation Approach 

3.1 Introduction 

In earlier, The simulation of graphene MOSFET has been studied using different 
approaches. In this thesis, simulation of performance of graphene MOSFET is done in 
large area and ballistic limit. Analytical approach is used to simulate device performance 
large area graphene MOSFET. On the other hand, the Non-Equilibrium Green's Function 
(NEGF) [30] is used to simulate device performance in ballistic limit. The detailed 
theoretical discussion and formulation is given in this section. 

3.2 Modeling of large area Graphene MOSFET 

This thesis is about the modeling of large-area graphene metal-oxide semiconductor field-
effect transistors (Graphene MOSFETs). Therefore a short revision of the basic working 
principle and the common nomenclature for field-effect transistors (FETs) is given. In 
every FET an electric field is used to change the conductivity of the channel. This electric 
field is generated by applying a gate voltage to the gate terminal. It controls how many 
electrons can pass through the channel. There are two other terminals in all PETs which 
are essential. These are the source and the drain terminal. Their names refer also to their 
functions. If a positive drain-source voltage is applied to these terminals, electrons are 
injected from the source into the channel and collected by the drain. The resulting current 
is referred to as the drain current. The feature which distinguishes GFETs from other PETs 
is that the channel is made of graphene. 
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Figure 3.1: The cross section of the modeled graphene MOSFET with top- and back-gate. 

A simple model of the GFET which is described in this thesis is shown in Fig. 3.1. Here 
the channel is made of large-area single-layer graphene, which has a zero band gap. It is 
located on a heavily doped oxidized silicon wafer. This acts as a second gate and is 
referred to as the back-gate. It is used to control whether the graphene is p- or n-

conducting by applying a back-gate voltage. The source terminal is grounded and a drain- 
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source voltage can be applied to the drain terminal. Both contacts between these terminals 
and the channel are considered to be ohmic. The top-gate is separated from the graphene 
channel by an insulator and is used to control the charge carrier density and therefore the 
conductivity in the channel. 

3.2.1 Charge carrier calculation 

All considerations made in this chapter are for equilibrium conditions, i.e. no current is 
flowing. Therefore the drain-source voltage is OV. Furthermore the source terminal is 
considered to be grounded. The number of electrons in any material is calculated by 
performing the following integral [3] 

N =f dED(E)f(E) (3.1) 

Where, D (E) is the density of states and f (F) is the Fermi function which is defined as 

(e kBT  + 1)1.  Inserting the density of states for graphene (eq. 2. 109 and dividing by the 
area results in the charge carrier density n: 

N oo 2 EEc 1 
(3.2) n = — = 

A 1E 
 dE— Ir hVF)2 E-E 

Where, EF  is the Fermi energy, q the element my charge, kBthe  Boltzmann constant and T 
is the temperature. The same formalism can be applied for holes. Holes are defined as 
states in the valance band which are not occupied by electrons. 

P=fdED(E)(1—f(E)) (3.3) CO 

Dividing by the area and inverting eq. (?.;0) results in as mentioned below: 

p= P f Ec.vdE 2 IE_Ec.vI(l 1 

A - iv (hVF)2 - 
1 

(3.4) 
e kBT  +i )  

- iv IE—Ec.v l 1 1 
p= — f dE- 

2 (hVF)2 E-EF ) 
(3.5) 

CIV 
'e k9T  +1 

We substitute E with —E, because we only want to deal with positive energies: 
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pfdE
ir  '''_1 

-Ecy  2 (hvF)2 
I E+E J (3.6) 
'e+11  

For a gate voltage the Fermi energy of graphene is exactly between the conduction band 
and valence band (Fig. 3.2) as shown. 

:,v 

Figure 3.2: Fermi energy in undopedgraphene for zero gate and drain-source voltage. 

This means that EF = Ec,v= 0. Hence eq. (3.2) and eq. (3.6) simplify to as the following: 

2 E dE E (3.7) 
fl P(hvF)z 0 

(e+i) 

Since, this equation is equal for electrons and holes there is charge neutrality in the 

graphene layer. After substituting u = we get. The integral can be solved analytically 
kBT 

and gives. 

'21'1r(hvF)2 (kBT)2 j'du(_]) (3.8) 

f n = p = n1= 
ir kBT\2 

- 6  lx—) hvp 
(3.9) 

We call this density the intrinsic charge carrier concentration. This means, if there are no 

impurities in graphene, nL  increases quadratically with the temperature and not 

exponentially due to the absence of a band gap and the linear dispersion relation [31]. 
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If we apply a positive gate voltage to the gate tenninal the energy bands are down-shifted 
by qV ft, where VCh is the channel potential (Fig. 3.3) and is defined as: 

qV= EF - (3.10) 

Thus a positive gate voltage results in a positive VCh.  Note that VCh  is normally not equal to 
The Fermi energy remains at zero (EF  = 0), since it is pinned to the drain and source 

Fermi level. Keep in mind that there is still no current flowing. 

Figure 3.3: The energy bands are down-shifted with respect to the Fermi energy if a 
positive gate voltage is applied. 

The carrier concentration can now be determined by solving the Fermi integral. Since E,v 

is down-shifted by qVwith respect to EF  the lower integral boundary is —qV. 

- 
2 CO  

j dE ir(hv,.)2  —qV 
(ekBT+l  

E I (3.11) 
I 

Where E' is the energy. Now substitute E = E' + qVch to change the integral boundaries. 

2 E 

ir(hvp)2 f0 dE 
( E-qV 1 (3.12) 

e kBT 

If qV> 3kBT the Fermi-Dirac distribution Eq. (S. I )) reduces to as the following: 

2 
= f:1  dEE (3.13) 
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(3.14) 
>- 

The electron concentration increases quadratically with VCh  for positive gate voltages. 

Now we make the same considerations for holes while we are applying a positive gate 
voltage. The conduction band is again down-shifted byqV. The lower integral boundary 
is - Ecwhich becomesqV. Therefore eq. (3.6) results in: 

= 2 
dE 

(fjBT 

'vch\ 
(3.15) 

ir(hv.)2  qV E 1
+1J 

Where, E' is again the energy, set E = E' - qV his made to change the integral boundaries. 

P 

2 
f
00 

dE( 
E 

= (hvF)2 E+qV 1 (3.16) 
e kBT  +11 

If qV> 3k8T is then we can neglect the 1 in denominator, similar to the non-degenerate 
approximation in silicon. After performing this integral we obtain: 

E+ qVj, 

p = f0  dE(h 
2 E 

)2 e kBT (3.17) 

_2fk8T\ 2  qVch 

e kBT (3.18) 
ir 

The hole concentration reduces exponentially with Vch  for positive gate voltages. Since the 
electron concentration increases only quadratically, there is no simple law of mass action 
as in the case of silicon. 

2  Vch 

it 
ekBr (3.19) 

1 

(qvch\2 P — 
_
; -;;;;-) (3.20) 

Note that, VCh is also negative in this case. In some of the following calculations we are 
only interested in the sheet carrier density Psh  since the current is carried by both types of 
discharge carriers simultaneously. In this case it is convenient to neglect the minority 
charge carrier concentration and write: 
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Psh() (3.21) 

This equation becomes not only exact in the limit of zero Kelvin, but is also a rather good 
approximation for finite temperatures, since the minority charge carrier concentration is 
always decreasing exponentially. Sometimes it is useful to rewrite this expression by 
substitution qVCwithE - 

I E,. - Ec,vl = hVF/TrPSh (3.22) 

3.2.2 Quantum Capacitance 

The concept of quantum capacitance was first introduced by S. Luryi in 1988 [32] for a 
two dimensional electron gas (2DEG) and will now be applied to graphene. The effect of 
the quantum capacitance is rather negligible in devices with a large density of states 
(DOS). Although the effect of quantum capacitance has not drawn attention in the past, 
since the devices were too large. By the time carbon nanotube transistors where 
intensively investigated, the quantum capacitance became again more important. Later on 
the concept was introduced first for graphene nanoribbons and afterwards also for large-
area graphene. It will be shown that the quantum capacitance has a strong influence on the 
total gate capacitance and must therefore be included into the modeling. 

The quantum capacitance has a non-zero minimum at the Dirac point and a linear increase 
on both sides of the minimum with relatively small slopes. The theoretical nature of Cq  
curve is not same as the experimental curve because charged impurities also influence the 
quantum capacitance. The long-standing puzzle about the interfacial capacitance in 
carbon-based electrodes has a quantum origin. The electron transport properties of 
graphene devices are very critical and these properties are still incomplete. One of the 
most important matters is the minimum in the conductivity at the Dirac point. This 
minimum is due to charged impurities that induce of electrons and holes in the graphene. 
To fully understand the transport properties it is important to such factors which are 
related to Cq. 

The scattering of the carriers by the charged impurities. 
The density of the carriers at and near the Dirac point. 

Electron transport in graphene on the field-effect transistor (FET) configuration in which 
graphene sample is placed on SiO2  substrate and connected to the source and drain 
electrodes. The graphene is used as the channel of the MOSFET. 

The parallel plate capacitor with capacitance, C pFcm 2. Where e0  and t0 are the 
tox 

dielectric constant and the thickness of the substrate oxide layer which acts as the insulator 
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substrate. The oxide capacitance i.e. top gate capacitance or back gate capacitance does 
not strongly dependent on the gate potential i.e. top gate potential or back gate potential. 

The quantum capacitance (Cq) depends on the net channel charge density which comes 
from the term two dimensional electron gas (2DEG). The overall net mobile sheet charge 
density Qh  is simply the difference between the hole and electron sheet densities 
multiplied by the elementary charge. An exact derivation for Cq  will now be given for 
large-area graphene. Since Cqis the first derivative of the net charge per unit area in the 
graphene sheet with respect to Vch,  we will first have a look at Q h. Generally it can be 
calculated by: 

Qsh = q (p-n) (3.23) 

Where n and pare the electron and hole concentration, q is the elementary charge. Since 
only the net charge is regarded, electrons have to be subtracted from holes. By inserting 
eq. (3.12) and eq. (3.16) this expression can be expanded to: 

Qh = q 
lr(hVF)2 

f dE E ( r+qv - E—qv ) (3.24) 
"e kBT  +1 e k8T  +1 

The quantum capacitance is defined as the derivative of the net channel sheet charge 
density Qh  with respect to Vh [311 

C C'Q (3.25) Cq dVh 

The minus sign indicates that a more positive gate voltage results in a more positive 
channel voltage and thus leads to a more negative charge in the channel. The expression 
for quantum capacitance was derived based on a two dimensional electron gas (2DEG) 
model [33]. The exact equation for the quantum capacitance Cq  as follows [31] 

Cq = 2q 2 k8  T 
in {2( 1 + cosh (2.!) )t (3.26) 

k ir(h VF)2 8 T  

Where, VF Z  c/300 = = Ix 106  ms' = lx 108  cms 1  is the Fermi velocity of the Dirac 
300 

electron and Vh=EF/q is the potential of the graphene. Here, k3  is the Boltzmann 
constant, his thereduced Plank's constant and T is the Kelvin temperature. 

For qVh>3KBT 75 meV we can neglect the 1 in the logarithm and then equation (3.26) 
can be simplified to as the following [33] 

2q2 q lVCh I (3.27) 
ir (hvp)2 
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2q 2qV 2q 2  

q lt(hVF)2 1JhvF 
(3.28) 

qV 1 
Where n = — (----)2  is the carrier concentration of the grapheme channel of a GFET. 

3.2.3 Impurity Concentration Dependency of CQ  

The impurity concentration has a great effect on the quantum capacitance [33].  Several 

important features are worth noting to calculate the quantum capacitance Cq. 

The quantum capacitance has a minimum value at the Dirac point (Cqmin). 
The minimum value of the quantum capacitance (Cq,m jn) is close to zero. 
The capacitance increases linearly with V j, with a fixed slop (pFcni2V'). 
The shape of the Cq Vch curve is symmetric with respect to the Dirac point. 

Several distinct discrepancies: the measured quantum capacitance minimum (Cq.min) is 
round and the measured minimum (Cq,mjn) is much greater than the predicted value of Cq. 
If the value of Vch  is zero then cosh(0) 1. So the minimum value of Cq  is as follows: 

c =2q21s8T 
ln[2+(1+1)] (3.29) q,m;n ir(h VF)2 

- 
2 q2k T 

Cq.min - ln[4] (3.30) 
t(h vp)2 

At room temperature T = 298K the value of Cq.min=  0.8358 iFcm 2  and if T = 300K then 
the value of Cq,,n j,i= 0.8414 tFcm 2  i.e. approximately Cq,mjn= 0.8 pFcm 2. The theoretical 
model is based on the assumption of pure and perfect graphene. In reality, various 
impurities and defects exist in the oxide substrate. The recent theoretical and experimental 
results have shown that charged impurities have a key role in the transport properties of 
graphene near the Dirac point. It has been reported that charged impurities in substrates 
cause local potential fluctuations and electron or hole puddles in graphene. Additional 
carrier density n induced by the impurities. This additional carrier density should take 
into account by expressing the total carrier concentration as [31]: 

= I flg  I + In*I (3.31) 

Where ngand n are the carrier concentrations caused by the gate potential and the charged 
impurities respectively. Combining equation (3.28) and (3.31) we can calculate the 
quantum capacitance of graphene as a function of the graphene potential and the different 
impurity concentration of the oxide substrate which is used as the insulator of a GFET: 
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=
LqLqV~h 2q2  
7r(hv -)2 _,j 'JIflgI+IfI (3.32) 

- 
qV 2 Where flg 

 - 

VF) 

 is the carrier concentration due to gate voltage and channel potential. 

Now we have to think about the residual charge concentration n'  as a function of charged 
impurity concentration n,,,,, for two different dielectric material HfO2 16) and SiO2  
(E =3.9)[35]. Because we have used HfO2as the top gate dielectric material, so the 
impurity concentration has to be considered for this type of material also. 

In our model we have used only single impurity density (n*8X  1011 cm 2) throughout the 
total model or characteristics of the GFET. The inclusion of the impurity contribution 
explains the experimental results well. First, at zero channel potential (Vh = 0) the value 
of flg=O and the quantum capacitance is fmite and determined by the effective or residual 
concentration n [35]. Secondly, the slopes of the linear regime on both sides of the 
capacitance minimum are reduced by the charged impurities. Thirdly, the capacitance 
minimum regime is round. As the value of residual concentration or carrier concentration 
caused by charged impurities n increases, the minimum region becomes increasingly 
round and the slopes decrease. There are some procedures to calculate the value of carrier 
concentration caused by charged impurities of the substrate layer [35]. 

To determine the peculiar interfacial capacitance of the carbon electrodes has a quantum 
origin. Finally, the quantum capacitance model is consistent with the recent observation of 
Dirac fermions or two dimensional electron and hole gases (2DEG, 2DHG) at the surface 
of graphite. A complete interfacial capacitance theory includes both the quantum 
contribution and impurities are yet to be developed. The importance of charged impurities 
() is for both mobility (u) and quantum capacitance (Cq). 

3.2.4 Self-Consistent Quantum Capacitance 

The charge carrier density Ps/i  in the graphene channel is the absolute value of the net 

amount of mobile charge carriers Qch  divided by the elementary charge q [33] 

Qs/i =CqVch (3.33) 

1 
Psh CqIVcnI (3.34) 

If we assume Vh  to be positive we would obtain a negative charge which corresponds to 
an accumulation of electrons. Note that eq. (3.33) is the Poisson equation in one 
dimension, what is much easier to solve than the usual second order differential equation. 
One should mention that in this simple equation the minority charge carriers are neglected, 
this is a very good approximation due to their exponential decrease with Vch.  It is also 
worth to mention that in contrary to a parallel plate capacitor where Q = C. V, we get an 
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additional factor of for graphene. This can be explained by the fact, that Cqis a function 

of VCh  and cannot be pulled out of the integral, as in the case of a parallel plate capacitor. 

In general it is more useful to calculate 1üsh, in terms of V9rather than in terms ofV. 

Therefore VCh  in eq. (3.33) has to be expressed byl'. From the equivalent capacitive 

circuit in Fig. 4.1 we can write, 

Qh =CqVch Vox (3.35) 

Now, we get for Vch and the relation between VCh VJx and V.  are mentioned below such as: 

V =11 (3.36) ch oxi Cq  

Vox= k - VCh (3.37) 

By combining the eq. (3.36) and eq. (3.37) we can get the exact relation as the following: 

11
ch V 

._T1 OX 
V  

Cq+Cox 
(3.38) 

An easy and quite general way to solve eq. (3.38) numerically is to perform a self-
consistent loop, i.e. the equations for Cq and VCh  have to be solved simultaneously. In the 

following the algorithm is briefly explained. 

Cq....oia = Cq (3.39) 

VCh = Vch(Cq_old) (3.40) 

Cq  = Cq  (V9 _ 0 , V95_ back VCh) (3.41) 

First an initial Cq must be guessed. Afterwards we assign Cq  to Cq_ozd then Cq iS calculated 

using eq. (3.32) and subsequently Cq  is calculated using eq. (3.38). Then the new Cq  is 

compared with Cq _o jd. If their difference is larger than a certain limit 5, the loop is started 

again. The loop terminates if I Cq_Q1d  - Cq  <5. The smaller 5 is chosen the better is the 

approximation we get for Cq, but the more interactions are needed. Therefore a 

compromise between accuracy and computing time is necessary. 

Now we substitute eq. (3.38) into eq. (3.33) and get as 
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CqCox 
Qsh V9 (3.42) 

Cq+Cox  

We can express this also in terms of charge carrier density 

CqCox  
qP,h R'gI 

Cq+Cox 
(3.43) 

Thus the self-consistent quantum capacitance could be found. And the theory is 
consistent. 

3.2.5 Equivalent Capacitive Circuit 

If we add the back gate-oxide capacitance Cüxback  to the series connection of Cqand C00 , 
it should not make a difference which of the two capacitances belongs to the top-gate and 
which to the back-gate. If we set one of these capacitances to zero, we should end up with 
a series connection of the remaining oxide capacitance and the quantum capacitance. 
Since we also want to describe non-equilibrium conditions i.e. we allow carrier transport 
by applying a drain-source voltage Vd5 , an additional parameter V(x) is introduced. It takes 
the voltage drop inside the graphene channel, due to the current flow, into account. It is 
V=O at x = 0 and Vd., at x = L. The new equivalent capacitive network is displayed in Fig. 
3.4. 

Vgs back 

Figure 3.4: Equivalent capacitive circuit of a graphene MOSFET with both top-gate 
and back-gate. Here, COX b0Ckare the top-gate and back-gate oxide capacitance 
respectively. The applied top-gate voltage is and the applied back-gate voltage is 
Vgs.back. The potential drop due to the finite resistance in the channel is V(x) and the 

difference between the Fermi energy and the conduction band minimum is V [33] 
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Since we can calculate all components In the equivalent capacitive circuit, we are able to 
determine the charge in the graphene channel Qh  in terms of Vgs.ropand Vgs-back. By 

applying Kirchhoff's laws to the equivalent circuit in Fig. 3.4 we end up three equations: 

Vgs.top - V(x) = Q0 ,0 /C0 10  + Qsi/Cq (3.44) 

Vgs-back - V(x) = Qox.bacI/Cox back + QswCq (3.45) 

Qsh = Qor..top + Qox.back (3.46) 

Now we have three independent equations with three unknowns Qh Qox.back. 

Therefore we can solve these equations and write an expression for Vh = QsICq. 

Vi = (Vgstop  —V(x)) C ox—top 
_______________________ + (Vgs-back —V(x)) C ox—back (3.47) 

Cox_toP+Cox_back+Cq Cox_top+Cox_back+C q 

If we set C0b0Ck  and V(x) to zero we would end up with eq. (3.38), because Fig. 3.2 is only 
a special case of Fig. 3.4.. The charge carrier density is calculated by using eq. (3.33) as: 

1 

Qsh = (Vgs.:op  — + ( Vgs.back —V(x)) V(x)) 
'ox—top Cq Cox_back Cq  

(3.48) 
Cox_toP+Cox.back+Cq   Cox_top+Cox_back+C q 

I, 
In terms of charge carrier density equation (3.48) modifies to as the following: 

qPsh = I — Q5hI (3.49) 

The influence of this electrical potential can be modeled by the additional voltages Vg.st0p.o 
and Vgs.back,o.  The voltage is the voltage which needs to be applied to the top-gate 
in order to move the Fermi level EF  to Ec.v and the voltage Vgsback,O  is defined 
analogously. 

Cox _topCq   
qp5n = (v950  - V(x) - Vggtop,o) 

Cox_top+Cox_back+ 
+ 

Cq 

!Cox_backCq I 
(1gs—back - V(x) - 

Vgs_back,o) Cox_op+CQx_back+Cq 
(3.50) 

In real graphene there are defects and thermally induced charge carriers [33]. To 
determine the real charge carrier density we simply add this residual density (Psh,o)  to 
the pShasbelow: 

Preal = Psh (Vgs.:op, Vgsbacb V) +Psh,o (3.51) 
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3.2.6 Channel Potential Calculation 

The channel potential of dual gated, large area graphene MOSFETs can be 
calculated in different techniques. We have followed the model [36]. The main feature 
of this model is to feed a drain current into the device and applying the top-gate and back-
gate voltages to calculate the resulting channel potential as well as drain source voltage 
[34]. Here, only the drift current is considered and the effect of the self-consistent 
quantum capacitance is taken into account using eq. (3.32) and eq. (3.47). First, the 
channel length is divided into several equidistant segments as shown in Fig. 3.5. The 
length of the small segment is Ax = L,7V, where L is the channel length and N is the 
total number of small segments. Initially a drain current Id  is feed into this model and top-
gate voltage Vgstop, back-gate voltage VgsbackS applied and using the parameters in Table-
III the channel potential is calculated. Since the current is negative the channel acts as 
a p-type MOSFET. To get the channel potential V(x) which is dependent on the position 
of the channel length x from 0 to L, the parasitic source-drain resistances (i.e.R 
and Rd) are not considered for potential calculation. 

Top Gate 

101) gate oxide (II[O) 

01 i i1 N-IN 

I 
flack-gate oxkle (SlO) 

Doped Si Wafer 

Back Gate 

Figure 3.5: The cross section of the discretized Graphene channel. 

At position x=0 the initial values V(x), p(x), v(x), E(x) are calculated. At x0, 
the channel potential is V(x=0)=V(i=0)=0. The first step is to divide the GFET 
channel into equidistant pieces in space (Fig. 3.5). If the number of discretization is N, 
the length of one element is Ax = L/7V It is mentioned that x= i x Ax, where i = 0 
to Ni.e. the number of the values of i is N+1. Using V(x)0 the self-consistent 
quantum capacitance Cq  (itxx =0) is calculated as mentioned in section 4.4. Then 
potential across the quantum capacitance Vh (LAx =0) is calculated by using 
(3.47). The corresponding sheet charge density pS;)(iAX =0), saturation velocity v01(iAx 
—0) are calculated by using (5.1), (5.3) respectively. Due to the current continuity the 
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drift velocity v(i Lx =0), electric field E(i Lx =0) are calculated as the following 
equations [34]. 

Psh(i1)C=O) = _Cq (iix = 0) Vch(iLx = 0)1 + Psh,O (3.52) 

v(iLx=0) = Id (3.53) 
qWp5 (itx=O) 

Vsat(itX=0) = 
1t2h2 

2hfl 

VFPsh(i&=O) V 
1r(hvF)2 pSh(iLx = 0) - 

(hn)2 
(3.54) 

E(itix =0) = Iv(i&=o)Ix Vsat(i&C=O) 

ii.J Vsat( x=0)2 — v(ilix=O)2 
(3.56) 

The channel potential in the next segment i.e. i—i+1 iscalculated by: 

V[(i+1)1x = Lix] = V(itx = 0)—E(iix=0)x Lx (3.57) 

This algorithm is repeated by calculating the sheet charge density at x = (i+1) X Lxx. Thus 
applying this procedure until i—N and the total channel potential V (N&) is calculated. if 
the drift velocity v(iLx) exceeds the saturation velocity (2VF/2T) then the sheet charge 
density ,oi1x) will be too small to guarantee current continuity. In this condition the drift 
velocity is set to maximum saturation velocity and sheet charge density is set to as follows 

[36]. 

v(iLix) = Vsai = 2VF/Jt (3.58) 

p(ix) = Id = Irld (3.59) 
qWvsat 2qWvp 

When v(x) = Vsag(X) the electric field Esat  would be infinitely large and Esat is calculated by 

v(iAx) 2Vp 
E(ittx)=a 

ir1 
(3.60) 

Where a is an empirical factor such as 4 or 5 used only in the region of constant electric 
field at v(x) = Vsaj(X). By this procedure the channel potential of graphene MOSFET is 
calculated. 

3.2.7 Saturation Characteristics 

The saturation current is computed by the Landauer formula as derived by here briefly 
[34] 

2qW \I ( 

2 

lsar2h
JF 

 

fl Psh(j) 

And the corresponding saturation velocity is given by: 

(3.61) 
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2rn 

2h2  Psh 
rr(hvF)2p5h - 

(hn)2 
(3.62) 

Therefore the saturation velocity (Vsai) depends on sheet charge density (Psh)  which is a 

specific feature of graphene and has to be considered in the calculations. 

The saturation velocity is linked to the saturation current lsa,by: 

2V 
'd,sa qW—p (3.63) 

71 

The equation (5. 1 1) we can get the relation between and VF  as: 

Vsaj = (3.64) 

The index 1 is only introduced to distinguish between saturation velocity above and the 

one which will be obtained in the next step. It is interesting to note that this saturation 

velocity corresponds to the average velocity of electrons moving in +x direction, which is 

simultaneously the ballistic velocity. The saturation velocity is considered in our model 
[36]. 

3.2.8 DC Characteristics 

There are some methods of simulating GFET characteristics into computer. In this section 
one method to model the output characteristics of graphene FETs is mentioned. Here, a 

different approach is developed.The main procedure of this model is to calculate the drain-
source voltage (Vd ) for a given drain current (Id).  The current-voltage characteristics of 
the dual gated GFET are fully discussed by this model [34]. The drain-source current 
versus drain-source voltage (Idc V.) characteristics was found with different values of 
top-gate and back-gate voltages. On the other hand the drain current versus top-gate 
voltage (IVgs:op) and the drain current versus back-gate voltage (Jds Vgs hack) with 

different drain-source voltages were also found. The drift velocity (vdnft) and electric field 
(Er) were discussed by this method. The parasitic drain and source resistance are taken 
into account also. After all the saturation velocity and saturation current characteristics 
were also found. Finally, the maximum DC characteristics of GFET were calculated and 
discussed in this section. 

The assumptions made in the previous model are mentioned below which are essential. 

Only the drift current is considered and diffusion current is neglected. 

The effect of the quantum capacitance on the charge carrier density is taken 

into account throughout the whole procedure of this model. 

Only the majority charge carriers (electrons or holes) are included in this model 

and the minority charge carriers (holes or electrons) are neglected here. 

A velocity-electric field characteristic with soft saturation is considered. 
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V. The saturation velocity depends on the charge carrier density but can't exceed 

the value 2VF-  ever. 
It 

The electric field in the region where v = Vsaj is set to be constant also. 
The parasitic source and drain series resistance are taken into account. 

The current-voltage characteristics are found by following both the section 4.4 and section 
5.3 approximations. Here, Id—Vd  characteristics of graphene MOSFETs are found by 
setting channel potential at source end with JdR3  at x = 0 [34]. 

V(x0) = V(i0) = IdRs (3.65) 

By applying the procedure of Section 5.3 until i = N and adding potential 'd Rd to get the 
drain-source voltage Vd as given by: 

Vd3= V(NLx) + 'd Rd (3.66) 

Now the drain current and gate voltage (i.e. top gate voltage or back-gate voltage) 
characteristics are calculated for different values of drain-source voltages. Here, the given 
drain source voltage V 07, is mentioned with the fixed parameters of Table-fl and a 
condition is applied such that if drain source voltage by eq. (3.66) is same as the Vs 
011,then this current Id  is the desired current for the gate voltage. Such the Id-V.:op or I(J 

Vgs.back characteristics can be found. The necessary parameters of our proposed GFET are 
given here. 

Table-LThe Parameters of our modeled rauhene MOSFET 

Parameters with Units Parameters Values 

L(pm) 5 
W(p,n) I 

(inn) 15 

tox.b ffi.k (nrn) 285 
1.45 

gsbackO(") 2.70 

/2h.0(C'fl) 1.5x1012  

R=Rd (fl) 900 

n(cm 2) gxlofl  

Pp = p (cni2V's') 1500 

hD  (rneV) 55 
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3.3 Modeling of ballistic top gated graphene MOSFET 

3.3.1 Device Model 

Top gated graphene MOSFETs as shown in Fig.! were simulated. The simulated device has a 
top gate insulator thickness of t1 =2 nm and dielectric constant of (H102)k17 =9, which result in a 
gate insulator capacitance of C = 3984 nF/cm2  to minimize the gate electrostatic effect.No gate 
underlap is assumed, and the gate length is equal to the channel length L5=Lh=10  nm. The 
difference between the metal Fermi energy level and the Dirac point of graphene is ErED= —0.2 
eV, which is typical for a high work function metal source or drain contact (such as Pd). The 
contact makes better contact for hole conduction as compared to electron conduction. Using the 
model shown in Fig. 1, the DC characteristics and RF performance of top-gate Graphene 
MOSFETs at ballistic limit is evaluated. 

Source Gate Drain 

Fig.3.6: Cross section of the modeled top gate-graphene MOSFET 

3.3.2 Non-Equilibrium Green's Function (NEGF) 

MOS transistors with channel lengths as small as 10 nm are now being actively studied both 
theoretically and experimentally [37]. At the same time recent demonstrations of molecular 
switching make molecular electronic devices seem a little closer to reality [38].  It is clear that 
quantitative simulation tools for this new generation of devices will require atomic-level 
quantum mechanical models. The non-equilibrium Green function (NEGF) formalism 
(sometimes referred to as the Keldysh or the Kadanoff—Baym formalism) provides a sound 
conceptual basis for the development of this new class of simulators. 1D quantum devices like 
tunneling and resonant tunneling diodes have been modeled quantitatively using NEMO [39] 
which is based on the NEGF formalism. Although the transport issues in MOS transistors or 
molecular electronics are completely different, the NEGF formalism should provide a suitable 
conceptual framework for their analysis as well. However, this formalism is based on concepts 
that are unfamiliar to most device physicists and chemists and as such remains relatively obscure 
despite the obvious value of a fundamentally sound approach on which practical simulation tools 
for nanoscale devices can be based. 

Most device physicists are familiar with the Schrodinger—Poisson solver. So let us start by 
recapitulating how the Schrodinger—Poisson solver works for a device in equilibrium (Fig. 3.7a). 
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The first step is to identify a suitable Hamiltonian H that provides an adequate description of the 
isolated device. For example, if the device operation involves only the electrons in a parabolic 

conduction band then we could use the effective mass Hamiltonian H —(h2/2m)V 2. 

Hamiltonian commonly used to provide an accurate description of the valence band. When the 
device is connected to the contacts there is some charge transferred into or out of the device, 

which gives rise to a potential, U(r) that has to be calculated self-consistently. The Schrodinger—

Poisson solver (Fig. I B) iterates between the Poisson equation which gives us the potential U(r) 
for a given electron density n(r). 

V2U(r) = 
—n(r) 

(3.67) 

and the law of equilibrium statistical mechanics which tells us that the electron density n(r) for a 
given potential profile U(r) is obtained from 

n(r =T1a (r)2 Ifo (e P) 
a (3.68) 

By filling the eigenstates 1a  (r) of the Schrodinger equation 

[H+U]'Pa (r)=&1'(r) (3.69) 

According to the Fermi function 

f0 (E—p) (l+exp[(E—p) / kfly' (3.70) 

p being the Fermi level. 
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U-n 

"Poisson" Equation 
T 

Transport equation 

(NEGF' 

H,U, 1 , 2,p1 ,,u2  —n 

(b) 

Fig. 3.7.(a) A device driven out of equilibrium by two contacts with different Fermi levels Li 

and l2  (b)self-consistent procedure for determining the density matrix from which all quantities 

of interest (electron density, current etc.) can be calculated. 

Periodic Boundary Conditions 

The density matrix can be written as (I: identity matrix of the same size as [H1.]) 

[p]=pk =Fo([H L — JJfl) (3.71) 

We solve eqn (3.5) self-consistently with the Poisson equation 

£ 
(3.72) 

using the standard finite difference method to write the Schrodinger equation on a discrete lattice 
we obtain 

E'P1  =—rP0+(E  +2t+U1 )P1 —t% (3.73a) 

at the left end of the lattice.The problem is that we want to get rid of To , in order to truncate 

[HL] to a finite size. We have the same problem at the right end 

l'PNI  +(E + 2t+ UN )W ), - t'PN+I (3.73b) 

where we would like to get rid of 'PNf.  If we simply truncate the matrix, we are in effect setting 

= 'PN+I =0 which makes the calculated electron density go to zero at the ends. This would be 

an appropriate boundary condition if we had an infinite potential wall at the ends. However, 
what we actually have is an open boundary and this is better described by periodic boundary 
conditions which effectively wrap the right end around and connect it to the left end by setting 
HL(1,N)= HL(N,1)=-t. The electron density then approaches the constant bulk value near the 
ends as we would expect. However, it is important to note that we are getting rid of end effects 
by artificially wrapping the device into a ring. We are not really doing justice to the open 
boundary that we have in the real device. The self-energy method that we will describe later in 
this section allows us to do that. But before we can describe this method, we need to discuss the 
Green's function approach for calculating the density matrix. 
The density matrix can be written in the form 
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[Pk] 
= LOC 

dEf0(E + Ek - ii) ([E1 - HL]) 

[p] = f 4 dEFO (E - p) 6([EI - HL]) (3.74) 

Using the standard expression for the delta function (Ok: positive infinitesimal) 

(

;F

2E\ i i 2ir6(x) = LimE..,O+
+Ez) = x+iO - x—iO 

we can wnte 

8(EI - HL) = _L ([(E + iO)I - HL]1 - [(E - iO)1 - HL] 1. (3.75) 
2ir 

Equations (3.8) and (3.9) can be rewritten in the form 

1 
[Pk1 =-J 

dEfo(E+sk  —p)[A(E)] 
27T

[] = —J < dEFO (E - (3.76) 

where [A(E)] is known as the spectral function 

[A(E)} = i([G(E)] - [G(E)]) (3.77) 

[G(E)] being the retarded Green's function defined as 

[G(E)] = [(E + iO)1 - HL] ' (3.78) 

One can see from eqn (3.76) that the spectral function [A(E)] /27r can be interpreted as the 

available density of states which are filled up according to the Fermi function to obtain the 
electron density. Indeed the diagonal elements of [A(E)] /2ir in the real space representation give 

us the local density of states at different points in space (a quantity that can be measured with 
scanning probe microscopy). 

Device Reservoir 

Fig. 3.8: The interaction of a device with a reservoir can be represented by a self-energy matrix 
1. 

Self-energy 

311 : 



The concept of self-energy is used in many-body physics to describe electron—electron and 
electron— phonon interactions. In the present context, however, we are using this concept to 
describe something much simpler, namely, the effect of a semi-infinite contact. But the principle 
is the same. In general, we have a 'device' connected to a large reservoir and the overall 
Hamiltonian matrix has the form shown in Fig. 3.8 [40] 

I 
H T 

HR 

where the dimension of HRiS huge compared to that of H . The overall Green function has the 
form 

I 

G GRD 
- 

[(E + i0)I - H —r 
-1 

GRD GR  I - -t (E+iO)I-HR I 

We are only interested in G (and not in GR, GRD or GDR),  because we only care about the details 
inside the device and not inside the reservoir. It is straightforward to show that (see p.  146, Ref. 
[41]) 

G=[(E+i0)I—H—] [EJ — H — f' (379) 

Where 

=zgrandg =[(E+i0)1 — H R ]' (3.80) 

This shows that the effect of the coupling to the reservoir can be accounted for by adding a self-
energy matrix E to the Hamiltonian H (Fig. 3.2). This is a very general concept that allows us to 
eliminate the huge reservoir and work solely within the device subspace whose dimensions are 
much smaller. Note that I is not necessarily an infinitesimal quantity (unlike 0); it can be finite 
with a value defined by the coupling to the reservoir. We will discuss the physical meaning of E 
further at the end of this section. 

We could use eqn (3.80) in general to calculate the self-energy for arbitrary reservoirs and 
coupling matrices. It may seem that we have not gained much since we need to invert a huge 
matrix to obtain 9R  which we need to evaluate the self-energy from eqn (3.80): 

(m,n) = > r(m,I49R(J1,v)r+(v,n)  

The indices in, n refer to points within the device while ,.t, v refer to points inside the reservoir. 
However, the coupling matrix couples the points within the device to a small number of points 
on the surface of the reservoir, so that we only need gR('p,v)  for points (p,v) that are on the 
surface. This surface Green'sfunctjon can often be calculated analytically assuming a given 
model for the reservoir. 

For the simple 1D problem at hand, the self-energy can be obtained from fairly elementary 
arguments without wonying about surface Green's functions. The self-energy matrix ( E) that 

accounts for the semi-infinite lead on the left is given by (th2/2ma2  as defined earlier before 
eqn (2.5)) 

321 



Jil 121 
.... 

IN'I 

21 —texp(ik,a) 0 0 

0 00 

INl 0 0 0 
(3.81a) 

Where E = E + (11 + 2t(1 - cos k1a) 

In other words all we need is to add a term -t exp(i kja) to HL(  1,1) and we have accounted for 
the semi-infinite lead exactly, as far as calculating the Green's function is concerned. We can 

derive this result using an elementary argument. We stated earlier (see eqn (3.73a)) that the basic 
question at the boundary is how to eliminate To  from the equation 

E'P1 =—t'P0 +(E-l-2t+U1)'P1 —tW2  

With infinite wall boundary conditions we set To  equal to zero while with periodic boundary 
conditions we set it equal to PN * In the self-energy method we assume that we only have 

outgoing (not incoming) waves at the ends. The fact that an actual device has incoming waves as 

well from the contacts is irrelevant when calculating G. G is the retarded Green's function 

representing the response of the system to an impulse excitation within the device: [El - H - 
ZIG = I, and hence the appropriate boundary condition for G is that we only have outgoing 
waves at the ends. This means that when calculating G we can write 

410  = W1exp[ik1a] 

So that eqn(3.81a) becomes 

EW1  = —t exp[ik1a] 1P1  + (2t + U1)1P1  - t'P2  

showing that we can take care of the open boundary condition simply by adding a term -t exp[i 
k ja] to point I, as stated above. Similarly the self-energy matrix 2(E) that accounts for the 
semi-infinite lead on the right has only one non-zero term at point N which is given by 

2 (N, N; E) = -t exp(ik,a) where E = E +UN  + 2t(1—cos k2a) (3.81b) 

The Green's function is obtained from 

G(E)=[El—H L  1 21 (3.82) 

where the self-energy functions E ( E )and 2(  E )account for the open boundary conditions 

exactly. The spectral function A(E) is then obtained from eqn (3.8) from which the electron 

density is obtained using eqn (3.73). However, it should be noted that the periodic boundary 

conditions merely get rid of end effects through the artifact of wrapping the device into a ring 

while the self-energy method treats the open boundary condition exactly. An open system has a 

Continuous energy spectrum, while a ring has a discrete energy spectrum. The electron density is 

obtained by integrating over energy and is relatively unaffected by the discretization of the 

spectrum at least at room temperature. But the difference would be apparent, if we were to look 
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at the density of states, that is, the spectral function. The full power of the self-energy method 

becomes apparent when we model a device under bias—a problem that cannot be handled with 
periodic boundary conditions. 

1 

Broadening 

It might appear that the self-energy method is just another method for handling boundary effects. 
With infinite wall boundary conditions we set 'Po='I'N+ I O; with periodic boundary conditions 
we set To = 'PN; in the self-energy method we set To  = 'Pi exp[i kia] and 'PN+1 = 'PN exp[i k2a]. 
However, there are two factors that distinguish 1 (E)and 2(E)from ordinary Harniltonians. 

Firstly, they are energy dependent. Secondly, they are not Hermitian. We can write 

HL + I 2 [HL +' 2 ± 2]+[I I + 2_2] 

=HL— 1T1 12—iT,/2 

Where I-, =4-:I r2  =42 '21 

The point we want to make is that the self-energy terms have two effects. One is to change the 

Hamiltonian from HLtofl which changes the eigenstates and their energies. But more 

importantly, it introduces an imaginary part to the energy determined by the 'broadening' 
functions Jjand r2 . The former represents a minor quantitative change; the latter represents a 
qualitative change with conceptual implications. 

One way to understand the meaning of these functions is to imagine a representation which 
diagonalizes HL.  This representation will not necessarily diagonalize r1  and l'2—indeed 
interesting quantum interference effects often arise from the non-diagonal elements of Ijand r2. 
But if r and "2  are also simultaneously diagonalized then the eigenenergies of 
(HL+1+12) will be given by 

- i(71 + 1'2 )/ 2  

Where e,y1 , and y2 are the corresponding diagonal elements of HL, 1 and r2 respectively. This 

could be viewed as a broadening of the energy level from a delta function 8(E—e) into a line of 

the form 7 + 

(E
- 

e)2+(7T2 
2) 

which could have a non-Lorentzian shape sinceland2 are in general energy dependent. The 

imaginary part of the energy implies that the wavefunction and the associated probability decays 

withtime which can be written in the form (neglecting any energy dependence of 1 and 2 

r iEtl I y1 tl y2 t 
W- exp 

[---j exp[_TJ exp[—  
] 
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I 'P12 y1t y2 t (3.83) 
- expl_ —_-lexp[_T] hh 

An electron initially placed in that state will escape into the left and right leads with time 
1' constants h / y and h / y2 respectively. The quantities y Ih and y2  Ih thus represent the rates at 

which an electron initially in 

(a) (b) 

Fig. 3.9: A discrete level is coupled to a reservoir with a Fermi level .t.  The broadening is the 

same regardless of whether the reservoir states are empty or filled. (a) Level coupled to empty 

states (b) level coupled to filled states. 

particular state will escape into the left and right states respectively. For example, we have seen 

that a 1D lead gives rise to a self-energy that is purely diagonal in real space representation (see 

eqn (3.15a)) 

E(1,1) = —texp(ika) - 1'(l,l) = 2tsin(ka) = hula 

which is quite reasonable since we expect the rate of escape from a lattice site of size 'a' to be 
v/a. 

Coherent transport 

We have seen in the last section that the equilibrium density matrix is obtained by filling up the 
available density of states (or spectral function [A])according  to the Fermi function (see eqn 
(3.10)). 

A B 

.4- 

Fig. 3.10. The eigenstates of a composite contact—device--contact structure can be divided into 

two groups associated with incident waves from the A, left contact and; B, the right contact. If 

we neglect scattering processes under bias, then under bias the 'left' eigenstates in A remain in 

equilibrium with contact I (pt) and the 'right' eigenstates in B remain in equilibrium with 
contact 2 (P2). 
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The next problemis to find the density matrix if the device is connected to two contacts with 
different Fermi levels 1 and 2 (see Fig. 3), and hence different Fermi functions. The solution in 
general is quite involved: non-equilibrium statistical mechanics is a far more complex subject 
than equilibrium statistical mechanics. However, the answer is relatively simple, if we neglect 
scattering processes within the device (that is, if we assume transport to be coherent). This turns 
out to be a fairly accurate assumption for many ultra short devices like resonant tunneling 
diodes. The eigenstates of the composite contact—device--contact structure can then be divided 
into two groups associated with waves incident from the left and right contacts respectively (see 
Fig. 3.10). When a bias is applied, these 'left' eigenstates and 'right' eigenstates remain in 
equilibrium with the left contact and the right contact respectively. The ballistic conductor is a 
relatively simple example of this principle where the left eigen states are the '+k' states and the 
right eigenstaes are the '-k' states. 

This simple observation (some might call it an ansatz) leads to an enormous simplification and is 
at the heart of the transmission formalism that is widely used in mesoscopic physics[40-42].  It 
allows us to treat a non-equilibrium problem using equilibrium statistical mechanics. At 
equilibrium, we fill up the full spectral function[Al] according to the Fermi function. Under bias, 
we fill up part of it (the left spectral function [A1])  according to the Fermi function in the left 
contact and part of it (the right spectral function [A21)  according to the Fermi function in the 
right contact. The density matrix is given by (cf. eqn (3.10)) 

Pk = 
dE 

J — [fo(E -1- &k — pl)AI+fo(E+sk —p2 )A2 ] 
2,r 

So that P=Pk =J dE — [F0 (E—p1 )A1  +F0 (E—p2 )A2 ] (3.84) 
2,r 

The Green's function formalism provides a simple way to separate the total spectral function [A] 
into a left spectral function [A1] and a right spectral function [A2]: 

A1  = GI'1G, A2  = GIG (3.85) 

G=[EI — HL 1 21 (3.86) 

'I,2 =  1LI,2 I.21 (3.87) 

We can prove that the total spectral function is indeed equal to the sum of the left and right 
spectral functions: 

A i[G - G] = A1  + A2  = G1'1G + GI'2G2 (3.88) 

By writing equation (3.87) as 

= El—il L I 2 and [G] = El—H, 

Sothat G— [G] =i['1 -t-i[', 
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Premultiplying by G and post multiplying by G, we can prove eqn (3.20). 

Current expression 

An alternative expression for the current can be obtained from a rate equation point of view by 

writing the outfiux from the device into contact 1 as [40] 

'out = (—q/h f dEtrace(r1 5) (3.89) 

which can be understood by noting that the density matrix is like the electron density while 01 = 

N h represents the rate at which electrons escape into the contact. The influx from the contact 

into the device can be written by equating it to the outflux we would have if the device were in 

equilibrium with that contact: 

1•71  = (—)fdEtrace(I'1p1) 

where 

2ir[ 1(E) F1[A1(E)] + F1[A2(E)] (3.90) 

represents the density matrix we would have if F2 were equal to Fl . The net current is given by 

I D un lout. Making use of eqns (3.87), (3.89)—(3.90) we obtain 

I = (—q/h) f dE trace(F1A2) [F1  - F2]. (3.91) 

We could go through a similar argument regarding the influx and outfiux at the other interface to 

obtain an equivalent expression for the current: 

I = (—q/h) f dE trace(l'2A1)[F1  - F2]. (3.92) 

Equations (3.91), (3.92) provide alternative expressions either of which can be used to calculate 
the terminal currents without explicitly calculating the density matrix. 

Relation to the transmission formalism 

An interesting aspect of eqns (3.91) and (3.92) is that the expression for the current has exactly 

the same form that is used in the transmission formalism [40] 

1= (-) f dET(E)(F1  - F2). (3.93) 

The function T . E / is typically interpreted as the probability that an electron will transmit from 
the left to the right contact. Equation (3.93) is often used to calculate the current in tunneling and 

resonant tunneling devices. Comparing eqn (3.93) with eqns (3.91), (3.92) it is clear that 

T(E) = trace(f1A2) = trace(I'2A1) 
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= trace(I'1FF2G) = trace(F2Gl'1G) (3.94) 

The NEGF formalism, applied to a coherent device, can thus be viewed simply as a convenient 
method for evaluating the transmission probability. The basic physics is identical. 

CHAPTER 1V 

38 1 



Large area Graphene MOSFET 

- 4.1 Introduction 

In this chapter the performance of dual gate large area graphene MOSFET is analyzed using 
analytical approach.Here we have used device length as 5 pm and width as 1 pm respectively. 

The detailed simulation results are given below. 

4.2 c-v characteristics 
The quantum capacitance as a function of gate voltage is investigated in this section. The effect 
of the quantum capacitance on the overall gate capacitance is also mentioned. The effect of the 

impurity concentration in the substrate layer is also considered. The quantum capacitance has a 
vital effect on the total DC characteristics as well as radio-frequency characteristics. Our 
simulation results using MATLAB are illustrated here. 

From the beginning of our given model we investigate the effect of the quantum capacitance on 
the overall gate capacitance. We simulate this quantum capacitance by using the following data 

on the given table. Here a 3 nmSiO2  top-gate dielectric, zero Vgs top,o and zero applied Vo..i.e. 
without feeding current into the model is considered. The effect of the impurity concentration 

n*is taken into account. The value of the impurity concentration n  is considered as 4x10" cm 2  

as shown in Table—H: 

Table-H: Different parameter symbol and values of Graphene MOSFET 

Parameters symbol of GFET Parameters value of GFET 

t00(nm) 3 

C00 (pFcni2) 1.15 

Vgs:op,o(V) 0 

n* (cn12)  4xlOu  

Vds(V) 0 

vp(cms) 1x108  

The quantum capacitance and the potential across the quantum capacitance is solved by self-

consistent method by using the values of Table—il. 

IT 
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Figure 4.1: Quantum capacitance Cq(blue), top-gate oxide capacitance (red) & gate 
capacitance C (green) of a graphene MOSFET structure as a function of top-gate voltage. 

The minimum value of the quantum capacitance was found as 1.7325 pFcm 2  at zero top-gate 

voltage and the maximum value was found as 23.5009 i.tFcm 2  for both top-gate voltage —JV 
and +JV also at Fig. 4.1. The shape of the quantum capacitance is fully symmetrical on the both 
side of the Dirac point i.e. at the point where the minimum value of C. is found. 

4.3 Impurity Concentration Dependency of Cq  

In this case we have used the value of the parameters as mentioned on Table-li. The quantum 
capacitance was shown for different values of the impurity concentrations n from lx 1011  cm 2  
to lOx 10" cm 2  [35]. With the increasing value of n' the minimum value of the quantum 
capacitance is also increased. But the shape of Cq Vgstop  curve is unchanged i.e. symmetrical 

with both the voltage-axis or the top-gate voltage. By taking different values of n*from  I xlO" 
cm 2  to lOx 10" cm 2  the quantum capacitance C. is found as shown below: 
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curves are about same shape with respect to both sides of the top-gate voltage axis. We can 
conclude that the impurity concentrations may affect more for the Cq inthan the Cq,max(for a 
given range of gate voltage). Though the Cq  mm1 s being changed then the gate capacitance is also 
being changed because Cg  is related to Cq  as a series combination of the C0 and Cq. Impurity 
concentration has a great effect at Cq.minor  Dirac point [34]. 

4.4 Current Voltage (I-V) Characteristics 

In our model we give the drain current as input and the corresponding drain-source voltage is 
found. But in this curve we simulate drain-current versus gate-voltage (i.e. top-gate or back-
gate) for different fixed value of drain-source voltage (V). For every iteration we set a fixed 
value of drain-source voltage (V). Then according to the above procedure we calculate the 
drain-source voltage (V) for a given range of drain current (Id).  In our total simulation the 
impurity concentration is considered as n= 8x10" cm 2. This value is considered through-out 
the total simulation of our model also. 

The output characteristics from Fig. 4.3(a) deserve a closer inspection. While in the shown Vth 
range the upper three curves for Vgstop= —3.OV, —2.25V, —1.50V and-0.75V seemingly have a 
shape as known from conventional FETs, i.e. a linear region followed by a saturation of the 
drain current, the curve for Vgs ,op= O.OV shows a kink-like shape with an inflection point 
followed by a subsequent increase in Jd(like a "second" linear region). First, 'd  increasesalmost 
linearly with Vd. Afterwards the drain current will saturate and reaches a plateau. Up to now the 
GFET behaves similarly to a conventional MOSFET. However, then a second increase of 'd  is 
observed. This kink-like shape of the output characteristics is very distinctive for GFETs with 
large-area graphene channels and will now be examined in detail. 

This behaviour arises from the transistors of p-type into n-type conduction at the drain end of the 
channei. It should be noted that at higher drain-source voltages the I-V curves for more negative 
gate voltages also show an inflection point. This behaviour occurs for a change in the conduction 
type at the drain end of the channel from p—type to n—type [25].  Fig. 4.3(a) and 4.3(b) shows the 
I-V characteristics of the graphene MOSFET for different Vgs.jop  at two back gate bias 
conditions, Vgs back of +40V and —40V respectively. Fig. 4.3(a) shows that the drain current Id is 
increasing with increasing drain to source voltage Vth  for different top-gate voltages at constant 
back gate bias Vgs.back=+40V.  The similar curves are displayed on Fig. 4.3(b) for Vgs back40V 
also. The drain current Id  as a function of drain-source voltage Vd, is illustrated for dual-gated 
large-area graphene MOSFET using the parameters as Table-I. 
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Figure 4.3: (a) The drain current 'd  as a function of drain source voltage Vd, for five different 

values of 1 gstQ3 at Vgsback = +40 V (b) The drain current 'd  as a function of drain source 

voltage Vd, for five different values of Vqg_top  at Vgsback 40 V. 
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The Fig. 4.4(a) and 4.4(h) show the 1-V characteristics of the graphene MOSFET for different 
values of top-gate voltage Vgs.top= 0.OV, +0.75 V, +1.50V, +2.25 V and +3.OV for back-gate 
voltage Vgs.back = +40V and —40V respectively. 
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Figure 4.4: (a) The drain current 'd  as a function of drain source voltage Vd for five different 
values of gstop at  Vgsback = +40 V. (b) The drain current 'd  as a function of drain source 

voltage Vd for five different values of V_ 0  at Vgsback = 40 V. 
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The Fig. 4.5(a) and 4.5(b) show the 1-V characteristics of the graphene MOSFET for different 
values of back-gate voltage Vgs.baL.k= O.OV, —20V, —40V and-80V for top-gate voltage V-10  = 
+1.5Vand —1.5Vrespectively. 
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Figure 4.5: (a) The drain current Id  as a function of drain source voltage Vd, for five different 
values of Vgs..back at V 1 ,0  = +1.5 V. (b) The drain current 'd  as a function of drain source 

voltage Vd, for five different values of Vgs...back at Vgs top 1.5 V 
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The Fig. 4.6(a) and 4.6(b) show the I-V characteristics of the graphene MOSFET for different 

back-gate voltages at two top gate bias conditions, of +1.5V and —1.5V respectively. Fig. 4.6(a) 

and 4.6(b) shows the transfer characteristics and it is seen that Dirac point shifts when the drain- 
-r source voltage is varied. 

Back gate voltage Vgs-top = + 1.5 V 

0V 
+20V 
+40 V 
+60V 

"0 0.5 1 1.5 2 2.5 3 
Negative drain-source voltage, Vds (V) 

 

1 

<0.8 
E 
C 

0.6 

0.4 

Z0.2 

ri- 

Back gate voltage Vgs-top = -1.5 V 
OV 
+20V 
+40 V 
+60 V 

"0 0.5 1 1.5 2 2.5 3 
Negative drain-source voltage (V) 

 

Figure 4.6: (a) The drain current 'd  as a function of drain source voltage V. for five different 
values of Vgs_back at V k,,,, = +1.5 V. (b) The drain current 'd  as a function of drain source 

voltage Vd, for five different values of Vys_back  at —1.5 V. 
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>. 
The Fig. 4.7(a), 4.7(b) and 4.8show the transfer characteristics for different values of drain-
source voltage Vd, are computed with the parameters from Table-1. In all curves the drain-current 
'd is first decreasing with increasing V 10  up to a certain point where it reaches a minimum and 

n foards. This can be understood as follows: For zero Vgs:op  the majority charge 
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Figure 4.7: (a) The drain current Id  as a function of top-gate voltage for four different 
values of VdS  at gs—back = +40V. (b) The drain current ld  as a function of top-gate voltage VSS-
op 

 

for four different values of VdS  at Vgs...back = 40V. 



carriers are holes, since the energy bands are slightly up-shifted with respect to the Fermi 
energy, due to the back-gate voltage Vgsback of 40V. 

If Vg gop increases negatively, the channel potential will be lowered resulting in a smaller hole 
concentration. At the point, where Vh is zero, i.e. Ec E, the minimum carrier concentration is 
reached. A further increase of would result in a negative Vh and therefore electrons would 
accumulate and over compensate the decrease of holes. Thus the current is increasing again. 
Such a behaviour involving both electrons and holes is called ambipolar. A qualitative 
explanation of why the minimum shifts with Vd, is observed. It can be seen that the Dirac point 
shifts when the drain-source voltage is varied. Such a shift is observed in experimental GFETs 
[33]. 
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Figure 4.8: The drain current 'd  as a function of back-gate voltage Vgs.bczckfor  four different 
values of VdS  (-0.5V, —1.OV, —1.5V and —2.OV) at Vgstop = +1.5V. 

Kink Effect of I-V Curves 

The variation of gate voltage directly affects the channel potential, V.,. The quantum capacitance, 
Cq  and the graphene potential, Vh are varied self-consistently with V which influences the sheet 
charge density, Psh.  Thus the drain current, 'd  which is a function of gate voltage or Vg.back) 

and sheet charge density, Psh  is also changed. The 'd  curve from Fig. 4.3(a) for V 0 =0.0 V, 

which shows a pronounced 'kink' in the characteristics signify the presence of an ambipolar 
channel. For our device in Fig. 3.1, with channel length L, V(L)Vdc so that for Vö Vgs 
topVO, current is carried by holes throughout the length of the channel [5]. For V = V&i,,k, the 

vanishing carrier density produces a 'pinch-off' region at the drain that renders the current in 
the channel relatively insensitive to Vd and results in the pronounced kink seen in the I—V 
characteristics. The Vd >V, k, gives rise to an accumulation of electrons in the drain side and a 
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corresponding increase in the carrier density leading to a further increase in the drain current. 
Thus there produces an ambipolar regime in the graphene channel. The pinch-off point becomes 
a place of recombination for holes flowing from the source and electrons flowing from the drain. 
Because there is no band gap, no energy is released in this recombination [25]. 

4.4 Effects of Channel Potential 

The parasitic series resistance (Re) is considered for the following simulation curves by using 
MATLAB. But there may arise a question: Why channel potential is not start from the O.OV 
at the starting point of the source side? And this channel potential should be equal to the Vd5at 
the channel length x=L. Because IdR voltage is considered here at the source end. 
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Figure 4.9: (a) The channel potential V(x) at V —1.OVforV8 10 = —1.5V and Vgs.back = 
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Fig. 4.9(a) shows the simulation of potential on graphene channel with fixed Vds  = 
—1.OV, = —1.5 V and Vgs _back  = +40 V. At the source end i.e. at x=0, channel 

potential is zero. As the channel length increases the corresponding channel potential increases 
and becomes equal to drain voltage at the drain end voltage equal to —1.0 V. 

The graphene MOSFET structure having double gate, with series resistances while the 
remaining parameters are shown in Table-I. The Fig. 4.9(a) and Fig. 4.9(b) show the conditions 
in the channel for two different drain-source voltages V"t, of —IV and five different values 
respectively. Let us start the discussion for an applied Vgstop = —1.5V and zero V. Then the hole 
concentration is constant at any position in the channel and no current is flowing. If we gradually 
vary Vd, to —IV, an increasing current flows and the hole concentration at x = L decreases for 
increasing absolute V. At V= —IV the Fermi level at the source end of the channel (x O) is at 
0 eVand at the drain end (x = L) it is shifted downwards by I eVdue to V. Thus, the local gate-
to-channel voltage is - I V at x = 0 and zero at x=L as shown in Fig. 4.9(a). The bottom of the 
conduction band is shifted upwards by Vh with respect to EF at the source end of the channel, 
which results in a p-type (i.e.hole) conduction. At x=L, the bottom of the conduction band is 
located just at EF -this corresponds to the Dirac condition, i.e. zero gate-induced carriers in the 
graphene and Psh = Psho. We are now at the inflection point of the Id - Vd characteristics. 

If Vd, is further decreased to several values from —1.5V, —1.75V, —2.OV, —2.75V and-3.OV 
gradually (see Fig. 4.9(b)), we will obtain a positive gate-to-channel voltage of + 0.5 V (for 
= —1.510 at x = L. This gives rise to an accumulation of electrons and a corresponding increase 
in the carrier density leading to a further increase in the current. Now the majority charge 
carriers are holes at the source end of the channel and electrons at the drain end. In other words, 
ambipolar conduction occurs and the conductivity type of the channel changes between source 
and drain. Such a behavior is specific for GFETs, caused by the gapless nature of the channel 
due to the zero bandgap, and does not occur in conventional field-effect transistors. If we 
consider other values of Vd, for Fig. 4.9(b) the above explanation is true for all these conditions. 
These same criteria can applicable for Fig. 4.10(a) and 4.10(b) for sheet charge density; Fig. 
4.11(a) and 4.11(b) for graphene potential; Fig. 4.12(a) and 4.12(b) for both E, and V(x) 
respectively. From Fig. 4.9 to Fig. 4.12 it is very clear that the ambipolar conduction occurs at 
the channel of graphene MOSFET 
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Fig. 4.10 (b) shows the variation of sheet charge density with channel length at different V. As 

Vd, is decreased negatively the corresponding sheet charge density decreases up to Dirac point. 

After Dirac point we obtain a positive gate to channel voltage at the drain end which gives rise 
r to an accumulation of electrons and corresponding increase in sheet charge density. 
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Figure 4.10: (a) The variation of the sheet charge density Ps1  with channel length at 
1.5 V, Vg.cbac+40 V with Vd=  —1.OV. (b) The variation of the sheet charge 

density Psh  with channel length at Vgsrop  —1.5 V and Vgs.back+40 V with Vd — 1.5 V, 
—1.75 V, —2.0 V, —2.75 Vand —3.0 V. 
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Figure 4.11:(a) The graphene potential qVh at Vd —1.OVforV 50  = —1.5V and Vgs.back = 
+40V.(b) The graphene potential qVh at Vd=  —1.5V, —1.75V, —2.OV, —2.75V, 3.OVforVgs. 
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4.6 Velocity Field Characteristics 

The drift velocity and electric field is closely related to each other. In our simulation model we 
have the assumption to describe this effect also. With increasing values of electric field the drift 
velocity is also increased but after a certain range as the electric field is increased the drift 
velocity is not increased. Then drift velocity is limited to the average value of the Fermi velocity 
also. Fig. 4.13 shows the velocity-field relation for graphene MOSFET. It can be seen that the 
drift velocity increases linearly with the applied electric field and becomes saturated (2.12xl07 
cms-1) at 75.06 kV/cm similar to [45],  [46]. 
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Figure 4.13: (a) The velocity-field relation for graphene MOSFET at V8 ,0 —1.5 V and Vgs.hack 
+40 V when Vd= —3.0 V. (b) The velocity-field relation for graphene MOSFET at Vgs. 

—1.5 Vand Vgs back +40 Vwhen Vd—  —2.5V, —2.75Vand-3.0 V. 
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CHAPTER V 

Ballistic Top Gate Graphene MOSFET 

5.1 Introduction 

In this chapter the performance of a top gate graphene MOSFET in ballistic limit is analyzed 
using quantum transport simulation using NEGF formalism. Here we have used the device 
length as 10 rim. The detailed simulation results are given below. 

5.2 Output IN Characteristics 

Fig. 5.1 shows the simulated drain current (Li)  as a function of drain voltage (Vd) for different 
gate voltages. The IN characteristics shows standard MOSFET type behavior along with the 
high drain current density reaching to - 12000 iiAi  im which is promising. The reason for the 
high current density can be attributed to the light effective mass of graphene and high carrier 
velocity [45]. 

As the FET is biased in the saturation regime, the average carrier injection velocity at the source 
end of the device is found to remain almost constant with regard to the applied gate voltage over 
a wide voltage range, which results in significantly improved transistor linearity compared to 
what a simpler model would predict. Physical mechanisms for good linearity are explained, 
showing the potential of graphene FETs for analogue electronics applications [46]. 

Fig. 5.11-V Characteristics of a top-gated graphene MOSFET 
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Fig. 5.2 ID—VSD  Characteristics of graphene MOSFET. 

At lower gate voltage, (Vg 0.2) a pronounced 'kink' is observed in drain current 

characteristics. At higher gate voltage (Vg  ~ 0.4) this kink effect almost disappears. At a gate 

voltage, Vg=O. lv, there observed a significant 'kink' which is shown more details in Fig. 5.2. 

It is observed there are three regions in ID—VSD characteristics shown in Fig. 5.2 such as First 

Linear Region (I), Quasi Saturation Region (II), Ambipolar Region(Second Linear Region, III). 

First Linear Region: 

In the first linear region, the drain current is carried by holes throughout the length of the 

channel which is shown in the Fig. 5.3(I) 

Quasi Saturation Region: At a lower gate voltage there produces a kink in the drain current 
characteristics which was first reported in simulated and experimental results [47], [48]. 

For Vsd=Vsd-kink, the vanishing carrier density produces a 'pinch-off' region at the drain (Fig. 

5.3, II) that renders the current in the channel relatively insensitive to Vsd and results in the 

pronounced kink seen in the I—V characteristic [49].  This region is called unipolar or Quasi-

saturation region. Although the channel saturates at VsdVsd-kink, the drain end of the channel 

may not experience charge neutrality at this potential. This quasi saturation behavior is due to 
the drain Fermi level aligning with the Dirac point profile in the channel, followed by the onset 

of ambipolar regime. The low density of states around the Dirac point gives rise to decrease in 
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current increment and explains the saturation observed for voltages where drain Fermi level is in 
vicinity of conduction band in channel. Since the density of states is low only in a very small 
energy range around Dirac point, graphene MOSFETs do not exhibit complete saturation seen in 
conventional silicon MOSFETs. The length of the Quasi-saturation region is dependent on the 
Fermi level. At a gate voltage Vg = 0.1 and 0.2 V a visible quasi -saturation region is noticed, 
where at Vg = 0.4 and 0.6 V the Quasi-saturation saturation region almost disappears. 

IH. Ambipolar Region (Second Linear Region): 

An additional increase in the drain voltages beyond Vsdflk,  i.e. for Vsd>Vsd-kink the charge 
neutrality point is pushed into the deeper of the channel, toward the source (Fig. 5.3, ifi). As a 
result, electrons are injected into the channel from the drain end. These electrons are mobile 
rather than having depleted region between the point of pinchoff and the drain terminal with 
fixed negative charges. This is as a result of a zero bandgap in 2-D bilayer graphene, and the 
phenomenon is known as ambipolar transport [49].  In this bias range the carriers in the channel 
on the source side of the dirac point are holes, and those on the drain side are electrons. In this 
ambipolar regime, the pinch-off point becomes a place of recombination for holes flowing from 
the source and electrons flowing from the drain. No energy is released in this recombination due 
to absence of bandgap. In this region, the channel conduction is carried out by both electron and 
holes so it is called ambipolar region. However, in the ambipolar saturation region, the drain 
current increases with an increase in the drain voltage, and this behavior has been referred to as a 
second linear region [52] as shown in Fig. 5.2, ifi. 

Or 

xO xL 

Fig. 5.3 Schematic demonstration of the carrier concentration under the top gate region. At point 
I (Vsd < Vsdkk), the channel charge at the drainend begins to decrease as the minimal density 
point enters the channel. At point II (V5d = VdkI), the minimal density point forms at the drain. 
For V d > VsdkLflk (point ifi), an electron channel forms at the drain [47]. 
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5.3 Transfer Characteristics: 

Fig. 5.4 (a) and (b) shows the calculated transfer characteristics of a top gated graphene 
MOSFET. It can be seen that the dirac point shifts when the drain-source voltage is varied. It is 
noticed that dirac point voltage, V ac  shifts significantly towards right from 0.4 to 0.6V at 
positive drain bias shown in Fig. 5.4(a). This is due to the change of channel conductivity from p 
type to n type. Where as Ydirac  shifts slightly towards left from 0.25 to 0.15V at negative drain 
bias shown in Fig. 5.4(b). So, the shift of dirac point voltage Vdj in positive drain bias is more 
prominent than negative drain bias. Also, the p-n asymmetry is due to short channel effect. 
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Fig. 5.4 (a) Lj - V. curve for top gated graphene MOSFET at positive drain bias. 
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Fig. 5.4 (b) L - Vg  curve for top gated graphene MOSFET at negative drain bias. 

5.4 Tranconductance characteristics 

Fig. 5.5 shows the variation of transconductance with the gate voltage. The maximum simulated 
transconductance for ballistic condition is g 4500 .ts/.tmat Vg=0.07V which leads to high 
cut-off frequency for Graphene MOSFET. With increasing gate bias the corresponding 
transconductance decreases. 
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Fig.5.5 Transconductance, gm  vs Gate voltage,Vg  of a top-gated graphene MOSFET 
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Next part focuses on studying scaling of small signal parameters such as transconductance with 
the channel length under ballistic conditions. Fig. 5.6 shows the variation of transconductance 
with channel length varying from 10 nm to 80 nm. The output transconductance, gm,  increases 
with the decrease of the channel length as shown in here. The decrease in transconductance is 
becoming more prominent at longer channel lengths. 
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Fig.5.6.Transconductance, g,, vs Length of a top-gated graphene MOSFET 

Fig. 5.7 shows the output transconductance, g,as a function of the channel length. As the 
channel length scales from 80 nm to 50 nm, the ballistic output transconductance increases only 
very slightly. As the channel length scales down to 50 nm the output transconductance, ga, 
however, rises significantly due to electrostatic gate effect. At short channel length (10-40 nm) 
the transconductance becomes constant that helps to keep the constant cut-off frequency in short 
channel lengths. 
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5.5 Dependence of Fermi energy on gate voltage and density of states (DOS) 

Fig. 5.8 displays the dependence of Fermi energy, E1  on gate voltage, VTG for three different 

values of Cg. As expected, an increase of tEll with increasing I VTGj is observed. This effect is 

strong at small voltages. Close to VTG = 0, a linear behavior is observed leading to a large 

increase in E1  for small changes of VTG. The (unphysical) saturation portion indicated in 

Fig.5.8 is due to the dominating cable capacitance. The Density of States (DOS) which is 

directly proportional to quantum capacitance is a function of Fermi Energy. Here the DOS is 

plotted against Fermi Energy for different oxide capacitance (Cg). 
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Fig. 5.8 Gate voltage (VTG) vs Fermi Energy (Ej) curve for different Cg 

Fig. 5.9 represents the DOS vs E1  curve for ideal graphene given by equation. 

D(E1) = 
2E

) .Here, the variation of DOS with respect to E1  is linear. DOS at the 
(zv1h) 

Dirac point is zero. 
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Fig. 5.9: Density of states as a function of Fermi energy for ideal case 

Fig. 5.10 depicts that the value of DOS at the charge neutrality point (Dirac point) is non zero 

which is not identical with the theoretical density of states for ideal graphene shown in fig. 5.9. 

In contrast to theory, there is a finite number of states close to the charge neutrality point. This is 

due to the presence of local potential variations within the graphene sheet. 
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CHAPTER VI 

Conclusions and Recommendations 

6.1 Conclusions 

In this dissertation, the theoretical performance of graphene MOSFET is studied in large area 
and ballistic limit. In case of simulating large area graphene MOSFET, an analytical approach is 
applied. On the other hand the performance of graphene MOSFET in ballistic limit is evaluated 
using quantum transport simulation based on the NEGF formalism. 

We have calculated sheet charge density dependent quantum capacitance self consistently 
considering charged impurities in the gate oxide. With increasing charged impurities 
concentration the quantum capacitance increases near the Dirac point. A maximum value of 
quantum capacitance 23.564 !1Fcm 2  is obtained at Vgs.t= ±lVwith the chargedimpurities 

concentration of 8x10" cm 2. The linear channel potential profile is also evaluated. 

The effects of dual gate voltage on the I-Vcharacteristics of graphene MOSFET is illustrated 
here. The double gate provides superior control of short channel effects and higher currents 
compared to a single gate MOSFET. The kink-like shape of the output IN characteristics with 
large-area graphene MOSFET is observed. In large area graphene it is found that current 
conduction is occurred by electron or hole or combination of both depending on the drain bias 
which is the proof of the ambipolar nature of graphene channel. 

The transfer characteristics show the p-n symmetry with respect to minimum conductivity point 
or dirac point in the large area graphene channel. The dirac point shifts towards right with 
increasing drain bias negatively. High saturation velocity is obtained along with high drain 
current. The sheet charge density profile decreases up to Dirac point (minimum conductivity 
point) as drain bias is decreased negatively. After Dirac point we obtain a positive gate to 
channel voltage at the drain end which gives rise to an accumulation of electrons and 
corresponding increase in sheet charge density.+ 

In the ballistic limit, the performance of a top gate graphene MOSFET with 10 nm channel 
length is simulated. The current—voltage characteristics of the device is computed. The resulting 
high drain current density - 12000 A4tm indicates high on-current for GMOSFETs. The shift of 
dirac point voltage Vdu.ac  in positive drain bias is more prominent than negative drain bias. Also 
the p-n asymmetry in transfer characteristics is the signature of short channel effect. The output 
transconductance of the device is obtained in the range of 4500 pS/i.tm which is very much 
promising for high speed nano transistors. 

The output tansconductance, g, increases with the decrease of the channel length. The 

decrease in transconductance is becoming more promiminent at longer channel lengths. On the 
other hand, as the channel length scales from 80 nm to 50 nm, the ballistic drain 
transconductance, gds  increases very slightly. As the channel length scales down to 50 nm the 
output transconductance, gds, however, rises significantly due to electrostatic gate effect. At 
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short channel length (10-40 nm) the drain transconductance becomes constant that helps to keep 

the constant cut-off frequency in short channel lengths. 

6.2 Recommendations 

This work can be extended in following ways: 

As graphene FETs suffer from low I/ 'off  ratio, opening of band gap in bilayer graphene 
has made graphene a viable replacement for semiconductors. Since the device physics of bilayer 

graphene transistors is still in embryonic stage, the knowledge of graphene and semiconductors 

can be extended to analyze the behavior of bilayer graphene and prospects in nano photonics and 

nano scale electronics. 

A band gap is opened in bilayer graphene by applying an electric field perpendicular to the 

layers that breaks the sublattice symmetry of the lattice.In addition to band gap opening, 

another electronic property that can be harnessed in design of logic transistors based on bilayer 

graphene is a pseudo spin degree of freedom associated with the electron-density difference 

between the two layer. A model for pseudo spin based bilayer graphene FETs can be 
developed. 

A preliminary ID Poisson and Schrodinger analysis is used here. For better understanding of 
device physics 2-D analysis is essential. So our future plan is to analyze the whole work in 2-D 
structure. 

Here we have ignored the scattering effects including acoustic and phonon. We will include 
all the scattering effects further. 
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