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Abstract 

In this thesis study of the nature of the 0-distributive nearlattices is presented. By a 

nearlattice S we will always mean a meet semilattice together with the property that any 

two elements possessing a common upper bound, have a supremum. Cornish and 

Hickman [14] referred this property as the upper bound property and a semilattice of this 

nature as a semilattice with the upperbound property. Cornish and Noor [15] preferred to 

call these semilattices as nearlattices, as the behaviour of such a semilattice is close to 

that of a lattice than an ordinary semilattice. Of course a nearlattice with a largest element 

is a lattice. Since any semilattice satisf'ing the descending chain condition has the upper 

bound property, so all finite sernilattices are nearlattices. In lattice theory, it is always 

very difficult to study the non-distributive and non-modular lattices. Uratzer [20] studied 

the non-distributive lattices by introducing the concept of distributive, standard and 

neutral elements in lattices. Cornish and Noor [15] extended those concepts for 

nearlattices to study non-distributive nearlattices. On the other hand, J.0 Varlet [66] 

studied another class of non-distributive lattices with 0 by introducing the concept of 0-

distributivity. In fact this concept also generalizes the idea of pseudocomplement in a 

general lattice. This thesis extend the concept of 0-distributivity in a nearlattice to study a 

larger class of non-distributive nearlattices. A nearlattice S with 0 is called 0- 

distributive if for all x,y,:eS with xAy=0=XAZ and yv; exists imply 

X A (y v :) =0. 

Chapter I gives a detailed description of nearlattices. Here we discuss ideals, 

congruenees, SemiBoolean algebra and many other results on nearlattice which are basic 

to this thesis. 

In Chapter 2 we introduce the concept of modular element in a nearlattice. Gratzer 

and Schmidt [23] introduced the notion of some special elements, e.g. distributive, 

standard and neutral elements, to study a larger class of non-distributive lattices. Then 

Cornish and Noor [15] used these concepts to nearlattices. Again Talukder and Noor [64] 

introduced the notion of modular elements in a join semilattice directed below. The 
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notion of modular element is also applicable for general lattices. In this chapter, we have 

introduced the concept of modular and strongly distributive elements for nearlattices. 

i-Iere we have given several characterizations of modular and strongly distributive 

elements. By studying these elements and ideals we obtained many information on a class 

of non-distributive nearlattices. 

Chapter 3 and 4 are the key chapters of this thesis. In Chapter 3 we introduce the 

0-distributivity in a nearlattice with 0. We include several characterizations of distributive 

nearlattices. We prove that a nearlattice S with 0 is 0-distributive if and only if all 

maximal filter of S are prime. We also show that S is 0-distributive if and only if i(s), 

the lattice of all ideals of S is pseudocomplemented. Then we include some prime 

separation properties. In this chapter we also include the notion of semi-prime ideals by 

extending the notion of 0-distributivity. In lattices, the notion of semi-prime ideals was 

given by Y. Ray [52]. By using these semi-prime ideals, we generalize the prime 

separation theorem of nearlattices in terms of annihilator ideals. Finally, we extend the 

concept of Glivenko congruence for 0-distributive nearlattices as well as for semi-prime 

ideals to establish a generalized version of prime separation theorem. 

In chapter 4 we discuss different properties of 0-distributive nearlattices and 

included several characterizations of these nearlattices Annulets and u-ideals in a 

distributive lattice have been studied extensively by Cornish [13]. Recently Ayuh Au, 

Noor and Islam [4], Noor , Ayub Ali and Islam [41] extended this concept for 

distributive nearlattices. In this chapter we study the annulets and a-ideals in a 0-

distributive nearlattice. We give several characterizations of a -ideals. We also include a 

prime separation theorem for a -ideals. Finally we show that a 0-distributive nearlattice is 

quasicomplemented if and only if A0(S) (the dual nearlattice of annulets) is a Boolean 

subalgebra of A(S), where A(S) is the set of all annihilator ideals of S. Moreover, S is 

sectionally quasicomplemented if and only if A0(S) is relatively complemented. 
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Chapter 5 brings the notions of 0-modular nearlattices. Ayub Au, Hafizur 

Rahman and Noor [5], Jayaram [30], Noor , Ayub All and Islam [41] and Varlet [65] 

have studied different properties of 0-distributivity and 0-modularity in lattices and in 

semilattices. In this chapter we extend their work and include several characterizations of 

0-modular nearlattices. 

Many mathematician including Cornish [Ii] have studied the normal lattices and 

p-algebras in presence of distributivity. Recently Nag, Begurn and Talukder[38] studied 

them in presence of 0-dirtributivity. They have generalized many results of S -algebras 

and D -algebras. Since the idea of pseudocomplementation is not appropriate for a 

nearlattice, we study the sectional pseudocomplernentation for a nearlattice. In chapter 6 

we extend and generalize some results of Nag, Begum and Talukder [38] on D -algebras 

and S -algebras. We prove that every [o, x] , x E S is an S -algebra if and only if it is a 

D -algebra where the nearlattice S is sectionally p-algebra with the condition that [o, x] 

for each x E S is 1-distributive and S is 0-modular. We conclude the thesis by giving a 

characterization of sectionaly S-algebra whenever [0,x} for each x € S is 1-distributive. 
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CHAPTER I 

IDEALS AND CONGRUNCES 

1.1 Preliminaries 

The intention of this section is to outline and fix the notation for some of the 

concepts of nearlattices which are basic to this thesis. We also formulate some results on 

arbitrary nearlattices for later use. For the background material in lattice theory we refer 

the reader to the text of Birkhoff[10] , Gratzer [19], [20] and Davey [16]. 

By a nearlattice S we will always mean a lower (meet) semilattice which has the 

property that any two elements possessing a common upper bound have a suprernum. 

Cornish and Hickman [14], referred this property as the upper bound property and a 

semilattice of this nature as a semi/all/ce with the upper hound properly. The behaviour of 

such a semilattice is closer to that of a lattice than an ordinary semilattice. 

Of course, a nearlattice with a largest element is a lattice. Since any semilattice 

satisfying the descending chain condition has the upper bound property, so all finite 

semilattices are nearlattices. 

Now we give an example of a meet semilattice which is not a nearlattice. 

Example: In R2  let us consider the set, S =1(0,0)IU I(l,O)lul(o,I)JUtl,y)I y> i} 

shown in the Figure 1.1 

Figure 1.1 
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Let us define the partial ordering IT  on S by (x, y) :!~ (x1 , y1 ) if and only if x ::~ x1  

and y :~ y. Clearly, (5; :!~) is a meet sernilattice. Both (1,0) and (0,1) have common 

upper bounds. In fact (l,y) i  y> i} are common upper bounds of them. But the 

suprernum of(1,0) and (0,1) does not exist. Therefore (s;:0 is not a nearlattice. 

The upper bound property appears in Gratzer and Lakser [21], while Rozen [54] 

show that it is the result of placing certain associativity conditions on the partial join 

operation. Moreover. Evans [18] referred nearlattices as conditional lattices. By a 

conditional lattice he means a lower semilattice S with the condition that for each 

x E s, {y s 1 y :5 x} is a lattice; and it is very easy to check that this condition is 

equivalent to the upper bound property of S. Also Nieminen [39]  in his paper refers to 

nearlattices as "partial lattices". Whenever a nearlattice has a least element we will 

denote it by 0. If x11x2 ,••,x, are elements of a nearlattice then by x1  vx2  v••vx,, we 

mean that the supremum of x1  , x,,••,x,, exists and x v x2  v v x,, symbolizing this 

supremum. 

A non-empty subset K of a nearlattice S is called a suhnearlattice of S if for any 

a, b E K , both a A h and a v h (whenever it exists in S) belong to K (A and v are taken 

in S), and the A and v of K are the restrictions of the A and v of S to K. Moreover, a 

subnearlattice K of a nearlattice S is called a sublattice of S if a v b € K for all 

- 
a,h€K. 

A nearlattice S is called modular if for any a,h,c € S with c :!~ a, 

a A (b v )= (a Ab)v c whenever by c exists. 

A nearlattice S is called distributive if for any x,x1  ,x2  . 

XA(X1  vx2  v ... vx,,)=(xAxj )v(xAx2 )v  ... v(xAx,,) whenever x1  vx2  v ... vx,, 

exists. Notice that the right hand expression always exists by the upper bound property of 

S. 
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Lemma 1.1.1. A nearlattice S is distributive (modular) f and only if y € S J y :!~ 4 is a 

distributive (modulai) lattice/br each x E S. e 

Let its consider the following two lattices: pentagonal lattice N5  and Diamond 
lattice M5. Many lattice theorists study on these two lattices and given several results. 

M, 

a 

Figure-1.2 

Hickman in [28] has given the following extensions of a very fundamental results of 

lattice theory. 

Theorem 1.1.2. A nearlauice S is distributive if and only if S does not contain a 

suhiattice isomorphic to N5  or M 5  [in Figure 1.2 and 1.3]. . 

Theorem 1.1.3. A nearlaltice S is modular if and only ifS does not contain a suhiattice 

isomorphic to N5.. 

In this context it should be mentioned that many lattice theorists (e.g. R. Babies, J. 

C. Varlet, R. C. Hickman and K. P. Shum) have worked with a class of semilattice S 

which has the property that for each x,a1,a, ,•. .,a eS, if a v a, v ... j ar  exists then 

(x A a1  )v (x A a2 ) v v (x A ar ) exists and equals X A (a1  v a2  v. v a,.). Babies [7] 

called them as prime seiniiattices while Shum [58] referred them as weakly distributive 

semilattices. 

Hickman in [28] has defined a ternary operation j by j(x, y, z) = (x A y) v (y A 

on a neariattice S (which exists by the upper bound property of S). In fact he has shown, 

which can also be found in Lyndon [34] Theorem 4, that the resulting algebras of the type 
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(s. j)  form a variety, which is referred to as the variety of join algebras and following are 

its defining identities. 

 j(x,x,x)=x 

 ,(x,y,x)= j(y,x,y) 

 j(j(x,y,x),,(x,y,x))= j(x,j(y,z,y),x) 

 j(x,y,z)= j(,,x) 

 ))= ,(x,y,x) 

 (t(x,y,x),y,z)= jx,y,z) 

 j(x,y,j(x, z,x)) = 

 j(/(x,y,j(w,y,z)),j(x,y,z).j(x,y,y(x,y,z)))= j(x,y,z) 

We do not elaborate it further as it is beyond the scope of this thesis. 

We call a nearlattice S a medial nearlattice if for all x,y,z e S. 

m(x, y, ) (x A y)v (y A z)v (z A x) exists. For a (lower) semilattice S, if rn(x,p, ) 

exists for all x,y, z € S. then it is not hard to see that S has the upper bound property and 

hence is a nearlattice. Distributive medial nearlattices were first studied by Sholander [56, 

57], and then by Evans [18]. Sholander preferred to call these as medial semi/aWces. He 

showed that every medial nearlattice S can be characterized by means of an algebra 

(S; m) of type (3), known as medial algebra, satisf'ing the following two identities: 

m(a,a,h)=a 

in(m(a,b,c),ni(a,b,d),e)= m(m(c,d,e),ab). 

A nearlattice S is said to have the three property if for any a, b, c e S. a v by c 

exists whenever a v b, b v c and c v a exists. Nearlattices with the three property were 

discussed by Evans [18], where he referred it as strong conditional lattices. 

The equivalence of (i) and (iii) of the following lemma is trivial, while the proof of 

(i) <> (ii) is inductive. 
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Lemma 1.1.4. { Evans [18] }. For a nearlattice S the following conditions are equivalent: 

S has the three property. 

Eveiy pair of a finite number n (~: 3) of elements of S posces a 

supremum ensures the existence of the supremum qf all the n elements. 

('iii) S is medial. . 

A family A of a subset of a set A is called a closure system on A if 

AE Aand 

A is closed under arbitrary intersection. 

Suppose B is a subfamily of A. B is called a directed system if for any X, Y E B 

there exists Z in B such that X, Y Z. 

If U {x : X e B } E A for every directed system B contained in the closure system 

A, then A is called algebraic. When ordered by set inclution, an algebraic closure system 

fonns an algebraic lattice. 
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1.2 Ideals of Nearlattices 

A non-empty subset I of a nearlattice S is called a down set if for any x E S and 

y€I, x<y implies XEI. 

A non-empty subset I of a nearlattice S is called an ideal if it is a down set and 

closed under existent finite suprerna. We denote the set of all ideals of S by i(s), which is 

a lattice. IfS has a smallest element 0 then i(s) is an algebraic closure system on S and is 

consequently an algebraic lattice. 

However, if S does not possess smallest element then we can only assert that 

i(s) {t} is an algebraic closure system, where cl' is the empty subset of S. 

For any subset K of a nearlattice S, (K] denotes the ideal generated by K. 

Infimuin of two ideals of a nearlattice is their set theoretic intersection. Supremum 

of two ideals I and I in a lattice L is given by 

I vi = {x EL I x :~ iv] for some i E I,j E .j}. Comish and Hickman in [14] showed that 

in a distributive nearlattice S for two ideals I and I, 

1V j= fiV. jj i E I,] E J where iv/ exisls}. But in a general nearlattice the fornula for 

the supremum of two ideals is not very easy. Let us consider the following lemma which 

gives the fonnula for the supremum of two ideals. It is in fact an exercise in Gratzer [19], 

p-54 for partial lattice. 

Theorem 1.2.1. Let I and I be ideals of a nearlattice S. Let A0  = l jJ, 

A =ESI x::~yvz;vvz exisis and y, zEA,,1 } for n=1, 2,•••, and K=
0
A. 

Then K =1 v I. 

Proof: Since A()  A1  c A2 ç A C..., K is an ideal containing I and I. Suppose 

H is any ideal containing I and I. Of course, A. H. We proceed by induction. 
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Suppose A,,_1  ç H for some n 'e I and let x E A. Then x :!~ y v z with y, z € A,, 1 . Since 

A,,_1  cH and H isanideal, YVZEH and so xEH.Thatis A GH for eveiyn.Thus 

K =IvJ.• 

Tbeorem.1.2.2. Let K be a non-empty subset of a nearlattice S. Then 

(K]= L{A n ~ o}, where A0  = E Sit = jk j ,t,k2) for some k,, k 2  E K} and 

= E sit = j(a1 ,i,a2) for some a1 ,a2  E A,,_i } for n~ 1. 

Proof: For any k € K clearly k = j(k,k,k) and so K A0 . Similarly, for any a E 

a = ja,a,a) implies that A,, 1  A,,. Thus K ç A0  g A1  g A2 A,,_1  c A,, .••. 

00 

Let t E '. A,, n = 0,1,2,•••, and t E S such that / !~ 1. Then t e A,,, for some m ~! 0. 
,z=0 

00 
Clearly, t = j(I,t,t) and so t1  E A,.,.1 . Thus A,, is down set. 

;i=0 

Now suppose, 'I 12 E  '..i A and 11  v 12  exists. Let 11 € A, and 12 E  A for some 

r, s ,-::! 0 with r !~ s (say). Then 11,12 € A and 11  v 2 = .i('t v 1, ,12 ) provides 

'I V 1 E A,+1 . 

Finally, suppose H is an ideal containing K. If x c= A0 then 

x = j (k1  , x , k2  ) = (k1  A x)v (k2 Ax) for some k 1  , k2  € K. As K c  H and H is an ideal, 

k1  A x,k2  AX € H and so x e H. Thus A0  H. Again we use the induction. Suppose 

H for some n >l. Let XE A so that x= ja1  ,x,a2 ) for some a1 ,a1  E A,,_ 1 . Then 

XE H as 01,02 € H and x= (a1  A x)v(a2  A x).. 

Theorem 1.2.3. A non empty subset K of a nearlattice S is an ideal if and only if x € K 

whenever XE S and x= j(k1  ,x,k 2  ) for some k1 ,k 2  € K.. 

We now give an alternative formula for the supremum of two ideals in an arbitraiy 

nearlattice. 
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Theorem 1.2.4. For any Iwo ideals K1  and K-,. K!  v K2  = U B where 
,i=0 

B0 ={xESx=j(k1 ,x,k2),kEK1 } and B,,={ESx=j(h1 ,x,b2 ),h1 ,b2 eB,_1 }, 

,i=l, 2,••-. 

Proof: Clearly, K 1 ,K 2  c_B0  9;B1 9;B2  c_c_B_1  _cB,, c_••..  Suppose he y B,,  and 
n=0 

h :!~ h; h1  e S. Then b e Brn  for some in ~! 0. Also, b1  = j(b,h1  ,b) and so b1  E 

Thus y B, is a down set. Now suppose 11 ,12  e ' B such that t v 2  exists. Then there 
17=0 ,i=0 

exist r, s ~: 0 such that 11  E B, and t, e B,. If r :5 s then t , 12 C B, and 

fr  11  vt2 = j(t ,t Vt2 ,t,) implies that tl V 12 EJ3, . Hence, L B is an ideal. 
,1=0 

Finally, suppose H is an ideal containing K1  and K2. If XE BO  then 

x=j(k1 ,x,k2  )=(k1  Ax)v(k2  Ax) for some Ic1  eK 1  andk2  6K2. Hence H is an ideal 

and K 1 , K 2 ç  H, clearly xe H. Then using the induction on n it is very easy to see that 

H D B,, for each n.e 

In a lattice L, it is well known that for a convex sublattice C of L. C  

The following figure (Fig: 1.4) shows that for a convex subnearlattice C in a general 

nearlattice, this may not be true. 

Figure 1.4 

Here C = a, h, c} is a convex subnearlattice of S. Observe that c} = S and 

[C)={a,b,c.x},hence (C}r-i[C)#C. 
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- Recently, Shiuly Akter [60] has proved that for a convex sublattice C of a 

distributive nearlattice S. (C]=vESx=(xAc1 )v(xAc2 )v ... v(xAc,) 

for some c1 , c2  ,••• . c E c}. With the help of this result Rosen[54] have proved that 

C = (C]r [c) when S is distributive. But in a non-distributive nearlattice of S ,it is easy 

to show that C = c] n Ic) when S is medial. 

Theorem 1.2.5. {Cornish and Hickman [14, Theorem 1.1]). The following conditions on a 

nearlattice S are equivalent: 

0) S is distributive. 

For any HE HS), (H]= h1  vh2  v ... vh,, I h1 ,h2 ,•-•,h,, E H 

(/ii) For any i.JEi(5),ivJ={a1 va2 v ... vaja1,a2 ...aEiuJ}. 

i(s)/s a distributive lattice. 

The map H -> (H] is a lattice homomorphism of HS) onto i(s) 

(which preserves arhitramy suprema).. 

Observe here that by Theoreml.2.4, (iii) of above could easily be improved to 

(iii)': For any 1,1 E i(s), I vf = v jj i E 1,J r= J}. 

Let is(s) denote the set of all finitely generated idea/s of a nearlattice S. Of 

course z 1(s) is an upper subsemilattice of i(s). Also for any x1  ,x2  ,.• ,x,, E S, 

is clearly equal to (x1  ]v (x2  lv ... v (x,,,}. When S is distributive, 

= VX1  A y1 j for any x , x2  ,•• , , , y,, E S and so I (S)is a distributive 
ij  

sublattice of i(s). 

A nearlattice S is said to be finile/y smooth if the intersection of two finitely 

generated ideals is itself finitely generated. For example, distributive nearlattices, fmite 

nearlattices, lattices, are finitely smooth. Hickman in [28] exhibited a nearlattice which is 

not finitely smooth. 
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From Comish and Hickman [14], we know that a nearlattice S is distributive if and only 

if i(s) is so. Our next result shows that the case is not the same with the modularity. 

Theorem 1.2.6. Let S he a nearlattice. If I(S)is modular then S is also modular but the 

converse is not necessarily true. 

Proof Suppose I(s) is modular. Let a,h,c €S with c :!~ a and hvc exists. Then 

cJca]. Since i(s) is modular, so, (aA(bvc)]=a]A(h]v(cD 

= ((a] A (h])v (c]= ((a A h)v c]. This implies that a A (I, v c)= (a A h)v c, and so S is 

modular. 

Nearlattice S of Figure 1.5 shows that the converse of this result is not true. 

'S 

 

x 

 

a1  

0 
Figure 1.5 

Notice that r] is modular for each r €5. But in i(s), clearly (010i]01  ,yl(a2 ,hls} is 

a pentagonal sublattice.. 

The following theorem is due to Baziar Rahnian [9] 

Theorem 1.2.7. {Bazlar Rahman[9]) Let I and J be two ideals in a distributive 

near/at/ice S. if I ,. .1 and 1 v .1 are principal, then ho/h I and J are principal.. 

A non empty subset F of a nearlattice S is called an up set if for x € 5, y E F 

with x ~: y imply x E F 
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A non empty subset F of a nearlattice S is called a filter if it is an up set and 

f '.12 €F for all f1 ,f2  EF. 

An ideal P in a nearlattice S is called a prime ideal if P # S and x A y E P 

implies X E P or y E P. 

A filter F is called a prime filter if either x € F or y € F whenever x v y exists 

and is in F 

It is not hard to see that a filter F of a nearlattice S is prime if and only if S - F 

is a prime ideal. The set of all filters of a nearlattice is an upper (join) semilattice ; yet it is 

not a lattice in general, as there is no guarantee that the intersection of two filters is non 

empty. The join F v F2 of two filters is given by 

F1  v F2  = € S1 s ~: f A  f2 for some f, € F , f2  € F2 }. The smallest filter containing a 

subsemilattice 11 of S is tV € S s 2~ h for some h E H } and is denoted by [i-i). 

Moreover, the description of the join of filters shows that for all a, h € S. 

[a)v(h}= [aAh). 

Following theorem and corollary is due to Noor and Rahman [42] which is an 

extension of Stone's separation theorem of Gratzer [19] theorem 15, pp74. 

Theorem 1.2.8. JNoor and Rahrnan[42] Let S be a nearlattice. The fillowing conditions 

are equivalent: 

S is distributive. 

(ii) For any ideal I and any fIlter F of 5, such that 1 F = , there 

exists a prime ideal P D 1 and di,'i/oint from F.• 

Corollary 1.2.9. A nearlattice S is distributive if and only if every ideal is the intersection 

of all prime ideals containing it.• 
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Lemma 1.2.10. A subsel P of a near/attice S is a filter f and only f S - F is apr/me 

down set. 

Proof: Let x e S - P and t :~ x. Then x e F, and so I e F, as F is a filter. Hence 

I € S - F , and so S - F is a down set. Now let x, y e S such that X A V € S - F. It 

follows that x A y o F. This implies either x e F or y e F, as F is a filter. That is, 

either xeS — P or yeS — F,andso S—F is a prime down set. 

Conversely, suppose S - F is a prime down set. Let x e F and 1 ~: x. Then 

x S - F and so t S - F as S - P is a prime down set. Thus t e F and so F is an 

upset. Finally let x, y e F. Then x e S - F, y o S - F. Since S - F is a prime, so 

X A y e S - F. Therefore X A y e F, and so F is a filter. . 

Following result is an easy consequence of above lemma. 

Lemma 1.2.11. A subset F of a near/all/ce S is a prime filter if and only if S - F is a 

prime ideal.. 

Now we include a generalization of theorem 1.2.8 in a general nearlattice. 

Theorem 1.2.12. Let S be a near/all/ce. F be a filler and I be a down set such that 

I r F = P. Then there exists a prime down set P containing 1 but disjoint to F. 

Proof: Let X be the collection of all filter containing F and disjoint to I . Then x is non- 

empty as Fe X. Suppose C is a chain in X . Set M = x € c}. Let x eM and 

y~x. Then x€X for some XeC. Since X is a filter ,so ycX and hence yeM. 

Thus iVI is an upset. Now let X,y e M . Then x e X and y e Y for some X, Y E C. Since 

C isachain,soeither XY or YçX. Suppose XY. Thisimplies X,yEY , and so 

X A y e Y as Y is a filter. It follows that X A y e M and hence, M is a filter containing 

F. Moreover M r I = . Therefore, lvi is the largest element of C. Thus by Zorn's 

lemma, M is a maximal filter containing F. Therefore by Lemma 1.2.10, L —lvi is a 

minimal prime down set containing I but disjoint to p. 
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Corollary 1.2.13. Let S be a nearlattice with 0 and F be a proper/liter of S Then 

there exists a prime down set P such that F n P = 

The following lemma is very useful in proving many results of distributive nearlattice. 

Lemma 1.2.14. if S1  is a subnearlattice of a distributive nearlawce S and P is a prime 

ideal in S1 , then there exists apri,ne ideal P in S such that P = S1  

Following theorem is a generalization of Lemma 1.2.14, which will be needed in 

establishing some results in other chapters. 

Theorem 1.2.15. Let S1  be a subnearlattice of S. and P1  be a prime down set of S1 . 

Then there exists a prime down set P of S such that P1  = P r S1 . 

Proof:Let H be a down set generated by P1 in S. Then Hr(S1 —P1 )=& Now S1 —P1  

is an upset in S and H r) IS, - P1) = 
Q) where, [s1 

- P1) is the filter generated by S1 
- P1 

in S. Then by Theorem 1.2.12 , there exists a prime down set P D H and disjoint to 

[s1 — P). Now P1 cHrS1  cPr'S1 .A1so Pr-S1 cP1 .Hence, P1=Pms1.. 
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1.3 Congruences 

An equivalence relation 9 of a nearlattice S is called a congruence relation if 

x, v1 (0) for i = 1,2 (x, ,y1  ES), then 

(i) X1  AX2 Yi AV 2(9), and 

x1  v x2 )'i  v Y2(c9)  provided x1  v x2  and Yi  v Y2  exists. 

It can be easily shown that for an equivalence relation 9 on S, the above 

conditions are equivalent to the conditions that for x,y € S if x y(9), then 

(i") xAtyAt((9) forall ieS and 

(jj) x v t 3/V z(0) for all t e S provided both xv! and y v t exists. 

The set c(s) of all congruences on S is an algebraic closure system on S x S and 

hence, when ordered by set inclusion, is an algebraic lattice. 

Cornish and Hickman [14] showed that for an ideal I of a distributive nearlattice 

S, the relation e(i) , defined by x y(0(I)) if and only if (x]v I = (y]v 1, is the 

smallest congruence containing I as a class. Moreover the equivalence relation R(J), is 

defined by x=— y(R(I)) if and only if for any SES, sAxEJ is equivalent to sAyEl. 

In fact, this is the largest congruence of S having I as a class. 

Suppose S is a distributive nearlattice and x c S we will use 9x  as an 
-t 

abbreviation for 9((xj). Moreover iVx  denote the congruence, defined by a b () if 

andonlyif aAx=hAx. 

Comish and Hickman [14] also showed that for any two elements a,h of a 

distributive nearlattice S with a :!~ b, the smallest congruence identifying a and b is 

equal to 0b and we denote it by @(a,b). Also in a distributive nearlattice 5, they 

observed that if S has a smallest element 0, then clearly € = e0, 4 for any x € S. 
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Moreover, we see that: 

0(  v r, the largest congruence of S. 

e,,  n Ni,,  = Co. the smallest congruence of S and 

0(a,h) = en  v ip,,where a :t-~: b and ( ) denotes the complement. 

Now suppose S is an arbitrary nearlattice and E(s) denote the lattice of 

equivalence relations. For 01 ,02 E E(s) with 0 v 02  denoting their supremum 

x " 2) if and only if there exist x = , z1  ,•• , y such that 

or 02)  for / =1,2, ,n. 

The following result was stated by Gratzer and Lakser in [21] without proof and a 

proof given below, appeared in Comish and Hickman [14]. 

Theorem 1.3.1. For any near/a/lice s, c(s) is a distributive ('complete) .svhlattice of 

E,  (S) 

Proof: Suppose 0,0 E cs), Define c to be the supremum of 0 and 0 in the lattice of 

equivalence relations if(s) on S. Let x y(i). Then there exists x =10 , , ..., y 

such that z_ or 02).  Thus, for any I E S, Z1_1  A t Z1  A 1 0 or 02 ) as 

0,0 e c(s). 

Hence x A a' y A t(i) and consequently W is a sernilattice congruence. Then, in 

particular X A y M x() and x A y y(c). To show that s is a congruence, let x 

with x < y, and choose any I e S such that both x v I and y v I exists. Then there exists 

10Z112•••Z??  such that x=z0 ,z =y and z z1(01  or 02).  Put w =z1  A Y for all 

I = 0,1,... , n. Then x = w0  , = y, w1_ w (01  or 02). Hence by the upper bound 

property, w1  v I exists for all I = 0,1, .. . , n (as w1  v 1 :!~ y v t) and 

v t = Wi  v 40,  or 02)  for all i=0,L••,n( as (9,0 EC(S)), i.e. xv tyv 1(N;). 

Then by Cornish and Noor [15] Lemma 2.3 i is a congruence on S. Therefore, c(s) is a 

sublattice of the lattice F(S). 
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To show the distributivity of c(s), let x y('9 (e) v &2).  Then X A Y = y('9) 

and x A y y('9i v 02).  Also X A y x('9) and X A y x(&1  v 02). 

Since x A y y(6 v '92),  there exists , t, such that (as we have seen in 

the proof of the first part), xAy=10 ,1,1 =y, t._ or 02 ) and xy=t0  :!~t y 

for each i=O,1,••,n. Hence ç t(9) for all i=O,l,-••,n and so t Et1 (@r91 ) or 

=i1 ero2 ). This xAyy('9r@1)v'9 -m&2 )). By symmetly, 

A y x((6) )v ('9r) '92))  and the proof completes by transitivity of the 

congruences.. 

In lattice theory it is well known that a lattice is distributive if and only if every 

ideal is a class of some congruence. Following theorem gives a generalization of this result 

in case of nearlattices. 

This also characterizes the distributivity of a nearlattice, which is an extension of 

Cornish and Hickman [14] Theorem 3.1. 

Thoerem 1.3.2. A nearlattice S /s distributive if and only if eveiy ideal is a class of some 

congruence. 

Proof: Suppose S is distributive . Then by Cornish and Hickman [14] Theorem 3.1 for 

each ideal I of S (9(i) is the smallest congruence containing I as a congruence class. 

To prove the converse, let each ideal of S be a congruence class with respect to 

some congruence on S. Suppose S is not distributive. Then by Theorem 1.1.2, we have 

either N5  (Figure 1.2) or M 5  (Figure 1.3) as a sublattice of S. In both cases consider 

i = (aj and suppose 1 is a congruence class with respect to 0. Since d € I, d 

Now b=bAc=bA(avc)bA(dvc)=hAc=d(6))That is, bd((9) and thisimplies 

b € I, i.e. h :5 a which is a contradiction. Thus S is distributive.. 

Following results are due to Noor and Rahman [41]. 
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Theorem 1.3.3.1 Noor and Rahinan [4 1]} Let S be a distributive nearlattice then, 

(I) For ideals 1 and J, 6) (i - .i) =(9(I) r- 

(ii) For ideals j1  i€A an indexed set, 6)(vJ1 )=v6)(J1 ).s 

Theorem 1.3.4.{ Noor and Ralunan [41]1 For a distributive nearlattice S, the mapping 

I - 0(1) is an embedding from the lattice of ideals to the lattice of congruences.. 
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1.4 SemiBoolean algebra 

A lattice L with 0 and I is called a complemented lattice if for each a € L there 

exists a' E L such that a A a' =0 and a v a' =1. 

A distributive complemented lattice is called a Boolean lattice. 

An algebra (L; A,V,'  , 0, i) is called a Boolean algebra if 

L is distributive lattice. 

Foreach aEL, aA0=0Aa=O,avO=0va=a. 

(W) Foreach aeL, aAl=lAa=a,avl=lva=l. 

(n) Foreach aEL,thereexist a'eL such that aAa'=O, ava'=l. 

An interesting class of distributive nearlattices is provided by those semilattices in 

which each principal ideal is a Boolean algebra. These semilattices have been studied by 

Abbott [1],[2],[3] under the name of SemiBoolean algebras and mainly from the view of 

Abbott's implication algebras. An implication algebra is a groupoid (I: •) satisf'ing: 

(ah)a=a 

(ab)b=(ba)a, 

a hc)=h(ac) 

Abbott showed in [1, pp.227-236] that each implication algebra determines a 

SemiBoolean algebra and conversely each SemiBoolean algebra determines an implication 

algebra. 

Following result gives a characterization of SemiBoolean algebras which is due to 

Comish and Hickman [14] 
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Theorem 1.4.1. Cornish and Hickman [14] Theorem2.2}. A semi/alt/ce S is a 
SemiBoolean algebra if and only / the following conditions are saiis/iecL 

(0 S has the upper hound property. 

(ii) S is distribuilve. 

S has a 0 and/or any x 5, xJ = € S I y A x = o) is an ideal and 

(x]v(x}' =S.. 

A nearlattice S is relatively complemented if each interval [x, yj in S is 

complemented. That is, for x :~ i :~ y, there exists t' in fx, y} such that 1 A 1' = x and 
I Vt' = Y. 

A nearlattice S with 0 is called sectionally complemented if [0,x] is 

complemented for each x c S. Of course every relatively complemented nearlattice S 
with 0 is sectionally complemented. It is not hard to show that S is SemiBoolean if and 

only if it is sectionally complemented and distributive. We denote the set of all prime 

ideals of S by p(s). 

There is a well known result in Lattice Theory due to Nachbin in 1947, [19] 

Theorem 22, pp-76 that a distributive lattice is Boolean if and only if its prime ideals are 

unordered. Following theorem is a generalization to this result which is due to Cornish and 

Hickman [14]. 

Theorem 1.42. {Cornish and Hickman [14] } For a distributive near/at/ice S with 0, the 
.tbilowing conditions are equivalent: 

S is SemiBoolean. 

00 i f (s) is a generalized Boo/can algebra. 

(tii) fl(s), the set qf all prime ideals is unordered by set inclusion. 9 
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Noor and Rahman [42] has proved the following theorem which is an extension of above 

result. 

Theorem 1.4.3. {Noor and Rahman [42] } Let S be a distributive near/au/ce. S is 

relatively complemented if and only if P(s) is unordered. 

Theorem 1.4.4. {Noor and Rahman [42])For a nearlattice S with 0 the following 

conditions are equivalent. 

(1) S is SemiBoolean. 

i(s) is isomorphic to C(s). 

For all ideal I, (9(1)— R(1).. 
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SOME SPECIAL ELEMENTS IN A NEARLATTICE 

2.1 Introduction: 

Gratzer and Schmidt [24] introduced the notion of some special elements e.g. 

distributive, standard and neutral elements to study a larger class of non-distributive 

lattices. Then Cornish and Noor [15] extended the concepts of standard and neutral 

elements for nearlattices. They also studied a new type of element known as strongly 

distributive element. 

Recently Talukder and Noor [64] introduced the notion of modular elements in a 

join semilattice directed below. This notion is also applicable for general lattices. 

In this chapter we introduce the concept of modular elements in a nearlattice. We 

have given several characterization of modular and strongly distributive elements. So by 

studying these elements and ideals, we will be able to study a larger class of non-

distributive nearlattices. 

In a lattice L an element m E L is called a modular element if for all x, y E L with 

y :~ x, x A (m v y) = (x A y .Of course, in a modular lattice, every element is a modular 

element. Moreover, if every element of a lattice is modular, then the lattice itself is a 

modular lattice. 

In the pentagonal lattice of Figure 1.2, observe that m is modular but t is not. 

Because, here m < s and sAlvm)=s,But (sAi)vm=n1. 

Let S be a nearlattice. An element m E S is called a modular element if for all 

l,x,yES with y :!gx, x A(t A ,n)v1 Ay)]=t Am Ax)v(i A v). Of course, a nearlattice is 

modular if and only if its every element is modular. 

-4 
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In a lattice L, an element d is called a distributive element if for all X,y E L, 

d V (x A y)=  (d V x)A (d V y) 

In order to introduce this notion for nearlattices, Cornish and Noor [15] could not 

give a suitable definition for distributive elements. But they discovered an element 

d € S, such that t A d is a distributive element in the lattice (t} for every i E S. They 

found that these elements are also new even in case of lattices, and in fact, they are 

much stronger than the distributive elements. So they referred them as "strongly 

distributive" elements. 

An element d of a nearlattice S is called a strongly distributive element if for all 

t,x,yES (1Ad)V(1AxAy)[(IAd)V(tAx)]A[(IAd)V(1Ay)J 

In other words t A d is distributive in ('1 for each t E S. 

An element s e S is called a standard element if for all t,x,y E 5, 

t A A y)v (x A s)]= (tAX A y)v (t AX A 

Due to Zaidur Rahrnan and Noor [67] we know that s e S is standard if and only 

if it is both modular and strongly distributive. 

An element s eS is called neutral if it is standard and (ii) for all x,y,t eS, 

SA[(FAX)V(tAy)]=(SAtAX)V(5AtAy). 

Let S be a nearlattice. For a,b E S we define (a,b) = E S1  X A a :!~ b}, we call 

this a relative annihilator. Clearly (a,b) is a down set. Moreover, when S is distributive, 

this is an ideal, which is known as a relatively annihilator ideal. 



CHAPTER II 23 

In a lattice L, for a,b €L dually we define (a,b)d  = {rELl xv a~b}. This is 

known as dual relative annihilator. This is an up set and in presence of distributive 

property of L this is a filter. Thus in a nearlattice S for a,b,t E S we define 

(t A a,t A = tY E ('II xv (t A a) ~! t A that is a dual relative annihilator in (t} 

In this chapter we give several characterizations of modular, strongly distributive, 

standard and neutral elements of a nearlattice. 

41 
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- 2.2 Some special elements in a nearlattice 

Theorem 2.2.1. The definition of modular element in a nearlattice S coincides wit/i the 

definition of modular element of a lattice, when S is a lattice. 

Proof: Suppose m is a modular element of the lattice S. Let z, x, y E S with y :!~ x, then 

tAy-<tAx. Since m is modular, so (tAmAx)v(1Ay)=(tAx)A[mv(rAy)] 

= X A [i A (m V (t A y))]= X A [(t A m)v(t A y)}, which is the definition of modularity of m 

in a nearlattice. 

Conversely, Let m be modular according to the definition given for a nearlattice. 

Let X,VES with y<x. 

Choose r=mvy . Then xA(rnvy)=xA(tAm)vtAy)1 

= t Am A x)v(t A y) 

= (m A x) v y 

Hence m is modular according to the definition of modular element in a nearlattice. . 

Here is a characterization of modular elements in a lattice. 

Theorem 2.2.2. Let L be a lattice and m E L. Then the following conditions are 

equivalent. 

m is modular. 

For y:5x with mvx=rnvy and mx=my implies x=y. 

Proof: (i)(ii); Suppose mis modular y:5x and rnvx=mvy, mAx=mAy. 

Then x=xA(mvx)=xA(rnvy)=(xAm)vy (bymodularityofm) 

= (y A m) v y = y. 

(ii) => (i); Suppose (ii) holds. 

Let y:5x, then (xA rn)vy:!~x A(m vy) always holds. 

Let xA(rnvy)=p and(xAin)vy=q.Then q<p. 

Now p A in = X A m 
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Also, qAm=mA[(xAm)vv}=rnA[(xAm)v(xAy)}=(mAx)A[(xAm)v(xAy)}=xAm 

Thus pAm=qAm. 

Again, q v m = y v m 

p v m = A (m v y)}v ni ~ (nz v y)v m 

y v m = q v rn :!~, p v rn 

as q<p.Thus pvm=qvm=yvm. 

Henceby (ii) p=q,thatis xA(mvy)=(xAm)vy and somis modular. . 

Now we extend the above result and give a characterization of a modular element m in a 

nearlattice. 

Theorem 2.2.3. Let S be a nearlattice and in E S. Then the fbi/owing conditions are 

equivalent. 

m is modular. 

For t, x, y S with y :5 x, (i A m) v A x) = (t A m)v (: A y) and 

1AmAx=IArnAy implies tAx=tAy. 

Proof: (i) = (ii); Suppose m is modular, let t, x, y E S with y :~ x, 

(1AIn)v(tAx)=(tAm)v(tAy) and tAmAx -1AInAy. 

Then tAx=(IAx)A[(fArn)v(lAx)}=(iAx)A[(tAm)v(lAy)} 

Am A x)v(t A •y) (by modularity ofm) 

=(t A m A y)v (t A t A y. 

(ii)=(i); Suppose (ii) holds. Let t,x,yES with y:5x 

Now x A[(i A m)v (lAy)J~!(t A A x)v(iAy) always holds. 

Let xA[(tAn1)v(1Ay)]=p and (tAmAx)v(IAy)=q.Then p~:q. 

Choose r=(tAm)v(1Ay). Then rip=p and rAq=q. 

rA rn=mA[(l A m)v(I Ay)}-(t A m)A[(t A rn)v(tAy)]=1 Am. 

Thus, (rAm)v(rAq)=(tArn)vq=(tAm)v(tAmAx)v(1Ay)=(tAm)v(tAy)r 
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Then (rArn)v(rAp):!~r=(rAm)v(rAq):5(rArn)v(rAp) as q:~p 

Hence (rAm)v(rAp)=(rArn)v(rAq)=r, 

Also, rAmAp=nzAp=mAxA(tAm)v(tAy)j=xA(tArn)A(IArn)v(tAy)xA(Am 

and 

Thus r A m A p = r A in A p and so by (ii) r A p = r A q, Hence p = q and so m is 

modular.. 

Now we include the following result in a nearlattice which is parallel to the 

characterization theorem for modular elements in a lattice given in Theorem 2.2.2. But 

this cannot be considered as a definition of a modular element in a nearlattice. 

Theorem 2.2.4. Let S be a nearlattice and in S. The following conditions are 

equivalent. 

Forailx.yeS with y5x 

x A(rn v y)=x A m)v y provided my y exists. 

For all X,y ES with y :5 x if  m v x, m v y exist and 

mvx=Invy,mAx=mAy,then x=y. 

Proof: (i) (ii) holds by the proof similar to the proof of Theorem.2. 1.2 For the last 

part, let us consider the following nearlattice. 

Figure-2. I 

Observe that in satisfies the condition of Theorem 2.1.4 

Here a<b and hA[(dAm)v(dAa)]=bA(cva)=bAd=h. 

But (b A d A rn) v (d A a) =0 v a = a, so m is not modular.. 
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Theorem 2.2.5. In a Lattice, every strongly,  distributive element is distributive but the 

converse is not necessarily true. 

Proof. Let d be a strongly distributive element of a lattice L. Suppose x,y eL and 

= x v y v d. 

Then dv(xAy)=(lAd)v(IAXAy)=[(tAd)v(tAx)]A[(tAd)v(/Ay)} 

= (d v x)A (d v y), and so d is distributive. 

Now consider the lattice in figure 2.2. 

a 

J 

Figure 2.2 

Here d is distributive but (tAd)v(rAaAb)=r<l=[(tAd)v(iAa)]A[(tAd)v(tAb)} and 

so it is not strongly distributive. • 

Following characterization of strongly distributive elements in a nearlattice is due to 

Cornish and Noor [15]. 

Theorem 2.2.6. Let S he a nearlattice and d E S. Then the following conditions are 

equivalent. 

d is strongly distributive. 

Forall x,y,i€S, (xA[(tAv)v(iAd)Dv(IAd)=(tAxAy)v(lAd).. 

An element s e S is called a standard element if for all i, x, y e S 

t A[(xAy)v(xAs)]=(t AxAy)v(tAxAs). 
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In a distributive nearlattice every element is standard. If every element of S is 

standard then S is itself a distributive nearlattice. 

Theorem 2.2.7. Every standard element in a nearlattice S is modular but a modular 

element may not be standard 

Proof: Let s E S be standard, let m, x, y e S with y :!~ x 

X A A s)v (t A y)J=  x A A y)v (lAs)] 

= (t A X A y)v (m A S A x) 

=(:A S AX)V (t Ay) 

So s is modular. 

Conversely, consider the lattice of Figure 1.2 

Here m is modular 

But SA(mnvt)=sAx=s 

(s A,n)v(s A I)= in vO = in 

So m is not standard.. 

Theorem 2.2.8. Every standard element is strongly distributive but the converse may not 

be true. 

Proof. Suppose s is standard in S. Let t,a,h e S 

Then, [(tAs)v(tAa)}v[(tAs)v(tAh)] 

= ([(t A s)v (IA a)]A (1A s))v ([(i A s)v (IA a)]A (IA b)) (as s is standard.) 

= (s A [(i A a)v (IA s)]v (b A A a)v (t A 

= (i A a A s)v (t A s)v (t A a A b)v (t A a A s) 

= (. A s)v (t A a A b) 

so s is strongly distributive. 

In Figure 2.2, observes that t is strongly distributive, but it is not standard, 

because dA(xvt)>(dAx)v(dAt) .• 
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Remark: 

In the pentagonal lattice of Figure 1.2, rn is modular and t is strongly distributive. 

Observethat, m:!~s and SA(tvm)=sAx=s,but(sAt)vrn=0vmm Thustis not 

modular. On the other hand, (xAln)v(xAsAt)=mvO=m, but 

[(xAm)v(xAs)}A[(xAm)v(xAt)](,nvs)A(mvt)=Axc implies in is not 

strongly distributive. 

We conclude the section with the following characterization of standard elements in a 

nearlattice. 

Theorem 2.2.9. Let S be a near/at/ice. An element s eS is standard if and only if it is 

both modular and strongly distributive. 

Proof: If s is standard then by Theorem 2.2.7 and Theorem 2.2.8, s is both modular and 

strongly distributive. Conversely, suppose s is both modular and strongly distributive. Let 

t,x,yES. 

Then, /AxAy)vtAxAs)=(1Ax)4xAs)v((AxAy)] (assis modular) 

= (t Ax) A A s)v t A x)}A Ex A s)v (x A )1 (as s is strongly distributive) 

/A X A RXA s)v(x A y)}= / A[(x A .$)v (x A y)] 

so s is standard.. 
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2.3 Relative annihilators 

Relative annihilators have been studied by many authors. Mandelker [35] use the 

relative annihilators to characterize distributive and modular lattices. Noor and Islam [44] 

extended those results for nearlattices. In this section we use the relative annihilators to 

study different elements in both lattices and nearlattices. 

Theorem 2.3.1. Let L be a lattice. An element s E L is a distributive element if and only 

/f (s, h)d  is a filter jbr all h E L. 

Proof: Let s be a distributive element of a lattice L. Choose any b EL, x,y e (s,h)d . 

Then xvs~tb; yvs2:b 

Then h :~(s v x)A(s v s v(x A y), ass is distributive, this implies x AyE (s,h)d. 

If x(s,b)and t~!x,then svx:?:b andso s v t ~:b;whichimplies I E(s,h) 

Therefore (s,h)d  isafilter. 

Conversely, suppose (s,b)d  is a filter for all b E L. 

Let x,yEL,then svx,svy>—svx)Asvy). 

This implies XE (s,svx)A(svy)d which implies svxAy)~> (svx)A(svy) 

Since the reverse inclusion is trivial, so s v (x A y) = (s v x)A (s v y) 

Therefore s is distributive in L. • 

Theorem 2.3.2. Let S be a neariattice and m e S. m is modular if and only f for all 

a,b,t ES with b :!~ a, I AX :~ h and tAmE (a,h) then, i Ax)v! Am)E (a,h). 

Proof: Suppose m is modular, let a,b,t E S , with IA x :!~ b :!~ a and I A in € (a, b) 

Then a A I A in < h. 

So, aA{(tAm)v(fAx)]=(aAtAm)v(tAx)<h. 

Therefore, (t A m)v(t A x)€ (a,b). 
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Conversely, let the condition holds. Let 1, x, z E 5' with : :!~ x. 

Then t z)v (t AXA m):!~,x and lAze t A z)v(1A m)I .  

Also, tAXAm:S~(IA:)v(lAxAm). 

This implies t A lfl € (X, (t A z)v (t A X Am)). 

Hence by the given condition (t A :)v (t A rn)e (X, (t A :)v (tAX Am)). 

This implies xA[(tAm)v(IAZ)]~(tAxAm)v(tAz). 

Since the reverse inequality is trivial. 

So, XA[(t Am)v(tAz)]=(tAxAm)v(t A:). 

Therefore in is modular. • 

Theorem 2.33. Let S be a nearlaitice and s e S is strongly distributive if and only if 

(tAS,/Ar) isafilterin (t], forall t,reS. 

Proof: Suppose s is strongly distributive. Let I A X e (t A S, I A 

Then (tAs)v(tAx)~:tAr. 

IftAp ~:IAX,then (tAs)v(IA p)~(rAs)v(tAx),:~tAr. 

This implies I A p e A S, I A r)d. 

Nowlet tAx, tAye(tAs, tAr)d. 

Then iA s)vt Ax)~!t Ar and tAs)vt Ay)~:t Ar. 

So [(tAx)A(tAy)}v(/As)=[(IAs)v(fAx)]A[(IAs)v(tAy)} (as s is strongly 

distributive) 

~:IAr 

And so (i Ax)A (tAy)E (tAs, tAr)d . 

Therefore (i A 5, 1 A r) d  is afihter in /}. 

Conversely, suppose A S. I A r)d  is a filter in t] for all r e S. Let x, y e S. 

Suppose r = [(t As)v(IAX)IA[(t As)v(tAy)}= tAr. 

Then (t A s)v(/A x)~:iAr and IA s)v A +: t tsr. 
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This implies tAx, tAyE (tAs, tAr)d. 

Since (t A S, t A r)d is ajilter in (t]. 

So, !AXAYE(tAS, tAr)d. 

Therefore, (tAs)v(zAxAy)>tAr. 

That is, (/As)v(tAxAy)~ [(tAs)v(tAx)]A[(t As)v(t A)))]. 

But the reverse inequality is trivial. 

Therefore, (t As)v(t AX Ay)= A s)vt Ax)IA Et As)v(f A 

and so s is strongly distributive. • 

Here is a characterization of standard elements. 

Theorem 2,3.4. Let S he a nearlattice and S E S. Then. s is standard if and only if for all 

a,b,t,xES with tAx.tAse(a,b) implies tAx)v,'As)E(a,b). 

Proof: Suppose s is standard. Let t A .X, t A S E (a, b). 

Then aAtAx:~h, aAtAs<b. 

Thus aA[(tAx)v(tAs)}=(aAtAx)v(aAIAS)<b. 

Therefore, (t A x) v (i A s) € (a, b). 

Conversely, suppose the condition holds for all a, b E S, let t, x, y S. 

Now /AxAy:-<(tAxA y)v(tAxAs) and tAxAs:5(tAxAy)v(tAxAS) 

So, /AY,tASE(X,(tAXAY)V(/AXAS)). 

Hence by the given condition, (t Ay)v (iA s)€ (x,(I AX A y)v(t A XA s)). 

This implies xA[(I Ay)v(1As)]:5(/AxA))v(tAxAs). 

Since the reverse inequality is trivial, 

SO, XA[(tAy)V(tAS)](tAXAy)V(tAXAS). 

Hence s is standard.. 
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Theorem 2.3.5. Let S be a neariattice and s e S is neutral if and only ,f 

(s, b) is an ideal for all b E S 

For all a,h E S and / A y,1 A S E (a, b) implies t A y)v t s) C= (a, h). 

Proof: Suppose s is neutral. Let x, y € (s, h) for h € S and x v y exists. 

Then xAsb, yAs:5b. 

So, S A (x v y) -(s A x) v (s A y) (as s is dual distributive) 

This implies xv y € (s, b). 

Hence (s, b) is an ideal. 

Since s is neutral, so it is standard. 

Hence (ii) follows immediately from above theorem. 

Conversely, suppose the conditions holds. 

By above theorem condition (ii) implies that s is standard. 

Let x,y € S with xv y exists. 

Now, sAx:!~sAx)vsAy), sAy:!~sAx)vsAy). 

So, x,y E (s, (s A x)v (s A y)). 

Since (s, (s A 4 v s A y) is an ideal, 

So, xvyE(s,(sAx)v(sAy)). 

Then sA(xvy):!~(sAx)v(sAy). 

So s is dual distributive and so it is neutral. . 

An element s is called an Upper element of a nearlattice S if s v x exists for all 

x€S. 

By Cornish and Noor [15], an element S € S is called a Central element if 

i) s is upper and neutral 

and ii) s is complemented in each interval containing it. 
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We conclude this section with the following characterization of central elements 

in a nearlattice. Since for a central element s, s v x exists for every x E S. so we can talk 

about the dual relative annihilators <s,y >d for every y E S. 

Theorem 2.3.6. Let s he an upper element of a near/at/ice S. Then s is central faiicl only 

s is neutral, 

and ii) for all a,h (=- S, there exists I €S with a AS :!~ t ::~ b vs such 

that IE<s,a>n<s,h>d . 

Proof. Suppose s is central. Then of course s is neutral. Now for a,h E 

aAs:5s5hvs. 

Then there exists t € S such that s A t = U A s :~ a and s v t = b v s ~: b. This implies 

f E< s,a >n < s',h >d. Also as = SAt :5t :!~ svt = hvs, and so (ii) holds. 

Conversely, suppose (i) and (ii) hold. Let a :!~ s ::~ b. Then by (ii) there exists 

(ES with aAs:~t:5bvs(thena:~I:-~b)SUch that tE<s,a>r<s,b>d. Then 

sAt:5a:5sAt and svt~:b~tsvl , and so sAi=a and svi=b. Thus t is the 

relative complement of s in [a, b]. Also by (i) s is neutral and hence s is central. . 
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2.4 Modular ideals in a nearlattice 

An ideal M of a nearlattice S is called a modular ideal if it is a modular element of 

the ideal lattice i(s). That is, M is modular if for all i,i€i(s) with ,içi, 

In(iv1vJ)=(JM)vJ. 

An ideal I of a nearlattice S is called a standard ideal if it is standard element of 

the ideal lattice i(s). 

Of course, every standard ideal of a nearlattice (lattice) is modular, but the 

converse need not be true. In this section we include several characterizations of modular 

ideals of a nearlattice. 

Due to Cornish and Noor[15] we know that the supreinum of two ideals in a 

nearlattice is not very easy to handle. 

But due to Talukder and Noor[64], we know that for a standard ideal K of a 

nearlattice S and for any JeJ(S), KvJ={kv/I kEK, j e J} 

But in case of a modular ideal M of a nearlattice, we are unable to give a simple 

description of M v .1 . Even X EM V J does not imply x :!~ m v j for some m €M and 

JEJ. 

For example, consider the following nearlatticeS of Figure 2.3 and ideal lattice 

I(S) of Figure 2.4. SW 

t 

(r] 

(1 

U 
Figure 2.4 
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Here S is a modular nearlattice by Theorem 2.2.1. In I(S), (b] is modular. Now 

q e (t}v (hj. But q ~<-pvq for any p (t] and q E (14 

Theorem 2.4.1. Let L be a lattice and in E L, m is modular if and only if (in] is modular 

in 1(L). 

Proof: Suppose m is modular in L. Suppose J c 1. Let xe I n ((mn]v ). 

Then x e I and x e (m] v J. 

This implies x ::5 in v / for some j e J. 

So xvj:5mvj. 

Now jeJcI. 

Thus xvjel and xvj=(xvj)A(mvj)=((xvj)Am)v j(asmismoclular) 

e(ln(mDvf. 

Therefore, x e (i r (mD  V.I . 

Since the reverse inclusion is trivial, so I ((rn] v = (i n (mDv  J. 

Hence (m] is modular in 1(L). 

Conversely, let (rn} be modular in 1(L). 

Suppose z :5 x. Then (x}A ((m]v (zD = ((x}A (mD v (:] 

That is, (xA (in v:)]=((xAm)v:} 

Therefore, x A(m v A rn)v z, and so mis modular. . 

Our next result shows that in a nearlattice S, Theorem 2.4.1 is not true. 

Theorem 2.4.2. For an element m of a nearlattice 5, if m] is modular in i(s), then in is 

modular, but the converse may not be true. 

Proof: Suppose (rn] is a modular ideal in S. Let z < x. 

Then for alit IA :!~t A x:!~x implies (t A ZIC (x}. 

-4- 
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Now (tAx}A[(tAm]v(ZA:]}c(tAx}A[(m}v(tAz}} 

((tAx}A(m])v(1Az](tAx}A[(fAm]v(,Azll 

So (tAx]A [(IAm]v (IAzB=((cAx]A (tA n2]v(/A;]. 

This implies ((t A x)A ((t A in)v (i A :))]= ((t c xAm)v (/A :)]. 

Andso, xA[(/Arn)v(IAZ)}=(tAx)A[(tArn)v(/A:)}=(xA/ A1n)v(tAz) 

Therefore, m is modular in S. 

To prove the converse, let us consider the following nearlattice and its ideal 

lattice. 

 

g 

 

e 
( 

h 

  

V Ikal 

Figure 2.6 

 

Figure 2.5 

 

Here d is modular in S. But in i(s) (Figure 2.6), {(O},(d},(g(g,e},S} is a pentagonal 

sublattice. Hence (d} is not a modular ideal.. 

Theorem 24.3 Let S be a nearlattice, I, I e i(s) and I. j € (a] for some a E S. Then 

IvJ4ESIx:5ivj for some IEI,jEJ} 

Proof: Let x E I v I. Then by Theorem 1.2.1, x :!~ i v / for some I,) E A,,.1 , where 

A0  = I U.I . 

Since 1,JEA,,_1 , so i:~i1  v j1, J:!~12 v  j2 for some /, i/J €A,_2 . 

Then x :5 i1  v '2  v j1 v  121  the supremum exists by the upper bound property. of S as 

I' 2' f 112 :5 a. Thus proceding in this way x :5 (p v . . v A,)  v (q v •.. v q11 ) for some 

p, , q j  € A0  = I u .1, and the supremum exists by the upper bound property again. 
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Therefore, x:5iv j  for some IEI, jE.J. e 

Theorem 2.4.4. Let M be a modular ideal of a nearlattice S and .1 be an ideal. If 

x :~ rn v j fbr some rn e M, j € J, then x v j - rn v j for some rn1  E M. 

Proof: Let x:!~mv j,then xvj:~rnvj. 

Thus, xv j€(xv/]im(Mv(j=((xvj]rM)v(jJ. 

So by Theorem 2.3.3, xvj:5pvq for some pE(xv/] -Jvi and qE(j]. 

Since pe(xvj]r-\M,so pEM and p<xvj. 

Thus xvj:5pvq:5pvj:5xvj implies xvj=pvj,where pEM.• 

Here is a characterizations of modular ideals in a nearlattice. 

Theorem 2.4.5. Let M be an ideal of a nearlattice S with the condition that for all ideals 

J of 5, and M v .1= E SI x :!~ ni v j,  m v j  exists for some rn E Al,] € J 1. Then the 

lb/lowing conditions are equivalent. 

(I) M is modular. 

(ii) xE/vfv.J implies x v j =m vjforsome m€Al, jeJ. 

Proof: (i) => (ii); Suppose M is modular. Let X EM v J. Then by the given condition, 

x:!~mvj for some InEM,JEJ. 

Then by theorem 2.4.4, 

x v j = m v j and so (ii) holds. 

(ii) (I); Suppose (ii) holds. 

Let i,j€i(s) with JçI 

Suppose xeIr(MvJ). Then x€J and xEMv,J. 

Thus by given condition, xvj=mvj for some meM, j€J. 

Now, mn::~xvj implies rneIrM. 

Therefore, x€(1rM)vJ, and so In(MvJ)c(lr,M)vj. 
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Since the reverse inclusion is trivial, so 1 -m (M v i)= (i 'mM)v J. 

Hence M is modular. . 

In lattices, we know from [64] that an element m is modular if and only if for all 

b::~a with aAmbAm & avm=bv,n imply a=b. 

We conclude the chapter with the following result which is proved by above 

characterization of modular elements. 

Theorem 2.4.6. Let M he a modular ideal of a neariattice S. If I n M and 1 v M are 

principal, then I is pr1nczpa1. 

Proof: Let IvM =(a] and 1rM =(b}. 

Then by Theorem 2.3.3, a:~,iv in for some 1€ I,m€M. 

Thus, (a}=M v IM v(bvi]M v(i](a]. 

This implies 1vfvI=Mvbvi}. 

Also, (b]=A1rIMr(bvi}(b}. 

implies MrI_—Mr-(bvi]. 

Moreover, (b v i}c 1. 

Therefore, i = (h v i] as M is modular.. 
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0-DISTRIBUTIVE NEARLATTICE & SEMI-PRIME IDEALS IN A NEARLATTICE 

3.1 Introduction: 

J.C. Varlet [66] has given the definition of a 0-distributive lattice to generalize the 

notion of pseudocomplemented lattice. According to him a lattice L with 0 is called a 0-

distributive lattice if for all a,b,ceL with aAb=0=aAc imply aA(hvc)=0. In other 

words, a lattice with 0 is 0-distributive if and only if for each a E L, the set of elements 

disjoint to a is an ideal of L. Of course, every distributive lattice with 0 is 0-distributive. 

Also, every pseudocomplemented lattice is 0-distributive. In fact, in a pseudocomplemented 

lattice L, the set of all elements disjoint to a E L, is a principal ideal (as].  Many authors 

including Balasubramani and Venkatanarasimhan [6], Jayaram [30] and Pawar and Thakare 

[51] studied the 0-distributive and 0-modular properties in lattices and meet semilattices. In 

fact, Jayaram [30] has referred the condition of 0-distributive nearlattice given in this chapter 

as weakly 0-distributive semilattice in a general meet semilattice. 

Recently, Ray [52] has generalized the concept of 0-distributivity and gave the 

definition of semi-prime ideals in a lattice. An ideal I of a lattice L is called a semi-prime 

ideal if for all X,y,ZEL, xAyel and xAzEI imply XA(yvz)EJ.Thus, for lattice L 

with 0, L is called 0-distributive if and only if (0] is a semi-prime ideal. In a distributive 

lattice L, every ideal is a semi-prime ideal. Moreover, every prime ideal is semi-prime. In a 

pentagonal lattice (Figure 3.1) (0] is semi-prime but not prime. Here (b] and (c] are prime, 

but (a] is not even semi-prime. Again in Figure 3.2, (0], (a], (b], (c] are not semi-prime. 

In this chapter provide a number of characterization of 0-distributive these 

nearlattices. We also extend the concept of 0-distributivty and give the notion of semi-prime 

ideals in nearlattice. Then we include a number of separation properties in a general 

nearlattice with respect to the annihilator ideals. Moreover, by studying a congruence related 
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to Glivenko congruence we give a separation theorem related to separation properties in 

distributive nearlattices given by Noor and Baziar Rahman [42]. 

Let us define a 0-distributive nearlattice as follows: A nearlattice S with 0 is called 0- 

distributive if for all X,y,ES with XAy=0=XA: and yv: exists imply 

X A (y = 0. 

It can be easily proved that it has the following alternative definition: 

S is 0-distributive if for all x,y,:,t ES with XA y = 0 = XA = imply 

X A ((t A y)v (t A = 0; (t A y)v (t A z) exists by the upper bound property of S. Of course, 

every distributive nearlattice S with 0 is 0-distributive. Figure 3.1 is an example of a non-

modular nearlattice which is 0-distributive, while Figure 3.2 gives a modular nearlattice 

which is not 0-distributive. 

C 

 

0 
Figure 3.2 

 

 

V 

Figure 3.1 

 

A proper filter M of a nearlattice S is called maximal if for any filter Q with  Q M 

implies either Q = M or Q = S. Dually, we define a minimal prime ideal (down set) 

Let L be a lattice with 0. An element a*  is called the pseudocomplenient of a if 

aa =0 and if QAX=O for some x€L, then x:!~d. A lattice L with 0 and 1 is called 

pseudoconzplemented if its every element has a pseudocomplernent. Since a nearlattice S with 

1 is a lattice, so the concept of pseudocomplementation is not possible in a general nearlattice. 

A nearlattice S with 0 is called sectionally pseudocomplemented if the interval [0,x] for each 
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XE S is pseudocomplemented. For A c S. we denote A' = € Sx A a =0 for all a c= A}. 

IfS is distributive then clearly A' is an ideal of S. 

Moreover, A' 
= fl {{a}'I. If A is an ideal, then obviously A' is the pseudocomplement of A 

aeA 

in i(s) and we denote it by A*.  Therefore, for a distributive nearlattice S with 0, i(S) is 

pseudocomplemented. 
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3.2 0-Distributive Nearlattice 

Theorem 3.2.1. If a nearlattice S with 0 is sectionally pseudocomplemented, then i(s) is 

pseudocomplemented. 

Proof. Suppose S is sectionally pseudocomplemented. Let I E i(s). 1--  = tX E S I X A I = o 

for all i (-= i). Suppose x E I and I :~- x. Then X A i =0 for all I e I and so I Al = 0 for all 

1 E I. Hence t E I'. Now let x, y € I and x v y exists. Let r = x v y. Then 

0 :5 X, Y, r A I :!~ r for all i, and X A (r A t)= 0 = y A (r A i). Since [0, r] is 

pseudocomplemented, x, y ::~ (r A i) for all I € I, where (r A i) is the relative 

pseudocomplement of ri in [0, r]. Then xvy:5(rAl), and so r A,'A(xvy)= 0. That is 

I A (xv y)=0 for all I E I. This implies xv ye I. Therefore, I' is an ideal. Clearly j1  is 

the pseudocomplement ofT in i(s). Hence i(s) is pseudocomplemented.. 

Following example (Figure 3.3) shows that i(s) can be pseudocomplemented but S is not 

sectionally pseudocomplemented. 
S 

X 

I(S) 

(01 
Figure 3.4 

 

Figure 3.3 

In S. observe that t has no sectionally pseudocomplement in o, xl. But i(s) is 

pseudocomplement and the ideal J is the pseudocomplement of both (t] and (r]. Again, 

Figure 3.1 gives a non-distributive nearlattice S where its) is pseudocomplemented. 
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Theorem 3.2.2. If the intersection of all prime ideals of a nearlattice S with 0 is o}, then S 

is 0-distributive. 

Proof. Let a,b,c € S such that a A h = 0 = a A C and b v c exists. Let P be any prime ideal of 

S. If a E F, then aA(hvc):!~a implies that aA(bvc)EP. If a o F, then by the primeness 

of P. 1', c F, and so b v c € P. This implies a A (h v c) € P. Thus a A (h v c) is in every 

prime ideal P of S, and hence a A (b v c) = 0, proving that S is 0-distributive.. 

From Baziar Rahman [9] we know that a nearlattice S is distributive if and only if 

i(s) is distributive, which is also equivalent to that D(S), the lattice of filters of S is 

distributive. Thus if S is a nearlattice with 0 such that i(s) (similarly D(S)) is distributive, 

then S is 0-distributive. 

Following lemma are needed for further development of the thesis. 

Lemma 3.2,3. Eveiy proper filler  of a nearlattice with 0 is contained in a maximal filter. 

Proof, Let F be a proper filter in S with 0.Let 'F be the set of all proper filters containing F. 

Then 'F is non-empty as F€ 'F Let C be a chain in 'F and let M = UXX € c}. We claim 

that M is a filter with FcM. Let x€Mand y~!x Then xeX forsome XEC.. Hence 

E X as X is a filter. Therefore, y EM. Let X, y EM. Then XE Xand y E Y for some 

X,YEC. Since C is a chain, either X_cY or YX. Suppose Xc:Y. So x,y€Y. Then 

x A y E Y as Y is a filter. Hence x A y € M. Moreover M contains F. So M is a maximum 

element of C. Then by Zorn's lemma 'Fhas a maximal element, say Q with F c: Q.. 

Lemma 3.2.4. Let S be a nearlattice with 0. A proper JIlter 111 in S is maximal if and only if 
for any element a 0 M there exists an element h € M with a A b = 0. 

Proof. Suppose M is maximal and a o Al. Let a A h # 0 for all b e M. Consider 

M1= {yEsly~:aAb,  for someb€tvl}. Clearly M1  is a filter and is proper as 01l'1. For 
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every h E M we have b ~: a A b and so b E /W! . Thus M c M1 . Also a o M but a 

So M c M1 , which contradicts the maximality of M. Hence there must exist some b E M 

such that a A b = 0. 

Conversely, if the proper filter M is not maximal, then as 0 € S, there exists a maximal filter 

N such that M c N. For any element a E N - Al there exists an element b E M such that 

a Ab = 0. Hence a,b (=- N imply 0 = a Ab EN, which is a contradiction. Thus M must be a 

maximal filter. 

Following result gives several nice characterizations of 0-distributive nearlattice. 

Theorem 3.2.5. For a nearlattice S with 0, the following conditions are equivalent: 

() S is 0-distributive. 

'iz) a)' is an idea/for all a e S. 

(IiV A is an idealfor all AcS. 

i(s) is pseudocomplemented. 

I(S) is 0-distributive. 

Eveiy maxima/filter is prime. 

Proof. (i) = (i) = (iii) are trivial. 

(iii) (iv); For any ideal I of S, jl  is clearly the pseudocomplement of I in i(s) if 

1' € i(s), and so (iv) holds. 

('v) = (v); Since every pseudocomplemented lattice is 0-distributive, so (iv) (v). 

= vt); Let i() be 0-distributive and F be a maximal filter. Suppose f, g e F with 

f v g exists. By Lemma 3.2.4, there exist a, h € F such that a A f = 0 = b A g. Hence 

(f]A(a A b]= (0] and (g]A(a Ah]= (0]. Then (f V g}A (a Ab]= ((f]v(gA(aAh]= (01, 

-a. 
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by 0-distributivity of i(s). Hence (f v g)A (a A h) =0. Since F is maximal, 0 o F 

Therefore f v g o F, and so F is prime. 

(vi)=(i); Let (vi) holds. Suppose Q,b,CES such that aAh=O=aAc and b v c exists. If 

a A (b v c)# 0, then by Lemma 3.2.3, a A (b v c)E F for some maximal filter F of S. Then 

a F and bvcE1'. As F is prime, by assumption, so either QE F and heFor ceF. 

That is, either a A b € F or a A C € F. This implies 0 € F, which gives a contradiction and 

hence a A (b v c) = 0. In other words, S is 0-distributive. . 

Corollary 3.2.6. In a 0-distributive nearlattice, every proper filter is contained in a prime 

filter. 

Theorem 3.2,7. Every prime down set of a nearlattice contains a minima/prime down set. 

Proof. Let I' be a prime down set of L and let y,  be the set of all prime down sets J such 

that J c: P. Then P is non-empty since P E X . Let C be a chain in x and let 

M=n{X: XeC}. 

We claim that M is a prime down set. M is non-empty as 0 E M. Let a e M and 

h :!~- a. Then a E X for all X E C. Hence b e X for all X € C as X is a down set. Then 

h e M. Now let X A y € M for some x, y E S. Then x A y € X for all X € C. As X is a 

prime down set, so either x € X or y e X. Thus either A/I = x € X} or 

M = r{x y e X}, proving that either x € M or y e lvi. Thus M is a prime down set. Thus 

by applying the dual form of Zorn's Lemma, we conclude the existence of a minimal member 

of P.. 

Theorem 3.2.8. In a 0-distributive nearlattice S, if o}# A is the intersection of all non-:ero 

ideals of then A = e S x}'  toil. ~ 
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Proof. Let x E A1. Then x A a = 0 for all a (=- A. Since A # {o}, so {x}1  # {o}. Thus 

XE E Skx)1 # o}}. That is A1 E S I  {x}1  #  1011. 

i . ( Conversely, let x E ty 
C ) J.. 

E S #  (
)l Since S s 0-distributive, so 

j 
 is a non-zero 

ideal of S. Then A c {x}1  and so A1  {x}". This implies x e A' ,which completes the 

proof. . 

Theorem 3.2.9. Let S he a neariattice with 0. S is 0-distribuilve if and only i/for any fIlter F 

disjoint with x}' ; x E S, there exist a prime filler containing F and disjoint with txr 

Proof. Let S be 0-distributive. Consider the set 'F of all filters of S containing F and disjoint 

with x}' . Clearly 'F is non-empty as F E T. Then using Zorn's lemma, there exists a 

maximal element Q in F. Now we claim that x € Q. If not, then Q v [x) Q. So by the 

maximality of Q, {Q v [x) <m {x}' # 4). Then there exists t E Q v [x) and t E {x'. Then 

t~!qAxforsome q€Q and tAx=0.Thus, 0=IAX~!qAx, and so qAx=0.Thisimplies 

q € {x}', which contradicts the fact that Q n {x}' = 4). Therefore x E Q. Finally, let Z 0 Q. 

Then {Qv[z)}r{x}'#4). Let y E {Qv[:)} x}'. Then yAx=0 and y~:qA: for some 

qeQ. Thus 0=yAx~:qAxA:, which implies qAxA:=0. Now XEQ implies 

q A x E Q, and Z A (q A x) = 0. Hence by Lemma 3.2.4, Q is a maximal filter of S, and so by 

Theorem 3.2.5, Q is prime. 

Conversely, let xAy=0=XA: and yvz exists. If xA(yv:)#0. Then 

y v z 0 {x}'. Thus [y v :)n {x}' = 0. So, there exists a prime filter Q containing [y  v:) and 

disjoint with {x}'. As y,zE Jxy, so y,zQ. Thus yvzQ, as Q is prime. This implies 

ly v z Q, a contradiction. Hence x A (y v z) = 0 and so S is 0-distributive.. 

Pawar and Thakare [51] have mentioned as a corollary to the above result that for 

distinct elements a,h E S for which a A h # 0 are separated by a prime filter in a 0-

distributive semilattice , which is not true. For example, Figure 3.1 is an example of a 0- 
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distributive nearlattice, where a,b are distinct and a A b # 0. But there does not exist any 

prime filter containing b but not containing a. 

Now we give few more characterizations for 0-distributive nearlattices. 

Theorem 3,2.10. Let S be a nearlattice with 0. Then the following conditions are equivalent: 

(I) S is 0-distributive. 

(ii) Eveiy maximal filter of S is prime. 

('iii) Every minimal prime down set of S is a minima/prime ideal. 

Eveiyproperfiiter of S is di,sjoint from a minimal prime ideal. 

For each non-zero element a e S, there is a minimal prime ideal not 

containing a. 

Each non-zero element a E S is contained in a prime fiutei 

Proof. (i) (i); follows from Theorem 3.2.5. 

('i) (iii); Let A be a minimal prime down set. Then S-A is a maximal filter. 

Then by (ii), S-A is a prime filter, and so A is an ideal. That is, A is a minimal prime ideal. 

(iii) = (ii); Let F be a maximal filter of S. Then S-F is a minimal prime down set. Thus by 

(iii) S-F is a minimal prime ideal and so F is a prime filter. 

(u)= (iv); Let F be a proper filter of S. Then by Corollary 3.2.6, there is a prime filter 

Q D F. Then S-Q is a minimal prime ideal disjoint from F. 

(i)= (v); Let a E Sand a # 0. Then [a)is a proper filter. Then by (iv) there exists a 

minimal prime ideal A such that A n [a) = . Thus a o A. 
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= (iv); Let a E S and a # 0. Then by (v) there is a minimal prime ideal P such that 

aP.Thus aEL — J' and L-P is a prime filter. 

(i); Let S be not 0-distributive. Then there exist a, b.c E S such that a A b = 0 = U A C 

and b v c exists but a A (h v c) # 0. Then by (vi) there exists a prime filter Q such that 

U A (h v c) e Q. Let F = Ea A (b v c)). This is proper as 0 F and F Q. Now, 

aA(bvc)EQ implies aeQ and bvc€Q. Since aAb=0=aAc, so b,cQ as 0Q 

but h v c e Q, which contradicts that Q is prime. Hence a A (b v c)= 0 and so S is 0-

distributive. e 

Theorem 3.2.11. Let S be a 0-distributive nearlattice and x e S. Then a prime ideal P 

containing tyy is a minimal prime ideal containing x}1  if and only iffior p € P there is 

q E S - P such that p A q E 

Proof, Let P be a prime ideal of S containing x}1  such that the given condition holds. Let K 

be a prime ideal containing {x} such that K ç  P. Let p E P. Then there is q € S - P such 

that p A q e {x}'. Hence p A q e K. Since K is prime and qo K, so p E K. Thus , P K 

and so K = P. Therefore, P must be a minimal prime ideal containing  

Conversely, let P be a minimal prime ideal containing {x}1. Let p E P. Suppose for 

all q E S - P, p A q r}'. Set 1) = s - v [p). We claim that {x}1  m D = . If not , let 

y E n D. Then y ~ r A p for some r e S - P. Thus 
, 

p A J :!~ y E which is a 

contradiction to the assumption. Then by Theorem 3.2.9, there exists a maximal (prime) filter 

Q D D and disjoint with {X}. By the proof of Theorem 3.1.9, XE Q. Let M = S-Q. Then M 

is prime ideal. Since xEQ, so xM. Let t€{x}'. Then tAx=OEIVI implies (EM as 

M is prime. Thus {x}1  c All. 

A 
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Now M D = 4). Therefore, Al n (s - =4), and hence A/I = P Also M # F, 

because p E D implies p M but p € P. Hence M is a prime ideal containing {x}1  which is 

properly contained in P. This gives a contradiction to the minimal property of P. 

Therefore, the given condition holds.. 

Now we refer the reader about a conjecture made by Noor and Baziar Rahman [42] 

that whether the well known Stone's separation property holds in a 0-distributive nearlattice. 

Separation theorem for distributive nearlattices is given in [42]. Unfortunately this does not 

hold even in case of a 0-distributive lattice. Consider the pentagonal lattice 

01a,b,c,1; 0 <a <b < 1, 0 < c < l}, which is 0-distributive. Consider I = (a] and F = [h). 

Here I n F = 4) and there does not exist any prime filter Q containing F and disjoint with I. 

But in a 0-distributive nearlattice, instead of a general ideal, we can give a separation 

theorem for an annihilator ideal I = 
1 when J is a subset of S. An ideal I in a nearlattice S 

with 0 is called an annihilator ideal if I = ,j1 for some J c S. 

Recently, Zaidur Rahman, Bazlar Rahman and Noor [68] have studied the semi-prime 

ideals in a nearlattice. This concept was given by Ray [52] in a general lattice. An ideal I of a 

nearlattice S is called a semi-prime ideal if for all x, y, z € 5, X A y € I and X A 2 E I imply 

X A (y v z) e I provided y v: exists. Thus, for nearlattice S with 0, S is called 0-distributive 

if and only if (0] is a semi-prime ideal in S. In a distributive nearlattice 5, every ideal is a 

semi-prime ideal. Moreover, every prime ideal is semi-prime. From [68], it is known that for 

any subset A of a nearlattice S, A1  is a semi-prime ideal ifS is 0-distributive. Here we give a 

separation theorem by using the semi-prime ideals. 

Theorem 3,2.12 (The Separation Theorem) A nearlattice S is 0-distributive if and only iffor 

a proper filter F and an annihilator I = J' ,where J is a non empty subset of 5, with 

F n I = 4), there exist.s a prime filter Q containing F such that Q n / = 4). 
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Proof. Suppose S is 0-distributive and I = P for some non-empty subset J of S. Let F be 

the set of all filters containing F, and disjoint with I. Then using Zorn's lemma, there exists a 

maximal filter Q containing F and disjoint with I. Since by Theorem 5 of [68] 1 is semi-

prime, so by Theorem 10 of [68], Q is prime. 

Conversely, suppose the condition holds. Suppose S is not 0-distributive. Then there 

exist a, b, c E S such that a A b = 0, a A c = 0 and a A (b v c) # 0, h v c exists. Then 

b v c Let F = Eb v c). Since 0 0 F, F is proper. Then proceeding according to the 

proof of converse part of Theorem 3.2.9, we find that a A (b v c) = 0, and so S is 0-

distributive.. 

Define a relation R on a nearlattice with 0 by aRb if and only if a A x = 0 is 

equivalent to b A x = 0. Equivalently, aRh if and only if (a] (b]'. 

Theorem 3.2.13. Let S he a nearlattice with 0. then the above relation is a meet congruence. 

Moreover, when S is distributive, then it is a nearlattice congruence. 

Proof, Clearly R is an equivalence relation. Let a b(R) and t r= S. Then a A X = 0 if and 

only if h AX = 0. Let (a A t)A x = 0 for some x E S. Then a Ai A x)= 0 implies 

b A (r A x) = 0, and so (b At) A x 0. Similarly (b A t)A x = 0 implies(a A t)A x = 0. 

Therefore a A t b A 1(R) and so R is a meet congruence. 

Nowlet avt,bvt exists and ab(R). Then for any XES, a A X = 0 if and only if 

b A x =0 .Let (a v t)A x = 0 for some X E S .Then a AX = 0 and / AX = 0 which implies 

h A X = 0 and / A X =0, and so (b v t)A x =0 as S is distributive. Similarly (b v 1)A x =0 

for some x E S implies (a v t)A X = 0. Therefore, R is a nearlattice congruence.. 

Theorem 3.2.14. IfS is 0-distributive, then R is a nearlattice congruence. 

Proof, Suppose (a v t)A x = 0 for some x E S. Since a A x,t AX :!~, (a v t)A X so 

aAx=tAx=0,which implies bAx=tA.r=0 as ah(R). This implies (hv/)Ax=Oas 
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s is 0-distributive. Similarly (b v t)A x = 0 implies (a v I)A x = 0. Hence R is a nearlattice 

congruence.. 

By Theorem 3.2.5, we have the Corollary. 

Corollary 3.2.15. IfJ( is pseudocoinpiemented, then R is a nearlattice congruence. 

A nearlattice S with 0 is called Weakly complemented if for any pair of distinct 

elements a, b of S, there exists an element c disjoint from one of these elements but not from 

the other. 

Theorem 32.16. S is weakly complemented f and only /R is an equality relation and hence 

is a neariatlice congruence. 

Proof. Suppose S is weakly complemented. Let a b(R). Suppose a # b. Then there exists c 

such that a A c =0 but b A C 0. This implies a 0 b(R), contradiction. Hence a = b. So, R 

is an equality relation. That is, R is a nearlattice congruence. 

Suppose R is equality. We need to prove S is weakly complemented . Let a, h E S and a # b. 

Then a 0 b(R). This implies there exists c € S such that a A C = 0 but b A C # 0. Hence S is 

weakly complemented.. 

In the following nearlattice S, R is a nearlattice congruence. Here the classes are 

{0},(a},{b),{l},{c,d,e). But S is neither 0-distributive nor weakly complemented. 

a e 

V 

Figure 3.5 
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Theorem 12.17. For any nearlattice S, the quotient lattice is weakly complemented 

Furthermore, a nearlattice S with 0 is 0-distributive if and only if is a distributive 

nearlaitice and I? is a nearlattice congruence. 

Proof. Let A and B be two classes in such that A<  B. Then there exists a e A and 
R 

I, e B such that a< b in S . So, by the definition of R there is an element c e S, such that 

U A C = 0 but b A C # 0. Suppose x E [o]. Then x 0(R) and so 0 A X =0 which implies 

XAX=X=0. So [o}={o}. This implies AAC.'=[a]A[c]={O} but BA {0}. Hence - is 

weakly complemented. 

Now let S be a nearlattice for which R is a nearlattice congruence and -- is 
R 

distributive. Let a,b,c e S with a A b= 0 a A C such that b v c exists. Then 

[a]A([b]v[cD= ffa]A[b]v([a]A[c= [0]v[0]= [o]. This implies [aA(bvc)]= [o]. Since 

101= {o}, SO Cl A (b v c) = 0. Hence S is 0-distributive. 

Conversely, let S be 0-distributive. Then by Theorem 3.2.13, R is a nearlattice 

congruence. Let [a],[b],[c]E . We need to prove [a]A ([b]v [C = ([al A  [bjbv ([a}A [CJ 

provided [b] v [c] exists. Suppose [b] v [c] = [d]. Then [h] = [b] A [d]= [b A d], 

c = [c1A[d}= [c A d}, and so [h}v [c]= [(b A d)v (c A d)}. So we need to prove that 

[aA((bAd)v(cAd))]=[(aAbAd)v(aAcAd)]. Let aA((bAd)v(CAd))Ax=O. Since 

(aAhAd)v(aAcAcl):!~aA((bAd)v(cAd)) so, ((aAbAd)v(aACAd),)Ax=0. On 

the other hand, if ((aAbAd)v(aAcAd))Ax=0, then aAbAdAx=0=aAcAdAx 

and by 0-distributivity of S, a A ((b A d) v (c A d)) A X =0. 

Thus U A ((b A d) v (C A ci)) (a A (b A d)) v (a A (c A d))(R) and hence 

[a]A([b]v[cJ= ([a]A[b})v([a]A[cD.  0 
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a. 

Theorem 3.2.18. If a 0-distributive nearlattice S is weakly complemented then S is 

distributive 

Proof. If S is weakly complemented. Then by Theorem 3.1.15, R is an equality relation and 

so by above theorem S implies S is distributive. . 

A nearlattice S with 0 is called Sectionally complemented if the intervals [O,x} are 

complemented for each x E S. A nearlattice which is sectionally complemented and 

distributive is called a Semi Boolean nearlattice. 

Corollary 3.2.19, If a 0-distributive nearlattice S is sectionally complemented and weakly 

complemented, then S is semi Boolean. • 

Theorem3.2.20. Suppose S is sectionally complemented and in every interval [0,x], every 

element has a unique re/alive complement . Then S is semi Boolean if and only if it is 0-

distributive. 

Proof. Let S be 0-distributive and for every x E S, the interval [O,x] is unicomplemented. Let 

x, y E S with x ;# y. If they are comparable, without loss of generality, suppose x< y. Then 

0 :!~ x <y. Then there exists a unique t [0, y] such that I A x =0 and / v x = y. Thus 

!AX=0 but tAy=t#0. If x, y are not comparable, then O:!~XA<X and 0:~xAy<y. 

Then there exist .s,t € S such that X A y A s = 0, (x A y) v s = x, x A y A I = 0 and 

(xAy)vt=y. Now sAt:5xAy implies sAt:!5xAyAs=0, which implies sAI=0. 

Now sA/=0 and sAxAy=0 implies O=sA((xAy)vt)=sAv as S is 0-distributive, 

but s A X # 0. Therefore, S is weakly complemented and so by above corollary, S is semi 

Boolean. Since the reverse implication always holds in a Semi-Boolean nearlattice, this 

completes the proof. o 

There is another characterization of 0-distributive nearlattices. 
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Theorem 3.2.21. Let S be a nearlattice with 0. Then S is 0-distributive f and only if [0, x] 

is a 0-distributive lattice for every x e S. 

Proof: Let S is a nearlattice with 0 then S is 0-distributive. Then trivially [0, x] is also 0-

distributive. 

Conversely, suppose [0, x] for all xES. Let a,b,c€S with aAh=O=aAc and 

b v c exists. Let a A (b v c)=i Consider the interval [0,b v c]. Then t E [0,b v c}. Also 

h,c€[0,bvc} 

Now tAh=aA(hvc)Ah=aAb =0 

tAc= aA(bvc)Ac=aAc=0 

Since [o, b v c] is 0-distributive, so, t A (b v c) = 0. 

So, 0=1A(bvc)=aA(bvc)A(bvc)=aA(hvc) 

Hence, S is 0-distributive.. 

Now we give a generalization of theorem 1.4.1 

Theorem 3,2.22, Let S be a 0-distributive nearlattice and [0,x]  be I-distributive Jbr every 

x € S. then the jhllowing conditions are equivalent. 

S is sectionally complemented. 

xjv (x]1 =(xj = S for every x € S 

The prime ideals of [0, x] are unordered for each x c S. 

Proof: (1) = (ii); Suppose S is sectionally complemented. Then for every x € S, [o, x] is 

complemented. If (ii) does not holds, then there exist elements s,t e S such that 

s (t]v (tF. Now 0 < SAt :5 s. Then by (i), there exists r E [O,s} such that 

rAsAt=rA/=O and rv(sAt)=s. Thus r€(tT and so s=rv(sAt)E(t]*  v(t] gives a 

contradiction. Therefore, (ii) must holds. 
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(iii); Suppose (i/) holds but (ii/) does not. Then there exist prime ideal P,Q of some 

[O,x], x eS such that Pc Q. Thus there ests y€ Q - P. Since Q is a prime ideal of [O.x], 

xQ. By (ii) (yv(yT —S Thus x€(ylv(yT. Then x:!~pvq for some pE(y] and 

qE(y]. Then qAy=OEP. Since yP and P is prime, so q€PcQ. Also p:~:-y 

implies p € Q. Therefore, x !~ p v q implies x € Q 
gives a contradiction. Hence the prime 

ideals of [0, x] for each s € S are unordered. 

(iii) (1); 
Since here every [0, x] is both a 0distributive and i-distributive lattice, so by 

[531, [0,4 must be complemented. 

Af- 

A 
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3.3 Semi-prime ideals in a Nearlattice 

An ideal I of a nearlattice S is called a semi-prime ideal if for all x,y,: E S, 

X A y E I and x A Z E I imply x A (y v:) € I provided y v: exists. Thus, for a nearlattice S 

with 0, S is called 0-distributive if and only if (0] is a semi-prime ideal. In a distributive 

nearlattice S. every ideal is a semi-prime ideal. Moreover, every prime ideal is semi-prime. Of 

course every nearlattice S with 0 itself is semi-prime. In the nearlattice of Figure 3.1, (b] and 

(d] are prime, (ci is not prime but semi-prime and (a] is not even semi-prime. Again in 

Figure 3.2, (0], (a], (b], (c] and (d] are not semi-prime. 

Lemma 3.3.1. Non empty intersection of all prime ('semi-prime) ideals of a nearlattice is a 

seinE-prime ideal. 

Proof: Let a,h,c€Sand Ifl{P:P is a prime ideal } and I is nonempty. Let aAbeJ 

and a A c E I. Then a A b E P and a A C E P for all P. Since each P is prime (semi-prime), 

so a A (b V c) E P for all P. Hence a A (h v c) e I , and so I is semi-prime. . 

Corollary3.3.2. Intersection (?f two prime( semi-priine) ideals is a semi-prime ideal. 

Lemma 3.3.3. Eveiy filter disjoint .frorn an ideal I is contained in a maximal filter disjoint 

from 1. 

Proof: Let F be a filter in L disjoint from I. Let F be the set of all filters containing F 

and disjoint from I. Then cF is nonempty as F e F. Let C be a chain in F ana iet 

M=U(X:XeC). Weclaimthat M isafilter. Let xEM and y~x. Then xEX for some 

X C. Hence y E X as X is a filter. Therefore, y E M. Let x,y E M. Then x € X and 

y € Y for some K,Y € C. Since C is a chain, either X c Y or Y c X. Without loss of 

generality suppose X c  Y. So x, y € Y. Then x A y € Y and so x A y € Al. Moreover, 

AI F. So Iv! is a maximum element of C. Then by Zorn's Lemma, T has a maximal 

element, say Q F. 
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Lemma 3.3.4. Let I be an ideal of a nearlaluice S. A filter M disjoint from i is a maximal 

filter disjoint from 1 if and only iflbr all ao lvi, there exists b E lvi such that a A h € I. 

Proof: Let M be maximal and disjoint from I and a o M. Let a A b o I for h E M. 

Consider M3 = {y E L: y ~: a A h, h E M }. Clearly M is a filter. For any h E 

b ~! a A h implies b E M1 . So M1  M. Also 1V 1  n I = 4). For if not, let x e M1  n I. This 

implies x e I and x 2~ a A b for some h E M. Hence a A b E I, which is a contradiction. 

Hence M 1  n I # 4>. Now M c M1  because ao lvf but a E A4. This contradicts the 

maximality of M. Hence there exists h e M such that a A h E 1. 

Conversely, if M is not maximal disjoint from I, then there exists a filter iV M 

and disjoint with I. For any a € N - M, there exists h € M such that a A b e 1. Hence, 

a, b € N implies a A b E I N, which is a contradiction. Hence M must be a maximal filter 

disjoint withl. • 

Theorem 3.3,5. Let S be a 0-distributive nearlatlice. Then for A S, 

A1  = {x € S : x A a = 0 for all a E A) is a semi-prime ideal. 

Proof: We have already mentioned that A' is a down set of S. Let x,y e A' and xv y 

exists. Then x A a = 0 = y A a for all a E A. Since S is 0-distributive, so a A (x v y) = 0 for 

all a€A.This implies xvy€A' and so A' is an ideal. 

and yv: exists. Then XAyAa=0xA.Aaf0r 

a € A. This implies (x A a) A y = 0= (x A a) A Z and so by 0-distributivity again, 

xAaA(yVz)0 for all a€ A. Hence xA(yvz)E and so A' isasemi-priine ideal. e 

Let A c S and .1 be an ideal of S. We define 

= {x € S : X A a € J for all a € A). This is clearly a down set containing .1. In 

presence of distributivity, this is an ideal. A' is called an annihilator of A relative to J. We 

denote I (S), by the set of all ideals containing J. Of course, I, (5) is a bounded lattice 
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with .1 and S as the smallest and the largest elements. If A E 13 (S), and A" is an ideal, 

then A" is called an annihilator ideal and it is the pseudocomplement of A in 1(S). 

Theorem 33.6. Let A be a non-empty subset of a neariattice S and .1 be an ideal of Then 

= fl(P: P is minimal prime down set containing J but not containing A). 

Proof. Suppose X = fl(P: A z F,P is a minimal prime down set). Let A". Then 

X A a E .1 for all a e A. Choose any P of right hand expression. Since A a P, there exists 

E A but : e P. Then x A: E J C P. So x E P. as P is prime. Hence x E X. 

Conversely, let xeX. If xA", then xAbJ for some b€A. Let D[xAh). 

Hence D is a filter disjoint from J. Then by Lemma 3.2.3, there is a maximal filter It'! D D 

but disjoint from J. Then L-M is a minimal prime down set containing J. Now x o S - M as 

xED implies xeM.Moreover, AS — M as b€A,but beMimplies hS —M,which 

is a contradiction to x e X. Hence x E A".. 

Following Theorem gives some nice characterization of semi-prime ideals. 

Theorem 3.3.7. Let S be a nearlatfice and J be an ideal of S. The following conditions are 

equivalent. 

('Il) J is semi-prime. 

('iz) {a}" = (x e S: X A a E .J} is a semi-prime ideal containing I. 

A" ={xES:xAaEJ for alla€ A isa  semi-prime ideal containing J. 

I (5) is pseudocomplemented 

J (S) is a 0 -distributive lattice. 

Eveiy maxima/filter disjoint from i is prime. 

Proof: (1) = (ii); (c)" is clearly a down set containing J. Now let x,y E {a}" and xv y 

exists. Then x A a E J, y A a e J. Since J is semi prime, so a A (x v y) E J. This implies 

xvyE {a}ul , and soitisan ideal containing .J. Now let xAye{a}" and xA:E{a}"with 
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yv: exists. Then xAyAaEJ and XA;AaEJ. Thus, (xAa)AyEJ and 

(x A a) A € .1. Then (x A a) A (y v :) € .1, as J is semi-prime. This implies 

.'C A (y v z) € 1a}" , and so {a}" is semi-prime. 

This is trivial by Lemma 3.2.1, as A' = fl({a}' ; a € A). 

= (iv); Since for any A € I,., (S), A1' is an ideal, it is the pseudocomplement of A in 

I (S), so I, (S) is pseudocomplemented. 

(iv) = (v); This is trivial as every pseudocompleniented lattice is 0-distributive. 

= (vi); Let I, (S) is 0-distributive. Suppose F is a maximal filter disjoint from J. 

Suppose f,g e F and f v g exists. By Lemma 3.2.4, there exista,b € F such that 

aAfEJ,bAgEJ. Then fAaAb€J,gAaAhEJ. Hence (f}A(aAb]J and 

(g]A(aAb].J. Then (fvg]A(aAb]=((f1V(gI)A(a1cJ by the 0-distributive 

property of Ia (S). Hence, (fvg)AaAbEJ. This implies fvgF as FnJ=4), and 

so F is prime. 

= (i); Let (vi) holds. Suppose a,b,c € S with a A b € J, a A C € J with h v c exists. If 

a A (b v c) .1, then [a A (b v c)) rm J = 4). Then by Lemma 3.2.3, there exists a maximal 

filter F[aA(bvc)) and disjoint from J. Then a€F,bvc€F. By (vi) F is prime. 

Hence either a A b € F or a A c € F. In any case J n F ~ 4), which gives a contradiction. 

Hence a A (b v c) e J , and so J is semi-prime. 

Corollary 33.8 In a nearialtice S, eve,y Jilter disjoint to a semi-prime ideal I is contained 

in a prime filter. e 
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Theorem 3,3.9. If .1 is a semi-prime ideal of a nearlaulce S and .J # A = fl{J : J is an 

ideal containing J}, Then A' = {x e S: (x)  -'I # .1). 

Proof: Let x e A1 . Then x A a e .1 for all a e A. So a e f  x)  -'I for all a e A. Then 

A c: {xJ1  and so # J Conversely, let xe S such that {}1  # .1. Since J is semi- 

prime, so {x} 
I 
J is an ideal containing J. Then A {x}1', and so A' {x}'. This 

implies x e A's, which completes the proof. • 

Ray have provided a series of characterizations of 0-distributive lattices in [52]. Here 

we give some results on semi-prime ideals related to their results for nearlattices. 

Theorem 3.3.10. Let S be a near/aft ice and.1 be an ideal. Then the following conditions are 

equivalent. 

(1) J is semi-prime. 

(ii) Eveiy maxima/filter of S disjoint with .1 is prime. 

('ii) Every minimal prime down set containing J is a minimal prime ideal 

containing I. 

Eveiy filter disjoint with J is disjointfi-om a minimal prime ideal containing J. 

For each element ae I, there is a minimal prime ideal containing I but not 

containing a. 

Each a o I is contained in a prime filter disjoint to .1. 

Proof. (i) (ii); follows from Theorem 3.3.7. 

= (iii); Let A be a minimal prime down set containing J. Then S-A is a maximal filter 

disjoint with J. Then by (ii) S-A is prime and so A is a minimal prime ideal. 

= (ii); Let F be a maximal filter disjoint with J. Then S-F is a minimal prime down set 

containing J. Thus by (iii), S-F is a minimal prime ideal and so F is a prime filter. 

--S 
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()= (iv); Let F a filter of S disjoint from J. Then by Corollary 3.3.8, there is a prime filter 

Q F and disjoint from F. 

(iv)= (v); Let a E S, a o J. Then [a)rJ = p. Then by (iv) there exists a minimal prime 

ideal A disjoint from [a). Thus ae A. 

(v) (vi); Let a e S, a .1. Then by (v) there exists a minimal prime ideal P such that 

a 0 P, which implies a e S - P and S-P is a prime filter. 

(vi)= (I); Suppose J is not semi-prime . Then there exists a,b,c E L such that a A h e 

a A C E J and b v c exists, but a A (b v c) 1Z J. Then by (vi) there exists a prime filter Q 

disjoint fromJ and aA(hvc)EQ. Let F=[aA(bvc)). Then JrF=o and FcQ. Now 

a A (b v c) e Q implies a E Q, h v c E Q. Since  Q is prime so either Q A b € Q or a A C E Q 

This gives a contradiction to the fact that Q r' J = . Therefore, a A (b V C) E J and so J is 

semi-prime. • 

Now we give another characterization of semi-prime ideals with the help of Prime 

Separation Theorem using annihilator ideals. 

Theorem 3.3.11. Let .1 he an ideal in a neariattice S. I is semi- prime if and only, iffor  a/- 

filter F disjoint to (x} ', there is a prime Jilter containing F disjoint to {x} . 

Proof: Using Zom's Lemma we can easily find a maximal filter Q containing F and disjoint 

to {x '. We claim that x E Q. If not, then Q v {x) Q. By maximality of Q, 

(Q v [x)) n Ix -'j } # 4). If I e (Q V [x)) r {x) ', then t q AX for some q E Q and t A X E I. 

This implies q A X e J and so q r= {x gives a contradiction. Hence x € Q. 
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Now let zQ. Then (Qv[:))r{x} Suppose ye(Qv[:))r{x}1' then y~!q1A: 

and yAze.J for some q EQ. This implies q1  AXA:EJ and q1  AXEO. Hence by 

Lemma 3.3.4, Q is a maximal filter disjoint to lx) Then by Theorem 3.3.7, Q is prime. 

Conversely, let X A y E J, X A; E J and y v: exists. If x A (y v:) I, then 

yvzE (x 1 . Thus [yv:)n{x}1  =q.  So there exists a prime filter Q containing [yv:) 

and disjoint from {x}'. As y,:€{x}',soy,:Q. Thus yvzQ, as Q is prime. This 

implies [y v:) Z Q, a contradiction. Hence X A (y v:) E J , and so .1 is semi-prime. . 

Here is another characterization of semi-prime ideals. 

Theorem 3.3.12. Let J be a semi-prime ideal qf a near/at tice S and XE S. Then a prime 

ideal P containing {x} is a minimal prime ideal containing {X}'  if and only iffbr p E F, 

there exists q E S - P such that p A q E 

Proof: Let P be a prime ideal containing (x}' such that the given condition holds. Let K 

be a prime ideal containing {xJ" such that K c P. Let p E P. Then there is q E S - F such 

that p A q E tx} . Hence p A q E K. Since K is prime and q e K, so p E K. Thus, P c K 

and so K = F. Therefore, F must be a minimal prime ideal containing {x)'. 

Conversely, let P be a minimal prime ideal containing {x}". Let p E P. Suppose 

- forall q€S—P, pAq%{x. Let D=(S—F)v[p).Weclaimthat {x}1' rD=p. lfnot, 

let y€ (x}1  n D. Then p A q :~:, y E {x}", which is a contradiction to the assumption. Then 

by Theorem 3.3.11, there exists a maximal (prime) filterQ D and disjoint to f x)'. By the 

proofof Theorem 3.3.11, XEQ. Let M=S — Q. Then M isa prime ideal. Since xeQ,so 

IAXEJCM implies teM as M is prime. Thus (x}" c M. Now A'InD=p. This 

implies Mr(S—P)=p and hence /vIcF. Also M#P, because peD implies pM 

but p E F. Hence M is a prime ideal containing tx} which is properly contained in P. 
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This gives a contradiction to the minimal property of P. Therefore the given condition 

holds.. 

Observe that by Theorem 3.3.7 we can easily give a Seperation theorem in a 0- 

distributive neralattice for A', when A is a finite subset of S. But now we are in a position 

to give a proof of the theorem for any subset A. 

Theorem 3.3.13. Let F be afilter 0/a 0-distributive nearlattice S such that F A' = for 

any non-empty subset A of S. Then there exists a prime Jilter Q D F such that Q n Al 

Proof: By Theorem 3.2.5, Al is a semi-prime. Thus by Lemma 3.3.3, there exists a maximal 

filter Q D F such that Q n A1  = . Since A' is semi-prime, so by Theorem 3.3.7, Q is 

prime.. 
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3.4 Glivenko Congruence 

We already known that the relation R on a nearlattice with 0, defined by aRb if 

and only if a A X =0 is equivalent to h A X = 0 is a congruence relation on S, when S is 0-

distributive. We call it as Glivenko congruence. Now we extended that result. 

Proposition 3.4.1, Let .1 be a semi-prime ideal in a nearlattice S. Define a relation R on 

S by x y(R) if and only if = . Then R is a nearlattice congruence on S. 

Proof: Clearly R is an equivalence relation on S. Now let x y(R) and t e S. Then 

{x ' 
= y}±J. Suppose a E {x A i}. Then a A X A t C I which implies 

- a A t e = {y}J. Thus, a A y A I e J and so a e A t}1. Therefore 

{xAt}1' ,YA/}'J. Similarly , tvAt}'  c r AI} and so xAt = {yAt}. 

Hence x A I y A t(R). Now let x y(R) and xv t, y Vt exist for some t e S. Let 

a e v Then a A (xv t)e J and so a A x,a At e J. This implies a A y,a Ate J as 

= {y}1. Therefore a A(yvt)E .1 as .1 is semi-prime. It follows that R is a 

nearlattice congruence on S . 

Note: Let S be a nearlattice and 0 a congruence on S. We denote by the quotient 

nearlattice of S modulo 0 and consider the elements of as subsets of S. If .- has a zero 
0 

element 0, then 0 is called the kernel of 0. Clearly 0 is then an ideal of S. Notice that 

we do not require S itself to have a zero element. If J is an ideal of S, we shall say that .1 

is the kernel of a homomorphism if there exists a congruence 0 on S such that I is the 

kernel of 0. Thus an ideal .1 is a kernel provided .J is a complete congruence class for 

some congruence 0 on S. Since for every x € S and any I € .1, x ~! X A / € .J, hence 

S S 

0 - 
-, so J is the zero element of 
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Theorem 342. Let S he a nearlattice and .1 be an ideal of S. Then the fbi/owing 

conditions are equivalent. 

() J is semi-prime. 

.1 is the kernel qf some homoinorphism of S 01110 a distributive nearlattice 

with 0. 

J is the kernel qf some homomorphism of S onto a 0-distributive 

nearlattice. 

Proof: (i) =(ii); Consider the elements [xl [y], [:] in --- such that y v: exists let 

SXA(YV:XR). Then 
{}hi 

={xA(yvz)}". Suppose te{}'. Then 

IA(xA(yvz))EJ, hence IAXE{YVZ}'J ={y} {z}'. Therefore, 

1E{XAY} J  r{xAz}1J  ={(xAy)v(xA:)}1J . Thus {s} J <_{(xAy)V(XA:)}'.1,  

[s] [(xAy)v(xA:)] [x} 1b'} equivalently, - 
R 

, hence - A I - v (X A 
R LR R)I? R) R R

XAH
) 

Since the reverse inequality is trivial, so is a distributive nearlattice. 

Furthermore, for any i,j E J, i 1(R), hence .1 is contained in some 

congruence class. But for any i E .1, i a(R) implies tayi = i}" = S. This implies 

a e I. Thus .1 = is a complete congruence class modulo R. That is, .1 is the kernel 

of R. Thus (ii) holds. 

(ii) =(iii); By (ii) J = ker® for some congruence ® on S and is a distributive 

nearlattice. Since every distributive nearlattice with 0 is 0-distributive, so is 0- 

distributive and so (iii) holds. 

-. 
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(iii) (i); Let 0 be a congruence on S for which J is the zero element of the 0- 

distributve nearlattice -- . Let X A y E J and X A E J such that y v: exists. This 

implies 11 A  IX1 = 
[x A 

= = = LYJ A  hi. Since is 0-distributive it follows 
00 0 0 00 0 

that UA J .  That is and so xA(yvz)EJ. Therefore.! is 
0 0 0 

semi-prime. • 

Theorem 3.4.30 If J is a semi-prime ideal of S , then the congruence R on S defined by 

x = y(R) if and only if (x} = (y]1 is the largest congruence of S containing J as a 

class. 

Proof: By above theorems R is congruence of S containing J as a class. Let p  be any 

congruence of S containing .1 as a class. Suppose x y(p). Let t E Then 
I A X E J. Now I AX = t A y((p). Now J as a class of 'p implies t AY E cJ and so, 

t E (y]'. Similarly t E (y]" implies t E (x]". This implies {x}' = y}' and so 
x y (R). It follows that qD g R, and so R is the largest congruence containing .J as a 
class.. 

Now we give a separation theorem for semi-prime ideals. 

Theorem 3.4.4, Let .J be a semi-prime ideal qf a nearlattice S and F be a filter of S 

dLsjoint to J. Then there exists a prime ideal P .1 such that P n F = 4). 

Proof: Define a relation R on S by x y(R) if and only if x}' = {y}±J. Then by 

Theorem 3.4.1 and 3.4.2, R is a nearlattice congruence and the quotient nearlattice is 

distributive. Since F n J = 4), so is a proper filter of -. It follows now from the 

prime separation theorem for distributive nearlattice due to Baziar Rahman [9] Theorem 

1.2.5, That there exist a prime ideal - of disjoint to Then clearly, P = is 
R R R R) 
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a prime ideal of S containing I and disjoint from F, where h is the canonical 

homomorphism of S onto --. e 

Theorem 3.45. Let .J be a semi-prime ideal of a nearlattice S and suppose that for 

some a, b E S, a A h e I. Then there exist semi-prime ideals A and B ( possibly 

improper,) such that a e A, b € B and .1 = A n B. 

Proof: If a € I, then by choosing A = J and B = S, the theorem trivially holds. So 

assume hence for that neither a nor h is in J. Now define the relation R on S by 

x y(R) if and only if {x}' = tv}". Since I is semi-prime, so by Theorem 3.4.1 and 

Theorem3.4.2, R is a nearlattice congruence and - is a distributive nearlattice. Let 

h : S -> -- be the canonical homomorphism with kernel I. Put S' = -   -. Thus 5' is a 
R R 

distributive nearlattice with 0' J. Hence a' A b' = 0', where a' h(a) and h* 
= h(h). 

By hypothesis a I, b J, hence a' # 0' # b'. Choose the ideals 

A' _—((a']v(b'1fr)(b'T and B' =((a']v(b'D(a'T  in -. Since a'Ah' = 0' it follows 

that a' € A' and h' € B'. Clearly A' r) B' = (o']. Since is distributive, A', B' are semi- 

prime Putting A = h'A' and B = h'B' yields the semi-prime ideals A and B.. 

Lemma 3.4.6. Let S be a nearlattice containing a semi-prime ideal I disjoint from  a 

Jllter F. Then given any c e S, there exists an ideal I' and atilter  F' of S such that, 

(') Jc.J' and FcF' 

J'nF'= 

cel'uF' 

0v,) ,j' is semi-prime. 



Proof: If c € J u F, then the result immediately follows, If c 0 I U F, then consider 

= F v Ic).  Clearly G n I = 4). Thus applying Theorem 3.4.4, there exists a prime ideal 

P of S containing J and disjoint from G. Thus the lemma holds by choosing P = 

and G = 1,'• 

Theorem 3.4.7. A nearlattice S is distributive if and only if for eveiy ideal I and a filter 

F of S for which I n F = 4) there exists a semi-prime ideal J D I such that .1 F = 4). 

Proof: Suppose S is distributive. Then by prime separation theorem [9, theorem 1.2.5], 

there exists a prime ideal P D 1 such that P n F = 4). Since every prime ideal is semi- 

prime, so choosing J = P we get the result. 

Conversely, suppose the condition holds. If S is not distributive. Then there 

exist x,y,Zc=S with y v z exists such that X A v;)> (x A y) v (x A ). Consider 

= ((x A y) v (x A )] and F = [x A (y v;)). Clearly I m F 4). Then by the given 

condition, there exists a semi-prime ideal J D I such that .1 m F = 4). Now x A y e J and 

X A; € I. Since .1 is semi-prime , so X A (y v E J. This implies J r F # 4), which 

gives a contradiction. Hence S must be distributive. 

Proposition 3.4.8. A nearlattice S is distributive if and only if every ideal of S is the 

kernel of some homomorphism if and only if every principal ideal of S is the kernel of 

some homomorphism. 

Proof: Suppose S is distributive. Since every ideal of a distributive nearlattice is semi-

prime, so by Theorem 3.4.2, every ideal and every principal ideal of S is the kernel of 

some homomorphism. 

Conversely, suppose every principal ideal of S is the kernel of some 

congruence. Then by a well known result in lattice theory S does not contain any 

sublattice isomorphic to M 5  or N5 . therefore, S must be distributive. o 
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ANNULETS AND a .-IDEALS IN A 0-DISTRIBUTiVE NEARLATTICE 

4.1 Introduction: 

Recall that a nearlattice S with 0 is 0-distributive if for all a, b,c e S with 

a A b - 0 = a A C and b v c exists imply a A (b v c) = 0. In this chapter we will study 

different properties of 0-distributive nearlattices. Moreover we will include several 

characterizations of 0-distributive lattices. 

Annulets and a-ideals in a distributive lattice have been studied extensively by [13] 

In a lattice L with 0, set of all ideals of the form (x] can be made into a lattice A0(L), which 

Cornish [13] called the lattice of annulets of L. 

By a "dual nearlattice" we will mean a join semilattice with the lower bound property. That 

is, a dual nearlattice S is a join semilattice together with the property that any two elements 

possessing a common lower bound, have an infimum. So the concept of a dual nearlattice is 

dual to the concept of a nearlattice. 

Since by Theorem 3.2.5, S is 0-distributive if and only if i(s) is 

pseudocomplemented, so 0-distributitivity of S is essential in the chapter. 

An ideal .1 of S is called an annihilator ideal if J = .J. The pseudocomplement of 

an ideal .1 is the annihilator ideal J'' = {r E S1 x Af = 0 for all j  e i}. It is well known that 

in the set of annihilator ideals A(S), the suprernu.m is given by .JvK = 
(,* 

mK') by 

Gratzer[19] Theorem 4, pp58.  Moreover A(S) is a Boolean lattice, Ideals of the form 

(4; x E S are called the annulets of S. Thus for two annulets (xj and yj', 

(x]* v(yf  = 
((xr*  (r) = ((X A yf)* =(xAyf . Hence the set of all annulets A0 (S) of S 
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is ajoin subsemilattice of A(s). Note that A0(s) is not necessarily a meet semilattice. But for 

any x,yES if x v y =xvy ]* .  

Recently, Ayub Au, Noor and lslam[4] has studied the annulets in a distributive 

nearlattice S with 0. On the other hand a -ideals have been studied in distributive nearlattice 

due to Noor, Ayub Mi and Islam [41]. 

An ideal i in a distributive nearlattice S with 0 is called an a -ideal if x E I (x E S) 

implies (} 1. 

In section 2 of this chapter, we have discussed different properties of 0-distributive 

- nearlattice and included several characterizations of these nearlattice. 

Section 3 discusses annulets in 0-distributive nearlattices and characterizes the quasi-

complemented nearlattice. 

Finally in section 4, we study the a-ideals in presence of 0-distributivity. 

41 
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4.2. Some Characterizations of 0-distributive Nearlattice 

We start this section with the following lemma which is very trivial. 

Lemma 4.2.1. In a nearlattice S, F is a proper filter f and only if S - F is a prime down 

set. 

Proof: Let F be a proper filter. Let xES—F and t:!~x. Then xF and so tF as F isa 

filter. Hence t € S - F and so S - F is a down set. 

Now let a A h € S - F for some a,b e S. Then a A b 0 F. This implies either a OF or 

hF and soeither a€S — F or h€S —F. Therefore S—F is prime. 

Conversely, suppose S - F is a prime down set. Let a e F and t ~: a t € s). Then 

ao S - F and so t o S - F as it is a down set. Thus t € F and so F is an up set. Now let 

a,b € F, then a S - F and b S - F. Since S - F is prime, so a A h S - F. This 

implies aAbeF, and soFisafilter. • 

Now we give some characterization of 0-distributive nearlattice. 

Theorem 4.2.2. Let S be a nearlattice with 0. Then the following conditions are equivalent. 

('k) S is 0-distributive. 

t'ii) If A is a non-empty subset of S and B is a proper filter intersecting A. then 

there is a minimal prime ideal containing A I and disjoin/from B. 
p 

(ii) For each non-zero element a € S and each proper filter B containing a, there 

is a prime ideal containing and disjoint from B. 

'iv) For each non-zero element a E S and each proper filter B containing a, there 

is a prime/liter containing B and disjoint from a}'. 

(v) For each non-zero element a € S and each prime down set B not containing 

a, there is a prime/liter containing S - B and disjoint from {a}'. 

Proof: (i) = (ii); Suppose (i) holds. Let A be a non-empty subset of S and B is a proper 

filter such that B n A # 0. By Lemma 4.2.1, S - B is a prime down set and so by Theorem 



CHAPTER 1V 73 

3.2.7, S - B contains a minimal prime down set N. Clearly N n B = q. Also S - B A and 

so NA. Then there exists pEA such that pEN. Now suppose XEA1. Then xAa=0 

for all a E A. Thus X A p =0 E N. Since N is prime and p O N, so x E N and so A c N. 

Since S is 0-distributive but we know by Jayaram[31} theorem 9, so N is a minimal ideal. 

Suppose (ii) holds. Now a}c S and suppose B is a proper filter containing a. 

Then B n {a}# çñ. Thus by (ii) there is a prime ideal containing {a}' and disjoint from B. 

(iii)=(iv); This is trivial as P is a prime ideal of a nearlattice S if and only if S — P is a 

prime filter. 

(iv) = (v); This is trivial by Lemma 4.2.1. 

(v)=(i); Suppose (v) holds and a be a non-zero element of S. Then by Lemma 4.2.1, 

B = S - [a) is a prime down set and a o B. Then by (v) there is a prime filter Q containing 

S - B and disjoint from a}'. Then a E Q and as by Varlet [66] theorem 9, so S is 0-

distributive. e 

For a subset A of a nearlattice S, we define A°  = E S(XAa = 0 for some a E A}. It 

is easy to see that A 0  is a down set. Moreover, {a}' = {a}° = [a)°. 

Theorem 4.2.3. Let S be a nearlattice with 0. Then the following conditions are equivalent. 

(1) S is 0-distributive. 

(ii) A 0  is an ideal for every filter A of S. 

(111) ia
10  is an ideal. 

Proof: (i)= (ii); Let S be a 0-distributive. We already know that A0  is a down set. Now let 

x,y e A°  and xv y exists. Then xt.a = 0 = yAb for some a,b E A. Hence 
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xAaAb=0=yAaAb, aAhEA as it is a filter. Thus aAhA(xvy)=O as S is 0-

distributive. Therefore x v y € A°  and so A 0  is an ideal. 

(ii)=(iii); This is trivial as {a}°  = {a}' 

(iii)=(i); Suppose (iii) holds. Let a,b,c e S with a Ab = 0 = a AC and b v c exists. 

Consider [a). Then h,c E[ct)° . Since [a)°  is an ideal, so bvcE[a)° . Thus aA(hvc)= 0, and 

hence S is 0-distributive.. 

Lemma 4.2.4. Let A and B be filters of .  a nearlattice S with 0 such that A n B0  =4). Then 

there is a minimal prime down set N containing B0  and N n A =4). 

Proof: Since Ar'B° =4),so 0AvB. So A v B is a proper filter of S. Then byLemma 

3.2.3, A v B c M for some maximal filter M. Now B c M and consequently M tm B0  =4). 

By Lemma 4.2.1, S - M = N is a minimal prime down set. Clearly B0  ç  N and 

NnA=4).. 

Theorem 4.2.5. Let S be a nearlattice with 0. Then the following conditions are equivalent. 

S is 0-distributive. 

If A and B are filter of S such that A and B0  are disjoint, there is a minimal 

prime ideal containing B0  and disjoint from A. 

If A is a filter of S and B is a prime down set containing A0 , there is a 

minimal prime ideal containing A and contained in B. 

If A is a filter of S and B is a prime down set containing A 0 , there is a prime 

filter containing S - B and disjoint from A0  

For each non-zero element a E S and each prime down set B containing lar, 

there is a prime filter containing S - B and disjoint from {a}°. 
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Proof: (i) =(ii); Suppose (i) holds. Let A and B be filter of S such that A n B°  4) . Then 

by Lemma 4.2.4, there is a minimal prime down set N such that N D B0  and N n A =4). 

Since S is 0-distributive it follows from Theorem 3.2.10 that N is a minimal prime ideal. 

(ii)= (iii); Suppose (ii) holds. Let A be a filter of S and B is a prime down set containing 

A0 . Then by Lemma 4.2.1, S - B is a filter such that (s - B)n A0  = 4). Then by (ii) there 

is a minimal prime ideal containing A°  and disjoint from S - B, that is contained in B. 

(iii) = (iv); This is trivial by Lemma 4.2.1. 

(iv)= (v); Let a be a non-zero element of S and B be a prime down set containing {a}° . Let 

A = [a) . Then B D {a}°  = [a)°  = A°. Then by (iv), there is a prime filter containing S - B 

and disjoint from a}°. 

(v)=(i); Suppose (v) holds and let a be any non-zero element of S. By Lemma 4.2.1, 

S - a) is a prime down set not containing a. since (a]n Jay = (o] c S —[a), it follows that 

S - [a) contains {a}°  as S - [a) is prime. Then by (v) ,there is a prime filter B containing 

[a) = s -(s - [a)) and disjoint from {a}0.  Clearly a r= B. Hence by Theorem 3.2.10, S is 0-

distributive. • 

Lemma 4.2.6. Let S be a neariattice with 0. Suppose A, B e i(s) and a, b E S. then we have 

the to/lowing: 

(1) ifArB=(O],thenBcA'. 

AA'=(0]. 

a :5: b implies b}' c Jul' and la}il  c I 

{a} r {a}'  = (} 

1 

e. 
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ja A br = jar  rm {b}11  

{a}c{a). 

fl-i- a1 =
flLtJ. 

 

\ \J For all  a,b,ce (IS, aAh)v IaAc) =laAb)J.  (maAc U  

Proof: (i) Let beB. Then aAb=O for all a E A as AmB=(O]. Therefore, bEA' and 

so BA'. 

Let x E A n A. Then x E A and X A a =0 for all a E A. Thus in particular, 

x=xAx=0.1-Ience AnA1=(0]. 

Let a :!~ b. Suppose x E {b}'. Then X A b =0 and x A 0 :!~ X A h =0 implies .r A 0= 0. 

Thus x E {a}1. Therefore, {b}'c {a}. Now let x E {a}". Then x A p = 0 for all p E {a}. 

Let q € {b}'. Since {h}' c {a}, so q E 
{0}i.  Hence x A q = 0, which implies x e {b}". 

()LL ().LL Therefore c 

Let x E {a}1 r' {a}hi.  Then x € {a}' and x e {a}', and so x A p =0 for all p E {a}'. 

Thus in particular x = x A x = 0, implies {a}1  n {a}11  = (oj. 

(v) Let XE 
{0}il  {b}11  and yE{aAb}1. Then we have (yAa)Ab=0, which implies 

y A a E {b}'. Since x E {b}, we get (x A y)A 0 = X A (y A a) =0. This implies x A y E {a}'. 

Since x E lal  11, we have x A y E as {0}il 
is a down set. Thus 

xAyE{a}'n{a}=(o]. Hence xAy=0 for all ye{aAb}1, which implies xe{aAh}11. 

Therefore, (iLL ( n .U.  c ja A br.  

Conversely, since aAb :5 a,h, so by (iii) {a Ab}11  {a}11  and {a A c {b} 

Hence {a A br  = {a}il Th {b}11. 
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xea}11  implies xAp=0 for all pE{a}'.Now pE{a}1  implies pAa0. Thus we 

have a A p = 0 for all p e {a}, which implies a € {a}'1. 

( 1! ( )LL / 1 1.1- ( ILLI Since ai rai = k°J soby (1) ia 

Conversely, let x e {a}m.  Then X A p = 0 for all p € {a}. But by (vi) we have 

a E {a}11. Therefore X A a =0 and so x E {a}1. Thus {a}'11  ç  {a}1, and so Jay = {a}. 

aAb:!~(aAb)v(aAc)implies (ciAl)1  :D{(aAb)v(aAc)}'. 

Similarly, c aAb)vaAc)' implies (aAb)1  n(aA c D aAh)v(aA c)' 

Conversely, let xE(aAb) rm(aAc)'  implies xAaAh=O=xAaAc implies 

A ((a A b)v (a A c)) = 0 as S is 0-distributive. i e. x ((a A b)v (a A c)' so 

(aAb)1  n(aAc)1  c: {(aAh)v(aAc)}'. Hence {(aAb)v(aAc)}' =(aAb)' r(a Ac)1  • 

Theorem 4.2.7. Let S be a nearlattice with 0. Then the following conditions are equivalent. 

() S is 0-distributive. 

') For any non-empty subset A of S, A1is the intersection of all the minimal 

prime ideals not containing A. 

NO For any ideal A of S and any family of ideals fA I € i} of S, 

(A(i el ic-1 
vAi)) =(AA)' 

For any three ideals A, B, C of S. (A (B v c) = (A B (A c)-1- 

For all a,h,ce S, (a(b v c) =(a Ah Y n(aA c)t  provided b v c exists. 

Proof: (i) = (ii); Let N be a minimal prime down set not containing A. Then there exists 

tEA suchthat tEN. Suppose XEA1. Then xAa=0forall aEA. Thus XAt=OEN. 

Since N is prime, so XE N. Hence A' cz N. 
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Thus, A' c n{ All minimal prime down set containing A}= X (say) 

Suppose A ' c X . Then there exists x € X such that x A . Then for some b E A, 

X A b :# 0. Thus F = [x A b) is a proper filter. Hence by Lemma 3.2.3. there is a maximal filter 

M F. Then S - M is a minimal prime down set such that (s - M) n F = . Since 

bEFc:M,so bS—M and so S—MA.Also xeFM implies xS—M. 

Thus x 0 X, which is a contradiction. Therefore, A' = X = r{ All minimal prime down set 

containing Al. Since S is 0-distributive, so by Theorem 3.2. 10, the result follows. 

(ii) = (iii) ; Suppose (ii) holds. Let A I(s) and (i E i} i(s). If Q is any minimal prime 

ideal ofS such that QA 
(iEIvAj), then QAnA for some jEl. By (ii)it follows 

that {A n v A 
)} 

(A A i)'.  On the other hand, A n A i  c A r-) (v A i 
). 

Then by 
tEL tel 

Lemma4.2.6 {AA1}' {A(
iEl 
v A)}. Therefore (iii) holds. 

(iii) = (iv) ; is obvious. 

=' (v); Let A = (a], B = (b}, C = (c]. Then by (iv), 

(a] n (tb] v (c])' = a] n (b])' n ((a] n (c])'. Thus (a A (b v c) = (a A b]' n (a A c]', and so 

{aA(bvc)}' =(aAb)'rt(aAc)'. 

(v)=(i); Suppose (v)holds. Let a,h,cES with aAb=0=aAc such that b v c exists. 

Then (a A b)' = S = (a Ac)'. So by (v), a A (b v c)}' = S. Thus, a A (b v c)}' = = (o]. 

Hence by Lemma 4.2.6, a A (b v c) = 0, and so S is 0-distributive.. 
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Theorem 4.2.8. Let A be a meet sub semi-lattice qf a 0-distributive nearlattice £ Then A is 

a semi-prime ideal. 

Proof: A0  is obviously a down set. Now let x, y E A°  and suppose x v y exists. Then 

xAa=0=yAb forsomea,bEA. Then xAaAh=0=vAaAh and aAhEA. Since Sis 

0-distributive so aAhA(xvy)= 0. Thus xv yEA0  and so A0  is an ideal. Now suppose 

pAq€A0  and pArEA°  and qvr exists. Then pAqAc=0=pArAd for some 

c, d E A. Thus p A q A C A d =0= p A r A C A d. Since S is 0-distributive 

pAcAdA(qvr)=0. That is pA(qvr)A(cAd)=0. Therefore pA(qvr)EA°  as 

CA d E A. Hence A 0  is semi-prime. 

* Theorem 4.2.9. Let S be a nearlatiice with 0. Then the following conditions are equivalent. 

(i) S is 0-distributive. 

'il For a proper filter A , there exists a minimal prime ideal disjoint to A but 

containing A°. 

(Th) For a non-zero element a E S, there is a minimal prime ideal containing a}0 

but not containing a. 

Proof: (i)=(ii); Since A is a proper filter, so A 0  is an ideal by Theorem 4.2.8. Now 

A n A°  =4). For if x e A n A°  then x E A and X A a = 0 for some a e A . This implies 

0 € A , which is a contradiction as A is a proper filter. Then by Lemma 3.3.3, there exists a 

maximal filter M z A such that M n A 0  = 4). Since S is 0-distributive, so by Theorem 3.2.5, 

M is a prime filter. This implies S - M is a minimal prime ideal containing A 0  and disjoint 

toA. 

(ii)=: (iii); is trivial by considering the filter [a). 

(iii)=(i); Suppose (ii) holds but S is not 0-distributive. Then there exists a,h,c €S with 

a A b = 0 = 0 AC and b v c exists but U A (h v c) # 0. Then by (ii) , there exists a minimal 
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prime ideal P such that a A (b v c) o P but {a A (b v c)}°  c P. Now  

hA[aA(bvc)]=aAh=0 and CA[aA(bvc)]=aAc=0 imply h,cE{aA(hvc)}° CP. 

Since P is an ideal, so b v c e P and hence a A (b v c) e P which gives a contradiction. 

Therefore S must be 0-distributive.. 

Theorem 4.2.10. Let S be a nearlattice with 0. Then the following conditions are equivalent. 

() S is 0-distributive. 

(1i) If A is a an ideal and fA i  r= i} is a family of ideals of S such that 

AnA1=(0}forallLihen Ar
Ll 

A i )=(0]. 

(i11) if a1 , 02,•••, Ofl € S such that a A a = = a A a,, =0, then 

(a}A((a1]v(02]v ... v(a,,])=(0]. 

Proof: (i)=(ii); By Lemma 1.3.1, we know that v A = u B, where B0  = u A1  and 
n=0 If 

B = X E S x :5 p v q for some i, j E B n-i'1  vj exists}. Here clearly B0  gBI  g;B2 ...... 

and each B are down sets. Now A r A ) = A r u B ) = 

(A r Ba ). Since 
(iEl (n=O n.0 

A A = (o] for each i, so A B0  = A n (iel 
A1 ) = u(AnA1 )= o}. Now we use the 

IEI 

method of induction. Suppose A mBk..l  =(o}. Then let XE A n Bk. This implies XE A and 

x:!~rvs for some r,sEBk  and rvs exists. Since AnBkl=(0], so xAr=0=xAs. 

Then by the 0-distributively of S, X A (r v s) =0. That is, x =0. Hence A tm Bk = (o]. 

00 

Therefore A r' B =(o] for all positive integer n, and so Ai.m(
ic-I 
v A)= (A B)=(0]. 

n=0 

(ii) => (iii); is trivial by considering A = (a}, A1 = (cz1  },....... A,, = (aj. 
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(iii) = (i); Let a, b, c S with a A h = 0 = a A C and b v c exists. Then by 

(iii) (a]A((h}v(CJ)= (oj. This implies (aA(b vc)]= (o], and so a A(h vc)= 0. Hence S isO-

distributive.. 

Theorem 4.2.11. Let S be a nearlattice with 0. Then the following conditions are equivalent. 

S is 0-distributive. 

For any filler A qf 5, A 0  is the inte!ection of all the minimal prime ideals 

di/oint from A. 

For all a,b,c €S, {a A(b v c)? = (a A by r(a AC)°  provided b v c exists. 

Proof: (i)=(ii) Let N be a minimal prime down set disjoint from A. If xEA 0 , then 

x A a = 0 for some a E A. Thus x A a E N. But N r A =4) implies a N. So x e N as N is 

prime. Therefore, A°  ç N. 

Nowlet y€S—A°. Then aAy#0 forall ae A. Hence A vy)-#S. Then byLemma 3.2.3, 

there exists a maximal filter M A v [y). Thus, S - M is a minimal prime down set such that 

(s - M)n A = 4) and y o S - M. Therefore, A 0  is the intersection of all minimal prime down 

sets disjoint from A. Since S is 0-distributive, so by Theorem 3.2. 10, all minimal prime down 

set are minimal prime ideals and this proves (ii) 

(ii)=(iii); Let A = [a)v([h)[c)). Suppose Q is a minimal prime ideal disjoint from A. 

Then Qr'4a)=4)and Qn[b)n[c)=4). Then either Qr'm([a)v[b))=4) or Qn([a)v[c))=4). 

If not suppose x e Q n ([a)v [b)) and y E Q n ([a)v [c)). Then x, y € Q and x ~: a A 

y ~: a A C. This implies a A b, a A c E Q. Since  Q n A =4), so ae Q. Thus b, c e Q as  Q is a 

prime ideal. Hence b V c€ Q. Also b V C€ [b)r [c), which contradicts the fact 

Q 'm [b) r [c) = . 
Therefore either Q n ([a) v [b)) = 4) or  Q r ([a) v [c)) = 4). Hence by (ii) 

([a)v ([b)r' [c)))°  ([a)v [b))°  r([a)v [c))° . Since the reverse inclusion is obvious, so 

([a)v ([b)r [c)))°  = ([a) v [h))°  n ([a)v [c))° . This implies [a A (b v c))°  = [a A h)°  [a A c)°  and 

\ so,  6  aA 
1
hv C)1

)O  = 1aAb)\O  (m IaAc)\O 
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(iii) = (i); Suppose (iii) holds. Let a, b.c E S with a A b = 0= a A C and b v c exists. Then 

(aAb)°  =S =(aAc)°. Hence by (iii) (aA(bvc))°  =S . It follows that aA(bvc)=0. Thus 

S is 0-distributive.. 
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4.3 Annulets in a 0-distributive Nearlattice 

Recall that in a 0-distributive nearlattice S, the ideal lattice i(s) is 

psuedocomplemented. The ideals of the form (xT ;x E S , are called the annulets of S. The 

set of all annihilator ideals of S in a Boolean lattice, denoted by A(s) ; while the set of 

annulets is denoted by A0(S). 

Proposition 4.3.1. Let S be a 0-distributive nearlattice. Then A. (s) is a dual nearlattice and 

i/is a dual suhnearlattice of A(S). Ivioreover A0  s) has the same largest element S = (O}* 

as A(S). 

Proof: We have already shown that A0 (S) is a join subsemilattice of A(S). Now suppose 

(x] (tf and (}* (if for some x, y,  I E S. Then (xf (T = ((-xf v(tf ) ((yf vtf) 

= (x A if y A tf = ((x A i) V (y A 1)1* as ((x A.) v (y A t)) exist by the upper bound 

property of S. This shows that A0 (S) has the lower bound property. Hence A0(s) is a dual 

nearlattice and so a dual subnearlattice of A(S).. 

Proposition 4,3.2. Let S be a 0-distributive nearlattice. A0  (s) has a smallest element (then 

of course, it is a lattice) if and only if S possesses an element d such that d}* = (o]. 

Proof: if there is an element d € S with d}* = O} then clearly 01 is the smallest element in 

An (S). 

Conversely, if A0  (s) has a smallest element (c/f, then for any x € S, 

(xf =(x}*v(d]* =(xAdf. Thus xAd=0 implies (x]*  =(of -S, sothat x=0, and hence 

(df = (0].. 
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A nearlattice S with 0 is called quasi-complemented if for each x e S, there exists 

yES such that xAy=0 and =  (Xr (-) Gr =(o]. 

A 0-distributive nearlattice S is called quasi-complemented if for each x € S, there 

exist x' € S such that X AX' = 0 and (x}v xl]* = 01. 

A nearlattice S with 0 is called sectionally quasi-complemented if each interval [o, x], 

x € S is quasi-complemented. 

Theorem 4.3.3. A 0-distributive nearlattice S is quasi-complemented if and only if for each 

x € S there exist y E S such that (x]** = yT. 

Proof: Let S be quasi-complemented. Suppose x € S then there exist)' € S such that 

x A y = 0 and (xf 
(,}* 

= (o]. This implies 
(y]* (]** 

Again X A y =0 implies (x] r' (yl= (01, so (x]  g 
(y}* 

Therefore (xj (y]
*** = 

(yj
•1* 

and 

hence (xr* = 
(]* 

Conversely, let x € S implies (xT* 
= (yr for some y € S. Then x E (xT* = 

implies x A y = 0. Also (x] = (yT implies (x]* (]* 
= (xT n(xT* = (0]and so S is quasi-

complemented. 

Theorem 4.3,4. Let S he a 0-distributive nearlattice. Then S is quasi-complemented if and 

only if it is sectionally quasi-complemented and possesses an element d such that dT = to]. 

Proof: Suppose S is quasi-complemented. Then there exists an element d such that 

o A d = 0 and (4 = (o] v (dD* = to]. We now show that an arbitrary interval o, x] is quasi-

complemented. Let y e [0,x]. Then there exists y' € S such that y A y' = 0 and 

((y1v&D* =(01. Put Z=XAy' . Then zAy=(xAy')Ay=XA(yAy')=O and 7€[0,x1. 

if w € [0, x] and (w] A ((y} v (:tJ = (o], then (w A y] = (0] = (w A :] = (w A X A y'] = (w A y']. 
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Thus (w}A((y]v(y'J= (0] as by Theorern3.2.5, f(S) is 0-distributive. Hence w = 0, and so 

[o, x] is quasi-complemented. 

Conversely, suppose S is sectionally quasi-complemented and there exists an element 

d ES with dr = CO]. Let x ES and consider the interval [0, d]. Then xAd e [ 0, d]. Since 

S is sectionally quasi-complemented, so there exists an element x' e 0,d] with 

A ci A x' 0 and tv  e [o, d} A ((x A d) v x') = o}= (0]. Now let ((x] v (xfl)*. Then 

:Ar=0 for all re(x]v(x']. Since (xAd)vx'E(x]v(x'], so :A((xAd)vx')=O. Thus 

:AdA(xAd)vx')=0 and :AdEO,d] ; so Ad=0. This implies ze(dT =0]. Hence 

= 0 and x Ad AX'  = 0 implies X A x' = 0. Therefore S is quasi-complemented 

Theorem 4.35. A 0-distributive nearlattice is quasi-complemented if and only if A0  (s) is a 

Boolean subalgebra of A (s). 

Proof: Suppose S is quasi-complemented. Then by Theorem 4.3.4, S has an element d 

such that (d] = (o]. Then by Proposition 4.3.2, A, (S) has a smallest element and so it is a 

sublattice of A(s). Moreover for each x e S there exists x' E S such that x A X' = 0 and 

Then (x}*v(x]* = (x Ax'l = (01* = S. Therefore A0(S) is a Boolean 

subalgebra of A(S). 

Conversely, if A0  (s) is a Boolean subalgebra of A (s), then for any x E S there exists 

yES such that (x]* =0] and (x]*vy]* =5. But (xjvy]* =(xAyr and xAy=O. 

Therefore, S is quasi-compJemented. • 

Let us introduce the following lemma, whose proof is trivial. 

Lemma 4.3.6. Let I = ø, x], 0 < x be an interval in a 0-distributive nearlattice. For a E I 

(aj' = {y € I I y A a = o} is the annihilator of (a] with respect to I. Then 

(i) if a,b E I and (a] (b] then (a]* (h] 
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(ii) ifwES, (wl*nl=(wAx]+., 

The above lemma is useful to prove the generalization of the proposition 2.5 in [13] by 

Cornish Let I = [0, x], 0 < x be an interval in a distributive lattice with 0. For a c= I 

(a] = {y € I I y A a = o} is the annihilator of (a] with respect to I . Then 

if a,b € I and (a] c: (hJ then (a}*  c: (br 

if weL, (w]*nl=(wAx]+. 

Theorem 4.3.7. For a 0-distributive nearlattice S. 4) (s) is relatively complemented if and 

only if S is sectionally quasi-complemented. 

Proof: Suppose A0(S) is relatively complemented. Consider the interval I = [0, x) and let 

a e I; then (x]*  c  (a] c (oj' = S. Since the interval [(xr, S] is complemented in A0  (s), 

there exists w e S such that (a]*  n (w]t = (xT and a]* v(w]* 
= S. Then (ar 

v(w]* 
= (a A wf 

gives aAw= 0. Then aAwAx= 0 and W A X E I. Moreover, intersecting (a]* n(w]* =(xf 

with (x] and using the Lemma 4.3.6, we have (a} r(w A Xr  = (o]. This shows that I is 

quasi-complemented. 

Conversely, suppose S is sectionally quasi-complemented. Since A0  (s) is 0-

distributive, it suffices to prove that the interval [(a]* , s] is complemented for each a € S. 

Let (b]* 
€ [(a]* , Sf Then (af g  (bf s, so (bj* = (ajv(b}* 

= (a A hr. Now consider the 

interval j = [o, a] in S. Then a A h € I. Since I is quasi-complemented, there exists w € I 

such that W A a A h = 0 and (w] m (a A hr = o] = This implies (w v (a A h)1 = 

as w v (a A h) exists in S. Then by Lemma 4.2.6 

(a]* 
= (w v (a A b)f = (wf r' (a A h]* 

= (wF n (hF. Also W A a A h = 0 we have W A h = 0, 

hence (wlf  vbT = S. Therefore A0  (s) is relatively complemented.. 
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4.4 a -ideals in a 0-distributive Nearlattice. 

a -ideals have been studied by Jayaram [31] in case of distributive lattices. Recently 

Noor, Ayub Ali and Is1am[4 1] have generalized those results for distributive nearlattices. In 

recent years many authors e. g. Ayub All, Hafizur Rahman and Noor{5] and Jayaram [31] 

have studied the a -ideals in a general lattice. 

Recall that an ideal I in a 0-distributive nearlattice S is called an a -ideal if for each 

x E 5, x € I implies x] 
** 

I. 

According to Cornish[]3] , for an ideal J in S we define aJ)= V I x€ 4. Also 

for a filter F in A0(S), c(F)= e S xj € F}. Clearly a(l) is a filter in Ao(S)and 

i(F)is a ideal in S. An ideal J in S is called an a-ideal if ä(a(J))= J. It is easy to cheek 

that the two definitions of a -ideals are equivalent. 

In this section we would like to study the a -ideals in a 0-distributive nearlattice. 

By Theorem 3.2.5, we know that for a non-empty subset A of S, A' is an ideal if S 

is 0-distributive and if A is an ideal, then A' = A* is the annihilator ideal. 

Theorem 4.4.1. For any ideal I in a 0-distributive nearlattice S the set 

je = e sj a]* for some a e I I  is the smallest a -ideal containing I and ideal I in 

S isana  -ideal  if and only fJ__je .  

Proof: Let x E 
je  Then (ar  c  (xT for some a e I and so (xF* (aT*. Suppose 

y €.(a]. Thus (yj c (aT*  and so (aT g (yJ.  This implies y € 
jC Therefore, (a]* je 

and so (xf* jC follows that 1e  is an a-ideal. Now suppose x€ I, Then by definition, 

x € 
je, and so 1 1e  Suppose K is an a -ideal containing I. Let x € 

J. Then 
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(aT (xJ for some a E Ic K. This implies (4* (ar c K as K is an a -ideal. Thus 

(r] (= K and so XE K. Hence I' K. That is je  is the smallest a-ideal containing 1 .0 

Theorem 4.4.2. Every annihilatior ideal in a 0-distributive nearlattice S is an a -idecil. 

Proof: Let I = A* be the annihilator ideal of S. Suppose y € I = A*. Then y AU =0 for 

all a E A. Then (y}A a]= (0] and so (y}c: taT.  Thus yT*  c (a]*** = (aT for all a E A. 

Hence, 
(4* c n (a]* =A* =1 and so I is an a-ideal.. 

a€A 

Theorem 4.4.3. For any ideal I in a 0-distributive nearlattice S the following are 

equivalent. 

I is an a -ideal. 

I=u(xf* 
xI 

Eorany XyES, if xEJ and(X] 
=(y}* 

 then y€I. 

Proof: (i)= (ii); Let XE I . Then (x]c I as I is an a - ideal. So, u (xT*  c: I. On the 
xI 

other hand, for any / E I, t e (t} implies t E U 
(4* 

x€I 

Thus I c: u (xT*,  and so (ii) holds. 
x1 

* ** 
(ii)= (iii); Let XE 1 and x}

* 

 = (y] . Then by (ii) Lv] =(Cr I, and so 

y€(xT i. 

(iii)= (0; Let XE I and t E xr. Then (] xT*  implies (x]* (11*. Now choose any 

r E S. Then (I• A /] (x]**.  Again (r At] c t]**. Hence (r A i] c (x}** r'i  t]** = (x A 
g}** 

.This 

implies (XAtT c(rArT. Thus (xAtT = (xAtT i(rAtT =((xAt)v(rAt)]*. 

W.  
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Now x Al EE I. So by (in), X A f)v (r At) G I. Then r At E 1 for all r E S. In particular, 

choose r = 1. This implies t E 1. Hence (xT* c  I and so I is an a-ideal.. 

Theorem 4.4.4. Let S be a 0-distributive nearlattice. A be a meet subsemilaulce of S. Then 

A0  is an a-ideal, where A°  = E S I  X A a = 0 for some a E Al. 

Proof: By Theorem 4.2.8 A0  is an ideal. Now let x e A0  and y E (xJ . Clearly x E A°  

implies x A U =0 for some a E A. But then a E (x] and hence y A U =0. This shows that 

y E A0, consequently (xT*  A° . Hence A0  is an a -ideal of S.. 

Theorem 4.4.5. Jf a prime ideal P of a 0-distributive nearlattice S is non-dense then P is 

an a -ideal. 

Proof: By assumption P* * (0]. Hence there exists x E P' such that x # 0, But then 

(xf gives (x]* DP as 
pp** 

 Furthermore if lE (x]*,then xAt=OEP. Butas p 

is a prime ideal, so t e P ( since P r' P = (01 =:> x 0 P). This implies (xf g P. Combining 

both the inclusions, we get P = (xT. Hence P is an annihilator ideal and so by Theorem 

4.4.2, P is an a-ideal.. 

Corollary 4.4.6. Every non-dense prime ideal of a 0-distributive nearlattice is an annuiet. . 

Lemma 4.4.7. For an a -ideal I of a 0-distributive nearlattice S, 

i = y e S I y]c xT* for somex EE 4. 

Proof: Let a € I. Then (a] aT* implies that a e € S I  (y] (xF for some x E I 
I- 

Conversely, let a E y E S (y] (xF for some x E 4. Then a}c for some x € I. 

Since I is an x -ideal,so (x]**  1 and so (a}cl.Hence aI.o 
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Now we include a prime Separation Theorem for o. -ideals in a 0-distributive 

nearlattice, This result is also a generalization of the Theorem 1 1 presented in [31] by 

Jayaram. 

Theorem 4.4.8. Let F be afliter and I be an a -ideal in a 0-distributive nearlauice S such 

that I n F = 4). Then there exists a prime a -ideal P I such that P n F = 4). 

Proof: Let x be the collection of all filters containing F and disjoint from 1. is non- 

empty as F E x Then by Lemma 3.3.3, there exists a maximal filter Q containing F and 

disjoint from I. Suppose Q is not prime. Then there exist f, g o Q such that f v g exists 

and f vg  e Q. Then by Lemma 3.3.4, there exist a E Q, h E Q such that a A f e I and 

h A g €1. Thus we have a A h Af E I and a A b A g E I. Then by Lemma 4.3.8, 

A h A f  IC x]' 
* 

and (a A b A g] 
* 

for some x, y c I. Choose any t e Q. Then 

(a AbA f]At]c: t}** Ax]. That is (a A bAt A f] (tAx]. Similarly, 

Thus we have (aAhAiAf]A(1Ax]* =(0]=(aAbAtAg]A(lAyf. That is 

(aAhAl]A(tAx]* A(tAylf A(f]=(0]=(aAbAtIA(tAxj A(tAy] A(g]. Since i(s) is 

0-distributive, it follows that (a A b At] A (t A X] A (t A yf A  ((f] v (gJ = (o]. That is, 

(a A b At]A((t A x)v(t Ay)r  A(f v g]=  (o], (IA x)v(t Ay) exists by the upper bound 

property of S and (t A x) v (t A y) E I as x, y € I. Therefore, 

(a A b A t]A(f v g]c_ ((t A x)v (t A y)], which implies by Lemma 4.3.8 that 

aAbAtA(fvg)E/. But aEQ,bEQ,tEQ , fvgQ imply aAbAtA(fvg)EQ 

which is a contradiction to Q n I = 4). Therefore, Q must be prime. Thus P = S 
- Q is a 

prime ideal containing I such that P r Q = 4). 

Let xeP. If x€ I, then (x]**  cl c P. Again if x€P — I, then by maxirnality of 

Q, there exists a E Q such that ax E I. Thus, (a]** A(x] g I çP. Since (a]**  T=  P. so 

(x]** c P as P is prime. Therefore P is an a -ideal. . 
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Proposition 4.4.9. Let S he a 0-distributive nearlattice, then the followmg statements hold: 

( For any ideal I in S, a(i) = xr I x € i}is afiiter in 4(s). 

(i) For afluter F in 4(5), ã(F) = e S I  (x]' E F I  is an ideal in S. 

iii) If J 12  are ideals in S then j C 12  implies that a(11 ) a(I2); and if I'', 1-72  are 

fiuiers in 4(5) then /3 g F2  implies that a(/3) 

(iv) The map I -+ aI) (= &.(a(I))} is a closure operation on the lattice of ideals, 

i.e. 

ãa(ãa(I))= ac41), 

IGãa(i), 

('c) I g I implies that ãa(i)c aa(J)for any ideal I,.J € S. 

Proof: (i) By Proposition 4.3.1, 4s) is a join semilattice with the lower bound 

property. Let (4', (y]' € a(I), and (t]'  € 4(s), where x, y € I, t E S. Then 

((trv(xr)A((trv(yr)=(tAxrA(1Ayr=((tAx)v(tA')rEa(I). as (tAx)v(tAy)EI. 

Also, if (xr  e a(I) and (tjf € 4(5) with x}' g (t}', then tT = trvxr = (t A 4' € a(i). So, 

a(I) is a filter in 4(s). 

Let x,y E (F) and t eS, then (x}',(y}' € F, and (1]'  € 4(5). Since F isa 

filter of 4(S), so tTvxT)Afrfvyr)E F implies that I  A X)V  (I A Y)T € F implies that 

(t A x)v(t A y)E ãF). Also, if x € (F) and t € S, with t:!~ x, then 
]* (xis and 

(xT € F. So, t € ã(F). Hence (F) is an ideal in S. 

Let (xf € a(I1 ), then x € 1 12  implies that (xf cx(I2 ) implies that 

a(J1 ) a(I,). Let XE ã(F), then xr E /3 F2 implies that xe (F2 ) implies that 

a(]-,.) C a(F,). 

is trivial.. 
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Proposition 4.4.10. The a - ideals of a nearlattice S with 0 form a complete distributive 

lattice isomorphic to the lattice qfjìlters,  ordered by set inclusion of (s). 

Proof: Let {i, } be any class of a - ideals of S Then ãa(I1 ) = I for all /. By Proposition 

4.4.9 (iv), n 1, ca(n i). Again ãa(r' i) ç ãa(I1 ) = I for all / implies that 

afr' i.) nJ,, and so a(n I. ) = n11 . Thus n11  is an a -  ideal. Trivially lattice of a - 

ideals is distributive. Hence a - ideals form a complete distributive lattice. . 

For an a - ideal I, ãa(I) = I. Also, it is clear that for any filter F of 4(5), 

ãce(F) = F. Moreover, by Proposition 4.4.9 (iii), both a and a are isotone. Hence the 

lattice of a - ideals of S is isomorphic to the lattice of filters. 

Corollary 4,4.11. Let S be a 0-distribtive lattice. Then the set ofprime a - ideals of S are 

isomorphic to the set ofprime filters o f  4(S). 

A 0-distributive nearlattice S is called disjunctive if for 0 !~ a <b (a,b E s) there is an 

element x e S such that a A X = 0 where 0 < x :~ h. It is easy to cheek that S is disjunctive if 

and only if (a]* 
= (hf implies a = b for any a, b € S. 

Proposition 4.4.12. In a 0-distirbutive nearlattice S the following condilions are equivalent: 

each ideal is an a - ideal. 

each prime ideal is an a - ideal. 

('iii) S is disjunctive. 

Proof: (I) = (ii); Suppose P is any prime ideal of S then by (i) P is an Cr - ideal, that is 

ãaP) = P. Let I be any ideal of S then we have I = r(P P i) implies 

implies that &4i) = I. So 

I is an a -ideal. 

(ii) => (i); is trivial. 
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(/) => (iii); For any x, y e S, (x] = (y]. Since (x] is an a - ideal, so by definition of a - 

ideal, y e (x]. Therefore, y :~ x. Similarly x :!~ y, and so x = y. Hence S is disjunctive. 

(iii) = (/); Suppose I is any ideal of S. By proposition 4.4.9, (x} ãa(I). For the reverse 

inclusion, let XE ãa(I). Then by definition (xr  e a(J), and so (x] =(y]  for some y E (4'. 

This implies x = y, as S is disjunctive. So XE I, and hence äa(l)= 1. Therefore / is an 

a- idealofS.. 

Lemma 4.4.13. A 0-disiribtuive nearlattice S is relatively complemented fand only if eveiy 

prime filter is an ultra Jilter (Proper and maximal.) 

Proof: By Theorem 2.11 in [41] we have S is relatively complemented if and only if its 

prime ideals are unordered. Thus the result follows.. 

We conclude the chapter with the following result. 

Theorem 4.4.14. Let S be a 0-distributive nearlatlice. Then the following conditions are 

equivalent: 

S is sectionally quasi-complemented. 

('ii) each prime a - ideal is a minimal prime ideal. 

(i1i) each a - ideal is an intersection of minimal prime ideals. 

Moreover, the above conditions are equivalent to S being quasi complemented if and only if 

there is an element d E S such that dT = o]. 

Proof: (i) = (ii); Suppose S is sectionally quasi-complemented. Then by Theorem 4.3.7, 

A0  (s) is relatively complemented. Hence its every prime filter is an ultra filter. Then by 

Corollary 4.4.11, each prime a - ideal is a minimal prime ideal. 

(ii) => (iii); It is not hard to show that each ideal of S is an intersection of prime a - ideals. 

This shows (ii) => (iii). 
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(iii) (ii); This is obvious by the minimality property of pnme a - ideals. 

Suppose (ii) holds. Then by Corollary 4.4.11, each prime filter of A(s) is 

maximal. Then by Lemma 4.4.13, A0 (s) is relatively complemented, and so by 

Proposition2.7 in [13,] by Cornish S is sectionally quasi-complemented.. 

-4- 
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0-MODULAR NEARLATTICE 

5.1 Introduction: 

J.0 Varlet [66] introduced the concept of 0-distributive and 0-modular lattices to study 

a larger class of non-distributive lattices. Recall that a lattice L with 0 is called 0-distributive 

if for all a,b,cEL with aAb=0=aAc imply aA(bvc)=0. A lattice L with 0 is called 

0-modular if for all a,h,cEL with c:!~a and 61Ab=0 imply aA(bvc)=c. Of course, 

every distributive lattice is both 0-distributive and 0-modular. Every pseudocomplemented 

lattice is 0-distributive but not necessarily 0-modular. Ayub Au, Hafizur Rahman, and Noor 

[5], Jayaram [30], Pawar and Thakare, [51] and Varlet [66] have studied different properties 

of 0-distributivity and 0-modularity in lattices and in semilattices. Recently Zaidur Rahman, 

Baziar Rahman and Noor [69] have studied 0-distributive nearlattices. In this chapter, we 

study some properties of 0-modular nearlattices. 

A nearlattice S with 0 is called a 0-modular nearlattice if for all a, h, c € S with c :!~ a, 

a A h = 0 imply a A (b v c provided b v c exists. Clearly this definition is equivalent to 

"for all i,a, b.c E S with C a a A h =0 imply a A A b) v(l A c)1= t A c ". Moreover it is 

easy to show that the definition of 0-modular nearlattice coincides with the definition of 0-

modular lattice when S is a lattice. Of course every modular nearlattice with 0 is 0-modular. 

Due to Varlet [66] we know that S with 0 is 0-modular if it contains no non-modular live 

element pentagonal sublattice including 0. Also S with 0 is 0-distributive if it contains no five 

element modular but not distributive sublattice including 0. Now we include some examples: 

0 

Figure 5.2 
0 

Figure 5.3 Figure 5.1 
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I 
Figure 5.6 

 

U 

Figure 5.5 

 

Figure5.4 

Figure 5.1 is 0-modular but not 0-distributive, Figure 5.2 is 0-distributive but not 0-modular, 

Figure 5.3 is both 0-modular and 0-distributive, figure 5.4 is 0-distributive but not 0-modular, 

Figure 5.5 is 0-modular but not 0-distributive, Figure 5.6 is both 0-modular and 0-distributive. 

A lattice L with 1 is called 1-distributive if for all a,b,c EL with a v b = a v c = 1 

imply a v (h A c)= 1. A lattice L with I is called 1-modular if for all a, b, CE L with c ~: a and 

avb=l imply av(bAc)=c. 

A lattice L with 0 is semi-complemented if for any a E L, (a # i) there exists 

b e L, b # 0 such that a A h = 0. Dually a lattice L with 1 is called dually semi-complemented 

if for any aEL, (a#0) there exists bEL, b:#l, such that avh=l. 

A lattice L with 0 and I is called complemented if for any a € L there exist b E L such 

that aAb=0 and avb=1. 

A nearlattice S with 0 is called weakly complemented if for any distinct elements 

a,beS,there exists CES such that a A c = 0 but bAc#0. 
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An element a of a nearlattice S is called meet prime if b A C c a implies either h :5 a 

or c :5 a. A non-zero element x of a nearlattice S with 0 is an atom if for any y E S. with 

0 :!~ y :5 x implies either 0 = y or y = x. Dually in a lattice L with 1, an element x is called a 

dual atom if for any yeL, x:!~y:~1 implies x = y or y=l. 

A non-empty subset F of a nearlattice S is called a filter if for x, y € S. x A y € F if 

and only if x € F and y E F. 

The set of all filters of a nearlattice is just a join semi-lattice. But in case of a lattice, 

the set of filters is again a lattice. 

c 

-V 
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5.2 0-Modular Nearlattice 

Theorem 5.2.1. A nearlattice S with 0 is 0-modular if for all a,b,c ES with c :!~ a, 

aAh=O,avh=cvh imply ac,providedavb exist. 

Proof: Suppose S is 0-modular and a,b,cES with c:!~a, a A b = 0 and avb=cvh. If 

a v b exists then c v b exists by the upper bound property. Then 

a = a A (a v b)= a A (b v c)= C. 

Conversely, let the stated conditions are satisfied in S. Let a, b, c E S with c :!~ a, 

aAb=0 and bye exists. Here c:!~aA(bvc) and bA[aA(hvc)]=hAa=0. Now 

aA(bvc):~bvc, so hvaAbvc):~bvc. Also c:-<aAbvc) implies 

b v Ea A (b v c&! b v c and so h v c = b v Ea A (h v c)j, so by the given conditions 

c = a A (b v c), which implies S is 0-modular. • 

Theorem 5.2.2, A near/al/ice S with 0 is 0-modular if and only if!he interval Eo, x] for each 

x E S is 0-modular. 

Proof: If S is 0-modular then trivially [0, x] is 0-modular for each x S. 

Conversely, let 0, x] is 0-modular for each x € S. Let a, b, c € S with a A b = 0, 

c ::~ a and b v c exist. Choose t = b v c. 

Then aA(bvc)=aA[(tAb)v(tAc)]=(tAa)A[(tAh)v(eAc)j=tAc=c as the interval 

[0,t] is 0-modular. 
4 

In a similar way we can easily prove the following result. 

Theorem 5.2.3. A nearlattice S with 0 is 0-distributive if and only if the interval 0, x] for 

each x € S is 0-distributive. • 

Theorem 5.2.4. For a nearlattice S with 0, if i(s) is 0-modular, then S is 0-modular, but the 

converse need not be true. 
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PrIc oof: Suppose i(s) is 0-modular. Let a, b, c e S with a A b = 0, c :!~ a and b v c exist. 

Then (a] A ((b} v (cD = (c] as i(s) is 0-modular. Thus (a A (b v c)] (c] and s 

a A (h V c)= c, which implies S is 0-modular. 

For the converse, we consider the nearlattice S given below which is due to Abbott [2]. 

a1  

Figure 5.7 

Here S is 0-modular. But in i(s), {0], tai1a1y1(a2,h1s} is a pentagonal sublattice 

including 0. So i(s) is not 0-modular. . 

Theorem 5.2.5. A nearlattice S with 0 is 0-modular if and only if/he lattice offilter of the 

interval 0, x] for each x E S is I-modular. 

Proof: Let S be 0-modular. Choose any x E S. Then [0, x] is also 0-modular. Let F, G, H be 

filters of the lattice [0, x] such that H D F, F v G = [o). 

Then Fv(GmH)cHisobvious. Let heH. Now FvG=[0) implies 0 = f A g forsome 

fEF and g€G. Thus hAf:~f and fAg=0 implies fA[gv(hAf)]=hA/' asS is 

0-modular. So hA f F v (G r H) and hence hE F v (G r' H). Therefore, 

F v (G tm H)= H and so the lattice of filters of [0, x] is 1-modular. 

Conversely, suppose the lattice of filters of [0,x] is 1-modular. Let a,b,c [O,x}, 

(x E s) such that c :!~ a, a A b =0. Then [a) ç  [c) and [a) v [h) = [o). So by i-modular 

property, [a)v ([b)A [c))= [c). Thus [a A (b v c))= [c) and hence CiA (b v c)= c This implies 

[0, x] is 0-modular. Therefore by Theorem5.2.2, S is 0-modular.. 
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As Theorem 5.2.6. if a nearlatlice S is 0-distributive and the interval 10, x] • for each x E S is 

semi-complemented, then the interval [0,  x] is / -distributive for all x E S. 

Proof: Let a, b, c e 10,  x] with a v b = x = a V C. Suppose a v (b A c) # x. Then there exists 

p#O in [0,x] such that pA(av(bAc))=0. Then aAp=0=(bAc)Ap. Thus 

pAbAa=0=(pAb)Ac which implies (pAh)A(avc)=O as S is 0-distributive. This 

implies 0= p A h A X = p A b. Then using the 0-distributivity of S again, p A (a v h) =0. 

That is, 0 = p A x = p, which gives a contradiction. Therefore, a v (h A c) = x and so [o, 4 
is 1-distributive. e 

Theorem 5.2.7. If a dual nearlattice S with I is ]-distributive and x, i] is dual semi- 

compiernentedfor each x E S, then the interval [x,  1] is 0-distributive for each x E S. 

Proof: This is trivial by a dual proof of Theorem 5.2.6. o 

A nearlattice S with 0 is called a semi Boolean lattice if it is distributive and the interval 

[o, x] for each x E S is complemented. 

Theorem 5.2.8. If a sectionally complemented nearlatlice S is 0-distributive, then it is semi 

Boolean. 

Proof: Let a <h for some a, b € S. Then 0 :~ a <h. Since [0, b] is complemented, so there 

exists ce[0,b] such that cAa=0, cva=b. Now ifhAc=0, then by the 0-modularity of 

S, b = h A (c v a)= a, which is a contradiction. Therefore, b A c # 0. This implies S is weakly 

complemented. Since S is also 0-distributive. Therefore, by Theorem5.2.3 and Varlet[66] 

corollary2.2 [o, x] is Boolean for each x € S and so S is semi Boolean. . 

Theorem 5.2.9. Let S be a 0-modular neariattice and F, U are two filters such that 

F v G = lo) and F n U = Ex) for some x e S. Then both F and G are principa/filters. 

Proof: Suppose FvG=[0) and FrG=[x). Then 0 ~ f A g for some f€F and geG. 

That is, fAg =0. Let b x A f and C = X A g. Then h E F and c e G. We claim that 



CHAPTER V 101 

F = h) and G = Ic). Indeed if for instance G # jc), then there exists a e G such that a <c. 

Then to,  a, c, b, 4 is a pentagonal sublattice of S. This implies S is not 0-modular and this 

gives a contradiction. 
x 

C 

V 

Figure 5.8 

Therefore, (5= ic). Similarly F = Ib) and so both F and G are principal.. 

Lemma 5.2.10. In a hounded semi complemented lattice L, every meet prime element is a 

dual atom. 

Proof: Suppose x is a meet prime element. Let x :~ y < 1. Then 0 :!-~ y < 1. Since L is semi 

complemented, so there exists I # 0 e L such that t A y =0. Since x y, so t A x =0. Since x 

is meet prime so this implies either t :!~ x or y :!~- x. Now I :5 x implies I = I A x = 0, which is 

a contradiction. Thus y :!~ x and so x = y. Therefore x is a dual atom. . 

Lemma 5.2.11. Let L be a bounded semi complemented lattice. If 0 is the meet of a finite 

number of meet prime elements of L, then L is dual semi complemented and 0-distributive. 

Proof: Let x be a non-zero element of L. Then by hypothesis, there is a meet prime element 

p in L such that x :~ p. Since L is semi complemented, so by lemma 5.2.10 p  is a dual atom 

and x v p  =1 . Therefore, L is dual semi complemented. Now suppose a A h = 0 = a A C for 

fl  some a, b, c e L. Let us assume that 0 = A p, where pi  are meet prime elements in L. 

Observe that for each i, p, ~: a A b and p ~! a A C. Then for each j, Pj  e Ea)  or 

pi € [b) n [c). Therefore for each i pi  e [a) v ffh) r [c)). This implies [a) v ([b) n [c)) = [o), 

consequently, a A (h v c) = 0 , and so L is 0-distributive.. 
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Lemma 5.2.12. Let L be a bounded 0-modular lattice. If b c L is a dual atom and U A b =0 

for some a # 0, (a E L), then a is an atom. 

Proof: Suppose 0< c :!~ a for some c E L. As c :5 a and a A b = 0, so by 0-modularity, 

a A (b v c) = c. Since 0 <c, it follows that b <b v c and so h v c = I as b is a dual atom. 

Consequently, a = U A 1= a A (b v c) = c by 0-modular. Therefore, a is an atom. s 

Lemma 5.2.13. Let S be a 0-modular nearlattice and O,x} is semi complemented for each 

XE S. If/or each x € 5, 0 is the meet ofa finite number of meet prime elements in O,x]. 

Then x is the join offinite number of atoms in [o, x]. 

Proof: Let 0 = Ap1 , where p, 's are meet prime elements in[0,x]. Observe that by lemma 

5.2.10, each pi  is a dual atom in [0, x]. Since each p, * x, and [0, x] is semi complemented, 

so there exists q j  E [°, x] such that pi  A q1  = 0, 1 = 1,2, - - - -, n. Also by lemma 5.2.12, 

each q1  is an atom in [0,x] . Now let c—vq1 . Then cvp1  =x as pi  is a dual atom for 

each i. As [o, x] is bounded, semi-complemented and 0 is the meet of finite number of meet 

primes, by Lemma 5.2.11, [0,x] is 0-distributive and so by Theorem5.2.5, [0,x] is 1- 

( n n 

distributive. Therefore, c v A Pi) = x. That is, c = c v 0= x. Hence q1  = x .o 

Theorem 5.2.14. A neariattice S with 0 is a semi Boolean lattice if and only if the following 

conditions are satisfied 

'z) [0, x] for each xe S is 1-distributive. 

(i12 S is 0-distributive. 

(iii) FqO,  xD is semi complemented for each x E S. 

Proof: From Jayaram [30], Theorem3, every [0,x], XE S is a finite Boolean algebra. 

Therefore, S is semi Boolean.* 
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We conclude this section with the following Theorem which also trivially, follows 

from Jayaram {30], Theorem4. 

Theorem 5.2.15. For a nearlattice S with 0. S is semi-Boolean if and only if the Jbllowing 

conditions are satisfied 

O, x] is semi complemented for each x E S. 

S is 0-modular. 

0 is the meet of a finite number of meet primes. • 



SECTIONALLY PSEUDOCOMPLEMENTED NEARLATTICE 

6.1 Introduction: 

Pseudocomplemented lattices have been studied many authors such as Davey [17], 

Gratzer and Lakser [22], Gratzer and Schmidt [25], Katrinak [32], Katrinak [33], but they 

have studied these lattices in presence of distributivity and modularity. Since the concept of 

pseudocomplementedness is not appropriate for a nearlattice, many authors including Noor, 

Rahman and Azad [44], Noor and Islam [45], Shuily Alditer and Noor [60], Shuily Akhter 

and Noor [61] have studied the relative pseudocomplement in a distributive nearlattices. On 

the other hand normal lattices and nearlattices have been studied by Cornish [11], Cornish 

[12], Noor, Rahman and Azad [43], Noor and Latif [47] in presence of distributivity. 

A lattice L with 0 is called normal if every prime ideal of L contains a unique 

minimal prime ideal. 

Similarly a nearlattice S with 0 is called a normal nearlattice if its every prime ideal 

contains a unique minimal prime ideal. 

Also we discuss p -algebra, S -algebra and D -algebra in this chapter. 

In section 2 of this chapter we studied the nonnal nearlattices in presence of 0-

distributivity. Here we included some characterizations of normal nearlattices. 

In section 3 we have included a nice characterization of sectionally S-algebras when 

[o, x] is 1-distributive for each x € S. We also showed that S is sectionally S-algebra if and 

only if S is sectionally D-algebra when {o, x} is 1-distributive for each x E S and S is 0-

modular. 

-4 
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6.2 Normal Nearlattice 

Let S be a nearlattice with 0 and P be a prime down set of S. We define 

0(P) = {x-  E S: X A y =0 for some y E S - .P}. Since P is a prime down set, so by Lemma 

1.2.10, S-P is a filter. Clearly 0(P) is a down set and 0(P) c: P. 

Lemma 6.2.1. If S is 0-distributive, then fhr a prime down set P, 0(1') /s a semi-prime 

ideal. 

Proof: Let a, h E 0(P). Suppose a v h exists. Then a A v = 0 = h A S for some v, s E S P. 

Thus a A V A S = 0 = h A V A S. Since S is 0-distributive, so v A S A (a v b) =0 and 

V A S ES—P as it isafilter. Hence avhEO(P). Hence 0(P) is an ideal as it is adown set. 

- Now suppose x A y, x,\ : E 0(P). Then x A y A V = 0 = X A A S for some v, .y E S - P. Then 

by 0-distributivity of S. [(x A y) v (x A z)] A V AS = 0 where v A S E S - P. This implies 

(x A y) v (x A:) E 0(P), we have 0(P) is a semi-prime ideal.. 

Lemma 6.2.2. Let S be a 0- distributive neariatrice and P be a prime down set. If Q is a 

ininimalprine down set containing 0(P) such that 0 c P ,then fior any y€ Q - F, there 

exists :Q such  that yA:EO(P). 

Proof: If this is not true ,then suppose for all :Q, yA:0(P). Set D=(S—Q)v[y). 

We claim that0(P)flD=. Ifnot,let IEO(P)flD. Then tE0(P) and t~!aAyfor some 

a E S 
- Q. Now a i\ y !!~ t implies a A y E 0(P), which is a contradiction to the assumption. 

Thus, 0(P) fl 1) = . Then using Zorn's lemma as in Lemma 3.2.3, there exists a maximal 

filter RDD such that, Rfl0(P)=4. 

Since 0(11) is semi-prime , so by Theorem 3.3.7, R is a prime filter. Therefore S - R 

is a minimal prime ideal containing 0(P). Moreover S - R c Q and S - R # Q as y E Q but 

y o S —1?. This contradicts the minimality of Q .Therefore, there must exist : o Q such that 

yA:EO(P).. 
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Proof of the following result is similar to the above proof. 

Corollary 62.3. Let S be a 0-distributive nearlattice and P, Q be distinct minimal prime down 

sets. Thenjbr any yEQ — P, there exists ZEP-Q such that yA:=0.e 

Lemma 6.2.4. Let P be a prime down set of a 0-ditributive nearlattice S. Then each minimal 

prime down set containing 0(P) is contained in P. 

Proof: Let Q be a minimal prime down set containing 0(P). If Q P, then choose 

y€Q — P. Then by Lemma 6.2.2, yA:EO(P) for some zQ. Here yA:Ax=Ofor some 

x o P. As 1' is prime, y A X o P. This implies z e 0(P) cQ,  which is a contradiction. Hence 

Qç P.e 

Theorem 6.2.5. If P is a prime ideal in a 0-distributive nearlattice S, then the ideal 0(P) is 

the intersection of all the minimal prime ideals contained in P. 

Proof: Let Q be a prime ideal such that Q c P. Suppose x € 0(P) .Then X A y =0 for 

some y € S - P. Since y o P. so y o Q. Then X A y =0 E Q implies x E Q. Thus 0(P) g Q. 

Hence 0(P) is contained in the intersection of all minimal prime ideals contained in P. Thus 

0(P) g=  fl{Q, the prime ideals contained in P} ç fl {Q, the minimal prime ideals contained 

in P)=X(say). 

Now, 0(P) c  X. If 0(1') # X, then there exists x E X such that x o 0(P). Then 

[x) fl 0(P) = 0. So by Zorn's lemma as in Lemma 3.2.3, there exists a maximal filter F [x) 

and disjoint to 0(P). 

Then by Theorem 3.3.7, F is a prime filter as 0(P) is semi-prime. Therefore S - P' is 

a minimal prime ideal containing 0(P). But x o S - F implies x o X gives a contradiction. 

Hence 0(/') = X = fl{Q, the prime down sets contained in 0(P)}.9 

A nearlattice S with 0 is called a normal nearlattice if its every prime ideal contains a 

unique minimal prime ideal. Cornish [11] has given nice characterizations of normal lattices 
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in presence of distnbutivity. Now we generalize a part of his result in case of a 0-distributive 

nearlattice. 

Theoren 62.6. For a 0-distributive nearlattice S. the following conditions are equivalent. 

(i) Every prime ideal contains a unique minimal prime ideal, i,e, S is normal. 

('i) 0(P) is a prime ideal fhr eve,y prime ideal P. 

Proof (i) = (ii); is a direct consequence of Theorem 6.2.5. 

(ii) => (i); Suppose (ii) holds. Let P be a prime ideal. Then by Lemma 6.2.4 and Theorem 

6.2.5, 0(P) is the intersection of all minimal prime ideals contained in P. Since by (ii) 0(P) 

is prime, so 0(1') is the only minimal prime ideal contained in P. Thus (i) holds. In other 

words, S is normal. e 

Two ideal P and Q of a nearlattice S are called comaximal if P v Q = S. A 

nearlattice S with 0 is said to be a comaximal nearlattice if any two minimal prime ideals of 

S are comaximal. 

Theorem 627. Eveiy comaximal nearlattice S is normal but the converse need not be true. 

Proof: Let P be a prime ideal. By Islam [62] Lemma 2.1.1, P conains a minimal prime ideal. 

Suppose P contains two minimal prime ideals Q and R. Since S is comaximal, so 

Q v R = S c: P which is a contradiction. Therefore, P must contain exactly one minimal 

prime ideal, and so S is normal. 

For the converse, consider the nearlattice S1  below 

a 

0 
Figure 6.1 
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Here the ideals (a], (s] and (b] are the only prime ideals. But only (a) and (b] are minimal. 

This shows that every prime ideal contains a unique minimal prime ideal. Thus S1  is normal. 

But S1  is not co-maximal as (a)v (bl# S1. 



6.3 P -algebra 

An algebra L=(L;A,v,*,0,1)  of type (2,2,1,0,0) is called p-algebra if (i) 

L= (L;A,v,*,0,l)  is a bounded lattice, and (ii) for all a € L, there exists an a' such that 

x :!~ a 4  if and only if x A a = 0. The element a is called the pseudo complemented of a .We 

have already mentioned that every p -algebra is 0-distributive. Figure 3.3 is an example of a 

0-distributive lattice which is not a p -algebra. Of course, every finite 0-distributive lattice is 

a p -algebra. 

A p -algebra L. is called an S -algebra if it satisfies the following Stone identity; for 

all aEL, a
* 
 va

4* 
 =1. 

The De-Morgan identity: for any a, b € L, (a A b)4 = a4  v b*  may not hold in a 

general p -algebra. Observe that the following lattice is a p -algebra , but 

(aAh)8  =1#c=a4 vb4 . 

1 

a 

0 

 >b 

Figure 6.2 

A p-algebra £ is said to be a D-algebra if for any a,b eL, (aAb)* 
= a 4  vb4 . 

A nearlattice S with 0 is called sectionally pseudocomplemented if [0, x] is 

pseudocomplemented for each x e S. 

11 
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A nearlattice S with 0 is called sectionally S-algebra if [0,x] is an S-algebra for each 

XE S. Thus for each t E [0,x] t v = x, where f is the relative pseudocomplement of I 

in [0,x}. 

A nearlattice S with 0 is called sectionally D-algebra if [0,xj is a D-algebra for each 

XES. 

Theorem 6.3A. Eveiy sectionally D-algebra is sectionally S-algebra. 

Proof: Let S be a sectionally D-algebra. Choose x € S. Then for any 1€ [0, x] 

v = (t A = 0 = x, where r' is the relatively pseudocomplemented of t in [0,x]. 

So S is sectionally S-algebra. e 

Using the following example Nag, Begum and Talukder shows that that not eveiy S-

algebra is a D-algebra in [38]. 

ac 

Figure 6.3 

Here S is clearly an S -algebra. But (q A r)* = c = w # p = h v a = v r*  implies that it is 

not a D -algebra.. 

Theorem 6.3.2. A sectionally p-algebra is a sectionally D-algebra if and only if 
(xv ) ++ = v y fbr each I E S and x,y E EO,i]. 



Proof: Let S be a sectionally D-algebra . Then for each x,y E E0,t], t e S 

(xvy) =( Ay) =x 

Conversely, let the given identity holds. Then for x,y 

(x A YY = (x A = A ) = v y = v = v 

Hence (r] is a D-algebra. 

For any p-algebra, £ define D(L) = E L a* = 0. It is well known that 8(1) is a 

filter in L. 

Following lemma is needed for further development of the chapter. 

Lemma 6.3.3 Let S be a 0-distributive lattice and I' be a prime ideal of S. If P is minimal 

then the following conditions hold: 

('i) XE P implies (x]*  LZ  p 

(i i) x E P implies (x]** p 

(iii) PnD(S)=. 

Proof : (i) Let P be minimal and let (i) fail, that is, (a 
j* 
 P for some a € P. Let 

D = (S - P) v [a). We claim that 0 o D. Indeed, if 0 E D, then 0= q A a for some 

q E S - P, which implies that q E (a/* c  P. a contradiction. Then (af*  cc D, for otherwise 

(0/=(a / A (a /* c: D. Hence Drm(a}*=Ø.  Then by Corollary 3.3.8, there exists a prime 

filter F D and disjoint to (a}*.  Hence Q = S - F is a prime ideal disjoint to D. Then 

Q c P since Q r (s - ) and Q # F, so a o Q, cotradicting the minimality of P. 

(ii) (x]* A (x] = (0] C P for any x E L; thus if XE F, then by (i), (xf F, implying that 

(xJ*4 c  F, as P is prime. 
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(iii) if a E P 1)(S) for some a € L, then (a}' = S P. a contradiction to (ii). Thus 

PrD(S)=4. e 

Nag, Begum and Talukder [38] have proved that every S -algebra in which the 

underlying lattice is both 0-modular and 1-distributive is also a D-algebra. Now in the 

following Theorem we generalize the result for a nearlattice. 

To prove this we need the following lemma which is due to Noor and Razia Sultana 

[40] 

Lemma 6.3.4. {Noor and Razia Sultana [40]} A lattice L with I is 1-distributive ifand only if 

tbr any a # 1 in L there is a prime ideal of L containing a. 

Theorem 63.5. Let S he a seclionally p-algebra. Suppose for each x E S, O, x} is 0- 

modular and I-distributive. Then the following conditions are equivalent. 

S is sectionally S-algebra. 

(i,) S is sectionally D-agehra. 

('iii) For x,y e EO,t] with XA y = 0 implies x4  vy £. 

(iv) For two minimal prime ideal P and Q qf t} (t € s), P v  

(v,) For any t e S evemy prime ideal of t] contains a unique minimal prime 

ideal of (4 

Proof: (i) (ii); Suppose S is a sectionally S-algebra. Let a,b E [0,x]. By (i) 

a4 va=x=b4 vh, Thus Since [o,xl is 1- 

distributive, so a 4  v h + v (a A b 
++ ) = x. Now a A h A a4  = 0= a A b A b 4  imply 

a,b:!~(aAh) and so avh:!~(aAb). Also 

(aAb) A(a Ah)=(aAb)A(aAb) =0. Thus by 0-modularity of LS, 

(aAb) Andso (i) holds. 
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(ii)= (iii); is trivial. 

(iv); Suppose (iii) holds. Let P and Q be two distinct minimal prime ideals of (t}. 

Let a E P 
- Q. Since a A a = 0, so a v a = t. Now by Lemma 6.3.3 a E P implies 

a P and EP as P is minimal and prime. Also a A a'  =OEQ and aQ imply 

€ Q as  Q is prime. Moreover Q. Thus a e Q - P and a 4  E P 
- Q. This implies 

t=a 4 va EPvQ and hence PvQ=(t]. 

(iv)=> (v); is trivial. 

(v) (); Suppose (v) holds. If S is not a sectionally S-algebra. Then there exists x € S such 

that [0,x] is not S-algebra. So there exists a € [0,x] such that a v a # x. Since [0,x] is 1-

distributive, so by Lemma 6.3.4, there exists a prime ideal R of (x] containing a v a. 

Then ((x] - R) v [a ) :# (4. For if (tx]— R) v Ea ) = tx] then 0 = q A a for some q e x] - R. 

Then q ::~ a ++ implies a ++ € (x] - R which is a contradiction. Thus ((x] - R) v [a 
+ ) # (x]. 

Then by Lemma3.2.3, there exists a maximal filter F containing ((x]—R)v [a), and it is 

also prime by Theorem 3.2.5. 

Similarly, let G be a (maximal) prime filter containing ((x]— R)v [a). We set 

P=(x]—P and Q=(xj—G. Then P,Q are minimal prime ideals of (x]. Moreover P#Q; 

because a € F implies a I' and so a E F; but a Q. Finally F, Q c R contradicts 

the condition (v). Therefore, a v a = I and so [0,t} is a sectionally S-algebra. • 

We conclude the thesis with the following characterization of sectionally S -algebra. 

Theorem 636 Let S be a sectionally p-algebra. Suppose for each x € S, o, 4 is 1- 

distributive. Then the following condition are equivalent. 

S is sectionally S-algebra. 
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(1i) Any two distinct minimal prime ideals of t] are coma.xiinal fin' each t e S. 

('iii,) Eveiy prime ideal in t] contains a unique minimal prime ideals of ct]; t E S. 

(iv) For each prime ideal P in ti], o() is a prime ideal Jhr each t E S. 

"v) For any x,yEIJ, xAV=0 implies x vy i Jbr each i€S. 

Proof: () = (ii); Suppose S is sectionally S-algebra. Let I' and Q be two distinct minimal 

prime ideals. Choose x E P 
- Q. Then by Lemma 6.3.3, x P but x € P. Now 

X A X = 0 € Q implies x E Q, as  Q is prime. Therefore x = v x E P v Q. Hence 

P v Q (x]. That is P and Q are comaximal. 

(ii)= (iii); is trivial. 

('v); follows from. Theorem 6.2.6. 

(v)= (v); Suppose (iv) holds and yet (v) does not. Then there exists a,b € (x] with 

0 A h = 0 but a v h # x. Then by Lemma 6.3.4, there is a prime ideal P containing 

a vb. If a€0(P), then a A r = 0 for some rEx] — P. This implies r:5a €P gives a 

contradiction. Hence a o(r). Similarly h 0 o(r). But by (iv) 0(P) is prime, and so 

a A h = 0 € 0(r) is contradictory. Thus (iv) (v) 

Since aa = 0, so by (i') va = x and x] is a sectionally S-algebra.. 

It should be mentioned that in presence of distributivity, Abbott has proved that a 

lattice L is normal if and only if for all X, Y €L with XA Y = 0, (x]* v(yf = L [2]. But in a 

0-distributive nerlattice this need not be tTue. For example, consider the nearlattice of Figure 

6.1. Here S1  is 0-distributive and only prime ideals are (a], (b] and they are in fact minimal 

prime ideals. Thus S1  is normal. Here a Ab = 0, but (a]* v(h]* =(b}v(a]= O,a,h,c,t)# s. 
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