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SUMMARY 

This thesis studies the nature of distributive 

nearldttices. By a nearlattice S we will always mean a 

(lower) semilattice which has the property that any two 

elements possessing a common upper bound, have a 

supremum, Cornish and Hickman in their paper [14], 

referred this property as the upper bound property, and 

a semilattice of this nature as a semilattice with the 

upper bound property. Cornish and Noor in [15] preferred 

to call these semilattices as nearlattices as the 

behaviour of such a semilattice is closer to that of a 

lattice than an ordiary semilattice. In this thesis we 

give several results on nearlattices which certainly 

extend and generalize many results in lattice theory. 

In chapter 1 we discuss ideals, congruences and 

other results which are basic to this thesis. We include 

some characterizations of distributive and modular 

nearlattices. We generalize the separation properties 

given by M.H.Stone for distributive lattices. We also 

show that the set of prime ideals of a nearlattice S is 

unordered if and only if S is semiboolean. 

1. 
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Chapter 2 discusses the skeletal congruences of a 

distributive nearlattice. Skeletal congruences on 

distributive lattices have been studied extensively by 

Cornish in [111. Here we extend several results of 

Cornish for nearlattjces.We also intr.)duce the notion of 

disjutive nearlattices. A distributive nearlattice S 

with 0 is called disjunctive if for 0 5 a < b there is an 

element x € S such that x A a 0 and 0 < x b. Then we 

give several characterizations of disjunctive 

nearlattices and semiboolean algebras using skeletal 

congruences. Finally we show that a distributive 

naerlattice is semiboolean if and only if 

8 -----> ker8 is lattice isomorphism of Sc(S) onto KSc(S) 

whose inverse is the map J ---> 8(J). 

In chapter 3, we discuss on normal and n-normal 

nearlattices. Normal lattices have been studied by 

several authors including Cornish [8] and Monteiro [34]; 

while n-normal lattices have been studied by Cornish [91 

and Davey [16]. In proving some of the results we have 

used Principle of Localization, which is an extension of 

lecture note of Dr. Noor on localization. This technique 

is very interesting and quite different from those of the 

previous authors. 

11 
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Chapter 4 studies the multiplier extension (meet 

translation) of a distributive nearlattjce. Previously 

multipliers on semilattices and lattices have been 

studied by several authors e.g, Szasz and Szendrje 

[54,55,56] Kolibiar [29],Cornjsh [101 and Niemenen [37] 

on a J -'tice. In a more recent paper, Noor and Cornjsh in 

[39] studied them on nearlatticee. Here we extend some of 

their work. We also give a categorjcai result, where we 

see that the multiplier extension has a functorial 

character which is entirely different from that of the 

Lattice Theory, c.f. Cornish [10, theorem 2.41. In 

section 2 of this chapter we discuss multipliers on 

sectionally pseudocomplemented distributive nearlatticeg 

which are sectionally in B, -1 5 n 
and generalize a 

number of results of [10]. We show that S is sectionally 

in B if and only if M(S), the lattice of multipliers is 

in B. Finally we show that for 1 n < , above 

conditions are also equivalent to the condition that S is 

sectionally pseudocompleme 
and for any n+1 minimal 

prime ideals 

PI,Pz ........... ,Pn+1, 

P1 V P2  V ........... V P 1  = S. 
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IDEALS AND CONGRUENCES OF A I)ISTRIBUTIVE NEARLATTICE. 

I. Pre}j*mjnarjes. 

1.1. In this section it is intended only to out}ine and 

fix the notation for some of the concepts of nearlattjces 

which are basic to this thesis. We also formulate some 

results on arbitrary nearlattices for latter use. For the 

background material in Iatt.ice Theory we refer the reader 

to the texts of G. Gratzer [19], (18) and D.E. Rutherford 

[48]. 

By a nearlattice S we will always mean a (lower) 

semilattice which has the property that any two elements 

possessing a common upper bound, have a supremum. Cornish 

and Hickman, in their paper [14], referred this property 

as the upper bound property,and a semilattice of this 

nature as a semilattice with the upper bound property. We 

shall see latter, the behaviour of such a semilattice is 

closer to that of a lattice than an ordinary semilattice. 

For the sake of brevity, we prefer to use the term 

nearlattice in place of semilattice with the upper bound 

property. 

Of course, a nearlattice with a largest element is 

a lattice. Since any semilnt.tice satisfying the 



descending chain condition has the upper bound property, 

all finite semilattices are nearlattices. 

Now we give an exampLe of a meet semilattice which 

is not a nearlaltice 

Example. In f consider the set 

S = ((0,0)) u ((1,0)) u ((0,1) u ( (l,y) : y > 1) 

shown by the following figure 1.1 

•:-.\ Bat'' I 

Figure 1.1 

Define the partial ordering 5 on S by (x, y) < (x1 , y1) 

iff x < x1  and y y1. Observe that (S ; :5) is a meet 
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semilattice. Both (1,0) and (0,1) have common upper 

bounds. In fact {(1, y) I y > 1) are common upper bounds 

of them. But the supremum of (1,0) and (0,1) does not 

exist. Therefore (S ; ) is not a nearlattice. 

The upper bound property, appears in Gratzer and 

Lasker [20],while Rozen [49,pp.17-20] shows that it is 

the result of placing certain associativity conditions on 

the partial join operation. Moreover, Evans in a more 

recent paper [17] referred nearlattices as conditional 

lattices. By a conditional lattice he means a (lower) 

sentilattice S with the condition that for each 

x G S, { y G  S y x } is a lattice; and it is very 

easy to check that this condition is equivalent to the 

upper bound property of S. Also, Nieminen refers to 

nearlatlices as "partial lattices" in his paper [38]. 

Whenever a nearlattice has a least element we will 

denote it by 0. If x1 , x1  ......,x are elements of a 

nearlattice then by x1  V......V x, we mean that the 

supremum of x1  ...... IX, exists and x1  V......V x is the 

symbol denoting this supremum. 

A non empty subset K of a nearlattice S is called a 

subnearlattice of S if for any a,b € K, both a A b and 
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a V b (whenever it exists in S ) belong to K ( A and V 
taken in S ) , and the A and V of K are the restrictions 

of the A and V of S to K. Horeover, a subnearintt ice K of 
a nearlattice S is called a sublattjce of S if a V b C K 

for all a, b C K. 

A nearlattice S is called modular if for any 

a, b, c C S with c 5  a, aA (bV c) = (nAb) V c 

whenever b V c exists. S is called distributive if for 

anyx , x ..... , x 

x A (x1  V... .V xn) = (x A xp ) V.....V (x A xb ) whenever 
X i  V. .. V x exists. Not ice that the right hand expression 

always exists by t.h upper bound property of S 

Lemma 1.2. 
A nearlattice S is distributive (modular) 

if and only if (xj = ( y C S y 5 x  ) is a distributive 

(modular) lattice for each x C S. 0 

Consider the following lattices. 

 

C 

  

   

b 

a 

a 

 

Figure 1.2 

 

Figure 1.3 
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Hickman in [23] has given the foUowing extension of 

a very fundamental result. of Lattice Theory. 

Theory 1.3. A nearlattice S is distributive if and 

only if S does not contain a sublattice isomorphic to N5  

or H5. 0 

Now we give another extension of a fundamental 

result of Lattice Theory. 

Theory 1.4. A nearlattice S is modular if and only if 

S does not contain a sublattice isomorphic to N5. 

Proof: Suppose S does not contain any sublattice 

isomorphic to N 5 . Then, (x] does not contain any 

sublattice isomorphic to N5 for each x G S. Thus, a 

fundamental result. of Lattice Theory says that (x] is 

modular for each x C S as (x] is a sublattice of S. 

Hence, S is modular by lemma 1.2. 

Conversl.y, let S be modular. If S contains a 

sublattice isomorphic to N5, then letting e as the 

largest element of the sublattice we see that (e) is not 

modular [by Lattice Theory]. Thus by lemma 1.2 above, S 

is not modular and this gives a contradiction. 



This completes the proof. fl 

In this context it should be mentioned that many 

Lattice theorist e.g. R,E3albes [5], J.Verlet [58], 

R.C.11jckinan [22] and K.P..Shum [53] have worked with a 

class of semi lattices S which has the property that for 

each x, a1  . ...... a € S, if a1  V......V ar  exist then 

(x A a1 ) V.....V (x A ar ) exists  and equals 

x A (a1  V .... V ar ). [5] called them as prime semjlattjces 

while [53] referred them as weakly distributive 

semilatt ices. 

Hickman in [231 has defined a ternary operation j by 

j (x , y , z) = (x A y) V'(y A z), on a near1attjce S 

(which exists by the upper bound Property of S). In fact 

he has shown that (also see lyndon [30] Theorem 4) the 

resulting algebras of the type (S ; i) form a variety, 

which he referred to as the variety of join-algebras and 

following are its defining identities. 

j (x, x, x) x 

j (x, y, x) = j (y)  x, y). 

j (j (x, y, x), z, j (x, y)  x)) 

j (x, j (y, z, y), x) 

j (x, y, z) j (z, y, x). 

it 
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j (j (x, y, z),j (x, y, x), ,j (x, y, z)) 

(x, y, x). 

j (j (x, y, x), y, z) j (x, y, z). 

,j (x, y, j (x, z, x)) j (x, y, x). 

j (j (x, y, j (w, y, z)),j (x, y, z), 

j (x, y,j(x, y, z))) = ,j (x, y, z). 

We do not want to elaborate it further as it. is 
4,  

beyond the scope of this thesis. 

We call a neariattjce S a medial flearlattjce if for 

all x, y, z E S, in (x, y, z) = (x A y) V (y A z) V (z A 

x) exists. For a (lower) semilattice S, if in (x, y, z) 

exists for all x, y, z E S, then it is not hard to see 

that S has the upper bound properLy and hence is a medial 

nearlattjce. Distributive medial nearlattices were first 

studied by Sholander in [51] and [ 52], and recently by 

Evans in [17]. Sholander preferred to call these as 

median semilattices. There he showed that every medial 

nearlattice S can be characterized by means of an algebra 

(S ; in) of type <3>, known as median algebra, satisfying 

the following two identities 

(i) in (a, a, b) = a. 

in (in (a, b, c), in (a, b, d), e) 

m (m (c, d, e), a, b). 

rk 
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Evans in [17] has studied nearlattjces with the 

property that for any a , b , c € S, a V b V c exists 

whenever a V b, b V c and c V a exists, lie referred them 

as strong conditional lattices. It is not hard to see 

that these strong conditional lattices are precisely the 

medial nearlatt ices. 

A family A of a subsets of it  se A is called a 

closure system on A if 

A€A and 

A is closed under arbitrary intersections. 

Suppose B is it sub family of A. B is called a 

directed system if for any X, Y C B there exists Z in B 

such that X, Y Z. If u ( X : X C B ) c A for directed 
system B contained in the closure system A, then A is 

called algebraic. When ordered by set inclusion, an 

algebraic closure system forms an algebraic lattice. 

A non empty subset II of a nearlattice S is called 

hereditary if, for any x C S and y C H, x y implies 

x € H. When S does not, have a smallest element we also 

regard the empty set {) as hereditary. Thus, the set 

H(S) of all hereditary subsets of S is a complete 

distributive lattice when partially ordered by 
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set-inclusion, where the meet and join in H(s) are given 

by set-theoretic intersection and union, respectively. 

The largest element of H(S) is S, while the smallest 

element is {O},if 0 E S,and the empty set ,otherwjse, 

4, 
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2. ideals of Nearlattices. 

A non empty subset I of a nearlattice S is called an 

ideal. if it is hereditary and closed under existent 

finite suprema. We denote the set of all ideals of S by 

I(S). If S has a smallest element 0 then I(S) is an 

algebraic closure system on S, and is consequently an 

algebraic lattice. However, if S does not possess 

smallest element then we can only assert that I(S) u {) 

is an algebraic closure system. 

For any subset K of a nearlattice S, (K] denotes the 

ideal generated by K. 

Infimum of two ideals of a nearlattice is their set 

theoretic intersection. Supremum of two ideals I and J in 

a lattice L is given by IVJ = (x C L : x i V j for 

some i e I, j c J). Cornish and Hickman in [14] showed 

that in a distributive nearlattice S for two ideals I and 

J, I V J = {i V .j : I E I, j C J where i V ,i exists). But 

in a general nearlattice the formula for the supremum of 

two ideals is not very easy. We start this section with 

the following lemma which gives the formula for the 

supremum of two ideals. It is in fact exercise 22 of 

Gratzer [19, p-541 for partial lattice. 

k 
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Lemma 2.1. Let I and J be ideals of a nearlattice S. 

Let A0=I u J,A ={ x € S:x S y V z; y V z exists and 

y, z€A 1 }, 

for n1,2 ........ , and K = u A. Then K =1 V J. 
n0 

Proof. Since A0 A1 A2  c........ 

... Ar ......... . K is an ideal containjn I and .1. 

Suppose II is any ideal containing I and J. Of course, 

A0 H. We proceed by induction. Suppose A 1  U H for some 

n 2 1 and let x € A.Theri 1x y V z with y , z € A 1 . 

Since A 1 H and H is an ideal, y V z € 1-1 and x € H. 

That is A 11 for every n. Thus, K = I V J. 0 

The following result is due to Cornish and Hickman 

in [14 ,Theorem 1.11. 

Theorem 2.2. The following conditions on a nearlattice 

S are equivalent. 

S is distributive. 

For any 11 C H(S), (II] = { 111  V . . .V h : h1, 

€ H) 

For any I,J € I(S), 

IVJ={a1 V.....Va: a1  ....... aEluj). 

(iv) I(S) is a distributive lattice. 
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(v) The map 11 ---> (H] is a lattice homomorphism 

of H(S) onto I(S) ( which preserves arbitrary 

supremum). 0 

Observe here that (iii) of above could easily be 

improved to (iii)'; for any I, J E I(S), 

IVJ=(V id I ,jEJ). 

Let If(S) from henceforth denote the set of all 

finitely generated ideals of.a nearlattice S. Of course, 

I1(S) is an upper subsemilattice of I(S). Also for any 

XII.......,x1 C S, (x1  ........,x1] is clearly the 

supmremum (x1 ] V........V (x
']. When S is distributive, 

(x1, . . . ,x1 ] fl (y1  .....,y I 

= ((x} V... .V (xe ]) fl ((y1 J V ... V (J) 

= V (x1  A y] for any x1  .....,x1 , y1 , .....y € S ij , 

(by 1. 2.2) and so If(S) is a distributive sublattjce of 

I(S), c.f. Cornish and Hickman [14]. 

A nearlattice S is said to finitely smooth if the 

intersection of two finitely generated ideals is itself 

finitely generated. For example, (1) distributive 

nearlattices, (ii) finite nearlattices, (iii) lattices, 

are finitely smooth. Hickman in [23] exhibited a 

nearlattice which is not finitely smooth. 
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4 By Cornj5}) at)(J 
hickman 114), we know that a 

nearlattice 
 S is distributive if and only if I(S) is 

80. 
Our next resull shows that the case is 

not the same with 
the modularity, 

Theorem 2.3. 
Let S be a flearjattj 

I I(S) is modular 
then S i s also  modtj I ar but the roll ye r Re 'is not 
necessarily true. 

Proof: Suppose I(S) is modular. Let a, b, c S with c 
a and b V c exists. T}i (c)Ez (al.Sjnce I(S) is 

modular. So (a A (b V c))(aj A ((b) V (cj=((a) A 
(c]((8 A b) V cj. This implies a A ft V 

(bj) V 

c)(a A b) V c, 
and so S is modulal. 

Nearlattice S of figure 1.4 ShOWS that the converse 
of this result is not. true. 

U 

'I 

Figure 1.4 Ill 

1 
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Notice that there (r] is modular for each r € S. But 

in I(S), clearly {(0), (a}, (a1 , yJ, (a2, bj, S} is a 

pentagonal sublattice. 

We now give an extension of a wel). known result of 

Lattice Theory in presence of distributivit.y. 

Theorem 2.4. Let I and .3 be two ideals in a distributive 

nearlattice S. If I A J and I V J are principal, then 

both I and J are principal. 

Proof: Suppose I A J = (x] and I V J = (y).Then by 

[141,Theoreml.1] y = i Vj for some i € I and j E J.Since 

x 5 y and i y, x V i exists by the upper bound property 

of S. Moreover x V j € J. Now (y] = I V .3 D (x V i) V J 

(1) V J (yl. This implies IV J (x V i] V J. Again, 

(xi = I A 3 D (x V ii A 3 D (x] implies 

I A J = (x V ii A J. Then from the distri.butivity of I(S) 

two equalities imply that I = (x V i]. That is, I is 

principal. Similarly, we can show that that J is also 

principal. 0 

A filter F in a nearlattice S is a non-empty subset 

of S such that if f1  , f2  € F and x € S with f1  :5 x,then 

both f1  A f2  and x are in F. A filter G is called a prime 
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filter if C t S and atleast one of x1 . ,x is in G 
E 

whenever x1  V.....V x exists and is in G. An ideal P in 

a nearlattice S is called a prime ideal if P t S and 

x A y E P implies x E P or y E P.lt is not hard to see 

that a filter F of a nearlattjce S is prime if and only 

if S-F is a prime ideal. 

The set of filters of a nearlattice is an upper 

semilattice; yet it is riot a lattice in general, as there 

is no guarantee that the intersection of two filters is 

non-empty.The join F1  V F2  of two filters is given by F1  

V F2 = ( s € S : s 2 f1  A f2  for some f1  € F1  and f2  € F2 ). 

The smallest filter containing a subsemilattice H of S is 

( s € S : s 2 h for some h E H) and is denoted by [H). 

Moreover, the description of the join of filters shows 

that for all a, b c S, [a) V [b) = [a A b). 

Now we will give an extension of a well known 

Theorem of Lattice Theory due to M.iLStone; c.f [41]. 

Theorem 2.5. Let S he a nearlattice. The following 

conditions are equivalent: 

(1) S is distributive. 

(ii) For any ideal I and any filter F of 5, such that 

I fl F = 1, there exists a prime ideal P Z I and 
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disjoint from F. 

Proof: (i) implies (ii). Let T be the set of all ideals 

containing I, but disjoint from F. I is non-empty, since 

JET. 

Let C be a chain in T and let H u { X : X € C ). 
Let x, y € H, then x € X, y £ Y for some x , y € C. Since 

t 

C is a chain either X Y or Y L X. 

Suppose X C Y. Then both x , y € Y. So if x V y exists, 

then x V y E Y H, as Y is an ideal. Now for p x, 

p C X as X is an ideal and p C H. Thus H is an ideal. 

Moreover H contains I and F fl H = . So H is maximum 

element of C. 

hence by Zorri's Lemma T has a maximum element P. We 

claim that P is prime. If not, there exist a 
, b ç P, but 

a A b € P. Because of maximality of P, (P V (a)) fl F 

(P V (b]) fl F t 4'. Then by [14, theorem 1.1], there exist 

elements p V a1  C F and q V b1  € F for some a1 a and 

1)1 < b. Then by x = (p V a1 ) A (q Vb1 ) C F and 

P , q C P. Also x = (p A q) V (p A b1 ) V (a1  A q) V 

(a1 A b1 ) implies F fl P t 4', which is a contradiction. 

Hence P is a prime ideal. 

I 
C Bangladesh ) 
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( i i ) implies (i). Let x , y , z C S, such that 

y V z exists. Then (x A y) V (x A z) 5 x A (y V z),If 

(x A y) V (x A z) < x A (y V z). 

Consider I = ((x A y) V (x j\  z)) and F [x A (y V z)). 

Then I 11 F = , so by (ii) there exists a prime ideal 

P D I such that P fl }? = 

Now (x A y) V (x A z) E P implies x A y C P and 

x A z C P. Since P is prime, this implies either x C P or 

y V z C P and so x A (; V z) C P, which is a 

contradict.ion to P 1) F = b.Therefore (x A y) V (x A z) 

x A (y V z) and so S is distributive, 0 

The following corollaries follow immediately from 

above theorem. 

Corollary 2.6. A riearlattice S is disLributive if and 

only if for any ideal I and a C S such that a t I, there 

exists a prime ideal P D 1 and a t P. 0 

Corollary 2.7. A nearlatt,ice S is distributive if and 

only if for a, b E S with a t b there exists a prime 

ideal P containing exactly one of a and b. 0 

-1 
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Corollary 2.8. A nearlattice S distributive if and only 

if every ideal is the intersection of all prime ideals 

containing it. El 

Ir- 

L 



19 

3. Congruences. 

An equivalence relation 8 of a nearlatLice S is a 

congruence relation of the algebra (S; A) such that if 

x i = y (8),for i=1,2, and both x,  V x2  and y1  V y2  exist, 

then x1  V x2 y1  V y2  (8). 

'p 
The set c(S) of all congruences on S is an algebraic 

closure system on S x S and hence, when ordered by set 

inclusion, is an algebraic lattice. 

Cornish and Hickman [14] showed tiat for an ideal I 

of a distribut,ive neariattice S, the relation 8(I), 

defined by x y (8(I)) if and only if (x] V I = (y] V I 

is the smallest conngruece having I as a congruence 

class. Moreover, the equivalence relation R(I), defined 

by x E y (R(l)) if and only if, for any s ES, x A s € I 

is equivalent to y A s C I, is the largest congruence 

having I as a congruence class. 

Suppose S is distributive nearlattice and x C S. We 

will use 8  as an abbreviation for 8((x]). Moreover,!1  

denoLes the congruence, defined by a b () if and only 

if a A x = b A x. 

-4 
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Cornish and Hickman [141 also showed that for any 

two elements a,b of a distributive nearlattice S with a 

b, the smallest congruence identifying a and b is equal 

to T. fl ob , and we denote it by ø(a, b). Also, in a 

distributive nearlat,tjce S, they observed that if S has 

a smallest element 0, then clearly 8 = (0, x) for any 

x E S. 

v Ta = t, the largest congruence of S 

fl T.= , the smallest congruence of S and 

i) 8(a, b)' 0a V Tb  where a 5 b and 

denotes the complement. 

Now suppose S is an arbitrary nearlattjce and E(S) 

denotes its lattice of equivalence relations. For 

E(S), 1 V denotes their supremum; x y ( V 2 ) 

if and only if there exists x = z 
, 

z1  ......,z = y such 

that z 1 z (4 or for i = 

The following result was stated by Grazter and 

Lakser in [20] without proof and a proof, different than 

given below, appears in Cornish and Hickman [14] ; but 

also see Hickman [22] and [23]. 

I 

IL 
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Theorem. 3.1. For any nearlattice S, c(S) is a 

distributive (complete) sublattice of E(S). 

r 

Proof: Suppose 8, E c(S), Define ! to be the 

supremum of 8 and in the lattice of equivalence 

relations E(S) on S. Let x y (F). Then there exists 

x = z0 ZI z
n  = y such that z11  z(9 or ). Thus, for 

any t S, z 1  A t zi  A t (8 or as 0, 1 € c(S). 

Hence, x A t y A t(Y) and consequently Y is a 

semilattice congruence. Then, in particular x A y x (Y) 

and x A y y(). To show that is a congruence, let 

x y(Y), with x y, and choose any t E S such that both 

x V t and y V t exist. Then, there exists z0  ..... 

such that x = z0 , z = y and z j1  = z (8 or 

Put. w1  = z A y for all i 0 ..... ,n. Then 

x = w0, w = y, w 1 w1  (8 or ). Hence, by the upper 

bound property, w1  V t exists for all i = 0 ..... 

(as w, t y V t) and w 1  V t = w V t (9 or ) for all 

i = 1 .....,n (as 8, -11  C c(S)), i.e., x Vt E y V t(Y). 

Then by [15; lemma 2.31 Y is a congruence on S. 

Therefore, c(S) is a sublattice of the lattice E(S). 

To show the distributivity of c(S, let 

x y (8 fl V92)). Then x A y y (0) and V 

Also, x A y x (8) and V 82). 

Bangladesh 
KUET 

 



22 

Since x A y y V 9) , there exist t0 . ,t such 

that (as we have seen in the proof of the first part), 

x A y to, t y, t 1 t (8 or and 

x A y = t0 t1 5 y for each i=O .....,n. Hence, 

tH t (8) for all i1 ,.... ,n, and 

so t t (0 fl 8) or (8 fl 2• Thus, 

x A y y((9 n 8) V (8 fl By symrietry, 

x A y x ((8 II 9) V (9 ii and the proof completes 

by transitivity of the congruences. 0 

In lattice theory it is well known that a lattice is 

distributive if and only if every ideal is a class of 

some congruence. Following theorem gives a generalization 

of this result in case of rcearlattices. 

This also characterizes the distributivity of a 

nearlattice, which is an extension of [14, Theorem 3.1]. 

Theorem 3.2. S is distributive if and only if every 

ideal is a class of some congruence. 

Proof: Suppose S is distributive. Then by [14,Theorem 

3.1] for each ideal I of S, 8(1) is the smallest 

congruence containing I as a class. 

AL 
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To prove the converse, let each ideal of S be a 

congruence class with respect to some congruence on S. 

Suppose S is not distributive. Then by Th.1.1.3 we have 

either N5  ( figure 1.2 ) or H5 [ figure 1.3 1 as a 

subiattice or S. in both cases consider I = (a) and 

suppose I is a congruence class with respect to 8.Since 

d C I. d a (8). Now b = b A c = b A (a V c) 

b A (d V c) = b A c = d (8), i,e. b d (8) and this 

implies b C I, i.e., b a which is a contradiction. 

Thus S is distributive. D 

To prove (ii) of the next theorem, the following 

lemma is needed. This lemma is also an extension of [14 

Theorem 1 . 1] 

Lemma 3.3. If (J) ; i C A an indexed set, are ideals of 

a distributive nearlaltice S, then V Ji =(ji  V. .... V  ji  
1 n 

where the supremum exists for some 

ii  ......,i CA and ji  C J ). 
k k 

Proof: Let x , y C R.H.S. if x V y exists then obviously 

it is also of the same form. That is x V y C R.H.S. Now 

let x C R.11.S and y 5 x. Then x = ji  V. . . . V ji  for some 
1 n 

ji  C J1 , k 1,2 .....,n. So by the distributivity, 
k k 

y = y A x = (y A j1  ) V........V (y A J1  ). 
1 n 

.4 

4 
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Since y A j. € 
K 

J, this implies y € R.H.S. Thus R.H.S is 

an ideal of S. This clearly contains each J1. Finally, 

let H be an ideal containing each J. Then for each 

C A and i i  £ J1, j1  V.....V i i  € H if it exists 
k kj n 

and so R.H.S H. 

Therefore R.H.S. = V J. 0 

We omit the proof of (1) of the following theorem as 

it is due to Cornish and Hickman in [14, theorem 3.6], 

while (ii) is an extension of a part of their result. 

Theorem 3.4. Let S be a distributive nearlattice then, 

for ideals I and J, 8 (I fl J) = 8 (I) fl 8(J). 

for ideals j1 , i C A an indexed set, 

8 (V J)= V 8 (J ). 

Proof: (ii) since for each i C A, J1 V J, so 

8 (J) 8 (VJ1 ). Hence V 8 (J) 8 (V J) . To prove the 

reverse inequality, let x y and x y 8 ( V J1 ). Then 

(xl V (VJ) = (y] V (VJ), and so y € (x) V (VJ1 ). Then 

by the above lemma, y = x V j,  V ...... V j 
1 n 

for some i1 ,..,i C A. Then x S x Vj,  0 (J. 
1 1 

x V ij  V jj  0(J 
1 2 2 

x V ji  V .... V ji  = y 8 (J). 
n n 

k. 
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n 
Thus x F y V 8 (J. ) V 0 (J) This proves (ii). 0 

k1 

Following corollary is an immediate consequence of 

above theorem which is also a part of [14, Th.3.61. 

Corollary 3.5. The mapping I --- >8(I) is a homorphism 

from the lattice of ideals to the lattice of 

congruences. 0 

We now turn our atte..ntion to the permutability of 

the congruences in a distributive nearlattices. Two 

congruences 0 and b in a nearlattice S is called 

permutable if for any x, y, z € S with x y (8) and 

y a z(), there exists t e S such that x E t() and 

t z(0). It is well known that in distributive lattices 

the congruences of the form 8(I) and 8(J) always permutes 

for any ideals I and J. Unfortunately we are unable to 

establish such a result in distributive nearlattices. But 

the existence of medians plays a fundamental role in 

establishing such a result which is given in next 

theorem. Recall that a nearlattice S is medial if 

m(x, y, z) = (x A y) V (y A z) V (z A x) exists for all 

x, y,z E S. It is already mentioned in section 1. This is 

equivalent to the fact that for all x , y , z € S, 
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x V y V z exists whenever x V y, y V z and z V x 

exist. 

Theorem 3.6. For any ideals I and J of a distributive 

medial nearlattice S, 8(}) and 8(J) permute if i V j 
exists for all i C T,j C J. 

Proof: Suppose x y 8(I) and y z 8(J). Then 
y 

(xl V I = (y] V I and (y] V J = (z] V J, and so 

x = (x A y) V (x A 1) and z (y A z) V (z A 3) for some 

i € I, j E J. Consider 

p = (x AYA z) V (x A I) V (z A 3). This element exists 

as i V j exists and S is medial. Now, 

z A 3 x A y A 3  8(J) and'y z 8(J). 

Imply p (x A y) V (x A 1) V (x A y A ) 8(J) 

(x A y) V (x A i)= x. Again 

x A i y A z A i 0(I) and x E y 8(1) imply that 

p R (y A z) V (y A z A i) V (z A j) 8(I) 

= (y A z) V (z A 3) = z. 

Therefore, 8(I) and 9(J) permute. 0 

Thus we have the following corollary. 

Corollary 3.7. Let. S be a distributive medial 

nearlattjce. Then for a, b E S, 8 and 9 are permutable 

if and only if a V b exists. 0 
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a 

We conclude this section with the following 

corollary which is an immediate consequence of above 

corollary 

Corollary 3.8. The following conditions on a 

distributive medial neat-lattice S are equivalent. 

S is a distributive lattice. 

For any two ideals J and K, 9(J) and 9(K) 

are permutable. 

For ,iriy s,t. C s , and 0, are permutable. 0 

a 

-4 



4. Semiboolean algebras. 

An interesting class of distributive nearlattjces is 

provided by those semilattices in which each principal 

ideal is a boolean algebra. These semilattices have been 

studied by Abbott [1], [2], [3] under the name of 

semiboolean algebras and mainly from the view of Abbott's 

implication algebras ( an implication algebra is a 

groupoid (I;') satisfying: 

(i) (ab) a = a, 

(ab) b = (ba) a, 

a (bc) = b (ac). 

Abbott shows in [1, pp. 227-2361 that each 

implication algebra determines a semiboolean algebra and 

conversely each semiboolean algebra determines an 

implication algebra. 

Following result gives a characterization of 

semiboolean algebras which is due to Cornish and Hickman 

in their paper of weakly distributive semilattices [14] 

such semilattices were first studied by Balbes [5] 

under the name of prime semilattices) 
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Theorem 4.1. [ Cornish and Hickman [14, theorem 2.2]. A 

semilattice S is a semiboolean algebra if and only if the 

following conditions are satisfied. 

(i) S has the upper bound property. 

S is distributive. 

S has a 0 and for any x € S, 

(x]* = ( y € S y A x = 0 ) is an ideal 

and (x] V (xlt  = S. 0 

A nearlattice S is relatively complemented if each 

interval [x , y] in S is complemented. That is, for 

x t 5 y there exists t' in [x,y] such that t A t' = x 

and t V t =y. 

A nearlattice S is called sectionally complemented 

if 10 , x] is complemented for each x c S. Of course 

every relatively complemented nearlattice S with 0 is 

sectionally complemented. It is not hard to see that S is 

semiboolean if and only if it is sectionally complemented 

r and distributive. We denote P(S) by the set of all prime 

ideals of S. 

A 

'V 



30 

There is a well known result in Lattice Theory due 

to Nachbin in 1937. c.f. [19, Theorem. 221 that a 

distributive lattice is boolean if and only if its prime 

ideals are unordered. Following theorem is a 

generalization to this result which is due to Cornish 

and Hickman in [14]. 

Theorem 4.2. For a distributive nearlattjce S with 0, 

the following conditions are equivalent. 

(i) S is semiboolean. 

if(S) is a generalized hoolean algebra. 

P(S), the set of all prime ideals is 

unordered by set. inclusion. 

Now we extend the above result. For this we need a 

V lemma which depends on theorem 1.2.5, the separation 

properties of nearlattjces. This lemma was proved by 

Cornisli in [8] for lattices. But in case of nearlattices 

the proof is bit Lricky.In Corriish'g proof, he has used 

the ideal that if T is a sublatijee of a distributive 

lattice, then the ideal generated by T is exactly same as 

the hereditary subset generated by T. But this is not 

true in case of nearlattjces. 

A 
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d e f 

a 

Figure 1.5 

In Figure 1.5, observe that for the subnearlattjce 

T = ( d,b,f ) of distributive nearlaljjce S, hereditary 

subset generated by I is ( 0, a,b,c,d,f ) but (T) = S. 

Lemma 4.3. If S1 is a subnearjatljce of a distributive 

nearlattjce S and P1  is a prime ideal in S1 , then there 

exists a prime ideal P in S such that P1 = S1 fl P.  

Proof. Let I be the ideal generated by P1 in S. Then 

I = (H] where II is the hereditary subset of S generated 

by P1 . Suppose x C I fl (S1 - P1 ). Then x C I and 

x C S1  - P1 . Then by Th.1.22, 

x = h V. ... V h., for some h1  , . . . , h c II . Again, h1 C it 

implies h < t for some t; C P, i1,2 ..... n. Then 

(x A h1 ) V....V (x A h) 5 (x A t1 ) V .....V (x A t1) 
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I 

(this exists by the upper bound property) x. Thus, 

x = (x A t1  ) V .....V (x A t) e P1 which gives a 

contradiction. Therefore, I Ii (S 
I  - P1  ) = . Then as S1-P1  

is a filter in S1 , I fl [S1 -P1 ) = where [S1 -P1 ) is the 

filter generated by S-P1  in S.Then by Theorem 1.2.5, 

there is a prime ideal P in S such that I a P and 

(S1-P1  ) fl P . Then P1 I Ii S1 P II S1  and P fl S1 P1 . 

Hence P1 = P11 S1 . U 

Theorem 4.4. Let S be a distributive nearlattice, S is 

relatively complemented if and only if P(S) is unordered. 

Proof: Let S be relatively, complemented and P,Q E P(S) 

with P c Q. Then there exists q C Q such that q t P. Also 

there exists r C S such that r Q, as Q is prime. 

Consider the interval [p A q A r ,r] for some p C P. Then 

p A q A r q A r5 r. Since S is relatively 

complemented, there exists t C [p A q A r, r) such that 

q A r A t = p A q A r C P and t V (q A r) = r. As P is 

prime and q A r P, so t C P. This implies 

t V (q A r) = r C Q, which is a contradiction. Hence P(S) 

must be unordered. 

Conversely, Suppose P(S) is unordered. Consider 

[a,b]. Let P1 , Q1  be two prime ideals of [a,b]. Then by 

above lemma there exist prime idea's P and Q of S such 
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that P1 = P fl [a,b] and Q,  = Q 11 [a,b]. Since P1  and 

are prime, b t P ,b Q. Also P, Q are unordered. Then 

P1  and Q,  are also unordered. If not let P1  Q1 . Then for 

any x e P, (x A b) V a exists by the upper hound property 

as x A b, a band (x A b) Va P1. Then 

(x A b) V a c Q1 and so x A b E Q. Since b tQandQ is 

prime, this implies x C Q. This shows that P c Q which is 

a contradiction. Thus, P1  and Q1  must be unordered. Then 

by [19,Theorern 22] [a, b] is complemented. Therefore S is 

relatively complemented. c3 

We conclude this chapter with the following result 

which is due to [14, Theorem 3.61. This generalizes a 

well known result of I1ashjmoto in Lattice Theory [19, 

Theorem 9.8]. 

Theorem 4.5. For a nearlattice S with 0, S is semiboolean 

if and only if I(S) is isomorphic to c(S). 11 

Corollary 4.6. For a distributive neariattice S with 0, 

following conditions are equivalent 

A i 

L. 

S is semiboolean. 

For all ideals I, 8(I) = R(I). 

Ir 

I 
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SKELETAL CONGLUJENCES ON A DISTRIBUTRIBUTIVE NEARLATTICE 

1. Introduction 

Throughout this chapter we w ii J be concerned with a 

distributive nearlattice S, with 0 as its sfriallest 

element. Skeletal corigruences on distributive lattices 

have been studied extensively by Cornish in [11].  For any 

congruence 8 of c(S), denotes the pseudocomplement of 

8. The existence of is guaranteed by the fact that 

c(S) is a distributive algebraic lattice,The skeleton 

Sc(S) = to E c(S): 8 = 4 for some 

4,  E c(S)) = to E c(S): 8 '= 8"). For a distributive 

nearlattice S with 0, I(S) is pseudocomplemented. The 

pseudocomplement Jt of an ideal J is the annililator 

ideal J = {x C S: x A j = 0 for all j C J}. We also 

denote KSc (S) = (Ker8 : 8 € Sc(S)). 

The kernel of congruence 8 is 

ker8 = (x C S: x 0(8)). Of course, ker8(J) = J. For 

a, b C S, <a,b> denotes the relative annihilator 

{x € S: x A a < b). In presence of distributivity, it is 

easy to show that, each relative annihilator is an ideal. 

Also note that <a, b> = <a, a A b>. For relative 

34 
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annihilator ideals of a distributive lattice we refer the 

reader to see [33]. 

A distributive lattice L with 0 is called 

disjunctive (weakly co'mplemented and sectionally 

semicomplemented are alternative terms) if for 0 5 a < b 

there is an element x E L such that x A a= 0 and 

0 < x :5 b. For details on these lattices we refer the 

reader to consult [11},[26] and [50J. 

In section 1 we have studied skeletal congruences 

for distributive nearlattices. We have shown that for any 

8 E c(S), x y(&)(x, y E S) if and only if for each 

a, b € S with a b and a b(8) , (x A b) V a 

(y A b) V a. We have also shown that for any ideal J both 

8 
(J)t 

 and 8 (J4) have J as their kernel. Moreover an 

ideal J is the kernel of skeletal congruence if and only 

if it is the intersection of relative annihilator ideals. 

In section 2, we introduce the notion of disjunctive 

nearlattices. Then we give several characterizations of 

disjunctive nearlattices and semiboolean algebras using 

skeletal congruences. Finally we show that a distributive 

nearlattice is semiboolean if and only if 8 >kerø 

is a lattice isomorphism of Sc(S) onto KSc(S) whose 

inverse is the map J > 8(1). 
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2. Skeletal congruences of a distributive nearlattice. 

Following theorems give a description of skeletal 

congruences of a distirbutive nearlattice which also 

extend several resulLs due to Cornish [11] for 

distributive lattices. 

Theorem 2.1. For a distributive nearlattice S with 0, 

the following conditions hold. 

For a < b (a, b C S),x y (8 (a ,b)') if and 

only if (x A b ) V a = (y A b) V a, where 8(a ,b)' is the 

complement of 8(a, b). 

For any 8 C c(S), 'x y (8') (x,y C S) if and 

only if for each a,b C S with a b and a b(8), 

(x A b) V a = (y A b) V a. 

Proof: (I) Define a relation 9,  on S by x y(8) if and 

only if (x A b) V a = (y A b ) V a 

(since a b,(x A b) V a and (y A b) V a exist by the 

upper bound property of S). Here, 01  is obviously an 

equivalence relation. Now, let x y and t G S. 

Then,(x A b) V a = (y A b) V a and so [(x A t) A b] V a 

= [(x A b) V a] A [(t. A b) V a] 

= [(y A b) V a] A [(t A b) V a] = Ny A t) A b] V a. 

' 
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This implies x A t y A L (8). Again, if x V 1, y V t 

exist, then [(x V t) A b] V a 

= [(x A b) V a ] V[(t A b) V a I 

= [(y A b) V a I V [(L A b) V a 

(y V t) A b I V a. i.e. x V t y Vt (9). 

J 
Thus, 8 is a congruence. Clearly, 9 and Hence 

" Tb I 81. 

Conversely, x (i implies 

x x A b y A bø& y(b) i.e. x y 8a V  Tb  

Therefore, 0, = 0&  V Tb 8(a,b)' 

(ii) Since 8 = V ( 9 (a,b); a S b, a b(8)}, 

& = fl { 8 (a,b)t : a b;a b(8)). But as c(S) is 

distributive and 8 (a,b) is complemented, 8(a,b)t  

8(a,b)' and hence the result clearly follows from (i). fl 

k 

Theorem 2.2. Let S be a distributive nearlattice with 0. 

Then for any 8 € c(S). x y 
(9*) 

 if and only if 

9(0 ,x) fl 8 = 9(0, y) fl 9 if and only if 

8 = T, n 9 

Proof: Define a relation 0 on S by x y () if and only 

if TX fl 8 = T fl R. From Papert. [46], is the 

pseudocomplement of 8 in the lattice of congruence of the 

8Ui1attiCe (S; A). We now show that T is a congruence. 
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Suppose x y() and x V t, y V t exist for some t € S. 

Then, because of distributivity of S, !1 y Y ii Tt  and 

yVt = fl Y. Thus,!1  fl 9 = T fl 9 implies 

Vt Vt n 0 and hence x V t y V t (). This 
implies = & in c(S). 

Finally we know that 9 and ! are the complementary 

and c(S) is distributive. Now, in a distributive lattice 

L, if a' , b' are the complements of a and b respectively 

then obviously, a A c = b Ac if and only if 

a' A c = b' A c for any c € L. Thus, x y((D = 9*) if and 

only if 9 n 9 = 07  fl 9. 0 

Theorem 2.3. For a distributive nearlattice S with 0, 

the following conditions hold. 

(1) For any ideal J, x = y (9(J)') (x, y E S) if 

and only if (xj Ii J (y] ii J, i.e., if and only if 

.x A j = y A j  for all j C. j. 

(ii) For an ideal J, both 9(J)t and 8(J) have Jt  as 

their kernel. 

Proof: ( i ) By theorem 3.4 of chapter 1, for any two 

ideals J1  and J2  of S, 9 (J fl J2) = 9(J1 ) (1 9(J2). Thus, 

OX  11 8(J) = O((x]) fl 8(J) = O((x] Ii J). Hence, by 
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theorem 2.2.2, x y (8(J)') if and only if 

9((x] 11 J) = 8((y] Ii .1), i.e., if and only if 

(xl (1 J = (y] fl J, i.e if arid only if x A j = y A 3 for 

alljEJ. 

* $ (1') x C ker(8(J) ) if and only if x - 

= 0 (8(J) ), i.e., 

if and only if x A 3 0 for all 3 J (by (i)), i.e., if 

t t * and only if x € J . Thus, ker  

Theorem 2.4. In a distributive nearlattice S with 0, 

the following conditions hol1. 

An ideal J is the kernel of a skeletal 

congruence if arid only if it is fh 

intersection of relative annihilator ideals. 

Each principal ideal is an intersection of 

relative annihilator ideals. 

Proof. (1) For any 8 E c(S), 8'  = V (8 (a, b): 

a b (8') ). If 8 is skeletal, then 

8 = 8" = fl (8 (a, b)': a 5 b ; a 3 b (8') ) and hence 

ker8 = fl (ker(8 (a, b)') : a b; a b  

= fl {<b, a> : a b ; a S b (8')) by (1) of theorem 

2.2.1, and this completes the proof. 

(ii) Since 8 ((a]) -is complemented, (a] is the 

kernel of a skeletal congruence and hence the result 

follows from W. B 
A 
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3. Disjunctive nearlattices and semiboolean algebras. 

A non empty subset T of a nearlattice S is called 

large if x A t y A t for all t C T, (x, y C S) imply 

x = y, while T is called join-dense if each z € S is the 

join of its predecessors in T. Following result shows 

that two concepts coincide when T is a convex 

subsemilaLLice of a distributive nearlattice and hence an 

ideal of a nearlattice is large if and only it is 

join-dense. 

Lemma 3.1. A convex subsemilattice J of a 

distributive nearlattice S is large if and only if it is 

join-dense in S. 

Proof. Obviously, every join-dense subset of S is 

large in S. Thus, let 3 be large in S. Suppose x C S and 

j1) are its predecessors in J. Let t be an upper bound 

of (J}. Clearly, for any j c J, ji  A 3 5 x A j and 

so x A 3 € J by the convexity of J. Thus, x A j = for 

some k. Hence, x A 3 5 t for all 3 C J ; it follows that 

x A 3 = x A t. A 3 for all 3 C J. Since J is large, 

x A t = x, i.e., x t. This implies that x is the 

supremum of (j1). 0 

\ 

KIJET 
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Now, we give a characterization of join-dense ideals 

in terms of skeletal congruences. 

Lemma 3.2. An ideal J of a distributive nearlattice 

S is join-dense if and only if 8(J) is dense in c(S), 

that is 
9(J)t 

= , the smallest element of c(S). 

Proof. Suppose J is join-dense. Then by lemma 2.3.1, 

J is large. Let x y (8(J)), then by 2.2.3, 

x A j = y A j for all j C J: This implies x = y as J is 

large. So 8 (J)t . That is, 8(J) is dense. 

Conversely, let 8 
(J)* 

=W. Suppose x A j = y Aj 

for all j C J. Then again b' theorem 2.2.3, 

x y 8 (J)t  (=) and so x = y. This implies J is large 

and so by lemma 2.3.1, it is join-dense. 0 

Recall that a distributive nearlattice S with 0 is 

disjunctive if 0 5 a < b implies there is an element 

x C S such that x A a = 0 where 0 < x b. 

From section 3 of chapter 1 we know that for an 

ideal I of a distributive neariattice S, the re1atio 

R(I) defined by x E  y R(I) if and only if for all 

r c S, x A r CI is equivalent to y A r C I is a 

-1 

3 
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congruence of S. Moreover, i I is the largest congruence 

of S containing I as a class. 

Proposition: 3.3 For an ideal I of a distributive 

nearlattice S, S/R(I) is disjunctive. 

Proof. If I is a prime ideal, then S/R(I) is7 a two 

element chain (I, S-I) and so it is disjunctive (in fact, 

Boolean). 

Suppose I is not prime, consider the interval 

I [xl c [y] in S/R(I), where x, y E S. 

We claim that there exits at least one t if I, such 

that t A x E I. If not, then for all L I, x A t t I and 

since [x A LI c [y A LI, so y A t I. This implies that 

x y R(I) and so [xl = [y], which is a contradiction. 

Moreover, there exists a t ot I such that x A t E I but 

y A t if I. For otherwise x y R(I) would lead to another 

contradiction. Put s = y A t. Then I c [s] [y] and 

[xl A [s] = [x] A [y A ti = [x A y A t] = I and this 

implies that S/R(I) is disjunctive. 0 



43 

Following theorem gives characterizations of 

disjunctive nearlattices. 

Theorem 3.4. For a distributive nearlattice S with 0, 

the following conditions are equivalent, 

S is disjunctive. 

For all a C S, (a] (a]". 

R((O]) 

Proof. (1) implies (ii). Suppose S is disjunctive. 

For any a C S. Obviously, (a] (a]tt. To prove the 

reverse inequality, let x C a]tt. If x (al. then 

xf a i.e., x x A a. Then 0 < x A a < x. Since S is 

disjunctive there exists t with 0 < t 5 x such that 

t A x A a = 0 i.e, I. A a = 0. This implies t C (a]* , 

Since x C (a]tt,  so x A t = 0, i,e. t = 0, which gives a 

contradiction. Hence x C (a). In otherwords (a] = (a]H 

for all a C S. 

(ii) implies (iii). Suppose (ii) holds and 

x y R((0]) for some x, y C S. If x t y, then either 

x A y < y or x A y < x. Suppose x A y < y. Then 

(y]t 
iz (x A y]t• Since (a] = (a]"  for all a C S, 

t 
(yl (x 

$ 
A yl . Thus, (y) c (x 

$ 
A y] . So there exists 

t C (x A 
y]t 

such that. t (y)  t. Then t A x A y = 0 
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but t A y t 0, which implies x A y y R((0]),  and so 

x f y R((O]),  which is a contradiction. Therefore, 

R((0]) = 

(iii) Implies ( i ) . Suppose R( (0]) = 

Let. 0 x < y (x, y C S). Since R((0]) = , there exists 

t C S such that t. A x = 0 but t A y t 0. For ctherwjse 

.4- x y R((0]), which implies x = y and there is a 

contradiction to our assumption. Thus we have 

0 < t A y y, such that x A t A y = 0, and so S is 

disjunctive. 13 

In chapter 1, we have already denoted the set of all 

finitely generated ideals f a nearlattice S by If(S). Of 

course If(S) is a join semilattice of I(S). In [23] 

Hickman exhibited a nearlattice S for which If(S) is a 

meet semilattice. But in [14] Corninh and Hickman have 

shown that if S is distributive then I1(S) is a 

distributive sublattice of I(S), the lattice of ideals. 

Following lemma was suggested to the author by supervisor 

Dr. Noor. 

ri 
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Lemma 3.5. A distributive nearlattice S with 0 is 

disjunctive if and only if If(S) is disjunctive. 

Proof. Let S be disjunctive and 

(a1  ....... , a J c  ( b ......... hL  ) in If(S) 

Choose x C ( b 1  ....... , b 1 - ( a 1  ....... , a 

Then (a1  A x .......,ar  A xi = (a1  .......,ar] fl (x] c (x]. 

Now, by the upper bound property of S, 

(a1  A x) V.......V (ar  A x) = e (say) exists and 

0 e < x. Since S is disjunctive, there exists d E S 

such that 0 = d A e and 0 < d 5 x. Thus (dl fl (e) = (0] 

and so (di 11 (a1  ........  ar]  fl (xl = (01. This implies 

that (d] fl (a1  .......,ar ] = (0]. Of course, 

(0] t (di rz (xi z (b1  )......,bt l and hence, 1, (S) is 

disjunctive. 

Conversely, let If(S) be disjunctive and suppose 0 

c < d ; c, d c S. Then, (0] (ci (d]. Since If(S) is 

disjunctive, there exists (a1  .......,ar] in If(S) such 

that (c] fl (a1  .......,a.] = (0], where 

(0] rf. (a1  .......  tar ] U (dl. Now, by the upper bound 

property of S, a1  V......V ar = f (say) exists. Thus, we 

have c A f = 0 and 0 < f d, and which proves that S is 

disjunctive. 11 
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The foUowing theorem is an extension of Theorem. 

2.1. of Cornish till. 

Theorem 3.6. In a distributive nearlattice S with 0, 

the following conditions are equivalent. 

S is disjunctive. 

Each dense ideal J (i,e. J = (0) ) is join-

dense. 

For each dense ideal J, 8(Jt) 

it it 
For each dense ideal J, 8(J ) 8(J) 

Proof. Since Jt  = (0] if and only if J" S and J is 

join- dense if and only if 0(J)t , obviously (ii), 

(iii) and (iv) are equivalent. 

(i) Implies (ii). Suppose J is a dense ideal and 

x A .j = y A j (x, y E S) for all j E J. If x t y, then 

either x A y < x or x A y < y. Without loss of 

generality suppose x A y < x. Since S is disjunctive, 

there exists a ('f. 0) E S, a 5 x such that a A x A y = 0. 

Then, 0 = a A x A y A j = a A x A j for all j € J. 

hence, a A x = 0 as J is dense ; i.e., a = 0 which is a 

contradiction. Thus J is join-dense. 

ri 



(ii) implies (i). For any a E S, (a) V (a)'  is 

always a dense ideal. Thus, with (ii) holding, (a] V (a]t 

is join-dense. Then by lemma 2.3.2, = 8 ((a) V (a)') '  

= 08(a) V 8(a)')' 8Na])'  fl OHa)')'.  Thus, 

8((a])' 8a• Taking the kernel on both sides 

we have (a]" (a] by using Th.2.2.3 (ii). It follows 

that (a] = (a)"  and hence S is disjunctive. 

Next theorem is an extension of 2.2 of Cornish 

1111. We omit the proof as this can be proved exactly in 

a similar way the corresponding result of 1111 was 

proved. 

Theorem 3.7. For a distributive nearlattice S wih 0, 

the following conditions are equivalent. 

(i) S is disjunctive. 

For each congruence 0 , = 8(ker)' . 

For each ideal J, R(J)'  = 8(1)'  

For each congruence 1, ker(') = (ker). 

For each congruence , ker") = (kerb)tt. 

The kernel of each skeletal congruence is an 

annihilator ideal. 0 



According to section 4 of chapter 1 a nearlattice 

S with 0 is called semiboolean if it is distributive and 

[0, xl is complemented for all x E S. By 1.4.5 we know 

that the lattice of all ideals of a nearlattice is 

isomorphic to the lattice of congruences if and only if 

S is semiboolean. Using this result we get the fo,llowing 

theorem, which is an extension of 2.3 of (11). 

Theorem 3.8. The following conditions are equivalent 

for a distributive nearlatlice S with 0. 

S is semiboolean. 

For each congruence , 8(ker 

For each ideal J,,8(Jt) = 8(J)'. 

For each ideal J, 8(J") = 8(1)". 

Proof. (i) implies (ii). Suppose S is semiboolean. 

Then by 1.4.5 I(S) is isomorphic to c(S). Hence for any 

congruence Y, = 8(ker). Taking Y = we see that 

(i) implies (ii). 

(ii) implies (iii) follows from Th.2.2.3 (ii) and 

(iii) ===> (iv) is obvious. 

(iv) implies (i). Suppose (iv) holds. Put 

3 (a] V (aJt.  Then Jt  = (01 and so Jtt  = S. 



49 

Then by (iv), 8((a) V (a}') = I. It follows that 

8((a] 
** 

) fl 0( (a] ) = and so 
*1 

8((a] ) 8((a)) 
8* 

= 

8a18 = Since ker (a], we have R((a] = Ta  

and so 8 = 88* 8 ((a]'). Thus 8 ((a)t)t  8 But 

$ 
(a) 

*8* 
= (a] . Now, by (iv)., 

8$ 
8 ((a] ) 

*8* 
= 8 ((a] ) = 

8 ((a]1 ). But 8' 0((a]8)", and so 8 ((a]t) 
$ 

= Y 

Now if 0 a b, t h e n a b and so 

a B b (8((a]')), Then (a] V (a] (b] V (a] and so 

b = a V j for some j C (a). Then j A a = 0, and so 

[0, b] is complemented. Hence S is semiboolean. 0 

The skeleton Sc(S) = (8 C c(S) ; 8 = for some 

C c(S)) = (8 C c(S) ; 8 = 8*1) is a complete Boolean 

lattice. The meet of a set '(8k ) Sc(S) is fl 8 ; as in 

c(S), while the join is given by V 81=(V 8)t  = (fl 

and the complement of 8 C Sc(S) is 8*. The fact that 

Sc(S) is complete follows from the fact that Sc(S) is 

precisely the set of closed elements associated with the 

closure operation 8 --> 8 
tt  on the complete lattice c(S) 

and Sc(S) is Boolean because of Glivenko's theorem, c.f. 

Gratzer [19. Th.4,p.58]. 

The set KSc(S) z  {ker8 ; 8 e Sc(S)) is closed under 

arbitrary set-theoretic intersections and hence is a 

complete lattice. We will use the symbol V to denote the 
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join in Sc(S) and in KSc(S). We also denote 

A(s) = {J: J E I(S) ; J = Jtt}, which is a complete 

Boolean lattice. 

The following theorents are extensions of 2.4 and 2.5 

of Cornish [11] to nearlattices. 

Theorem 3.9. For a distributive nearlattice S with 0, 

the following conditions are equivalent. 

S is disjunctive. 

The map 8 ----> ker8 of Sc(S) onto KSc(S) is 

one-to-one. 

The map 8 ---- v ker8 of Sc(S) onto KSc(S). 

The map 8 ----> ker8 is a lattice isomorphism 

of Sc(S) onto KSc(S), whose inverse is the map 

.3 ---> 8 (.3)". 

Proof. (i) implies (iv). Suppose S is disjunctive. 

Then by Th.2.3.7 (vi) KSc(S) = A(S). By 2.3.7 (ii), 

** U 
= = 8(ker(D) for any C Sc ( S). Thus the map 

8 ---> ker8 is one-to-one. Clearly it preserves meet. 

11 

Now using 2.3.7 (iv), for 8, 4,  C Sc(S), ker(9 
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ker( fl 
*)t) 

= (ker(& fl 
t ))$ 

(ker8' fl ker = 

((ker8)t  fl (ker = ker8 V ker as KSc(S) = A(S). Thus 

8---> ker8 isa lattice isomorphism. Moreover, by 2.3.7, 

ker(8(J)t ) = (ker8(Jfltt  J = J for all J E A(S) 

KSc(S), while 8(ker )** = for all E Sc(S). 

Therefore J --->8 (J 
)U 

is the inverse of 8 ---> ker8. 

(iv) implies (ii) is trivial. 

(ii) implies (iii). If 8 ---> ker8 is one-to-one, 

then it is a meet isomorphism of the lattice Sc(S) onto 

the lattice KSc(S), then of course it is a lattice 

isomorphism and so (iii) holds. 

V 

Finally we shall show that (iii) implies (i). If 

(iii) holds, then of course 8 ---> ker8 is a lattice 

homorphism of Sc(S) onto KSc(S). Hence KSc(S) must be 

Boolean. Since for all a €r S, (a] = ker(8a), the map 

a ---> (a] embeds S, as a join-dense subnearlattice, into 

the complete Boolean lattice KSc(S). Therefore S must be 

disjunctive. 

We conclude this chapter with the following theorem 

which is also a generalization of [11. Th. 2.5]. 
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Theorem 3.10. A distributive nearlattice S is 

semiboolean if and only if the map 0 --> kerO is a 

lattice isomorphism of Sc(S) onto KSc(S), whose inverse 

is the map J ---> 8 (J). 

Proof. If S is semiboolean, then of course it is 

disjunctive and so by Theorem 2.3.9 the inverse of 

0 ---> kerO is J ----> 8(J). Now by 2.3.8 8(J) 8(1") 

for any J e KSc(S). Since by Th. 2.3.7, J C A(S) so 

J = J. Thus J ---> 8(J) is the inverse. 

Conversely, suppose J ---> 8 (J) is the inverse of 

8 --> kerO. Then by 2.3.9 S is disjunctive and so 

ker(0 (K)) = (ker8 (K))" K 
tt  for any ideal K. This 

implies K C KSc(S). Then using the description of the 

inverse, 0 (Ku) = 0(ker(0 (K)")) = 8 (K)". Hence by 

2.3.8, S is semiboolean. D 
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cn-IAF"rER - 3 

NORMAL NEARLATTICE 

l.Introduct ion. 

Normal lattices have been studied by several authors 

including Cornish [8] and Monteiro [34] [35];  while 

n-normal lattices have been studied by Cornish [9] and 

Davey [16].On the other hand Cignoli in [6] and [7] 

introduced the notions of k-normal and k-completely 

normal lattices. 

A distributive lattice L with 0 is called normal if 

each prime ideal of L contains a unique minimal prime 

ideal. Equivalently, L is called normal if each prime 

filter of L is contained in a unique ultrafilter (maximal 

and proper) of L. L is called n-normal if each filter is 

contained in at most n ultrafilters of it. 

In this chapter we have defined normal and n-normal 

nearlattices in the same manner. Then we have generalized 

several results of Cornish [81 [9] and Davey [16].In 

proving some of the results we have used principle of 

localization [Th. 2.61, which is an extension of lecture 

4 
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note of Dr. Noor on localization. For some ideas on 

localization see section 5 of Cornish [13].This technique 

is very interesting and quite different from those of the 

previous authors. 
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2. Normal xiearlatLices. 

TliroughouL Lh is chapte r all nearlaL Li ces are assumed 

to be distributive. 

For an ideal J in a riearlaltice S with 0 

J 
{ y € S : y A x = 0 f o r aLl x  

I deal S I and .J of,  a near 1 at. t. I ce S are Sn i i to be 

comaximal if I V J = S. 

If P is a prime ideal in a nearlatt. ice S with 0 then 

0(P) is used to denote the ideal ( y € S ; y A x = 0 for 

some x E S-P ). Clearly 0(P) P. 

A prime ideal P is said to be a minimal prime ideal 

belonging to ideal I, if ( i ) I P and (ii) Lucre exists 

no prime ideal Q such that ( t P and I Q c P. In 

lattice theory some authors called it minimal prime 

divisor of I 

A minimal prime ideal belonging to the zero ideal 

of a nearlattice with 0 is called a minimal prime ideal. 

For the theory of minimal prime ideals in a general 

setting see Coriiishi [12]. 

Lemma 2.1. Let P be a prime ideal in a nearlattice S 

with 0. Then each minimal prime ideal belonging to 0(P) 

is contained in P. 

Proof: Let Q be a minimal prime ideal belonging to 0(P). 
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If Q T. P then choose y C Q-P. Then from [ 27, lemma 3.11 

and by the distributivity of S it follows that 

y A z CO(P) for some z Q. Hence y A z A x =0 for a 

suitable x Ot P. As P is prime, y A x P so 

z C 0(P) rz Q. This is a contradiction. Hence Q  L P. 0 

Proposition. 2.2. If P is a prime ideal in a nearlattice 

with 0, then the ideal 0(P) is the intersection of all 

the minimal prime ideals contained in P i,e 

0(P) = fl ( Q ; Q a P, Q is a.minimal prime ideal }. 

Proof. If Q is prime and Q P, then 

0(P) tz 0(Q) Q P. Again, if Q is it minimal prime ideal 

belonging to 0(P) then Q is a minimal prime ideal inside 

P by the lemma 3.2.1. 

Thus,t Q Q is minimal prime and Q  c P } = { Q ; Q 

is minimal prime ideal belonging to 0(P) }. Since L is 

distributive 0(P) is the intersection of all minimal 

prime ideals belonging to 0(P) ( c.f. corollary 1.2.8 

this establishes the proposition. 0 

Let F he a filter of a distributive nearlattice S. 

It can be easily shown that the relation TF  on 5, defined 

by x E x , y € S ) if and only if x A f = y A f, 
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for some f E F is a congruence on S. Let us denote s/!(F) 

by SF (the quotient lattice) Then TF
: S --->SF is the 

natural epimorphism. 

Lemma 2.3. SF is a distributive lattice. 

Proof: Clearly,SF is a lower semilattice. Now, let 

p, q C SF. Then there exists x, y C S such that 

= 
F ( x ) and q = PF ( y ) , as TF is an epimorphism. 

Clearly, x x A f () and y E y A f (!F)  for any 

f E F. 

So, !F  (x) = F (x A f) and TF = F (y A f). 

Now, (x A f) V (y A f) always exists in S, due to the 

upper bound property of S. Thus, p V q exists. Moreover 

p V q = TF (x A f) V TF (y A f) = ! ((x A f) V (y A f)). 

Hence SF  is a lattice. The distributivity of 5F  clearly 

follows from the distributivity of S. 0 

Lemma 2.4. Let. F be any filter of a distributive 

nearlattice S. For any ideals I and J of S, the following 

hold. 

(i) T (I) is an ideal of S 

17 F (I) is a proper ideal ( i.e. t whole 

lattice ) if and only if I 11 F = 



i:i 

F (I) V TF  = !F (I V 

(iv) 'F (I) fl TF (J) ' (I 11 J). 

Proof: (i) For i, j C I, TF (i) V TF  

= F ( ( i A f) VYF  (j A f)) = F I  (i A f) V (3 A f) I for 

any f C F. Thus, T f(l) is closed under finite supremum. 

Now, suppose t C S and t F (i) for some I C I. Then, 

LYF(x) for some xCS, and t=TF(x)AYF(i) 

F (x A i F (I). Therefore, 
¶, (I) is an ideal of 

SF. 

( i i ) If ¶ (I) is proper , then there exists 

x C S, such that T F (x) does not belong to T F  (I). 

Suppose I 11 F arid r C I fl F. Since r C F, 

x E  x A r(F). But x A r € I, and this implies 

F(X) G  TF (I), which is a contradictior. Hence, 

Conversely, i f T (I) is not proper, then for any 

f C F, Y (  f  ) C (I). Thus, TF = F for some 

i C I. Then, f A f1 i A f1  for some f1  C F and this 

implies f A f1  C I fl F, and so I ii F 

(iii) and (iv) are trivial. 11 
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Theorem 2.5. Suppose F is a filter of a distributive 

nearlattice S. Then for any ideal J of S, F (a') = 

(x E S : x A f C J for some f c F ) = fl (P ; P is a 

(minimal) prime ideal belonging to J in S such that 

P fl F = 

Proof: FF (J) = (yES; YF(Y)EIF(J) ) 

(yES: yE  x ) for some xEJ ) = (yES: yAf 

= x A f for some f C F, x C J ) = ( y C S ; y A f C J for 

some f C F }. Now we considei two cases: 

Case 1. Let J 11 F . Then there exists x C J fl F and 
for any prime ideal P belonging to J, P fl F + II>. Thus, 

{ P : P is a prime ideal belonging to J and P fl F = ' } 

1, and so fl ( P : P is a prime ideal belonging to J and 

Pfl F = 0) = S = (y CS: yAx EJ, x EJ fl F). 

Case 2. suppose J 1) F = . Clearly, ( y C S ; y A f C J 
for some f € F ) fl ( P : P is a prime ideal belonging 

to 3 and P fl F = 0 ). Let x C S be such that x A f tj 
for all £ C F, and let G [x) V F. If J fl G .j , then 

there exists t C J and t 2 x1  A f for some x1  2 x and for 

some f C F. This implies x A f x1 A f :5 t and 

consequently x A f C J, which is a contradiction. Thus, 

J fl G . Then by Birkhoff Stone theorem, there exists 

t 

I 
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1 

a prime ideal P of S such that. J P and (3 fl P = o. In 

effect, x ( P and F fl P as F a C. This completes 

the proof. 0 

Theorem 2.6. Suppose F is a filter of a distributive 

nearlattice S. Also, suppose Q P : P is a prime ideal 

of S, such that P 11 F ) and p ( P P 1 a prime 

ideal of S ). Then q and p are order isomorphic posets. 

Proof: Let P cQ . Then Y (P) t S by 3.2.4. 

Also, T, (x) A F (P) implies 7F (x A y) = Y (q) 

for some q C P. Then, x A y A f = q Af for some f € F 

and so either x C P or y C P. hence, YF (x) C YF or 

, ()C YF (P), showing thrt YF (P) is a prime ideal of 

S. Thus, Y is a map from tj to P and it is clearly 

isotone. Again, for any € P it is very easy to show 

that Y 1 () CQ and : P ---> is obviously isotone. 

As S---> SF is onto, T, F = 
Horeover by 3.2.5 

Yf TF (Q) = Q for any Q C , and hence F 1 F = 

Therefore, p and 'Z are order isomorphic. 0 

In the above theorem, S-P D F for all P E Q. Of 

course in any nearlatlice S, the map P--->S-P is an order 

reversing isomorphism between the poset of prime ideals 

and the posel of prime filters of S. Thus, we have the 
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following important corollary which is an immediate 

consequence of above theorem. 

Corollary 2.7. For a distributive nearlattice S, the set 

of prime filters of S containing a given filter F of S is 

order isomorphic to the set of prime filters of SF. 

Principle of localization. 

Theorem 2.8. Let S be a distributive nearlattice. Then 

for each ideal 3 of S, J = n ( 7 FF (J)  ) where F 
F 

ranges over the prime F filters of S. 

Hence for any ideals I and J of S, T F (I) = Yf  (3) 

for all prime filters F of S implies I = J. 

Proof: For any filter F of S. Clearly Yf' 

Hence, J Yf (J) ) where F ranges over the prime 

filters F of S. Now, let x £ fl Y1 
Y (J) ). Then, 

F 
x F !f  (J) for all prime filters F of S. But, for 

any filter F of S, T PF (J) = f y C S : y A f € J for 

some f C F } by 3.2.5. Thus, for any prime filter F of 

S, x A f1  C J for some f1  C F. If x J, then by Birkhoff 

Stone theorem, there is a prime ideal Q of S 
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such that x does not belong to Q and 3 Q. Then for any 

f E S-Q, x A f does not belongs to J Q which is a 

contradiction as Q is a prime ideal of S. Hence x E J. 0 

Suppose S is a distr°ibutive nearlattice. For any 

x , y c 5, we define <x , y> = { s E s A x y ) and 

< x, j> = s c S s A x E J } for any ideal J of S. It 

-41 I 
is easily seen that <x, y> and <x, 3> are ideals of S. 

Moreover, <x, y> is known as the relative annihilator 

ideal c.f. Mandelker [33]. For any x in a nearlattice S 

with 0, we denote (x] = ( y c S y A x = 0 1. 

The following proposition is needed for the further 

development of this chapter. We omit the proof as it is 

easily verifiable. 

I Proposition.2.9. Suppose F is a filter of a distributive 

nearlattice S with 0. Then the following condition hold. 

F ((xj) = (x)] 

(ii) For any ideal J of S, TF (<x, J >) = < Y (x), 

'F 

F ((xlt) 
= (TF (x) 

(iv) 'F  (<x, y>) < F (x), TF (y) >. 0 
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Recall that a distributive nearlattice S with 

0 is normal if each prime ideal contains a unique minimal 

prime ideal. Equivalently, a nearlattice S with 0 is 

called normal if each prime filter of S is contained in 

a unique ultrafilLer.(1,e,maxima1 and proper filter) 

The following theorem contains the main result of 

this section. This generalizes the result of Th. 2.4. of 

Cornish [8]. 

Theorem 2.10. Let S be a distributive nearlattice with 0. 

Then the following conditions are equivalent. 

(1) Any two distinct minimal prime ideals are 

comaximal. 

S is normal. 

0(P) is a prime ideal for each prime ideal P. 

For all x , y € S, xAy= 0 implies 

(x] 
* 

V (y]
$ 
 = S. 

( x A y I
t t 

(xl V (y]
$ 

 

Moreover, if 1 E S so that S is a lattice, then for 

all x , y e S, x A y = 0 implies there exists 

x1 , y1  c S, such that x A x
i

0 = y A y1 and 

xl  V y1  = 1. 



64 

Proof: (i) <===> (ii) is trivial and (ii) <==> (iii) 

hold by proposition 3.2.2. 

(ii) implies (iv). Suppose (ii) holds. Then by corollary 

3.2.7, for any prime filter F of S, SF  has a unique 

ultrafilter. Thus SF  has a unique minimal prime ideal. 

But the zero ideal of SF ( as 0 C S) is the intersection 

of all minimal prime ideals of Hence by uniqueness, 

it is a (minimal) prime ideal of SF.  Now suppose 

x , y E S such that x A y and so 

TF  (x) A TF  (y)= ö. Then, either TF  (x) = 5 or TF  (y) 

Thus I TF  (x) ) V ( F (y) = SF. Then by 3.2.9 

F (x] V (yjt  ) = TF (S) and hence by 3.2.8 

(x]* V (y]t  =  S. 

(iv) implies (ii). Let P ,Q  be distinct 

ultrafilters of S containing a prime filter F of S. Then 

P V Q = S otherwise P V Q will be a proper filter of S, 

which contradicts the fact that P,Q are ultrafilters. 

Thus, there exist x E P-Q and y E Q-P such that 

x A y = 0. Let, t. E (x)t. Then, t A x = 0. Thus, t E S-P 

(otherwise if t C P, then 0 = t A x € P which is 

impossible ) and S-P S-F. That is, (x]t S-F. 

Similarly, (y] S-F. Therefore, 

S = (x]t V(y]t S-F, which is a contradiction. 



(ii) imp1es (v). Suppose (ii) holds. Then for 

any prime lifter F of S, the zero-ideal of S is prime 

This has been already shown in (ii) ==> (iv) ). For any 

x , y E S consider the following two cases. 

Case 1. Y (x A y) = 5. Then, either TF  (x) S or Y (y) 

= t U. FIence,( (x A y)]* = SF and either (x)] = SF or 

(y)]* 
= SF. Thus, x A y )]* = 

(!F (x)]* V (!F (y)]'. Then, by 3.2.9, TF  ((x A y)) 

F ((x) V (y]t ) and so ( x Ay I 
* =  (xlt V (y)*  by 3.2.8. 

Case 2. TF ( x A y ) r 5• Then, TF  (x),  TF (y) 
S. Hence 

x A y ) 
jt
, F (x) and F (y) are equal to 

zero ideal of SF ( as zero ideal is prime ), and so the 

result follows trivially. 

(v) implies (iv) is obvious. 

Finally, (iv) and the stated condition are trivially 

equivalent. 0 

A neariattice S with 0 is called dense if (x)t  = (0] 

for each x t 0 in S. The following theorem is an 

extension of 4.1 of Cornishj8l. 
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Theorem 2.11. For a nearlattice S with 0, the following 

hold. 

( i ) If S is normal, then SF  is normal for any 

filter F of S. 

(ii) S is normal if and only if for each prime 

filter F of S, SF  is a dense lattice. 

Proof: (i) Let TF  (x), TF  (y) € SF be such that 

F (x) A !F (y) = U. Then, x A y O(YF) which implies 

x A y A f = 0 for some f EF. Since S is normal, 

(xIi  V ( y A f = S by 3.2.10. 

Hence T F  (x) 
1* V ( T F 

F (x)]t V  ( f  ( y A 

!F( (x]t V ( y A 
V 

I t =  TF  
 

(S) 

Thus, by 3.2.10 S is normal. 

(ii) Suppose S is normal. Let TF  (x) + 5 and 

F (q) € F (x) ]. Then TF(q) A YF  (x) = 5 . But we 

already know from the proof of (ii)>(iv) in 3.2.10 

that the zero ideal of SF is prime. Hence, TF  (q) =  59  

showing that SF  is dense. 

Conversely, let S be • dense for each prime filter 

F of S. Suppose x , y E S are such that x A y = 0. Then, 

'FF (x A y) = Tv (0) = 5. 

n 
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That is, TF  (x) A Tr  (y) = ö which implies 

!p(x) = 5 or !F (y) = as SF  is dense. Hence, either 

( Y(x) 1 = SF or TF  (y) = SF. Thus, 

TF ( (xlt V (y)t  ) = SF = F (S), and so by 3.2.8 

(x)t  V (ylt  = S. Therefore, S is normal. 

V. 
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3.11elatively normal nearlattices. 

Definition 3.1. A distributive nearlattice S is called 

relatively normal if each interval [x,y] with x < y is a 

normal lattice. 

Definition 3.2. A nearlattice S with 0 is called 

sectionally normal if each ir)terval [O,x] with 0 < x is 

a normal lattice. 

Katrinák [28, lemma 9, 13.1351 has shown that a 

normal lattice is sectionally normal. Cornish in 

[8, Th. 3.31 has improved that result. Our following 

theorem is a nice generalization of their results. 

Theorem 3.3. Let S be a nearlattice with 0. Then the 

following are equivalent. 

(i) S is normal. 

(II) Each ideal J t S is a normal subnearlattice. 

(iii) S is sectionally normal. 

Proof: (i) implies (ii). If J is an ideal and x, y E S 

with x A y = 0 then (xlt V 
(y]t = S because of theorem 

3.2.10. Hence J = J fl S (J fl (xlt)  V (J 11 (y}t) 



But J fl (xit  and J fl 
(y1t 

 are respectively 

(z € J ; z A x = 0) and (z € J ; z A y = 0) and it 

follows from theorem 3.2.10 that 3 is normal. 

implies (iii) is trivial. 

implies (i). Let x, y CS with x A y = Q. Let 

r C- S, then (rAx) A (rAy) = 0. 

Since S is sectionally normal, so (r] is a normal 

nearlatt ire. Then r = (r A xl'  V (r A ylt  and so 

r = p V q for some p C (r A x)t  and q C (r A y]t. Then 

pArAx = 0 and qArAy = 0 i.e. pAx = 0 and 

q A y= 0. This implies p C (xjt  and q C (y]t. Therefore 

r € (xl 
t 
 V (y] 

* 
and so (x] 

$ 
V (yl

* 
 = S. El 

For non-empty subsets A and B of a nearlattice 

S, < A, B > denotes ( x E S ; x A a € B for all a € A ). 

< a, b > denotes < (a), (b) >. As observed by Mandelker 

[33] < a, b > is an ideal due to distributivity of S. 

When A and B are ideals clearly < A, B > is an ideal. 

Moreover, < (a], (bi > = < a, b >. For any ideal 3 of S 

and x C S we write < x, 3 >= t y G Sj x A y €3 ). The 

following lemma summarizes some useful informations. 
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Lemma 3.4. Let S be a nearlattice. Then the following 

hold. 

< x, J > = V < x, y >, the supremum of ideals 
y GJ 

< x, y > in the lattice of ideals of S, for any 

x G S and any ideal J in S. 

{ < x, a > V < y, a > } fl [a, b] = 

( < x, a> fl [a, b] V{ < y, a> fl[a, b] ), for any 

x, y e [a, b], a < b. 

Proof: (i). Let p E <x,y> where y E J. 

Then p A x < y 

===> p A x E J ===> p E < x, J > 

===> <' x, y > c < x, J > 

>V<x, y>c.<x, J > 
y EJ 

Suppose t € < x, J > === > t A x € J. 

Now LE< x, tAx >where tAx€J. 

Hence t € V < x, y > and so (i) holds. 
y EJ 

(ii) Let z be a member of the left hand side of 

(ii). Then a 5 z = c V d 5 b with c A x 5 a and 

d A y a. Then (c V a) A x = (c A x) V (a A x) 

= (c A x) V a < a V a 5 a and similarly (d V a) A y 5 a. 

Thus c V a € < x, a > fl [a, b] and 

(d V a) E < y, a > fl [a, b] , so z = (c V a) V (d V a) is 

11 
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a member of the right hand side of (ii). The reverse 

inequlity is clear and (ii) follows. 0 

The following theorem gives a characterization of a 

relatively normal nearlattice which is also a 

generalization of cornish [8, Th. 3.71. 

Theorm 3.5. Let S be a distruibutive nearlattice. The 

following conditions are equivalent. 

(i) S is relatively normal. 

 For all x ,y € S < x, y > V < y, x > = S 

 For all x, y, z EIS, 

<xAy, z><x, z>V<y, z >. 

 For any ideal J of S 

< xAy, J > < x, J > V< y, J >. 

Proof: (i) implies (ii). Let x, y E S. For any a € S, 

consider 1= [ x A y A a, a ] in S. Now, x A y A a = 

(x A a) A (y A a). Since I is normal, so by 3.2.10 there 

exist r, s € I such that x A a A r = x A y A a = 

y A a A s and r V s = a. Since r, s 5 a, we have 

xAyAa= xAr= y As. Thus x A r y and yA s < x. 

This implies a = r V s € < x, y > V < y, x > and (ii) 

* I holds. 
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(11) implies (iii). Suppose b C < x A y, z >. 

Then by (ii) b = c V d where c C < x, y > and 

d E < y, x>. Thus x A c = x A y A c x A y A b z. 

Hence c C < x, z >. Similarly ci C < y, z >. It follows 

that b = c Vd C < x, z > V < y, z >. 

The reverse inequality always holds and so,(jjj) is 

established. 

===> (1). Let a b € S, ( a < b ). Suppose 

x, y € [a, b]. Such that x A y = a. Then by (iii) 

[a, b] (1(< x, a> V< y, a>) [a, bj fl < xAy, a> 

= [a, b] fl < a, a > 

= [a, b] 

Hence by 3.3.4 and 3.2.10 S is relatively normal. 

(iv) ====> (iii) is trivial as 

< xAy, z > = < xA y,(z} >. 

===> (iv). By lemma 3.3.4 (i) 

< xA y, J > V< xAy, t >. 
t €J 

= V ( < x, t > V < y, t > ). Then applying lemma 
t €J 

3.3.4 (i)again, <xAy, J > = <x, J > V < y, J >. 

i.e., (iv) holds. 0 
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Theorem 3.6. Let a , b and c be arbitrary elements of 

a nearlattice S. Let A,B and C be arbitrary ideals in S. 

Then the following are equivalent. 

(1) < c, a V b > = < c, a > V < c, b > whenever 

a V b exists. 

(ii) <C,AVB>=<C,A>V<C,B> 

Proof: (i) ===> (ii). Let* t € < C, A V B >. Then for 

any c E C, t A c C A V B. Thus t A c = p V q for some 

p € A and q C B. This implies t C < C, p V q > = 

<C, p > V< c, q > by (i) < C, A> V< C, B>. 

i.e., <C, A VB > <C, A> V <C, B> 

ra Reverse inequality is trivial.So (ii) holds. 

(ii) ====> M. Let a, b, c C S with a V b exists, 

then < c, a V b > = < (c], ( a V b ] > 

< (ci, (a) V (b] > 

= < (c), (a] > V < (c), (bi > 

<c, a>V<c, b>. 

Lemma 3.7. A distributive nearlattice S is relatively 

complemented if and only if for all x, y € S, 

(xl V < x, y > = S, where < x, y > = ( z € S 

z A x :5 y ). 

IV 
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Proof: Suppose S is relatively complemented. For 

x, y, z € S. Consider the interval [ x A y A z, z I. Let 

w be the relative complement of x A z in ( x A y A z, z). 

Then xAzAw = xAy\z and (xAz) Vw z. Now 

x A z A w = x A y A z 5 y implies z A w E < x, y >. Hence 

z = (x A z) V w = (x A z) V (w A z) E (xl V <* x, y >. 

Conversely, let c € [ a, b ], a 5 b. Then 

b € (c] V< c, a > Sand sob c Vd, d € < c, a >. 

Then d A c a and so (d V a) A b is the relative 

complement of c in [a, bi.  Here d V a exists by the upper 

bound property as both d, a b. 

Lemma 3.8. The set of all prime ideals of a distributive 

nearlattice S is unordered if and only if for all x, y in 

S, (xl V <x, y> = S. 

Proof: Suppose the prime ideal are unordered and there 

exist x, y E S such that (xl V < x, y > t S. Therefore 

(xl V < x, y > P for some prime ideal P. Since the 

primes are unordered, S-P is a maximal filter. But 

x S-P and hence [x) V (S-P) = S and so y € [x) V (S-P). 

Therefore y = x1  A q for some x1  ?: x and q € S-P. 

Then x A q 15 x1  A q = y and so q € <x, y> P which is 
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a contradiction. 

Conversely, suppose (x] V < x, y > = S for all x, y 
in S. Let P and Q be primes such that P c Q and P + Q. 
Choose a C Q-P and b E P. Now , (a] A < a, b > = (a A b] 
and b e P implies a A b € P. Thus (a) A < a, b >, c P and 
a Qt p. This implies < a, b > P as P is prime. Therefore 

< a, b > Q and (a] Q and so, S = (a) V < a, b > c Q. 

Which is a contradjcLjox D 

Corollary. 3.9. ( Gratzer and Schmidt [21a]. 

A distributive nearlattice S is relatively 

complemented if and only if its prime ideals are 

unordered. 0 

Following theorem generalizes Th-3.5, Th.3.7, and 

Th.4.3 of Cornish [8] also c.f. [57 
, section 5, p-83 J 

and Mandelker [33, Th.4, p-3801. 

Theorem 3.10. let S be a distributive nearlattice. The 

following conditions are equivalent. 

(I) S is relatively normal. 

The set of all prime ideals contained in a 

prime ideal is a chain. 



76 

Any two incomparable prime ideals are 

comaximal. 

The set of all prime filters of S containing 

a prime filter is a chain. 

SF is a chain for each prime filter F of S. 

Proof: (i) ==> (ii). Suppose (i) holds. Then by Tb. 

3.3.5 < x, y > V < y, x > =S, for all x, y € S. If (ii) 

does not hold, then there exist prime ideals P, Q, R with 

P Q, R ; and Q and R are,,incomparable. Let x E Q-R and 

• yER-Q.Then<x,y>  Ezz R  and <y,X>  Ez Q. 

Thus S = < x, y > V < y, x > Q V R P + S, which is a 
• contradiction. Hence (ii) holds. 

(ii) <===> (iii) is trivial. 

(ii) <===> (iv) is also trivial. 

===> (v). Suppose (iv) holds. Then by 3.2,7 the 

prime filters of SF form a chain for any prime filter 

F of S. But, in a distributive lattice if the set of 

prime filters form a chain, then the lattice itself is a 

chain. Therefore SF is a chain for each prime filter F of 

S. 

=== > ( i ) . let F be any prime filter of S. By (v) 
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SF is a chain, and so for any x, y in S, we have either 

F (x) F 
(y) or 'F F (x). In either case, 

< F (x) I TF 
(y) > V < 

 F (x) > = SF i.e., 

TF  ( < x, y > V < y, x > ) = F (S), and so by the 

principle of 1ocalization < x, y > V < y, x > = S. Hence 

by Th.3.3.5, S is relatively normal. 0 

JW Theorem 3.11. If F is a filter in a relatively normal 

nearlattice, then S/(F) is relatively normal. 

Proof: Suppose S is relatively normal. 

Let TF  (x) ' F (y) E SF. 

Then by 3.2.9, < 
' F (y) > V < F (x) > 

x, y < VT  X > 

<x, y>V<y, x >1 

= ! (S) as S is relatively normal. 

SF 

Hence by theorem 3.3.5 SF  is relatively normal. 0 



4. n- Normal nearlattices. 

Recall that an n-normal nearlattice is a 

distributive nearlattice with 0 such that each prime 

ideal contains at most n minimal prime ideals. 

Equivalently a distributive nearlatlice with 0 is 

ri-normal if each prime filLer is contained in at thost 

n ultrafilters. 

n-Normal laLLices have been studied by Cornish in 

[9] and Davey in [16]. Davey called these lattices as 

B-iaLLices. To prove our,  main result we need the 

following lemma 4.1 which is an extension of 2.3 of 

Cornish [9]. Since the proof of the lemma follows easily 

from Cornish's proof, we omit details. 

4- 
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Lemma 4.1 Let J be an ideal of a distributive 

nearlattice S. For a given positive integer n > 1, the 

following conditions are equivalent. 

For any x0, x1  .......... , x E S, which are 

"pairwise in J" i.e.x A x € J for any i j. j, 
there exists k such that x, E J. 

J is the intersection of at most n distinct 

prime ideals. 0 

Following theorem provides a characterization of 

n-normal nearlattices which also generalizes some of the 

results of Cornish t91 and Davey [16]. 

Theorem 4.2. For a distributive nearlattice 

S with 0, the following conditions are equivalent: 

(i) Each prime filter of S is contained in at most 

n ultrafilters of S, i.e. S is n-normal. 

• . itive (11) For any x0, x1  ........... E S such that 

A x = 0 for (i J) i = 0,1,2 ......,n 

j = O,1,2, ...  i n, (x0]*  V (x1 J V.. .V (x]t S. 

For any distinct n+1 minimal prime ideals 

Po, Pi  .....,P., P0  VP1  V...V P = S. 



Proof. (i) implies (ii). Suppose (i) holds. Then 

by 3.2.7 for any prime filter F of S, Sf  has at most 

n ultrafilters and so Sf  has atmost n-minimal prime 

ideals. Since every ideal is the intersection of all of 

its minimal prime divisors, the zero ideal of SF  is the 

intersection of at most n minimal(distinct) prime ideals. 

Now, let x0, x1  .....,xE S be such that x1  A x = 0 

for i t j, i = 0,1,...,n, j = 0,1,  ... ,n. Then 

F (x1 ) A !f  (x) = 6 ( zero of SF ), for i t j. Hence by 

lemma 4.1 above, there exists k, 0 5 k 5 n such that 

¶f  (x1 ) = 0. Consequently, Y (xk) 
]t 

= SF. Then 

Yf  ( (xo l*  V (x1 1 V .........V (x]'  ) 

= Yf (x1 V..........V ! (xe] 
t 

= (Yf  (xO ) } V......V (xe) 
] t 

Sf 1F  (S) 

Thus by 3.2.8 (x0]t  V (x1Jt  V .....  V(x1]' = S. 

(ii) ====> (i). Suppose (ii) holds and F is any 

prime filter of S. If (i) does not hold then let 

F ........ Q t  where Q1  are ultrafilters of S. Notice 

that Q1  VQ = S for i t j.  Thus for each Q1, Q ; i . j. 

there exist x1  C Q1  and x G Qj  such that x1  A x = 0. Then 

it is not hard to find elements y0, y1, ........,y withy1  

such that y1  A y = 0 whenever i t 3. Then by (ii), 

(y01 V (y11  V......V (yb) S. 
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Now, if t. C for some k ; 0 :5 k < n, then 

t A yk = 0. This implies t if Q, otherwise 0 C Qk  as 

Yk C Qk  Thus t CS- S-F, and so S-F for each 

k 0 k n. Hence S = (y0)t V (y) V.....V (y]t S-F, 

which is a contradiction. 'J'herefore, (i) holds. 

(i) ====> (iii). Suppose (i) holds and 

V P1  V.....V P n  tS. Since each proper ideal in a 

distributive nearlattice is contained in some prime 

ideal, there exists a prime ideal P of S containing 

P0  V P1  V.....V P. Then S-P is a prime filter which is 

contained in ni-i ultrafilters S-P0  . .... ,S-P. This 

contrad.jct;s (i ) and so P0  V P1  V.....V P = S. 

(iii) =====> (i). Suppose (iii) holds. If (i) does 

not hold, there exists a prime filter F which is 

contained in atleast n+1 ultrafilters Q0  ........ (say) 

of S. Then S-Q0  .........S-Q are n+1 distinct minimal 

prime ideals of S and (S-Q0 ) V,...,V (S-Q) S-F, which 

is a contradiction to (iii). Therefore (i) holds. 0 

Notice that the above theorem plays an important 

role in case of pseudocomplemented lattices. For the 

class of pseudocomp]emented Be-lattices (ii) of the above 

theorem reduces to the condition of Gratzer and Lakser 

[21, lemma 81. 
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M. 

Definition. Let S be a nearlattice with 0, S is 

called sectionally n-normal for n > 1 if each initial 

segment [0,xj, x E S is an n-normal lattice. 

Following result generalizes theorem 3.6 of Cornish 

[9]. Here proof of (i) ====> (ii) is bit tricky as the 

nearlattices are not that well behaved like lattices, 

while the rest follows easily from Cornish's proof. 

Theorem 4.3. For a nearla.Ltice S with 0 the following 

conditions are equivalent. 

S is sectionally n-normal. 

S is n-normal. 

Each ideal J in S is an n-normal 

subnearlattice. 

Proof. (i) ====> (ii). Suppose that (i) holds. Let 

x0 , x1  . ....... ,xc S be such that x A x = 0 for 

i t j. Choose any y € S. Consider I = [O,y]. Now 

y A x0, y Ax1  .........,y A x € I and (y A x1) A (y A x) 

y A (x A x) 0 for i .. j. Since I is n-normal, 

I (y A x01 V......V (y A by 3.4.2. Where 

(y A x} = { I € it A y A xL = 0 ). So 

y C (y A x0]+  V......V (y A x]4 , and hence 

y € (y A x0] V......V (y A x,1 Thus y = t0  V.......V t 

fr 



where ti  e (y A x J. Then t A y A x 0, and 

so t Ax1  = 0 as t1  A y = t1 . This implies t € (x1 }, and 

so y = t0  V.....V t C (x01' V......V (x]t . Hence, 

(x0 ] t  V......V (x]t S, and so by 3.4.2, S is n-normal. 

Let J be an ideal in S and 

suppose x0  ,x1  ....... , x € J are such that xi  A x 0 for 

all i t j. Let (x] = ( y € 3 : y A x1 0 ). Clearly, 

(x]4 (x]t  fl J By 3.4.2, (x0]t  V......V (x)t  = S and so 

J = J fl S = J 11 ((x0)* V......V (x]1) 

= (3 fl (xO])  V......V (3 fl 

= (x0 ] V.....V (x]. Consequently, J is n-normal. 

(i) is trivial. U 

Following theorem extends theorem 3.5 of Davey [16]. 

Theorem 4.4. For a distributive nearlattice S with 0 

the following hold. 

( i ) If S is n-normal, then S, is n-normal for any 

filter F of S. 

(ii) S is n-normal if and only if for each prime 

filter F of s S has at most n minimal prime ideals. 

Proof (i ). Let TF (x0 ) .....'F  (xe ) € SF be such that 

F (xi ) A TF  (x) = 3 for all i j 

i = 0,... ,n, j = 0, . . . , n . Then x A x3 0 for each 



j, i (j + j). This implies 

x
i 
 A xj  A f

il 
= 0 for some fij 

G F. Set f •A f 
,where 

1+3  
j = o ........ n ; = 0 .......,n. Then x Ax A f 0 

Since S is n-normal so by theorem 3.4.2, 

(x0  A flt  V (x1  Af]t  V .......  V (x A fi'  = S. 

Hence ( (x)] F (x1 )]'  V......V (!F (x))t 

F (xU A f)]'  V ( TF (x1  A 
f)]t 

V 

•'•• (x A flu'  

=T ((xe  A f]'  ) V TF ((x1  A fi' ) V 

V !F((Xfl A f]') 

by 3.2.9 

= N x0  A fi' v ........ V (x A fi' I 

= (S) = S f  

Hence SF is n-normal by 3.'4.2. 

(ii). This is trivial by Th.3.2.7. 

We conclude ihis seciion with the following result 

which was given by Cornish in (9] and Davey in (161 for 

lattices, 

ET 
Laden /,) 

.11 
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Theorem 4.5. For any n+1 elements x0,x1 . ,x in 

an n-normal nearlatlice S 

(x0  A .. . . A xJt = V (x0  A .... A x 1 A x 
ill 

A .... A x)t  
0 i 5n 

Proof. Let b x0  A . .. A x 1 A x 41  A. . . . . A x 

for each 0 S i 5 n. Supposc that x E (x0 A ........A xe ]'  
Then x A x0  A ............ A x = 0 so that for 

i t j, (x A b) A (x A b) = 0. From the Theorem 3.4.2 

x C (x A b0 ] V......V (x A bA I t  so that x = a0 V....V 

for some ai  € S, such that a A x A b = 0. Then 

x = (a0  A x) V ......V (a A x) and ai  A x (br ]'  and so 

(x0  A ..... A x] V (x 0  A . . . . A x 1 A x 
ill 

A . . . . A x]t  
0 i n 

The reverse inclusion is trivial. 0 



5. Relatively n-normal nearlat.tjces. 

Recall that a relatively n-normal nearlattice S is 

a distributive nearlattice such that for each 

x < y (x, y C 5) [x, y) is an n-normal lattice. For 

relatively ii-  normal. lattices we refer the reader to 

consult Cornish L9] while Davey [16] preferred to call 

them as relative B -lattices. 

We start this section wi Lb the following 

characterization of relatively n-normal nearlattices 

which will be needed in our next theorem. 

Theorem 5.1. Let S be a distributive nearlattice, the 

following conditions are equivalent. 

S is relatively n-normal. 

For all x0, x1  ........... , x € S, 

< x1  A xz  A .....A x, x0  > V < x0  A x2  A. 

x > V.........V < x0  A x1  A ..... 

.A x 1 , x > = S. 

For all x0 , x1  . .......... . x, z C S, 

< x0  A x1  A ......A z > = < x1  A x1  A.... 

...A x, z > V < x0  A x2  A ... A x D I  z > V.... 

V < x0  A x1  A .......A xr 1, z > 

4 

1' 
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Proof: (i) ====> (ii). Let a € 5, consider the 

interval I = [ x0  A x 1  A.......A x A a, a ] in S. 

For 0 5 i :5 n,the set of elements 

t1 = x0  A x1  A .....A x11  A x 1  A.....A x A a, are 

obviously pairwise disjoint in the interval I. Since I is 

n-normal, so by 3.4.2 (t0 ] V (t1 ]4  V.......V (ta ] =1, 

where (t1 ] (t1 ] fl I. Since i is n-normal. 

-4. V..........V (t) = I 

So, a E (t01 V..........V (t) 

Thus, a = p0  V.........V p 

Where p0  A to  = p1  A t 1  = ......... . p A t 

= 0 of I 

=x0 Ax1 A ..... AxAa 

Now, p0  A t0  = x0  A x1  A .........A x A a implies 
'I 

p0  A to x0  

Againp0 At0 =p0 Ax1 A ......... AxAa 

=p0 Ax1 A ......... Axasp0 a. 

This implies P0  A x1  A .........A x x0  and 

so p0  € < x1  A ...........A x, x0  > 

Similarly, p1  € < x0  A x1  A....... A x, x1  > 

< x0  A x1  A......A x 1 x >. 



< x A . . • . * • . . A x , x0  > V . . . . 

• V < x0  A x1  A . Ax 1 , x > and 

A ........A x , x0  > V ..... 

• V < x0  A x, A .........Ax 1 x > 

ii). Suppose b < x0  A .....A x , z>. 

ri by (ii) b = s0  V..........V Sn , 

some s0  C < x1  A .....A x , x0  > 

SI  € < x0  A x2  A .....A x , X 1  > 

4 ...................... . . . . . 

s c < x0  A x1  A .....A x 1  , x >. 

us, x1  A • . .. .A X A S0 S xo  

x0 Ax2 A ..... AxAs1 :5 x1  

I' 
x1  A .....A x 1  A Sn X. 

Then x1  A xz  A .....A x A s0  

=x0 Ax1 A .....  AxAs0 x0 Ax1 A z. 

Hence, So C. < X 1  A x2  A .....A xn * z > 

Similarly, s c < xo A x2  A .....A x , z > 

i
Sn < x0  A x1  A .....A x, 1  , z 



Therefore b C < x1  A. .. A x , z > V < x0  A x2  A. 

.A x, z > V..... V < x0  A x1  A .......A x 1  , z >. 

Since the reverse inequality always holds. Therefore 

<x0 A..Ax , z >= <xj A...Ax, z > V < x0 Ax2 A... 

A x,z > V .......V < x0  A . . .A x 1  , z >. 

(iii) ==== = => (i). Let a, b E S , with a < b. 

Let x0  ..... ,x C [ a, b) such that 

xAx. = a for all i t j. 

Let d0  x1  V x2  V .....V x 

d1 = x9 Vx2 V ..... Vx. 

d = x0  V X,  V .....V 

Note that d0, d1  ...... , d0 exist by the upper bound 

property of S .Then a d :5 b for all i. Now using 

x1  A x = a for all. i t j. We can easily show by some 

routine calculations that 

x0  = d1  A d2  A........... A d. 

x1 = d0  A d2  A........... A d. 

x = d0  A d1  A...........A d 1 . 

1, 



Then [a, bl fl ( < x0, a > V < x1 , a > V...V < x, a >} 

[a, bi 11 ( < d1  A d2  A ... A d, a > V < d0  A d A 

A d 1  a > V < d0 A d1 A.....A drn11 a > ). 

[a, b] 11 < d0 A d1 A........A d n t a > ( by •i 

= [a, b] fl < a, a > 

= [a, b] fl S = [a, b] 

Hence by 3.4.2 [a, h] is n-normal. Therefore S is 

relatively n-noraml. 0 

Following characterization on relatively n-normal 

nearlattices are extension of some work of Cornish [91 

and Davey [16]. 

Theorem.5.2. For a distributive nearlattice S with 0, 

the following conditions are equivalent: 

( i ) S is relatively n - normal. 

For any (n+1) pairwise incomparable prime 

ideals P0  ......,P. P0  V..... V P = S. 

Any prime ideal of S contains at most 

n mutually incomparable prime ideals. 

Proof: ( i ) <> (ii). Suppose S is relatively n-normal. 

Let P0  ..........,P be (n-fl) pairwise incomparable prime I 
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ideals. Then there exists x0 • ,x € S, such that 

n 
X C PJ - LI P1. 

i::1 
iti 

Since S is relatively n-normal. 

So by theorem 3.5.1 < x1 A ........ A x, x0  > V < x0  A... 

A xn  I x1 > V........V < x0  A........A x 1 x > = S. 

Let to  c < x1 A ........A x, x0 >. 

Then to  A x1 A....... A x x0 € P0. 

Thus to  A x1  A ....... A x € P0. Since P0 is prime 

and x1  A ..... A x P0, so to  € P0. Therefore 

< x1  A ... A x, x0 > 

Similarly < x A.....A x, x1  > C P1. 

< x0  A x1  A.....A x11, x > P. 

Hence P0  V........V P = S. 

Conversely, let any (n+1) pairwise incomparable 

prime ideals in S are co-maximal. Consider an interval 

[a, b] of S. Let. P'0  .........,P' be (n+1) distinct 

minimal prime ideals of. [a, b]. Then by 1 . 4 . 3 there 

exists prime ideals P0  ........,P of S such that 

Iw 

I 
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p' 0  = p0  fl [a, bi, 

P' = Ii [a, bj, 

Since P'0  .......... P 
., 

are incomparable, so 

P0  .....,P are incomparable. Now by ( i i ) P0  V. .V Pn  = S. 

Hence, P 0  V.....V P' = ( P0  V.....V P ) fl [a, b] 
'1 

S fl [a, bi 

= [a, b] 

Therefore [a, b] is n-normal and so S is relatively 

n-normal. 

(jj) ==== == > (iii) is trivial. 

Finally we extend a result of Davey [16, Th. 3.6]. 

IV Theorem. 5.3. IfS is a relatively n-normal nearlattice, 

then S is also relatively n-normal for each filter F. 

Proof: Suppose S is relatively n-normal. 

Choose TF  (x0 ) ......'F  (xe ) € S. 

Then < F (x1  ) A ... . . A Y,, (x ) I Y (x0  ) > 

V < !F (x0) A TF (x2) A...A !F (xfl ),YF (xl) > V..... 

V < T, (x0) A TF(xi)  A. ..A TF (xfl i),YF (xe ) > 

= 'F < x1  A x2  A.. .A x, x0  > V < x0  A x A.... 

'1 .A x, x1 >V. . . .V < x0  A x1  A .... A x 1 x >) (by 3.2.9) 
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F (S) = SF by theorem 3.5.1. 

Therefore by theorem 3,5.1, again, SF  is relatively 

n-normal. El 

I 
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CHAPTER - 4 

MULTIPLIER EXTENSION OF A DISTIRBUTIVE NEARLATTICE. 

1. Introduction. 

Multipliers on semilattices and lattices have been 

previously studied by several authors includin Szasz 

[54] [55], Szasz and Szendrei [56],  Kolibiar  [29], 

Cornish [10],  and by Nieminen [37] [38] on a lattice. 

Analogues on multipliers have been studied by many other 

workers in various branches of algabra ; for references 

we suggest the readers to consult the bibliographies of 

Pet rich [47] and Cornish [10].  In a more recent paper, 

Noor and Cornish in [39] stu'died them on nearlattices. 

Let S be a nearlattice and 4) a mapping of S into 

itself. Then 4) is called a multiplier on S if 

4) (x A y) = 4) (x) A y for each x, y C S c.f. [39].  Each 

multiplier on S has the following properties, 

4) (x) !~ x, 4) ( 4) (x) ) = 4' (x) and x y implies 

4) (x) 4) (y). Each a C S induces a multiplier ji,defined 

by i1 a  (x) = a A x for each x C S, which is called an 

inner multiplier. The identity function on S, which will 

be denoted by t is always a multiplier. H(S) denotes the 

set of all multipliers on S. It is obvious that H(S) has 

a zero,denoted by if and only if S has a 0. 
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In section 1, we have given a description of 

multipliers on nearlattices. Here we have mentioned 

several results given by Noor and Cornish [39] and 

Nieminen [38].  Then we give a categorical result, where 

we see that the multiplier extension has a functorial 

character which is entirely diferent from that of Lattice 

Theory c.f. Cornish [ 10, Theorem 2.4 ]. 

In section 2 we studied multipliers on sectionally 

pseudocomplernented distributive nearlattices and also on 

distributive nearlattices which are sectionally in 

--i n and generalized a number of results of 

[10]. We showed that S is sectionally in B if and only 

if M (S) is in B. We also showed that for 1 n < , 

above conditions are also equivalent, to the condition 

that S is sectionally pseudocomplemented and for any n+l 
If 

minimal prime ideals P1  .......... , P 01 

p1  V.........V Pol  = 

il 



W. 

2. Multipliers on dist.ributive nearlattices. 

let S be a nearlattice and 1 a mapping of S 

into itsif. Recall that is a multiplier on S, if 

(x A y) = 3 (x) A y for each x , y E S. For a 

multiplier 1 on S, MO  = ( x E S '(x) x ) is clearly 

and ideal of S. By Szasz [55, Theorem 3] MO  detetmines 

uniquely. 

The following result is due to Niemineen 

[38, lemma 11. IL is also a generalization of a part of 

proposition 2.1 of Corruish [101. 

Lemma. 2.1. An ideal I of' a nearlattice S generates a 

multiplier on S, that is , M= I, if and only if for 

each a E S there is an element b e I such that 

LIA I fl (a) = (b], and moreover, b = ' (a). 0 

If ' and A are multipiers on a nearlattice S, then 

A A and V A are defined by ( A A ) (x) = 

(x) A A (x) and ( V A ) (x) = I (x) V A W. Notice 

that (x) V A (x) always exists by the upper bound 

property of S, as (x), A (x) 5 x, though 1' V A is not 

necessarily a multiplier. Also, (A (x) ) = 

( A (x A x)) = b ( A (x) A x) = (x) A A W. 
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As shown by Szasz and Szendrei [56, Theorem 31, H(S) is 

a meet semilattice. 

The following result is due to Nieminen [38]. 

Proposition 2.2. Let 0 aid A be two multipliers on a 

nearlattice S. Then, <D V I is a mulliplier on S if and 

only if ( M VMA ) fl (x] = ( H fl (x) ) V ( MAfl (x]) for 

eachxES. Cl 

Next result is due to Noor and Cornish [39].  For the 

idea of standard ideals in lattices we refer the reader 

to consult [18] and [21b] , while a complete description 

of these ideals in nearlattices can be found in [15]. 

Proposition 2.3. [ Noor and Cornish 39, corollary 

3.3 J. Let be a multiplier on a nearlattice S. The 

mapping 0 V A is a multiplier on S for each 

A C H(S) if and only if H1  is a standard ideal of S. 

Following result involves the ideas on direct 

summands of a nearlattice given by Noor and Cornish in 

[39]. For direct summand of a lattice we suggest the 

reader to consult F. Maeda and S. Maeda [25) and H.F. 

Janowitz [27]. 
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.4 

Proposition 2.4. [ Theorem 3.4. Noor and Cornish 39]. 

A nearlatt.ice S with 0 has a decomposition into a 

direct summand if and only if there are at least two 

multipliers and A on S such that 4> V A = i and 

A A = o , and both 0 and A have a supremum with each 

multiplier on S. 0 

I 

Next theorem is due to Nieminen 1.38, Theorem 31 also 

see [39]. This is also a generalization of a part of 

Cornish [ 10, Theorem 2.2]. 

Theorem 2.5. In a nearlattice S, the following 

conditions are equivalent. 

The meet semilattice of all multipliers on S 

is a lattice (in fact, distributive lattice). 

Each multiplier on S is a join-partial 

endomorphism of S. 

(x] is a distributive sublattice of S for 

each x E S. In other words, S is 

distributive. 0 

The next result was also mentioned by Nieminen in 

[38, Theorem 4] without proof. A complete proof of this 

has been given by Noor and Cornish [39,Theorem 3.6]. 

1 
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Theorem. 2.6. Let S be a nearlattjce. Each multiplier 

on S has the property that 1 ( (y) V z) (y) V ( z ) 

when (y) V z exist,s in S, if and only if (x) is a 

modular sublattjce of S for each x C S. U 

A subset I of a nearlaltice S is called finitely 

Jo i n-dense in S i f each x C S is the Jo iii of a finite 

-4 numbers of its predecessors in I. Now we give the 

following categorical result. 

Theorem. 2.7. Let S and I be distributive nearlatt.jce 

and f : S ----- > I be a join-partial homorphism such 

that f(s) is finitely Join dense in T. Then the following 

diagram is commutative, where ii (s) = 11  
! and p(t) 

f 

S T 

I I 

I11' 
--> H(T) 

f( f) 
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for all s E S and L E T, and for E H(S), 

M(f)()(t) = f(F(s1 )) V .......V f((s)) for t G T where 

t = f(s1 ) V......V f(s); s1  . .......... ,sG S. 

Moreover, H (f) : H (S) -----> M(T) is an isomorphism 

when f is one to one. 

'4 
Proof Let t1 t2  in T. Suppose 

t1  = f(a1 ) V ... .V f (an) and t1  = f(b1 ) V.......V f (b1) 

where a1  ..... I an I  b1  . ....... b1  € S. Since t1 < t2  , so for 

any € M(S), f((a)) f(a1 ) LI  :5 t1  for all i, 

i = 1 .....,n. 

Then f((a)) = f((a)) A t2  

= f(I(a)) A (f(b1 ) V .... V f(b)) 

= (f((a)) A f(b1 )) V.......V (f ((a.)) A f(b1)) 

f((a) A b1 ) V .....V f((a) A b1) 

= f(a1  A 1(h1 )) V..........V f(a1  A 

f(a1) A [ f((b1 )) V............V f((b1))] 

= f(a1) A 

That is, f((a1)) H (f)(fl(t2 ) for each i 

i=l .......,n. Thus, M(f)(0)(t1 )H(f)()(t2 ) and 

hence H (f)() is well defined for every EM(S). Also, 

it can be easily seen H(f)() is a multiplier on T. 

Now for any a G S, M(f)(.i)(a) = M(f)(p). Then for 



101 

any t € T, H(f)(1i)(t) = 
f(p(s1)) V. V 

where t = f(s1 ) V.......V f(s) ; s1  .......... C S. 

Thus, H(f)(p)(t) = f(a A s1  ) V..........V f( a A s 

= f(a) A [ f(s1 )V .......... V f (se ) 

= f (a) A t 
= 

(t) = i (f (a) ) (t). 

Thus, M(f)(i)(a) = pf(a), i,e., the diagram is 

commulative. 

Finally, suppose f is 1-1. Then without loss of 

generality we can regard •S as a finitely join-dense 

subset of T. Define H(f)_1 H(T) ------> H(S) by 

M(fY1  (A) = s restriction to S). Here H(f)'' is 

clearly isotone. Now, P1(f)' (M(f)(Z))(s) 

= I(s) for all s G S. That is M(f 1  N(f) = idM(s). 

Again, for a E T, if a = a1  V.........V a with a1  £ S, 

then (P1(f) M(f)_1 )(A)(a) =M(f)(M(f)-'(A))(a) 
I 

= M(f) 1 (A)(a1 ) V.......V H (f)(A)(a) 

A(a1 ) V......V A(an) = A(a1  V......V an  

( by 4.2.5 

A(a). Thus, H(f)H(f)_1 = idw(T) and hence M(f) is an 

isomorphism. 0 

We refer a join-partial homorphism of the Theorem 

2.7 above, as finitely join-dense homomorphism. Now, 

suppose S is a distributive nearlattice. Notice that the 
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map E ; S-----> 1. (S) (the lattice of finitely generated 

ideals of S) defined by €(s) = (sj is clearly a 

monomorphjsm. Also, it is easily seen that €(S) is 

finitely join dense in If(S). Thus, we have the following 

result which is trivial from 4.2.7. 

Corollary. 2.8. For a distributive nearlattice S, 

H(S) is isomorphic to H(J1(S)). 0 

Remark 2.9 Suppose f S ------> T and 

g T -----> R are two finitely join-dense homomorphisms 

S, R, T are distributive nearlattices ). Let r € R and 
E H(S), and so H(f)() E P1(T). Then, 

r = g(t1 )V .......  V g(t1) where t OF T, whereby each 

t1 f(s1 ) V......V f(s ) for suitable sli  ..... . 
1 

1 in S; i = 1 .......,m. Here, it is not hard to see that gf 

is also finitely join-dense. 

Now, as Z sji s1  for all j = 1 ....... , n1, 

i 1 ..... , m, f((s1.) ) V........V f(((s ) ) exists in 
1. 

T for all i = l,.,m, and is equal to H (f) ()(t). But, 

H (gf) () (r) V [(gf)(t(s1.) ) V....V(gf)(( 5  .))] 
Y S[f((s1 )) V..........V f(1'(s

n.
.))] = V 

1 
1  

=M (g)(H(f)(fl)(r). 
1 

I
Hence, M(gf)() = H(g)(M(f)()) as r is arbitrary in S. 

I 



103 

Since 0 is also arbitrary in H(S), M(gf) = H(g)H(f). This 

shows that. H is a functor ( which is different from that 

of Lattice Theory, c.f. Cornish [10, Theorem 2.4] ) 

from the category A to the category B. The objects of A 

are distributive nearlatties and the morphisms are the 

join-partial homomorphisms such that if f : S----->T 

(f, S, T C A), then f (S) is finitely join-dense in T. On 

the other hand, B contains distributive lattices as its 

objects and the morphisms are usual lattice 

homomorphisms. 

In conclusion, we would like to note that in the 

commuting diagram of 4.2.7, i is not a natural 

transformation, as it does not have finitely join-dense 

components. 
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3. Multipliers on distributive nearlatticeg which 

are sectionally in B,. 

Lee in 1.311 has determined the lattice of all 

equational subclasses of the class of all 

pseudocomplemented distributive lattices. They are given 

by B 1  c B0  c B1  c.....c J3 c . ... c B where all the 

inclusions are proper and Be is the class of all 

pseudocomplemented distributive lattices, B.i consists of 

all one element algabras, j3 is the variety of Boolean 

algabras while B, for 1 < n < <6 consists of all algabras 

satisfying the equation 

x1  A x2  A.......A x )* vV ( x1  A.......A x 1  A x A 

A........A x. 1 where x denotes the 

pseudocomplement of x. Thus B1  consists of all stone 

algabras. 

A distributive nearlattice S with 0 is called 

sectionally pseudocomplemented if each interval [0,x], 

x € S is pseudocomplemented. Moreover, S is said to be 

sectionally in B, -1 < n < , if each interval [0,x], 

x € S is in B. 
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Proposition 3.1, Proposition 3.2 and Theorem 3.4 were 

proved by Cornish in [10] for lattices. Here we extend 

those results for nearlattjces. 

Proposition 3.1. If S is a sectionally 

pseudocomplemented distributive nearlattice with 0, then 

H(S) is pseudocomplementd 

Proof. For each o € H(S) and x € S, o(x) € [0,x]. 

Suppose a (x)+ denotes the Pseudocomplemented of 0(x) in 

[O,x]. Define o t : S ------ > S by o (x) = a (x) for each 

x € S. If a, b € S, then (ot(a) A b) A (o(a A b)) 
= ot(a) A b A 0(a) A b = 0 implies o(a) A b :5 o(a A b) 
= ot(a A b), On the other hand, ot(a A b) A 0(a) 

a (a A b) A o(a) = o(a A b) A o(a) A b 

= o(a A b)4  A o(a A b) = 0 implies 

ot(a A b) o(a) = ot(a). Since ot(a A b) 5 b, 
*  

so a (a A b) a 
t
(a) A b. Therefore, 

0 (a A b) = a (a) A b, and so at 
 E H(S). 

Now (a A a*) (x) = a (x) A 0'(x) = 0 (x) 
implies a A o 

. If a A t = c, then a (x) A t(x) 0 

for each x E S. Since a (x), t(x) € [0,x], so 

t(x) a (x) =a W. This implies t :5 a, and so at is 

the pseudocomplement of a in H(S). Therefore, H(S) is 

pseudocomplemented 0 
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Proposition 3.2. For a distributive nearlattice S with 

0, if H(S) is pesudocomplemef)ted then S is sectionally 

pseudocomplemer)ted. 

Moreover, for each o € MS) and x E S o(x) is the 

relative pseudocoinplement,ed of 0(x) in [0, xl. 

Proof. Consider any interval [O,y] in S. Suppose 

x € [O,y]. Then 0 = c (y) = (i' A P *) = 

PX (y) A p (y) = x A y A (.Y)= x A Now, if 

x A t = 0 for some I € [O,y], then for all p € S, 

hix A ii) (p) = x A t A p = 0, and so p A = . This 

impi ies 
X. Thus, lit () (y), and so t t A y 

(y). Hence, p (y) is the relative pseudocomplement 

of x in [O,y]. Therefore, S is the sectionally 

pseudocomplemen ted. 

Finally, for each x € S, a (x) A o  (x) = 0. Also, 

€ [0,xj. Now, let t Ao(x) = 0 for some t E [O,x]. 
Then for any p E S, (p A a) (p) ji (p) A a(p) = 

t A p A o(p) = t A a(p) = t A x A o(p) = t A p A a(x) = 

0 a(p). This implies i1  A a = 0, and so o. Then 

11t(x) ot(x). Thus, t = t A x ot(x). This shows that 
o*(x) is the pseudocomplement of o(x) in [ 0,x]. 0 
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Corollary 3.3. Suppose S is a sectionally 

pseudocomplemented distributive nearlattjce with 0. If x 

is the pseudocomplement of x in [O,y], then 

+ * x = ()• 

Recall from chapter I that a distributive 

nearlattjce S with 0 is semiboolean if each interval 

[0,x], x € S is boolean. 

Theorem. 3.4. Let S be a distributive nearlattice with 

0. For given n such that -1 < n :5 w , the following 

conditions are equivalent: 

S is sectionally in B. 

M(S) is in B. 

Proof. (i) implies (ii). The case n = -1 is trivial. The 

case n follows from proposition 4.3.1. 

For n = 0, S is semiboolean. Then by proposition 

4.3.1, H(S) is pseudocomplemented and for a E H (S), 

ot(x) = o(x)+ for each x € 5, where o(x) is the 

pseudocomplement of 0(x) in [0,x]. Since S is 

semiboolean, o(x)+ is also the relative complement of 

0(x) in [0,x]. Then (a V a') (x) = o(x) V ot (x) 

o(x) V o(x) = x = i(x). This implies a V a' = 
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and so o  is also the complement of o in H(S). Therefore 

H(S) is boolean. 

Now suppose S is sectionally in B
.  ; 1 n < 0. 

For € M(S and for each x € S, using 

proposition 4.3.1. 

A.....A on)' VV( 1  A.....A A.....A o)t J(x) 
-4 

A...A o) (x) VV(01  A ... A cy A.....A a) (x) 

=( (o A.. .A o) (x) ) V V( °i  A ... A a A. .A o)(x) ) 

= (ot(x) A. -A o (x))VV(o1(x)A ... Ax)A ... A0())4  

n 
= (o1(x) A.. .A o(x)) V V (o1(x) A ... A 

i=1 

A ......A an (x))+ 

= x = t(x) 

Hence, (c A... .A o) V (oi A ... . A c)t  V... .V (o A 

....A a*  )' = i, and so H(S) in is B 

(ii) implies (i). The case n = follows from 

proposition 4.3.2. For n = 0, M(S)%ig boolean. Then by 

proposition 4.3.2, S is sectionally pseudocomplemented. 
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Suppose x C [O,y]. Then the pseudocomplemen p of 

11 is also the complement of Thus, ji V P 
t 

x 
 =x . If 

is the pseudocomplement of x in [O,y], then by 

corollary 4.3.3, y = t(y) = (p V ti) (y) = 

11  (y) V i (y) = (x A y) V x x V x . This implies 

x4  is the relative complement of x in [O,y] and hence S 

is semiboolean. 

Now suppose M(S) is in B ; 1 n < . Let 

• . ,xC [O,y]. Then using proposition 4.3.1. 

y= x(y) = ( PI A... 

..A llx )t  J () 

= (p1 . . .A p1 (y) v V(P1 A . ... A p 1 A . . . A p1  )() 

= (x1  A. .A x A y)4  vV (x1  A. . . A 11t1(Y) A ... A x Ay) 

= (x1  A ... A x)4  VV(x1  A .... A(p (y)) A ... A x)4  

(x1  A ... A x) VV(x1  A .... Ax1. A ... A x) 

Which implies [O,y] is in B and so S is sectionally 

in B. 
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Following lemmas are needed for further 

development of this chapter. We omit the proof of 3.5 as 

it is trivial. 

Lemma 3.5. (i) Let S be a distributive nearlattjce with 

0. If 0 5 x E S and the interval [0,x] is 

pseudocomplemented, where yf is the pseudocomplement of 

y e 10,x], then in the lattice of ideals of S, 

H (y + J = (y] fl (xl and (y I (y) fl (xl. 

(ii) If S is a distributive nearlattjce with 0 and 

0 5  x c S is such that (y] fl (xj is principal for each 

y C [O,x], then [O,x] is pseudocomplemented and 

(y]' fl (xl = (y]. 0 

Lemma 3.6. Let S be a distributive nearlattjce with 

0. For any r € S and any ideal I, 

((r] fl fl (rj = I (1 (r). 

Proof. Obviously R.1-1.S C L.H.S. To prove the reverse 

inequality, let t C ( (r) fl I)t fl (r]. Then 

t 5 r and t A r A i = 0 for all i € I. This implies 

t A i =Oand so t € I. Thus, t € I A (r) and this 

completes the proof. 0 



111 

Recall that a prime ideal P of a nearlattice S with 

0 is called minimal prime ideal if there exists no prime 

ideal Q such that Q p. 
F] 

Followling lemma will also be needed for the proof of 

the next theorem. This is an improvement of 1..4.3 and we 

1 
omit the proof as it can be done in a similar way. 

Lemma 3.7. If S1 is a subnearlattice of a 

distributive nearlattice S and P1  is a minimal prime 

ideal in S1, then there exists a minimal prime ideal P in 

S such that P1 S1  fl P. U 

We conclude this chapter with the following theorem 

which is a nice extension of [10, Th. 4.51. 

Theorem 3.8. Let S be a distributive nearlattice with 0, 

For given n such that 1 :5 n < w , the following conditions 

are equivalent 

S is sectionally in B 

H(S) is in B 

For any y € S, and for x1  ......... , x (y], 

(yj ( (x1] A .......A (xe ] )' V ( (x1  ] A..... . 

.A (x] )*V 
• ......V ( (x1  j A.......A (xJt)t; 
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For any x1  ......... , x E S, 

(x1] A.......A (x])'  V ( (x1 ] A.......A (xJ ) V... 

V ( (x1 1 A.......A (x]t) = S 

S is sectionally pseudocomp].emented and each 

prime ideal contains at most n minimal prime 

ideals. 

S is sectionally pseudocomplemented and for any 

n+1 distinct minimal prime ideals p1  ...... 

P1  V......V = S. 

a 

Proof. (i) <===> (ii) have already been proved in 

Theorem 4.3.4. 

(i) implies (iii). Suppose 2 < ri. Let x be the 

pseudocomplement of xi  in [O,y]. By lemma 4.3.5, 

(xii A.....A (x It  A.....A (xc] 

= (x1 1 A. . . . .A (x11*  A (y) A .... A (x] 

= (x1 1 A.....A (x) A.....A (xe] 

(x1  A.....A x A......A x). 

Since (i) holds, so 

(yj ( (x1  A ..... Ax) V A ..... A X j  A .... A x)i 
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A. Ax)J VV((x1  A ..... A x A .... Ax)] 

((x A ... Ax]' A(yJ)VV(( 1  A...Ax4. A...Ax}'A(y)) 

((xi] A . A(x)) VV(( 1 J A . A() A... 

.... A(x] )t 

= ((x1 } A .... A (xe] )t VV( (xi] A. .A (x ] A. .A (x]), 

by lemma 4.3.5 and as each x1 < Y. If n = 1, then by (i) 

and using lemma 4.3.5, we have 

(y] (x + V xi 
+4
] 
++ = (x1 +  I V (x1  I 

St ((x] A (y]) V ((xi] A (y]) 

(xi]' V (xl]'S  

(iii) Implies (iv). Firstly suppose 2 < n. 
Let x1  . ........ x C S. Choose any r C S. Then by (iii). 

n 
(r] ((r A x] A .... A (r A x]) V V (( r A x1 ] 

1=1 

A ... A (r A xi]' A ... A ((r A xJ)', and so 

(r] (((r A xl] A ... A (r A xJ) A(r)) VV(((r A x1 1 A. 

A (r A x]5  A.....A ((r A xe))' A (r))) 
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Now, by lemma 4.3.6. 

((r A x1 ] A .... A (r A x1) A (r] = ((xi] • 

.A (x] 
)t 
 A (r). 

Again for each 1 < i :5 n, r A x1  5 x1  implies 

* * 
(r A x] M (xl 

Thus , (r A x1 1 A., .A (r A x11*  A.....A (r A x] 

(r A x1 1 A ... A(x1 l t  A.....A (r A x,], and so 

((r A x1] A ... A (r A x] A..A (r A x]) A (ri 

( ( r A xi]  A . .. A(x1 1t  A ...... A( rAx ] ) A (r] 

= ((xi] A ... A(x] A.. .. . .A(x] )* A (r], 

by using lemma 4.3.6 again. 

Therefore, ( r rz ((x1 ] A ... A (x])t  V ((x1 ]t  A... 

.A (xc] ) V... .V ((xi)  A .' ...... A 

Which implies that 

((x1 1 A ... A (xe] )* V ((x1 ]t  A ... A (x])t  V .... V ((x1 1 

A ........... A(x1t)t =S. 

If n = 1, then for any r € S, we have by (iii) that 

(rl (r A x11 
* 
V (r A x1] 

*1 
 

Thus, (r] = ((r A x1 1t  (1 (r]) V ((r A x1]tt  fl (r].) 

= ((xi] fl (r)) V ((r A x11" fl (r]) 

by lemma 4.3.6 

(x11 
* 
V (x1] 

8*
and hence 

(x1]8  V (x1 ]88  = S 
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-p (iv) implies (i) follows exactly from the same 

proof of [10, Th.4.5(iv) ===> (i)]. 

implies (vi). Suppose (v) holds, and 

are distinct minimal prime ideals. If 

P1  V .......V P
nil  . S, then by 1.2.5, there exists a 

prime ideal P containing P1  . ........ rl' which 

contradicts (v). 

implies (v). Suppose (vi) holds. If (v) does 

not holds, then there exists a prime ideal P which 

contains more than n minimal prime ideals. Then by (vi) 

P = S which is impossible. 

(iv) implies (vi). We omit this proof, as it can be 

proved exactly in a similar way that Cornish has proved 

(iv) ===> (vi) in [10, Th.4.51. 

(vi) implies (i). Suppose (vi) holds and a € S. Let 

,Q, 1  be n+1 distinct minimal prime ideals in 

[0,a]. By corollary 4.3.7, there are minimal prime 

ideals P1  in S such that Qi  = [0, a] fl P1  for each 

1 5 i n+1. Since Qj  are distinct, all P are also 

distinct. By (vi), (a) = (a] A (P1  V ..... V = 

( (a) A P1 ) V.......V ((a) A = Qj V ......V 
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Since each interval LO,a] is pseudocomplemented, so [O,a) 

B, by (31, Th.11, and hence S is sectionally in B. 

S 

a 
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