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ABSTRACT 

The main subject matter of this dissertation is to study the performance of artificial neural 

network and observer based high performance induction motor drive. Four suitable flux 

observers compatible with drive control law are discussed and flux estimation with these 

observers along with effectiveness is studied. 

Study of the artificial neural networks for flux estimation with baekpropagation training 

algorithm for simulation is presented in this dissertation. It also presents the general idea 

about feedforward neural networks, mapping and training of an artificial neural network. 

The direct and indirect field orientation control methods of induction motor For variable 

operating conditions are evaluated in this study. In the direct method, flux estimation is 

applied for vector rotators which controls drive current or voltage magnitude as well as 

position SO that the rotor flux can be kept constant. In the indirect method flux estimation 

is used for parameter compensation. 

Digital simulation procedures are presented to study the performance of these observer-

based field oriented induction motor drives. Speed of an induction machine is also 

estimated with full order observer and parameter adaptation is also presented for 

sensorless field orientation control. 

1'he main cirawbuck of indirect method of field orientation is due to Variation of rotor 

resistance that degrades performance and requires tuning. Observers are used for 

detecting the parameter mismatch condition and correcting the controller resistance. By 

flux feedback the rotor resistance is adapted and the effectiveness of observers is also 

examined. Reduced order observer in generalized form is used for parameter adaptation 

of current source inverter fed system. 
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Flux estimation with artificial neural network has been carried out and extended to direct 

field orientation of voltage source inverter fed induction motor system. Finally, 

comparison with the results obtained by artificial neural network is given. 
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CHAPTER 1 

INTROI)UCTION 

1.1 INTRODUCTION 

Polvphase induction motors are widely used power converting machines and are called 

- the Workhors& of industries. They are simple and low cost in construction and 

mechanically robust to have a long life. The squirrel cage rotor offers advantages such as 

simplicity, robustness and low weight to torque ratio. Like other rotating machines, the 

rotor of a polyphase induction motor is separated from the stator by a small air gap. The 

stator is polyphase wound and kept stationary by fixing it with the yoke. 

The polyphase induction motor receives power from a balanced supply system through its 

stator. The balanced currents produce an mmf and flux system, which rotates at 

synchronous speed. The rotor receives power from the stator by induction. Torque 

developed in a motor may be viewed as an interaction of rotor flux and stator mmf. The 

polyphase induction motor does not provide separate channels for flux and torque which 

makes the controlling of the motor a difficult one. 

Afler the introduction of vector control theory by F. Blashke and subsequent advancement 

in digital electronics, it is possible to control the induction motor like a separately exited 

dc motor. Such a drive is often referred to as high performance induction motor drive. 

The control law is normally termed as field orientation control and considers the generic 

nature of torque generation in any electrical machine. This concept considers that in any 

rotating electrical machine there is a flux system and a mmf perpendicular to this flux is 

responsible for torque production. In an induction motor there are three systems of flux: 

viz., the stator flux, the mutual flux and the rotor flux. The rotor flux and its perpendicular 

stator mmf are generally considered as vectors to be controlled in a polyphase induction 

motor. Since the time constant of flux path in a polyphase induction motor is large, any 

change in the value of flux causes slow dynamics. This is why the value of flux is 

normally kept constant. In vector control schemes, the function of a field orientation 

(vector) controller is to decouple the flux and torque channels and to establish 

ndependent control over each of them. 

Basically, there are two vector control methods (a) the direct method and (b) the indirect 

method. In the direct method the position and magnitude of flux vector is sensed or 

observed and the stator inmf magnitude and position are adjusted to have requisite torque 



generation. On the other hand, the indirect method is simple software dependent and easy 

to implement. 1--lowever, this method suffers from a serious drawback due to the mismatch 

of parameters of the motor and controller during operation. This further requires adaptive 

and tuning methods so that the slip calculator of the vector controller sees the exact rotor 

time constant of the induction motor. Sensing of flux inside the motor requires additional 

circuitry to be imparted inside the machine and is difficult and costly. 

The flux inside the induction motor may be observed and estimated with suitable observer 

and estimators. The observer is normally developed from the mathematical model of the 

system with some rule so that the error dynamics is reduced to zero. The most commonly 

used observers are (a) full order (b) reduced order and (c) deadbeat types. Each of these 

has some merits and demerits. For full order and reduced order observers selection of 

poles is vital and improper selection of poles create unwanted dynamics. The designer has 

to compromise with stability and fast response to get a negotiable design. Another 

important aspect is the insensitivity of the observer with parameter perturbation i.e.. the 

observer should estimate the flux position and magnitude accurately in case of parameter 

variation of the induction motor. Due to advancement in digital computer technology, 

observers have wide applicability in induction motor control. 

Besides the flux observers, the Artificial Neural Network (ANN) offers some promising 

aspects in respect of estimation of flux in the induction motor. The ANN method requires 

modification of structure and adjustment of weights to converge the error within a 

tolerable limit. It requires training in which both time and computer memories are 

involved. At present ANN is being used to estimate states and flux of electrical machines. 

This technology has a bright prospect in respect of induction motor control. 

1.2 LITERATURE REVIEW 

After the introduction of power electronics in industrial control, research was going on to 

use induction motors for high performance applications such as machine tools. robotics 

etc. It was F.Blaschke 1111 and K.I-lasse [2] who first proposed the vector control 

methodologies for induction motors. Blaschke [1] proposed the direct method of field 

orientation and Hasse [2] introduced the indirect method of field orientation. The 

technology has been developed over the last three decades and at present is in the mawred 

stage. This can be visualized from a large number of literatures available in this field, 



some of which are included in the literature [I - 18]. A detailed explanation of this theory 

is given in [3]. 

Availability of microprocessors and consequent reduction of cost of the processor and 

peripherals has made possible implementation of the vector control on-line. 

Considerations regarding microprocessor or multi microprocessor-based implementation 

of the control strategy is given in [4,5]. Current source inverter fed induction motor drive 

system offers sluggish performance due to high inertia of the filter inductor. However, the 

drive performance may be improved and fast response is possible if field orientation 

control is used with proper feedback. This aspect is indicated in [6]. Field orientation 

control may be applied considering any one of stators, rotor or mutual flux. A comparison 

of the control aspects is given in [7 1, which concludes that the rotor flux system offers the 

simplest structure for the system. 

The direct method of field orientation may be implemented with sensing devices to the 

111)tOr or using extra hardware lbr signal processing. Such systems are given in [8.9], 

which [8] shows tapping of stator windings for flux sensor. To implement the scheme. 

prior modification of the motor windings should be carried out. 

Simulations are normally carried out to study the effectiveness of the proposed 

methodology. Since field orientation control is complex in nature, theoretical analysis is 

a must prior to implementation of the control law in a practical environment. 

Advancement of digital computer technology offers the facility to judge the viability of 

the control law in digital environment. Simulation studies of a field oriented induction 

motor with nominal parameters is given in 110]. The effect of parameter deviation from 

their nominal values results in saturation and such studies are given in [11]. Modeling and 

simulation of CSI fed induction motor under vector control is shown in [12]. This paper 

gives a relationship between motor and inverter parameters. To enhance the dynamics of 

the drive system injection of a component of dc link voltage is given in [13]. They have 

claimed faster dynamics compared to voltage-fed system as offered by a CSI-fed system. 

D.I. Kim, et, al. [14] have proposed feedback linearization which offers input output 

decoupling and the action resembles to field orientation control. They have provided only 

the theoretical development. Indirect field orientation control requires identification of 

rotor time constant for proper functioning of the controller. In [15] a microprocessor-

based scheme with rotor resistance identification aspect is given. L.J.Garces [16] shows 



the effect of parameter deviation on the performance of indirect field orientation control 

schemes. He has suggested a methodology based on var measurement to adapt the rotor 

resistance in a vector controller. Adaptation of rotor parameters by air-gap power 

measurement is given in [17]. Rotor time constant detection using voltage injection is 

shown in [18]. This scheme requires complex signal processing task. A method of rotor 

resistance adaptation of a CSI-fed IM drive under indirect field orientation is given in 

1191, which considers magnetic saturation effect due to detuning of the controller. 

Very fast computation and data acquisition facilities have encouraged the researchers to 

work with observer design and its implementation in the induction motor control. The 

field orientation is applied in direct method in most of the cases. A good number of 

literature [22-29] is available in this subject. In [22] and [23] emphasis is given on the 

selection of poles to have a robust structure Ihr the observer. Full order observers for flux 

estimation with speed adaptation capability have been described in [32,33]. The feedback 

gain is deduced from the system matrix and estimated value of speed is incorporated in its 

elements so that in convergence, the estimated speed equals the actual speed of the motor. 

Reduced order rotor flux observer is used for direct field orientation control. Their 

proposed observer is less sensitive to rotor parameter variation. Digital signal processor is 

proposed and used [22] for implementation of the observer [24] for CSI-fed induction 

iliotor drive operating under indirect field orientation control. The flux observer is used 

as the slip calculator and flux control loop. The flux observers proposed in [25] and [26] 

uses stator flux estimation technique. These schemes calculate stator flux by integration 

and uses the cl-q axes components of flux for angle calculation in the vector rotator. DSP-

based implementation is proposed in [26]. An improvement over the stator flux oriented 

drive is proposed in [27]. They consider the problem associated with the time lag in the 

converter transistor switching. After simulation, they have shown that if the time lag is 

kept constant for all power switches, the distortion may be eliminated drastically. An 

improved flux observer reported in [28] over that reported in [22] doesn't require speed 

transducer. Two flux models, one based on voltage independent of speed and the other 

based on current independent of speed are used to calculate the speed. The adaptive 

observer proposed in [29] uses adaptive f)01eS dependent on motor speed for stable and 

fast computation of flux. 



Artificial Neural Networks (ANN) technique has been applied to induction motor recently 

for flux estimation. An earlier publication [30] proposes speed estimation using ANN for 

induction motor control. In it estimated flux !iom voltage and current based flux models 

are used to estimate speed using ANN concept. A three-layer ANN using ('our inputs and 

four outputs is proposed in 13 I. An LPF integrator is used in the scheme for integration 

purpose. A DSP based scheme is compared with the ANN performance for the vector 

controlled induction motor drive. Learning techniques to train ANN as a state selector for 

induction machines for direct torque control application is proposed in [321. They have 

analyzed performance of hackpropagation. adaptive neuron model, extended Kalman 

filter and recursive prediction algorithms for training the ANN system. Prediction error 

methods have been proposed as a promising method. Field orientations control utilizing 

ANN based flux estimators is proposed in 1331. The ANN technique estimates the stator 

flux components from which the rotor flux components are estimated. The other control 

blocks such as vector rotator and torque and torque flux control loops are used in 

conventional form. 

1.3 SCOPE OF THE THESIS 

Field orientation controls of' induction motors are widely used in industries now a days. 

I lowever. they require complex and costly hardware for their implementation. 

Alternatives to this may be the flux observers and estimators. Due to huge development in 

digital computer technology, rapid computation is possible. Besides this. the recently 

introduced Artificial Neural Network based flux estimation and field orientation control 

have been claimed to work fruitfully. The l)rese1t  study intends to see the eflctiveness of 

different types of observers for field orientation control and the application of ANN based 

systems for the purpose of direct and indirect field orientation control. 

It is well known that an induction motor may be modeled in mutually perpendicular axes 

which results two rotor flux and two stator current variables. From the mechanical sides 

speed appears as another state variables: therefore five state variables are required to 

describe the induction motor completely. The rotor flux components are not directly 

accessible and require an observer to estimate them. In this thesis a full order observer is 

proposed that estimates rotor flux components and also estimates the speed of the 

5 



induction motor. The gain of the observer is adjusted in such a way that the system does 

not oscillate and gives stable estimation of rotor fluxes. This observer is used for direct 

field orientation and to study whether the method works satisfactorily under rotor 

resistance changes. 

The reduced order observers require less calculation and is very popular in control of 

induction motor. In our study we have considered generalized type. Gopinath type with 

pole variation and deadbeat type. Reduced order observers have been used for direct and 

indirect field orientation. In the indirect method it is assumed that the rotor resistance is 

adapted proparly. The effectiveness of the observer are also examined. 'I'hen (Gopinath 

type) minimum orders high perlbrmance flux Observer based field orientation controller 

for induction machines has been studied and examined for its robustness. An observer-

based on deadbeat control law (hence forth termed as deadbead observer) is introduced in 

the study. 

Recently Artificial Neural Networks are being used as controllers in many industrial 

applications and the systems have dra\vn much attention. í\NN systems for flux estimator 

with hackpropagation and the adaptive algorithm are also studied. 

1.4 CONTENTS OF THE STUDY IN BRIEF 

Chapter-I begins with a general discussion on drive systems, inverters. field oriented 

control pertaining to induction motor. controller's etc. This is followed by an overview of 

a few selected contributions to indicate, in brief, the various studies that have been made 

over the past two decades in the area of vector controlled induction motor. The chapter 

also discusses in brief the literature survey, scope of the present study. The chapter 

concludes with the contents of the study of others chapter in brief. 

Chapter-Il commences with the two-axis model of the induction machine in both 

stationary and rotating reference frame and proceeds, under justifiable assumptions. to 

obtain a general model involving the voltage source inverter fed and current source 

inverter fed system of induction motor. 

Chapter-Ill discusses about flux observers for induction motors. It proposes three 

schemes for estimate rotor flux. In one scheme full order observer can estimate rotor flux 

and other two schemes are reduced order observer and deadbeat observer. 
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Chapter-IV discusses in general artificial neural network, feedforward neural network, 

and feedforward backpropagation network. It also discuses about how mapping is 

achieved, neural network structure, how a network can be trained and tile 

backpropagation algorithm. 

Chapter-V discusses field orientation control of induction motor. It also discusses 

principle of field orientation, direct and indirect vector control method. It also discusses 

voltage fed, current fed, field orientation based controller. 

Chapter-VT presents the observer performance. It also presents transient and steady states 

performance of observer with parameter mismatch between the controller and tile 

machine and rotor resistance adaptation conditions. 

Chapter-VII presents flux estimation using artificial neural network. It also discusses 

how the simulation is achieved. 

Finally, conclusions are drawn in chapter-Vill with a few proposals for further research 

work related to the present work. 

':4 



CHAPTER II 

MATHEMATICAL MODEL OF INDUCTION MOTOR 

2.1 INTRODUCTION 

A polyphase induction motor has a complex structure comprising of mutually coupled 

magnetic and electric circuits. When the stator and rotor coils are excited by balanced 

source, fluxes are produced in the stator and rotor core. The mutual flux system is 

common to coils both in stator and rotor and is responsible for the effective operation of 

the motor. The leakage flux is responsible for causing voltage drop in the coils. Due to 

mutual coupling between stator and rotor coils, rotor receives power by induction. There 

are three system of fluxes in an induction motor, viz, the stator flux, the air gap flux and 

the rotor flux. In a dc motor, torque is viewed as the product of field flux and armature 

mmli which are mutually perpendicular to each other. Similarly, in an induction motor it 

can assumed that the flux of rotor and perpendicular mmf in the stator or vice versa 

generates the electromagnetic torque. Other viewpoint assumes power in the rotor 

resistance as a measure of torque expressed in synchronous watts. 

To study the performances of different control systems and drives, the motor requires to 

he represented by a set of differential equations in time domain. Complexity arises due to 

variable coupling between the physical coils of the stator and the rotor. The complexity is 

further enhanced due to the effect of back emf in the rotor circuit. So it is not wise to 

model an induction motor using the physical coils. 

Based on operating conditions, there are a number of mathematical models for induction 

motors. To study the trans ient/dynamic conditions generally mutually perpendicular 

stationary/synchronously rotating fictitious coil are considered. 

2.2 STATIONARy TWO-AXIS MOI)EL 

In an induction motor the stampings. which are slotted to receive the three phase 

\vindings and the stator carries a three phase winding and is fed from a three phase 

supply. The rotor also consists of cote for carrying three phase windings bars. 

Mathematically a winding can be modeled as self-inductance L some internal resistance 
R. Suffices s and r indicates stator and rotor. The transfer of energy from stator to the 



rotor of an induction motor takes place entirely inductively with the help of a flux 

mutually linking the two. So the term mutual inductance L comes between the two. 

11 is well documented in the literature [35] that an induction motor can adequately be 

modeled using a two-axis representation. Under the usual assumptions of sinusoidal 

distribution of MMFs, ignoring the effect of iron loss and saturation, etc, the dynamic 

equations which describes a symmetrical induction motor in orthogonal stationary 

reference frame a - /3 fixed on the stator may be expressed as: 

2.2.1 INDUCTION MOTOR MODEL 

A 3-phase induction motor has three coils in the rotor and three coils in the stator. The 

rotor coils are rotating with an angular velocity Wr  The three-phase winding and their 

orientation are shown in Fig. 2.1. It appears that the coupling between the stator and rotor 

coils is a function of position of the rotor and is continuously variable. So it is not wise to 

model an induction motor using its physical windings. The variables of an induction 

motor are phases and it can be modeled by equivalent two windings in lieu of three. in 

this consideration three stationary stator windings may easily be represented by two 

equivalent stationary windings. To avoid the complexity of variable coupling, two 

equivalent stationary windings are considered for rotor circuit. In this connection 

voltages due to rotor speed are duly considered. In the mutually perpendicular frame there 

is no coupling between the axes quantities. which results in a simple system. Considering 

the voltage drops in the stator due to resistance, self and mutual inductance the stator 

circuit equations are written. In addition to these the speed voltage terms are considered 

for rotor circuit. The stator and rotor circuit voltage equations of an induction motor are 

given in eqn. (2.1). Well judged assumptions of no saturation, sinusoidal distribution of 

flux and mmf and ignoring the effect of iron loss results this set of equations. The 

stationary axes are identified as a - /3 II 9] 

v Rç  + L.p 0 L, p 0 

v. = 0 RS  + Lp 0 L,,,p i fl, 
(2.1) 

0 L,p L,co R,. + Lr P LrW r 'ar 

0 - L p - Lw,. 1?, + Lr  P ifi, 
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Fig. 2.1 PhysictCoil system of the stator and the rotor of a 3-phase induction 
motor 
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Fig. 2.2 Mutually perpendicular fictitious/coils of the 3-phase equivalent of induction motor 



The developed electro-magnetic torque for an induction motor of P -pole pairs is 

rn = P,, (1ar + Li1j 
- 

flr [L1i + Lri ]) (2.2a) 

And the torque balance equation is 

T = jdWm +Bw, +TL (2.2b) dt 

In the above equations 

v1 . a -and fi -axis stator voltage components 

i ,i1 a -and ,8 -axis stator current components 

ijul,1ar , a -and fi -axis rotor current components 

J moment of inertia 

B rotational damping co efficient 

COM speed of the motor 

71, load torque 

2.2.2 PHASE RELATIONSHIP 

The physical phasors and the fictitious two-axis phasors are shown in Fig. 2.3. 

Considering the voltages in the axes systems, the relationship among them is established 

as: 

1 1 
V 
( 

(2.3) 
= + —v

2  

Similar relationship exists between the currents. 

C 

ii 

b 

Fig. 2.3 Physical and fictitious two-axis phasors. 



2.2.3 VOLTAGE SOURCE INVERTER FEEDING AN INDUCTION MOTOR 

In speed controlled induction motor drive the motor is fed from a three-phase inverter. 

The inverter output voltage and current are controlled in a number of ways. The PWM 

method uses a number of positive and negative pulses per half cycle to control the 

magnitude and frequency of fundamental component of ac voltage. The simplest inverter 

generates square voltage waves at the output. From equation (2.1), the basic circuit 

equations in the stationary reference frame of induction machine can be written 

[v 1 [ (R + pL ) I pL I 

][is 
1 

as[ 
 ]=[ - 

- 
. I

(2.4) 
0 pL,I COr LmJ (Rr  + PLr )I LrO r J 1r] 

= L,11  is  + L plr (2.5) 

Where p = is the time derivative. 
di 

The state and output equations are easily derived from equation (2.4) and (2.5) as: 

1 = [11 /11, 1[ 1 + 
[B l (2.6) 

di L'2 A 2, 12,] [0] 

1, =[I  oi 
 is 

] (2.7) 

Where, 

A 1  = - 
R, 

+ R 
(i - 2) 

crL, aL. J 

A, Lr{}I  

A, = LmRr 1 
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1- 

1 

R. 
I + (i)J 

/3 =—I 
oL 

_[l 0 
=[ 11 (2.8) 

LU '] [1 0] 

= I 
- 

J; leakage coefficient (2.9) 

The state variables are the primary current i = Ii.  ia,  and the rotor flux 2r = kar' 213r 11T  

The input is the primary voltage v = , v 

2.3 ROTATING TWO-AXIS MODEL 

It is well known that the flux and rnmf of an induction motor are synchronously rotating. 

To visualize the phenomenon of torque production and performance of the induction 

motor the synchronously rotating mutually perpendicular axes system is considered. This 

model is also suitable for current fed inverted-coupled system. According to two-axis 

machine theory, when a symmetrical induction motor is described in a reference frame 

that rotates in synchronism with the stator mmf, all the ac phase-variable sets get 

transformed into equivalent dc variables. Under the usual assumptions of no hysteresis. 

eddy currents. space harmonics, etc., the basic system equation of an induction motor in 

terms of a 2-phase model (d-q variables) in an arbitrary synchronous reference frame is 

[191 

i R + pL - 1L,,, - L,, jCOe 1d 
R, ± pL L,,,a,. pL,,, iq 

(2.10) 
0 pLo, - L,o 1  Rr  + pL,  - LrW.i l,Ir  

0 L,w 1 pL,,, Lr W t Rr  + P'-r 1qr 

Fig. 2.4 shows the spatial relationship between the axes of different frames of reference 

viz. stator-lixed. rotor-fixed, and synchronously rotating d-q reference frames. 

The electromagnetic torque is a,,, = i (x, - 2thicjr ) (2.11) 

13 



and the torque balance equation remain unchanged as in equn. 2.2(b). 

Where 

Adr - + L,,2idS (2.12a) 

Aqr = Lriqr  + L,niqs 2.12b 

The variables 2dr and  2q' imply flux linkages with the rotor circuits along the 

synchronously rotating d- and q-axis respectively. 

Substitution of (2.12a) and (2.12b) in (2.11) yields 

= Pp Lm( qSi. - ldSlcl,.) (2.13) 

With reference to Fig. 2.4 if i,111  is the magnitude of the vector current J, the 

corresponding d- and q-axis currents in the synchronous reference frame are 

13 

COC  
dq 

(.)s  ()r  + 

Zdq 

iqs 

a - Actual stator 'A' phase ais 

ar - Actual rotor 'A' phase axis 

- Stator fixed reference frame 

x-y - Rotor fixed reference frame 

d-q - Synchronously rotating reference frame 

id(1 - Stator mmf vector 

Fig.2.4: Relation between various co-ordinate systems and principle of field orientation. 

= 

Where  

gj = cos9 

 

(2.14) 

gq =sinO 
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tan 0 = _q' 

(2.15) 
(t 

2.3.1 CURRENT SOURCE INVERTER FED SYSTEM 

For the current-fed induction motor drive system in Fig.2.2, the power balance equation, 

with no loss in the inverter, is 

.3 
V / = + v, iq .) (2.16) 

Use of (2.14) in (2.16) yields 

V1 '1? = iq (i' g, + v (2.17) 

circuit control 

Fig.2.5 CSI-IM drive system. 

If the commutation effect is ignored. the stator current of the induction motor, supplied by 

a current source inverter, is a 120°  wide square wave of magnitude 'R  in each half cycle. 

Other than causing ohmic losses, the harmonic currents have no significant contribution 

to the generation of net torque [36]. Neglecting the harmonics, the fundamental 

component of vector current magnitude 
'ilq in (2.17) is related to the dc link current iRby 

lI 



• 2I. 
= i (Fundamental component) (2.18) 

it 

= le 

Substitution of (2.18) in (2.17) gives 

3 
v, = —(v9 1  + i jsgqx ) 

it 

Or, v = v(/ g + v j.gqs (2.19) 

Where,v (2.19a) 
-13 

Although the steady state operation of controlled current induction motor drives do 

neither involve the stator input voltage nor the rectifier output voltage responsible for 

maintaining the dc link current at the required level, the transient behavior of the dc link 

current significantly affects the dynamic behavior of the CSIM drives. 

For the dc link circuit (Fig.2.5) the voltage equation is 

VR = V 1  + (R, + pL1  )ij? 
(2.20) 

Combining (2.19a) and (2.20), and using the relation in (2.18), yields 

v = v + (R + pL )i, (2.21) 

Where 

;, 
=J= 

2 

R' =—I? 
18 / 

L' 
/ 18 

Rectifier output power and inverter input are given by (2.22) and (2.23) respectively 

= = 
(2.22) 

—vi1  =v;; (2.23) 

From the relations in (2.14) and (2.18) it is noted that 

i = +iqv gqs 
(2.24) 



Substituting the expression for Vd, and from (2.10) in (2.19) and using (2.14) and 

(2.18), one obtains 

v = (R. +pLç ) +gq5 piqr )+Lw(gq idr  — giqr ) (2.25) 

Using (2.25) in (2.21) gives 

yR =[(R, +R)+(L +L)p]i +gqpr)+Lo.(gqcidr gth1qr) (2.26) 

17 



CHAPTER III 

FLUX OBSERVERS 

3.1 INTRO1)UCTION 

The very first step in the analytical study of systems is to set up mathematical equations 

to describe the systems. Because of different analytical methods used, it may be often set 

up different mathematical models to describe the same system. When, for any reason, the 

analysis in the time-domain is to be preferred, the use of so-called state-space approach 

will offer a great deal of convenience conceptually, notationally, and sometimes 

analytically. The conceptual convenience is derived from the elegant representation of the 

instantaneous condition of the system by the notation of the system state. The notational 

and analytical conveniences come through the use of vector-matrix representation, which 

allows the system equations and the form of solutions to be written compactly. The 

adaptation of state-space representation to the numerical solution is an added advantage. 

particularly when the system to be investigated contains time-varying and nonlinear 

elements. 

Unfc)rtunately, in practice, not all the state variables are accessible to measurements. It 

can assume that only the outputs and inputs are measurable. So, the need of a subsystem 

that performs the observation of the state variables based on the information received 

from the measurement of the input and output is needed. This subsystem is called an 

observer and whose design is based on the observability. 

3.2 MAThEMATICAL BACKGROUND 

Consider the linear time-invariant system 

= Ax(i) + Bu(i)  

= (x(t)+ Du(i) (3.2) 

Where x is the n x 1 state vector, it is the p x I input vector. y  is the q x 1 output vector 

and A. B. C and I) are, respectively, 17 x i. i x p, q x n and q x p real constant matrices 

respectively. The time interval of interest is [0, ]. 

For this system, the control law depends linearly on r(t) and x(t) and is of the form 

u(t) = ,(I) + Kx() ...(3.2) 

18 



Where r(t) stands for reference input and K is some real constant matrix called the 

feedback matrix. Finding the best K is the scope of optimal control theory. 1-lere the effect 

of introducing linear feedback of the form (3.2) will be discussed and what can be 

achieved by introducing this state feedback will be studied. 

The state model of the closed-loop system obtained from eqns. (3.1) and (3.2) is 

x(t) = (A + BK)x(t) + Br(t) (3.3) 

y(i) = (C + DK)x(i) + Dr(i) (3.4) 

This closed-loop system is represented schematically in Fig. 3.], with the block of dotted 

lines enclosing 

7 

Fig. 3.1 Structure of a state feedback control system. 

Another related problem taken up in this chapter is that of the implementation of the 

linear state feedback control law (3.2). which requires the ability to directly measure the 

entire state vector x(t) . In general, however, only the input vector u(t) and the output 

vector y(I) are directly measurable and so the state feedback control law cannot be 

implemented. Thus, either a new approach that directly accounts for the nonavailablity of 

entire state vector is to be devised or a suitable approximation (reconstruction) of the state 

vector must be determined. The latter approach is much simpler in many situations. 

9 



'l'here are two simple solutions to the problem of the reconstruction of a state vector. One 

is to construct a model of the system, which has all of its state variables directly 

measurable. Any input signal is applied to the system as well as to the model. Thus, even 

if the state vector of the original system cannot be measured, the model's state variables, 

which are equivalent to those of the system, are available (Fig. 3.2). It is also necessary to 

set the current initial conditions on the model. 

There are two disadvantages in using this method of reconstruction. First, the initial state 

must be identified and set each time we use the estimator. The second and more serious is 

that. if the matrix A has an eigenvalue with positive real part, then even for a very small 

dilThrence between x(t0 ) and 2(t0 ) at some I = t, which may be caused by a 

disturbance entering the system but is not in the model or by incorrect estimation of the 

• initial state, the difference between the real state x(I), and the reconstructed state 

2(i) will increase with time. 

SYSTEM 

________I 
x=Ax+13u I 

I
y 

  

MODEL 
State estimate x 

j;= A+Bu 

Fig.3.2 Reconstruction of the state. 

Another method consists of differentiating the output (and input) variables a certain 

number of times and combining these terms to form the unmeasured state variables. The 

poor noise characteristics and the difficulty of building good differentiators generally 

make this method impractical. 
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3.3 FULL-ORI)ER OBSERVER 

A full order observer is the observer, which would attempt to estimate all of the variables 

of a system (or equivalent combinations of them) that together make up the state variables 

in the model of that system. 

Based on (2.6), a full-order observer for estimating {lc ' 2r } can be implemented by 

following: 

11 [A1 , A1 1 I [B,]
V, 
 

P ,' 1=1 21 ; +1 +G(i
r j

[A, A.,, j 2 [0 
 

where { I , A } are estimated stator current and rotor flux vectors, respectively. A,, is the 

matrix in which w and R, are replaced by estimated rotor speed thr  and stator resistance 

set in the observer. G is the feedback gain of the observer. Other parameter values of 

A,, are assumed to be set as normal values. If the pole position of the observer is assigned 

as k times (k:~ 1) as that of the motor, G will be a function of the rotor speed, and the 

observer will be stable at any rotor speed. G is defined in (3.6). As a result, the estimated 

states will converge to actual values in any rotor speed range. 

—i 
G = 

[911 + 2J = [ g1  g2  g3  g4 
T  
I 

[g31+g4 Jj 92 91  — 94  g3 ] 

where, 

= (k - 1)(c ± ar,2 ), 

g2  = (k - 

= (k2 + 

- 

According to a model reference adaptive system (MRAS). The error between the states 

L2r } and the states I - 2 } can be used to drive an adaptive mechanism to adjust 

estimated speed r• The adaptive mechanism should guarantee that, when r is adjusted 

to ar,  estimated vector [~,,~j will converge to vector ç2]T• 
Fig. 3.3 and Fig 3.4 

(3.5) 

(3.6) 

PM 
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shows the Rotor Flux estimation and motor speed estimation with full order observer 

respectively. 

Pctual flux 

Fig. 3.3 Rotor Flux estimation with full order observer. 

1 

3.3.1 THE SEPARATION PRINCIPLE 

To obtain a fast convergence of the estimation error to zero, it will be tempted to 

choose M so that the observer poles are quite deep in the left half plane. For pole 

placement by state feedback, it will be observed that state feedback control law can be 

used on a linear system to place its closed loop poles in any desired configuration. If the 

entire state is not available for feedback, it looks reasonable to estimate the state 

employing an observer and using the estimate in the control law. In this subsection, we 

consider control systems requiring both the feedback control and the state estimation. 

Consider a controllable and observable time-invariant n-dimensional system 

22 



i= Ax+Bu 
(3.7) 

It is assumed that a control law of the form 

u=kx+r (3.8) 

has been found to place the poles of the closed-loop system in any desired configuration. 

If the state is not directly available for measurement, it can be propose to construct an 

observer of the form 

2=(A+ MC)2+Bu— My (3.9) 

and interconnect the control law with the reconstructed state 2: 

u=K2+r  

Fig. 3.4 depicts the interconnection of the plant, the observer and the control law. For the 

purpose of analysis, it may look upon the plant (3.7) and observer (3.9) as a composite 

system of dimension 2n, 

r A BK ]rxl [B]
I.II+ (3.11) 

; [—MC A+MC+BKpjB 

By the equivalence transformation 

[x i olxl[x 

[ I —Ij2] [x— 

Fqn. 3.11 becomes 

[x] [A+BK —BK lrxl 
+

[B]
I_ III 

 LU A+MCp] U 
The eigenvalues of (3.12), which are the eigenvalues of(9.1 1), are the zeros of 

del 
sl—(A+  BK) 

1 

BK 

0 sl—(A+MC) 

= det(sl - (A + BK)) det(sl - (A + Mc)) 

Consequently, the set of closed-loop eigenvalues comprises the eigenvalues of A+BK and 

the cigenvalues of A+MC. Thus, it may consider the problem of determining a stable 

23 



observer and the state feedback control law separately, since their interconnection results 

in a stable control system. This property is often called the separation principal. 

Plant 

x 

Fig. 3.4 Use of the observer to implement state feedback control law. 

3.4 REI)UCED-ORDER OBSERVERS 

The state observer discussed in the earlier section, was derived by setting up a model of 

the plant and feeding back a "correction term" proportional to the difference between the 

actual and estimated outputs. Such an observer contains redundancy because q state 

variables can be directly obtained from q outputs which are available for measurement 

and need not be estimated. The remaining (n - q) state variables can be estimated using 

-in observer of order(n — q) ,as will be seen below. 

Let the given observable plant be 

x= Ax+Bu 

y=Cx 
(3.13) 

Where A and C are in the multivariable observable companion form. Assuming C to be 

of full rank, there will be q observability indices, Jt , ..... ,Ltq . Thus A and C each 

- A- 
has q significant columns ak = /i for k = 1,2 ........q. 
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xl  

X 

\ 

Let x-, = 
I  and x1 

= 

X
al 

 

(3.14) X0. 1  

Xcrq _i 

I.e.. the state vector is partitioned into two groups. 

The system (3.13), in the observable companion form, may be rearranged as follows: 

Hi , 1 Al2i[x1]
+

[BI  
1= 11 lu 
[A, 

[ J A71  A22 ]Lx2 B2 j 
(3.15a) 

Y [01C, 
X (3.l5b) 

The q state variables x2  can be directly obtained from (3.1 Sb) as 

2 =[c1 ] _'Y  (3.16) 

The remaining (n - q) state variables require an observer for estimation. 

By manipulating the equations in (3.15), x1  may be viewed as the state of a (n —q) 

dimensional sub-system. 

xi =Ai1xi +Al2x2 +B1u 

= A11 x1  +v 

z=A71 x1  

where, (3.17) 

v = A17 x7  + B1 u 

= A17[Cq]1Y+B1U 

v can be treated as a known input since u is known and y is directly measurable. 

The ouIpu1 vector" z may be expressed as 

= 

(3.18) 

- 

x1  can estimate with an observer 
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=(A 1 + M1 A21 )21 +v_ M1 z (3.19) 

where, the (n - q) x q matrix A4 may be chosen so as to place the poles of (3. 19) in any 

desired configuration. Substituting fory and z from (3.17) and (3.18) respectively, it 
has been obtain 

= (A11  + M1 A20 1  + + B1 u 
(3 20) 

- + M1A22[c,r'y + M1 B,u 

Which is an (n x q) dimensional observer for the system (3.13). 

The only apparent difficulty in implementing the observer (3.20) is that differentiation of 

the output y is required. This can be avoided by redefining the state of the observer to be 

71 (i) = I(t) + M1[çF' y(t) 

Substituting (3.21) in (3.20), we get 

JV = (Al 1 +M1 A21) +(Bj +M1 B2 )u 

+ M1 A22  (A11  + Mi A2i )M j ][ q ]y 
(3.22) 

The estimate of the full state x is given by 

[_Mi [Cq F 1 y 
x= 

[ [Cq F 1 y 
(3.23) 

= 
[}+[M1 11C 

q 1'y 

Since the reduced order observer has a direct link from the observed variable y(t) to the 

estimated state (t), the estimate 2(i) will be more sensitive to measurement errors in 

y(I) than the estimate generated by a full-order observer. This is because the noise 

bypasses the natural filtering action of the observer dynamics. It may be verified that the 

separation principle holds for observer of any dimension. 
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3.4.1 REDUCED ORDER (GOPINATH) OBSERVER 

It is a combination of the flux simulator and the predictive error correction feedback. 

=A j is  + A122 + G[(d/d,)is - (A1  i + A1,) + B1 v.)] 

= (A,, - GA12  )2r  + (A2  - GA )j, - GB1  v + G(d / dt )i. (3.24) 

A  means the estimated value. The block diagram is shown in Fig. 3.6. In the case of no 

parameter variations, the dynamics of the estimation error: e = 2, takes the form of 

(d/di)e = (A), —GA12 )e = —He (3.25) 

We can assign the observer poles any conj ugate complex numbers by choosing the 

observer gain G approximately, because this system satisfies the observability condition. 

Fig. 3.6 shows the estimation of rotor flux using this type of observer. 

C 

__________  A21-GA11 + 
 

A21-GA11  

Fig. 3.5 Configuration of the Reduced Order (Gopinath) Flux Observer. 
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Fig. 3.6 Rotor flux estimation with the reducer order Gopinath type observer. 

3.4.2 REDUCED ORDER (GENERALIZED) OBSERVER 

For observer design, it is necessary to write the system equations in state space form with 

the rotor flux linkages as state variables. The standard state space representation of the 

system is written as: 

= Ax + Bu 
(3.26) 

y = Cx 

The system described in (3.26) consists of the state variables 2dr  and A, which are not 

measureable but the dc link current is easily measurable. For this system two out of the 

three state variables are needed to be observed. This requires reduced order observer 

proposed in [34]. The relationship between the observed and state variables are written as: 

=Tx. (3.27) 

Combining the output equation 

(Y) 
= (3.28) 

~ (C  



With reference to [34] the observer state space equation is written as: 

=D+Eu+Fy (3.29) 

Where, is the estimated state vector. D is the observer system matrix written in 

decoupled form with the eigen value as, 

r, 01 
D=I I (3.30) 

[022 ] 

E and F correlate the input and output with the observed variables. The error equation 

may be extracted from (3.29), (3.27) and (3.26) as 

— 

 

=D+Eu — Fcx—TAx--TBu (3.31) 

To have the error (4 - ) driven to zero at suitable time elapse, the terms containing u 

should vanish, i.e 

E=T13 (3.32) 

With this criterion equation (3.31) may be written in the modified form as, 

= D(—)+(DT—TA+FC)x (3.33) 

For the estimation error to decay with time as shown in (3.33) the versatile conditi :or 

reduced order observer is extracted below: 

DT—T4+FC=0 (3.34) 

Fig. 3.7 shows the estimation of rotor flux using this type of observer. 

S 
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Fig. 3.7 Rotor flux estimation with the reducer order generalized type observer. 

3.5 DEADBEAT CONTROL 

In this and the next section, control and estimation problems of linear time-invariant 

discrete-time systems can be considered. 

x(k + 1) = Fx(k) + Gu(k); x(0) = 
(3.35) 

y(k) = Cx(k) 

where, F, G and C are n x n, n x p and q x n real constant matrices respectively. 

Feedback control laws may be derived for discrete-time systems using the techniques that 

have been developed for the continuous-time case. Linear feedback from state to input 

has the form 

u(k) = Kr(k)+r(k) (3.36) 

It Where, K is a constant, p x n feedback gain matrix and r(k) is an external input. 

Substituting (3.36) into (3.35), we get the following closed-loop system. 
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x(k + 1) = (F + GK)x(k) + Gr(k) 
(3.37) 

y(k) = Cx(k) 

The closed-loop poles, i.e., the eigenvalues of(F+GK) can be arbitrarily located in the 

complex plane (subject to conjugate pairing) by choosing K suitably if and only if (3.35) 

is completely controllable. It is possible to choose K such that the closed-loop system 

(3.37) is stable if and only if (3.35) is stable. 

The computational methods of assigning closed-loop poles are identical to those 

developed for continuous- time case. 

A case of special interest occurs when a state feedback control law is chosen which places 

all the closed-loop poles at the origin, i.e., 

det()tl—(F+GK))= %1 =0 

According to the Cayley-hamilton theorem, any matrix satisfies its own characteristic 

equation. Therefore, 

(F±GK)" =0 

i.e., (F + (;K) is a nilpotent matrix of index ii. This result implies that the force-fiee 

response of closed-loop system (3.37), 

x(k) = (F + GK)k x0 = 0 for k~!n 

In other words, any initial state x' is driven to zero in (at most) ii steps, The feedback 

control law that assigns all the closed-loop poles to origin, is therefore, a deadbeat control 

law. 

3.6 DEADBEAT (POLE AT ORIGIN) OBSERVERS 

In this section, discrete-time observers that are able to reconstruct the state of the system 

(3.35) has been considered. The results are identical to those of the continuous-time case. 

The system 

k + 1) = (F+ MC)k)+ Gu(k)— My(k); 0) = iE1 (3.38) 

is a full-order observer for the observable system (3.35 ). The observer poles, i.e., 

eigenvalues of (I" + A/IC) can arbitrarily be located in the complex plane (subject to 

conjugate pairing) by suitably choosing the gain matrix M. 

As obtained from (3.35) and (3.38), the estimation error is governed by the equation 
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(k + 1) = x(k + 1)— Ak + 1) = (F + MC)x?'(k) (3.39) 

The techniques of obtaining the M matrix are identical to the continuous time case. The 

block diagram realization is also identical except that the integrators are replaced by a 

delay of one-period. 

A case of special interest occurs when all the observer poles are located at the origin, i.e., 

all the eigenvalues of (F + MC) are zero. Then 

det(21 - (F + MC)) = 2?? = 0 (3.40) 

This implies as per Cayley-Hamilton theorem that, 

(F+MC) =0 

Therefore, from (3.39) we have 

Y(n) = (F + MG)'1  x°  = 0 (3.41) 

Thus, every initial value of the estimation error is reduced to zero in (at most) n steps. In 

analogy with the deadbeat control law, we refer to observers with this property as 

deadbeat observers. 

The reduced-order discrete-time observers can be obtained analogously to the continuous-

time case. The separation principle also carries over to the discrete-time systems. Fig. 3.8 

shows the rotor flux estimation with deadbeat type observer. 

Actual flux 

U) 

LL 

0 20 40 60 80 

Fig. 3.8 Rotor flux estimation with the deadbeat type observer. 
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CHAPTER IV 

ARTIFICIAL NEURAL NETWORK 

4.1 INTRODUCTION 

An Artificial Neural Network (ANN) is a machine like the human brain with the 

properties of learning capability and generalization. It is used to represent functions as 

weighted sums of nonlinear terms. It has the property of learning capability, which makes 

it able to approximate very complicated nonlinear functions, and therefore, can he 

considered as a universal approximater. It has been shown [fig. 4.1] that a three-layer 

neural network with an input layer, an output layer and a hidden layer can represent 

almost any function with a determined number of neurons. The number of neurons in the 

hidden layer determines the accuracy of a specific application. Neural networks also have 

the property of being adaptive, which makes them very powerful in applications, where, 

the dynamics of a plant change with time or where the model of the system is partially 

known. Neural networks are gaining potential as controllers for many industrial 

applications due to the fact that they present better properties than the conventional 

controllers. However, they rquire a lot of training to understand the model of a plant or a 

process. The training algorithm used has an effect on issues such as learning speed, 

stability, and weight convergence. These issues remain as area of research and 

comparison of many training algorithms. 

4.2 FEEI)FORWARD NEURAL NETWORKS 

Fecdforward neural networks are basically layers of neurons connected in cascade. The 

internal structure of a neuron consists of a summer and a nonlinearity as shown in Fig. 

4.1. For the jth neuron of layer 11 of a neural network, there are n_1  neurons in the 

fl-I 
preceding layer ii - I each having an output signal x, and a threshold connected to 

neuron j by weights m and 1h . respectively. The sum of these signals gives the internal 

sum j  which passes through a nonlinear function to give the output of the j neuron, x' 

This nonlinear function is also called the sigmoid function. There are many sigmoid 

functions in use, from which the mostly used function is 
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x  

I + exp(—cy) 
(4.1) 

S 

S 

+ 

Neuron j 

Ij 

__ 

1+ 

n-I 
Summer Nonlinearity 

S Layer n-i 
S 
S 

Layer n 

Fig. 4.1 The infrastructure of a neuron. 

Whcre, 

" =mx _th 1 (4.2) 

m,' is the weight connecting neuron i and j of adjacent layers n - I and n, respectively, 

and x 1  is the output of the neuron i in layer n - 1. th , y , x', and are the 

threshold, internal sum, output signal, and the inverse temperature coefficient of neuron j 

in layer ii, denoted by TJ", is defined as 
ci  
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The thresholds and weights have to be tuned using any training algorithm that 

minimizes a functional that depends on the difference between the desired outputs and the 

neural network outputs. The dcsired outputs are the outputs of the plant, controllers or 

system model from which the neural network is learning. Now suppose that the ith output 

of the plant and the neural network are given by u, and t, respectively, the ith error e1  

given by 

= U, —t, (4.3) 

In order to match the outputs, we have to find an algorithm that updates the weights. This 

is basically an optimization problem for which a performance index E has to be 

minimized. The most used performance index E has the following shape: 

E =  -  e TA e (4.4) 

V .  

\Vhcre, e is a column vector containing errors of the form (4.3) and A is a n x i 

symmetric positive definite matrix. Let m be a vector containing all thresholds and 

weights of a neural network and in be the optimum vector that minimizes (4.4). Then, a 

Taylor series expansion of (4.4) around m, neglecting high-order terms gives 

E(x) = E(in) + VE T  (x - in) + 1(x - m)r H(x - rn) (4.5) 

Where x represent a set of weights near to in, VE and H are the gradient vectors and 

the llessian matrix of E(in) given by 

(4.6) 
)ifl 8rn 

Now, the performance E reaches its minimum at the point x = rn'. 

E(in*) 
= E(m) + VE 7  (rn - in) + (ni - rn)7  II(rn - in) (4.7) 

There lore, the optimum set of vcihts in • can be found if we set = 0, which lead to 
rn 

\E + iI(rn* 
- in) = 0 (4.8) 

We can get the optimal change in in as 

-Ain = in - ni = —H 1 VE (4.9) 

Equation (4.9) will be used in the determination of the updating formulas for each 

algorithm. There are many training algorithms that approximate the inverse of the 
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Hessian matrix as the identify matrix I multiplied by a constant to be defined by the 

- algorithm. The algorithms that use this methodology are called the gradient descendent 

algorithms. Algorithms that consider the complete Hessian matrix in the derivation of the 

updating formulas are called Newton algorithms since they use the second derivative of 

the functional E(m). The Newton algorithms deal with a great amount of calculations 

because they have to evaluate the Hessian matrix and get its inverse. Some algorithms try 

to avoid this inversion by approximating the inverse of the Hessian matrix as a matrix, 

which is easier to evaluate than the original H 1  . These algorithms are called the quasi-

Newton training algorithms. 

4.3 FEEDFORWARD-BACKPROPAGATION NETWORK 

The feedforward backpropagation network is a very popular model in neural networks, 

which is shown in Fig. 4.2. It does not have the feedback connections, but errors are back-

propagated during training. Least mean squared error is used. Many applications can be 

formulated for using a feedforward backpropagation network, and the methodology has 

been a model for most multilayer neural networks. Errors in the output determine 

measures of hidden layer output errors, which are used as a basis for adjustment of 

connection weights between the input and hidden layers. Adjusting the two sets of 

weights between the pairs of layers and recalculating the outputs in an iterative process 

that is carried on until the errors fall below a tolerance level. Learning rate parameters 

scale the adjustments to weights. A momentum parameter can also be used in scaling the 

adjustments from a previous iteration and adding to the adjustments in the current 

iteration. 
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Fig:-4.2 Structure of a feedforward ANN showing back 
propagation training 

4.4 MAPPING 

The fcedforward backpropagation network maps the input vectors to output vectors. Pairs 

of input and output vectors are chosen to train the network first. Once training is 

completed, the weights are set and the network can be used to find outputs for new inputs. 

The dimension of the input vector determines the number of neurons in the input layer, 

and the dimension of the output vector determines the number of neurons in the output 

layer. If there are k neurons in the input layer and rn neurons in the output layer, then 

this network can make a mapping from k -dimensional space to an m -dimensional space. 

Once trained, the network gives the image of a new input vector under this mapping. 

Knowing what mapping is wanted the fecdforward backpropagation network to be trained 
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for implies the dimensions of the input space and the output space, so that one can 

determine the numbers of neurons to have the input and output layers. 

4.5 STRUCTURE OF NEURAL-NETWORK 

The architecture of a feedforward hackpropagation network is shown in Figure 4.3. While 

there can be many hidden layers, it will be illustrated that this network with only one 

hidden layer. Also, the number of neurons in the input layer and that in the output layer 

are determined by the dimensions of the input and output patterns, respectively. It is not 

easy to determine how many neurons are needed for the hidden layer. In order to avoid 

cluttering the figure, it will be shown that the layout in figure 4.3 with five input neurons, 

three neurons in the hidden layer, and four output neurons, with a few representative 

connections. 

Field A (Input layer) Field B (Hidden layer) Field C (Output layer) 

IL' W 

11 

Fig. 4.3 Layout of a feedforward backpropagation networks. 

I'hc network has three fields of neurons: one for input neurons, one for hidden processing 

elements, and one for the output neurons. As already stated, connections are for feed 

forward activity. There are connections from every neuron in Field A to every one in field 

B. and in turn, from every neuron in Field B to every neuron in field C. Thus, there are 

two sets ol' weights, those figuring in the activation of hidden layer neurons and those to 

determine the output neuron activation. In training, all of these weights are adjusted by 
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considering what can be called a cost function in terms of the error in the computed 

output pattern and the desired output pattern. 

4.6 TRAINING 

The feedforward backpropagation network undergoes supervised training, with a finite 

number of pattern pairs consisting of an input pattern and a desired or targets output 

pattern. An input pattern is presented at the input layer. The neurons here pass the pattern 

activation to the next layer neurons. which are in a hidden layer. The outputs of the 

hidden layer neurons are obtained by using perhaps a bias, and also a threshold function 

with the activation determined by the weights and the inputs. These hidden layer outputs 

become inputs to the output neurons, which process the inputs using an optional bias and 

a threshold function. The final output of the network is determined by the activation from 

the output layer. 

The computed pattern and the input pattern are compared, a function of this error for each 

component of the pattern is determined, and adjustment to weights of connections 

between the hidden layer and the output layer is computed. A similar computation, still 

based on the error in the output, is made for the connection weights between the input and 

hidden layers. The procedure is repeated with each pattern pair assigned for training the 

network. Each pass through all the training patterns is called a cycle or an epoch. The 

process is then repeated as many cycles as needed until the error is within a prescribed 

tolerance. 

4.7 BACKPROPAGATION ALGORITHM 

Let us consider two matrices whose elements are the weights on connections. One matrix 

refers to the interface between the input and hidden layers, and the second refers to that 

between the hidden layer and the output layer. Since connections exist from each neuron 

in one layer to every neuron in the next layer, there is a vector of weights on the 

connections going out from any one neuron. Putting this vector into a row of the matrix. 

we get as many rows as there are neurons 1roin which connections are established. 

Let M1  and M2  be these matrices of weights. M1 [i][jj denotes the weight on the 

connection from the i th input neuron to the j th neuron in the hidden layer. Similarly, 
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M2[i][j] denotes the weight on the connection from the ith neuron in the hidden layer and 

the jth output neuron. 

Next, x,y,z will be used for the outputs of neurons in the input layer, hidden layer and 

output layer, respectively, with a subscript attached to denote which neuron in a given 

layer we are ref'erring to. Let p denote the desired output pattern, with p, as the 

components. Let in be the number of input neurons, so that according to notation 

(xl,x2.....xm) will denote the input pattern, if p have, say, r components, the output 

layer needs r neurons. Let the number of hidden layer neurons be n. Let e with the 

appropriate subscript represent the threshold value or bias for a hidden layer neuron, and 

'r with an appropriate subscript refer to the threshold value of an output neuron. 

Let the errors at the output layer be denoted by e, 's and those at the hidden layer by t, 's. 

If' we use a A prefix of any parameter, then we are looking at the change in or adjustment 

to that parameter. Also the thresholding function we would use is the sigmoid function, 

f(x)=1— 
I + exp(—x) 

Output ofj th hidden layer neuron: 

= f[(x1 M i [i1[J])+0i  

Output of j th output layer neuron: 

zi = f[(YM 2  [i][i]) + vi] 

i th component of vector of output differences: 

= desired value - computed value = - z, 

j th component of output error at the output layer 

e, =(1—z])xe 

I th component of output error at the hidden layer: 

.Y;)L Y iM2[i][i]efJ 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

Adjustment for weight between ith neuron in hidden layer and j th output neuron: 

40 



LM-,[i][j] = ,13(,y fe f (4.15) 

Where, 13o is the learning rate parameter for the output layer. 

Adjustment for weight between i th input neuron and jth neuron in hidden layer: 

LM 1 [i][j] = (4.16) 

Adjustment to the threshold value or bias for the j th output neuron: 

Ar, =/30e, (4.17) 

Adjustment to the threshold value or bias for the j th hidden layer neuron: 

A8, =fl,1 e, (4.18) 

Where, 13h is the learning rate parameter for the hidden layer. 

For use of momentum parameter a, equations (4.15) and (4.16) becomes: 

AM, [1] [j](t) = /3(,y1e1  + a AM2  [ij[j](t - 1) (4.19) 

And 

AM 1  [i][j](t) = I3h x It f  + a AM1  [i][jj(t —1) (4.20) 

Ir 
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CHAPTER V 

FIELD ORIENTATION CONTROL OF INDUCTION MOTOR 

5.1 INTRODUCTION 
The polyphase induction motor has a very simple and robust mechanical structure. But 

the stator windings of the motor carry both the flux and torque producing currents. High 

performance drives require decoupling of the channels and independent control over flux 

and torque producing currents. Scalar control methods are not capable of producing 

desired input variables. After F. Blashke, the concept of vector control was introduced for 

high performance control of induction motors. 
It is well known that the mmf and flux vectors of an induction motor rotate at 

synchronous speed. The direct method of field orientation senses the magnitude and 

position of the flux and then determines the magnitude and position of mmf so that the 

flux (rotor flux) is kept constant and the stator mmf is adjusted to meet the torque 

demand. This avoids the sluggish performance of the induction motor as the flux and 

torque channels are decoupled and slow dynamics of flux path does not affect the 

performance of the induction motor. The position and magnitude of flux in an induction 

motor may be sensed by imparting coils that require extra hardware and involves costs. 

On the other hand use of flux observers with suitable design may be used to obtain the 

magnitude and position of flux accurately. This gives direct field orientation control. 

The indirect method of field orientation control does not require sensing the magnitude 

and position of flux. Rather it generates slip frequency, which is added to rotor speed to 

calculate the inputs motor frequency. To meet the torque demand, the angular position as 

well 
as the magnitude of the stator mmf is adjusted. It is simple in implementation but 

suffers from a serious drawback due to variation of rotor parameters (especially the rotor 

resistance) from their nominal values incorporated in the controller. There are methods 

for correcting the rotor parameters. Observers may be used for detecting the parameter 

mismatch condition and tuning. 
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5.2 PRINCIPLE OF VECTOR (FIELD-ORIENTATION) CONTROL 

In the scalar control method, the voltage or current and the frequency are the basic control 

variables of the induction motor. In a voltage-fed drive, both the torque and air gap flux 

are functions of voltage and frequency. This coupling effect is responsible for the 

sluggish response of the induction motor. If, for example, the torque is increased by 

increasing the frequency (i.e., the slip), the flux tends to decrease which reduces torque 

output. But it is compensated by the sluggish flux control loop feeding in additional 

voltage. This transient dip of flux reduces the torque sensitivity with the slip and 

therefore, lengthens the response time. This is equally valid for a current-fed drive 

system. 

Applying vector or field-orientated control methods one can overcome the foregoing 

limitation. This control method is applicable to both induction and synchronous 

machines. In the vector control method, an ac machine is controlled like a separately 

exited dc machine. This analogy is explained in Fig. 5.1. In a dc machine, neglecting the 

armature demagnetization effect and field saturation, the torque is given by 

= KJ,J 1 (5.1) 

Where I (  is the armature or torque component of current and I is the field or flux 

component of current. In a dc machine, the control variables I and I may be 

considered as orthogonal or decoupled "vectors". In normal operation, the [eld current is 

set to maintain the rated field flux and changing the armature current changes developed 

torque. Since the current I or the corresponding field flux is decoupled from the 

armature current Ii,, the torque sensitivity remains maximum in both transient-and 

steady-state operations. This mode of control may be extended to an induction motor also 

if the machine operation is considered in a synchronously rotating reference frame, 

where, the sinusoidal variables appear as dc quantities. In FigS. I the induction motor 

with inverter and control is shown with two control inputs, / and . The currents /. 

and i are the direct-axis and quadrature-axis component of' the stator current 

respectively, where, both are in a synchronously rotating reference frame. In vector 

control. i is analogous to the field current I, and 'q'  is analogous to the armature 
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current I of a dc machine. Therefore, the torque can be expressed as 

el K, r /s = K j' q.v1ds (5.2) 

I I  

'0 

= K, I 2,. I i,,S  = K,'i0 l f  

Torque Fie'd 
produsing producing 

(a) 

Inverter 
In synchronously 

_-" 
Rotating Frame 

em = K, 2r kqs = K it 1(IS1dS  

Torque Field  
component con)ponCflt 

(b) 

Fig.5. 1 Analogy of the Induction Motor and the dc Machine in Vector 
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The basic concept of how i,, and 1q'  can be established as control vectors in the vector 

control method is explained in Fig.5.2 with the help of of phasor diagrams in a 

synchronously rotating d - q reference frame. For simplicity, the rotor leakage 

inductance is neglected. The phasor diagram is drawn with the air gap voltage fr' aligned 

with the q axis. The stator current L lags the voltage Vg  by (90 
- 

9° ) i.e., 

= J. sin 0 is in phase with and 1,,, = I. cos 9 is in quadrature with Vg  .The current 

is the active or torque component of the stator current and the corresponding active 

power across the air gap is J'i,,, .The current 'd•  is the reactive or field component of the 

stator current and is responsible for establishing the rotor flux Ar.  The corresponding 

reactive power across the air gap is V,i,,,. From the 

Stator voltage Stator voltage 
= IsinO' 

1 sinO 

1,, = 

q - crus I 

I :irgap 

?1, cos0 voltage 

Stator current Stator current 

Ar Ar  

d - cixis d - axis 

Increase of Torque component Increase of Field component 

Fig.5.2 Phasor diagrams in the direct vector control (in terms of peak values) 

phasor diagram, the developed torque across the air gap is given by 

T = K, 2rI,js = Ki,,,.i,,,. ,where, iq, and i, are shown in Fig.5.2. The torque equation is 
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therefore identical to that of a dc machine. The variables i s  and i are mutually decoupled 

and can be independently varied without affecting the orthogonal component. For normal 

operation, as in a dc machine, the current i, remains constant and the torque is varied by 

varying the i component. Correspondingly, the polar position of I.,  shifts to I. as shown 

in Fig. 5.2. 

The fundamental of vector control implementation with the machine model can be 

explained with the help of Fig. 5.3. It is assumed to generate the ideal phase current 

waves i, , i, and i, as dictated by the corresponding reference waves generated by the 

controller. The machine model is shown on the right. 

Control Machine 

ci—q 'a' a—/3 Y• a—h—c U, 
 p, d — q Machine 

to to __________ 10 to d - q 

a - b - c a 
- /3 

l /3 
a - /3 

" 
model 

cos w.1 sin w,1 cos o.t sin 

inverse 
transforniat lOt) 

Transformation 

N4achine 
tern i na I 

Fig. 5.3 Vector control implementation with the machine model. 

The phase currents i, , i1, and i are converted to i1  and i components by hree-phase/two- 

phase transformation. These are then converted to a synchronously rotating reference 
frame by the unit vectors cos w,f and sin wi as shown, before being applied to the 

machine model. The controller makes two stages of inverse translbrmation so that the 

control parameters i and i correspond to machine variables i and i 1  respectively. IS 
The unit vectors assume the alignment of i. with the 2, phasor and i,1  with the 

Vg  phasor. 

There are essentially two general methods of vector control. One, called the direct 

method, was developed by F. Blaschkellj and the other is known as the indirect method, 

was developed by K. I-Iasse[2]. 

46 



5.3 Direct Method of Vector Control 

The direct vector control method depends on the generation of unit vector signals from 

the air gap fluxes. The air gap fluxes 2,,, and 2w,,, can be measured directly or estimated 

from the stator voltage and current signals, as explained in Fig.5.4. The currents 
1(L% and 

are to be aligned with the rotating frame d and q axes, respectively using the unit 

vectors. We can write the following relations from Fig.5.4. 

= (1111 + 
= .J(2j2 

+ (5.3) 

2ilm = 2 Icosw/ (5.4) 

Aqm _•I2,111 51flC0et (5.5) 

2drn 

Aqin 

/,fl, 
I 

Unit vector 
(cartesian form) 

°e 

Fig. 5.4 Synthesis of unit vectors 

Equations (5.4) and (5.5 ) indicate that cosat and sin at are cophasal to td  and Aqni 

respectively. The synthesis of unit vectors from 2, and 
2qin by the feedback control 

principle is shown in Fig.5.4. 
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So far the vector control method neglecting the rotor leakage inductance has been 

considered. It can be shown that the rotor leakage flux exerts a considerable amount of 

influence and therefore, cannot be neglected. In fact, the rotor flux should be considered 

in both the vector and scalar control methods rather than the air gap flux. Blaschke [I] has 

shown that the vector control on the basis of air gap flux may result in an undesirable 

stability problem. The air gap flux can be compensated for the rotor leakage as follows: 

'qr = + Lrlqr (5.6) 

= L,, 1((S T'Th 
(5.7) 

p 

d,n 2dr 

Air gap fluxes Rotor fluxes 

L qfli  
2qr 

'('V 

Fig. 5.5 Synthesis of rotor fluxes. 

Eliminating iqr  from equation (5.6 ) yields 

2 qr 

Lr 
- 

- L rq.v (5.8) 
L ,,, 

Similarly from the d -axis equivalent circuit. 
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L

,.2 /m - L r (5.9) 

The synthesis of rotor fluxes from equations (5.8 ) and (5.9 ) are shown in Fig.5.5 . The 

rotor flux I A,.1 and unit vectors for Fig..5.4 can then be given as 

I2rl J2 r  +2r =j(2cir)2 +(,) (5.10) 

coswct= j1 (5.11) 

sinW,t — - (5.12) 

The direct method of vector control described so far can be applied typically above 10% 

of the base speed because of the difficulty in accurate flux signal synthesis at low speed. 

In fact, the flux signals obtained by direct integration of phase voltages can be used only 

in a higher speed range. The resulting coupling effect, although small at higher speed, 

becomes worse as the speed is reduced. In applications such as servo drives, the drive 

system must operate at truly zero speed with the best possible transient response. The 

accurate stator drop compensation near zero speed is very difficult. In the low-speed 

region, the rotor flux can be synthesized more accurately from speed and stator current 

signals. The rotor equation of the ,8 -axis stationary frame equivalent circuit can be given 

as 

+i r Rr —a)r2ar  =0 (5.13) 
dt 

LR  
Adding the term ( 

r )Ifl on both sides of the equation, we have 

d2. R LR 
+ + Lr1) - Wr2ar  = m__r (5.14) 
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Substituting equation (5.6 ) and simplification yields 

= 
+ W r 2ar  - 2J3r (5.15) 

dt 

Similarly, the equation from the a -axis equivalent circuit can be derived as, 

. 

1 
- 1av   +W /J,• A.. (5.16) 

dl r,. 

where, rr  = is the rotor circuit time constant. Equations (5.15) and (5.16) give rotor 

fluxes as functions of stator current and speed. 

5.4 VOLTAGE REGULATED INDUCTION MOTOR DRIVE 

From (2.6) and (2.7), in practice the rotor flux can not be measured. The only measurable 

variable is the stator primary current i . It is notable that all variables are handled on the 

stator co-ordinate system. Fig.5.6. Illustrates the flux observer based field orientation 

(FOFO) voltage fed controller block diagram. The stator d-axes current i and q-axes 

current is generated from stator primary current i and i, as: 

= x cos wi + i x s
13, 

in WI (5.17a) 

= X Sill WI + 'fly x coscol (5.17b) 

The d-axes reference current is generated from rotor reference flux 2,., as 

2. 
= ---- and the q-axes reference current is generated from speed error, 

- (D r  which is processed through a PT controller. Where. is the 

reference or set speed. Both the reference currents are compared with the two-axes stator 

currents. The errors are the input of two 1'I controller and outputs are the two-axes 

voltage. From the two-axes voltages the primary voltages are generated as: 

= V jy  X COS WI - V 1y  X Sifl (UI (5.18a) 

V /Jy xsinwt+v xCOSwt (5.l8b) 
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Fig. 5.6 Block diagram of the flux observer based field orientation (FOFO) 
control with voltage fed inverter. 

O 
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5.5 CURRENT REGULATED INDUCTION MOTOR DRIVE 
4 

The basic circuit equations are similar to the voltage fed controller. Fig.5.7. illustrates the 

flux observer based field orientation (FOFO) current fed controller block diagram. In the 

current- regulated method, the three-phase sinusoidal reference currents are compared 

with the instantaneous values of motor currents. The error is input to the controllers and 

pulse-width modulated (PWM) logic unit. The amplitude of the current reference is 

obtained from the r.m.s sum of stator d-axis and q-axis current. The controllers and PWM 

generation block can be either hysteresis controllers or proportional integral (P1) 

controllers with PWM generation logic. 

D.0 Supply Voltage 

Fig. 5.7 Block diagram of the flux observer based field orientation (FOFO) 
control with current fed inverter. 
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5.6 Indirect Method of Vector Control 

In the direct method of vector control discussed so far, the synthesis of unit vectors is 

dependent on the machine terminal conditions. In the indirect method of vector control to 

be discussed here, this dependence does not arise and therefore, the distortion problem 

does not exist. 

Figure 5.8 explains the indirect vector control principle with the help of a phasor diagram. 

The a - axes are fixed on the stator while the d - q axes rotate at synchronous 

angular velocity w as shown. At any instant, the q electrical axis is at angular position 

O, with respect to the ,8 axis. The angle 61, is given by the sum of rotor angular position 

O and slip angular position 0,  , where, O = co,l . 0,. = wt and 0, = . The rotor 

flux k consisting of the air gap flux and the rotor leakage flux is aligned to the d axis as 

shown in Fig. 5.8. Therefore, for dc-coupling control, the stator flux component of 

current i,, and the torque component of current i,,, are to be aligned to the d and q axes, 

respectively. 

We can write the following equations from rotating frame d -  q equivalent circuit: 

d2. 
+ R,.lqr  - (W r  - W r = 0 (5.19) 

dl 

ci Electrical axis 

ii 

 

Mechanical axis 

 

rol 

Fig. 5.8 Phasor Diagram for Indirect Vector Control 
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+ - (c0 - O)r  )'qr =0 (5.20) 
di 

Again, 

2qr  = L, (Jf  + Lniqs  (5.21) 

cIr = Lr dr  + L.  ids  (5.22) 

From equations (5.21 ) and (5.22) 

1(J 
2qr  (5.23) 

Lr 

= dr - 
L.  —z dv  (5.24) 

-4- 

The rotor currents from equation (5.19) and (5,20) can be eliminated by substituting 

equation (5.23) and (5.24) as 

dA. R L 
_!_+_LXqr _Rr 1(,S  +6.,I2dr  0 (5.25) 

(hRr) 
—SR dr ri dx + 0)xi2 cir  = 0 (5.26) 

di L, L,. 
 

where, CO,,  = 
- 

For dc-coupling control it is desirable that 

dA. Ir  
=--=0 

di 

= 'r cons tan I 

di 

Substituting the first two conditions, equations ( 5.25) and ( 5.26  ) can be simplified 

o i  = (  Rr  _)iqs (5.27) 

=Lm fd( (5.28) 
Rr dt 

Again, the torque as a function of rotor flux and stator current can be derived as follows: 

The stator flux linkage relations can be written as 
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= L,n l,ir  + Llqr (5.29) 

= Liil,. + L,i,, (5.30) 

Substituting equations (5.29) and (5.30) in equations (5.21) and (5.22), we get 

2qs. = - 

± 

'tqr (5 31) 
( .

,

2,,, = L, _J1 s '1r (5.32) 

The torque equation as a function of stator currents and stator fluxes is 

T = J(iic 2ci 
 - 

(5.33) 
'i "' 

2 

Equations (5.31) and (5.32) can be substituted in equation (5.33 ) to eliminate the stator 

fluxes. Therefore, 

) L (, 
2ffi-  - i.2,,,.) (5.34) T -

= 2 (

fp 
2 Lr  

Substituting 2,, = 0 and 2,, = 2,. the torque expression is 

1
a  

(5.35) 
" 2  

The equations above together with the mechanical equation 

J=1-7 
di 

. (5.36) 

11., 

Fig. 5.9 Block diagram of the machine model with decoupling control. 
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describe the machine model in decoupling control as shown in Fig.5.9. The inverter is 

assumed to be current controlled and the delay between the command and response 

currents are neglected. The developed torque T, responds instantaneously with current 

but has delayed response due to id, The analogy of the model with a separately 

excited dc machine is obvious. 

5.7 CURRENT SOURCE INVERTER FED INDUCTION MOTOR UNDER FIELD 

ORIENTATION CONTROL 

In one approach for framing the relevant mathematical relations to understand and 

explain the vector control of induction motor, the synchronous reference frame is so 

aligned that its one axis, say the d-axis, coincides at every instant with a defined flux-

vector in the machine. As discussed earlier, the flux-vector may be stator flux, rotor flux 

and mutual flux. Derivations and the study to follow are for the orientation scheme in 

which the rotor flux-linkage vector remains in space phase with the d-axis of the 

synchronous reference frame. For such constrains 

2,ir  = L,,,i,1,. + Lr ldr  = 2 (5.37a) 

2qr  —Ln,1(Ic  + Lrqr  =0 (5.37b) 

Which by (2.8) and (2.12) becomes 

i,, g,,, ± Lrcjr  = 2r (5.3 8a) 

+ L = 0 (5.38b) 

Elimination of 'dr  and  iq,, in (5.22) by (5.38) gives 

= [(Ri  + R ) + (L + L )p]i + 2,. + 2 (5.39) 
1 r L. 

L2  
where. L (= L, 

- -- 
is the leakage inductance. 

Eqn. 5.39 is similar to the voltage equation of a dc machine except the last term. Even if 

the field excitation changes, the armature voltage equation of a dc machine does not 

contain any transformer emf, but (5.39) indicates that the dc voltage applied to the 
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inverter must contain a component to counteract the transformer emf in the event of the 

variation of the rotor flux linkage. 

Applying the conditions in (5.37) to the rotor circuit emf equations, the third and fourth 

rows of(2.4) can be written as 

Rr l ir  + Pr = 0 (5.40a) 

w,,2,. + Rrqr = 0 (5.40b) 

Eliminating 1dr  and lqr  by (5.38), 

= 2r ) (5.41a) 

L,,, ;, gqc (5.41 b) 

Which can be re-written as 

L,, dv 'A = (5.42) (1 + VrP) 

A rid 

Li. 
= (5.43) 

V r 2r  

By the definition of slip-speed, as implied in (2.4), the angular speed of the rotor flux 

vector, i.e., of the rotating reference frame is given by 

Li. in 

. = + (5.44) 
r 2r 

For constant rotor flux operation, 

R .1 
= W r  + (545) 

Lr ldv  

It is to be noted that co, is the slip speed of the rotor with respect to the rotating d-axis 

(Fig.2.4) i.e., the rotor flux vector. Torque angle changes with the change in the operating 

condition of the machine, hence during the transitional state stator mmf vector must move 

at a speed different from that of the rotor flux vector. Slip speed o, of the rotor with 

respect to the stator current vector must be given by 

dO 
= w,, + (5.46) 

dt 
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Angular speed of stator mmf vector is then 

CO, +W 1 (5.47) 

do 
  Should be made available in terms of measurable, i.e., transduced, and/or estimated 

dt 

quantities. 

For the field oriented condition the torque angle 0 can be expressed as 

cosO= 1th 
(5.48) 

And 

sin9=-- 
(5.49) 

1cls 

For constant rotor flux operation, implying constancy of 'th' differentiation of (5.48) and 

use of (5.49) gives 

IO i ? 
(5.50) di iqs   i dt 

It may be noted that idq = 

Use of (2.15) in (5.50) leads to 

dO = i,j., I v - v -  Ri 
(5.51) -- 

dO 
i Expression for n (5.51) can conveniently be evaluated by digital processors. '1 hese dt 

issues are dealt with in a latter section. v . Depending upon the control circuitry and the 

strategies adopted, estimated or measured values are used for the remaining quantities. 
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By combining (2.5) and (5.37) the expression for the electromagnetic torque becomes 

-, = • '
11 r qs (5.52)  

Alternatively, it is evident from the voltage eqn.(5.39) of the rotor-flux oriented induction 

machine that the electro-mechanical powcr is 

.) 4'm c gq.v 2r 
= - 

2 L 
(5.53) 

The speed of the reference frame being mechanical radians per sec, the developed 

torque is 

Pp  
= p = 

- 2r i  gq • 
(O(  2 Lr  

Pp •_
j
j!!_2riq. 

(5.54) 

Which is the eqn. 5.52. 

Irrespective of the transient or steady state condition the torque function in (5.54) always 

holds for field oriented condition. Use of (2.14), (2.18) and (5.42) in (5.54) yields the 

following two widely used expressions for steady state torque. 

3 L2  
flI 

= 2
',, 

ldvls 
(5.55) 

Or, = ?...P Lnsj2 sinO cos 9 
2 P

Lr  
(5.56) 
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5.8 FLUX OBSERVER-BASED FIELD ORIENTATION CONTROLLER 

Fig.5.10. illustrates the Flux Observer based Field Orientation (FOFO) controller block 

diagram. The flux Observer plays the important role of generating the reference angle of 

rotor flux required for the direct coordinate transformation. The flux observer is designed 

on the stator coordinate system using the different types of observer theory. 

The basic circuit equations in the stationary reference frame of induction machine are 

given by (2.4) and (2.5). 

The state and output equations are easily derived from (2.4) and (2.5) are given in (2.6) 

and (2.7). 

Let the given observable plant be 

x=Ax+Bu (5.57.a) 

y=Cx (5.57.b) 

Where, 

I as1u=l,y1'i'J 

_!.L. — a) 
L,5,R,. 

0 
Lr  Lr  

0) _! 0 L,,,Rr  

F  Lr  L,. 
A= 

( M R. ( M IR Rr(l7)1 
:_+ 0 

tOLc Lr ) L,. OLFLr) ' L0L.c aL, J 

I_
" 

I_
lvi Rr  

U 
fi Rr (l — a) 

oL 5.L1 ) c7LL)L oL,. 
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aU 

Full order: 

The system (5.57)is rearranged with this observer as follows: 

x=A5+BU+G(i,.—i) (5.58) 

where, G is the feedback gain matrix and , I. and i, are the estimated full state, 

estimated stator current and actual stator current respectively. 

Reduced order: 

The system (5.57) is rearranged with this observer as follows: 

1'!- + (5.59.a) 
L2]  [

Al 

A22jLx2j 

[_~~_]U 
B2  

y=[o Cq 
X2 J

L1 (5.5
t

9b) 

r Cir 
] 

r 
where, x1  = & x2 c 

 = 
L'A. 1m 

Loa 

RE 



4 

k 

16) 

The block indicated by F in the figure consists of: 

2 
ar  

c0s8 = --,sin9 = 
2r  

= [2tzr  + 4. 

Fig.5.10. Flux Observer based Field Orientation (FOFO) Controller for voltage fed 
inverter. 

Wrl 0 I 
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Rr 
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i 
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( M M 

OL,Lr )Lr OL,.Lr ) 
A21— 

( M ( M Rr  

7LLr  L.,Lr  JLr  

Rv Rr (1 

A - 

cTLr  J 
22 

o 
Rv Rr (lO) 

crL ç OLr  

and 

ri 0 
1 1 

The two variables x = Ii., 
 jj7 can be directly obtained from (5.59b) as 

x, 
(5.60) 

The remaining two state variables require an observer for estimation. 

By manipulating the equation in (5.59), x1  = [2ar may be viewed as the state of a 

two dimensional subsystem 

+ Al2 x 2  + R1 u 

= 
(5.61) 

= A-, 1 x 1 (5.62) 

where, v = Al2 x 2  + B1 u 

=Al ,[C (,] 1 y+B Iu (5.63) 

v can be treated as a known input since u is known and y is directly measurable. 

The 'output vector' z may be expressed as 

z A21 x1  

=j 2 - A2,x2  - B2 u 
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= [c
11
] 1;_cjy_B2u (5.64) 

-r. 

We can estimate x1  with an observer 

, =( + MI A,1 )21  +v  — Mz (5.65) 

Where the 2 x 2 matrix M1  may be chosen so as to place the poles of (5.65) in any 

desired configuration. Substituting for v and z from (5.63) and (5.64) respectively, we 

have 

_(A
11+

M1 A2j) 1 +Ai2[C j
y+BiU_Mi[Cq Mv422[Cq F'y+M 2U (5.66) 

Which is 4 x 2 dimensional observer for the system (5.57) 

The only apparent difficulty in implementing the observer (5.66) is that differentiation of 

the output y is required. This can be avoided by redefining the state of the observer to be 

(t)= (t)+ M 1
c

1
]_ 1 y(t) (5.67) 

Substituting (5.67) in (5.66), we get 

= (A,, + M 1 A,1 ) + (B, + MB,)u + [Al2  + M 1 A,, - (ii,, + M1A,1)M }tc1] y (5.68) 

Deadbeat observer: 

The system (5.57) is rearranged with this observer as follows: 

x =(A+MC)+BU—M (5.69) 

where, M is the 4 x 1 gain matrix is suitably chosen that all the observer poles are located 

at the origin, i.e., all the eigenvalues of (A + MC) are zero. 
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CHAPTER VI 

SIMULATION STUDY OF OBSERVER-BASED FIELD-ORIENTED 

INDUCTION MOTOR DRIVE 

6.1 INTRODUCTION 

Field orientation control of induction motors using different types of observers with 

voltage and current source inverters have been shown in the previous chapter. For voltage 

and current source drives simulation studies are conducted to study the effectiveness of 

the observers. The observer systems are tested for steady state and different transient 

conditions. These studies include existence of field orientation during steady state, 

transient conditions and restoration of field orientation during parameter deviations. 

The induction motor is modeled in its imitually perpendicular stationary axes variables. 

The state space equations are solved with Runge-Kutta-Gill subroutine in a PC 

environment. The time step AT is taken as 0.0005 sec. The observer state equations are 

also solved using the same routine and time step. The simulation results for different 

operating conditions are listed in the subsequent sections. Simulation studies of the drive 

systems are carried out to justify the effectiveness of the observer performance. 

6.2 FULL ORDER OBSERVER BASED SYSTEM 

6.2.1 VOLTAGE SOURCE INVERTER FED INDUCTION MOTOR DRIVE 

The performance evaluation of the control scheme was made by simulation on a digital 

computer (Intel 586) environment. Parameters of the induction motor and the P1 

controller gains used for simulation are listed in Appendix I. Sampling time for the speed 

and the controller was 50ms. Rotor flux command was set at its rated value. Fig. 6.1 

through 6.3 that present the behavior of some important control variables following the 

start up and step change in speed. Fig. 6.1 shows the starting of motor from rest with set 

speed 150 rad(mech.) per second under starting condition for voltage source inverter 

shown in Fig. 5.8. The vector control scheme, used here, is the direct field orientation 

control. 
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Fig. 6.1 Speed under starting condition for Voltage source inverter. 
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Fig.6.2 Speed adaptation with full order observer. 
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The PT controller gains are selected for both flux estimation and the speed adaptive 

Ir scheme is same. Fig. 6.1 shows the motor speed starting up from the rest with set speed 

150 rad(mech.) per sec and load torque 1.0 Nm.. At transient period the machine speed 

overshoot 1.56% by its set speeds 150 rad/sec over a short duration. Fig. 6.2 shows the 

performance of the same observer in which updating algorithm is used to eliminating 

speed error. To evaluate its performance after 15 seconds the set speed is changed from 

150 rad/sec to 100 rad/sec and observed the estimated speed gradually decreased from its 

rated speed value and merge as possible to its set speed value. So this observer can also 

be used as speed prediction purpose. Fig. 6.3(a) presents the behavior for sudden change 

in the set speed from 150 rad/sec to 100 rad/sec. Simulation results confirm decoupled 

operation. It is evident from Fig. 6.3(b). Minor deviation of the rotor flux from its set 

value is noted during the setting period. The observer successfully estimates rotor flux 

and minor deviation between the actual flux and estimated flux is shown in Fig.6.3 (b). 
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Fig. 6.3(a) Speed and (b) flux when the reference speed decreased in step from 150 

rad/sec to 100 rad/sec. 

6.2.2 CURRENT SOURCE INVERTER FED INDUCTION MOTOR DRIVE 

Fig. 6.4 shows the speed and flux for current source inverter fed in Fig. 5.9 in which 

direct field orientation control technique is used. At transient period the machine speed 

overshoot 1.50 % from its set speeds 157.0 rad/sec over a short duration which is shown 

in Fig. 6.4(a). The actual value of flux in Fig. 6.4(b) shows the ripple with nearer distance 

that occurs due to the fast switching logic of current source inverter. Even that occurred 

situation, the observer-estimated flux merges the rotor actual flux. 
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Fig. 6.4 (a) speed and (b) flux for current controlled inverter. 
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6.3 REI)UCED ORDER OBSERVER-BASED SYSTEM (GOPINATH TYPE) 

6.5. Shows the speed and flux responses for voltage source inverter in Fig. 5.10. The 

technique that is used here is direct field orientation. After 20 seconds the machine 

resistance is increased by 50 % but the observer resistance is remain fixed. In that time 

the machine speed is overshoot 0.66% from its set speed 150 rad/sec, which is very 

negligible amount and the deviation between actual flux and estimated flux is also 

negligible which is around I . 11%. After transient the motor speed merges the set speed 

and the observer successfully estimates the machines flux. The observer poles are finally 

selected as = —0.20 and A2  = —0.20. So its greatest advantages are its robustness and 

its low sensitivity to the machine parameter variations. 

p.  
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Fig. 6.5 (a) Speed (b)Flux estimation and (c) Rotor resistance for 50% increment in rotor 

resistance in step for voltage source inverter. 
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6.4 REDUCED ORDER OBSERVER-BASED SYSTEM (GENERALIZED TYPE) 

Fig. 6.6 and Fig.6.8. show the speed and slip speed responses for voltage and current 

source inverter in Fig. 5.10 and Fig.5.11, where indirect field orientation technique is 

used. The observer poles are chosen for good flux estimation are A1  = —26.65 and 

= —24.65 for voltage source and A = —4.5 and A.-, = —5.0 and for current source 

inverter. 
To justify the robustness of the observer under parameter mismatch between the 

controller and the machine, the rotor resistance of the induction motor was increased after 

time 2 seconds and the value of rotor resistance in the slip calculator was preserved to its 

nominal value. This creates a notch both speed and slip speed and over fluxing of the 

induction machine. The deviations of speed, slip speed and the rotor flux from its nominal 

value are shown in Fig. 6.6 and Fig. 6.8 and Fig.3.8 respectively. The study does not 

incorporate any change in the rotor resistance for the observer system. An identical value 

of actual and observed rotor flux indicates robustness of the observer under 

parameter deviation. 

In designing the observer suitable dynamics of the observed flux is the most important 

factor. This dynamics is governed by the poles of the observer A1 and A.2 . Usually, 

deadbeat observers produce dynamics similar to the system. But these observers produce 

mismatched results for parameter variation. Another important aspect is that the observer 

poles must not coincide with the poles of the system. This requires a study of system pole 

variation with the variation of the operating condition. The system matrix (A matrix) has 

one real pole and two complex conjugate poles. Motor speed is varied from (0 to 160) and 

this variations the real poles variation from slip speed is changed from (0 to 20). For (- 

118.548 to —106.716) and the complex conjugate poles vary from (-1.193 ± 140.925) to (- 

7.109 ± 1 7.493). The variation of the poles lbr variable speed and torque (here w) arc 
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shown in Fig. 6.7. From this curves it is evident that one of the poles is real and is located 

far left from imaginary axis for variations motor speed and slip. The other two poles are 

complex conjugates where the imaginary part is dominating. So if the real values are 

selected for observer poles closer to the imaginary axis there is no probability of 

coinciding observer poles with the system poles. 
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Fig. 6.6 (a) Motor speed (b) slip speed and (c) rotor resistance for 25% increment in rotor 

resistance for Voltage source inverter. 
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6.4.1 ROTOR RESISTANCE ADAPTATION FOR INDIRECT VECTOR 

CONTROL 

Finally, the observer was utilised to adapt the actual rotor resistance of the machine and to 

use it for slip speed calculation shown in Fig. 6.10. The algorithm uses P1 controller to 

process the error in flux between the observed value and set value. The adaptation process 

using flux error is presented in Fig. 6.11 and Fig.6.12 for voltage and current source 

inverter respectably. In this process rotor resistance is increased by 25%. The actual flux 

and estimated fluxes are initially more than the set value of flux. As the adaptation 

process is on the adapted rotor resistance in the slip calculator gradually merges to the 

actual value of rotor resistance and the estimated and actual fluxes are driven to the set 
r 

value of rotor flux indicating restoration of field orientation condition. 

2; 

¼.,UI.,LLiULJL 

Fig. 6.10 Block diagram of rotor resistance adaptation process. 
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Fig 6.11 (a)Motor Speed (b) Slip speed (c) Actual flux and (d) Adapted rotor resistance 

using estimated rotor flux for Voltage source inverter. 
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6.5 DEAD BEAT OBSERVER 

The only difference of this observer from the others is its zero poles. Fig. 6.13 shows the 

motor speed for voltage source inverter in Fig. 5.10 in which direct field orientation 

technique is used. At transient machines speed is deviated 3.2% by its set value of speed, 

which is acceptable, and fluxes deviation is 1.55% by its set flux Fig. (3.9). But the 

observer successfully estimating the rotor flux and there is no difference between the 

estimated flux and actual flux. 
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CHAPTER VII 

FLUX ESTIMATION USING ANN 

7.1 INTRODUCTION 

The time required to train an ANN with backpropagation training algorithm depends on 

the size of the training data set and training algorithm. The standard version of the 

backpropagation algorithm is very slow and requires a large number of iterations. An 

improve version of this algorithm is the backpropagation with momentum and adaptive 

learning rate to train to understand the model of the system, which permits a reduction of 

the number of iterations. The selection of network size is a compromise between output 

precision, training time, and ANN generalization capabilities. There is no general 

Ir procedure for determining the right ANN size for a specific problem. With a small 

number of neurons, the network will take a long time to converge or will not converge to 

a satisfactory error. On the other hand, if the number of neurons is large or if the training 

error is very small, the ANN will memorize the training vectors and give a large error for 

generalization vectors. 

7.2 NEURAL-NETWORK ROTOR-FLUX ESTIMATOR 

Rotor flux estimation proposes stator two-axis voltages, stator two-axis currents and 

mechanical speed are taken as input data. While the motor accelerated from standstill to 

its steady-state speed, 300 samples of each quantity (sampling period of 0.00025 ms for 

each channel) were recorded and stored in a measurement data file. The principle for 

training the ANN-flux estimator is shown in Fig. 7.1. Training was achieved with 

sinusoidal voltages and currents in order to improve the learning process, and it continued 

until the sum of squared error on the components of flux was below a desired level. 
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Fig. 7.1 Principle for training the ANN-flux estimator. 

7.3 SIMULATION RESULTS 

A 2-kw induction motor was used as a case of study. The parameters of the machine were 

determined experimentally and are given as follows: 

Pair of poles P2 

Resistance of stator =1.798 ) 

Resistance of rotor =0.825 Q 

Inductance of stator =0.08323 h 

inductance of stator =0.08323 h 

Mutual inductance =0.0761 3 h 

Moment of inertia J j  =0.095 Kg.m2  

Damping coefficient B =0.0002 N-rn 

Load torque =1.0 Nm 

The trained network consists of a three layer neural network with five input nodes 

connected to eight sigmoid neurons and two output nodes connected to eight sigmoid 

neurons (5-8-8-2) which is shown in Fig. 7.2. Training was initiated when the error fell 

bellow 0.000571 with 389 iteration. The results obtained with simulator and theoretical 

data are almost identical and presented in Fig. 7.3. 
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Fig. 7.2 Three-layer ANN Rotor-flux estimator. 
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Fig. 7.3 ANN estimated rotor flux (a) d-axis (b) q-axis. 

7.4 NEURAL-NETWORK ROTOR-FLUX ESTIMATOR AND DIRECT FIELD 

ORIENTATION 

The block diagram of ANN rotor flux estimator based direct field orientation controller for 

voltage fed inverter is shown in Fig. 7.4. It is similar to block in Fig. 5.10 but only 

difference is replacing ANN flux estimator in place of rotor flux observer and one more 

input that means motor speed is taken in ANN flux estimator. For direct field orientation, 

cos(12)t) and sin(co/)  signals are obtained from the estimated rotor-flux signals as given 

below is 

cos(co/) 

= TJ (7.1) 

sin(co.1) 
= 2qr

JT 
where 

= iJ('drY 
+(iqr)2 

0.6 
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Current command I) r can be generated from a flux-control loop, while current. 

command "rj 
can be generated from a speed-control loop. 

IA 

VR: Vector Rotator, kM. InOULItUIL 1V1ILI1I 

Fig. 7.4. ANN rotor flux estimator based direct field orientation controller for voltage fed inverter. 

Simulation results of the direct field orientation are presented in Fig. 7.5. The trained 

network consists of a three-layer neural network with five input nodes connected to eight 

sigmoid neurons and two pure linear output nodes connected to eight sigmoid neurons (5-

8-8-2). The training was implemented with backpropagatiOfl algorithm. In training period 

due to the lack of larger computer memory, the training is completed by part and part that 

mean transient, in between of transient and steady state and steady state. 
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Fig. 7.5 ANN estimated rotor flux (a) d-axis (b) q-axis of direct field orientation based 

voltage fed inverter. 
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CHAPTER VIII 

CONCLUSION 

8.1 CONCLUSION 

Simulation studies on flux observer based direct and indirect vector control schemes were 

conducted in this thesis work. Both voltage and current source inverter characteristics 

were implemented in digital computer environment to study the drive performance. The 

artilciaI neural network approaches estimating the flux was simulated to compare the 

performance with the observer based systems. All the studies were carried out with 

stationary two-axis model for the induction motor. 

In the case of flux estimation using full order observer the number of state variables is 

high and huge calculations are involved. 1-lowever, the full order observer may be 

selected as it provides speed sensorless control of motor. This has been included in this 

study. The important characteristics of this observer are it is insensitive to parameter 

deviation and robustness. Direct field orientation control is possible with this observer for 

both voltage source and current source inverter systems. 

In redluced order observers number of state variables handled for computation is lower 

and are easy to implement practically. Of the three typical reduced order observer studied 

in the case of Gopinath type the initial transient is not too much when the parameters of 

induction motor are changed without changing their values of observer equations, the 

observer works faithfully and it detects the flux under this changed condition. Direct field 
I 

orientation is possible with this observer that indicates its robustness. 

In Generalised observer the transient condition produces a large variation of estimated 
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flux and the observer is very sensitive to dynamic condition, so direct field orientation is 

not possible with this observer. This observer is simple and in generalized form and we 

have used it for parameter adaptation. 

In deadbeat observer, the poles are selected at origin. It is also robust and the direct field 

orientation is possible with this observer. The main advantage of this observer is that it 

does not require pole selection. Also subsequent stability studies dependent on poles are 

not required. With this we can avoid the lengthy process of stability and robustness 

studies of the observer that normally happens when poles are selected. 

All the observers discussed in the studies works suitably from very low speed to rated 

speed, though special emphasis has not been given to the sliding pole based observer 

design. 

Artificial neural network based flux estimation trained by backpropagation algorithm 

works suitably for particular operating condition only. If the operating condition changes 

then system gives erroneous result. 

8.2 SUGGESTIONS FOR FURTHER STUDY 

low 
 This motivates to pursue further research in the application of neural networks to new 

types of controllers in the motor drive industry. 

Extension of this work could be the investigation of possible use to update thresholds and 

weights of the adaptive neuron model algorithm. This can be the optimum algorithm since 

it combines the gradient descendent method with the Newton algorithm. 
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APPENDIX I 

TABLES OF INDUCTION MOTOR DATA 

Si. 
No 

Nominal Parameters 
(referred to stator)  

Values in SI units 

 Stator resistance, R 1.798 
 Rotor resistance, Rr  

0.825 

 007613 
 Mutual inductance, L, 0:08323 
 Stator self inductance, Lç  0.08323 
 Rotor self inductance, L,. 0.095 
 Moment of inertia, J 0.0002 

Damping coefficient, B  

The P1 controller constants are: 

K1,1  =1.15,K11  =63.5,K1,, =1.15,K1, = 63.5 

r 
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APPENDIX H 
11 

SIMULATION MODEL DISCRETE 
The control strategy is formulated for implementation through digital processors. Linear 

difference equations are used for various controller sections, and are formed from discrete 
transfer function (Z-transforms) of the controllers. A PT controller in frequency domain is 

represented as 

=k 
(B.l) 

E(s) " s 

Applying the bilinear translormatlon s = - 
with 1 as the sampling time and then 

taking the inverse z-transform gives 

m(kT) = rn(k — IT) + (k + L)e(kT) - (k,, - -1e(k—IT) (B.2) 

Where e (kt) and m(kT) are the respective values at the kT-th instant. 

If the rotor speed is passed through a first order filter (Fig. B. 1) one can obtain 

co,,, (s) = 
k

iv,,, (s) (B.3) 
1 + r1s 

Where k, is the gain of the filter and , 

is the time constant of the filter. The difference equation to determine the input to the 
speed comparator is obtained by applying the above bilinear transformation and taking 

the inverse z-transform. 

Tk  
co,,,1(kT) = 

/ [cv (kT) + cv (k - iT)] - 
/ w,,,1  (k - IT) (13.4) 

l+2r1 T+2r, 

a),,, 

From speed To speed comparator 

transducer 

Fig.B.1 First order filter in speed feedback loop. 
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