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ABSTRACT

American Mathematician Lotfi A. Zadeh in 1965 first introduced the concept of fuzzy
set. He interpreted a fuzzy set on a set as a mapping from the set into the unit interval
I= [0, 1], which is a generalization of the characteristic function of the set. Many
mathematicians throughout the world used this set to fuzzify different areas of
mathematics. Fuzzy supra topology is one of the outcomes of such fuzzification of the
usual topology. In this thesis, we have studied and have introduced several results on
fuzzy supra topological spaces. At first we have discussed the standard definitions and
properties of fuzzy supra Ry and R; topological spaces, which are found in the
literatures. Then we have introduced some new definitions and properties for these
spaces. We have also studied the Fuzzy supra To, T, T, and Fuzzy supra regular
topological spaces and obtained the following properties, such as, Good extension,
Initial, Reciprocal, Productivity, Hereditary and Homeomorphism, etc. Moreover we
have discussed compactness of Fuzzy Supra Topological Spaces and have proposed
some new definitions, theorems and proofs.
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INTRODUCTION

This thesis is a study of Fuzzy Supra Topological Spaces.

Fuzzy Mathematics

The concept of fuzzy set was introduced in 1965, by the American Cyberneticist Zadeh,
L.A., in his classical paper [66] as the generalizations of the concept of the
characteristic function of a set to allow its grade of membership functions ( grade of

membership of x in A) representing p, (x), belonging into the unit interval [0. 1]. That
is the nearer the value of p,(x)is to 1, the higher is the grade of membership of x in A.

A set A in ordinary sense of the term membership function can take only two values 0

and 1, with p,(x)=1 or 0 according as x does and does not belong to A. This concept

led to the ‘fuzzification’ of many areas of mathematics and also Fuzzy Mathematics has
found numerous applications in different fields such as Robotics, Pattern Recognition,

Military control, Medical diagnosis Psychology, Taxonomy, Economics etc.

Fuzzy Topology

General topology is one of the most important branch of mathematics in which the
notation of fuzzy set has been applied systematically. In 1968, C. L Chang [21] did
‘fuzzification” of topology by replacing subsets in the definition of fuzzy topology by
fuzzy sets. Since then a large body of mathematicians have been working in this area,
such as, C. K Wong[63, 64], Lowen, R., [33,34], Hutton, B., and Reilly, 1., [30], and
others.

Several definitions of Ry, Ry, To, T, T> and Regular topological spaces were
introduced and studied by many mathematicians in fuzzy topological spaces. In this
thesis we try to show that these definitions are equally and significantly working in
fuzzy supra topological spaces also. For our whole work we prefer the concept of fuzzy

topology given by Chang, C.L., [21].



Fuzzy Supra Topology

In 1983 Mashour, A.S., Allam, A.A., and Khedr, F.S., [38] introduced the concepts of
Supra Topological spaces and studied S-continuous and continuous functions in those
Spaces. In 1987, Abd ElI-Monsef, M.E., and Ramadan, A.E., [1] introduced the fuzzy-
supra topological spaces and studied fuzzy supra-continuous functions and obtained a
number of characterizations. Also fuzzy-supra topological spaces are generalization of
supra topological spaces. In 1996, Min, W.K., [40, 41] introduced fuzzy s-continuous,
fuzzy s-open and fuzzy s-closed maps and established a number of characterizations. In
2003, Mukherjee, A., and Bhattacharya B., [43] introduce s- Induced L- Supra
Topological Spaces In 2004, Gupta, M.K., and Singh, R.P., [27] introduced the
concepts of fuzzy pairwise s-open mapping and fuzzy pairwise s-closed mappings and
study the implications that exists between them. The main purpose of our study is to
extend the concepts of Fuzzy Supra topological spaces and to obtain some results

regarding them.

Summary of the Thesis

The thesis is divided into eight chapters.

The preliminary definitions and results which are used in the succeeding chapters are
given in the first chapter. Due references are given wherever necessary. Some of the
preliminary results which are relevant to each chapter have been given at the beginning
of the corresponding chapter.

The concept of Separation axioms is one of the most important concepts in topology. In
this thesis from chapter two to chapter seven, we investigate several types of separation

axioms in Fuzzy Supra Topological Spaces.

Chapter two is a study of Fuzzy Supra Ry Topological Spaces. In this chapter we list
possible definitions of Fuzzy Supra Ry Topological Spaces and investigate implications
and non-implications among these concepts. We also investigate good extension,
reciprocal, Initial, Productivity, hereditary Properties’ and homeomorphic properties in
Fuzzy Supra Rg Topological Spaces.

Chapter three is a study of Fuzzy Supra R; Topological Spaces. In this chapter we study



Xi

and investigate several properties of FSR, as in Chapter two.

Chapter four is a study of Fuzzy Supra T, Topological Spaces. This chapter contains
three sections; first section is on different types of definitions, implications and non-
implications among these definitions with some lemmas and counter- examples, second
section is on good extension property of supra Ty topological spaces. The third sections
are on subspace, heredity and productive properties and on homeomorphic property of

fuzzy supra Ty topological spaces.

Chapter five is a study of Fuzzy Supra T Topological Spaces. We find several results

on Fuzzy Supra T spaces in a similar way as in chapter four.

In Chapter six, we study Fuzzy Supra T, Topological Spaces. Here, we study the fuzzy
Hausdorffness concepts of Gantner, T.E., Steinlage, R.C., and Warren, R.H.,[24]
Srivastava, R. Lal S.N.,and Srivastava, A.K.,[ 58], Sarkar , M., [52], Ali, D.M., and
Srivastava, A.K., [5], Ghanim, M.H., Mashhour, A.S., and Fath Alla, M.A., [25]. We
show the implications and non-implications among these concepts. We study Good
extension, Initiality, hereditary and productivity of fuzzy supra Hausdorff spaces and
also investigate the mapping between two Fuzzy Supra T, Topological Spaces, and

study some a- type fuzzy supra Hausdorff spaces.

Fuzzy Supra Regular Topological Spaces have been studied in Chapter seven, we study
the fuzzy Regular concepts of Hutton, B., and Reilly, 1., [30], Sarkar , M., [52], Ali,
D.M., [10], Ghanim, M.H., Keree, E.E.,and Mashhour, A.S., [26], Benchalli, S.S., and
Malghan, S.R., [19], Wang, G.J., [60],in Fuzzy supra topological spaces with some
other properties of the same.

Chapter eight is a study of Compactness in Fuzzy Supra Topological Spaces. Many
topologists studied the concept of fuzzy compactness such as Gantner, T.E. et. al [24] ,
Lowen, R[33, 34], Wang, G.J.[60]. «-compactness is studied by Choubey, A. and
Srivastava, A.K.[22], Shi, F.G. [55], also studied in [24]. In 1988 Mao-Kang, L. [37],
introduce the S'- paracompactness concept in fuzzy topological spaces. In this chapter
we study fuzzy supra compactness, Fuzzy supra o - compactness, Fuzzy supra

paracompactness m



CHAPTER-I

Preliminaries

1. Introduction:

This chapter containing concepts and results of the Fuzzy sets, Fuzzy Topological
spaces, and Fuzzy Supra Topological spaces. Several preliminary definitions and
results which are used in the succeeding chapters are being given here. Due references
are given wherever necessary. Most of the results are quoted from various research

papers. Through the sequel, we make use of the following notations.

1.1 Symbol :
1=[0,1] : Closed unit interval.
e : An index set.
L=[0.1) : Right open unit interval.
Ip=(0.1] : Left open unit interval.
Ip;=(0,1) : Open unit interval.
A v, u v o Fuzzy set.
(X, 0) : Fuzzy topological space.
o A : Fuzzy supra topological space.
(X, i . Supra topological space.

I(t*)= {u" (0. uet *)}: Supra topology on X

1.2. Fuzzy Set:

This thesis is a study of fuzzy supra topological spaces. To present our work in a
systematic way. we consider in this chapter various concepts and results from the
theories of fuzzy sets. Fuzzy topological spaces and Fuzzy supra topological spaces

scattered in various research papers. For this, we start with.

1.2.1. Definition: Let X be a non — empty set and A < X,now the characteristic
function of A is a function, that declares which elements of X are members of the set A
and which are not. It is denoted by xa or 1. The function ko or 15 : X —[0, 1] is

defined by



1,(x)=1ifxeA
=0, ifx € A.
Set A can be represented for all element x €X by its characteristic function g, (X):

such sets are called crisp set. Throughout this work, we use, if needed, 14 to denote the

characteristic function of a set A .

1.2.2. Definition: Let u: X— I, then the set {x€X, u(x)>0} is called the support of u
and is denoted by ug or supp(u).If 4 < X, then 15 denotes the characteristic function of
A. The characteristic function of a singleton set {x} is denoted by 1. [10]

1.2.3. Definition: Let X be a non - empty set and let I= [0, 1]. A fuzzy set in X is a
function : A: X—I which assigns to each x € X, its grade of membership A(x) € 1. [66]
1.2.4. Definition: Let IX denote the set of all mappings A X—=I. A member of X is
called fuzzy subset of X.

1.2.5. Definition: Let IX denote the set of all mappings A: X—I. A member of * is
called fuzzy subset of X, but the name fuzzy set is now is almost universally use.

1.2.6. Definition: A fuzzy subset is empty if and only if its grade of membership is
identically zero on X; it is denoted by 0.

1.2.7. Definition: A fuzzy subset is whole if and only if its grade of membership is
identically one on X; it is denoted by 1.

1.2.8. Definition: For any two members Aand u of X, A= uif A (x) = u (x) for each x
€X. and in this case X is said to contain z and is denoted by A 2 u or # is said to be
contained in A.[66]

1.2.9. Definition: Let X be a set and u and v be two fuzzy subset of X. Then u is said
to be the complement of v if v(x) =1-u(x), for every x eX. It is denoted by u or
4", Obviously (u®)° =u . [65]

1.2.10. Definition: Let X be a set and let 1= [0, 1]. Let IX denote the set of all

mapping: @: X—= . A member of X is called a fuzzy subset of X, and unions and

intersections of fuzzy sets are denoted by v and A respectively, and defined by

Vi, =sup { K, (x) i€l and xeX}

A M,=inf {4 (x):i€EJand XEX}.[40]



1.2.11. Definition : A fuzzy point in X is a special type of fuzzy set in X with
membership function

u(x) =r, for xeX and

u(y) =0, for y=x where 0< r <1, V yeX.

This fuzzy point is said to have support x and value « is denoted by X, or a.lyx

1.2.12. Definition: Let ol be a fuzzy point in X and u be a fuzzy set in X. Then a1 Eu
if and only if a<u(x). [42]

1.2.13. Definition: For all fuzzy points ol and for all fuzzy set u, v in X, we have
(i)u Svifand only ifaly€u > alEv.

(iu=vifand only ifalyEu = al Ev.

(iii) alyEuvyv if and only if el Eu or al € v.

(iv) alyeuav if and only if alyEu and alE v.

V) aly = av 1y

1.2.14. Definition: A fuzzy set u in X is the union of all its fuzzy points, i. e. u =

V. aly [42]

Q]IEH

1.2.15. Definition: Let A : X—I be a fuzzy set. If there exist a €1, a #0, such that
A(x)> 0, & A(x) = a V xEX, then 4 is called Pseudo crisp set.

1.2.16. Definition: A Partition of a nonempty fuzzy set A is a collection of fuzzy sets A

such that A= {ﬂ,.l i€J, 4,SAand 4,#0 }where i#] J,A1,=0and v ) =2

el

1.3. Mapping and Fuzzy Subsets induced by mappings:

1.3.1. Definition: Let f: X—Y be a mapping and u be fuzzy set in X. Then

the image f(u) is a fuzzy set in Y which is defined as

sup {u(x) : fx)=y} if f'(y) = o

f(u)(y) = 0 if £'(y)=0[4]



1.3.2. Definition: Let f: X—=Y be a mapping and u be fuzzy set in X. Then the inverse
image f'(u) is a fuzzy set in x which is defined by f'(u) (x) = u (f(x)) ¥ xEX. [21]
Here we mention some properties of fuzzy subsets induced by mappings.

Let f: X—=Y be a mapping, then

(@) w=u = fuy) = fw) Yu, w €N,

(b) w=uy = ') <f' () Vu, u el

(¢) ux £'(f(u)), where u be a fuzzy set in X and if f is one- one then u = " (f(u)),

(d) f(f'(u)) = u where u be a fuzzy set in X and if f'is onto then f(f' (u))=u,

(e) f'(1-u)=1-f'(u),

(H Iff(u) =vthenu = f'(v) where u and v are fuzzy set in X,

(g f( A W) <A f(uy),

M) (M) =AFi(w).
@ f(vw)=yfw)and
0 Fevw) =y ).

(k) Let f be a function from X into Y and g be a function from Y into Z. Then( g, f)"
(w)= ) g'l( w ) ), for any fuzzy subset win Z ., where (g,f) isthe composition

ofgand f.

1.3.1. Proposition: Let f: X—=Y be a function, and u 1%, vel”, then the following hold:

(i) If x , is a fuzzy point in X, then f(x , ) = [f(x)] . is a fuzzy point in Y.

(ii) If x , is a fuzzy point in u 1%, then f(x , ) is a fuzzy point in f(u)€ i

(iii) If f(x,) is a fuzzy pointinu el”, then X, is a fuzzy point in flue ¥

(iv). If xis a fuzzy point in Y, then f"(xu) need not to be a fuzzy point in X.
However, if f is injective and x, € f(X), then f'(x,) is a fuzzy point in X and is
defined as f'(x ) = [f' ()], [21]

1.4. Fuzzy Topological Spaces:

Before define fuzzy topological space we would like to define General topological

space.

1.4.1. Definition: Let X be a non-empty set and T be a collection of subsets of X



satisfying the following axioms

(i) X, €T (i) if U € TVi€Tthen y Uie T , (ii)) if Ui, U € Then UinU2€ T
i€l

Then T is called topology on X and (X, T) will be called topological space.

Chang C. L. defined a fuzzy topological space as follows:

1.4.2. Definition: Let X be a non-empty set, and I= [0, 1], and 1 be the collection of
all mappings from X into I, i.e. the class of all fuzzy sets in X. A fuzzy topology on X,
is defined as a family t of members of I, satisfying the following

conditions.

(a) 0, 1€t

(b) If u; for all i€] then _vj u; €t (c) If u, vt then uAvEL.
1€

The pair (X, t) is called a fuzzy topological space. In short, fuzzy topological space is
denoted by fts. The members of t are called t- open (or open) fuzzy sets. A fuzzy set v

is called a t-closed (or closed) fuzzy set if 1-v € t. [21]

1.4.3. Definition: Lowen R. modified the definition of a fuzzy topological space
defined by Chang C.L. [21] changing of condition (a) namely 0, 1€t, to (a) all
constants @ £ t. In the sense of Lowen R. the definition of a fuzzy topological space
as follows:

Let X be a set and t< X is a fuzzy topology on X iff

(i) all constants & €t.

(i) Vu,vEt = uAVEL

(iii) V(#) jes St= Sup (#;)es €133

In the present thesis; we use the concept of fuzzy topology due to Chang C.L. [21], or

occasionally also due to Lowen, R., [33].

1.4.4. Definition.: Let (X, t) be a fts. A fuzzy set 4 in X isa neighborhood of a fuzzy
set uin X iff there is ¥ Etsuch that u =y = 4.160]

1.4.5. Definition : A fuzzy set uinafts (X,t)iscalleda neighborhood of a fuzzy

point x , if and only if there exist a fuzzy set u; € t such that x,e uy cu. A



neighborhood u is called an open neighborhood if u is open. The family consisting of

all the neighborhoods of X is called the system of nhds of x;. [42]

1.4.1. Proposition: Let u and v be fuzzy sets in a fts (x, t) . Then

(i). uvv=uvv and uAv=uAv /a0 \
(ii). u®AvO=(uav)® and u°v v < (v v)’ |
(iii). (1 - u)° = 1-u.

(iv).1—u =1- 2 [60]

1.4.6. Definition.. Let (X, t) be a fts and let A< X. The fuzzy topology ta is called the

relative fuzzy topology on A or the fuzzy topology on A induced by the fuzzy topology
t on X. Also, (A, ta) is called a subspace of (X, t). [40]

1.4.7. Definition: The function f:(X,t) ——> (Y ,s) is called fuzzy continuous if

and only if forevery ves , f'(v) et, the function f is called fuzzy homeomorphic

if and only if fis bijective and both fand ™! are fuzzy continuous. [47]

1.4.8. Definition: The function f:(X.t) —> (Y ,s) is called fuzzy open if and

only if for each open fuzzy set uin (X,t) ,f(u)isopen fuzzy setin (Y ,s) [20].

1.4.9. Definition: The function f:(X,t) — (Y ,s) is called fuzzy closed if

and only if for each closed fuzzy set u in ( X , t ), f(u) is closed fuzzy set in
(Y,s). [47]

1.4.2. Proposition ([47]Theorem 1.1 ) :- Let f: (X ,t)— (Y ,s) be a fuzzy
continuous function , then the following properties hold :
(i) Foreverys—closed v, f'(v) is t — closed.
(i) For each fuzzy point p in X and each neighborhood u of f(u), then there exist
a neighborhood v of p such that f(v)=u.
(iii) Forany fuzzy setuinX, f(u)c(f(u)).

(iv)  Forany fuzzy set vinY , ( f(v))c £ V).



1.4.3. Proposition ([20]Theorem 3.1) :- Let f:(X,t)—>(Y,s) bea fuzzy

open function , then the following properties hold:
(i) f(u®)c(f(u))®, foreach fuzzy set u in X .
(i) (' (v))°cf' (v, foreach fuzzy setvin Y.

1.4.4. Proposition ([20] Theorem 1.5) :- Let f:(X,t) —> (Y,s)bea

function. Then generated by f is closed if and only if f(_u)_f; f (ﬁ for each fuzzy set
uin X.

1.4.10. Definition:- A fuzzy topological property FP is said to be an initial property if
for each family of functions {f; : X > (X, t;) :jel }, whenever each fts (Xj, tj) Jjel,
has FP, then (X, t ) also FP, t being the initial fuzzy topology on X induced by the
family {fj;jel }.[11]

1.4.11. Definition:- 1f (X .t;) and ( X2,t 2) be two fuzzy topological space and
X = X | x X be the usual product and t be the coarsest fuzzy topology on X, then

each projection mi: X - X, i=1,2. is fuzzy continuous. The pair ( X , t) is

called the product space of the fuzzy topological spaces ( X1, i) and (X2, ty).[41]

1.4.12. Definition: Let {(X;, t;),,} be a collection of fuzzy topological spaces.

Let X= TIx; be their Cartesian product and p; : X— X; be the projection map. Then
iek

the fuzzy topology on X generated {p'(w) : 1 €J, uj €} is called the product fuzzy
topology on X and the pair (X, t ) is called the product fuzzy topological space. It can

be verified that p,'(u), i €J, as defined above, can be expressed as [1i,where A,=ui
kie J

if k=i and 1= X if k#i. [10]

1.4.13. Definition: Let a€[0, 1).A fuzzy topological spaces(X,0) is called a-compact if
and only if each a-shading family in & has a finite a-shading subfamily. [46]

1. 5. Fuzzy Supra Topological Spaces
1.5.1. Definition: Let X be a non-empty set and T" be a collection of subsets of X s.t.

(1) (pET' (i) X € T". Then (X, T") will be simply called a space. If (X, T") satisfies the



condition if Ui € T' Vi € T then v Uie T, (X, T") will be called supra topological

iel)
space .
1.5.2. Definition.: Let X be a non-empty set, and I= [0, 1] and I* be the collection of all
mappings from X into I, i.e. the class of all fuzzy sets in X. A subfamily t of I is said

to be fuzzy supra topology on X, if
(@) 0,1€t’ (b) @ ef Forallicl thenV ;€

(X, t") is called a fuzzy supra topological space. In short, fuzzy supra topological

space is denoted by FSTS. The elements of t" are called fuzzy supra open sets in (X,

t"). A fuzzy set A is supra closed if and only if complement of A i.e A°=l-Adisa
fuzzy supra open set in (X, t").We abbreviate topo. spaces for topological spaces.[1]
1.5.1. Example: let X= {a, b, ¢, d,} with a fuzzy supra topology.

t'={1, 0, {(a, 0), (b, .5), (c, 1), (d, 0)}, {(a, .5), (b, :25), (¢, 0), (d, 1)}, {(a, -5), (b, .5), (¢,
1), (d, 1)} }on X then the class of supra closed sets t" are

£¢={0, 1, {(a, 1), (b, .5), (¢, 0), (d, D)}, {(a, .5), (b, .75), (¢, ). (d, 0)}, {(=a, -5), (b, .5),
(c, 0), (d, 0)} }-

Note: It is clear that every fuzzy topological space is fuzzy supra topological space but
the converse may not true.

1.5.2. Example: Let X= {a, b}, and @, 5, ¥ € X . Let a(a) = .2, a(b) = .3; B(a) = 4,
B(b) = .1; y(a) = .4, y(b) = .3 then t' = {0, 1, @, B, y } is a fuzzy supra topology on X

butt" is not fuzzy topology on X.

1.5.3. Definition: Let X be a setand t be the class of all fuzzy sets in X and t* satisfies
the axioms of fuzzy supra topological space on X. This fuzzy supra topology t on X is
called the discrete fuzzy supra topology and the pair (X, t") is called the discrete fuzzy
supra topological space.

1.5.4. Definition: Let X be a setand t be the fuzzy supra topology on X consist of the
fuzzy sets 0 and 1 alone, then t" is called the indiscrete fuzzy supra topology and the

pair (X, t") is called the indiscrete fuzzy supra topological space.
1.5.5. Definition: The supra closure of a fuzzy set 4 is denoted by A, 0r A% or Scl(d),
and given by

Scl(A) = A {s gis a fuzzy supra- closed set and 4 =s}.[39]



1.5.6. Definition: The supra interior of a fuzzy set 4 is denoted by 1°or 1% or Si(4),
and given by
Si(4) =V{s disa fuzzy supra- open setand s = 4}.[1]

1.5.7. Definition Thez,-supra closure of a fuzzy set 4 is denoted by 7, —sc/(4) and
defined as
7, —scl(A) = A{u: pisa t,-fuzzy supra closed setand A < x }
The 7,-supra interior of a fuzzy set A is denoted by z, —sin#(4), and defined as
t,—sint(A) = v{u: pisa r,-fuzzy supra open setand u <4}
Note: In fuzzy topological space, we have HUA=(uUA) andu’n A% =(uni)’ .
But this is not satisfied in fuzzy supra topological space. [27]
1.5.8. Definition: Let (X, t') be a fuzzy supra topological space. Let A be an ordinary
subset of X. Then the relative fuzzy supra topology of A can be defined in the
following way; the subset A of X (in the ordinary sense) has a characteristic function
say s such that
pa(x) =1 if x€A
ta (x) =0 if xEA.

Let ¢, ={AArA: 4 et'}, then ¢, is called a fuzzy supra subspace topology on A.

1.5.9. Definition: Let (X, t) be a fuzzy supra topological space. A fuzzy supra
topological property is said to be hereditary if whenever a space has that property, then

so does every subspace of it.

1.5.10. Definition: Let (X, £ ) and (X, r3) be two fuzzy supra topological spaces and
two fuzzy supra topologies ¢ and ¢, be such thats Cr;, we say that ; is finer than

£ and is t; coarser than t,.

1.5.11. Definition: Let (X, £,) and (Y, 7>) be two fuzzy supra topological spaces. A
mapping f: (X, ;) = (Y, 1) is called fuzzy supra continuous if the inverse image of

each fuzzy supra open set in (Y, £5) is ¢, fuzzy supra open in X.
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1.5.12. Definition: Let (X, ¢;) be a fuzzy supra topological spaces and (Y, ¢,) be a
fuzzy topological space. A mapping f: (X, )= (Y. t,) is called fuzzy s- continuous if
the inverse image of each fuzzy open setin (Y, ¢,) is t; fuzzy supra open in X. [41]
1.5.13. Definition: Let (X, ;) and (Y, ;) be two fuzzy supra topological spaces. A
mapping f: (X, #,) = (Y, r3) is called fuzzy supra continuous if ' () <h . [1]
1.5.14. Definition: Let (X, 1) and (Y, t>) be two fuzzy supra topological spaces.

A mapping f: (X, 1) = (Y, ) is called fuzzy supra open map if the image of each

fuzzy supra open in f, is ¢> fuzzy supra open in Y. [40]

1.5.15. Definition: Let (X, #;) and (Y, f>) be two fuzzy supra topological spaces. A
mapping f: (X, 1) = (Y, £>) is called fuzzy supra closed map if the image of each

fuzzy supra closed in ¢ is f, fuzzy supra closed in'Y.

1.5.16. Definition : Foreach i €J, Let fi: X — (Y, 1) are the functions from a set X
into fsts (Y;, T ) then the smallest fuzzy supra topology on X for which the functions
f, i €] are fuzzy continuous is called initial fuzzy supra topology on X generated by

the collection of functions {f; i € J}. If t is the smallest supra fuzzy topology on X, then

t is generated by f;‘ (u,);u, €t;and jet;.

1.5.17. Definition: Let (X, t*) and (Y, s*) be two fuzzy supra topological spaces. Ifu,
and u , are two fuzzy supra open subsets of X and Y respectively, then the Cartesian
product u | x u 7 is a fuzzy supra subset of X x Y defined by (u | xuz)(x,y)=min

(u1(x),ua(y)), for each pair (x,y)EXxY

1.5.18. Definition: Let {(X;, t)),} be a collection of fuzzy supra topological spaces.

Let X= [1X; be their Cartesian product and m; : X — Xi be a projection map assigning

iek
to each element of its ith. coordinate, T {(xi, t)., }= Xi it is called the projection

mapping associated with the index i.
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1.5.19. Definition: Let (X, t') and (Y, s") be two fuzzy supra topological spaces and f:
(X, t) = (Y, s') be any function, then f is called fuzzy supra homeomorphism if and

only if f is fuzzy supra bijective, fuzzy supra continuous and fuzzy supra open.

1.5.20. Definition: Let (X, t') is a fuzzy supra topological space. A fuzzy set A is
called quasi coincident with a fuzzy set B denoted by AgB if A(x)+B(x)>1 for some
x€X. A fuzzy point x,=A is called quasi coincident with the fuzzy set A denoted by

x@A if, t +A(x)>1. The negation relation is denoted by x; —q A

1.5.21. Definition: Let X be set and (X', t"/) be an fuzzy supra topological space. Let us
consider a function f: X — (X, t”). Suppose t = {f Y(U):Ue t" }. Then t is a fuzzy

supra topology on X. We call t', the reciprocal supra topology on X.

1.5.22. Definition: Let (X, t) is a fuzzy supra topological space. Then (i) a subfamily
B of t" is called a base for t iff each member of t* can be expressed as a supremum of
member of B and (ii) a subfamily S of t" is a subbase for t iff the family of all the finite

infima of members of S is a base for t

1.5.23. Definition: - Let f be a real valued function on a fuzzy supra topological space
(X, t*). If {x€X: f(x)>a } is supra open and for every real @ where a €I, the fis called

lower semi continuous function.

1.5.24. Definition: Let X be non empty set and T" be a supra topology on X, and let t'
=w (T') be the set of all lower semi continuous function from (X, T to I with usual
topology. Thus t'= w (T") = {uer: u'l(a, 1] €T"} for each a €, t'=w (T)tobea
fuzzy supra topology on X.

Let P be the property of a supra topological space (X, T") and FSP is fuzzy supra
topological analogue. Then FSP is called good extension of P “If the statement(X, ™
has P if and only if (X,@ (T")) has FSP” holds good for every fuzzy supra topological
space (X, T
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CHAPTER-II

Fuzzy Supra R, Topological Spaces

2. Introduction:

The separation axiom Rq was introduced and studied by Shanin, N.A., [53] in general
topology. Several topologists introduced fuzzy R, spaces in various ways, after the
introduction of fuzzy topological space by Chang, C.L., [21] 1968.In fuzzy topology,
this property was introduced and studied mainly by Srivastava A.K.[57], Lowen, R.,
and Wuyts, P., [36]; and also by Ali D.M.,Wuyts,P..and Srivastava A.K. [8]. In this
chapter, we introduce and study some Ry properties in fuzzy supra topological spaces
and obtain their several features mainly in the sense of Chang, C.L. We symbolize,

fuzzy supra R topological space by FSRq.

2.1. Definitions of FSR, spaces.

2.1.1. Definitions:- Let (X, t') be fuzzy supra topological space, Ro- properties of (X,

t') as follows: [We recall first nine axiom from [8]]
FSRo(i) : Forevery pairx, ye X, x #v, l'_,,(x) =0= C(y) =0.
FSRo(ii): Vv pairx,yeX,x#y,V a € ly:al, (y)=a e vV €ly:1,(X)=4

FSR(iii) : v Aet’, V xeX and ¥ a< A(x), a1, <1

FSRy(iv) : V det’,V xeXandV a< A (x), &1, = A.
FSRy(v) : For every pairx, yeX, x £y, C(y) == E(x) =1.
FSRy(vi): Forevery pairx, ye X, x #y, I_:.(y) = ]__]_,(x).

FSRq(vii) : For every pair x, yeX, x #y, f;(y) =E(x) € {O, ]}.

FSRo(viii) :  Forevery pairx, yeX,x#yand va €lg al, (y)=a= a(x) =a.

FSR(ix) : Forevery pair X, yeX,x# yand Va € |, cx—lx(y) = O.'—Ij,(x).
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FSRo(x): vX,y eX, x#y, whenever 3 1¢; ,with A (x)=0and A (y)>0, there
also also exist u € t" with p (x)>0,and u(y)=0.

FSRy(xi): V¥ x, y €X, x#y , whenever 3 Aet’, with 2 (¥)<4 (x) there also exist
y7 et with L1 (X)< 1 (y).

2.1.1. Lemma: For any fuzzy supra topological space (X, t'), the following are

equivalent:

(a) FSRy(i), i.e. for every pair x, ye X, x £y, E(x) =0 = K(J”) =0.

(b) Forevery pair X, ye X, x#y, i:(y) =0 E(x) =)

(c) V X,y €X, x#y, whenever 3 Aet’, with 2(x) = | and A(y) = 0 there also exist
uet’ with z(x)=0and u(y) = 1. [59]

Proof: (a)=>(b):

Suppose (X, t') is FSRy(i). Suppose 1,(y)=0. Then since (X, t) is FSR(i), so
C(x) =0. On the other hand iff(x) =0, then by FSRq(i), a(y) =0. Thus we see that
L(y)=0s1,(x)=0.

(b)=(c):

Suppose X, ye X, X # y and there exists Aet’, such that, A(x) = | and A(y) =0. Put m =

I— 4. Then met™, m(x) = 0 and m(y) = 1. Again we have for every x, y€X, such that x
#y, m(x) = 0 and m(y) = 1. Taking m = E and so I(x) = (. By (b)i(y) =0. This
implies that there exists a t '-supra closed set k such that k(x) = 1 and k(y) = 0. Put u=
I —k. Thenclearly zet’, z(x)=0and u(y)= 1.

(c)=(a):

Suppose X, ye X, x # y and 1,(y) = 0. This implies that there exists a t '-supra closed set
k = 1_; such that k(y) = 0 and k(x) = 1. Put 2 = 1-k. Then A is a t "-supra open set such
that A(x) =0and 4 (y) = 1. By (c) there exists a t -supra open set g such that i (x) =

land ¢ (y)=0.Putm=1- u. Thenmisat '-supra closed set such that m(y) = 1 and
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m(x) = 0. Thus there exist a t '-supra closed set m such that m(y) = | and m(x) = 0.
Therefore, K(x) =0.m
2.1.2. Lemma: For any fuzzy supra topological space (X, t'), the following are

equivalent:

(a) FSRq(ii), i. e. Forevery pair x, ye X, x#£y,

(Vo:e!o :ax(y)=a<:>Vﬂefn :E_},(,r):ﬁ)

(b) For every x, ye X, X # . if there exists cce lg such thata:—lx (y) <« , then there exists
Belp such that B"l_y(x) <f3.

(c) FSRy(xi).

Proof: (a)=>(b):

Suppose x, y €X, x # y and there exists aely such that c?ﬂ(y) Llaverrrreenna(1)
Suppose for every Belg, Wx(y):ﬁ. Then by (a) for every aely, a“}:(y) =a, which

contradicts (1). Therefore there exists Belp such that ;GTJ,(x) < f.

(b)=(c):

Suppose for every X, ye X, X # y, there exists a t "-supra open set 4 such that A (y) < A
(x). Let B =4 (y), then ﬁ—l},(x) < 3. Hence by (b), there exist agely such that
ﬂ(y) < a,.This implies that there exists a t -supra closed set, say 9 such that 7 (y)
<0 <77 (x) and s0 9 (y) < 5(x). Put gz=1—nThen u isat'-supra open set and s (x) <
H(y)-

(c)=(a):

Suppose for every pair x, yeX. x # y and for every aely, a1, (y) =&,. Let Bely. Then
B, (y) = B. We have to show that f1,(x) =f. Suppose #1, (x)= 8 Thus S, (x) <B.
This implies that there exists a t -supra closed set, say n such that % (x) <7 (y). Put u

=1-n.Thus g is supraopen and u (y) < u (x). Hence by (c), there exists a t *-supra
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open set say 4 such that 4 (x) < 4 (y). Therefore, A(y)l (x)< A(x), and so A(y)1, (x)

<Ay}, which is a contradiction, so B_ly(x) =5.m

2.1.3. Lemma: For any fuzzy supra topological space (X, t"), the following are
equivalent:

(a)  FSR(iii).

(b) Forevery Aet’, there exists M c t © such that 2= Sup uz, €M

Proof: (a)=>(b):

Letuet’. PutM = { a,: X X, < A()} By FSR(iii), for every o< 2 (x), al, < 2.
Clearly, A=Supu , LeM.m

(b)=(a):

Let xeX and 4 is a t - supra open set such that o < A (x). By (b) there exists M £

such that 1= Sup x, £ €M. Thus there exists a 1 €EM. such that a< g (x). That is

ol <y, s0. el < p = A Thus (X, 1), is FSRo(iii).m

2.1.4. Lemma:  For any fuzzy supra topological space (X, t"), the following are

equivalent [8].

(a) FSRy(iv), i.e ¥V det’, xeX and Vo< 4 (x), o 1= 2

(b) Forevery 4 et’, and for every X €X, m <A.

(¢) Forevery A et’, A=Sup A(x)],, XEX.

(d) Forevery pairx, y € X, x # y and for every Aet’, there exists uet'® such that p
(x)=A(x)and u (y) = A (y).

(e) Forevery pairx,y € X, X #y, the subspace ({Xx, y}, t'{x, y}) is self duel, i.e.
(0% ¥} U y1= (% y3 £ 3))

(f) Forevery pairx,y € X, x #y and for every pair o, Bel, o #[3, al(NEB=
(1-p)l,(x)<l-a.

Proof: (a)=(b):

Let 7et’, and x €X, Put o = 4 (x). By FSR(iv), Or:—l)r <AThus A(x)], = 2Am

(b)=(c): -
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Suppose aet’, If (b) is satisfied, then for every xe X, A(x)1, = 4. Therefore
Sup A(x)1, =4, x€X (1)

Now if ye X, we also have 7 (y) =A(y )1, (y)=Sup A(x )1, (y), XEX. Thus

= Sup A(x)1, (2)
From (1) and (2) 4 =m, XEX.

(c)=(d):

Let det’, and x, yeX such that x # y. Without loss of generality suppose
o= A(x)< 2(y)=B. Then )71 = Ax)=a.Puty= Ej . Now yis a t*-supra closed set
such that u(y) = 7 (y) = B and p(x) <o = 4 (x). Put p = uvo. Now g (X) = a = 2 (X),
and & (y) = B = 4 (y). Thus we see that there exists a pet ® such that u (x) = A (x), and
) =4(y). =

(d)= (e) :

Suppose (d) is satisfied. Therefore with the notations of (d) we have
A%y} = (%, v}, thus (€%, v} E ] y1) = (8% v, ], ¥))-
On the other hand, suppose (e) is satisfied, i.e. ({X, ¥}, t14x, y}) = ({x, y}, tl{x, y}),

then for every pairx, y € X, x # y and for every 4 et there exists ¢ et’® such that

1 (x) =2 (x) and p (y) =A(y).m

(d)=(h):

Suppose x, y €X, x #y, and a, Bel, a # 3 such that ;l_x(y) < B.If B<athereisa
i et*c such that g (x) =cvand g (y)<B. Let g = u vB. Then g ((x)=coand 1 y)
=B. If (d) is satisfied, there isa A et*, suchthat A (x) =aand 4 (y)=p. Let = 1-

A, Then 17 € t*c. Now 77 (x) =1 —a,7 (y) =1 — . Therefore, (1- 8)1,(x)=Inf {n

(x): 7 et*cand (1-B)1, <n }<y X)=1-« Therefore (1 - A1, (x) <1 -«.

(H=():

Suppose (f) is satisfied, Aet’, and o < A (x). We have to show that al, < 2.
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Let ye X — {x} and A (y) =B. If B >a, then it is clear that Eﬂg A

Suppose B < o, let u=1- 4, Then 1 et’ such that u (y) =1 =B>1 - > | — /. (X) = s(x).
Thus we have, 1 (x) < u (y). Therefore, ()1, (x) < u(x).

Applying (0, (1= u(x)N, () <1-u(y)

= MX¥)1, () = Ay)
= al (y) £ My),[Since a0 < A(x)]

Therefore, a:—l_r < A (Proved)m

2.1.5. Lemma: For any fuzzy supra topological space (X, t"), the following are_
equivalent: 7 i :
(a) FSRo(¥).
(b) Forevery pairx,y € X, x £, i(y) =] <::>T;(x) =1,

(c) Forevery pairx,y € X, X #Y, f(y) <l I_y(x) ]
(d) v Pairx,y e X, x#Yy, ifthere exists a t*-5upra closed set A such that /. (y) <1 =2
(x), then there exists a t -supra closed set p such that p(x) < 1 = u(y).

Proof:

(a)=(b): Trivial.

(b)=(¢):

Suppose, 1,( v ) <l. We have to show that, l_j,(x) <l.0f H(x) is not less than 1, then
E(x)= 1, by (b) E(y)= | which is a contradiction .Therefore, H(x){ 1. Thus we see
that 1,(y) <1=1 (x) <. Similarly we can show that],(x) <1=>1 () <1.

(e)=>(d):

Suppose there exists a £= supra closed set p such that w(y) < 1 = p(x). Then | () <I.
By (c) r:(x) <1, Put A =r Then clearly 4 (y) = 1 and A (x) < 1. Thus we see that there

existsat - supra closed set, say A such that A(x)<1=A(y).
(d)=(a):

Suppose 1__:(x)= 1. We have to show that 1(y)= 1.
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Suppose 1.(y)< | and |, =p. Thus LLisa t*-supra closed set such that p(y) < I = p(x).

By (d) there exists a t -supra closed set 4 such that 1 (x) <1 = A(y). This implies that

E(x.) <1, which is a contradiction. Therefore, |(y)=1. Thus we see that, for every pair
X, yeX,x#vy, K(y) == H(x) =1. Thus (a) is satisfied.n

2.1.6. Lemma: For any fuzzy supra topological space (X, t'), the following are
equivalent:

(a) FSRg(vi). i.e For every pair x, ye X, X # y,l__..(y) = C(x)

(b) Forevery pairx, y € X, x #y and for every ael, f(y) <a= C(x) <a

(c) Forevery pair x, y € X, x # y and for every o.ely, if there exists a t'-supra open
set A such that A.(y) = 0 < o = A(X), then there exists a t‘—supra open set . such that p(x)

=0 <o =pu(y), i.e FSRy(x).

Proof:

(a)=>(b):

Suppose, X,y € X, x # y and a.€l, such that]m_:(y) <a. By (a), E(x) = I(y) Therefore,

1L(x<a.

(b)=(c):

Suppose, X, y € X, x #y, aelg, and 3 a t -supra open set % such that A(y) < o = A(x).
Put = 1 —A. Then 7 is a t'-supra closed set such that, n(y) > n(x) = 1 —a. Therefore
E(x)sl—a. Hence by (b) I__I(y)SI—a. This implies that there exists a t -supra

closed set v such that v(x) >v(y) = | —a. Put =1 —v. Then p is a t'-supra open set

such that p(x) > w(y)
(c)=(a):
Suppose, K(x) <1.(y). Letn = Cand o =n(x) # 1. Then is t-supra closed set such

that n(y) =1, nx) = aéi(y). Let A = 1 —n. Then A is a t -supra open set such that

My) =0 and A(x) = | —a > 0. By (c), there exists a t*-supra open set p such that, pu(x) =
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Oand w(y) =1—o. Putv=1-u Then visa t"-supra closed such that v(x) = 1 and v(y)

=a. This implies that f(y)< o= K(x) , a contradiction. m

2.1.7. Lemma: For any fuzzy supra topological space (X, t'), the following are

v

equivalent [8].

(a) FSRy(vii), i.e forevery pairx, ye X, x £y, K(y) = i(x) € {O, i}.

(b) {K:xeX } defines a partition of 1, i.e. there is a partition A of X such that for
every xe Ae A. I_X=]A.

Proof: (a)=(b):

We have I(y) = E(x) € {0,1}. Therefore, T:(X) c {0,1}, and so there exists, for each x
€ X, an A(x) < X such that E =1, - Now if y € A(x), then L(y)=lie 1, law It

follows that 1a<law, S0 A(y) < A(x). Now Z(y):i(x)zl.Therefore, xeA(y),

hence A(x) = A(y). Therefore A(x) = A(y). Hence {A(x): x € X} is a partition of X.
(b)=(a):

Given {1,:xe X }is a partition of X. This implies that, either Kzf OI‘EAE =0.
Ifi,=1,, then clearlyl (y)= E(x) =1. On the other hand, if 1, n]_y =0, then
(K A l_},)(x) = (Qand (ﬂ A Eky) =0 .Therefore,i(y) =0 = E(.r) .Thus
Ly=1,x¢e{0,1}

2.1.8. Lemma: For any fuzzy supra topological space (X, t"), the following are

equivalent:

(@) FSR(viii), i.e For every pair X, yeX,x #yandV e I,
E(y) = (I,:?«'OE_I},(X) =0
(b) For every pair, X, y € X, x #y and for every aelq, ol (y)<a :>cx—l),(><) <OL

Proof: (a)=(b):
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Suppose X, y € X, x # y and a € Iy such t|1ata'—lx(}f) <@ . Suppose &l_;(x) =a. Then
by (a) a—h(Jz_) = , which is a contradiction .Therefore a—l_,,(x) <a.

(b)=(a):

&

Suppose X, y € X and a € lg such that ], (y) =¢. Suppose a—ly(x) # a.. Therefore,

&T;{x) <o, Then by (b), a—lf(y) < a, which is a contradiction .Therefore ET_:(,\') =i

2.1.9. Lemma: For any fuzzy supra topological space (X, t), the following are

equivalent:

(a) FSRy(ix), i.e For every pair x, ye X, x # y andVa € IU,(Z—IX(_)J) =aT_U(x)

(b) Forevery pair, X, y € X, X #y and for every e Supra closed set, p there exists a
Fa Supra closed set, v such that v(x) = p(y), v(y) = ().

Proof: (a)=(b):

Let x, y €X, x #y and p is a t'- Supra closed set. Let o = pu(x) and B = p(y). This
implies that O:—I;(y) < . Therefore, o:—l_j,(x) < . Hence there exists a £ Supra closed

set v such that v(y) = o and v(x) = . Thus p(x) = v(y) and p(y) = v(x).

(b)=(a):
Without loss of generality suppose, al, (y) < Sz-i:(x) (3)
Let p= al,. Then o = p(x). Let = u(y). Then by (3) B < a—!},(x) 4)

By (b) there exists t'- Supra closed set v such that v(x) = p(y) =  and v(y) = u(x) = a.

Wehave, v(»)],(x) = v(x)
> al (x)< B
Using (3), a1, (») < al,(x) <.

or, E(y) <, or u(y) < which is a contradiction.



Therefore, a—lx(y) < a;(x) is not true. Similarly we can show that

a_]‘y(x) < a—L(y) is also not true, hence -OH?(X) = oL_lx(y) ,

2.2. Relationships among FSR, Spaces.

2.2.1 Theorem: The following implications are true:

FSRo(iii}=> FSRo(ii)&= FSRo(xi)

1/

FSRo(iv) FSRo(ix)=> FSR(viii)

FSRo(1 “SRo(vi)=> FSRq (v)

FSRo(x) FSRp (vii)

Thus we have

(a): FSRo(iv)==FSR(iii)=FSR(ii)
(b): FSRo(iv)=FSR(i)

(€); FSRo(vii)=FSRo(vi)=FSRo(i)
(d): FSRo(vi)=FSRq(v)

(€): FSRo(ix)=FSRo(viii)=FSR(ii)
(f): FSRo(viii)=FSRq(v)

(2): FSRo(ix)=FSRo(vi) & FSRo(X)
Proof:

(a): Suppose (X, t*) is FSRo(iv) Let ret” x eX and o < A(x). Then since (X, t*), is

21
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FSRq(iv) hence Ef <A.So Vet ¥ xeXand V a< A(x), a1, = 2.Therefore (X, t')

is FSRq(iii).
Suppose, there exists ae€ly such that 3_]:(}!):,6’<a. Take B < vy < o

LetA=1—al,.Then A(X) = | — a, A(y) = 1 = B> 1 . Since (X, t) is FSRq(iii),

(-1, <4. Now(I-)1 (x) < A(x)=1-a<]l-y. Thus we see that, if

a:(y) < . then there exists d&lj such thatﬁ(x) <& . So by lemma, 2.1.3. (X, t"), is

FSRy(ii).
(b): Suppose (X, t") is FSRq(iv) , by lemma-2.1.5,we have for every pairx,y € X, X

# y and for every pair a, Bel, o # f3, &I(y)s 8= (1_——,8)—1),(30 <l-a. Taking o =
landB=0, 1,(y)<0 =1 (x)<0.Or 1,(y)=0 = 1,(x)=0. Which is FSRo(i).

(¢) Suppose (X, t") is FSRo(vii). Then clearly, for every X,y €X, X #Y, I(y) = H(x) .
Therefore (X, t') is FSRg(Vi).

Let, 1.(y) =0. As (X, t') is FSRo(vi), 1,(») =1, (x)and sol (x) = 0.Therefore, (X, t') is
FSR(i).

(d):  Suppose (X, t") is FSRo(vi).Then t(y) :l_},(x). Therefore if 1,(y) =1, then

1,(x)=1. Therefore (X, t') is FSRo(V).

(e): Suppose (X, t') is FSR(ix). Therefore for every pair X, ye X, X +yandVael,
af—]x(y) =a_|_y(x). Therefore, if;:]:(y) =q then a—l_v(x) —qa. Hence (X, t) is
FSRy(viii). ®

Again, suppose for every aely, a—lx(y) =@a. Then clearly for every fe Iy
BL(y)=P. Since, (X. ) is FSRo(viii), BI,(¥)=B= Bl (x) = B . Therefore, we see
that, for every pair X, yeX, x #y, V a € Ip :Ez(y) =g =VHeEl :ﬁ—h(x_) =f
.Similarly we can show that, for every pair x, yeX, X # vy, V BElp; B_Iy(x) =B=>V

€ To, o 1.(y) = o Thus (X, t) is FSRq(ii).
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(f):  Suppose(X, t*) is FSRy(viii), x, y € X and 1_Jr (y)=1. Since (X, t‘) is FSRy (viii),

if =1, 1,(x) = . Therefore (X, t') is FSRo(V).

(g): Suppose (X, t*) is FSRy (ix), then for every pair x, y € X, x # y and for every o €
lo, af—l_‘_(y) :E]-;(x). In particular, if o = 1, l__l_(y) = l_y(x). Therefore, (X, t") is
FSRo(vi).Also from lemma 2.1.7. ; it is clear that if (X, t") is FSRg(x),then it satisfies
FSRo(vi).

Now we give some examples:

2.2.1. Example: Let the fuzzy supra topological space (X, t") where X={x, y}, and

= {0u={(6 0y, D} v={(x Dy DI} W=1 v(3)=0; V(x)=0, V(y)=0.Let
1_.\‘:“ .I_,-=w’, Here 1__,(y)=0, j_y(x)=0, let =4 <u(x) and (I_hlx(Y): avi(y)
=4v0=24 <u(y). So, FSRy(i) # FSRq(iii). Similarly we shall prove that, FSRo (1)#
FSR (iv).

2.2.2 . Example: Let (X, t') be a fuzzy supra topological space, where X={x, y} and
= {0u={(x, Oy, D} v={(x Dy DI} W=1 W(y)=0; V(=0 V(y)=0

I E,:v’ then ﬂ(y)=ﬁ(x) , hence (X, t*) is FSRo(vi) :but u(x)=0, u(y)=1=0;

and there does not exist v(x)=0, v(y)>0. Hence FSRy (vi)= FSRq(x).

2.2.3. Example:Let (X, t") be a fuzzy supra topological space, where X={x, y} and
t'= {0.u={(x, 0.y, D} v={(x Dy, DI} W0=1, (3)=0; v(x)=0, v(y)=0.Let

L=u, 1_,.=1: , Here i(y)=0, i_j.(x)=0, then ]_I(y)=,!_y(x) . hence (X, t) is
FSRy(vi) ;here u(x)<u(y), but v(x)=v(y).Hence FSRy(vi)= FSRq(x).

2.2.4. Example:Let (X, t') be a fuzzy supra topological space, where X={x, y} and
= {0, u={(x, 0),(y, D}; v={(x, 1), (5 D}} (=1, u'(3)=0; V(x)=0, V(y)=0 Here

u(x)<u(y), and  Let 1_,=u 4 ]_y:‘.fl-, then j_x(y)_lef(y)ZU, then 0-’—1_\-(}’) =aV
L(y)=avl=a .Now ﬁ_ly(x) = BV1,(x)=Bv0=p Hence (X, t)is FSRg(ii), Here

u(x)<u(y), butv(y)<v(x),So FSRq(ii)= FSRy(x1).
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2.2.5. Example:Let (X, t') be a fuzzy supra topological space, where X={x, y} and
t'= {Lu={(x, 0).(y: 0)}: v={(x, 0).(3. D}} W (=1, u'(y)=1: V(x)=1, V(y)=0;

L=u 1_:, =/ then 1,(y) =i;(x) =1 hence (X, t') is FSRo(v) but for all & €I, may not

1.(¥) =1,(x) .50 FSRo(vi)= FSRy(ix).

2.3 . Good extension property:

In this section we show that all FSRy(k)(i < k < xi) properties are good extensions of

their supra topological counter parts; all of them are also found to be hereditary.

2.3.1. Definition: Let (X, T") be a Supra topological space, the space (X, T') is called

Supra R topological space, if V X, y € X, x#y, then if x€ {y } their also exist y& { x}.

2.3.2. Definition Let (X, T') be a Supra topological space, the space (X, T) is called
Supra Ry topological space, if V x, y € X, x#y. then if 3 supra open set u € T with xEu
and y&u then their also 3 an supra open set vE T" such that yEv and x¢v.We denote

Supra Ry topological space, by SRq -space.

2.3.1. Theorem: All FSRy(k) (i <k < xi) properties are good extensions of the
topological SR¢-property. That is,

(a) If (X, T ) isan SRy-space, then (X, w (T*)) are also FSRy(k) (i < k < xi) spaces.
(b) If (X, w (T*)) satisfies FSRg(k) (i < k < ix) then (X, T*) is an SRy-space.

Proof (a): Suppose (X, T*) is an SRg-space. Let Ae w (T*) ={u e % u'](a, 1] € s
ael}, M(x) = o < A(y) =B. Let F = 1°(0, o], then F is closed in (X, T"). We have y ¢
F. Therefore, F n{y} =@, also {.1_} c F.Putp= Oﬂ[m % Blly_'} . Then p is closed in w
(T*). Now, u(x) = o and p(y) = B. Thus u(x) = A(x) and u(y) = A(y). Therefore (X,
@(T") is FSRo(iv). We know FSRy(iv) = FSRg(iii) = FSRq(ii) and FSRe(iv) =
FSRy(i).

Again, o], =aly, OL_15,=0L](;,,, we havea—lx(y): af—ly(x)=fz if and only if {x}={y}

and a1, (y)= @1,(x)=0 if and only if /x] n{yj=@, So (X,  (T") is FSR(ix). We
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know FSR(i)=2FSR(vi), FSRo(ix) = FSRq(viii) = FSRo(ii), FSRy(vi) =FSRo(v),
FSRy(vii) =FSRg(vi)=FSR(i). Thus (X, @ (T")) is FSRo(k) (i <k < xi).

Proof (b): (1) Suppose (X, w(T")) is an FSRe(i) space and X € {y}, then
I:(x) = lm():)=] =0, and so I5(») =1,(y)#0. Therefore, y € {x} which proves that
(X, T") is an SRg-space.

(2) Suppose (X, & (T')) is an FSRy (ii) space and X € @,

then a—l_‘,(x) = al'—,;(x) = « for all a.ely. Therefore, E(y) =3, forevery A€ lp. So

in particulari(y) = lﬁ (»)=1. Hence ye {x} , which proves that (X, T") is an SRe-

space.

(3) Suppose (X, w (T)) is an FSRp(v) space and X € {y}, then E(x)=]m(x)=l. By

FSRo(v), l_r(y) = 1{—;’ (y)=1. Therefore, y € {x} which proves that (X, T") is an SRe-
space. Thus we see that, if (X, w (T")) satisfies FSRg (k) ( k = i, ii, v) then (X, TY is
an SRg-space. Also we know that, FSRe(iv) = FSRo(iii)) = FSRy(ii),
FSRo(vi))=FSRy(vi)=FSRo(i), FSRo(ix)=FSRg(viii)=FSR(ii).

(4) Let (X, o(T")) is FSRg (x), we shall prove that (X, T') is supra Rg Let x, y €X;
with x=y, x€U and y€U or x€U and y€U. Suppose x=U and y€U and UEe T", by the
definition of Isc 1y € :J(T') and with 1y(x) =1>0, 1y(y) =0, since (X, uJ(T*))is FSRo(x),
then 3 v € o(T") 2 ¥(x)=0, v(y)>0. Choose a such that v(y)>a>0. Then v'(al]et.
y€ v '(a,]] and x€ y7'(@1] . Hence it is clear that (X, T") is supra Ry spaces.
Conversely suppose that (X, T") is supra Rg space. We shall prove that(X, w(T") is
FSRy (x). Let x, y €X; with x==y and there exist 4 € w(T*) such that A(x)>0, A(y) =0,
Choose @ € 7ysuch that A(x)>a =0. Then A" (a,1]€T", hence X€ A, 1].y€ X (a, 1] as
A(x)>a, Ay)=0; Since (X, T*) is supra Rq space then 3 u €T" such that x€ p and Y€ 4,
but 1u € w(T*)and 1u(x) =0, 1(y) =1>0. Hence it is clear that (X, m(T*)) is FSRq (x).

This completes the proof.

Similarly we can prove this theorem for FSRo(xi).

Therefore, if (X, w (T*)) satisfies FSRo(k) (i <k < xi), then (X, T") is an SRg-space.
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2.4. Reciprocal properties of FSRy spaces.

2.4.1. Definition: Let X be set and (X, t”) be an fuzzy supra topological space.
Consider a function f: X — (X, t"). Lett = { f~(w:ue" }. Then t" is a fuzzy supra

topology on X. We call t', the reciprocal topology on X.

2.4.1.Theorem : Let X be aset, (X, t") be a fuzzy supra topological space having

the property FSRo(k) (k=1, ii, 1il, wcoveee. xi), then the reciprocal fuzzy supra topology t

Proof: Suppose o t") a fuzzy supra topological space having the property FSRo(K)
(1< k< 11). Suppose, t ={f"w:uel }.Now (X, t'") is a fuzzy supra topological

space. We have to show that (X, t") has FSRo(k) (i< k < xi).

We have, a_f, =f'(f(el) = f"({xlm)) Le.VyeX, a—g(y) = 0d 1y (F(Y)) ey %)

1. Suppose X, y € X, X # Y, 1.(y) =0, then %(f(y))=0, and since (X, t’) has

FSRo(i), Ig, (f(x))=0. Using (**), £~ (15))(x) =0. and so 1,(x)=0. Therefore, (X,
t') has FSRq(i).

2. Supposex,y € X, x #y, aelpand &f('y) = (). Then cc_lﬂ:(f(y)) = (. and since
(X', t") has FSRo(ii), m(f(x)) =0, forevery Belo. Using (**), ﬁlj(x) =0 forevery
Belo. This implies that (X, t') has FSRq(ii). =

3. Suppose xeX, Ae t " and o < A(x). There is a et suchthat A= ' W= Ao f.
Now, o < A(x) = X (f(x). Since (X, t") has FSR(iii)., alg, <A .Now, Using
), a1 = £ al, )< £ (/) = 4. Therefore (X, t ) has FSRo(ii).

4. Suppose xe X, Ae t "and o < A(x). There is a We t " such that A =f""'(1) = 2o f.

Now, a < Mx) = A/ (f(x)). Since (X’r, t ) has FSRy(iv), <\ Now

fixy —
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ol = £ '(alg )< £ (L) = 2. Therefore (X, t ) has FSRq(iv).

5. Suppose X, y € X, X # Y, I(y)zl. Then I_r:,{f(y)}: I and since (X, t ) has
FSRo(¥), 1, (f(x)) =1 and so 1 (x) = 1. Therefore, (X, t ") has FSRo(V).

6. Suppose X,y € X, x#y. If (X, t "'y has FSRo(vi), then Ty, (f(y)) = 1 gy, (f(x)-
Therefore, 1_(y) = 1, (x). Therefore, (X, t) has FSRo(vi).

7. Suppose X,y € X, X #Y. If (X, t ) has FSRo(vii), then};(f(y)) = Z;(f(x))

{0, 1}. Therefore, 7,(¥) =1,(x) € {0,1}. Therefore, (X, t *) has FSRo(vii).

8. Suppose X, y € X, X # ¥, a.€lo. Suppose, &T:(y) =q. Using (**),al_ﬁx_)(f(y)) =qo If

X', tf) has FSR(viii), then al, (f(x))=a. Using (**), al_),(x) — o .Therefore, (X, t )

has FSR(viii).

9. Suppose X,y € X, X #y, a€lp. If (X’r, t*‘f) has FSR(ix), thenal g, (f(y)) = al g, (f(x)) .
Using (**), al_(y) = al, (x) . We have, (X, t ") has FSRo(ix).

It is easy to prove the conditions for FSRy(x) and FSRo(xi).

2.5. Initial, Productivity and Hereditary Properties.

2.5.1. Theorem: The properties FSRo(k) , k € {i, ii, iii, v, ... ...xi} are initial, i.e. if
f: X =(Xi, t))ies is a source of fsts. where all (X; t;) are FSRo(k) then initial fuzzy
supra topological spaces is also FSRo(k) spaces.

Proof: Let {(X, t)ics } be a family of FSRo(iii) , and { f: X =(Xi, t] )ics } be a family

of functions and t be the initial fuzzy supra topology on X induced by the family { fi
;i€l}. Let aelp XE X, and Aet’ such that &l< . Since 2et’, we can find basic £ =

supra open sets 4, i€] such that A=Sup{ 2, i€J }. Also A must be expressible as 4; =

Inf { _f',-_;(l (1) : 1= k=n} where ;= & and ik€]. Now we can find some k, (1= k=n),
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say k, such that aly <fa_£,(’1fk;) that is a< j;{ll (Aig,) (x) or ‘:{{ﬁfk,f,‘k,(x) . Since

(Xigy» £iy,) is FSRo(iii), @1y, <y, Since f is continuous f‘ik‘(a—h)‘(alrjki(x),

thus £, (ET‘.){ Aug, = ErTx = fi—;i,m-ikf)‘ But each -/\i_kt(ﬂiki )< A , thereforear ], = A
and hence (X, t') is FSRq(iii). So the properties FSRq(iii) is initial

(b) Let {(X;, t)ies } be a family of FSRq(v) , and { f: X —=(X, t;)ies } be a family of
functions and t  be the initial fuzzy supra topology on X induced by the family { f;

;i€J}. Let x, y€ X, x=y and 3 uet’ such that u(y) <1 = u(x) , Put A= 1- u then ret’,
such that A(x)=0 and ~(»)>0 , since Aet’, we can find basic t'- supra open sets /;, i€J
such that 2=Sup{ 2 , i€) }. Also each A; must be expressible as, 4= Inf {f;,(' (Aip) :
1= k=n} where 1 € #; and ik€l .Since A(x)=0 and 2{y)>0 Now we can find some Kk,
(1= k=n), say k; such that f:;}(,l,kf) (x)=0 and that is _f;kll(;L,-k_) (y) >0 .
= Ak, S, (%) =0and = A, f, (v) >0. Since (X ,» ti,) is FSRo(v), and hence (X,
(') is FSRo(v).3 V;, €1, such that f;,:J(V,-M)(y)=U and f;;f(yr.h)(xpo. Now let
v=1-f;,i“(V“_r). Then ve t° such that v(x) < 1 =v(y). So by lemma 2.1.6 implies that
(X, t') is FSRo(v).

(c) Let {(Xi, t?).EJ } be a family of FSRy(x) , and { f: X =(X;, t")ies } be a family of

functions and t* be the initial fuzzy supra topology on X induced by the family { f;

:i€l}. Letx, ye X, x=y .Let aelp; and Aet’ such thati(y)=0 <« = A(x) , since det
we can find basic t - supra open sets 4;, i€J such that A=Sup{ 4; , i€] }. Also each 4

must be expressible as, A = Inf {3'(ny): 1= k=n} where A€ 4 and ik=J Since
Ay)=0 < @ = A(x) Now we can find some k, (1= k=n), say k; such that j;ill (Aig,)
(70 < =1 () (9 >0 - = g, £, =0 <= /4, () - Since (X, i) i

FSRy(x), hence there exist M, E;}‘kl such that #rklfm'(x) =0 <a = u(x)= !_L-,k1fik](y).
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Now let f'—fia(’ufm) = €t .Then u(x)=0 <& = p(y). Hence that (X, t') is FSRo(X).

Since FSRo(x)= FSR(vi). So (X, t') is also FSRo(vi) and FSRq(i)
(d) Let {(X, t,)ies } be a family of FSRo(xi) , and { f: X =(X; t)ics } be a family of

functions and t be the initial fuzzy supra topology on X induced by the family { fi

;i€]}. Let x, y€ X, x#y and 3 Aet’ such that A(y) <(x). We can find basic t'- supra

open sets A;, i€ such that 2= Sup { 4 i€) }. Also 4 must be expressible as 4; = Inf{

Fl(an): 1= k=n} where 2, € g, and ikel. Now we can find some k, (1= k=n),
sayk, such that f,-;if(ifkj) (y) < f,-;f(l.-k,)(x)=‘ A S (V) <hig, fig, (X). Since
(i f:k,) is FSRy(xi), there exists Vi, E;:fk] such that V*'M fﬂﬁ(x)< Vi, f:'k,(}') =

i30S i (Vi JO)- Put V= £ (V5 )& Thus v(x) < V(). Hence (X, ) is

FSRo(xi). Since FSRy(xi)= FSRy(ii). So the properties FSRo(ii) is also initial.
Similarly we can show that initial properties hold for FSRy(vii) and FSRg(viii). The

initiality of FSRg (iv) is not yet done. We hope to do this in a latter work.

2.5.2. Theorem: The properties FSRo(k) , k € {ii, iii, iV, ccooveees xi} are productive, i.e.

if (Xi, t!)ies is a family of fuzzy supra topological spaces, each of them having the

property FSRy(k), the product space [X =11 X.-,t*) also has FSRy(k).

el
Proof:
(a) Suppose each of (X;, t| )ic) has the property FSRy(ii). Suppose X, yeX, x # Yy, where
X = (Xi)iey and y = (¥i)ies» € lp such that a:(y) =« . Let Belo. We have to show that
m(x) =f. We have m(y) = inf a"f;(yi).Tl1us inf ET;(yi)z «. Since each of

iel iel

(X, ti)ics has the property FSR(ii), therefore inf Sl (xj) = . Thus M(x) =p and so
il !
(X, 1) has FSRy(ii).

(b) Suppose each of (X;, t;)ic) has the property FSRo(iii). Suppose xe X where X =
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(Xi)ies and ret such that a<A(x). We have to show that, a—l\. < A. 1t follows from the

definition of t’ that there exist K < J and a family (X)icx with Aiet’ such that for every

y = (yi)iweX, inf Aj(xj) <A(y) and more over o < inf A;(x;) < A(x). From this it
ieK iekK

follows that o <Xj(xj), hence aly. (yj) < AMYi), for ieK, and therefore

Wx{y) =infal, (y;) < infalyg (yi) < inf Ai(y;) < My).so0 m <% Hence (X, t') has
iel : ek : ek

FSR(iii).

(¢) Suppose each of (Xi, t; )ies has the property FSRo(v). Suppose X, yeX, x #y, where

X = (X)iey and y = (Yi)ies- Letl_;(y):l. We have to show that I_;(x}:l. Now

I¢(y)=1 implies that infm(yi)zi. Since each of (X, t;)ie; has the property
i€l

FSRo(v), inf i;,_i(x;):] and so T,,(x) = 1. Hence (X, t'") has FSRo(V)
il

(d) Suppose x, ye X, x #y, where X = (X;)ics and y = (¥i)ics- If each of (X, t; )iy has the
property FSRy(vi), then inf E(yi = inf]_g(xi ). Therefore, f;(y) = G(x) . Hence (X,
iel iel

t) has FSR(vi).
(e) Suppose X, ye X, X #y, where X = (Xi)iel and y = (yi)ie). If each of (X, t’)ies has

the property FSRg(vii), then inf K{_i(}’i )= inf@{(xi ye {0,1}. Therefore,
i€l iel

I_;(Y} = G(x’) e {0,1}. Hence (X, t*) has FSRq(vii).
(f) Suppose aely and x, y € X, x # y, where X = (Xi)ies and y = (yi)ies such that

m(y) = Thus inf E(yi )=« . If each of (Xi, t: }ies has the property FSR(viii),
iel

then inf aflyi(xi): « . Therefore, 07;(.\] — . Hence (X, t') has FSRq(viii).
i€l

(2) Suppose aely and x, y € X, x #, where x = (X)ic; and y = (yi)ie). If each of

(Xi.t)ies has the property FSRq(ix), theni_nga]xi(yi):i_n’rl‘alyi(xi}.Thereforc.
([=A 1£.]

al, (y)= ol (x). Hence (X, t') has FSR(ix).
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(h) Let (X, t;)iej be FSRo(x). We shall prove that (X, t') is FSRo(x). Let x, y € X, with
x#y,and 3 Aet’, with A (x)=0 and A(y)>0. But we have 4 (x)= min{ Ai(x,): i€l}and
A(y)= min{( 4, (y)) : i€l} . Since (X, t')ies be FSRy(x), so exist u, € t, with 2, (x)>0
and g, (y)=0. But we have mi(x) = X; and mw(y)=yiand hence u (m(x))>0 and
i, ( m(y)) =0. It follows that 3 (g, o i) et’, such that (&, o mj) (x)>0, and (x, ©

7)(y)=0. Hence it is clear that (X, t') is FSRq(x). Similarly we can proof that FSRo(xi)

is productive.

2.5.3. Corollary: The product space of a non-void family (X, t’)ies of fuzzy supra

topological space is FSRo(k) k € {ii, i1l ......... ix} if and only if each factor is FSRq(k).

Proof: Suppose, (X, t'})ies is a family of fuzzy topological spaces, each of them having

the property FSRo(k). k € {ii, iii, .........ix}. Then by the theorem 2.5.2, the product

space [x =1 Xﬂf] also has FSRy(k).

et

Converse:

(a). Let (X, t‘) is FSRo(viii), Suppose i€l, Xi, yi € Xi, Xi # Y and aelp such that
a-lyf. (x;)=c. Since (X, t') is FSR(viii) a_L:(x,) =0 = f; (yi)=a , for each i. Let
for some i€J, a; be a fixed element of X, suppose that A; ={x€ X = [T, X/ x; =a; for

some i=j}. So that A; is the subset of X, and this implies that (Ai,t*A_ ) is also

subspace of (X, t) then(A;, £4) is also FSRo(viii) and Aj is a homeomorphic image of

Xi. Hence it is clear that (X, t'}) is FSRo(viii).Similarly we can prove this theorem for

2.5.4. Theorem: All the properties FSRy(k), i<k < xi are hereditary.

Proof: Let the fsts (X, t'), and AcX. where z‘; = {uNA: U E t'}, we have to show

that, the subspace (A, £4 ) has FSRo(k) i=k< xi, if (X, t*) has FSRg(k) i=k= xi)
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We have, t'-cl(1y) A 1= £-cl(1y).

(1) Letx,ye A, x+#yand (r:f -cl(1x))(y) = 0. Therefore, (t‘-cl(lx)) Ny =0.=
(t*-cl(l,())(y) Aaly)=0= (t*-ci(lx))(y) = 0. [Since, y € A]. Now, X,y € X, X #V, and
(t"-cl(1,))(y) = 0. So if (X, t') has FSRq(i) then (t'-cl(1y))(x) = 0. Now (£a-cl(1,))(x) =
(t*~cl(ly) NA)X) = (t'- cl(1,))(x)Ala(x) = 0. This implies that, (A, 1‘11) has FSRy(i).

2) Letx,y e A x#y, aclyand (£1-cl(@l))(y) = o.

Therefore, (t'-cl(a1,)N1A)(Y) = o = (t"-cl(al))(y) = o, [since ye A ]
Now, x, y € X, X #y, aelo and (t-cl(al))(y) = ot S0 if (X, t') has FSRfi),

(t"-cl(aly))(x) = o Again, (£a-cl(al))(x) = (t"-cl(al )N TA)X) = (t - cl(al)(X) ATa)
= o Al= 0. Therefore, (A, £4) has FSRo(ii). s

(3) Letxe A, Ae t:: such that a<\(x). There exist A et’ such that 1,1 A’ =A. Since

xeA, Mx) = M(x). Now 1'et” and a</(x). So if (X, t') has FSR(iii), then o

cl(alx)ék”. Now, rL -cl(aly) = Tan( t-cl(oly)) < 1an A/ = A. Therefore, (A, I‘;) has
FSRo(iii).

(4) Let x € A, Ae s, such that o < A(x). There exist Net" such that 1an 2 =\. Since

xeA, Mx) = N(x). Now Aet ‘and a < A(x). So if (X, t') has FSR(iv), then t'-
cl(al )N, Now, fa-cl(aly) = 1an(t'- cl@ly) < Tan A = A. Therefore, (A, £1) has
FSRo(iv)-

(5) Letx,y € A,x#yand (tj: -cl(1y))(x) = 1. Therefore, (1aM t'-cl(l),-))(x) =1=(t-

cl(1)(x) = 1. If (X, t") has FSRq(V), (t-cl(1))(y) = 1. Now (¢;-cl(1,))(y) = (1an t=

cl(1))(y) = Ta(y)A (t‘-c](l_x))(y) = |al = 1.Therefore, (A, t::) has FSRg(v).

(6)Let x, yeA, and x #y. If (X, t') has FSR(vi) then (t'-cl(1))(y) = (t"-cl(1,))(X).

Now, (£1-cl(19)(y) = (-el(1))(y) = (€ <I(1,))(x) = (£4-cI(1,))(x). Therefore, (A, £1)

has FSRg(vi).
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(7) Letx,ye A,x#y Nowx,ye X,x#y. S0 it (X, t ") has FSR(vii) then (t'-
L) = E=I(1)E) € {0, 1} We have, (£-el(1))(y) = (-el(1))y) = (-
(1)) = (£a-cl(1y))(x). Therefore, (ri-cl(1))(y) = (£a-cl(1)(x) € {0, 1}. This
implies that (A, ) has FSRq(vii) .

(8)Let x,y €A, x £y, aelpand t"a-cl(aly)(y) = o Therefore, (1ant-cl(al))(y) = a =
t-al(al)(y) = o, since y € A. If (X, t') has FSRo(viii), then t -cl(atl,)(x) = ot Now,
f-el(al)(x) = (1an t'-cl(@1))(x) = 1 A o= a. Therefore, (A, ry ) has FSRo(viii).

(9) Letx,ye A, x#y,acl. Nowx, yeX, x#y, acl. Soif (X, t') has FSRq(ix)
then t*-cl(alx)(y) = t*~cl(al_\,)(x). We have, (ty-cl(1))(y) = (t*-cl(l DY) = (t*-

cl(1))(x) = (r-cl(1y))(x). Therefore, (A, ta ) has FSRg(ix).

(10). Let (X, t') is FSRo(x) space, we shall prove that (A,f; ) is FSRo(x) space. Let x,

y € A, with x=y, so that x, y € X, as ASX. Since (X, t') is FSRo(x) space,3 ue t' with

u(x) = 0 and u(y)>0.For ASX,we have uAAF ,(-:, and (urA)(x)=0, (uAA)(y)>0 because

u €t" with membership function g, then min(py(x), #a(x))=0,and min(uu(y), Ha(y))>0 as
X, y €A with x==y .Hence it is clear that (A, t:a )is FSRy(x) space.

(11). Let (X, t") is FSRo(xi) space, we shall prove that (A, 1‘:; ) is FSRo(xi) space. Let

X,y €A, with x==y, so that x, y €X, as ASX. Since (X, t*) is FSRq(x1) space,3 uet’

with u(x) < u(y) .For ASX,we have pNAE 1.‘:4 and (UAA)(X)< (uAA)(y), because u =t

with membership function g, then min(i,(x), 4a(x))< min(Ru(y), Ha(y)) as X, y € A with

x=y .Hence it is clear that (A, t:q )is FSRy(xi) space.

2.6. Homeomorphism in FSR, spaces.

2.6.1 Definition: Let (X, t') and (Y, s") be two fuzzy supra topological spaces and f:
(X, tH=(Y, s') be any function, then f is called fuzzy supra homeomorphism if and
only if f is fuzzy supra bijective, fuzzy supra continuous and fuzzy supra open.

2.6.1. Theorem: Every homeomorphic image of FSRq(k) is also FSRo(k), (i<k=ix)

Proof:(a). Let f:(X, gT)—‘(Y, 35) be a homeomorphism between fsts, where (X, t;) has
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FSRq(i), then If(.ﬂ) (f(x2) :E'(xz ), for every pair, x;, X» €X. Lety,, »,€Y, » =),
such that 1-;(5:2)=0, Let /' (y,) = x and f"(y2)= x,.Then x;=x;.Again since (X,
f1) is FSRo(i) so1y, (x2) =0 =1,,(x1)=0, and therefore , 17, J(f(:m)=0=f,:(y1). This
implies that (Y, t3) is an FSRo(i)

(b). Let £:(X, #)=(Y, f>) be a homeomorphism between fsts, where (X, t) has

FSRy(ii), then a“xl)(f(x2 ):'_x:("?) for every pair, x,, x2€X and for every a Elg
Lety,, »,€Y, y, =y, and a€lp such that Q«Tyl(yz) =g, Let f'(y,) = x; and
f_'(yz)z,\-2. Then x;¥x;.Since ;x]_y‘(yg) =qa, a;(n) =a, Again since (X, n) is
FSRo(ii) so Bl _(x2) =8 ¥ f €lo. Therefore, By (fx2)) =8 = B, (y,)= 5. This
implies that (Y, £3) is an FSRq(ii) .

(¢). Let fi(X, n)=(Y, r2) be a homeomorphism between fsts, where (X, ) has
FSR(iii), then a,f’{:): f(al,)  for every x €X and for every ac€lo
Let y €Y, A € £ and @ €l such that @ < A(y). Let /' (y) = x and f7'(A)=p.Then
xEX and u € ¢4. such that & < p{x). Since (X, n)is FSRo(iii), al, = 4. Now _oc_ly =
ol = flal, )= f() = 2. This implies that (Y, () is an FSR(iii).

(d). Let £ (X,n)=(Y, 1) be a homeomorphism between fsts, where (X, t1) has
FSRo(iv), then gl,.,= f(g1,) for every x €X and for every « Ely.

Let y €Y, 2 € ¢ and & €l such that « = A(y). Let f'(y) = x and f7'(A)=pu .Then x

€X and u € #3.such that = < p(x). Since (X, n) is  FSRy(iv), al, =u Now
al,=al,= fal)= (W) = 4 . This implies that (Y, f3) is an FSRo(iv)e

(e). Let f: (X, ) = (Y, f2) be a homeomorphism between fsts, where (X, 1) is

FSRo(v). Lety,, y2 €Y, y1¥Y2, n & ¢z such that a(yz)zl. Let f'(y) = xi and

£ (y2)=x2, Since f is a homeomorphism, i‘r_l(xz) = pexy ((x2)= E(y2)=l.By the
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FSRo(v) property of (X, 1) we have 1_1.;(X|)=1- Now, E,:(}W) = rxz)(f(xi)) =
l_xz(x])=l.This implies that (Y, r3) is an FSRq(v).

(M. Let f: (X, n) =(Y, £) be a homeomorphism between fsts, where (X, fn) is
FSRo(vi). Lety,, y2 €Y, yi=ya, [ (»,) = x; and f7'(y2) =xa,then x;#xa. By the
FSRo(vi) property of (X, #)we have ]: (x2)= 1_L(x|). Since f is a homeomorphism,
i.f(x|)(f( X2 )=]:‘ (x2) for every x;, x, €EX which together with 1_x| x2)= E(xl)impty that
1y, (7, }=1, (y1) . This implies that (Y, r;) is an FSRo(v).

(g). Let (X, ), (Y, f») be two fuzzy supra topological spaces, where (X, n)is
FSRo(vii).Let f: (X, n)=(Y, f2) be a homeomorphism. ). Lety,, y2 €Y, y1 ¥y, Let
El(yz)e{(),l}. This implies that there exists A €t such that A( y,) =1 but 0<a(y,)<l.
Since f is a homeomorphism we have /™' (y,), /' (»,)¥X and f~'(4)e* such that
(AN (y) =1 and 0<( /" (AN(S'(y,))<l .This implies that
ﬁ (/7' (3,)€{0, 1}, which is a contradiction . Since (X, i) is FSRo(vii). Again
let f;(y|)¢ 1_yl(y2).Without any loss of generality we can assume that 0= ‘_y.(y2)
<E(y1)=]. This implies that there  exist -r;,}LEt;" such  thatn(y, )=,
7(¥,)=0; A(»,)=0, A(y,)=1. Now since f is a homeomorphism, we have £~ (%),
f"‘(i)etf”, (SN D) =l (ST n) =0 (AN (n) =1,

(£ N/ (,)) =0; This implies that 17, ,(f~ (»,)=0 and 1 (™ (=

Therefore, 1,-1(y,) (/™ (¥,)F 177y, /7' (»,), which is also contradiction. Therefore,
that 1, () = E(y])E{ 0,1}, and so (Y, £5) is FSRy(vii).

(h). Let fi(X, #)=(Y, r2) be a homeomorphism between fsts, where (X, f) has
FSRg(viii). Lety,, y,€Y, y,#y, and «€lp such that BT);](J’:):“- Again Let x;

— () and x= 1" (2). iy ((x2) =1, (x2)¥ X1, X2 €X. Since f is a

homeomorphism, Now F@(yz)%ﬁ“xl,(f( x2) :l_xl(xz).By the FSRy(viii) property
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of X, £), r“(xz) =a.Now al, (), )=aﬂx:)(f(x1))= aa(x])= a. Therefore (Y, 1)
is FSRy(viii).
(i). Let fi(X, n)=(Y, 2) be a homeomorphism between fsts, where (X, 1) has

FSRy(ix). Lety,, »,€Y, y,=y, and «€ly such that El—y,(}’z):“- Again Let x|

= /() and x= £~ (v2). By the FSRo(ix) property of (X, 1), aly (x2) = @ly, (x0),

we have anxl)(f(xz) =aTxl(;;2),‘v’ Xj, X2 €X. Since f is a homeomorphism, Now
aly (1) = ey (fx,) =aly (x,) Similarly «iy (1) = aly, (x). Therefore
Ef}_,](yz) = a1y, (). Therefore (Y, 13) is FSRo(ix).

The proof for FSRy (x) and FSRy (xi) are similar.

2.6.2 .Definition: Let x, be a point in fsts (X, t").Then the fuzzy supra Ker{ x}=V {1 €
t': € A, t €(0,1] and t= 2 (x)}

2.6.3. Definition: Let (X, t)is a fuzzy supra topological space, then (X, t)is said to be

FSRy if for every fuzzy supra open set 4 € t': x€&€ 4 = cl{ x, }= 2 .This is the

alternative definition of FSRq(iv).

2.6.4 Definition: Let (X, t') is a fuzzy supra topological space. A fuzzy set A is called
quasi coincident with a fuzzy set B denoted by AgB if A(x)+B(x)>1 for some x€X. A

fuzzy point x;=A is called quasi coincident with the fuzzy set A denoted by xqA if

t+A(x)>1. The negation relation is denoted by x,—q A. [47].

2.6.2 Theorem: A fuzzy supra topological space (X, t") is fuzzy supra Ro- space iff for
every of pair of fuzzy point x, and y, in X with x=y and cl(x;)=cl(y:), cl(x;) =q cl(ye).

Proof: Let a A fuzzy supra topological space (X, t') is fuzzy supra Ro- space. Let x, and
y; be a pair of fuzzy point in X with x =y and cl(x)#cl(y,), then 3 a fuzzy point z, in
X 3 z,= cl(x) and z, £ cl(yy), If x =cl(y;), then cl(x)= cl(yr), Hence z, = cl(y,), but
this is a contradiction. Then xZ cl(y,),s0 that x,= I- cl(y;),Then since 1- cl(y;),is fuzzy

supra open and (X, t") is fuzzy supra Re- space, cl(x)) < 1- cl(y,). Hence cl(x;) —q
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cl(y:).

Conversely let 2 £t and x,= A, we will prove that cl(x,) = /. Let y;% 4, then y,=1-A and
x=y = cl(y,)=cl(1-2)= 1-4. Since x;= 4, then x.Z cl(y;) , i.e cl(x)=cl(y;). Then by

assumption cl(x;) —q cl(yy). i.e cl(x;) = 1- cl(y;).= A. This completes the theorem.

2.6.3. Theorem : Let (X, t') is a fuzzy supra topological space. Then the following
conditions are equivalent:

(a) (X.t")is FSRy.

(b) cl{x } = fuzzy supra Ker{ x; }.

(¢) Foralllhet™ A=A{p:A<pu, p€ t'}

(d) Forally €t,y=V { 2closed 2<y}.

(e) Forevery fuzzy set & #0 and for each y € t" such that 8 Ay =0 there exists a
supra closed set A such that A<y and AA & #0.

Proof: (a)<=(b).

From the definition 2.6.3 and fuzzy supra Ker{x,} (definition 2.6.2), it is clear that
(a)=(b).

(a)=(c):

Let f= A {u:d<p,p€ t‘}.Then clearly 1< 3, where Ae('c, We need to prove that

B<AX. Let Xie s¢ ¢*, theny € A% t".Since X is FSRq, cl{X/}= 5 =Y. Let c:l{xtr}C
=u €1 .Hence x, € pand A<u ,therefore & £ .

With the help of Demorgan law it is clear that (c)=(d),

(d)—(e):

Let & =0 andy € t" and x,€ & Ay by (d) there exist a closed set 2, x;€ A < y therefore
AAE =0.

(e)=(a):

Let { x, Y€ u €t = { x, }A u #0.by (e)there exist a supra closed set 2 such that {x, }€ 4

<p.Hence cl{ x; }<A<p. Hence (X, t') is FSRy,
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2.6.4 Theorem: Let (X, t‘) be a fuzzy supra topological space, x;, y; €X, Then fuzzy
supra Ker{ x, } # fuzzy supra Ker{ y, } ifand only ifcl{ x; }=cl { y; }.[51]

Proof : Firstly suppose that cl{ x, = cl { y, } then there is a fuzzy point z, such that
zp=cl{x }andzy£cl { y, }. Ifx, =cl { y; } then cl{ x, }=cl { y; } and hence z,= cl{
X y=cl { ye } = zp= cl { y; } which is a contradiction . Hence x2 cl { y; }, hence x
Zl—cl {y},since 1—cl { y } is a fuzzy supra open set containing x; , not
containing y,, so from definition of kernel y,= fuzzy supra Ker{ y, } and y, % fuzzy
supra Ker{ x; } and hence fuzzy supra Ker{ x; } = fuzzy supra Ker{ y.}.

Conversely suppose that fuzzy supra Ker{ x, } = fuzzy supra Ker{ y, } then then there is
a fuzzy point z, such that z,= fuzzy supra Ker{ x, }and z,£ fuzzy supra Ker{ y } . If
zp= fuzzy supra Ker{ x, } then x; = cl{ z, } and so thencl{ x; }= ¢l { z, } and
similarly zp% fuzzy supra Ker{ y; }= yi% cl { z, } and slnce cl{ x; } = cl { z, } then y;

% cl{ x, } and hence cl{ x, } ®cl { y; }.

2.6.5 Theorem: A fuzzy supra topological space (X, t') is fuzzy supra Ro- space
implies that for every of pair of fuzzy point x, and y, in X with x=y and fuzzy supra ker

{xi} = fuzzy supra ker {y,}, then fuzzy supra ker {x;} — q fuzzy supra ker {y,}.

Proof: Firstly suppose that (X, t') is fuzzy supra Ro- space with for every of pair of

fuzzy point x; and y; in X , Xx=y and fuzzy supra ker {x}#= fuzzy supra ker {y;}, we
have to be prove that fuzzy supra ker {x;} = q fuzzy supra ker {y;}. Since fuzzy supra
ker {x;} = fuzzy supra ker {y;}, so we have by previous theorem cl{ x; } cl { y; }
.Next suppose that fuzzy supra ker {x;} q fuzzy supra ker {y;}. Then for some ze X,
Let = fuzzy supra ker {x}(z)Vv fuzzy supra ker {y:}(z)€(0,1]. Hence z,= fuzzy
supra ker {x;} and z, =fuzzy supra ker { y, }. Hence when z, = fuzzy supra ker {x}
then x; =cl { z, } and. Hence cl(x;) =cl (z,). Similarly we prove that cl { z, }=cl (y;).

Hence we conclude that cl{ x; } =cl { y }. Hence fuzzy supra ker {x;} = q fuzzy supra

ker {y:}.m
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CHAPTER-III

Fuzzy Supra R, Topological Spaces

3. Introduction:

In this chapter, we introduce and study several fuzzy supra R, topological spaces (FSR;
in short). We obtain their properties in the following sections. First we give definitions
of FSR spaces and then study implications and non-implications among them. Also,
we study Good extension, reciprocal and hereditary properties of FSR, spaces.
Moreover, some other properties such as G homeomorphism among FSR; spaces,

initiality and productivity of FSR, spaces are studied..

3.1. Definitions of FSR, spaces.

3.1.1. Definition: Let (X, t*) be a fuzzy supra topological space, we define fuzzy supra
R-properties as follows.

We recall the twelve definitions (FSR,(i)-FSR(vi) and FSR,(xii)- FSR(xviii)) of [9,
10] to show it can significantly used in FSR, space.

FSR;(i) If ¥ x,yeX, x2y, 3 wet such that wW(Xx)# w(y), then 3 u, v €t’ such
that 1, < U, ﬂg vand uAv=0.

FSR; (ii) If V x, yeX, x=y, 3 wet such that w(x)# w(y), then 3 p,v €t such

thatig,u,ly <vand u<l-v.

FSR(iii) If V x, yeX, x=y, 3 wet’ such that w(x)# w(y), then3 u,v €t’ such
that u(x)=1 =v (y) and u A v=0.

ESRi(iv) If V x,yeX, x=y, 3 wet’ such that w(x)# w(y), thend g, v €t such
that u(x)=1=v (y) and u < 1-v.

FSRi(v)  If V x, yeX, x=y, 3 wet such that w(x)# w(y), then v B,6 €lyy, 3
u,v €t such that U(x)>p, v (y)>8 and u A v=0.

FSRi(vi) If V x,yeX, x2y, 3 wet’ such that w(x)# w(y), then 3 u, v €t such

that 1(x)>0, v (y)>0 and u A v=0.
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If V x, yeX, xy, 3 wet’ such that either w(x)> a €I, and w(y) =0 or

w(y) > a €ly, and w(x) =0, then 3 i, v €t" such that ES H, 1, < v and

UAv=0.

If V x, ye X, x2y, 3 wet’ such that either wW(x)> & €lp, and w(y)=0 or
W(y) > a €lo, and w(x)=0, then 3 1, v €t such that L<u, f; < v and
HZ1-v.

If V' x, yeX, xzy, 3 wet' such that either w(x)> « €ly, and w(y)=0 or
wW(y) > a €ly, and w(x)=0, then 3 1, v €t such that u(x) =l=v (y) and
U Av=0.

If V x, yeX, x#y, 3 wet’ such that either wW(x)> a €l and w(y) =0 or
wW(y) >a €lp, and w(x) =0, then3 4, v €t such that ux) =l=v (y)
and u<1l-v.

If'Y x, yeX, xzy, 3 wet” such that either wW(x)> a €ly, and w(y)=0 or
w(y) > a €ly and w(x) =0, thenv B.6 €loy, I u,v et such that H(X)>B,v
(¥)>6 and u A v=0.

If ¥V X, ye X, xzy, 3 wet’ such that either wW(x)> a €lp, and w(y)=0 or
w(y) > a €l and w(x)= 0, then 3 1,V €t such that #(x)=0, v(y)>0 and
uAv=(.

[f V x, yeX, x=y, 3 wet' such that either w(x)= 1, and w(y)=0 or w(y)
=1, w(x) = 0; then 3 v €t such that |, < U, E <vand u A v=0.

IfV x,yeX, xzy. 3 wet such that either w(x)=1 . and w(y)=0 or w(y)
=1, w(x)=0; then 3 g, v €t’ such that I, < p, ijs vandu < l-v.

If V x, ye X, x#y, 3 wet' such that either w(x)=1, and w(y)=0 or w(y)
=1, w(x) =0; then3 g, v €t such that u(x)=1=v(y) and u A v=0.

If V' x, yeX, x=y, 3 wet" such that either w(x)=1 , and w(y)= 0 or
w(y) =1, w(x)=0; then 3 y,v €t such that ux)=l=v(y)andu < I-v.

IV X, ye X, x=y, 3 wet such that either w(x)=1, and w(y)=0 or w(y)

=1, w(x)=0:, thenV f3,8 €ly,, 3 v €t such that U(x)=B,v (y)>6 and
A v=0,
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FSR(xviii) If V x, yeX, x=y, 3 wet such that either w(x)=1, and w(y)=0 or w(y)
=1, w(x)=0; then 3 g, v €t such that H(x)>0,v (y)>0 and u A v=0.

3.2: Implications among FSR, (k) , i<k<xviii

3.2.1: Theorem [12]: The following implications hold among the FSR,(k) (i<k<xviii)
properties in the above section

FSRi(iv) & FSR(ii) & FSR|(i) & FSRy(iii) = FSR(v) = FSR(vi)
U U U U

FSR (Vi) FSR1(vii) Ri(ix) & FSRi(xi) = FSR(xii)

(3 U U
FSR,(x) FSRi(xiii) = FSR(xv) = FSRi(xvii) = FSR;(xviii)
FSR;(xvi) \ ' *:

Proof:

FSR(vii) = FSR(ix).

Let (X, t') be an fsts. Which has the property FSR(vii) .Suppose that, x, ye X, xzy,

and wet’ such that W(x)>a €lo; and w(y)=0. Then, by the FSR(vii)-property of (X,

t')_. 3 u,v et’ such that E< U, ],,_ v and u Av=0. Clearly, u(x) =I =v(y) and puA

v=0.Hence (X, t") has the property FSR;(ix).

Thus FSR(vii) =FSR,(ix). Similarly we can show that FSR (i) = FSR,(iii).
FSR(vii) =FSR(viii)

Let (X, t') be an fsts. Which has the property FSR(vii).Suppose that, x, ye X, X3y,

and wet" such that W(X)> a €lp, and w(y) =0. Then, by the FSR,(vii)- property of (X,

t, 3 i, v €t such that |, < ]__<_ vand u Av=0. Clearly, 4 <I-v . Hence (X, t ") has
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the property FSR,(viii). Thus FSR,(vii) =FSR(viii) Similarly we can show that.
FSR;(i) = FSR,(ii).
FSR;(i) = FSR(xii)
Let (X, t') be an fsts. Which has the property FSR(i).Suppose that, x, ye X, X=y, and
wEt" such that W(x)# w(y). Hence we can treat w(x)=a and w(y)=0.where a €lp Again
by FSR;(i).- property of (X, t'), 3 v €t such that |, < U, IS v and p A v=0. Hence
(X, t') has the property FSR (vii)

FSR1(vii) = FSR(xiii)
Let (X, t) be an fsts. Which has the property FSR;(vii).Let x. ye€ X, and wet” such that
W(X)> a €l and w(y) = 0, Then clearly w(x)= 1, and w(y)= 0. Again by FSR,(vii)-
property of (X, t*), 3 u,v €t such that L= M, ]_},S v and u A v=0. Hence
(X, t') has the property FSR(xiii).
FSR(viii) =FSR(x).
Let (X, t*) be an fsts. Which has the property FSR(viii) .Suppose that, x, y € X, XY,
and wet” such that W(x)> a €l and w(y)=0. Then, by the FSR,(viii) - property of (X,
t", 3 1, v €t such that |__,S U, ]_J.S v,and u <l-v .Clearly u(x)=I= v(y) and u <I-
v. Hence (X, t') has the property FSR;(x). Thus FSR(viii) =FSR|(x). Similarly we
can show that FSR;(ii) = FSR,(iv).

FSR((x) = FSR(viii).
Let (X, t*) be an fsts. This has the property FSR(x). Let x, ye X, x=y, a €lp, and wet’

such that w(x) =a and w(y) = 0. Then by FSR(x), 3 u,v € t" such that u(x) =l=v(y)
and u <1-v.Let z€ X and f8 € I, such that Bl, £u . This implies g > u(z). Now let
u(z)=6 € ly,, Then u(z)=6 € lo,i and u(y)=0 together imply that 3 n, A€t such that

n(y)=1=A(z) and A <1-7. Now 1-A(y) =1, thereforeg <1- A4, again E(z) <1-A(2)
= 0, and BI, iiy, Therefore ]ys u, which is a contradiction as u(y)=1.

Therefore, u(z)=0. Now BAwu € t* such that B Au(z)=0, B Au(x)=B. Therefore
37,4 €t such that n(y)=1=Az) and 1 <1-7. Now 1- A(x) = 1, Therefore E <1-4

but ﬂ(z)s 1-A(z) =0. Therefore f1,% H Thus we see that if B1,% uthen f1,% i

hence |, <u.Similarly we can show that];gu.Therefore(X, t") is FSR(viii). Thus
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FSR(x) = FSR(viii). Similarly we can show that FSR(iii) = FSRy(i), FSR(ix) =
FSR(vii), FSR|(x) = FSR,(viii).
FSR(ix)= FSR;(xi).

Let (X, t') be an fsts. Which has the property FSR,(ix). Suppose that, x, ye X, x=£y,
and wet’ such that W(x)> a €Iy, and w(y) =0. Then, by the FSR(ix)- property of (X, t),
3 u,v €t such that, u(x)=1=v(y) and u A v=0. Clearly u(x)> a, v(y)>g. a,f € lo,1,
u A v=0. Hence (X, t') has the property FSR(xi), Thus FSR(ix)= FSR,(xi). Similarly
we can show that FSR,(iii) = FSR,(v).

FSR;(xi)= FSR,(xii).
Let (X, t') be an fsts. Which has the property FSR(xi) Suppose that, x, y € X, x=y, and
WEt such that W(x)> @ €lp; and w(y)=0. Then, by the FSR,(xi)-property of (X, t*), |
u, v €t such that, u(x)> a , v(y)> 8, a, f €1y, and uAv=0, clearly u(x)> 0, v(y)> 0,
and uAv=0. Hence (X, t') has the property FSRi(xii). Thus FSR;(xi)=
FSR;(xii).Similarly we can show that FSR;(v)= FSR,(vi).
FSR(ix)= FSR;(x).
Let (X, t') be an fsts. Which has the property FSR(ix). Suppose that, X, YEX, x=y,
and wet’ such that W(X)> a €l and w(y)=0. Then, by the FSR(ix) property of (X, t*),
3 u,v et’ such that, u(x)=1=v(y) and u A v=0.clearly u <I-v, Hence (X, t*) has the
property FSR;(x), Thus FSR,(ix)= FSR(x) .Similarly we can show that FSR(iii) =
FSR(iv)
FSR(vii) = FSR(xiii).
Let (X, t') be an fsts. Which has the property FSR;(vii) . So V x, ye X, xzy, 3 wet’
such that w(x) > & €ly, and w(y) =0. Define w=w V q. Clearly w'e t" such that w(x) =1
and w”(y) =0. Then by FSR;(vii) property of (X, t*) 3 u,v €t’ such that ES u, ES v
and u A v=0. and therefore (X, t') has the property FSR(xiii),
All others proofs are similar.

We now give some examples below:
3.2.1.Example:- Let (X, t') be a fuzzy supra topological space, and X={x, y} and
t'=<{u, ViU constant> then (X, t') be a fuzzy supra topological space on X, where
u(x)=0.6, u(y)=0 and v(x)=v(y)=0.4, for a = 0.6, (X, t) vacuously satisfies the
FSR(vii) property. Now u(x) =0.6=a and u(y) =0. But there does not exist any u, ve t'
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with u(x) =1= v(y) and uAv=0 .and hence (X, t) is not FSR(iv) thus we see that
FSRy(vii) #> FSR(i). This example also shows that FSR;(i) #> FSR,(xii). Thus,
FSRi(q) #> FSR(p); (p=1, ii, iii, ..viand q= Vhluseosssikil)e

3.2.2.Example:- Let (X, t') be a fuzzy supra topological space, and X={x, y, z} and
t"={1, 0, W=, 1), (¥, 0),(z, 0.4)}, v={(x, 0), (y. 1), (z, 1)}}, then (X, t') be a fuzzy
supra topological space on X, for a =1, X 3 vacuously satisfies the FSR(i)
property. But (X, t') is not FSRy(ix) Here w(y)= 0, w(z)=.4, but there does not exist
any u, v € t with u(y)=1= v(z) and u Av=0 .and hence (X, t‘) is not FSR,(ix) thus we
see that FSR,(i) #> FSR(ix). This example also shows that FSR,(i) #> FSR(xii).
Thus, FSR(q) #> FSR(p) (p= vii.........xii and q=i, ii, iii, ..vi).

3.2.3. Example:- Let X be an infinite set and for any X, yeX, we define uy,, a fuzzy set
in X, as follows : uy,(x)=1, Uy(¥)=0 and u,(z)=0.5 V z€X , z#x, y . Now consider the

fuzzy supra topology t* on X generated by {uy: x, ye X, x==y }U{constants} . It is
clear that E< Ugy, ]_J.< Uy and ug <1 — Uyx, thus(X, t*) is FSR(viii), not FSR,(xii) as

Ugy/\ uy# 0 thus FSR(viii) # FSR,(xii), and so FSR;(x)# FSR,(xii). Hence
FSRi(p)# FSRi(q).pe{viii, X}: q€{vii, ix, xi, xii}[11].

3.2.4. Example: Let (X, t') be a fuzzy supra topological space, and X={x, y} where t~
< {PBlx, al,} U{constants}>, and B>a. apf €l . Then it is clear that (X, t") is
FSR(xi). But (X, t') is not FSR|(x), since there exist no w,v €t’ such that,
u(x)=1=v(y) and u<I-v.Thus we see that FSRy(xi) #> FSR(x). Thus, FSR(p) #>
FSRi(q) (p=xi, xii and g=vii, viii, ix. X).

3.2.5. Example: Let (X, t) be a fuzzy supra topological space, where X={x,y} and t"

1 | . &
<{ 5 I 5 ly}U{constants}>, But (X, t) is not FSRy(iv)} U{constants>, then it is

clear that (X, t') is FSR(vi). But (X, t") is not FSR(v). For if we take 8,6 € Iy, such
that $>0.5 and 6>0.5 there exist no u,v €t such that, u(x)> . v(y)> 8 and uAv=0.
Thus we have FSR;(xii) %> FSR(xi). This example also shows that FSR(vi) #>
FSR(v).
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3.2.6.Example:- Let (X, t') be a fuzzy supra topological space, and X={x, y, z} and
U={ 10, u={(x, D, (5 04z 0.5)) v={(x, 0), & 1), (@ A} w = {(x, 1), (5, 1, (2
0.5)} } then (X, t*) be a fuzzy supra topological space on X, (X, t") vacuously satisfies

the FSR(ii) property. As GS u, i;s wand u < 1-w . But(X, t') is not FSR(vi)

Here v={(x, 0), (y, 1) (z, .4)},Therefore v(y) # v(z), where w(x)=1,w(y)=1,w(z)=.5, but
there dose not exist any u, we t* with u(y)>0, w(z)>0, u Aw =0, hence (X, t'") is not
FSR(vi) thus we see that FSR(ii) #> FSR(vi). . Thus, FSRi(p) #> FSR,(q) (p=ii, iv

and q=i, iii, v, vi).

3.2.7. Example: Let X={x, y} and u, v, wel* where t'= {0, u= {(x, 1), (v, 0)}, v= {(x,
0), (y, 1), 1={(x,1), (y, 1)} }.be a fuzzy supra topology on X, is generated by {0, u, v,
p}. now u(x)= 1,u(y)= 0 and v(x) =0, v(y)=1.p={(x,1), (y,1)}.Suppose u=w and u, ve
t" with u(x)>0, v(y)>0 and u Av =0, Hence it is clear that (X, t') is FSR, (xviii) but (X,
t') is not FSR; (xv).

3.2.8. Example: Example 3.2.6 Also shows that FSR1(ii) # FSR,(xviii)

3.2.9. Example: Let (X, t') be a fuzzy supra topological space, and X={x, y} where t'=
< {w}jU{Constant}>; w is defined as W(x)=1 and w(y)= 0, vacuously(X, t') satisfies the
FSR,(Xiii) property. We see that;

m (X, t*) doesn’t satisfy the property FSR;(x). For if we take @=0.4 .Then w(x)>a and
w(y) =0, but there doesn’t exist u, v € t" such that u(x)=l=v(y)and u A v=0.

m(X, t") doesn’t satisfy the property FSR(xii). For if we take =0.4 .Then w(x)>a and
w(y) =0, but there don’t exist i, v € t* such that u(x)>0, v(y)>0 and u A v=0.

m (X, t*) doesn’t satisfy the property FSR,(iv). For if we take @=0.5 .Then w(x) =a and
w(y) =0, but there don’t exist u, v € t" such that ux)=1=v(y) and u Av=0.

(X, t*) doesn’t satisfy the property FSR(vi). For if we take @=0.5 .Then w(x) =a
and w(y) =0, but there don’t exist u, v € t" such that u(x)=0, v(y)>0and u A v=0.
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3.3 Goodness and permanency properties:
In this section we show that all FSRy(k)( i<k<xviii) properties are good extensions of

their supra topological counter parts.

3.3.1. Definition: A space (X, T*) is said to be a Supra R)-space if for x. y € X such
that x & scl{y}, there exist supra open sets U, V such thatx e U,y € Vand U NV = Q.
We denote it by SR;-space.or (X, T") be a supra R, space,3 U, VE T such that xeU.
YEV and UnV=¢.

3.3.1 Theorem: All FSR(k) (i<k<xviii) are good extensions of the topological SRe-
property. That is,

(a) If (X, T is an SRi-space, then (X, w(T")) satisfies FSR (k) (i<k<xviii).

(b) If (X, w (T") satisfies FSRy(k) (i<k<xviii) then (X, T") is an SR, topological -
space.

Note: For if part we only prove FSR, (i), FSR,(vii), FSR;(xiii) because We know that
FSR(i) = FSR(ii), FSR,(i) = FSR,(iii), FSR,(ii) = FSR(iv), FSR,(iii) = FSR(v),
FSRi(v)=  FSRy(vi), and FSR,(vii)= FSRi(ix),  FSR(vii)=  FSR(viii),
FSRi(viii) = FSR(x), FSR,(ix)=> FSRi(xi), FSR(xi)=> FSR(xii), FSR;(vii)=
FSR(xiii) , FSR(viii) = FSR;(xiv), FSR,(ix) = FSR;(xv), FSR(x) = FSR,(xvi),
FSR(xi) = FSR(xvii), FSR(xii)=> FSRy(xviii) and only if part If (X, w (T"))
satisfies FSR (k) (K€ {iv, v, vi, viii, x. xii}) then (X, T") is an SR -space.

Proof (a): (X, T')is an SR;= (X, @(T")) be an FSR;(i) space.

Suppose (X, T') is an SR- topological space. Let x, ye€X, xzy, and a €lp; 3 wet’
such that w(x)> @ €lg , and w(y)=0. Letw (T = fw e I*: w(a, 1 eT: aeli}, we
shall prove that (X, w(T")) be an FSR(i)space. Let we w(T")such that w(x)# w(y) i.e
either w(x)< w(y) or w(x)> W(y).Suppose w(y)<a < w(x). Then it is clear that w'(a,
1]€ T  as we (T and ve wl(a, 11, X€ w'(a, 1]. Since X, T bea supra R space,3
U, VE T such that X€U, yEV and UnV=¢ .Since an R, —topological space is Rg —

topological space,?x_} € U and ;7}7 CV. Also we know that I{? = i and L— = lm,

therefore 1, <1, and Iy <l,and since 1y and 1y are lower semi continuous functions
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from (X, T°) into I, then 1y, 1y € w(T") and lu(x)=1 ,T1v(y)=l,and 1yAly =0,i.e (X,
w(T") be an FSR (i) space.

(X, T") is an SRi= (X, w(T")) be an FSR; (vii) space.

Suppose (X, T") is an SR- topological space. Let x, ye X, x#y, and a €ly; 3 wet’
such that w(x)= a €ly,, and W(y)=0 .Take B € Iy, such that a > B .Let w (T*) ={w e
1% w"(ﬁ, 1]eT, B €li}, we shall prove that (X, w(T")) be an FSR(Vii)space. Let w
€ w(T")such that W(X)# w(y) i.e either w(x)< w(y) Or W(X)> w(y). Suppose w(y)<f <
W(x). Then it is clear that w'(,8 1]e T" as we w(T")and ve w'(,B 1], xe w'(B, 1].
Since (X, T*) be a supra Ry space,3 U, Ve T" such that X€U, yeV and UnV=¢.Since

an R, —topological space is R, ~topological space,{x} € U and {y}EV. Also we

know that I— =1_x and I_;=]—— therefore |, <1, and rys Iyand Since 1y and 1y

rr_l_.J;!'
are lower semi continuous functions from (X, T into [, then Iy, 1y € a)(T*) and

(=1, Tv(y)=1. and 1yAly =0,i.e (X, w(T")) be an FSR(vii) space.

(X, T") is an SRi= (X, w(T")) be an FSR;(xiii) space.

Let (X, T') is an SR;- topological space. Let x, ye X, x#y, and a €lp; 3 wet such
that w(x)=a €Iy, and w(y)=0 -Again let a=1, and take f € I, therefore a > p Letw
M =(welXw'@ 1]eT, B eh}, we shall prove that (X, w(T")) be an
FSR(xiii)space. Let w € w(T*) such that w(x)# w(y) i.e either w(X)<w(y) Or w(x)>
W(y).Suppose w(y)<f < w(x). Then it is clear that w'](,B 1]€ T" as we w(T and v&
wl(B 1], xe w(B, 1]. Since (X, T") be a supra Ry space,3 U, VE T" such that xeU,

YEV and UNnV=¢.Since an R, —topological space is Ry —topological space,{x} € U
and {y} CV. Also we know that lm =K and i = lm‘ therefore |, < 1y and E e

and since 1y and ly are lower semi continuous functions from (X, T") into 1., then 1u,
ly € {U(T*) and ly(x)=1, 1v(y)=1, and 1yAly =0, i. e (X, @(T")) be an FSR, (xiii)
space. Similarly we can show other conditions.

(b) (X, @(T")) be an FSR,(iv) space=> (X, T) is an SR,

Suppose (X, w (T")) satisfies FSR,(iv).Let x, y€ X such that x¢ {;} in T". Then 3 we
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T" such that xew and yEw. Now 1, € w(T") such that lw(y) = 0 and 1(x) =1
“aV a €lg; .Therefore 3 p,v e w (T') such that u(x)=I1=v(y) and u <1-v. Taking

I 1 .
,u"'(E, 1T and V= v"(E, 1. Clearly U, VE T  such that X€U, yEV and UnV=¢.

Therefore, (X, T") be an SR~ topological space.

(X, @(T")) be an FSR,(vi) space= (X, T") is an SR,

Suppose (X, w (T")) satisfies FSR,(vi). Let x, ye X, such that x¢ {y}in T". Then 3
WE T such that xew and y&w. Now I, € w(T") such that lw(y) = 0 and 1(x) =1
>aV a €ly. Therefore 3 u,v € w (T') u(x)=>0, v(y)>0 and u A v=0.Now xe () 1]e
T", ye v'(0, 1]€ T" such that &' (0, 1Jn v'(0, 1]=9. Therefore, (X, T) be an SR,-
topological space.

(X, @(T")) be an FSR(x) space=> (X, T") is an SR,

Again suppose (X, w (T")) satisfies FSR(x). In T" let x, y € X such that X¢ {y} , Then
3 we T such that xEw and y&w.Let a €lp; Now aly, € w(T") implies aly, = 0 and

aly=a Ya€ly,.Then3 y,v € w (T*) such that u(x) =1=v(y) and u <1-v. Take U

=u" (%, 1] and V= v"(%, 1]. Clearly U, Ve T" such that X€U, yeV and UnV=¢.For

] . .
if ze UNV then 5 <u(z) < l-v(z) < % a contradiction. Therefore (X, T')is an SR -

topological space. Suppose (X, w (T‘)) satisfies FSR,(xii). In T" let x, y€ X such that

X€ {y} .Then 3 we T  such that xéw and y&w. Let a €ly; Now al,, € (T implies
aly=0and aly, =a Ya€ly, .Then 3 1, v E w (T such that “(x)=0, v(y)>0 and
uAv=0,xe 1'0, 1]e T, ye v'(0, 11€ T" such that w0, 11N v'(0, 1]= @. Therefore,
(X, T") bean SR;- topological space.

The proofs for the other properties are similar.

3.4. Reciprocal properties of FSR, spaces.

3.4.1. Theorem: If X is a set, Xt t’) be an fuzzy supra topological space having the
property FSR;(k) (i<k<xviii), then the reciprocal topology t* on X for f: X — xt t")
also has FSR, (k).
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Proof: Suppose (X’f, t*“f) be an fuzzy supra topological space having the property
FSR (k) (i<k<xviii).Suppose, t "= {f"(u):uet*’}. Now (X, t') is a fuzzy supra
topological space. We have to show that (X, t') has FSR, (k) (i<k<xviii).

(a): Let (X', t) be an FSR(i), t " be the reciprocal topology on X for f: X — (X'.t").Let

X, yE X, X2y, Wet' such that w(x)# w(y). Let f(x) =x’ and fly) = y. As wet’, there
exist We t” such that w =" (W), Now w(x) = W( )= £ W)= wix),
similarly w’(’y")zw(y).So w"(x’f) 7 w’f(y’f). Therefore there exists &, v € t” such thatﬁ

= iy < v and u A v=0, we have , F(i_z)s | 7(z) for every z€X, since fis continuous.
Thus, f(1,)S 17 =1y S and f(1,)< 17, =1, <v.So 1,<f (1), and

]_J_. < f" (v) .Moreover, f"(,u)z\f"(v )=0.Clearly f'(u) f'(v)e t'. Hence (X, t')

is an FSR,(i) space.
(b): Let (X, t*’r) be an FSR,(ii), t * be the reciprocal topology on X for f: X — (X,
t").Let x. ye X, Xx#y, Wet such that w(x)# w(y). Let f(x) =x’ and fly) = y. As wet’,

there exist w'e t” such that w = et (w’r). Now wj(x’f) = w‘f( f(x))=( f"(w’))(x)= w(x).

Similarly w’(y“f) = w(y). So w’(x’f):.tw’()/). Therefore there exists 4, v € t” such thatf;

< u, iv <vand u <l-v, we have , f(].)< 1 7(z) forevery z€X, since fis continuous
Thus, f(],)< R—) =E < pu, and f(G)S L1(y) =G <v, hence |, < f7'(u), and

1,< /' (v) Moreover f(u)<1=f"(v),Clearly f'(u), f'(v)€t. Hence (X, t)

is an FSR,(ii) space.

(¢): Suppose (X, t) be an fuzzy supra topological space having the property FSR,(iii)
Suppose, t ‘= { f"(u):u et’}. Now (X, t") is a fuzzy supra topological space. We
have to show that (X, t°) has FSR,(iii)

Since (X', t) be an FSR,(iii), t * be the reciprocal topology on X for f: X — (X,
t").Let x, yeX, xzy, wet such that w(x)# w(y). Let f(x) =x’ and fly) = y“f. As wet',
there exist W€ t” such that w = f"(w’f). Now w/(x) = w/( f(x)=( ™ (W))(x)= w(x),

similarl w“f(y‘f =w(y). So w/ xX)EwW y).. Therefore there exists v €t such that u(x)
Y Y
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=v(y’r) =1 and pAv=0, Now f~'(u(x))=puf(x) =u(x") =1. Similarly /"(vy))=!
Moreover, £~ (u)n f(v)) = 0, Clearly f™'(u).f"'(v)€ t". Hence (X, t') is an
FSR,(iii).

(d): Let (X“r, 1”) be an FSR;(iv), t " be the reciprocal topology on X for f: X — (X",
t").Let x, ye X, x#y, wet’ such that w(x)# w(y). Let f(x) =x' and f(y) = y. As wet',
there exist w'e t” such that w = f"(vs/). Now W(x) = w( fx)=( f (W))(x)= W(X),
similarly w‘f(y’f)rw(y). So w’f(x’r)#w’f(y’f).. Therefore there exists u, v € t" such that ,u(x“f)
=) =1 and u <l-v. Now 'l x)) = puf(x) =u(x) = 1. Similarly f"(vy)=I
Moreover £~ (1) <1—f"'(v), Clearly f™'(u).f"(v)€E t".Hence (X, t) is an
FSR(iv).

(e): Let (X”, t*‘r) be an FSR;(v), t' be the reciprocal topology on X for f: X — (X“r,
t").Let X, ye X, x#y, wet' such that w(x)# w(y).. Let f(x) =x and f(y) = y“f. As WEt',
there exist W€ t” such that w = £ (). Now w(x') = W( f(x))=( f~ (W))(x) = w(x),
similarly w/(y)=w(y). So w’(x’)iwf(y’r). Therefore there exists u,v € t” such that
u(xy>a, v(y)>B and u Av=0.Now f7'(u(x))=pflx)= u(xy>a.Similarly £ (v())>
Moreover, £~ (u)A f7(v)) =0, Clearly f™'(u) f"(v)€ t', hence (X, t) is an
FSR(v).

(f): Let X, t*‘f) be an FSR;(vi), t " be the reciprocal topology on X for f: X — (X’f,

t'“f).Let X, YE X, XZY, wet’ such that w(x)=a €lg, , and w(y)=p €lo, where a # B.
Let f(x) =X and f(y) = y.. As wet’, there exist W€ t” such that w =/~ (w). Now w/(x)
= W f0)=( £ (W) X)= wx)> a, similarly w/(y) =w(y). So W(x)>a , and W(y) =0.
Therefore there exists u,v € 7 such that u(x)>0, v(y)>0 and uAv=0. Now
' (u(x)=pfx)= u(x'y>0.Similarly we can show that £ (\(y))>0.Moreover,

A (v))=0,clearly f™ (). f'(v) € t". Hence (X, t') is an FSR(vi).

(2) : Let (X, t”) be an FSRy(vii), t " be the reciprocal topology on X for f: X — (X,

t”).Let X, YE X, XFY, wet such that w(x)> a €y , and w(y)=0 €lo,, . Let f(x) =x' and
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fly) = y. As wet’, there exist w'e t such that w = f"'(w’f). Now w/(x) = W/(f(x))=(
_f‘“‘(w’f))(x)Z w(x)> a, similarly w’f(yf)Zw(y). So W’f(x’f)>a , and w’f(y‘f) =(). Therefore
there exists 1, v € t” such thatE <t iy <vand u Av=0. We have, f(],)< ) for

every z€X, since f is continuous . Now f(1,)< 17(x) =E <u, and f(l_y)S Lr(yy =

I, =v.So I__\.Sf_'(,u.), and ﬁSf"’(v). Moreover, /™' (1) A £~ (v) =0, Clearly

£ ), £ (7)€t Hence (X, t') is an FSR(vii) space.
(h) : Let (X', t”) be an FSR(viii), t " be the reciprocal topology on X for f: X — (X,

t"’).Let X, y € X, X#Y, wet such that w(x)> a €ly; , and w(y)=0 €lp,. Let f(x) =x and
fly) = y’f. As wet', there exist we t” such that w = £ (w). Now vx/(xf) = w“f( f(x))=(
ot (w’f))(x): w(x)> a, similarly w‘f(y’r)=w(y). So W(x)>a , and W’r(y‘f) =0. Therefore

there exists &, v € t” such thatg < u, fy < v and u A v=0. we have, f(i )= 11(2) for
every z€X, since f is continuous .Now f(1,)< 1 £(x) =E < u, and f(f;)S L f(y) = ],;

<v. So 1,/ (w), and 1,<f'(v) Moreover f~'(u)<i—f"'(v), Clearly

) (v)€E t". Hence (X, t") is an FSR,(viii) space.

(i): Let (X“r._ t") be an FSR(ix), t " be the reciprocal topology on X for f: X — (X',
t”).Let x, ye X, x=y, wet such that w(x)> a €lo; , and w(y)=0 €lg; . Let f(x) =x and
fly) = \/ As wet', there exist we t” such that w = f"(w’). Now w‘f(x") = w’( f(x))
( 7 (WHX)= wx)> a, similarly w/(y)=w(y). So W(x)>a , and w/(y) =0. Therefore
there exists u, v € t” such that u(x) =v(y) =1 and g Av=0. Now f'(u(x))= pf(x)
=u(x') =1 Similarly f'(qy))=1. Moreover, f ()~ f'(v) =0, Clearly
£ (w) £ (7)€t . Hence (X, t) is an FSR,(ix) space.

Proofs are same for the remaining properties.

3.5. Hereditary Properties of FSR; spaces.

3.5.1. Theorem: All the properties FSR;(k) of subspace topology where (i<k<xviii)

are hereditary.
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(a) Proof : FSR(vii) : If V x, ye X, x=y, 3 wet" such that either w(x) > a €lp,, and
w(y)=0, or w(y) >a €ly;, and w(x)=0, then 3 Ww,v €t such that I__\.S U, l—}.S v and
uAv=0.Let (X, t) is FSR;(i), we shall prove that (A, 7)) is FSR;(vii) .Let x, ye A,
with x=y then x, y€ X, and x==y. Let wet" such that either w(x)> a €lg, and w(y)=0,
or w(y) > a €lg, and w(x)=0, Let wet such that w(X)> a €lg;, and w(y)=0 since (X,
t") is FSR(vii), then 3 u, v €t” such that 1, < M, ES v and u A v=0. We have, t'-cl(1y)
N1a= ri=cl(1y). Let xe A, me/, then there exist u et  such that 1A U= m. Since x €
A then m(x) = u(x), So, t‘-c!(lx)s p. Similarly we can prove that, t‘-cl(ly)s v. Now,
£4-cl(1y) = 140( t*-cl(]x)) SlaApu=m, Vv et’ and so on. We observed that i <m, E
<n, where n €f; and m A n=(1,A IOAC TAAVI=IAA(p A V)= 1aA0=0. This implies
that, (A, ¢,) has FSR(vii).

(b) Let (X, t") is FSR(ii), we shall prove that (A, £;) is FSR(viii).Let x, y € A, with x
=y then x, ye X, and x=y. Let wet™ such that either w(x)> a €lg;, and w(y)=0, or
w(y) > a €lg,, and w(x)=0, Let wet™ such that w(x)> a €lg;, and w(y)=0 since (X, t')
is FSR(viii), then 3 u, v €t’ such that ﬂs J7R ES vand u < 1-v . We have, t'-cl(1y)
NIa= £y-cl(1y). Let xe A, me ), then there exist u et such that 14A u=m. Since x e
A then m(x) = u(x), So, t‘-cl([x)i u. Similarly we can prove that, t*-cl(]}.)s v. Now, ¢,

-cl(1y) = Tan( t*-c](]x)) SlaAu=m, vV u et and so on. We observed that l_,rS m, E

< n, where nEt:;. Now I-n= I-1aAv 21-v = u >1sA u=m .Hence, (A,r;) has
FSR,(viii).

All other proofs are similar and so omitted.

3.6. 7,(t) Properties of FSR; spaces.

3.6.1. Theorem: Let (X, t') be a fuzzy supra topological space and 7, )= {u'(a, 1]:
uEt, @ € 1;} then

(@) (X.t')is FSRy(iii) =(X, 1, (1)) is supra R,

(b) (X.t")is FSR; (iv) = (X, I, (1)) is supra R
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©) (X.t")is FSRy(v) =(X, I, (1)) is supraR

(d) (X, t) is FSR (vi) (X, I, (1)) is supra R,

Proof :-(a) Let (X, t') is FSR,(iii) we shall prove that (X, I, (t") is supra Ry. Let X,
y €X; x#y, and M€ [, (t")with XEM and y&M or x¢M and yEM. Suppose XEM and
y&M. We can write M= w'(a, 1], where we t', then we can have w(x)> a, W(y)< .,
therefore w(x)#w(y). Since(X, t) is FSR(iii). Then 3 u, v& t" such that u(x)= 1,
v(y)=1, and uAv =0 .It follows that 3 u(a, 1], vi(a, 1€, I, (t') and x€ u”'(a, 1] and
yEv"(a, | ],and u(a, 1N v'(a, 1]= ¢, as uAv =0. Hence it is clear that (X, I(t") is
supra R;.

Proof :-(b) Let (X, t*) is FSR,(iv) we shall prove that (X, I, (t*)) is supra R;. Let x,
y €X; x2y, and Mel(t)with xeM and y&M or xgM and yEM. Suppose XEM and
y&M. We can write M= w'(a, 1], where we t', then we can have w(x)> a, W(y)< a,
therefore w(x)#w(y). Since(X, t") is FSR(iv). Then 3 u, V€ t" such that u(x) =1, v(y)
=1, and u<l-v. It follows that 3 u'(a, 1], vi(a, 11€, 1. (t"), and x€ u'(a, 1]and ye v’
'(a, 1],and u'(a, l]é]-v"(a, 1], as u<l-v . Hence it is clear that (X, €, I, (t") ) is supra
R;.

Proof : (¢) Let (X, t") is FSR;(v) we shall prove that (X, €, 1, (t)) is supra R;. Let X,
y €EX; x#y, and ME€E€, |, (t*) with XM and y&M or x¢M and yEM. Suppose XEM
and y¢M. We can write M= w'(a, 1], where we t', then we can have w(x)>a,
w(y)< a, therefore w(x)#w(y). Since(X, t") is FSRy(v) V B, €loy, 3 v et such
that u(x)>f, v (y)>6 and u A v=0. It follows that 3 u(a, 1], via, 1]€ I(t") where § >
a.85>a and x€ u'(a, 1]and yev'(a, 1) as u(x)>B,v (y)>6 and u(a, 11nv(a,
1]= ¢ asuAv=0andp,§ €lop,. Hence it is clear that(X, [, (t))) is supra R;.

Proof: (d) Let (X, t') is FSR;(vi) we shall prove that (X, I, (t*)) is supra R;. Let x,
y €X; x#y, and Mel(t)with XM and ygM or x¢M and yEM. Suppose XEM and
y&M.So we can write M= w™(a, 1], where we ', then we can have w(x)> a, w(y)< @,
with w(x)#w(y). Since(X, ') is FSR(vi). Then 3 u, V€ t' such that u(x)> 0, v(y)>0,
and uAv =0 It follows thatd u'(a, 1], v'(a, 1]€ I(t)and x€ u'(a, 1Jand yev'(a,
1],as u(x)>0, v(y)>0 and u(a, ]]nv“'(a_, 1]= ¢, as uAv =0. Hence it is clear that(X, 7,

(")) is supra R;.
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Now we give some examples to show the following.

(@) (X, I (1)) is supra Ry # (X, t') is FSR(iii),

(b) (X, [, (1) issupraR;# (X, ) is FSRy(iv),

(@) (X, 1, () is supra Ry # (X, t') is FSR;(v).

(d) (X, I (t) is supra Ry (X, ') is FSR (V).

3.6.1 Example : Let ], (tH= {X, ¢, {x}, {y}}.Then clearly J, (1*)i5 a supra
topology on X and (X, /, (t*)) is supra R; space.

Now let X={x, y}and u, v, wel® where t'={1, 0, u={(x, .8), (¥, -2 )}, v={(x, .1), (¥,
)}, w={(x, .8),(y, .7)}} be a fuzzy supra topology on X, is generated by {0, u, v, w,
1}.Here wet with w(x)#w(y), since w(x)=.8, w(y)=.7, now u(x)=.8.u(y)=2 and
v(x)=.1, v(y) =.7.So u, v€ t" with u(x)>0, v(y)>0 and u Av=0, Hence it is clear that (X,
t") is not FSRy (vi), Also (X, t') is not FSR,(iii), since u(x) #1 and v(y) #1 and uAv=0,
Again for a = 0.6, (X, t') is not FSR,(iv), since u(x) #1 and v(y) #1. Hence X, I«
(t') is supra Ry # (X, t) is FSRy(iii), (X, I, (1)) is supra Ry # (X, t") is FSRy(iv),
(X, I, () is supra Ry # (X, t) is FSR(vi).

3.6.2 Example: Let /, (t") = {X, ¢}, then clearly (X, I(t"))is supra R, space.

Let X={x, y}and u, vel® where t*={1, 0, u={(x, .8), (v, -2)}, v={(x, .1), (¥, .7)}} be a
fuzzy topology on X, is generated by {0, u, v, 1}, now u(x) =8,u(y)=.2 and v(x)=.1,
v(y)=.7.50 u, VE t* witha = .9, we have (X, t) is not FSR; (v) space. Hence (X,
1, (1)) is supra Ry # (X, t') is FSRy(v). [65]

This completes the proof.

3.7. Homeomorphisms among FSR; Spaces.

3.7.1 Theorem: Let (X, T be an FSR; (K) (i<k<xviii) .Prove that every
homeomorphic image of FSR; (K) is also FSR; (K).
(a) Proof: Let (X, T") be an FSR; (vii). Let fi(X, n)=(Y, ;) be a homeomorphism

between fsts, where (X, £ ) has FSR;(vii), Lety,, »,€Y, »,#), . Q €lgy and W€ b

such that wi(y,) >a and w(y2)= 0. Now £ (y)s [ (y,)EX and £ (wy) e 1)) such
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that that (7 '(w2))( f'(»,))>a and (7 (wa))( ' (y,)= 0. Since (X, T be

an FSR, (1), there exist u, v € ¢; such that Ly SUs 1gy ) SV and uAv=0 .Since f
is a homeomorphism, II'—U’.J = Ft(l_yl) v yeY, f(u), f(v) Er; such that i;. < f(u) ,
K < f(v) and f(u)A f(v)=0. Therefore (Y, 3) is FSR; (vii).

(b) Let (X, T") be an FSR(viii), Let f:(X, #/)=(Y, t>) be a homeomorphism between
fsts, where (X, £ ) has FSR,(viii). Lety,, »,€Y, y,#y, ,a €loy and W€ t> such that
wi(y,) >aand wi(y2)=0. Now f~'(»), /7 (y,)EX and £ (wy) e t;) such that (/™

W) /(> and (£ (w)( £ (p,))= 0. Since (X, T') be an FSR; (viii),

Therefore there exist u, v € ¢; such that L1y SU s 1y <v and u <l-v, we
have , f(i:)s m for every z€X, Since f is a homeomorphism, L) = f"(a) v
yeY, f(u), f(v) € such that ]_n < f(u), 1—‘2 <€ f(v) Moreover f (u)<1=f (v),

Clearly f(u), f(v)€ ¢;. Hence (Y, ) is an FSR,(ii) space.

All other proofs are similar, and so are omitted.

3.8. Initial properties of FSR; Spaces:

3.8.1 Definition : Foreachi € A, Let f: X — (Y, r*i) are the functions from a set X
into fsts (Yi, T) then the smallest fuzzy supra topology on X for which the functions fj,
i € A are fuzzy continuous is called initial fuzzy supra topology on X generated by the

collection of functions {f;: i € A}.

3.8.2. Theorem: The properties FSR; (k) (i<k<xii) are initial, i.e if fi X= (X;; () is
a source in fuzzy supra topological spaces where all (X, () are FSR; (k) then the
initial fuzzy supra topology t on X is also FSR; (k).

Proof: (a) Let {(X;. ¢}):j €/} be a family of FSR, (vii), and { fi: X=(X;, £ j e}
be a family of functions and t" the initial fuzzy topology on X induced by the family {f;

:j€J}. Letx, y € X, x#y, a € lp; and wet’ such that w(x)> a €lg,, and w(y)=0 .

Since wet, there exist basic t -supra open set, Wy, such that w = sup { w; :p€P}. Also
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each must be expressible as w, = inf { fPL Wp,o 1< p < n} as w(x)>a and w(y)=0,
we can find some k (1<k <n ) say k/ such thalf;‘, w,! (X) > a and = Wl (y)=0 .This
Tk Pk

. . -1 -1 =L - * , . s

implies that 4,/ fﬂi (x) > a and fﬁi (y) = 0. Since (X Pi,;p-k) is FSR1(vii), there

exist Up, , Vp,, € tp;- such that l_fw (x) < Uy, lff’.v’ ()< Vp, andUp,A Vp ,=0
P 3 5 = o

Also since fm{lS continuous, we have fpk (1,) < lfpk” (x). Now put u= fPi (up#,)

and v= f;;.{(vp}/) . Then u, v € { such that]jé u, ;S v and u A v=0. Hence (X, t)

is an FSR,(vii) space .

(b) Let {(X;, ¢;):J €/} be a family of FSR, (viii), and { fii X=(Xij, r;):j€J} bea

family of functions and t the initial fuzzy topology on X induced by the family {fj : ]
€J}. Letx,y € X, x#y, a € lp; and wet’ such that w(x)> a €lg,, and w(y)=0 . Since

wet , there exist basic t -supra open set, w, such that w= sup {w, : pEP}. Also each

must be expressible as w, = inf { f;i wp, 1< K <n}as w(x)>a and w(y)=0, we can

find some k (1<k <n ) say k' such that f' wp (X) > a and f: w,! (¥)=0 . This
Py . k i

s . = | -1 _ . * o
implies that Wp, fP;- (x) > @ and Wy ij (y) = 0. Since (X 4 ,zp; ) is FSR(viii), tl1¢re

exist Up, , Vp,, € fpk such that lfﬂif (x) < Up,, lfpr, ()< Vp, andUp,A Vp,,=0

i . . I o -1
Also since p /1S continuous , we have fp* (1) < lfw (x). Now put u= fﬂi (up"/)

and v = _f';l(vp#;). Then u, v € ¢ such thatﬂs u, ag v and u<l-v. Hence (X, t*) is

an FSR(viii) space .
All other proofs are similar.

3.9. Productivity of FSR; Spaces.

3.9.1. Theorem[12]: The properties FSR;(k) , k € {i, ii, iii, ..........xii} are productive,
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i.e. if (Xi, t] )ies is a family of fuzzy supra topological spaces, each of them having the

property FSR(k), < the product space [x - X,-.;"} also has FSR(k).
ieJ

Proof:

Suppose each of (X;, t:)iEj has the property FSR;(vii). V x, ye X, x=y, 3 wet’ such
that either w(x)> a €lpand w(y)=0 or w(y) > a €ly and w(x)=0, Suppose w(x)> a €l
, and w(y)=0. Now we have x, yeX, x =y, where X = (X;)ic; and y = (y;)ics, a€lp , and

from definition of product topology w(x)= min{ wj(x;) j€ /}, w(y) = min { wi(y)): j€ ] }
Hence we can find at least one wi€ t; and x; yi€ Xiwith x,# y and wi(x)>a, wi(yi)

=0 . Since each of (X, t; )ic; has the property FSR;(vii). , then 3 M, v, € t: such that

I, < 4, ]"J: < v, and g, A y;=0 . Using projection we have mj(x)= x; and mi(y)=y;
and hence i, (mi(x))>a andy, (mi(y))=0 .Since each of (Xi, t*))ic; has the property
FSRg(vii), and so (X, t*) has FSR;(vii).So 3 u,v et’ such that ES u, 1:5 vand u A
v=0.

Conversely suppose that (X, t*) is FSR;(vii), we shall prove that (X, t});c; has the
property FSR;(vii). Let for some i€ A, a; be a fixed element of X;, suppose that A=
{XEX =T1,c» X, /Xj=a; for some i#j}. So that A, is a subset of X, and hence (A;, ;;r) is
also a subspace of (X, t) . since(X. t") is FSR,(vii), then (A, , £4,) Is also FSRy(vii).

Now we have A;is a homeomorphic image of X;. Hence it is clear that (X, t: Jies is also
FSR(vii).

All other proofs are similar and so these are omitted.

Just for record, we introduce a definition of FSR;-space here, without study its

properties. We hope to study these in separate work.

3.9.2. Definition: A fuzzy supra topological space (X, t') is called FSR, —space if for
every pair of fuzzy point x; and y, in X with cl(x,) # cl (y,) ,then there exists A, u € t
such that cl(x))< A, cl(y;)< u and AA u =0.
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3.9.1. Example: Let X = {xo4, Yo7}, T = {0x, I, 1, 1 }, where U= Xp4, A = Yo718
defined as pu(x) = 0. 4, p(y) = 0; A(x) = 0, A(y) = 0.7; clearly, (X, 1) is a fsts. p’r(x) =0.6

Wey=L2@®=1,1 =03
Closed sets in (X, T') are 0,, 1. Here the smallest closed set containing Xo4 iS Xoe ,

Clear]y C](.‘(o_4) =Xp6 = 2 -

3.9.2. Theorem: For a fuzzy supra topological space (X, t"), the following properties
are equivalent.

(1) For every pair of fuzzy point x, and y; in X with cl(x) # cl (y) ,2then there exists
AuE t* such that cl(x)< 1, cl(y)< w and AA u =0.

(2) x, y € X, with cl(x) # cl(y) then x; and y; have disjoint neighborhoods. AA u =0.
Proof: (1) = (2)

From definition 3.9.2 of FSR;- space, it is clear that for every X, y€X, with cl(x)) # cl
(yr) then there exists A, i € t" such that cl(x)< A, cl(y)< pand AA u =0.

@)=

Suppose x€( cl(y,)” then x; € cl(x,) and x; & cl(yr) with cl(x)) # cl(y,) then x; and y,
have disjoint neighborhoods 4, u € t* such that AA u =0.Hence clearly that cl(x)) < 4,
cl(y)< p and AA u =0. So (X, t'") satisfies for every pair of fuzzy point x; and yr in X
with cl(x,) # cl (y;) ,then there exists A, u € t* such that cl(x)< 4, cl(y))< p and AA u
=0

3.9.3. Theorem : A fuzzy supra topological space (X, t") is fuzzy supra R, space if for
every pair of fuzzy point x; and y, in X with fuzzy supra kernel (x;) # fuzzy supra
kernel (y,), there exists 4, u € t* such that cl(x)< A4, el(y,)< u and AA p =0.

Proof: We know that Let (X, t') be a fuzzy supra topological spaces and x,, yr € X.
then fuzzy supra kernel (x) # fuzzy supra kernel (y;) if and only if cl(x,) # cl (yr).(by
theorem 2.6.4) Now the theorem is directly follows from the definition 3.9.2. of FSR,

—space.
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CHAPTER- 1V

Fuzzy Supra T, topological spaces

4. Introduction:

Separation axioms are very much important in topological as well as in fuzzy
topological spaces. Several topologists did a lot of works in this branch. Such as
Lowen, R., and Wuyts, P., [36] in 1983 have studied and give definitions of
separation axioms (To, T, T>) in fuzzy topological spaces, fuzzy neighborhood and
fuzzy uniform space. Ali, D.M., [7] introduced and made a comparative study on
some separation axioms. Furthermore, Hutton, B., and Reilly, I., [30], Adnadjevic, D.,
[3], Ganguly and Saha[50], Sarker, M.,[52], Srivastava et.el[58]., Mashhour,A.S., and
Ghanim, M.H [39], Malghan and Benchalli[19] and Rodabaugh, S.E., [48], studied
these properties in different ways. In this chapter following them, we introduce and

study fuzzy supra Ty topological spaces.

This chapter contains three sections; first section is on different types of definitions,
implications and non-implications among these definitions with some lemmas and
examples, second section is on good extension property of supra To topological
spaces. The third sections are on subspace, heredity and productive properties and on
homeomorphic property of fuzzy supra Ty topological spaces. Throughout this

chapter we use the symbol FST, space for Fuzzy Supra Ty topological space.

4.1. Definitions of FST, Spaces:

4.1.1. Definitions: - Let (X, t') be a fuzzy supra topological space. Now (X, t') isa

(a) FST, (i) space < V x,ye X, x#Y, d U€e t's.t.u(x) =0, u(y) =l or 3 ve t'
s.tv(x)=1, v(y)=0.

(b)  FSTo(ii)space <> V x,ye X,x#y, 3 ue t's.t.u(x)=0, u(y)>0or 3 ve t
s. t v(x)=0, v(y)=0.

(c) FSTy (iii) space <> V X, y€ X, x#y, J UE t's. t.u(x) <u(y) or 3 ve t's.t

v(y) <v(x).
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(d) FST, (iv) space < V x, ye X, x#y, with ¢ €},, 3 ue t st
ux)=lu(y)<a ,or 3 ve t's.t v(y)=I, v(x)<a.

(e) FSTo(v) space < V X,y€ X, xzy,witha €],, 3 ue t7 st u(x)=0, u(y)= a,
or3d vet s tv(y)=0, v(x)=a.

0 FST, (vi) space < V X, ye X, x#y, witha €],, I ue t st u(x)=0,
u(y)>a, or 3 ve ts. t v(y) =0, v(x)>a.

(2) FSTy (vii) space <> V X, ye X,x=zy, 3 ue t's. . 0< u(x)< a<u(y) < 1, or3
vet s.t0<vy)<a <v(x) <1

(h) FST, (viii) space <> V x,y€e X,x#y, 1 ue t's. t.u(x) =u(y).

(i) FST, (ix) space <> V pair of fuzzy point x;, y; €X, x#y, cl(xy) # cl(y).

4.1.1. Lemma: In view of above definitions, the following implications are true:

(@)= (b) =(c)

A

(e) (h)<=(g)

J

@ @O ()
Proof: (a) = (b)

From definition (a) ¥V X, ye X, x#y, 3 u€ t' s.t. u(x) =0, u(y) =l or3d ve t' st
v(x)=1, v(y)=0 ,then clearly u(x)=0, u(y)>0, or v(x)>0, v(y)=0, which is (b).

(b) = (c¢) is obvious , since from (b) V x,y€ X ,x#y, 3 ue t's. t. u(x)=0, u(y)>0

ord ve t st v(x)=0, v(y)=0.S03 ue t" s.tu(x) <u(y) or  v(y) <v(x), which is (c).

(a)=(e) is obvious for a=1

(a) = (h)
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From (a), V X, y€ X, x#y, d ue t* st u(x) =0, u(y) =l or 3 ve t" st v(x) =1,
v(y) =0, hence u(x) # u(y).

(d)=(2)

Let (X, t') be a fuzzy supra topological spaces having properties FSTo(iv) space. We
shall prove that (X, t") is FSTo(vii) space. Let x, ye X, x#Y, since (X, t") is FSTo(iv)
space, fora €/,,3 uve t' st ux)=1, u(y)<a, it follows that 0< u(y) < a<u(x) < 1,
Hence it is clear that (X, t') is FSTo(vii).

(H=(g)

Let (X, t') be a fuzzy supra topological spaces having properties FSTy(vi) space. We
shall prove that (X, t*) is FSTo(vii) space. Let x, ye X, x#Yy, since (X, t") is FSTo(vi)
space, for ¢ €], d ue t' s.t. u(x)=0, u(y)>a , it follows that 0< u(x) < a<u(y) < 1,
Hence it is clear that (X, t') is FSTo(vii).

() =(h)

Let (X, t') be a fuzzy supra topological spaces having properties FSTo(vii) space. We
shall prove that (X, t') is FSTo(viii) space. Let x, ye X, x#Yy, since (X, t*) is FSTo(vii),
so for@a €, 3 u€ ' s.t. 0< u(y) < a<u(x) < 1.Now we observe that u(x)=u(y).

Hence (X. t') is FSTy(viii).

(h) = ()

From (e), ¥V x,y€ X, x=#y, 3 ue t' s t. u(x) #u(y). Hence 1- u(x) # 1I- u(y) and
since 1- u is closed put, 1- u(x) = x;and I- u(y) =y,so3d ue t's.t.cl (X y# ¢l (yr ).

Hence (X, ") is FSTo(ix)

4.1. 2. Now we show the non-implications among FSTy(k), k={i, ii, iii, sowwnaal X}

with some examples:

Example .1. Let X={x.y} and u. uj, o€ I¥, where u, uy, ua are respectively defined
by u(x) =0.0, u(y) =0.8; ui(x) =0.4, u(y) =0.0; ux(x) =0.4, ux(y) =0.8; and t=40, I,
u, uy.ua} then t'is a fuzzy supra topology on X. Also (X, t") satisfy (b) but not (a). [65]

So, (b) #> (a).
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Example .2 Let X={x, y} and uel®, where u defined by u(x) = 0, u(y) = 0.8.
Consider the fuzzy supra topology t on X generated by and t'= {0, I, ujy
{constants} for a € 7, it is clear that (X, t') is FST, (v).space but (X, t‘) is not
FSTo(i).

Example.3. Let X={x, v} and w,u,u» € 1*, where u, uy, by are respectively defined by
u(x)=0.5,u(y)=0.8; u;(x)=0.6, u;(y)=0.3; us(x)=0.6, u(y)=0.8; and t*={0,l. u,up,uy}
then t'is a fuzzy supra topology on X. Also since u(x) <u(y) Or u;(y) < ui(x) so (X, t)
satisfy (3) but not (b). So (¢) #> (b).

Example .4.Let X={x, y} and u, u;, i, € 1%, where u, u,, u; are respectively defined by
u(x)= 0.5, u(y)= 0.8; u;(x)=0.6, u1(y)=0.5 ; ua(x)=0.6, ux(y)=0.8; and t*={0,], u, uj,
uy} then t is a fuzzy supra topology on X. Also since u(x) <u(y) Or u;(y) < uy(x) so

X, t) satisfy (3) but not (d), because for u(x) = u;(y)# 1.
So (e)#> (d).

Example.5. Let X={x, y} and u, u;, uz€ I*, where u, uj, u» are respectively defined by
u(x) =0.6, u(y) = 0.6; ui(x) = 0.3, ui(y) = 0.4; and t'= {0, 1, u, u;} then t'is a fuzzy
supra topology on X. Also closed fuzzy sets of (X, t') are 1, 0, u’, uj Hence t= {0, 1,
{(x, 4), (v, D}, {x,.7), (v, -6)}}

clu(x) =7, clu(y) =.6; cl u(x) # cl u(y), but u(x) = u(y),

Hence (i) #> (h).

Example.6. .Let X={x, y} and u, u;, up€ IX, where u, u,, u, are respectively defined
by u(x) = 0.5, u(y) =0.8; u;(x) =0.6, ui(y) =0.3; ux(x) =0.6, uz(y) =0.8; and t'= {0, 1,
u, uy, uz} then t'isa fuzzy supra topology on X. We observe that u(x) # u(y). so (X,

t") satisfy (h) and clearly (X, t) does not satisfy (a).
Hence (h) #> (a).

Example.7. .Let X={x, y} and uel®, where u defined by u(x) = 0.6, u(y) =0.8.
Consider the fuzzy supra topology t on X generated by and t'= {0, 1, uju
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{constants} for @ = 0.7 it is clear that (X, t') is FSTo(vii).space but (X, t') is not
FSTo(iv).
Hence (g) => (d) .

4.1.3. Lemma: For any fuzzy supra topological space (X, t'), the following are
equivalent:
(a) FSTo (i) space i.e. ¥V x,y€ X, x#y, 3 ue t's.t. u(x) =0, u(y) =l or3 ve t’
s.tv(x) =1, v(y) =0

(b) To: For wevery pair x, yeX, Xx % Y, E(X)Ai(y)zo. [36]
(c) For every pair x, ye X, x #y, K(y) = (), orl_y(x) =0

(a)=(b)

Suppose (a) hold, and suppose x, yeX, x # y and 1,(y) = 0. This implies that there
exists a, t *-supra closed set k such that k(y) = 0 and k(x) = 1. Put u= 1-k. Then u is a
t "-supra open set such that u (x) = 0 and u (y) = 1. By (a) or there exists a t "-supra
open set v such that v (x) = 1 and v(y) = 0. Putm = | —v, then misa t -supra closed
set such that m(y) = | and m(x) = 0. Thus there may exist a t '-supra closed set m such

that m(y) = 1 and m(x) = 0, therefore ﬁ(x) =0. So K(x) Af(y) =0.Hence (a) =(b)

(b) =(c¢) and ( ¢) =(a) are straight forward.

4.1.4 Lemma: For any fuzzy supra topological space (X, t"), the following are
equivalent:

(a)  FSTo(ii) space, i.e ¥V x,y€ X,x#y, 3 ue t st u(x)=0, u(y)>00r 3 ve t'
s.t v(x)=0, v(y)=0.

(b) WTy: Forevery pair x, yeX, X # Y, I(y)z\ﬁ(x) <1. [36]

(a)=(b)

From (a) we have ¥V x, ye X, x#y, 3 ue t* s.t. ux) =0, u(y)=0 0r 3 ve t' st
v(x)>0, v (y) =0. Then T-u(x) =1 and I-u(y) <I; or l-v(x) <I, 1-v(y) =I; since 1-u is

supra closed, so we see that T;(y) <l,or K(x) < 1. Hence C(_y) A E(x) <l.

(b)=(a)
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Let K(y)xxﬁ(x)d.: either I(y)<l,or E(x)<l.=> 1- i(y):‘o orl- C(x)>0

Let 1- E =u, then ue t and u(y)>0 also u(x) =0. Similarly from 1- H(x)> 0, we can

show that v(x)>0, and v(y) =0.m

4.1.5 Lemma: For any fuzzy supra topological space (X, t"), the following are

equivalent:
(a) For every pair x, yeX, x # v, (V(a,ﬂ) el, x [o, 0l (1) =a,01'z3_i_y(x) = ﬁ)
(b) To : For every pair x, yeX, x £y, V (a,pB) €lgxly, a—]x(y]ca',or

Bl, (x) <B. [36]

(c) FST, (iii) space if V x,ye X, x#y, 3 ue t s.t. u(x) <u(y) or3 ve t st
v(y)< v(x). .

Proof:

(a)=(b)

Suppose for x, ye X, X # y, and there exists a €ly such that a_}\.(y) < Weevrnaenn(1)

Again let for every f €lq, EC(x):ﬁ.Then by (a) for every a €Ely, Eﬂ(y)za,

which contradicts (1). Therefore there exist § €Iy, such that E(x) <p

(b) =(¢)

Suppose for every x, ye X, X # v, there exists a t "-supra open set v such that v (y) <

v (x). Let B = v(y), then clearly ﬁ—l_}__(x) < [. Hence by (b), there exists a €], such that

aold V) < e, this implies that there exists t *-supra closed set say w such that w(y)<
ao<w(x). So, w(y) <w(x).Letu=l-w. Thenuisat *-supra open set and u(x) <u(y).
Similarly we can show that 3ve t's. t v(y) <v(x).Which is (c)

(@)=(c)

Let For every pair x, ye X, X £y, E—];(y) = ¢, there exists t *-supra closed set say w
such that w= a_l_‘. so wW(y) =a, w(x) =0, Hence w(y) < w(x). Let u=l-w. Thenuisat

*-supra open set and u(x) <u(y).Similarly we can show that 3 ve t' st v(y) < v(x).
Which is (¢)
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equivalent:

(a) FSTy (iv) space, i.e. V X,y€ X, x#y, with ¢ €7,, J ue t s.t. u(x)=1,

u(y)<a ,ord ve t s.t viy)=lL vix)<a.

(b) 7o :Forevery pairx,yeX,x#yand Va € I, (I_lx(y)/\(x_]y(x) <a.  [36]
Proof:

(@)=(b)

From (a) we have ¥V x,ye X,x#y,anda €,, 3 ue t' st u(x)=1, u(y)<e, ord ve
t's.t v(y)=l, v(x)<a.Then I-u(x) =0, and 1-u(y) >1-a ; or 1-v(x)>1-a, and 1-v(y) =0;

Since 1-u(x) is closed , so we see that&l_l_(y)<o: or J},(x)«:r thus we see that

Va € lg, gl:(y);\&]_j:(x)<a.
(b)=(a)

Suppose, for every pairx, yeX, x#yand Va € lg, Ez#]:(y)z\ﬁy(x)ca this implies

that El__:(y)< o ora—l},(x)<0: putm= g, =aA |, ist supra closed set such that

m(y)>1 — a, m(x) = 0. Taking u=I-m, then u(x) =1, and u(y) <a . Similarly we have

v(y) =1, v(x) <a .

4.1.7. Lemma: For any fuzzy supra topological space (X, t"), the following To-
properties are equivalent:

(a) FéTg(i.\') space i. e ¥ pair of fuzzy point x,, y;€X, x#y, 3 ue t's.t. cl(xy) = cl(y;).
(b) V pair of fuzzy point x,, yr€X, x#y, 3 ue t s.t.x,qu < I-y,, or y; qu<1-x..

()= (b)

Proof: Let X, y be pair of fuzzy point in X, with x=y, and cl(x;) #cl(y,).3 a fuzzy
point z, in X be such that z,< cl(x,) and zp% cl(y,). We claim that x, < cl(y;). For if x,
< cl(yr). then cl(x;) £ cl(yr). This contradicts the fact that z,% cl (y;). Hence x; % cl (y,)
. So x,q (I- cl(y;)). and Since u=1- cl(y,)€t’ also I-y,<1- cl(yy)=u, therefore x, qu < 1-
yr, So clear it is that ¥ pair of fuzzy point X, y, EX, x#y, 3 ue t s.t. x,qu < l-y,, or
yequ <1-xq.

(b)= (a)
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Suppose V pair of fuzzy point x,, y, EX, x#y, 3 ue t s.t. x, qu < -y, or Yrqus1-x,.
[fx¢qu < 1-y,, then x; £ 1-u and u< 1-y,. Since 1-u is fuzzy supra closed, and cl(y,) is
the smallest closed set containing y. then cl(y,) <1-u, and since x, £ 1-u and x,<cl(x,)

this implies that cl(x,) = cl(y,). m

4.1.8. Lemma: For any fuzzy supra topological space (X, t'), the following Top-

properties are equivalent:

(a) To: For every pair x, ye X, x # y :H{x)mf(y)z(}.

(b) Ty : For every pair x, ye X, x # y and V(a, ) € IpX lo,
al (y)ABl(x)<anp

() Ty : For every pair x, ye X, x # y,

(V(a,ﬁ) e l,x Io,als(y)< 0«',0?’51}.(35) < ﬁ)
d) Ty : For every pair x, yeX,x#yand Va € I, Erwl_x(y)x\ﬁ(x) 5
(e) WTg: For every pair x, ye X, x # y, K(y) /\T;(X) <l.
Proof : (a) = (b)
Let (X, t") satisfies (a), we have to shows that it satisfies (b). Now o:—lx(y)nﬁ—ly(x) <
E(x) AE(}»‘) =0<a A [ . Thus we see that (a) = (b).

)= (©

Let (X, t) satisfies (b), we have to shows that it satisfies (c). Since (X, t') satisfies
Ex_I:(),')A,{T]_:,(x)‘(aAﬁ , if c_xf:(y)za . Then a-i:(y)x\ﬂ—]y(x)afzx\ﬁza a A
ﬁ_h(x)< anf = ,6—1_},(3'.) < f3.Thus we see that (b) = (c)

(©=(d)

Let (X, t*) is T, . then V(e, ,Q)EIOXIO ] af(y) <a or Bl_;r’x)< £ . In particular,
we have E(y)< o or oz—l},(x)<a . Therefore gl:(y)f\ Wy(x)<a , hence (X, t')

isT§ .
(d)= (e)
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Let (X, t')is 7y , then Y(e.f)elgxlg, al,(y)A a_l—_;(x) <a . Taking a =1, then
t.‘_’y)/\ I__l,(x) < 1. Thus we see that 7, = WT,.
© =@ P T

It is clear from Lemma 4.1.3 and 4.1.4.

Now we give some examples,

To #To &
Example: We consider a fuzzy supra topological space (X, t') where X={x, y} and t'=

{0, u, v, 1} U {constants}; u(x)= 0= v(y) , u(y) = 0.8 =v(x) Let « =0.6 , f = 0.7, then
al,(y)=02 and Bl (x)=02 thus al,(y)A Bl,(x)=02<anB =X t)is T,
But (X, t'") is not Ty; since I(x) A T;(y): 0.2#0.

Example: 7, # T,

Consider a fuzzy supra topological space (X, t') where X={x, y} and t= {o,u, 1} U
{constants}; u(x)=0, u(y)=0.5= Let @ =0.6 , then a_lx(y)z 0.5<0.6 ~ (X t)is To
again let § = 0.8, then ﬁ—l_v(x)= constant fuzzy set with value 8 thus E(y)z\
Bl,(x)=06A08=0.6%0.6 A0.8 =0.6 this implies that (X, t') is not 7,
Example: 7, # T,

Consider a fuzzy supra topological space (X, t') where X={x, y} and t’ = {0, u, v, 1} U
{constants}; u(x)= 0= v(y) , u(y) = 0.5, v(x) =0.6. Let a =0.5, then c_:;l-:(y) =0.5 and
al (x)=04, thus al (y)A @l (x)=04<0.5. This implies that (X, t') is T, Now
let § = 0.4. Then o:—l_((y) =0.5 « aand TBT;(x) = 0.4 « (. This implies that (X, t') is
not 7 .

Example: WTo# T

Consider a fuzzy supra topological space (X, t*) where X={x, y} and t’ = {o,u, v, 1} U
{constants}; u(x)= 0= v(y) , u(y) = 0.5, v(x) =0.5. Now u’ (x) =1, u’f(y) =().5, v’f(y) =],

v’r(x) =0.5; Thus |, = u/, |T,= v'Let @ =0.5, then we haveT;(x)A i(y)= 0.5 A0.5=0.5

<Ibut al,(y)A al,(x)=0.5 N0.5=0.5¢0.5. Hence WTo# T,
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4.1.9. Lemma: Let (X, t) and (X,7] ) be two fuzzy supra topological spaces, where .
and ¢ be two fuzzy supra topology on X. Let t" is finer than ¢, then we show that if
(X, 1) is fuzzy supra Ty space then (X, t) is also fuzzy supra Ty space.
Proof: Let x, y be two distinct points on X. Since ¢, is fuzzy supra T, space, then Ju
e 1 s.t.ux)=0, u(y)=1orve t s.tv(x)=1, v(y) =0. Also since 7} = ¢ so for t, u(x)

=0, u(y) =1 or ve t s.t v(x) =I, v(y) =0 is hold. Hence t' is also a fuzzy supra Ty

space.

4.2 .Good extension properties:

[n this section we show that all FSTo(k) (i <k < ix) properties are good extensions of

their supra topological counter parts;.

4.2.1. Theorem:

(a) If (X, T') is an STy-space, then (X, w (T")) satisfies FSTy(k) (i <k < ix).

(b) If (X, w (T")) satisfies FSTo(K) (i < k < ix) then (X, T) is an STy-space.

Proof: (a) Let(X, t') is a supra To-topological space. We shall prove that (X, o(t)) is
a fuzzy supra Ty(i) space. Let x, y € X, with x=y, since(X, t) is a supra Ty, 3 U, Ve
t" such that xe U ye U, or xe V, ye U but from definition of lower semi continuous,
we have lye w(t) and Iy(x) =1, 1y(y) =0.or 1,(y) =0, 1,(x) = 1. Hence we see
that (X, (t")) is a fuzzy supra To(i) space.

Conversely suppose that (X,o(;")) is a fuzzy supra To(i) space we will prove that
(X, t¥) is a supra To-topological space, since (X, 0(;")) is a fuzzy supra To(i) space,
so 3 ue t st u(x) =0, u(y)=l or3d ve t's.t v(x)=1, v(y)=0. Suppose ue t's.t. u(x)
=0, u(y) =1, x¢u™(a, 1] and ye u'\(a, 1], and by the definition of Isc. u”(a, 1] € t
Hence (X, t') is a supra To-topological space.

Proof: (b) Let (X, t) is a supra Ty-topological space. We shall prove that (X, o(t)) is a
fuzzy supra Ty(ix) space. Let x, ye X, with x#y, since(X, t') is a supra To, 3 Ue
such that xe U ye U, but from definition of lower semi-continuous, we have Iy¢€

o(t) and lu(x) =1, Ty(y) =0.So 3 fuzzy point x, y: €X, such that x, Eu"(a, 1], yi€
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u'(a, 1] . Since cl(x) is the smallest closed set containing x;, so cl(x)S u'(a, 1], and
hence cl(y)Z u'(a, 1], so we conclude that (X, w(t)) is a fuzzy supra To(ix) space.

Converse is similar as above.

All other proofs are similar so omitted.

Thus it is seen that FSTy(k) (i < k < ix) is a good extension of its supra topological

counter part.

4.2.2. Theorem: Let (X, t') be a fuzzy supra topological space and 7, (t") = {u”(a.
1:uet, ae I} then (X, t) is FSTo(k) =(X, I, (th) is supra T k€{i, ii, iii, iv, v,
vi, vii, viii}

Proof: (a) Let (X, t') is FSTy(i)we shall prove that (X, J, (t*)) is supra Ty. Let x,
y €X: x=y, since (X, t*) is FSTy (i) space then 3 ue t s.t. u(x) =1L, u(y)=0ord ve
t's. t v(y)=1, v(x)=0 .Let ue t s.t. . u (x) =1, u(y)=0, since u(a, 1]€ 71, (t) gnd XE
u(a, 1] and y¢ u"(rx, 1]. Hence we have (X, I(t)) is supra Ty.(i)

Proof (b) Let (X, t*) is FSTy(iv)we shall prove that (X, 7, (t*)) is supra Ty. Let x,
y €X; X3y, since (X, t*) is FSTy (i) space then 3 ue t s.t. u(x) =1, u(y) <eord ve
t' st v(y) =1, v(x) <a. Let ue t s.t. u(x) =1, u(y) <a , since u’'(a, 11€ 1, (t') and
xe u'(a, 1] and y¢ u'(a, 1] . Hence we have (X, I(t) is supra Tg.

Similarly one can prove the other cases.
4.3. Heredity, productive and homeomorphic properties of FST, Spaces.

4.3.1. Definition: The initial fuzzy topology on X for the family of topological spaces
(Xj, t )€) and the family of function f; : X— (X;, t )€ J ,is the smallest fuzzy
topology on x, making each function f; fuzzy continuous.

4.3.2. Definition: If G is any fuzzy set in a set X and 0< a<1 (0 <a <1) then a(G)
={x € X :G(x)>a } is called an a-level set in X. [48]

4.3.1. Theorem: The properties FSTo(k) , KE{i, ii, iii, iv, v, vi, vii} are initial, i,e if (fi
: X- (Xj, t)€J, is a source in fsts. where all (X, t;)€ are FSTy(k) and a-

level,where a €1, then the initial topology is also FSTo(k).
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Proof: Since a(it') is finer than a(t')) for all a €I, and the spaces (X;, t )€ are
FSTo(k), ke{i, ii. ...... vii}: so clearly the initial fuzzy supra topological space (X, t")
is also FSTy(k), kefi, ii. ...... vii}.

4.3.2. Theorem: The properties FSTo(k) . kE{i, ii, iii, iv, v, vi, vii} are initial, i.e if (£

: X= (X, t‘.i )€ J, is a source in fsts. where all ( Xis t*_]- )i€s are FSTy(k) then the
initial topology is also FSTo(k).

(a) Let {(X, t])ic) } be a family of FSTo(iii) , and § f: X =(Xi, t  )ic; } be a family of
functions and t" be the initial fuzzy supra topology on X induced by the family { f; :i€
J}. Letx, y€ X, xz=y and 3 Aet’ such that Ay) </(x). We can find basic t'- supra open

sets Ai, i) such that A= Sup { 3, i€J }. Also A; must be expressible as 4; = Inf{

Filaw): 1= k=n} where 3, € tx and ik€J. Now we can find some k, (1= k=n),

sayki such that /71 (25) 0) < £ (i) (0= iy, /4 D<Ay Fy, () Since

X i, "r.k;) is FSTy(iii),or there exists Vi, e,}‘h such that Vf'rc; _ffkl(x)c V. fﬁﬂ(y)

= S Vi, X< L3 (Vi 9D Put V= 71 (5 )&t Thus v(x) < v(y). Hence (X, )

is FSTo(iii)

Similarly we can proof for the other.

4.3.3. Theorem: All the properties FSTy(k) of subspace topology where (i< k < ix) are

hereditary.

Proof: Consider the fsts (X, t'), Let AcX. £y ={uNA:ue t'}, We have to show
that, the subspace (A, 17y ) has FSTo(K) (i< k < ix) if (X, t") has FSTy(k) (i< k < ix) .

(i) Letx,y € A, x £y, sothat x, y € X as AcX, since (X, t*) is FSTy(i), so, 3 ue
t's.t. u(x) =0, u(y) =1, Again from definition of subspace we have uA A Ez} and ( uA
A)X) = 0, ( uA A)y)=I as x, ye A. This implies that, (A, ,rt,) has FSTy(i).

(ii) Letx,y € A, x #y, so that x, y € X as AcX, since (X, t') is FSTy(iv), so, 3 u

e t’ with « €17, s. Lulx) =1, u(y)<a , Again from definition of subspace we have uA
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A €74 and (uA A)(X) =1, (uA A)(y)<a as x, ye A. This implies that, (A, ¢%) has
FSTy(iv).

(ii)) Letx,y € A, x#y, sothatx, y € X as AcX since (X, t*) is FSTo(ix) 3 ue t' s.t.
cl u(x) #cl u(y). We have, t'-cl(ly) N1,= ti-cl(1y). Since (X, t') is FSTo(ix) so, 3 ue
t", 50 t-cl(1yu)# t-cl(1 uy) - Hence t'=cl(1 )N 1a # t'-cl(1y4)N14 . This implies

that, (A, ¢%y) has FSTy(ix).

All other proofs are similar and straight forward.

4.3.4. Theorem: The properties FSTy(k), k € {i, ii. ...... vii, viii}.are productive, i.e.
if (X, t])ics is a family of fuzzy supra topological spaces, each of them having the
property FSTo(k), if and only if the product space [X =17 XI.,I*J also has FSTy(k).
ieJ

Proof:  Let (X;, t; )ics is fuzzy supra To(iv)-topological space. We shall prove that
(X, t') is a fuzzy supra To(i) space. Let x, y€ X, with x#y, then x; #y; for some i€,
since (X, t;) is FSTo(iv), then @ €7,, 3 uie t) s.t ui(x) =1, u; (y;)<a .But we have
7, (X)= xi, and 7, (y) =yi. Then ui( 7, (x))=1 and u; (7, (y))<a, i.e (ujo 7, )(x)=1and (u
o) (y)<a, It follows that 3 (u; o 7,)€ t such that (ujo 7,)(x)=1 and (u; o 7,)
(y)<a. Hence it follows that (X, t') is FSTo(iv).

Conversely suppose that (X, t') is FSTo(iv), we shall prove that (X, t; )ic; is FSTo(iv)

space. Let a; be a fixed element in X;, suppose that Ai= {x€X =[],_,.x; /X =a; for

some i#j}. So that A; is a subset of X, and hence (A;, t4,) is also a subspace of (X,
t*) |, since(X, t*) is FSTy(iv), then (A; . fz,) is also FSTy(iv). Now we have A, is a
homeomorphic image of X;. Hence it is clear that (X;, t} )iy is also FST(iv).

Similarly we can prove for k e {i, il, iii, v, vi. vii, viii}.

4.3.5. Theorem: Let (X, ¢;) and (Y, 1) be two fuzzy supra topological spaces, and
f:(X, 1 )—=(Y, 12) be a one-one , onto and supra open map then , (X, ) is FSTo(k) =
(Y, £2) is FSTo(k), k € {i, ii, iii, v, vi, vii, viii, ix}.

Proof: Suppose (X, ¢ ) be FSTy(iv), we shall prove that (Y, ¢;) is FSTy(iv). Lety,,
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¥, €Y, be an arbitrary point s .t y,# y, . Since f'is onto = 3x,, x, €X. with f(x,) = Y

and f(x,) =y, where x;#x, as f-one-one, Again since (X, ¢]) is FSTo(iv) so for a €,

3 uet s.tu(x)) =1, u(xy) <a.
Now f(u)(y1) ={Sup u(x): f(x)) = y, }=I
f(u)(y2) ={Sup u(x2): f(x2) = y, } <a
Since f'is supra open then f(u)€ 1, as u€ ¢ . We observe that 3 f(u)e 15 such

that f(u)(y)) =1, and f(u)(y2) <a. Hence it is clear that(Y, 75) is FSTo(iv).

Similarly we can show for others.m

4.3.6. Theorem: Every homeomorphic image of FSTy(k) is also an FSTy(k),

(i<k<viii).

Proof:. Let f:(X, 1n)—=(Y, ;) be a homeomorphism between fsts, where (X, 1)

has FSTo(i), , Lety,, »,E€Y, be an arbitrary point s.t y, %y, . Since f is one-one onto =
I, X2 €X. st 7 (y) =x and f7'(y,)=x,.Then x;#x,.Again since (X, 1) is
FSTo(i) so3 ue t st u(xi) =0, u(xz) =1. Now f(u)( »,)=u (£~ ()= u (x) =0 and
fu)( ¥,)= u (/' ()= u(xz) =1. Since ue t'and fis continuous, so f(u) € 1> Hence it

is clear that that (Y, +3) is an FSTo(i) All other proof FSTy(ii) - FSTo(viii) are similar.

Not ascertain about FSTq(ix) .
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CHAPTER- V

Fuzzy Supra T;- topological spaces

5. Introduction:

In this chapter we introduced and studied some definitions of fuzzy supra Titopological
spaces. This chapter also contains two sections ; first section is on different types of
definitions, implications and non-implications among these definitions with some
lemmas and counter- examples, second section is on good extension property, heredity
and productive properties, and on homeomorphic property of fuzzy supra T,
topological spaces. Throughout this chapter we use FST) to indicate fuzzy supra T

topological spaces.
5.1. Definitions of FST, Spaces

5.1.1. Definitions: Let (X, t') be fuzzy supra topological space, T)-properties of (X,
t') as follows:

(a) FST, (i) space & V x,ye X, x#y, 3 ue t s.t u(x) =0, u(y)=1land 3 ve
t s.tv(x) =1, v(y) =0.

(b) FST, (ii) space <> V x,ye X,x#y, J ue t s.t. u(x)=0,u(y)>0and 3 ve

s t v(x)>0, v(y) =0.

(c) FST; (iii) space < V x,ye X,xzy, 3 ue t's. t. u(x) <u(y)and 3 ve t s.t
v(y) <v(x).

(d) FST, (iv) space & V x, ye€ X, xzy, with ¢ €7,, 3 ue t s. t. u(x)=1,
u(y)<a,and 3 ve t s.tv(y) =1, v(x) <a.

(e) FST, (v) space <> V x, ye X, x#y, with a €7,, 3 ue t st u(x)=0,
u(y)=a,and 3 ve t s.t. v(y)=0, v(x)=a.

(H) FST; (vi) space <> V x, ye X, xzy, witha €7, 3 ue t s.t u(x)= 0,

u(y)>a,and 3 ve t s.t. v(y)=0, v(x)>a.
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(g) FST, (vii) space <> V x, ye X, x=#y, 3 ue st 0= ux)< a<u(y) < 1,

and I ve t' s.10< viy)Sa <v(x) <1
5.1.1Theorem: The following implications are true:

(@) =(b) =(c)

(e) ()= (g)= (M)

From (a) =(b) V x, ye X, x#y, 3 ue t s.t. ux) =0, u(y) =1 and 3 ve t st
v(X)=1, v(y)=0 ,then clearly u(x)= 0, u(y)=0, or v(x)=0, v(y)=0, which is (b).

(b) =(c) is obvious , since from (b) V x,ye X, x#y, 3 ue t & u(x)= 0, u(y)=0
and 3 ve t stv(x)>0, v(y)=0.803 ue t st u(x) <u(y) or v(y) <v(x) , which is (c).
(c)=(e) and (c)=(f) are straight forward, (a)=(e) is obvious for a=1

(d)=(g)

Let (X, t') be a fuzzy supra topological spaces having properties FST,(iv) space. We
shall prove that (X, t') is FST,(vii) space. Let x, ye X, x#y, since (X, t') is FST,(iv)
space, for@ €7,, 3 ue t s.tu(x)=l, u(y)<a, and ve t' st v(y)=1, v(x)<a, it follows
that 0< u(y) < a<u(x) < 1 and 0< v(x) < a<v(y) < 1 Hence it is clear that (X, t*) is
FST {vii).

(H=(g)

Let (X, t') be a fuzzy supra topological spaces having properties FST,(vi) space. We
shall prove that (X, t") is FST,(vii) space. Let x, ye X, x#y, since (X, t') is FST(vi)
space, for @ €7,, 3 ue t st. u(x) =0, u(y)>a and 3 ve t s.t v(y)=0, v(x)=a. it
follows that 0< u(x) < a<u(y) < land 0< v(y) < a<v(x) < | . Hence it is clear that

(X.t") is FST,(vii).

We show the non-implications among FST;(k), ke {i-vii} with some examples:
Example.1: FST (i) # FST,(i).
Let X={x, y, z} and = {1, 0, u= {(x, .75), (¥, .5), (z, 0)}, w = {(x, .75), (y, .5), (z, 1)},



v=1{(x, 0), (y, .5), (z, 1)} } on X. Here u(x)>0, u(z)=0, and also v(x)=0, v(z)>0; So it is

clear that(X, t') is FST(ii) but there does not exist u, v€ t such that v(x)=0, v(z)=1 and

u(x)=1, u(z)=0. So FST\(ii) # FST,(i).

Example.2: FST(iii) # FST,(i).

Let X={x, y, z} and t= {1, 0, u= {(x, .75), (y, .5), (z, 0)}, w= {(x, .75), (V. .5), (z, D)},

v=1{(x, 0), (¥, .5), (z, 1)} } on X. Here u(x)>0, u(2)=0, so u(z)<u(x) and also v(x)< v(z);

So it is clear that(X, t') is FST(iii) but there does not exist u, v€ t when v(x)=0,

v(2)=1 then u(x)=1, u(z)=0. So FST(iii) # FST(i).

Example.4: FST(iv) # FST(v).

Let X={x, y} and u, v t  are defined by u(x) =1, u(y) =0.4 and v(x) = 0.4, v(y) =I:

consider the fuzzy supra topology t* on X generated by {0, u, v, 1}U {constants}; for

a=0.5, we see that (X, t') is FST (iv) but (X, t') is not FST|(v). So FST;(iv) # FST,(v).

Example.5: FST(vii) # FST;(vi).

Consider a fuzzy supra topological space (X, t') where X={x, y} and let t' = {o, u, v,

1} U {constants}; where u(x)= 0.6, u(y) = 0.8; v(x) = 0.8, v(y)=0.6. Let o = 0.7, it is

clear 3 ue t's.t. 0< u(X)< o<u(y) < l,and 3 ve t 5. 10 < viy)Sa <v(x)<1:so

(X, t*) is FST; (vii) space. But (X, t*) is not FST(vi). Since u(x) = v(y)=0; also (X, t)

is not FST)(vi) because u(x) =v(y)# 1.

5.1.2 Lemma: For any fuzzy supra topological space (X, t'), the following are

equivalent:

(@)  FSTy(ii) space, i.e V x,ye X,x#y, 3 ue t s.t. u(x)=0, u(y)>0 and 3 ve t
" st v(x)>0, v(y)=0.

(b)  WTy: Forevery pairx, yeX, x#y, 1, (») <1. [36]

(a)=(b)

Proof: From (a) we have V x,y€ X, x#y, 3 ue t sit. u(x) =0, u(y)>0 and 3 ve t’

s.t v(x)>0, v (y) =0. Then I-u(x) =1, I-u(y) <I; and 1-v(x) <1, 1-v(y) =1; since |-

u(x) and I-v(y) is closed, so we see that K(y) <l,and 1,(x)<1.Hence K(_y) £l

(b)=(a)
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Let T, (y)<1= either 1 (y)<l,and 1,(x)<1= 1- 1,(»)>0 and 1- 1,(x)>0. Let

1- E =u, then ue t and u(y)>0 also u(x) =0. Similarly from 1- I:(x)> 0, we can

show that v(x)>0, and v(y) =0.m

5.1.3. Lemma: For any fuzzy supra topological space (X, t), the following are

equivalent:

(a) FST (iii) space i.e ¥V X, ye X, x#y, 3 ue t s.t. u(x) <u(y) and 3 ve t st
v(y) <v(x).

(b) T, :1If forevery pair x, ye X, x# y and V o € Ig; a;(y) <a [36]
Proof: (a)=(b)

Suppose for every x, ye X, X #y, there exists a t "-supra open set v such that v ) <v

(x). Let B =v(y), then clearly Bl_y(x) < . Hence by the same way we prove that if

u(x) <u(y) then c?[}(y) <a.

(b) =(a)

Let for every pair X, yeX, x #y and Vo € Ip; c_r-l__:(y) < a hence by a lemma there
exists Belp such 1hat,8—l'.,(x) < .Sosuppose e V X, ye X, x#y, 3 ue t s.t. u(x)

<u(y), let B= u(x) then a;(x) < 3 by (b) there exist t* supra closed set v such that

v(x)<v(y), hence t' supra open set v such that v(y)<v(x). m

5.1.4. Lemma: For any fuzzy supra topological space (X, t), the following are

equivalent:

(a) {x} .,V x €X, isfuzzy supraclosed is in X.

(b) FSTi(i)space =V x,y€ X,x#y, 3 ue t*st.u(x)=0,u(y)=1land I ve t*
s. t. v(x)=1, v(y)=0.

(c)  Tu Ifforevery pair xeX, E =1«.[46]

Proof: The proof is easy, so omitted.



77

5.1.5. Lemma: For any fuzzy supra topological space (X, t'), the following T,

properties are equivalent:

(a)  T): Forevery xeX, I-: =l

(b) 7, :Ifforevery pairx,yeX,x#yand Va € l; E(y) <a

(c) WT,: Forevery pair x, ye X, X #Y, E(y) <l.

Proof: T\= T,

Let (X, t") is T;, Now aT_\.(y) = i:(y) =1,(¥)=0<a.Thus we get T\=T,

T, =>WT,.

Again let (X, t') is T, . Then for every pair X, yeX, x # y and Y a € Iy; o:—lx(y) <a
Taking @ = 1, we have C(y) <1.Thus we see that 7, = WT),.

Ty =>WT,

Since (X, t') is Ty, i.e for every pair xeX, K =] 5 oW IT(y) =14(y) = 0<1; Thus we

see that T, =WT,

5.1.6. Theorem: A fuzzy supra topological space (X, t') is FST;(1) if and only if , V x,
ye X,x#y, 3 ve t s. t. nbhd v(x) 3x&nbhd v(y) and 3 ue t s. t. nbhd u(y) 3
y&nbhd u(x).

Proof: Suppose (X, t") satisfy FST,(1), then 3 ve t s.t v(x)=1, v(y)=0. Then clearly
nbhd. v(x) 3x&nbhd. v(y) and 3 ue t s. t u(x) =0, u(y) = I, so nbhd u(y) 3y&nbhd
u(x).

5.2: Good extension, Heredity, Productive, and Homeomorphic properties of

FST, spaces.

In this section we show that all FST,(k)(i < k < vii) properties are good extensions of

their supra topological counter parts.

5.2.1.Theorem:
(@)  If(X,T")isan ST,-space, then (X, w (T")) satisfies FST,(k), ke{i, ii, ii, iv, vi,
vii}[65];
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(b) If (X, w (T") satisfies FST,(k) ke{i, ii, iii, iv, vi, vii}then (X, T") is an ST)-
space.

Proof: (a) Let(X, t) is a supra T)-topological space. We shall prove that (X, o(t")) is
a fuzzy supra T,(i) space. Let x, y € X, with x#y, since(X, t') isasupra Ty, 3 U, Ve
t" such that xe U, yeU, and xe¢ V, y €V; but from definition of lower semi
continuous, we have lye w(t) and 1y(x) =1, 1y(y) =0.and 1,(y) =0, 1,(x) =I.
Hence we see that(X, o(t") ) is a fuzzy supra T)(i) space.

(b) Conversely suppose that (X, w(t")) is a fuzzy supra T,(i) space we will prove that
(X, t)isa supra T)-topological space, since (X, ®(t")) is a fuzzy supra T|(i) space , so
3 ue t' st u(x) =0, u(y)=1 and 3 ve t st v(x)=1, v(y)=0. Suppose ue t" s.t. u(x)

=0, u(y) =1, so x¢u’'(a, 1] and y€ u™(a, 1], and y&v™'(a, 1] and x€ v'(a, 1], by the

definition of Isc. u™'(a, 1], v'(a, 1], € t". Hence (X, t') is a supra T -topological space.

Similarly we can show that if (X, T") is an STi-space, then (X, w (T")) satisfies
FSTy(k), ke{ ii, iii, iv, v, vi, viii} also its converse. Here (X, w (T")) is a good

extension of its topological counter parts.

5.2.2. Theorem: Let (X, t') be a fuzzy supra topological space. Then the following

implications hold.

@ (X o)) is FST; ()= (X, o(t) is FST) (ii).

(b) (X, o)) is FST; (i)= (X, (")) is FST, (iii).

(€©) (X, o(t))is FSTi ()= (X, (t)) is FST) (iv).

(d) (X o)) is FST; (i)= (X, o(t)) is FST; (vi).

() (X, o(t))is FST, (iv) or FST; (vi) = (X, (")) is FST; (vii).

M (X o)) is FST; (iii)= (X, o)) is FST; (v).

Proof (a): Suppose that (X,o(t)) is a fuzzy supra T (i) space we will prove that
(X, o(t)) is a fuzzy supra Ty(ii)-topological space, since (X, (1)) is a fuzzy supra

Ti(i) space . Let x, y € X, with x#y, since (X, t*) is a fuzzy supra T(i) 3 ue t s.t. u(x)

=0, u(y)=1and 3 vet st v(x) =1, v(y) =0.We have from definition of lower semi-
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continuous, we have 1,, 1,€ a(t") and since (X,0(t))isa fuzzy supra T (i). 1,(x)=0,
lu(y) =l.and 1,(y) =0,1, (x) =1. Also it is clear that 1, (x)=1>0, 1,(y) =0, and 1,(x)
=0, 1,(y) =1>0 : hence we see that(X,w(t")) isa fuzzy supra T)(ii) space. Which is (a)
Proof (b): Suppose that (X, o(t")) is a fuzzy supra T (ii) space we will prove that
(X, oft)) is a fuzzy supra T, (iii)-topological space, since (X, (1)) is a fuzzy supra
T, (ii) space . Let x, ye X, with x#y, since (X, t') is a fuzzy supra T (i) 3 ue t s.t.
ux) = 0, u(y)>0 and 3 vet s.t v(x)>0, v(y) =0. We have from definition of lower
semi- continuous,, we have 1, I,€ o(t") and since (X,(t)) is a fuzzy supra T(ii).
() =0, Tu(y) >0, and 1.(y) =0,1, (x)>0. Also it is clear that 1, (x) =1>0, 1v(y) =0,
and ly(x) =0, Ly(y) =1>0 ; solu(x) < 1,(y) and luy) < 1y(x), hence we see that(X,
o(t")) is a fuzzy supra T, (iii) space. Which is (b)

Proof (¢) Suppose that (X, (")) is a fuzzy supra T;(i) space we will prove that
(X, o(t)) is a fuzzy supra T)(iv)-topological space, since (X,w(t")) is a fuzzy supra

Ti(1) space . Let x, ye X, with x#y, since (X, t*) isa fuzzy supra Ti(i) 3 ue t st

ux) =0, u(y)=1land 3 vet st v(x) =1, v(y) =0.We have from definition of lower
semi-continuous, we have 1., I,€ o(t") and since (X,w(t")) is a fuzzy supra Ti(i).
Lu(x) =0, 1y(y) =l.and 1,,(y) =0,1, (x) =1. Also 1,(x) =1, 1(y) =0<w €I,, IW(y) =1,
Iy(x) =0<a €1y, hence (X, o(t")) is a fuzzy supra Ty(iv) space. Which is (c)

Proof(d): Suppose that (X, (t")) is a fuzzy supra T(ii) space we will prove that
(X, o(t)) is a fuzzy supra T, (iii)-topological space, since (X, ®(t")) is a fuzzy supra

Ti(ii) space. Letx, ye X, with x=y, since (X, t)isa fuzzy supra T((ii) 3 ue t s.t.

u(x) =0, u(y)>0 and 3 vet s t v(x)>0, v(y) =0. We have from definition of lower
semi- continuous,, we have 1, 1,€ o(t) and since (X,o(t)) is a fuzzy supra T,(ii).
lu(x) =0, Tu(y) >0, and 1,(y) =0,1, (x)>0. Also it is clear that 1,(x) =0, lu(y) >a €l and
I(y) =0, 1, (x)>0 =1,(y) =0, 1, (x)>a €I, Hence (X, o(t)) is a fuzzy supra Ti(vi)
space.

Proof(e) Suppose that (X, w(t")) is a fuzzy supra T(iv) space we will prove that
(X, o(t)) is a fuzzy supra T(vii)-topological space, since (X, o(t)) is a fuzzy supra

Ti(iv) space . Let x, ye X, with x#y, since (X, t) is a fuzzy supra T)(iv) with @ € ,,
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Jue t s t.uX)=1, u(y)<a,and 3 ve t"s. t v(y) =1, v(x)<a.We have from definition
of lower semi- continuous,, we have 1,, 1,€ w(t) and since (X,o(t)) isa fuzzy
supra Ti(iv). 1u(X) =1, 14(y) <a and 1.(y) =1, 1. (X)<a. Also it is clear that 0< 1,(y) <
a<ly(x) < l,or3d v € ts.t0<1l,(X)<a <l y)£1. Hence (X, o(t)) is a fuzzy
supra Ti(vi) space. Similarly we can show that if (X,o(t)) is supra T(vi) space then it
is fuzzy supra T)(vii) space. Which is (e)

Proof (f): Suppose that (X, o(t")) is a fuzzy supra T,(iii) space we will prove that
(X, o(t)) is a fuzzy supra T, (v)-topological space, since (X, o(t’)) is a fuzzy supra
T, (iii) space . Let x, ye X, with x#y, since (X, t') is a fuzzy supra Ty(iii) 3 ue ts.t.
u(x) <u(y) and 3 ve t s t v(y) <v(x). We have from definition of lower semi-
continuous,, we have 1,, 1,€ o(t) and since (X, o(t)) is a fuzzy supra Ti(iii), so
14(x) < 1u(y) and 1,(y) < 1y (x), hence we can treat with a € /,, 1u(X) =0, and l,(y) = a

and 3 ve t's. t. 1,(y) =0, 1,(x) =a. Thus (X, o(t)) is a fuzzy supra T)(v) space.

5.2.3. Theorem : Let ( X, t') be a fuzzy supra topological space, and I (t )=
{u'(a,1]:ue t "}, then [64]

@) (X.t')isFST(i), = (X, la(t"))isTi.

(b) (X, t*)isFSTy(iv). = (X, la(t"))isT1.

(© (X t"isFSTi(vi),= (X, Ia(t"))isT.

(@) (X t")is FSTy(vii), & (X, Ia(t))is Ty

Proof: (a) Let (X, t') is ESTy(i)we shall prove that (X, I, (t") is supra Ty. Let X,
y €X; x=Y, since (X, t') is FST, (i) space < V x,y€ X, x#y, 3 u€ t"s. t. u(x) =0,
u(y)=1and 3 vet s.t.v(x)=1,v(y)=0.forael,Ju,ve t “such that u(y) =1,
u(x) < o and v(y) <o, v(x) = 1.Since ( X, t" ) is FST (i), Since ul(o, 1], v (o, 1]
el (t"),and it isclearthat ye ul(o, 1], x ¢ u'(o,l]andy ¢ vi(a,1],xev

(o, 1]. Hence (X, I4(t)) is supra T - space.

Proof: (b) . Let(X,t *) be FST(iv). We shall prove that (X, I, (t ") is supra T . Let
X,y € X withx #y .Since ( X, t" ) is FST (iv), forae e 1,3 u,vet “such that u(x)

=1, u(y) <o and v(x) <a., v(y) = 1. Since u'(o, ].v_i(a, 1] e Io(t), and it is
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clearthat xeu'(a, 1], yeu'(a,1]andxev'(a,1],yev'(a,l].

Hence (X, I o t*) ) is supra T |- space .

Proof: (¢) Again, suppose that (X, t' ) is FST,(vi) space .We shall prove that ( X, I ( t
*) ) is supra T ;- space. Letx,y € X with x # y, since ( X , t *) is FST(vi) space, for
ael,Ju,vet suchthat u(x) =0, u(y) > a and v(x) > o, v(y) = 0. Since u']( o, 1
],V'I(Ot, 1]elq(t)anditisclearthat x ¢ u”'(a,1],yeu'(a,1]andx
evi(a,l l.ve vi(a,l ] . Hence (X, Lafe'y) is supra T | - Space.

Proof: (d). Further, suppose that (X, t ') is FST,(vii). We shall prove that (X, 1o(t "))
is supra Ti.Let x, y € X with x # y. Since ( X, t ") is FST (vii)., forac e 1, Ju, v et
such that 0< u(x)< a<u(y) < land 0 < v(y)< a <v(x) < 1. Sinceu™(a, 1], vi(a,
1] elq(tanditisclearthat x ¢ u™'( o, 1 ].ye u'(o, 1Jand x € vita,l Is
yev'(a,1].Hence (X, 4t is supra T, -Space.

Conversely, suppose that (X, I ( t ) ) is supra T\- space. We shall prove that (X, t ") is
FST,(vii) . Let x, y € X with x # y, since ( X, [, (t *) ) is supra T)- space sod M, N e
Iu(t‘)suchthatxeM,yeMandxeN,yeN,whereM=u'l(a, 1 ],N=v"(0t,
1],where u,vet *. So it is clear that u(x) > o, u(y) <o and v(x) <o, v(y) > a. This
implies 0< u(x)< a<u(y) < 1 and 0 < v(x) < o < v(y) < 1. Hence (X, t ') is FST,(vii).

Now, we give an example.

5.2.1. Example :- Let X = { x, y }and u, v, w e [ X, where u, v, w are defined by u(x)
=Luy)=0,v(x)=042, v(y) =0.95, w(x) =0.15, w(y)=0.32. Consider the fuzzy
supra topology t  on X generated by {0,u,v,w, 1} {Constants }. For a = 0.61,
it is cleat that ( X , t ) is not FST,(iv) and ( X , t') is not FST,(vi). Now [ o(t ) = {X, ¢,
{x}, {y} }. Then we see that 1 ,( t ") is a topology on X and (X ,1.(t"))is supra T,
space.

This completes the proof.

5.2.4 Theorem: All the properties FST,(k) of subspace topology where (i< k <

vii) are hereditary.

Proof: Consider the fsts (X, t*), Let AcX. where ;’; ={ulNA:u € l*}. we have to
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show that, if (X, t*) has FST (k) (i< k < vii) then the subspace (A, ;2) has FST;(k) (i<

k <vii).
(i) Letx,y € A, x#y, sothatx, y € X as AcX, since (X, t) is FST (i), so, 3 ue t’

st.oux) =0, u(y) =1, and 3 ve t st v(x)=1, v(y)=0. Again from definition of
subspace we have uAA €17 , (uA A)(x) =0, (uA A)(y)=1 and vAA €% . with (VA
A)(x) =1, (vA A)(y)=0, as x, ye A. This implies that, (A, (’f,) has FST(i).

(i) Letx,y € A, x #y, sothatx, y € X as AcX, since (X, t') is FSTo(iv), so, 3 ue t’
with o €7, s. t. u(x) =1, u(y)<a , and 3 ve t s. t. v(y) =1, v(x)<c. Again from
definition of subspace we have uA A €, and (uA A)(x) =1, (uA A)(y)<a also vVAA €
r:4 , with  ( vA A)(X) <a, ( VA A)(y) =1, as x, ye A. This implies that, (A, ¢,) has
FST;(iv).

All other proofs are similar and easier so omitted.

5.2.5. Theorem : - Let (X, (f) , 1 €] be fuzzy topological spaces and X =11, ¢;
Xi.Lett" be the product fuzzy supra topology on X, then V i € J, ( X i, ) is
FST;(K), i<k<vii ifand only if (X, t") is FST,(K).

Proof : - Suppose that V i € J, ( X, 1) is FST(iv). We shall prove that (X, t') is
FSTi(iv). Let x, y € X with x # y, then x; # y; . for some i € J. Since (X ;,¢;) is
FSTi(iv), forae 1, ui, v;e ;? ,ie A;jsuchthatui(xi)=1,u(y) <o and vix;)
<a, vi(yi)=1.Butwehave mi(x)=x;and ni(y) =yi.Then ui(mix))=1, ui( miy)
Y<aand vimix))<oa, vi(miy))=1.It follows that 3 uom;, viom; et
such that (ujom;i)(x) = 1, (ujon;)(y)<aand (viom;)(x)<a.(vionm;)(y)=
1 . Hence it is clear that (X, t') is FST(iv) .

Conversely, suppose that (X, t') is FST;(iv). We shall prove that (X i, ), 1 € A is
FST(iv). Let for some i € J, a; be a fixed element in X; suppose that A;={x e X

=IIieaXi:X;=a; forsomei#j}.Sothat A, isa subsetof X, and hence (A;, ;L‘_)
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is also a subspace of (X, t"). Since (X, t') is FST,(iv), then (A, ;tlr) is also FST,(iv).

Now we have A ; is a homeomorphic image of X; Hence (X, ¢, ), i € J, is FST(iv).

Similarly we can be proving for other conditions.

5.2.6. Theorem:- Let (X, t") and (Y, s" ) be two fuzzy supra topological spaces and f:

X —— Y be a one-one, onto and supra open map. Then, (X, t') is FST,(k), i<k<vii=

(Y,s") isalso FSTy(k), i<k<vii.
Proof: Suppose (X, t) be FST,(i),. We shall prove that (Y, s") is FST,(i).. Let y, y2 €
Y with y; # y». Since f is onto then 3 xy, xo € X with f(x;) =y, f(x2) = y> and x| # X as
f is one-one. Again since (X, t*) is FST(i), foraa e 1), 3 u, v € t* such that u(x)) =1,
u(xz) =0and v(x;) =0, v(x2) = 1.
Now f(u) (y1) = { Sup u(xy) ; f(x;) =y, }
= 1.
flu) (y2) ={ Supu(xx) :f(x2)=y2 }
=0
and f(v) (y1) = { Sup v(x1) : f(x)) =y }
=0
f(v) (y2) = { Sup v(x2) ; f(x2)=y2 }
=1
Since f is supra open then f(u), f(v) € s ". Now it is clear that 3 f(u) , f(v) € s such that
f(w) (y1) = 1. f(u) (y2) =0 and (v) (y1) =0, f(v) (y2) = | . Hence (Y, s") is FST)(i)

Similarly for K&({ii, iii, iv, v, vi, vii } we can prove the theorem.

5.2.7. Theorem:- Let (X, t*) and (Y, s’ ) be two fuzzy supra topological spaces

and f: X —— Y be a continuous and one-one map then , Then, (Y ., s ) is FST,(k),

i<k<vii= (X, t) is also FST,(k), i<k<vii.

Proof :- Suppose (Y, s') be FST,(iv), We shall prove that (X, t') is FST(iv).
Let X, X2 € X with X; # X2, then f(x;) # f(x2) in Y as f is one-one . Since (Y ,s ) is
FST,(iv),, for a €l; , Ju,v et such that u( fix)))=1,u( f(xz))<a and
v( f(x1)) <o, v(f (x2) ) = 1 . This implies that £'(u) (x))=1,f"'(u) (x2) <o and f°
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lv) (x1) <, £(v) (x2) =1, since fiscontinuousandu,v e s’ then f'(u),f'(v) e
t". Now it is clear that 3 f'(u), f'(v) et * such that f™'(u) (xi) = 1, ) (%) <a
and f'(v) (x)) <a, f'(v)(x2)=1.Hence (X,t")isFST(iv),Similarly we can prove

the theorem for K& {i, ii, iii, v, vi, vii}.
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CHAPTER-V1

Fuzzy supra Tz topological spaces

6. Introduction:

Separation axioms in fuzzy topological spaces were studied by Lowen, R., and Wuyts,
P., [36], Pao. M. P., and Ying, [47]. Shostak; A.P., [56], Gantner, T.E., Steinlage, R.C.,
and Warren, R.H., [24], Benchalli, S.S. and Malghan, S.R. [19], Rodabaugh. S.E., [49].
Hutton, B., and Reilly, L, [30], Sarkar, M., [52] and Srivastava, R. Lal S.N., and
Srivastava, A.K., [58]. Cho, S.K.,[23]}, Ali. D.M., and Hossain, M.S., [15]. The
important separation property namely Hausdorffness Concept has been defined and
studied by many Mathematicians from different view of points. At present not less than
ten approaches to the definition of Hausdorff fuzzy topological spaces are known.
Some of them differ negligibly; but others do basically. In this chapter we introduce
and study on some Hausdorffness Concepts of fuzzy supra topological spaces and
discuss some properties in this connection. We symbolize a fuzzy supra T, topological

space by FST..
6.1. Definitions of FST, spaces

6.1.1. Definition: A fuzzy supra topological space (X, t') is called

FSTa(i) : iff for every X, y EX, x#y, there exist u, v €t such that u(x)= 1= v(y)
and uAv= 0. [Ganter-Steinlage-Warren T,[24]]

FST,(ii) : {ff for every X, y €X, x#Y, and for every a, f3 €lp, there exist u, v et’
such that u(x)>a. v(y)>p and uAv="0. [SS-T> [58]]).

FST,(iii) ¢ iff for every x, y €X, x#y, there exist u. v €t such that u(x)>0, v(y)>0
and uAv=0.

FST,(iv) = iff for every x, y €EX, x#y, there exist u. v €t such that u(x)= 1= v(y)
and u< 1-v.[MB[19]]

FSTy(v) : iff for every a, B €ly, there exist u et such that @ < u(x) and f8 ii; u(y)

[Sarker[52] ].
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FST,(vi) : iff for every x, y €X, x#y, there exist u, v €t such that u(x)= 1= v(y),
u(y) =0 =v(x) and u cv [Ali- Srivastava-T2[5]]

FST,(vii) : iff for every X, y €X, X#Y, and for every a, B €lo, there exist u, v et’
such that v(y) = u(x)=a, u(y)=v(x)=p and u Cv. [Ghanim- Kerre-

Mashhour [26]]
6.1.1. Theorem: The following implications are true.

1. FSTa(ii) = FSTaiii)

2, EST,(i) = FSTa(iv) = FSTa(V)
U

3. FSTy(vi) & FSTa(vii)

Proof: FSTa(i) =FST(ii)

Let (X, t*) be a fuzzy supra topological spaces and let @, B €lo, then for every X, ¥ eX,
x#y, there exist u, v €t such that u(x) =1= v(y) and uAv=0, we have @ <l=u(x), f <
I=v(y); hence clearly FSTa(i) =FSTa(i1).
(ii) FST(ii) = FSTa(iii)

Let (X, t") be a fuzzy supra topological spaces and let @, B €lp, then there exist u, v €t
such that u(x)>a, v(y)>f and uAv =0, since a, B €lo, so a>0 and >0 , hence clearly
FSTa(ii) = FSTafiii)

FST4(i) = FSTa(vi) and FST(iv) & FSTy(vi) is straight forward.

FST,(i) = FSTa(iv) is direct since uAv=0 = u<1-v. Now we show that

(iii) FST(iv) = FSTa(v).

Let x, y €X, X#Y, and a, B € 1o then by FSTy(iv) there exist u, v et such that u(x)= 1=
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v(y) and us I-v, i.e u < 1-v.Thus u(y)=0 = v(x) hence we see that @ S u(x) and g

<u(y) implying (X, t') is FST2().

(iv) FST,(vi) < FSTy(vii)
First let FST(vii) = FSTa(vi), then let (X, t') be a fuzzy supra topological spaces and

a, fB €lg, then there exist u, v et such that v(y) > u(x)= «, u(y)= v(x)= f and u cv

Setting a=1, =0 then v(y) = u(x) =1, u(y)= v(x) =0.and u Cv. Again From these

conditions we obtain u(x) =1=v(y) and u(y) =0=v(x).

FST;(vi) =FSTy(vii)
Let (X, t') be a fuzzy supra topological space, and a. f €lp, then there exist u, v et’

such that u(x)=1=v(y), u(y) =0 =v(x) then a <I= ,uﬂ(x)=p,__(y)and;3’20=

w,(y)=p,(x) and since u €v hence v(y) = u(x)=a, and u(y)= v(x)=p, so (X, t') is
FST,(vi) = FSTa(ii) is obvious.

Now we give some examples:

1. FST,(ii) »FST2(i).

Example: Let X ={x, ¥} and u, v, w € ¥, where u, v, w are defined by u(x) =0.7, u(y)
=0; v(x) =0 and v(y) =0.8; w(X) =0.7. w(y) =0.8, Consider the fuzzy supra topology t
on X generated by {1, 0, u, v, W}. Now for a= 0.5, §=0.6, it is clear that (X, t*) is
FST(ii) but (X, t*) is not FSTa(i).

2. FSTaiii) 2 FSTa(i), FSTa(ii)

Example: Let X ={x, y} and u, v. w €1%, where u, v, w are defined by u(x) =0.7, u(y)
=0; v(x) =0 and v(y) =0.8; w(x) = 0.7, w(y) = 0.8, Consider the fuzzy supra topology t'
on X generated by {1, 0, u, v, w}.Here u, v et’ such that u(x)>0, v(y)>0 and uAv= 0.So
it is clear that (X, t*) is FSTy(iii) but not FST,(i).Again for a= 0.8, f=0.9, it is clear
that (X, t*) is not FSTx(ii) but (X, t*) is FSTaiii).
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2. TSTa(iv) #FSTa(iii)

Let X be an infinite set and for any x, y €X , we define uyy, a fuzzy set in X, as
follows: uxy(X)=1, uxy(¥)=0, Uy(2)=0.5Vz EX, 2 # X, ¥ . Now consider the fuzzy supra
topology t" on X generated by { uy: X, y €X, X #Y y, it is clear that (X, t) is
FST(iv). However (X, t') is not FSTy(iii), As the intersection of any two non-trivial
supra open sets can not be zero. Also FSTs(i)= FSTy(ii)= FSTa(ili) , so FSTs(iv).#
FSTa(i).and FSTa(iv).# FSTa(ii).

4. FST,(vi) 2FST,(i)

Example: Let X ={x, y.z} and u, v, W € I¥, where u, v, w are defined by u(x) =1, u(y)
=0, u(z)= .4 ; v(x)=0and v(y) =1, v(z)= 4 ; wx)=1, w(y)=1,w(z) = 4. Letus
consider the fuzzy supra topology t" on X generated by {1, 0, u, v, w}.Then clearly
(X, t') is FST(vi) but not FSTy(i) because u Av #0.

6.1.2. Theorem: Let (X, t') be a supra topological space, then show that the flowing
conditions are equivalents. [23]

(1) (X, 1) is FSTy(ii).

(2) Forany x€X, x; is fuzzy supra closed in X. (If u is a fuzzy supra open
neighborhood of x then x; =1-u.)

(3) Forx,y € Xwithx #y, there exists a fuzzy supra open nbd U of X such that U(y)
= (). il

Proof: Firstly let (X, t") is FSTy(ii) i. e for every X, y €X, X#Y, and for every a, B €lo.
there exist u. v €t such that u(x)>a, v(y)>f and uAv=0.We shall prove that (1)=(2) .

Let xeX. then for every y#x, choose a fuzzy a supra open set V, such that Vy(x) = 0
and Vy(y) =1; Let V= Ualy

0 when  z#X,
Then V(z) = { 1 when 7=X.
Since V is fuzzy supra open in X, we have X| = 1-V is closed in X. Hence (1)=(2).
(2)=(3) Letx; y be distinct points of X and let U = 1, — yi.Then U(x) = 1 and U(y) =

0. Since y, is fuzzy supra closed in X, U is fuzzy supra open.
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3)= (1)

Let x, and y, be distinct fuzzy points. For every z # X, choose a fuzzy supra open

nbd U, of x; such that U,(z) = 0. Since X is finite the fuzzy set U= Agexizis fuzzy

supra open. Also,

0 when  z#X,
U(z) = { 1 when  z=x.
Similarly for any supra open set V= and U and V are fuzzy supra open nbd. of x, and

Vg .and UAV=0. Hence the theorem is proof.

6.1.3.Theorem : The following are equivalent.

(a) Let (X, t*) be a FSTS. then for all x, y eX,and a, B elX, with x #y, there are
u. v €t such that a €u(x), p €v(y) and uAv=0.

(b) FST2(i)

Proof: The proof is easy and so, omitted.

6.1.4. Theorem: The following implication is hold

(a) Let (X, t*) be a FSTS. then for all x, y €X, and «, B el*, with x # y, there are
u, v €t such that a €u(x), p €v(y) and uAv=0

(b)  FSTy(v). Then, (a) = (b)

Proof: The proof is easy and so, omitted.
6.2. Good extension of fuzzy supra Hausdorff spaces.

6.2.1. Theorem: Let ( X, t" ) be a supra topological space , and ( X, t') is supra
Hausdorff space iff (X, w(t¥)) is FSTa(j) . where j=i, ii, ii, v, V. vi, vil.

Proof: Let (X, t') be a Supra Hausdorff or T topological space, we shall prove that (X,
w(t*)) is FSTa(i) . Let X, y €X, with x#y, Since (X, t") is T, topological space, there
exist u. v €t such that x€u and y€v and uAv=0. From the definition of lower semi
continuous function 1, 1y € @(t*) and 1y(x) =1, 1(y) =1 and 1,A1,=0, If 1,A1,#0,
then 3 zeX such that 1,A1,(2) 20 = 1(2)#0, 1(2)#0 = z€u , &V = ZEUAV =

uAv#0, a contradiction . So that 1,A1,=0, and consequently (X, w(t¥)) is FSTa(i).
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It is clear by the implications between the definitions of FST; space, if (X, t') is supra
Hausdorff topological space, then that (X, w(t*)) is FSTa(j) .where j=i, i, iii, iv, v, Vi,
vii.

Next suppose that (X, w(t*)) is FSTa(iii) and x, y €X, x#y, there exist u, v € w(t*)
such that u(x)>0, v(y)>0 and uAv=0. Suppose &, B €lp, such that u(x)>a, and v(y)>f
thet (@1l v(B1] €t and xey'(@]1], yE v (BL] . Moreover u (@] A
v'(B1]=¢ and if not let z€ N al]av(B1] then z€y (@ l], and z€ v'(B1]
then (uAv) (z)>0. Contradicting that uAv=0. Hence (X, ') is supra Hausdorff space.

Again suppose that (X, w(t¥)) is FST,(v) and X, y €X, Xx#y, there exist u € w(t') such
that u(x) =1 and u(v) <1, Suppose a Ely; then u(y)<a<l and X€ w'(al] € t". Again
we have u” (@, 1] cu”'(al) < (u)” (a, 1]. Now since u(y)<a<l, so by definition of

lower semi continuous function, y¢& (u)"'(a, 1], and hence y& w (e} ) Therefore (X,

t') is supra Hausdorff space.

Finally suppose that (X, w(t*)) is FSTy(vi) and X, y €X, x#y, there exist u, v € a)(t*)
such that u(x)=1=v(y), u(y)=0=v(x) and u cv ie uAv=0. Supposea, 8 €lo; such
that u(x)>a. and v(y)=f then ol (@ 1], V(B € t and x€ y'(all.y € u! (a1]
again x € v''(B1], YE v'(B1]. Moreover u! (@, 1] Av7'(B1]=¢ and if not
let zey ()] A v (B1] then z€ u' (a, 1] and zey'(B1] then (uAv) (2)>0.

Contradicting  that uAv=0. Hence (X, t') is supra Hausdorff  space.

The proofs are similar for other cases.
6.3. Initiality, hereditary, and productive properties of FST; spaces.

6.3.1. Theorem: The properties FST> (k) , k € (i, ii, iii, v, vi, vii} are initial.

Proof : (a) Let {(Xi, t;)ies } bea family of FST> (i) , and { f: X— (Xi, t:)1EJ } be a
family of functions which separates by points and t" be the initial fuzzy supra topology
on X induced by the family { fi :i€J}. Let X, y& X, x#y and since (X, t:)mj FST (i)
then there exist u, v €t’ such that u(x) = 1= v(y). We can find basic t - supra open sets
u; i€J such that u= Sup{ u; i€J }. Also uj must be expressible as u; = Inf {fj,‘_'(m):

1<k<n} where ux€ 1, and ik€J. Now we can find some k, 1<k<n} say k; such that



ax

fr_),il(u,;‘,l_)(x) =1, S uy, f:‘k,(x) =], Since (X‘;ka,f:“k ) is , FST, (i) there exists Vi, €

t;y, such that Vi ffk,(y-)=l , :;'-f:li,(vik.}(:”)zl’ Put V= fi'kll (Vik.)a" Thus v(Yy)
=1.

Hence (X, t") is FST; (i) .So the property of EST, (i) is also initial.

(b) Let {(Xi, t’:-‘ )ies } be a family of FST, (v) , and { f: X— (X, t))ies } be a family

of functions which separates by points and t be the initial fuzzy supra topology on X
induced by the family { fi ;i€J}. Let Let X, Y€ X, x#y and a, B €lo since { fi 1€l}

separates by points then there existj €l such that fi(x) # fi(y) . As (Xi. () is FST2 (V)
_there exist u; €, such thata sy fio= f}' (u j)(x) and § < ; fiy) = f;i (;)(y) .

Ei(zf,)ﬁ f__,l(;,-) Thenu€ t that a S u(x)and % u(y) implying and (X, t) is

FST, (v) .So the property of FST, (v) is also initial.

Similarly we can proof the other.

6.3.2. Theorem: All the properties FSTa(k) of subspace topology where (i< k < vii) are

hereditary.
Proof: Consider the fsts (X, t*), Let AcX. where t:i = {uNA:u € t*}, We have to

show that, if (X, t") has FSTy(k) (i k = vii) then the subspace (A, 1‘:;) has FSTa(k)
(i< k £ vii).

(1). Letx,y € A, X #y, sothat X,y € X as AcX, since (X, t") is FSTa(i), so for every
X, y €EX, x#y, there exist u, v et’ such that u(x)= 1= v(y) and uAv=0. Again from

definition of subspace we have uAA, VA AEL, , (A A)X) = I, ( vA A)y)=1 and
(uA AN (VAA) = (UA vV)AAE tj; ,with (uUAV)AA=0,asX, Y& A. This implies that,
(A, £4) has FSTa(i).

(2). Letx,yeAX 4y, so thatx,y € X as AcX, since (X, t") is FSTy(ii), so, for

every X, y €X, X#Y, and for every @, B €lo, there exist u, v et’ such that u(x)>a,
v(y)>f and uAv=0. Again from definition of subspace we have ul A, VAA Et:; and

(uA A)(X) >a, (VA A)y)>a, and (uA A)A (VAA) = (UAV) A A €, , with (UAV) A A
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=0, as x. ye A, and since u and v are disjoint , so uA A and vAA are also disjoint. This

implics that, (A, £) hasFSTa(iD).

All other proofs are similar and easier and hence omitted.m

6.3.3. Theorem :- Given { (X t ").i e} be fuzzy supra topological spaces and X
=11, <) Xiand t" be the product fuzzy topology on X . Then (VieJ, (Xi b ")isan
FSTa(k) <> ( X, t") is an FSTy(k) . where i< k<vii)

Proof: (1) Suppose ¥ iel, (X, ti ") be an FSTa(iii) . We shall prove that (X, t) is
FST,(iii). Let x, y be two distinct points in X =ITicy X; , then there exist an X # ¥ in
X, . Since (X t; )isan FST,(iii), Jui, Vi € t,* such that ui(x;) > 0, vi(yi) > 0 and u; A
v; = 0. But we have m(x) = Xi» T(y) = Vi then ui(mi(x)) > 0, vi(mi(y)) > 0 and (u; Avi) 0
m,> 0. Hence ( U 0 T ) (x)>0,(v-.0ﬂ:-.) (y)>0and(uio:rc-.)/\(v-ion-.)ZO.Putu=u1-

om,v=viom, thenu, Ve t* with u(x)> 0., v(y)>0 and u Av = 0. Hence it is clear

that (X, t") is Ta(iii) .

Conversely, suppose that (X, t"), is FSTy(iii). We shall prove that (X, t;" ) is FSTa(iii),
forie ) .Forsomei e J. let a;be a fixed element in X, .Suppose that A={xeX

=TI,-; Xi:x=a for some i#j}. Then Ajisa subsets of X and therefore (As, t'A_)

is a subspace of (X, 1*), Since (X, t*), is FST,(iil) space. Then, we have also

(ALTA ) is also FST,(iii) space . Furthermore, A;i is homeomorphic image of Xi.
Hence it is clear that (Xi, ti *) is FST,(iii) space.
(2) Suppose V i € Xt ‘) be an FSTa(vi) - We shall prove that (X, t') is FSTa(vi).

Let x, y be two distinct points in X =1IIiey X,, then there exist an X; # Vi in X;. Since

(Xt ") is an FSTa(vi), Ju,viet * such that ui(x;) = 1=vi(Yi) 5 ui(yi) =0= vi(xi) and
U C v, But we have mi(X) = Xi, mi(y) = yi -then ui(mi(x)) =1=vi(m(y)); wi(m(y)) =0 =
vi(m(x)) and Ujomi ©  om. Hence (uiom)(X) =1 =(viom)(y) »(uom)¥)
=0=(viom)(X) and U;oT; © ;-, 0 ;. .Putu=u-.0n-.,v=v10m,thenu,vet* with

u(x)=1= v(y). u(y) =0 =v(x)and u cv. Hence it is clear that (X, t') is Ta(vi).
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Conversely, suppose that (X, t"), is  FSTy(vi). We shall prove that ( Xi  ti "y s
FST,(vi), for i € A .Forsomeie J, let ajbea fixed element in X;. Suppose that A; =
{xe X=TI,c)Xix=afor some i#]}. Then A, is a subsets of X and therefore

(A, 1'/\_‘) is a subspace of (X, t"), . Since (X, t*), is FST»(vi) space, we have also ( Aj
l:q.) is also FST(vi) space . Further more, A; is homeomorphic image of X;. Hence it

is clear that ( X, , t; *) is FST(vi) space.
Other proofs are similar.

6.4. Mapping between two FST; Spaces.
6.4.1. Theorem:- Let ( X, t' yand (Y, s") be two fuzzy supra topological spaces and
f: X= Y be a one-one, onto and supra open map, then (X, t")is FSTa(k) =(Y. ) is
FSTa(k). ke{i, ii, iii, iv, vi}.
Proof:- Suppose (X, t")is FSTy(i) . We shall prove that (Y, s") is FSTa(i). Let yi, y2 €
Y with y; # y2. Since fis onto then, 3 x;, Xs €X with f(x;) =y, f(xs) =y and  x; # X2
as f is one-one. Again since ( X , t" )is FSTa(i) . there exist u, v et’ such that u(x)=
I=v(y) and uav=0.
Now f(u) (y1) = { Supu(x1) : fx)) =y}
=1

f(v) (y2) = { Sup v(x2) : fxa)=y2} =l
and flunv)(y)={Supunv)) : fx)=y}=0

funv)y)={Sup(unv)(x) : flx))=y2}=0
Hence f (u M v) =0 = f(u) N f(v) =0.

Since fis supra open then f(u) . f(v) € s . Now it is clear that 3 f(u) , f(v) € s such that
flu) (y)) = 1, f(v) (y2) = 1 and f(u) n f(v) =0 . Hence (Y, s') is FSTa(i).

Other proofs are similar.

6.4.2. Theorem: Let f and g be continuous function of a fuzzy supra topological space
(X, t*) into a fuzzy supra Hausdorff space (Y, s'), where (Y, s') be FSTa(p) p€ {i, i, iii,
iv. v, vi. vii}. let A be a fuzzy dense subset of X , and let f(x)=g(x) V x € A, then f=g.
Proof: We know that FSTa(i) => FSTy(ii) = FSTy(iii) ; FSTa(i) = FST(iv) =
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FST,(v) also FSTs(i) = FSTa(vi) = FSTy(vii) . We shall prove the theorem only for
the case of FST,(i), and FSTa(vi).

Given f and g be continuous function of a fuzzy supra topological space (X, t') into a
fuzzy supra Hausdorff space (Y, s") and A be a fuzzy dense subset of X. We have to
proof that f=g. Suppose (Y, s') is FSTy(i), If f#g then for x€X-A, f(x)#g(x), and there
exist u. v €t such that uf(x)= 1, vg(y)=1 also uAv=0. Now since f, g continuous, SO
(), g"{v)Et', and hence f'(u)A g"(v)e t". Also Sup (F' A g'(v)) =1, since A is
dense (f'(u)A g'(v))(@) # 0 for some a€A, this contradicts ‘uAv=0" since f(a)=g(a)
Next let (Y, s") is FSTy(vi), If f£g then 3 xEX-A, f(x)#g(x), and there exist u, v €t’
such that uf(x)= 1, vg(y)=1; uf(y) =0, vg(x)=0; andu cv or uAv=0. Now since f, g
continuous, SO F'(L|), g'](v)Et*, and hence f‘(u]f\ g‘](v}E t". Also Sup (f'(Ll)!\ g"(v))
=1, since A is dense in (X, ), (F' (WA g'i(v)) (a) # 0 for some a€A, This contradicts

‘uAv=0" since f(a) =g(a).
6.5. Some a- Types of fuzzy supra Hausdorff spaces.

6.5.1 Definition [15]: Let (X, t*) be a fuzzy supra topological space and a € [y then

(X, t*¥) is

a —FST,(i) : iff for every x, y€ X, x#y, there exist u, V€ t* such that u(x)= 1= v(y)

and uAv< a (g -FSTa(i). if u(x)=1=v(y) and uAv< @)
a —FST,(ii) : iff for every x, YE X, x#Y, there exist u, v t* such that u(x)>a,
v(y)>a and uAv =0. (& -FSTaii), ifu(x)= a, v(y)= aand uAv=0)

a —FST,(iii): iff for every x, y€ X, x#y, there exist u, v& t* such that u(x)>a, v(y)>a

and uAv< a, (o -FSTaii), ifu(x)= a, v(y)= aand uAv< @)

6.5.2. Definition: Let (X, t*) be a fuzzy supra topological space and « e [} or 10 then

the family ,r;: {a(u): u€t*} of all subsets of X of the form a(u) ={XxeX: u(x)>a}, or
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a (u) ={XEX: u(x)= a}, forms a fuzzy supra topology on X, this fuzzy supra topology

is called a-level or &' -level fuzzy supra topology on X respectively. [18]
6.5.3. Lemma: Let (X, t*) be a a- FSTa(p) space, where pe{i, i, iii}, then (X, r; ) is
T space.

Proof: (1) Let, there exist u, v € t* such that u(x) = 1= v(y) and uAv < a, hence there
exist u, v € t*such that uX)= a, v(y)= a and uAv < a . Therefore X, t)is -
FSTy(i).From definition " (u) and " (v) are supra open in tp and X€ ¢" (u), yE &* (v)

also o WA o (V) <a, since uAv < a .Hence (X, ::z )is o -level supra T> space.

(2) Let x, y€ X, xsy, there exist u, v €t* such that u(x) >a , v(y)>a and uAv =0.

Therefore (X, t*) is @- FSTa(ii). From definition a(u) and a (v) are supra open in ta
and x€ a (u), YE a(v) also a(u)A a(v) =0 , since uAv =0 Hence (X, ¢, ) is a-level

supra T, space.

Other proofs are same.
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CHAPTER- VII

Fuzzy supra Regular Topological spaces

7. Introduction:

The concepts of Fuzzy regularly spaces were studied by several authors, e.g. Ghanim
et al. [26], Hutton, B., and Reilly, 1., [30], Sarkar, M., [52], Benchalli, S.S., and
Malghan, S.R., [19], Wang, G.J., [60] and Ali, D. M., [6, 13]. In this chapter, we
introduce and study some properties of Fuzzy supra regular spaces. First we note that
for xeX, A €I* then @ € Iy = (0, 1], @ 3 A(x) means that & < A(x) ifa # 1 and A(x) =

1 if @=1and symbolize FSR for Fuzzy Supra regular topological spaces.
7.1. Definitions of FSR

7.1.1. Definition: An (X, t) is called

FSR (i) & a €1y, A €, x€X and @ 31- A(x) imply that 3 u, v €’ with & Su(x),
A <vand u <1-v. [M.H. Ghanim, [25]].

FSR(ii) & a €1y, A e, xeX and a 3 1-A(x) imply that 3 u, v et with a Su(x),
A <vand u <1-v. [Sarkar , M.,[52]]

FSR (iiiy < eachu €t is a supremum of u; j€J, where for each j€J, ujet’ and uj

<u. [Hutton, B., and Reilly, L, [30]].

FSR(iv) & A et’, xeX and A(x)=0, imply that 3 u, v et’ with u(x) =1, A <v and
u <1-v. [Benchalli, S.S., and Malghan, S.R., [19]]

FSR(V) & 1 et’™ . xeX and I- A(x)> 0, imply that 3 u, v €t with u(x)>0, A <v
and u <l-v. [ D.M. Ali [10]].

FSR(vi) o a €lo, AE-{0} , A(x) >0, x€X ,imply that 3 u, v €’ with a>1-
u(x), A(y) >1-v(y) Yy € 27'(0, 1], and uAv=0. [Wang, G.J., [60]].

FSR (vii) & a €I, uet’, xeX and a 3 u(x) imply that 3 v €t with a <v(x), and

v <u. [Adnadjevic D. [3]].
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FSR (viii) & a € Iy, u €t’, xeX and 1- @ 3 u(x) imply that 3 u, v €t” with
a 2u(x), A Sv and uAv=0.
FSR (ix) & a € ly, A et*c, x€X and a <1-A(x) imply that 3 u, v Et* with
a <u(x), A <vand u <l-v.
7.1.1. Theorem: The following implications are hold for FSR.
FSR(viii)
FSR(i)= FSR(vii)e FSR(ﬂi) = FSR(ix)e FSR(iii) & FSR(v)

FSR(iv)

Proof:
FSR(i)= FSR(vii)
Leta € Ip, u €t’, xeX and a 3 ux) = a <ux)ifa #1,and u(x) =1, if a =1, as a €ly,

clearly a S1- A(x), A €. Since (X, t') is FSR (i) space then a € Iy, A et”, xeX and
a S1-A(x) imply that 3 u, v €t with @ Su(x), A <v and u <I-v.And so clearly 3 vet’

with @ <v(x), and v <u.

FSR (vii)< FSR (ii)

Let a € Iy, A €™, x€éX and @ Z1-A(x). Put 1-A=u thenu €t and @ < u (x). As(X, t)

is FSR(vii) space then @ € Iy, u € , x€X and a 3 u(x) imply that 3 v et’
with ¢ <v(x), and v <u. So clearly (ii) imply that 3 vet'with a <v(x) andv <u.

Setting 1-v = v, then vet'and 1= 1-u S1-v = v. i.e 1 <v. Also we have u C v=1-u,

i.e. v<1-u. Hence clearly (X, t') is FSR (ii). Similarly, we can show converse.

FSR (ii)= FSR(viii)

Let @ € Ip, uet’, xéX and 1 - @ S u(x), Putting, u =1-A, then A €t “and 1- a < u(x), i.e.
az1—ux),ieaz AX), and hence & <1-A(x). Since (X, t') is FSR(ii) space = a €
I, A et xeX and @ <S1-A(x) imply that 3 u, v €t” with @ Su(x), 1 <v and u <1-v.So

clearly A Sv and uAv=0.
FSR (ii) = FSR(ix)

Let, @ € Ip, A €t°°, x€X and a <1-A(x), also @ < A(x) means that a < Alx) ifa # 1
and A(x) =1ifa=1. i.e. A(x) = 0ifa=1 .Since (X,t") is FSR (ii) space = a € Iy,
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A et’, xeX and @ S1-A(x) imply that 3 u, v €t with & Su(x), 2 <v and u <l-v. So
ply

clearly, for @ # 1, a <u(x) and A <v,u <I-v.
FSR (ix) & FSR (iii)

Leta € lp, A €t and x€X be such that @ <1-A(x), Now by (iii) 3 uj€t’, j€J with 4,

sup

< 1-A (x), for each j€J and 1-A= j e J .Clearly for some j€J, uj(x) > a. Setting v =1-
u,s0 that vEt'and u;<1-v, Moreover A <I- y, =v, imply that FSR (ix) =FSR (iii).
Conversely let (X, t') is FSR (iii) and u&t'- {0}, then, u= Sup {a Aly : @ € Iy, u(x)>al,

Now fora € o, y,(x)>a then 34,(x), vet.a <un(x) , 1-ugv and 4, (x) <l-v,

Hence 1;5 <1—=v<u,thenu=Sup{y,(x):ux)>a, xeX, a € lp}.

Hence FSR (iii) = FSR (ix), so we conclude that, FSR (ix) & FSR (iii) m

Similarly, we prove the other conditions.

N.B: Since the formulation of FSR (vi) is different from others, so we shall not include

this in our present study.

7.1.1.  Few examples to show the non- implications among FSR

Example (a) FSR (i)®» FSR(vi)

Let X={x, y}, and u, v €I%, with u = {(x, 0), (v, .5)}, v={(x, 1), (y, .5)}. Let, t'=1{0,
L, u={(x, 0), (y, .5)}, v={(x, 1), (y, .5)}} be a fuzzy supra topology on X. Then it is
easy to show that (X, t') is FSR (i). Now we choose pseudo crisp A € (- {0}, with

A(x) = 0, Then for any a>0, there does not exist u, v € t* with a> 1-u(x), Aly)= 1-v(y)
forye 27(0,1] and uAv= 0, Thus (X, t") is not FSR (vi).
Example (b) FSR(iii)#» FSR(iv) [7]

Let X be a set with at least two elements and, t= {u€l*: u ' {0} # ¢ = u =10} be a
fuzzy supra topology on X. For a fix X€X and & €y , let A = lx.1y1. Then A €t™ and
A(X) = 0, but there does not exist v, w € t" with v(x) =1, A <w, v<I-w as 1-w(x)=]1 =
w(x)=0 = w = 0. Thus (X, t) is not FSR (iv).However it can easily verified that (X, t*)
is FSR(iii).
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Example (¢) FSR(iv)»FSR(v)

Let X={x, y}, with a fuzzy supra topology FSR (iv) space, let, t = {0, 1, u= {(x, 1), (.
25)b, v={(x, 0), (y, .65)}, w = {(x, 1), (y, .65)}} be a fuzzy supra topology on X.
Then the class of all fuzzy supra closed sets of this o= {1, 0, {(x, 0), (v, .73)}, {(x, 1),
(v, 35)}, A= {(x, 0), (v, .35)}} clearly (X, t') is FSR (iv). Here 1 € t", x€X and A(x) =
0=3v,uet ux) =1, A<y, u<l-v. But (X, t) is not FSR (v) for if A= 1-u then 1-
A(y)>0, but A v, wet', 3 1 €t™, xeX and 1- A(x) > 0 = v(x)>0, 1 <w and v <I-w.

Example (d) FSR(v) #FSR(iv)

Let X={x, y}. with a fuzzy supra topology, = {0, 1, u={(x, .8), (y, .5)}, v ={(x, .2),
(v,.5)}} on X, then if A= 1-u then A(x) =.2, A(y) =.5, then A €t 1 <v and u<l-v. So
(X, t") is FSR (v) but A no such A for which and A(x) = 0. Hence (X, t) is not FSR (iv).

Example (e) FSR(v)#FSR(iii)

Let (X, t) be a fuzzy supra topological space, and X={x, y} where t= < {w}U
{Constant} > . w is defined as w(x) =.8 and w(y)=1; Now if A= l-w , 1 — A(x) >0,
A €1, x€X then 3 u, v €t” with u(x)>0, 2 <v and u <1-v So (X, t") is FSR (v) . Now
if @ =.85,then a < 1- A(y), but t'is not FSR (iii).because if u is constant u(x) = 1,

u(y)=1;since u « 1-v.
Example (f) FSR(ix)# FSR(ii)

Let X={x, y}, with a fuzzy supra topology, t = {0, I, u= {(x, 1), (y, .25)}, v = {(x,
0), (v. 65)}, w = {(x, 1), (y, .65)}} on X. let A=1-u, a= .25, a <1-A(x), and

a <u(x), A <vand u <I-v. but if a=1, & Su(x),but A £w and u £1-w.

7.1.2. Non-implications: In general topology it is always true that “Every supra
regular space is supra R; space, but it is not true in fuzzy supra regular topological
spaces.”

Example (a) : Let X={a, b}, with a fuzzy supra topology , t = {0, 1, u= {(a, .6), (b,
A}, v=1{(a, 4), (b, .5)}, w={(a, .6), (b, .5)}} on X.If A=1-u, then A(a) =4, A(b) =.6
;then 1 € %, and 1- A(a) >0 with u(a)>0, A<vandu<l-v,so (X, t*) is FSR (v) but (X,
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t") is not FSR, (xvi) because v(a)#v(b), and u, w et’, such that uc 1-w but u(a)#1+
w(b)

Example (b) : Let X={a, b}, with a fuzzy supra topology , t=1{0,1,u= {(a, 1), (b,
S) v={(a, 0), (b, .5)}, w={(a, 1), (b, .3)}} on X . Then the class of all fuzzy supra
closed sets of t'is t °= {1, 0, A = {(a, 0), (b, .5)}, {(a, 1), (v, .35}, {(a, 0), (b, .35)}},
clearly (X, t") is FSR (iv). But (X, t') is not FSR, (iv) because v(a) #v(b), and u, w
€t’, such that u £1-w but u(a)=1% w(b).

Example (¢) : Let X={a, b}, with a fuzzy supra topology , = {0, 1, u = {(a, .6), (b,
A}, v={(a, 4), (b, .5)}, w={(a, .6), (b, .5)}} on X.If A=1-u, then A(a) =.4, A(b) =.6
: then 1 € t™°, and 1- A(a) >0 with u(a)>0, A<v and u<1-v, so (X, t") is FSR (ix) but(X,
t") is not FSR; (xvi) because v(a) # v(b), and u, w €t’, u(a)>0, w(b)>0, uAw # 0.

Similarly, we can show the other cases.

7.2. Inmitial, productive and hereditary properties of FSR.

7.2.1. Theorem: The Properties (iii), (v) and (ix) are initial.

Proof: (a)  Let {(X;, ;):j €/} beafamily of FSR (iii), and { fi: X—(X;, t1):J€J}

be a family of functions and t" be the initial fuzzy topology on X induced by the family
{fi:j€J}. Letx €X, a € Iy, and u€t” such that u(x)> a €lo,, let u€t’, there exist

basic t’ -supra open set, u, such that u= sup {u, :p€j}. Also each must be expressible as
up = inf {f;_J:.“Px : p, €J » 1= p <nj}, we can find some k (I<k <n ) say k' such

inf -1 nf -1 - : —1
that 1<k <n fpiupi xX)>aand 1<k<n fpf.upi(x) <u. This implies that fpkf

i
up! x)>a ,so thati"fifp:E f;’if (x)> a. Since (X ’tp* ) is FSR (iii), there exist, Vpk,,

Py

-1

&
€ fpk such that a< vpf\; fpk,

(x) and Vpk_,fS Hpk, for all k, 1<k <n, where Vpk, isa

local base of closed a - nhds of f;L (x). Therefore f}; Vp is closed. Now, we
. Byt

inf inf

- —1 .
have 1<k <n pr;vPKf X)>a,and 1<k<n fph’;vpr (x) <u.. Since eachVp,
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being a member of Lpy is a closed fuzzy set. Thus {f;l,xvpr: Vpk, € ka; Py €J

} is a local sub base of closed a - nhds of x. Hence (X, t') is an FSR(iii) space

(b) Let {(Xj, ¢;):] €/} be a family of FSR (ix), and { fi: X—(X;, t;):]J €]} bea
family of functions and t~ be the initial fuzzy topology on X induced by the family {f; :
j€J ). Leta €1g, A €t™ xeX and @ <1-A(x). Let u&t’, there exist basic t’ -supra open

set, up such that u= sup {u,: p€j}. Also each must be expressible as u, = inf { f;L up,

inf

1< p <n} as, we can find some k (1<k <n ) say k/ such that 1Sk<n f_,lup;(x) 3
P

inf
-1 S ¥ -1 -1
aand 1<k<n fﬂi uph (x) <u. This implies that fﬁi p) (x) > a , so that upl fpkx

X)> a, Since (X .t )is FSR (ix), there exist Up, , V * such that a <Y,
(%) ( i P:{) (ix) Dy YDy fp;f By

(x), 4 Svpk, and 4o <1- Vpk_, .where Vpk, is a local base of closed a - nhds of f;:_;(x).

1 inf inf

Thereforef;!{:,vw, is closed. Therefore, 1<k<n f;lﬁva (x) > a, and 1<k<n

f;:{{,upm (x) <I- Vpk,,l—lence (X, t") is an FSR(ix) space .

Other proof is similar.

We do not yet know, whether the properties The properties FSR (i), FSR (ii), FSR (iv),
FSR (vi), FSR (vii), FSR (viii) are initial and productive or not. But fuzzy supra
regular topological spaces FSR (iii), FSR (v) and FSR (ix), are productive.

7.2.2. Theorem: Every subspace of a fuzzy supra regular space is fuzzy supra regular
and hence fuzzy supra regular is hereditary.

Proof: Let (X. t') be a fuzzy supra topological space. Let ACX, where fy={uAA:u
et }, we have to show that, if (X, t') is FSR(i) then the subspace (A, () has FSR(i) ,

let ¢ € |y, AEt;‘“, X€EA and a 31-A(x), we shall prove that the subspace

(A, tx ) has FSR(). Given A is a ¢, closed set with a S1-A(x).

Let A_f= Closure of A with respect to the fuzzy supra topology t and
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A_g; = Closure of A with respect to the fuzzy supra topo]ogy;j{ .
However, we know that l—rg = /'1',_:*/\ A. Since, A is 7, closed = A = /1—;'4 — )L_g'/\ A,
so @ S1-A(X) = a S1- (Af A A) (X).
Since (X, t') is FSR(i), so for a € I, -ﬂ_f et’, xeX and a 31 -A_f (x) imply that 3 u, v
et’ with @ Su(x), A7 <v and

u<l-v (1)

Again from definition of subspace uA A, vA A €%, so for @ € Iy, 1 €}, XEA and

@ S1-(Af A A)X)= 1- A7 (X) = UA A, VA A €/, with a$ (UA A) (x), A= AF A A
< (vA A) and (uA A)<I-(vA A), as x €X. This implies that (A, ;:,) is FSR(i).

Similarly, we can show the hereditary, for the other definitions.
7.3. a- Fuzzy Supra Regular Spaces.

7.3.1.  Definition: Let (X, t') be a fuzzy supra topological space and «€l,

(@) (X, t)isan a- FSR(i) space < V wet'®, ¥ x€ X, with w(x) <1, 3 u, v€ t such
that u(x)= 1, v(y) =1, yew' {1} and uA v <a.

(b) (X, t) is an a- FSR(ii) space & V wet™, V x€ X, with w(x) <I, 3 u, v€ t' such
that u(x)>a, v(y) =1, yew ' {1} and uA v <a.

(¢) (X.t")isan a- FSR(iii) space & V wet'™S, V x€ X, with w(x) =0, 3 u, v t" such
that u(x)= 1, v(y) =1, yew' {1} and uA v <a.

(d) (X, t) is an a- FSR(iv) space < V wet'™, ¥ x€ X, with w(x) =0, 3 u, v€ t’ such

that u(x)>a., v(y) =1, yEw'1 {1} and un v <a.

7.3.1. Theorem: The following implications are true:

/X, t") is a- FSR(ii)
(X, t") is a- FSR(i) (X, £} is a- FSR(iv)

, 1) is a- FSR(iii)

Proof: First, suppose that (X, t") is o - FSR(i). We shall prove that (X, t) is a -
FSR(ii). Let w € £, x € X, with w (x) < 1. Since (X, t') is a- FSR(i), for a € [1,3 u, v
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€t such thatu (x) =1, v(y)=1, y€ w"' {1} and u, ve t such that u(x)=1, v(y) =1,
yew' {1} and uA v <a. Now we see that u(x)>a, v(y) =1, yew' {1} and uA v <a.
Hence it is clear that (X, t) is a- FSR(ii) .

Next suppose that (X, t') is a - FSR(i). We shall prove that (X, t') is a - FSR(iii). Let w
€1, x € X, with w (x) = 0, then we have w (x) < 1. Since (X, t') is a- FSR(i), for a €
1,3 u,v €t such thatu (x)=1,v(y)=1, y € w' {1} and uA v <a. Now it is clear that
(X, t) is a- FSR(iii) .

Again suppose that (X, t*) is a - FSR(ii). We shall prove that (X, t') is @ - FSR(iv). Let
w € £, x € X, with w (x) = 0. Then we have w (x) < 1. Since (X, t') is a- FSR(ii), for
a € 1,3 u,v € t* such that u (x) >a , v(y)=I,y € w’ {1} and uA v <a. Hence it is

clear that (X, t*) is a- FSR(iv) .
Finally, suppose that (X, t*) is a - FSR(iii). We shall prove that (X, t') is « - FSR(iv).

Letw € 7', x € X, with w (x) =0. . Since (X, t') is a- FSR(iii), fora € [1,3 u, v € t*
such thatu (x) =1,,v(y) =1, y € w" {1} and uA v <a. Hence, we see that (X, t') is a-
FSR(iv) .

7.3.1. Non- implications among a-FSR.
Example (a) :  o- FSR(ii) # a- FSR(i)

Let X= {a, b}, with a fuzzy supra topology t', on X is generated by t'= {0, 1, u= {(a,
0.9), (b, .5)}, v={(a, .5), (b, 1)}, B={(a, .9), (b, }}. For w=1-u and o= 0.7, we see

that (X, t) is a- FSR(ii) but (X, t") is not a- FSR(i).
Example (b) :  a- FSR(iii) and a- FSR(iv) # o- FSR(ii)

Let X= {x, y} and u, v €1X, where u, v are defined by u(x) = 1, u(y) = 0.7; v(x) = 0.8,

v(y) = 1; w(x) = 1, w(y) = 0, let the fuzzy supra topology t* on X generated by {0, u, v,
w, 1} U {constants}. For p=1-w and o = 0.9. We see that (X, t') is a- FSR(iii) and (X,
t") is a- FSR(iv) but (X, t') is not o- FSR(ii).As there do not exist any w(x) <1 with u,

v €t such that u(x)>a, v(y) =1, yew' {1} and uA v <a.
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Example (¢) :  o- FSR(iv) # a- FSR(iii)

Let X= {x, y} and u, v, w €IX, where u, v and w are defined by u(x) = .9, u(y) = 0;
v(x) = 0.5, v(y) = 1; w(x) = 1, w(y) = 0, let the fuzzy supra topology t on X generated
by {0, u, v, w, 1} U {constants}. For p=1-w and a = 0.6. We see that (X, t) is a-
FSR(iv) but (X, t‘) is not a- FSR(iii).As there do not exist any w(x) = 0 withu, v € t

such that u(x) =1, v(y) = 1, yEW‘I {1} and uA v <a. This completes the proof.

7.3.2. Theorem: Let 0 <a <B <1, then
(@) (X, t") is o - FSR (i) =(X, t") is B - FSR (i).

(b) (X, t') is a - FSR (iii) =(X, t") is B - FSR (iii).

Proof: First, suppose that (X, t') is a - FSR(i). We shall prove that (X, t')is B - FSR
(i). Let w € £ and x € X, with w (x) < 1. Since (X. t") is a- FSR (i), fora € I;,3u,vE
t* such thatu (x) =1, v(y) =1,y € w™' {1} and u Av < a. Since a < B, then u Av <, so
it is observed that (X, t') is B - FSR (i).

Next suppose that (X, t') is & - FSR (iii). We shall prove that (X, t') is § — FSR (iii).
Letw € 1%, x € X, with w (x) = 0.Since (X, t') is & - FSR (iii), fora €1, Iy, vE
such thatu (x) =L, u(y) =1,y € w™ {1} and u Av < . Since 0 <a <B <1 thenu Av
<P, Now it can be written as wet'™, V x€ X, with w(x) =0, 3 u, v€ t' such that u(x) = 1,

v(y) =1, yEw'] {1} and uA v < [3. so it is observed that (X, t') is B - FSR (i).

7.3.2. Example: Let X= {x, y} and u, v el®, where u, v are defined by u(x) = 1,
u(y) = 0; v(x) = 0.7, v(y) = 1: let we consider the fuzzy supra topology t" on X
generated by {0, u, v, 1} U {constants}. For w=1-u and a = 0.75. # =0.6. We see that
(X, t') is B - FSR(i) and (X, t) is o- FSR(iii) but (X, t') is not a- FSR(i).and (X, t") is
not a- FSR(iii). As there do not exist any w(x) <1 withu, v € t" such that u(x)>a, v(y)

=1, yew {1} and uA v <a.

7.3.2.  Definition: Let (X, T') be a supra topological space, this space is to be a supra

regular space if:
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Given an element x €X and closed set WCX s. t. x €W, 3 disjoint open sets U, VcX

s.t. xeU, WcV.
7.3.3.  Theorem: Let (X, t') be a fuzzy supra topological space and 1, (t") = {u”(a.

1]:uet'’}, then (X, t') is 0- FSR (i) =(X, 7,(¢))) is Supra Regular. [14]

Proof: We consider (X, t') be a 0 — FSR (i). We shall prove that (X, 7,(;"))) is Supra
Regular. Let V be a closed set in (")) and x € X be such that x ¢V, then /“€

Io(/") and Xx€ I So by definition of 7,(¢")) . there exists an u € t” such that J/* =
u(0, 1].1i,e. u(x)>0.Since u €t then u®is closed fuzzy set in t and u’(x) < 1. Since

X, t*) is 0 — FSR (i), 3 v, we t such that vix)=1, w> l(uc)"m and vA w = 0.

(a) Since v, we t' then v' (0, 17, w' (0, 1] € 7,(#))and x € v' (0, 1]
(b) Since w> 15" 1y then w (0, 11> (1.5 1) (0,1]
(c) vAw =0, mean (vAw)" (0, 11=v"(0, 1]Aw"(0,1]1=0

Now, we have

A5 )" 0,17 = {x: 105" 1) €(0,113

= {x: 1" (1)(x) =1}

= {x: x €(u®)'{1}}

={xu(x)=1}

={x: u(x) = 0}

={x:x ¢ V°}

={x: xeV }

=V, now taking W= v (0, 1] and W'=w™(0, 1], then x € W, W'2V and WNW'= ¢

.Hence it clear that (X, 7,(/")) ) is Supra Regular.

7.3.4. Theorem: Let (X, t*) be a fuzzy supra topological space, ASX and tt; =

{uA A: u € t*} then 1uanyer1(1y(X) = (1) {1} AA)(X) V x€ X.
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Proof: Letw be a closed fuzzy setint’, i.e WE ¢, then uAA = w*, where uet’
Now we have

0 if x& ((uAA)Y) ' {1}

-1 ot
L)) (y(X) =

1 if x€ ((uAA)YY ' {1}

0 if x¢ { y: (uAA)) (y) =1}

1 if x€ {y: (uAA))(y) =1}

= 0 if (UAA)Y)(x) <1}
1 if (UAA)Y)(X) =1}

” 0 if w(x) <l

= 1 1 if w)=l

Again i(uc)Ll{]}(X) T 0 if x e(uc)‘] { I }

1 ifxe@’'{1}

= 0if x&{y:u(y)=1}

1ifx € {y:u(y)=1}

0 ifu"(x)<lI
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1 ifu® (x) =1

Now (1((u)c)_l:1: AA ) (X) = { 0 if (Uc/\ A) (X) <1
i) if (UAA) (x) =1

(0 if WAA)Fx) <1

L1 if (uA A (x) =1
0 ifwx) <l

=1 1 if wx)=I

Hence it is clear that ]((L;N\)C)_IH}(X) = (1(_uc)_1{|; AA)(x) ¥V xE X.

7.3.5. Theorem: Let (X, t') be a fuzzy supra topological space, ACX and t’, = {uA
A:u €t} then

(@) (X.t")isa—FSR (i) = (A, t',)is a— FSR (i).
(b) (X, t")isa—FSR (ii) = (A, t’,) is a — FSR (ii).
(© (X, t)isa—FSR (i) = (A, t",) is o — FSR (iii).
(d) (X t)isa—FSR (iv) = (A, t’,) is a — FSR (iv).

Proof: (b) (X, t') is an a- FSR(ii) space & V wet™, V x€ X, with w(x) <1, 3 u, ve t'
such that u(x)>a, v(y) =1, yew' {1} and uA v <a.

Let (X, t") is a - FSR(ii). We shall prove that (A, t’,) is o — FSR (ii). Let w be a closed
fuzzy set in t |, and x €A such that w(x") < 1. This implies that w° € t’, and w'(x")>0. So

there exists an u€ t  such that uA A = w* and clearly u® is closed in t'and u’(x") = (uA



108

A (x) =w(x) <1, ieu’(x") < 1. Since (X, t) is an a- FSR(ii) space, so for a€l; 3 v,

v'e t" such that v(X)>a, v‘(y) > ](“c)-lm and vAv' <a. Since v, v'E t, then VAA, v AA

et’, and (VA A)(x") >a, (vV'AA)= 1.5 (1) AA and (VA A) A( V'AA)= (VAV)AA <a.
But l(‘uc," MAA = luu,m)c)"m =1y (11» then (V' AA)= ]w'l;]; Hence it is clear that (A, t
", )is a—FSR (ii).

The proofs of (a), (c), (d) are similar.

7.3.6. Theorem: Let (X, T") be a Supra topological space, considering the following

statements,

(1) (X, T") is a Supra Regular space.
@) (X, o(T") is 0. — FSR (i)

A3) (X, (T") is & — FSR (ii)

(4) (X, o(T") is o — FSR (iii)

(5) (X, w(T")) is o — FSR (iv)

Then

/(3)
(1):(2)\( 5)= (1)

Proof: First, suppose that (X, T') be supra regular space. We shall prove that (X,
o(T") ) is @ - FSR(i). Let w be a fuzzy supra closed set in w(T") and x € X such that
w(x)<I ,then w'e w(T") and w'(x)>0. Now we have (w%)" (0, 17 € T, x € (w%)"' (0, 1].
Also it is clear that [(W®)" (0, 1]]° = w'{1} be a closed set in T and x¢ w'{1} . Since
(X, T") is supra regular, then 3 V, V" € T" such that x €V, V' 2 w" {1} and VN V'= ¢.
But by the definition of lower semi continuous function 1y, 1y’ € w(T") and 1y(x) = 1,
1y 21 w'lm =1lvyay+=0,letu=1lyandv= 1y, then it is clear that u(x)=1, v2 lyam

and uAv < a. Hence (X, o(T")) is a — FSR (i) .i.e. ()= (2).
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Now show that (2) = (3), (3) = (5), (2) = (4), (4) = (5), and finally (5) = (1).
2)=03)
Let (X, o(T") ) is @ - FSR(i), We shall prove that (X, o(T") ) is @ - FSR(ii). Let w be a

fuzzy supra closed set in m(T*) and x € X such that w(x) <I, Since (X, w(T*) )is a -
FSR(i), for a€l; 3 u, ve m(T*) such that that u(x)=1, v(y) =1, yEw"{i} and uA v <a.
By the definition of lower semi continuous function u(x) >a, v(y) =1, yeéw' {1} and uA

v <a. So, it is clear that (X, o(T") ) @ - FSR(ii).
3) = (5),

Let (X, o(T") ) is @ - FSR(ii), We shall prove that (X, o(T") ) is & - FSR(iv). Let w be
a fuzzy supra closed set in m(T‘) and x € X such that w(x) <l,then we have w(x)=0
Since (X, o(T") ) is @ - FSR(ii), for a€l; 3 u, v€ w(T") such that that u(x)>a, v(y) =1,
yew™ {1} and uA v <a. So, it is clear that (X, w(T") ) @ - FSR(iv).

@)=

Let (X, o(T") ) is « - FSR(i), We shall prove that (X, o(TY))is a - FSR(iii). Let w be a
fuzzy supra closed set in m(T*) and x € X such that w(x) <l,then we have w(x)=0,
Since (X, w(T") ) is @ - FSR(i), for a€l; 3 u, vé w(T") such that that u(x)=1, v(y) =1,
yew {1} and uA v <a. Hence it is clear that (X, o(T") ) is a - FSR(iii).

4)=(5)
Let (X, o(T") ) is & - FSR(iii), We shall prove that (X, o(T") ) is @ - FSR(iv). Let w be

a fuzzy supra closed set in w(T") and x € X such that w(x)=0 Since (X, m(T*) )isa -
FSR(iii), for a€l; 3 u, v€ w(T") such that that u(x)>a, v(y) =1, yew ' {1} and uA v <a.

Hence one can observe that (X, w(T") ) @ - FSR(iv).
() =1)

Let (X, o(T")) is & — FSR (iv). We shall prove that (X, T") is Supra Regular space. Let
X€E X, V be a closed set in T, such that x¢ V. This implies that V€ T" and xe V°. But
from definition of w(T"), 1v* € w(T"), and (1v°)° = 1y closed fuzzy set in w(T") and

1y(x) = 0. Since (X, w(T)) is « - FSR(iv) ,for a€l}, 3 u, ve u)(T*) such that u(x) > «,
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v(y) = (1y)" {1}, and uA v <a. Since u, v€ w(T") , then u'(a, 1], v'(a, 1] € T  and x€
u'(a, 1]. Since v=1,, then vi(e, 112 (lv)"(a, 1 1=V, and uA v <a. Implies (unv"(a,
]] e u'l(e, 110 v'(a, 1] =¢. Now from above it is clear that (X, T') is supra regular

space.

Thus it is seen that & - FSR(p) is a good extension of its Supra topological counterpart.
(p=1, ii, iii, iv).

7.3.7. Theorem: Let (X, t") and (Y, s') be two fuzzy supra topological spaces and

f: X — Y be continuous, one-one, onto and supra open map then,

(a) (X, t) is @ —FSR (i) = (Y, s') is @ — FSR (i).

(b) (X, t) is o —FSR (i) = (Y, s') is o — FSR (ii).

(c) (X, t") is oo — FSR (iii) = (Y, s") is & — FSR (iii).

(d) (X, ") is & — FSR (iv) = (Y, s") is @ — FSR (iv).

Proof: Suppose (X, t') be a — FSR (i). We shall prove that (Y., s") is o — FSR (i). Let we
s and p €Y such that w (p) <1, £1(w) €t as f is continuous and x €X such that f(x) =
p as f is one-one and onto. Hence 1 (w) (x) = w (f(x)) = w (p) < 1. Since (X, ) is o —

FSR (i), fora € I, then3 u, v € t suchthatu(x)=1,v(y)=1,y€ (f! (w)}'l{l} and

u A v <a. This implies that f(u) (p) = { Sup u(x) :f(x)=p} = 1.

And f(v) f(y)={ Sup v(y)}=1 as f (F'(w)) € w = f(y) € W' {1}

Again f(uAv) <aasuAv <a= flu) A f(v)<a.

Now it is clear that 3 f (u), f(v) €s such that f(u) (x)=1, f(v) (f(y)) = 1, f(y) € w {1}
and f (WA f(v) < o Hence (Y, s7) is a-FSR (i).

Similarly (b), (c) and (d) can be proved.

7.3.8. Theorem: Let (X, t") and (Y, s') be two fuzzy supra topological spaces and
f: X — Y be continuous, one-one, onto and supra closed map then,

@  (Y,s)isa—FSR (i)= (X,t)isa—FSR (i)

(b) (Y,s")is o.— FSR (ii) = (X, t') is o.— FSR (ii)

(c) (Y, s') is a—FSR (iii) = (X, t") is & — FSR (iii)
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(d) (Y, s") is o — FSR (iv) = (X, t') is a — FSR (iv)

Proof: Suppose (Y, s*) is & — FSR (i). We shall prove that (X, t') be & — FSR (i). Let
we £ and x €X such that w (x) <1, f(w) €t as fis closed and we find p €Y such that
f(x) = p as f is one-one. Hence we have f(w) (p) = {Sup w(x): f(x) = p} < 1. Since (Y,
s) is o — FSR (i)., fora € I;, then 3 u, v € s such that uf X)) =1, v(y)=1,yE€E
(f(w)) "' {1} and u A v <a. This implies that ), £ ) et as fis continuous. Now
u, v Es,then f'(u)) = u(f(x))=u(p) =1 and £ (v)(q) = v(f(q)) = v(y) =1 as f(q)=y,
yefw) " {1} ief(p)e (W) {1} = qew'{1}and fFr@Af'(v)<aasuAv
< a.. Now we observe that 3 that 'l(u), f ' (v) €t* such that f ) =1, f (v) (@)
=1,qe w'{1} and ™ (uA £ (v) <@, Hence (X, t') is a-FSR (i).

Similarly (b), (¢) and (d) can be proved.
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CHAPTER- VIII

Compactness in Fuzzy Supra topological spaces

8. Introduction:

The concept of compactness in [0, 1]-fuzzy set theory was first introduced by Chang,
C.L., [21],and latter many topologists studied the concept of fuzzy compactness such
as Lowen, R. [33, 34] who introduced an improved Version of fuzzy compactness,
fuzzy strong compactness and fuzzy ultra compactness, Wong, CK. [63, 64]
introduced the concept of local compactness ; Gantner, T.E., Steinlage, R.C., and
Warren, R.H., [24] introduced the concept of o- compactness in fuzzy topological
spaces Choubey, A., and Srivastava, A.K., [22] obtained some characterizations of o-
compactness. Wang G.J [60] extended the Lowen fuzzy compactness into L-fuzzy
topology. In 1988, Mao-kang L. [37] introduced S'- paracompactness and S-
paracompactness concept in fuzzy topological spaces. In this chapter we introduce
compactness in fuzzy supra topological spaces and also establish a number of

characterizations in this regard.

8.1. Definitions

8.1.1. Definition: Let (X, t') be a fsts. A family F of fuzzy supra open sets is a cover of

a fuzzy set u ifand only if pc v { u; | #i€F, i€l}. It is also called a cover of X, if _:_xl

4 =1.1f there exist subset J; of J such that v ’,u i€F, i€li}, then { u; |

ui€F, i€} is called a subcover.

8.1. 2. Definition: A fuzzy supra topological space (X, t") is fuzzy supra compact, if
every supra open cover of X by members of t* contains a finite sub cover, that is if y; €

t" for all ieJ, (J an index set) then there are finitely many indices i, 12 13 14 is g, oeeeyin

1

e J such that JVI Hij=1.
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8.1.3. Definition: Let (X, T*) be a supra topology on X, and = (T )be a fuzzy supra
topology on X. Let B be the family of fuzzy supra open sets such that V pe B,

Bc o(T" ) = L( %) be the set of all lower semi continuous functions from XxR to

I, Wwith usual topology, where sup # = O, Thus L(u)={(x, r): 1 (X)>r}.
HeEB

r€0, al=1,, a>e>0,0€lpand 4= u+e.

8.1.4. Definition: Let (X, t') be a fsts. Let a.el and pu= {u;:ie J} be an fuzzy supra

open subset of t” then o= {XEX, H(x)2a }.

8.1.1. Theorem: Let (X, t) be a fuzzy supra topological space. Then the following
conditions are equivalent.

(1) {ui}, ie Jisacoverof X.

(2) v ui=1whereie J ¥V xe X.
ieJ

(3) A ui=0whereie J V xe X. [65]
ied

Proof: (1) = (2).

It is clear from the definition (8.1.2) of a Cover, since { z2;} i€l is a cover of X means
that ,-:; M, =1, whereie J, V xe X,

@) =@Q).
Since A g, =inf {, } whereie J, vV xeX.

ieJ

= l-sup { y, }, whereiel, V x e X
=1-1=0.
3)=().

From (3) as above it can be shown that vz =1. Which implies that { z } is a cover
el

of X.

8.1.2 Theorem: Let (X, T"), (Y, S') be two fuzzy supra topological spaces, with (X,
% fuzzy supra compact. Let £ X—Y be a fuzzy supra continuous surjection. Then

(Y,SYis fuzzy supra compact. [65]
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Proof: Let ui €S* for each i€ ] with \f; u; =1.Since f is fuzzy supra continuous, so
e

f"' (ui ) € T*.As (X, T*) is supra compact, we have for each x€ X, ;Zf f_] (ui ) (x)
=1

So we see that {j‘_’ (ui ) }, i€Jisacover of X. Hence 3 finitely many indices i, iy, is,
is, 1s, 1g in€1 such that {_::, f_'(u i ) =1 .Let u be a fuzzy set in Y. Since f is a

surjection we observe that for any y€Y

FUT @) () =Sup { £ ()(2): z€ £ ()}
= Sup{u (f(2)): f (z) = y} =u(y) so that

-1
fOf ()= u .This is true for any fuzzy set in Y. Hence
P Al T T = PG S

Therefore (Y, S*) is fuzzy supra compact.

8.1.3.: Theorem Let (X, T'), (Y, S) be two fuzzy supra topological spaces, and let /- X
—Y be a fuzzy supra continuous surjection. Let A is a fuzzy supra compact set in (X,
g Then f{A) is also fuzzy supra compact in (Y, S).

Proof: Let B = {G;: ielJ}, where {G;} be a fuzzy supra open cover of f(A). Then by
definition of fuzzy supra continuity { f_] (Gi): i€} is the fuzzy supra open cover of A.

Since A is fuzzy supra compact, then exists a finite sub cover of A, that is

n

G- k=1,2,3, ... n,suchthat AC V /7 (Gy)-

Hence AN/ (Y, /(G =Y A 1™ (Gu)E ¥ G

Therefore f(A) is fuzzy supra compact.

8.1.4. Theorem: Let (X, T), (Y, S°) be two fuzzy supra topological spaces. Then the
product (XxY,§") is fuzzy supra compact if and only if (X, T) and (Y, S) are fuzzy

supra compact.
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Proof: First suppose that (XxY,§") where§ = {GixH;: Gie T" and Hie S’} is fuzzy
supra compact, then we can define a fuzzy continuous surjection mapping k, and x,
from (XxY,8 ) to (X, T') and (Y, S") respectively. Now by the theorem 8.1.3., (X, T")
and (Y, S) are fuzzy supra compact.

Conversely let (X, T*) and (Y, S) are fuzzy supra compact. Since § = {GixH; : Gie
T and Hie S’ forie J} where G; and H; are fuzzy supra open set. We claim that {G;: i

€J} isacover of X, and {Hi: i€J }is a cover of Y. That is if ,-:; Gi(x) =1 for all x€ X,

and if r_:; Hi(y) = 1 for all y€'Y, then !_:3 {(Gi*H;) (X, y) = Sup {min {Gi(x), Hi(y)}}.

Hence we have finite subset J/ of J for which Gi(x) =lorv Hj(y) = 1.Hence we
ieJ it

have 5*= {GixH;: Gie T and Hie S’ for iEJf} is a finite sub cover of (XxY,§ ).

Hence (XxY,§") is fuzzy supra compact.

8.1.1. Cor: If (X;,§;)ies is a family of fuzzy supra compact topological spaces then (1;

€y Xi,nieyd;) is also fuzzy supra compact [35].
8.1.5. Theorem: The fuzzy supra topological space (X, w(t)) is fuzzy supra compact
if and only if (X, t') is fuzzy supra compact.

Proof: Firstly suppose that (X, t') is fuzzy supra compact, let B c @(t") be such that

sup > ou. Then V p € B and taking 4° = u+¢€, the lower semi continuous functions
MHEB

L(u")={(x. r): 1 (x)>r} is an supra open set of XxR, re[0, o.]=ler, a>&>0 .Now

sup L(p")>XxIa, we know that Xa xla is fuzzy supra compact. Hence 3 finite
HEB

subfamily B;cB, which covers X = (X, m(t*)) is fuzzy supra compact.
Conversely suppose fuzzy supra topological space (X, w(t)) is a fuzzy supra

compact. Then from definition of fuzzy supra compactness 3 B;cB and u; eB; such

that Sup = 1. Hence (X, t') is supra compact.
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8.1.6. Theorem: Let (X, t')be a fuzzy supra topological compact space then there exist
a fuzzy supra compact topology m(t*) in which every closed fuzzy set is also fuzzy

supra compact.

Proof: Let o and ¢° € @ (t*), and BCw (t*) such that sup z>a. Now g€ € o (t¥)
HEP

= 1-a € w (t*), Hence the collection T (a ) = {(x, r): & (x) <r} is fuzzy supra open in
XXI. Therefore T(e ) is fuzzy supra compact. Choosing €>0 and taking u°= u+e,

we have sup L(xS)=T (a )¢, so there exist finite subfamily By © B such that sup L(
uHeB HEB

L5)=2T (). Soin @ (t") in which every closed fuzzy set is also fuzzy supra

compact. Hence the proof of the theorem is complete.

8.1.7. Theorem: Let (X, t') be a fuzzy supra topological space, then (X, t') is fuzzy
supra Hausdorff space iff fuzzy supra compact disjoint fuzzy subsets of X can be
separated by disjoint fuzzy supra open sets.

Proof: Let (X, t*) be a fuzzy supra Hausdorff space. Let A, i be two compact fuzzy
subsets of X with A Ap=0. To prove A, p are separated by disjoint fuzzy supra open
sets. It is sufficient to prove that there exist u, v €t* such that Ac u and p cv.
By the Hausdorff Property FST,(iii) : iff for every x, y €X, X #y, there exist u, v t*such

that u(x)>0, v(y)>0 and uAv= 0. Let {u; :i €] and x€A} s.t. ui(x)>0, is a cover of A.

n
eJ such that AC v u; (x) = u(x) say and similarly we can prove that p cv. Now we
J=1

shall prove that u and v are disjoint. Let : u; (x) = uk(y) and vi(y) =A {u; (x): iy, iy, i3 ia,
J=1

is, 16, .....ine J } then uyg and vy are disjoint supra open sets. Thus u and v are fuzzy supra
opensetsstAcuand pcv.

Similarly we can prove for the other property.

8.1.8. Theorem: Every fuzzy supra compact subset of a fuzzy supra T, —space is

closed.
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Proof: Let (X, t') is a fuzzy supra Ty (iii)-space and P is a fuzzy subset of X. We shall
prove that A is closed. If A°= 0, then A is closed. Since 0 is an fuzzy supra open set,
and if AS£ 0 and let x €A® Now since (X, t*) is a fuzzy supra T (iii)-space (then x, y
€X, x#y, 3 A, p € t* such that A(x)>0, u(y)>0 and AAp=0). So for each yeA, 3 fuzzy

supra neighborhoods 2, and 4, containing x and y respectively such that Ay, Au,

=0, since X is supra compact so finite number of points yi, y2, ¥3,..........y » such that A

n n 1
cC u {p},j} . LetA= {,1},‘_} and p= 'ﬁl {'“y, }.Since each Ay, is an fuzzy supra
1=

i= i=1
open neighbourhood of x and the finite intersection of neighbourhoods is a
neighbourhood, it follows that A is a fuzzy supra neighbourhood of x. If x € A = x€
Ay, for some y; €A = x € u, . Since Mp=0 = x¢ {u } = p .Now A cA and
Ap=0. = p < A This shows that A® is neighbourhood of its points. Therefore A
fuzzy supra open .Hence A is closed.

Similarly we can prove for the other property.
8.2. Fuzzy supra a- compactness

Now we study several features of fuzzy supra a-compactness.

8. 2. 1. Definition:. Let (X, t*) be a fuzzy supra topological space and a €[0, 1]. A
family F (Fc I") of fuzzy supra open subsets of X is called a supra « - shading of X if
for each point x € X and p€ F such that p (x)>a.

8.2.2. Definition: Let (X, t') be a fsts. Let oel then (X, t) is said to be o-supra

compact if every fuzzy supra open o -shading of the space has a finite o -sub shading
[24].

8.2.1. TheoremLet 0< a < 1, then a fsts. (X, t') is fuzzy o- supra compact, iff (X, t,)
is o - supra compact [65].

Proof: Let (X, t') be fuzzy o- supra compact, Letp= {p,:ie A} be an supra open
shading of (X, 7, ).To show (X, t, ) is a- supra compact, we have to prove that every

a-open shading has a finite sub shading. Since p is a a-supra open shading of (X,t.,)

then by definition of /,, there exist xe X and My, € 1 be such that M, (x)> o.Again by
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definition of fuzzy a-supra compactness of (X, t") each u, has a sub shading say
{,u,-}::i , Hence (X, t. ) is o - supra compact.

Conversely let (X, ) is o.- supra compact then by ¢, shading it is clear that (X, t') is

fuzzy - supra compact.

8.2.3. Definition: Let A be a fuzzy subset of a fuzzy topological space X. A is said

to be fuzzy a-open if AcInt CI IntA. The set of all fuzzy o -open subsets of X will be
denoted by Fqu(x) [28].

8.2.4. Definition: Let (X, t*) be an fsts. A family F of fuzzy supra open subsets of X is
a a- cover of X if and only if FE{V u;: 1€ Fy(x) } and F covers X i.e if y; €F,

n
such that v #=1.

=
8.2.1. Example: Let X={x, y, z} and let u, v, be the fuzzy sets on X defined by
u(x)=0.3, u (y)=0.5, u (2)=0.7 v(x) =0.5, v(y)=0.6, v(z)=0.9 and let fuzzy supra

topology on X is defined by

t*={0, 1, u, v} then for o=0.4; {y, z} are t; supra open set and which is not t*, a-
supra open.

8.2.5. Definition: Let (X, t*) be a fuzzy supra topological space and a € [0, 1]. Let f:
(X, t¥)— (Y, s*) is said to be fuzzy a -supra continuous, if f'(u) is « -supra open in t*
for each supra open set u in s*.In other words f is fuzzy « -supra continuous. If V u €
s*, fl(u) € Fp X).

8.2.2. Example: Let X={X, y} and let u, v, be the fuzzy sets on X are defined by
u(x)=0.3, u (y)=0.4; v(x) =0.5, v(y)=0.6, and let fuzzy supra topology on X are

defined by t*={0, 1, u} and 5*={0,1, v} and let f: (X, t*)— (Y, 5*) be the identity
mapping then for « <0.2 ; fis fuzzy « -supra continuous.
8. 2. 6 .Definition: Let (X, t) be a fuzzy supra topological space. A subfamily F of t” is

called a base for t* iff each member of t” can be expressed as a supremum of members
of F.
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8.2.7. Definition: Let (X, t*) be a fuzzy supra topological space and ,fjg is a fuzzy supra
topology on X, which has F,, (X) as a base then f: (X, t*) — (Y, s*) is called fuzzy S

supra continuous if f: (X,;}; ) = (Y, s*) is fuzzy supra continuous.

8.2.2. Theorem: Let (X, t') be a fuzzy supra topological space and ;* ; is a fuzzy supra

topology on X, which has F, (X) as a base, if f: (X, t*) —(Y, s*) is fuzzy a- supra

continuous, then f'is fuzzy - supra continuous.

Proof: Since f: (X, t*)— (Y, s*) is fuzzy « -supra continuous, so fuzzy V supra open

set u€ s*, f'(u) is a-supra open in t*, i.e f'(u)€ F,, (X). Again since F, (X) is a base

for the fuzzy supra topology ;}, hence f'(u)e ;73 so f'is fuzzy A supra continuous.

8.2.3. Theorem: Let (X, t') and (Y, s") be two fsts. Let f: (X, t') =(Y, s) be fuzzy -
supra continuous and G be & -supra compact in X, then f(G) is ¢ -supra compact in Y.

Proof: Let B= {G;: ie] }, where {G;} be a a -fuzzy supra open shading of f(G). Then
by definition of « -fuzzy supra continuity A= {f‘1 (G)): iel} is the fuzzy a -supra

open cover of G. Since G is fuzzy a-supra compact in X, then there exists a finite sub

n
shading of G, that is G, k=1,2,3, ......... n, such that G¢ v f’l(GHc ). Hence f{G)
i=1

/(v G K S (GadE v Gi

Therefore £ (G) is fuzzy o - supra compact in Y.

8.2.4. Theorem: Let (X, t') and (Y, S*) be two fsts. Let f: (X, t) — (Y, S") be fuzzy a-
supra continuous, =f preserves fuzzy a- supra compactness. That is the image of each

fuzzy a- supra compact spaces is o- supra compact.

Proof: Since f: (X, t*) — (Y, s*) is fuzzy o- supra continuous u €s*, f-1(u) € F, (X),
where F, (X) is the set of all a- supra open subsets of X. =3 pe t', such that p(x)>

a, = 3 u €s*, ' (u)>a. Now the proof follows from above theorem.
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8.2.5. Theorem: Let (X, t*) be a fuzzy supra topological space and I*,{} be a fuzzy
supra topology on X, which has F, (X) as a base, then(X, t*) is a- supra compact if
and only if (X, I*ﬂ) is a- supra compact

Proof: Let (X,rz) be a- supra compact. Since (5 is a fuzzy supra topology on X,

which has F, (X) as a base, then ;’:g € F, (X), which implies that (X, t*) is « - supra

compact.

Conversely let (X, t*) be a - supra compact, which has , (X) as a base then

t*c F, (X), since {:g St*c F, (X).Which implies that (X, ;}) is a - supra compact.
.2.6. Theorem: Let (X, t*) be a fuzzy supra topological space and ;}; be a fuzzy supra
topology on X, which is o — supra compact. Then each g}; closed fuzzy set in X isa —

supra compact.

Proof: Let U be any f:g closed fuzzy set in X. Let {Vy 7€l bea ;:}3 supra open
cover of U. Since X-U is supra open, so {(Vyirielh uX-U)isa f*,ﬁ supra open
cover of X. Since X is r*,g compact then by the theorem above there exists a finite

subset Iy < I such that X= {VY 2y, € lo} U (X-U) this implies that U «—{ Vy, 7€ I},

Hence U is a- supra compact, relative to X. This completes the proof of the theorem.

8.2.8. Definition: A fuzzy supra space (X, t') is called a-supra compact, where a€ [0,
1), if for every U <t such thatv U>«, there is a finite Upc U satisfying vUy>a. A

fuzzy supra space which is « - supra compact for all a € [0, 1) is called fuzzy supra

strongly compact. [54]

8.2.7. Theorem :Let (X, t*) be a fuzzy supra topological space which is strongly

compact. Then each f*ﬁ -closed fuzzy set in X is fuzzy supra strongly compact. [45]

Proof: Clearly X is fuzzy supra strongly compact with the help of the theorem 8. 2.6.
and by the definition 8.2.8 of fuzzy supra strongly compact.
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8.2.8. Theorem: Every fuzzy strongly supra compact space is fuzzy supra compact.
Proof: From definition of fuzzy strongly supra compactness it is clear that for all o €
[0, 1), every open cover have a finite sub cover, so every strongly supra compact space

is fuzzy supra compact.

8.3. Fuzzy supra paracompactness. /s

Here we obtain some properties of fuzzy supra paracompactness.

First we give the following definitions.
8.3.1. Definition:. The star of a fuzzy set u with respect to a cover F is denoted by

st(u, F)=V{ f,: #qf, } where F={ f_:s€&Sbeacoverof X.The cover B= {b:t
et*}of'a set X is a star refinement of a cover F in the same set X, if st(b, B ) is a
refinement of F and denoted by st(b,, B)yc f. Again if {st(b, B) :b, is a fuzzy point in

X} is a refinement of F , ¥fuzzy point by, then B is said to be barycentric refinement

[29].

8.3.2. Definition: A supra open cover of a FSTS (X, t") is locally finite (resp, *- locally
finite) if every point of the space has a neighborhood U such that U is quasi-coincident
(resp intersects) only finitely many sets in the cover. In symbol, Let A be family of
fuzzy sets and B is a fuzzy set in a fsts (X, t*). We say that A is locally finite if and
only if, for any fuzzy point p in B, there exists some neighborhood {7, € Q(p) such that

Upg is quasi-coincident {resp. a € A: U, AQ(p)# 0} with at most a finite number of

fuzzy sets of A.

8.3.4 Definition: Let (X, t') be a fsts. And let it )be its initial fuzzy supra topology on
X, then (X, t") is said to be Ultra fuzzy supra compact if and only if (X, (t"))is supra
compact. [35]

8.3.5 Definition: A fsts. is said to be strong fuzzy supra compact iff it is supra compact
forall ae [0, 1).
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8.3.6. Definition: Let (X, t") bea fsts, a eland # be a fuzzy set in (X, t'). Then u

is said to be o -supra Paracompact (resp ¢ - supra paracompact) if each a -shading of
u by fuzzy supra open sets has a locally finite (resp, *- locally finite) o -shading

refinement by fuzzy supra open sets.

8.3.7. Definition: Let x be a fuzzy set in a fuzzy supra topological space (X, t*), we
say that g is fuzzy supra paracompact (*-fuzzy supra paracompact) if each supra open
set B of u there exist an supra open refinement £ of x which is locally finite (resp,*

locally finite) in p.

8.3.8. Definition: A family of sets Ais called a Q-cover of a set B if for each
x e supp(B), there exist an AEA such that A and B are quasi-coincident at X. Let o €

(0, 1], A is called an & -Q cover of B if A is Q-cover of B< ».[60]

8.3.9: Definition. Let « € (0, 1], 4 be an set in fts. 4 is said to be « - paracompact («
'~ paracompact) if for every « -open Q-cover of A, there exists an open refinement of it

which is both locally finite (resp,*- locally finite) in A and « - Q-cover of A [29].

8.3.10. Definition: Let (X, t*) be a fsts and « € 1o, A be an fuzzy set in fsts. A is said

to be S- supra paracompact (S*- supra paracompact) if for every e (0, 1], A is -

supra Paracompact (resp o - supra paracompact) [2].

8.3.11. Definition: An fts. (X, T') is called to be regular if for each point e in (X ,T) and
each Ue Q(e), there exists a Ve Q(e)such that vc U [29].

8. 3.12. Definition: A refinement of a cover of a space X is a new cover of the same
space such that every supra open set in the new cover is a subset of some set in the old
cover. In symbols, the cover V = {Vg: p in B} is a refinement of the cover U = {Uy:
in A}, (where A is an indexed set) if and only if, for any Vp in V, there exists some U,
in U such that Vy is contained in U, [29].
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8.3.13. Definition: An open cover of a space X is locally finite if every point of the
space has a neighborhood which intersects only finitely many sets in the cover. In
symbol, Let A be family of fuzzy sets and B is a fuzzy set in a fsts (X, t*) .We say that
A is locally finite if and only if, for any fuzzy point p in B, there exists some

neighborhood /, € Q(p) such that {/,, is quasi-coincident {resp a€A : /, A Q(p)#0}

with at most a finite number of fuzzy sets of A.

8.3.14. Definition: Let u be a fuzzy set in a fuzzy supra topological space (X, t*), we
say that u is fuzzy supra paracompact if each supra open set B of u there exist an

supra open refinement £ of x which is locally finite in z.

8.3.1.Theorem: Every metric space is Paracompact [62] .
8.3. 15. Definition:An FSTS is paracompact if it is regular [62] .

8.3. 16. Definition: Let(X, 7 ) be a topological space and be the set of all semi
continuous function from (X, 7 ) to the unit interval, I= [0, 1] equipped with the usual

topology, then (X, @(7)) is called induced topological space by (X, 7 )[61].

8.3.17. Definition:. A fuzzy extension of a topological property is said to be good,
when it is possessed by (X, @(7)) if and only if, the original property is possessed by
(X, 7).[32]

8.3.18. Definition: A fuzzy supra topological space (X, T") is called a weekly induced

of the crisp supra topological space (X, TB) if [T'] = TB and each element of T" is

lower semi-continuous from (X, TB) to [0, 1].

8.3.19: Definition Let (X, 7).be a topological space and w(7) be the set of all semi

continuous functions from (X, 7 ).to the unit interval equipped with the usual topology,

then (X, (7)) is called the weakly induced fuzzy topological space by (X, 7).[31]
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8.3.2. Theorem: Let (X, t*) is a weakly induced FSTS. If a Q-cover U of a fuzzy set
X is a barycentric refinement of a Q- cover V, and Q- cover V of a fuzzy set X is a

barycentric refinement of a Q-cover W, then U is a fuzzy star refinement of W. [29]

Proof: Let ue U, and the fuzzy point X; is quasi coincident with u i.e x; qu. Since Q-

cover V of a fuzzy set X is a barycentric refinement of a Q-cover W so we can choose

we W, so st(Xa,V ) <w. The proof of the theorem is complete if we can show that

st(u, U) <w. Now by definition 8.3.1, since Q-cover U of a fuzzy set X is a barycentric

refinement of a Q-cover V, so st (X1, U) = v {u: X2qu} and hence u< st (Xz , U)<v,

where V=v v.

Thus we have st(u, U= v st(X3,U)= v {v{u Xqudl< v {w}, so

XASuy XAEU X €U

stu, U)= v st(X3,U)< v {vi},Again v { v }=st(X1.V)and similar way

IAeH,g XEU XAEU

we can prove that st(u, U)<st (X1 , V) <w,, thus U is a fuzzy star refinement of W m

8.3.3. Theorem: Let « € (0, 1],

(a) An fsts. is « -supra Paracompact iff for each supra open 1-« shading U of X,
there exists an supra open -« shading U* of X such that U* is locally finite in X and
a refinement of U.

(b) Ifan fsts X is (1 - & )-supra compact, then X is ¢ -supra paracompact. [2]
Proof: Suppose (X, t*) be a fsts and & -supra Paracompact, where « € (0, 1], then by
definition (8.3.6), a fuzzy set u is said to be « -supra Paracompact if each « -shading
of by fuzzy supra open sets has a locally finite & -shading refinement by fuzzy supra
open sets. Then for every point Xx€ X there exist Ae t* such that A (x)> o < -A(x)
<(Ca) o l-i@<l-a,o Y®<l-a < x 21.

(a) Now let U is supra open 1-a shading of X, = U(x)>1-a, =>UX) +a>1, = Uis
intersect with a fuzzy set U* in X, such that U* is locally finite in X and a refinement
of U.

(b) Let an fsts X is (1 - « )-supra compact, if for every U ct* such that Sup U>(1 - &),

so by first part is « -supra Paracompact.
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Remark: We know the concept of - compactness may not imply the concept of « -
paracompactness. By a Counter example we can show that if X is not «- supra

paracompact, although it is « - supra compact

Counter example: Let o =%, consider the fuzzy supra topology o on I generated by
the family {0, 1} L {By: ye {0, %}, where By is defined as follows:

By(x) =1, X€( l,l]

2
By(x) — X=y
Y > Y
1
By(x) =0, x €0, 5] -{y}

The family U= {B,: y€{0, %}, is an supra open (1-« ) shading . There is no supra-

open shading U* which is both locally finite and a refinement of U. In fact U is not

locally finite. Thus X is not a- supra paracompact, although it is a- supra compact.

8.3.4. Lemma:The following statements are true.

1) Fuzzy supra compactness = * - fuzzy supra paracompact.

2) S"- supra paracompact = *-fuzzy supra paracompact.

3 S"- supra paracompact = S- supra paracompact. [37]

Proof: (1) follows directly from definition (8.1. 2) and (8.3.7) replacing cover by
refinement and finite by locally finite.

(2) The proof is straight forward from definition (8.3.10) and (8.3.7).

3) From definition (8.3.10) it is clear that let 4 be a set in fsts. then A is said to be
S"- supra paracompact if for every a e (0, 1], 4 is a-supra Paracompact (resp o -
supra paracompact). i.e. for any x in X, there exists some neighborhood V(x) of x such
that {7, is quasi-coincident {resp a€A : [/, A Vv(x)#0} with at most a finite number of

fuzzy sets of A. Hence 4 is S- supra paracompact.

8.3.5. Theorem: If A be an o —supra paracompact (resp ¢ -supra paracompact) set
in fsts. (X, t'), then for each closed set B in (X, t'), each & —open Q-cover of set BN A

has an supra open refinement which is both an o —Q- cover of B A and locally finite
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(resp,*- locally finite) in A.

Proof: - Clearly we prove the & — supra paracompactness of C =B~ A. Let U is the

@ - supra open Q-cover of C, then U U {B} is an supra open Q-cover of A<, and it
has on open refinement say V which is both locally finite in A and supra open Q-cover
of A<a> Let Vo= {ve : Ju €U, vC u} then V, is a supra open Q-cover of c<a>. [f
not then there exists an xe supp(c<a-) such that U Vy(x) <1-o.But V is the supra
open Q-cover of A<a> and c<a>c A<as. Hence there exist vEV such that v(X) >1-a.
Since V is a refinement of UU{B}, so v c B; Again C(x)> «, by given condition B is
closed we have B(x)> & therefore, 1-a <v(x) <B(x) < 1-«. This is a contradiction of

theorem. This completes the proof

8.3.6. Theorem: Fuzzy supra paracompactness is weakly hereditary.

or, Every closed subspace of a fuzzy supra paracompact space is paracompact.

Proof: Let 4 be a closed subspace in a fuzzy supra paracompact space X. Let { u, }

be the covering of 2 by the sets supraopen in z. For each ue { u it.choosing an supra

open set pf of X such that ,uf A p = u;cover X by the supra open sets u {, along with

the supra open set X- 1. Let B be a locally finite supraopen refinement of this covering

that covers X. The collection C= {,u;r ANU= ,u: € B} is the required locally

finite supra open refinement of {u;}.Hence the theorem.
Remark: Fuzzy supra paracompactness is not hereditary.

Remark: Fuzzy supra paracompactness is a good extension of supra paracompactness.

8.3.7. Theorem: Let (X, t') is a regular weakly induced FSTS. Then we have the

following equivalent conditions [37].

(i) (X, t*) is S- supra paracompact.

(ii) If o€ Iy then & — supra open Q- cover of X has a locally finite supra open
refinement which is an @ — Q- cover of X also.

(iii) 3 an ae Iy, such thatevery o — supra open Q- cover of X has a locally finite

supra open refinement which is an & — Q- cover of X also.
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(ivy If @€ 1; then a —supra open Q- cover of X has a locally finite supra open

refinement which is an a — Q- cover of X also.

Proof: (i) = (ii)

From the definitions 8.3.9 and 8.3.10 if (X, t') is S- supra paracompact and if 4 be an
fuzzy set in (X, t') then for every a —open Q-cover of A, there exists an supra open
refinement of it which is locally finite.

(ii) = (iii) is straight forward.

(i) = (iv) Also from the definitions 8.3.9 and 8.3.10, it is clear that (i)= (iv) .=
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