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)• Abstract 

It is interesting to determine the states of the neural network (NN) when it falls into chaos. This 
is because chaos has been found in biological brain. This paper investigates the several chaotic 
behaviors of supervised neural networks using Lyapunov exponent (LE), Hurst Exponent (HE), 
fractal dimension (FD) and bifurcation diagram. The update rule for NN trained with back 
propagation (BP) algorithm contains the function of the form x (1-x,) which is responsible for exhibiting chaos in the output of the network at increased learning rate. The HE is computed 
from the time series taken from the output of a NN. One can comment on the classification of the 
network from the values of HEs. We have examined the chaotic dynamics of NNs for two-bit 
parity, cancer, and diabetes classification problems. It is found that the distribution network 
output is absorbed at the increase of size of the network. As a result chaosness is margiially 
reduced. 

V 



dr 
Contents 

Title page 

Declaration  

Approval  

Acknowledgement iv 

Abstract V 

Contents vi 

List of Figures viii 

List of Tables Ix 

Chapter1. Introduction ....................................................................................1 

1.1 Background........................................................................................... 

1.2 Motivation ............................................................................................2 

1.3 Thesis organization ..................................................................................3 

Chapter 2. Chaos and its Computation..................................................................4 

2.1 Chaos invariants ............................... ......................................................4 

2.2 Correlation Dimension and its Computation ............................................... ..... 4 

2.3 Computation of Correlation dimension .......................................................... 5 

2.4 Lyapunov exponent and its Computation.........................................................6 

2.5 Computation of Lyapunov Exponent..............................................................7 

2.6 Detection of unstable periodic orbits ............................................................12 

2.7 Hurst Exponent and its Computation ............................................................12 

Vi 



Chapter 3. Chaos and Neural Networks .............................................................16 

3.1 Neural networks ....................................................................................16 

3.2 The Multilayered Feed forward Neural Network .............................................16 

3.3 The Artificial Neuron..............................................................................17 

3.4 Back Propagation ..................................................................................18 

3.5 Verhulst Equation .................................................................................19 

3.6 Chaos in Back Propagation Learning ..........................................................19 

3.7 Relation of Back Propagation and the Verhulst Equation ....................................20 

3.7 .1 Explanation of Classification of Neural Network in Chaos with Hurst Exponent 20 

3.7.2 Network training .............................................................................21 

3.7.3 Basics of BP in chaos .......................................................................22 

3.8 Description of the Experiment and simulation result......................................22 

3.8.1 Using Hurst exponent .....................................................................23 

3.8.2 Validation using bifurcation diagram .....................................................26 

3.8.3 Validation with Lyapunov Exponents ....................................................26 

3.9 Other benchmark problems .....................................................................27 

Chapter 4. Conclusion ................................................................................. 31 

References...................................................................................................32 

I 

vii 



List of Figures 

Figure No Caption of the Figure Page number 

3.1 Model of Artificial Neural Network 16 

3.2 An Artificial Neuron Model 18 

3.3 Bifurcation diagram of output of 2-bit parity network. 26 

3.4 Bifurcation diagram of output of cancer problem. 

First pattern from Class 1, and 

First pattern from Class 2. 28 

3.5 Return map for cancer problem 29 

3.6 Bifurcation diagram of output of diabetes problem. 

Class 1, first pattern, and 

Class 2, first pattern 30 

viii 



List of Tab'es 
rKET 

- \\..aT.qtadts 

'• /* 

L" 

Caption of the Table Page Number 

Hurst Exponent and Fractal dimension of 2-bit parity 

Network for first output unit 24 

Lyapunov exponents for the time series obtained 

from two-bit (XOR) network 27 

Characteristics of Disease Classification Datasets 

Hurst exponent and fractal dimension of 

Cancer problem for first output unit 
4.. 

Hurst exponent and fractal dimension of diabetes problem 

for first output unit 30 

fable No 

3.1 

.2 

3.3 

3.4 

3.5 

ix 



Chapter 1 

Introduction 
1.1 Background 

Chaos is a behavior that only appears in dynamic systems. A dynamic system consists of a 

phase space which rcpresens all the possible slates of a system. For a dynamical system to be 

classified as chaotic following properties should hold: 

o Non-linearity 

o Recursiveness 

o Sensitivity to initial conditions 

o Topologically mixing 

o Dense periodic orbits 

A dynamic system often exhibits nonlinear characteristics. A recursive system is the system 

that repeats after a particular time period. Say for example, rainfall repeats every year and it 

is chaotic. Chaos is characterized by its extreme sensitivity to initial conditions. That is, two 

nearly-indistinguishable sets of initial conditions for the same system could result in two final 

outcomes which differ vastly from each other. 

Some dynamical systems are chaotic everywhere, but in many cases chaotic behavior is 

found only in a subset of phase space. A phase diagram of a periodic motion is called an 

orbit. The cases of most interest arise when the chaotic behavior takes place on an attractor, 

since then a large set of initial conditions will lead to orbits that converge to this chaotic 

region. Attractors that display chaotic features are called "strange attractors' and are very 

often fractal objects, some cross-section of them reveals similar structure on all scales. A 

fractal is a geometric object that can be divided into parts, each of which is similar to the 

original object. Fractals are generally self-similar and independent of scale. The conceptual 

roots of fractals can be traced to attempts to measure the size of objects for which traditional 

definitions based on Euclidean geometry or calculus fail. Fractal dimension is a static (or 

geometric) descriptor of the attractor, whereas the dynamics which formed the attractor is not 
described. 



Complexity has always been part of our environment and many scientific fields have dealt 

with complex systems, which display variation without being purely random. Complex 

systems tend to be high dimensional and non-linear but may exhibit low-dimensional 

behavior. The different parts of complex systems are linked and affect one another. A 

complex system may exhibit deterministic and random characteristics with the level of 

complexity depending on the system's dynamics and its interactions with the environment. 

One of the objectives in quantifying complex systems is to explain emergent structures, self-

organization. Phase transition is a property of self-organizing systems that move from static 

or chaotic states to a semi-stable balance between. Self-organized criticality is characterized 

by power-law distribution of events around the phase boundary. 

Complexity might be related to chaos, a periodic long-term behavior that exhibits sensitive 

dependence on initial conditions and has limited predictability of the dynamics. Certain 

nonlinear dynamical systems under certain conditions exhibit chaos and detection of its 

emergence in the system would allow active control at a low cost not only to attain highly 

positive outcome but also to prevent costly crisis situations. This can be accomplished 

through the sensitivity to initial conditions, meaning that two points in a chaotic system may 

move in vastly different trajectories in their phase space, even if the difference in their initial 

configurations is very small. 

1.2 Motivation 

Recently, a chaotic neural network constructed with chaotic neurons has received much 

attention because of its rich dynamic behaviors and potential application of the associative 

dynamics in optimization and information processing, etc. [1, 2]. There are speculations that 

chaos plays important roles in neural networks. However, a definitive study on the role of 

chaos in neural networks is still missing. The chaotic neural network has shown a 

nonperiodic associative memory, but its associative memory is realized in the chaos 

dynamics of the network. The outputs OF the network are non-periodic state which changes 

continuously and can not be stabilized in one of its stored patterns. One therefore meets 

difficulties in the application of the associative memory in information processing. The tasks 

of the brain include information processing and control. Some information processing or 

computing functions are now modeled by artificial neural networks (ANN), and almost none 

of the widely used ANNs require dynamical chaos as an essential element in their 

performance. 



Multilayer ked-ftrward neural networks are widely used and are based on minimization of 

an error function. The basic learning method with chaos for the feed-forward networks is the 

backpropagation (BP) algorithm .BP learning uses the gradient descent procedure to modify 

the connection weights such that the network can approximate an objective function. BP 

works well for many problems, such as classification and function approximation. 

Some methods have been proposed which embed chaotic dynamics into the neural network. 

Nozawa [3] showed the existence of chaos in Euler approximation of the Hopfield network 

by adding a negative self-feedback connection. Chaotic simulated annealing (CSA) is 

proposed by Chen and Aihara [4] and uses a sufficiently large negative self-feedback to a 

Hopfield neural network and gradually reduces the self-feedback. The detail analysis of chaos 

in the standard BP learning is still not studied. In this work, we study the chaos and its 

characteristics in the BP classification network. The major issues we discuss here are chaos 

formation, the time of chaos formation, effect of chaos on the network classification 

performance, explanation of classification using bifurcation diagram, analysis of network 

outputs using Lyapunov exponent, l-Iurst exponent and correlation dimension. 

1.3 Thesis organization 

In chapter 2, we have discussed about correlation dimension, Lyapunov exponent and I-Iurst 

exponent and their computation. These will be required for the computation of chaos from 

time series. In chapter -3, we have discussed about Neural Network, back propagation 

Yk 
learning, chaos formation. Verhaust equation, chaos in classification problems such as two- 

bit parity, cancer, diabetes, bifurcation and the interpretation of result. 
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Psh Chapter 2 

Chaos and its Computation 

This chapter describes chaos and how we can compute chaos from the time series. 

2.1 ('haos invariants 

Detecting the existence of deterministic chaos and its characteristics is one of the important 

studies from the viewpoint of time series analysis on chaos. For quantitative characterization 

of deterministic chaos, we have several quantities such as: 

Correlation dimension (Grassberger-Procaccia algorithm) 

Lyapunov exponents 

Hurst exponent 

In this chapter we consider the correlation dimension, Liapunov exponents, and the Hurst 

exponent. As for estimating the fractal dimensions, the Grassberger-Procacia algorithm [5] 

has been widely applied to real time series data. The Liapunov exponents and its spectrum are 

also important statistics to quantify deterministic chaos. Several methods of estimating 

Liapunov spectra have been proposed [6, 7, and 8]. Even if the observable is only a single-

variable time series in case of observing with enough number of data points, the Liapunov 
x exponent and its spectrum of the original dynamical systems can be estimated with high 

accuracy. The Hurst exponcnt plays a central role in characterizing Brownian motion, pink 

noise and black noise. The Hurst exponent can also be calculated for chaotic time series. 

2.2 Correlation Dimension and its Computation 

The correlation dimension (CD) provides inlbrmation on the minimum number of dynamic 

variables needed to model a system. It places a lower bound on the number of possible 

degrees of freedom. The correlation dimension indicates how likely it is to find another point 

within the distance a from a given point. The correlation dimension introduced by 

Grassberger and Procaccia (1983) allows an analyst to distinguish between determinism and 

stochasticity in a time-series. When the increase of the embedding dimension leads to 

convergence in the correlation dimension, the data are consistent with deterministic behavior. 

4 



As the embedding dimension goes to infinity the correlation dimension should not only 

saturate, but should also below, for the system to be chaotic. Short-term prediction will be 

possible within the parameters given by the Lyapunov exponents, but long-term prediction 

will not be possible. The correlation dimension may increase, when we increase the 

embedding dimension, but stays below the embedding dimension. Some long-term 

predictions are possible under these circumstances. If the correlation dimension keeps 

increasing in line with the embedding dimension, and stays close to the embedding 

dimension, no prediction is possible and the process is martingale. The Grassberger-

Procaccia algorithm, although most popular, exhibits sensitivity to variations in its 

parameters that diminish its practical application 19]. 

2.3 Computation of Correlation dimension: 

An often computed dimension in nonlinear time series analysis is the correlation dimension 

D2. which is a good approximation of the box-counting dimension D0:D2  :!~ Do. Grassberger 

and Procaccia show in their seminal contribution [10] that D2 can be evaluated by using the 

correlation integral C (e). which is the probability that a pair of points, chosen randomly in 

the reconstructed phase space, is separated by a distance less than e. 

The correlation integral can be approximated by the following sum, 

2 N N 
0(s—x, —xA),  (2.1) 

I ( ) J=1 i=fI 

where 0(.) is the Ileaviside function: 0(x) = I for x ~: 0 and 0 otherwise, and 1xi -xil stands 

for the distance between points x, and x1. Grassberger and Procaccia argue that the correlation 

dimension is given by 

logC, (e) 
= urn / irn . (2.2) 

e-() N- loge 

In practice, for a time series of finite length, the sum in Eq. (2.1) also depends on the 

embedding dimension m. Due to such dependencies, the correlation dimension D2 is usually 

estimated by examining the slope of the linear portion of the plot of log CN(e)  versus log e 

for a series of increasing values of m. For in < D2, the dimension of the reconstructed phase 

space is not high enough to resolve the structure of the dynamical state and, hence, the slope 

approximates the embedding dimension. As in increases, the resolution of the dynamical state 

in the reconstructed phase space is improved. Typically, the slope in the plot of log CN (e) 

versus log e increases with in until it reaches a plateau; its value at the plateau is then taken 

as the estimate of D2. For an infinite and noiseless time series, the value of m at which this 
5 



plateau begins to satisfy is in = Ceil (D2), where Ceil (D2) is the smallest integer greater than 
11 or equal to D2 [111. In a realistic situation, short data sets and observational noise can cause 

the plateau onset to occur at a value of in which can be larger than Ceil (D2). Even so, the 

embedding dimension at which the plateau is reached still provides a reasonably sharp upper 

bound for the true correlation dimension D2. 

After the delay time r is chosen, the next step is to compute the correlation integral CN (s) 

for a set of systematically increasing values of the embedding dimension m. A dimension 

estimate does not necessarily require such a one-to-one correspondence. For instance, 

consider a two-dimensional surface in a three-dimensional space. The projection of this 

surface onto a two-dimensional plane is still a two dimensional region. Thus, its dimension 

can be estimated even in a two-dimensional subspace. The D2 is equivalent to fractal 

dimension (PD). 

2.4 Lyapunov exponent and its Computation 

Financial economics reduces a complex system of exchange to one-dimensional function, the 

prices of assets. The financial prices are the observable result of the interaction of traders 

with different motivation, ability to process information, rationality etc. The complex 

dynamics of the system occurs in multivariate state or phase space that can be reconstructed 

from scalar observations. According to Takens' delay embedding theorem an existing 

attractor should unfold its dynamics in a phase space with dimensions larger than two times 

7 
the Hausdorff dimensions we discussed in the previous part. The embedding theorem though 

does not specify the choice of time delay to use for the reconstruction of the 

multidimensional vectors. This delay is determined by the Average Mutual Information. To 

determine the minimal sufficient embedding dimension we use the false nearest neighbor 

method [12]. False nearest neighbor method was introduced because of certain pitfalls of the 

correlation dimension estimation procedure, e.g. serial correlations and small sample 

fluctuations can easily be mistaken for nonlinear determinism. The false nearest neighbor 

method allows specifying a minimal temporal separation of valid neighbors. To quantify the 

stability of orbits around an attractor, it is necessary to calculate the Lyapunov exponents, i. 

e. the rates at which those orbits converge or diverge. Dechert and Gcncay [13] propose an 

algorithm for estimation of the Lyapunov exponents when the equations generating the chaos 

are unknown. A positive largest Lyapunov exponent indicates chaos. Bask and Gencay [14] 

propose a test statistic for the presence of chaotic dynamics using the Lyapunov exponents. 

6 



TO calculate the Lyapunov exponents lrotii time series, it is first necessary to reconstruct the 

state space from the experimental data record. The original time series data and its time-

delayed copies determine the topological structure of a dynamical system according to the 

Embedding Theorem [1 5]: 

Y(n) = [X(t),X(t + 1)..... X(i + ((i - 1)7,)1.  

Where Y (n) is the reconstructed d-dimensional state vector, X (1) is the observed variable. T 

is a time lag, and d is the embedding dimension. 

- Tis calculated from the first minimum of the Average Mutual Information (AMI) function 

[16]. 

d is computed with the Global False Nearest Neighbors (GFNN). 

The dynamical properties of the system are the same in both the original and reconstructed 

state spaces, providing multidimensional dynamic information from a one-dimensional time 

series. 

2.5 Computation of Lyapunov Exponent 

For a dynamical system, sensitivity to initial conditions is quantified by the Lyapunov 

exponents. For example, consider two trajectories with nearby initial conditions on an 

attracting manifold. When the attractor is chaotic, the trajectories diverge, on average, at an 

exponential rate characterized by the largest one-dimensional Lyapunov exponent [17]. This 

concept is also generalized for the spectrum of one-dimensional Liapunov exponents, 
)j (I 

1,2,..., n), by considering a small n-dimensional sphere of initial conditions, where n is the 

number of first order ordinary differential equations used to describe the dynamical system. 

As time t evolves, the sphere evolves into an ellipsoid whose principal axes expands (or 

contract) at rates given by the one-dimensional Lyapunov exponents. The presence of a 

positive exponent is sufficient for diagnosing chaos and represents local instability in a 

particular direction. Note that for the existence of' an attractor, the overall dynamics must be 

dissipative, i.e. globally stable, and the total rate of contraction must outweigh the total rate 

of' expansion. 'I'hus, even when there are several positive one-dimensional Lyapunov 

exponents, the sum across the entire spectrum is negative. In most case a differential equation 

or difference equation is not given only a data set from an experiment, i.e., a time series. 

7 



A large number of authors have discussed the calculation of the spectrum of the one-

dimensional Lyapunov exponents from time series 16,7,8]. There are two types of methods to 

find Lyapunov exponents. One is the Jacobian matrix estimation algorithm [6,7]. The 

Jacobian matrix estimation algorithm can find the whole spectrum of the one-dimensional 

Liapunov exponents. It involves Ihe least-square-error algorithm and the Gram-Schmidt 

procedure. Since this algorithm does not have built-in checks against noise, except the fact 

that the Liapunov spectrum must not depend on the number of near neighbors and the 

dimension of the reconstructed state space, it would be better to use other methods which 

have a built-in-check. The method is called the direct method for finding the largest 

Lyapunov exponent. As for estimating largest Lyapunov exponents, several algorithms have 

been already proposed. These algorithms can be called a direct method, since they calculate 

the divergence rates of nearby trajectories and can evaluate whether the orbital instabilities 

are exponential on t or a power oft. 

The direct method of Wolf is a follows. Let x.xl,x2,  ... ,xTl be a scalar time series. In the 

fixed evolution time program the time step A = k+l 'k between replacements is held 

constant and normalized to 1. A d,-dimensional phase portrait (rig embedding dimension) is 

reconstructed with delay coordinates, i.e., a point on the attractor is given by 

x1  

Let denote a norm, for example the Euclidian norm, the max norm or sum norm. Using the 

selected norm we find the nearest neighbor vector to the initial point vector 

x (x, , ..... ) 

We denote the distance between these two points by d(0). At a later time 1, the initial length d 

(0) will have evolved to length d'(l). The length element is propagated through the attractor 

for a time short enough so that only small scale attractor structure is likely to be examined. If 

the evolution time is too large we may see ci' shrink as the two trajectories which define it 

pass through a folding region of the attractor. This would lead to an underestimation of the 

largest one-dimensional Lyapunov exponent 2. We now look for a new data point that 

satisfies the following two criteria: 

Its separation, d(1), from the evolved reference point is small, 

And the angular separation between the evolved and replacement elements is small. 

9 



If an adequate replacement point cannot be fbund, we retain the points that were being used. 

This procedure is repeated until the reference trajectory has traversed the entire data file, at 

which point we estimate the largest one-dimensional Lyapunov exponent as 

Al 

 log 
d'(k) 

IV k=I d(k — l) 

where M is the total number of replacement steps. In the limit of an infinite amount of noise-

free data our procedure alw.iys provides replacement vectors of infinitesimal magnitude with 

no orientation error, and 2 is obtained by definition. 

The algorithm proposed by Kantz 1181 evaluates the following quantity 

5(r) = iln[d(xl .xk ; T) 

where T is the number of data points from the scalar time series, x, (is a reference point, Xk 

is a E-near neighbor of x,. M is the number of nearest neighbors and v is the relative time and 

d(x,,x k ;r) is the distance between Xir  and x k4 . lithe analyzed time series is produced 

from nonlinear dynamical systems with a positive largest one-dimensional Lyapunov 

exponent, there is a positive constant slope of the function S(r) which corresponds to the 

largest one-dimensional Lyapunov exponent. 

a. Embeddiiig Methods 

Let z, (t) (i = I,.. .,1) be a set of I measurements. In principle, the measured time series come 

from an underlying dynamical system that evolves the state variable in time according to a set 

of deterministic rules, which are generally represented by a set of differential equations, with 

or without the influence of noise. Mathematically, any such set of differential equations can 

be easily converted to a set of first-order, autonomous equations. The dynamical variables 

from all the first-order equations constitute the phase space, and the number of such variables 

is the dimension of the phase space, which we denote by M. The phase-space dimension can 

in general be quite large. For instance, in a fluid experiment, the governing equation is the 

Navier Stokes equation which is a nonlinear partial differential equation. In order to represent 

the system by first-order ordinary differential equations via, say, the procedure of spatial 

discretization, the number of required equations is infinite. The phase-space-dimension in this 

case is thus infinite. 

9 



However, it often occurs that the asymptotic evolution of the system lives on a dynamical 

- invariant set of only finite dimension. The assumption here is that the details of the system 

equations in the phase space and ol the asymptotic invariant set that determines what can be 

observed through experimental probes are unknown. The task is to estimate, based solely on 

one or few time series, practically useful statistical quantities characterizing the invariant set, 

such as its dimension, its dynamical skeleton, and its degree of sensitivity on initial 

conditions. The delay-coordinate embedding technique established by Takens provides a 

practical solution to this task. In particular, Takens' embedding theorem guarantees that a 

topological equivalence of the phase space of the intrinsic unknown dynamical system can be 

reconstructed from time series, based on which characteristics of the dynamical invariant set 

can be estimated. Takens' delay-coordinate embedding method goes, as follows. From each 

measured time series u,(t)(i = I.....1), the following vector quantity of q components is 

constructed. 

it, (1) = {u, (I),u, (1 -m- r) ...... u, [1 + (q - l)r] }, 

where r is the delay time. Since there are / time series, a vector with in q/ components can 

be constructed, as follows: 

X(t) = {u1 (t),u, (1).....ii, (t)} 

= {u1 (1),u1 (I + r),...,u1  [1+ (q -  

{u, (i),u,(i + r)....,112 [1 + (q - I)r] }..... 

{u1 (t),u,(f + r)..... z 1 [t + (q —1)r]}, 

where m is the embedding dimension. Clearly, the delay time t and the embedding dimension 

m are the two fundamental parameters in the delay coordinate embedding method. 

b. Delay time r: 

In order for the time-delayed components u,(t+/r) (j=l,...,q-1)to serve as independent 

variables, the delay time r needs to be chosen carefully. Roughly, if r is too small, then 

adjacent components u,(t) and u,(t+r) will be too correlated for them to serve as 

independent coordinates. If, on the other hand, r is too large, then neighboring components 

are too uncorrelated for the purpose. lmpirically, one can examine the autocorrelation 

function of 21,(t) and decide a proper delay time [19]. In particular, one computes 

10 



c(T) = 
(u,(i)u,(i ±T)) 

- (u(i)) 

where () stands for time average. The delay time t can be chosen to be the value of T such 

c 
that-----

(T)  
e 

C(0) 

c. Embedding dimension ni 

In order to have a faithful representation of the true dynamical system, the embedding 

dimension m should be sufficiently large. Takens' theorem provides a lower bound for in. In 

particular, suppose the dynamical invariant set lies in a d-dimensional manifold (or subspacc) 

in the phase space. Then, ifn > 2c1, the in-dimensional reconstructed vectors x(t) have a one-

to-one correspondence to the vectors of the true dynamical system. This result can be 

understood by the following simple mathematical argument. Consider two smooth surfaces of 

dimensions d, and d2  in an M-dimensional space and examine the set of their intersections. 

The question is whether they intersect generically in the sense that the intersections cannot be 

removed by small perturbations to either surface. The natural approach is then to look at the 

dimension d1  of the intersecting set, which is 

=(11  + C12 - Iv! 

Ifd1  ~! 0, the intersection is generic. For example, consider the intersection of two one- 

dimensional curves in a two-dimensional planc: cli - - d2 / and Al = 2. We obtain: c/j = 0, 

which means that the intersecting set consists of points, and the intersections are generic 

because small perturbations cannot remove them. lf however, M = 3, then d, < 0 , which 

means that two one-dimensional curves do not intersect generically in a three-dimensional 

space. For the case of embedding, we can ask whether the dynamical invariant set would 

intersect itself in the reconstructed phase space. In order to obtain a one-to-one 

correspondence between points on the invariant sets in the actual and reconstructed phase 

spaces, self-intersection must not occur. Thus, taking d1  = d2  = d and M = m, no self-

intersection requires d, < 0 , which means that in > 2d. 



While Takens' theorem assumes that the relevant dimension d of the set is that of the 

manifold in which the set lies, this dimension can be quite different from the dimension of the 

set itself, which is physically more relevant. 

2.6 Detection of unstable periodic orbits 

A chaotic set has embedded within itself an infinite number of unstable periodic orbits. A 

fundamental feature that differs a deterministic chaotic system from a stochastic one is the 

existence of an infinite number of unstable periodic orbits which constitute the skeleton of the 

chaotic invariant set. 

At a fundamental level, unstable periodic orbits embedded in a chaotic invariant set are 

related to its natural measure, which is -the base for defining physically important quantities 

such as the fractal dimensions and Lyapunov exponents. At a practical level, successful 

detection of unstable periodic orbits indicates the deterministic origin of the underlying 

dynamical process. 

One of the most important problems in dealing with a chaotic system is to compute long term 

statistics such as averages of physical quantities, Lyapunov exponents, dimensions, and other 

invariants. The interest in the statistics roots in the fact that trajectories of deterministic 

chaotic systems are apparently random and ergodie. These statistical quantities, however, are 

physically meaningful only when the measure being considered is the one generated by a 

typical trajectory in the phase space. This measure is called the natural measure and it is 

invariant under the evolution of the dynamics [20]. 

2.7 Hurst Exponent and its computation 

Einstein discovered that the distance covered by a random particle undergoing random 

collisions from all sides is ffirectly related to the square root of time. Thus 

R=kT' 2  

Where R is the distance covered, k is some constant and T is the time index. Hurst proposed a 

generalization of Brownian motion that could apply to a broader class of time-series. His 

generalized equation is 

RIS A'/ 

\Vhere RI'S - resealed range (tange/standard deviation), 7' -' index for number/time of 

observations, K = some constant for the time-series, H = Hurst exponent. Thus, Hurst 
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generalized the T'12  law to a h1 
 law. Analogously, Brownian motion can be generalized to 

fractal Brownian motion. Fractal Brownian motion exists whenever the Hurst exponent is 

well-defined. 

The R/S value is called the resealed range and is a dimensionless ratio formed by dividing the 

range by the standard deviation of the observations. It scales as one increase the time 

increment by a power law value equal to H. This is the key point in Hurst's analysis: by 

rescaling, Hurst could compare diverse data points, including periods of time that may be 

separated by many years. In addition, this type of analysis can be used to describe time series 

that possess no characteristic scale. This equation has a characteristic of fractal geometry: it 

scales according to a power law. In the lung, for instance, the size of each branch decreases in 

scale according to an inverse-power law. Likewise, the R/S function increases as a power of 
H. If the data of the system being measured were independently distributed, or followed a 

random walk, the equation would lit with Einstein's "1' to the one-halV' rule, and the value of 

the Hurst exponent would be 1/2. 

There are three possibilities for values of H. If II = 0.5 the system follows a random walk. 

We recover the original scenario of Brownian motion. If not, the observations are not 

independent; each carries a memory of events which precede it. 

• H = 0.5 

independent series. (Brown noise or Brownian motion) The series is a random walk. 

• 0:!~H<0.5 

Antipersistent series. (Pink noise) The system is covering less distance than a random walk. 

Thus, it has a tendency to reverse itself often. If increasing, it is more likely to be decreasing 

the next period; if decreasing, it is more likely to be increasing. 

•O.5<H<1 

Persistent series. (Black noise) 'l'lijs series covers more distance than a random walk. Thus, 
if the system increases in one period, it is more likely to keep increasing in the immediately 

following period. 

Thus the Hurst exponent is a useful measure for fractal distributions. There is no 

characteristic time scale in such a distribution. I lence an exponential, or relative, relation 

dominates over a polynomial, or absolute, characterization. 

The following statements are believed equivalent for a time-series: 

1. The l-Iurst exponent is well-defined for the time-series. 
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The time-series exhibits fractional Brownian motion. 

The probability distribution is stable (Parctian or Levy). 

The slope of the log-log R/S graph is constant. 

The value 1/H is the fractal dimension of the probability space. The random walk has a 

fractal dimension (capacity) of 1/0.5 = 2. Thus it completely fills the phase space. The value 

2— H is the fractal dimension of the time-series. The value 2H + 1 is the rate of decay of the 

Fourier series. This means the Fourier coefficients decrease in proportion tol/ j(211 

Estimations ofHcan be found by taking the slope of the log/log graph of R/S versus 7', where 

log(R/S) = 1og(kT" ) = log(k) + II log(T). 

If there is no long term memory present, scrambling the data should have no effect on this 

• estimate of H. If, however, we destroy the structure by randomizing the data points, the 

estimate of H should be much lower. Therefore, the I-lurst exponent is a meaningful mcasure 

of the memory of a system. 

Algorithm for the Hurst Exponent: 

In the following we use the notation as in our C++ program. Let 

be a given time series of length 7' We divide this time period into a contiguous sub periods of 

length n, such that 

an 7 

We label each sub period J. withj =0, 1, 2, a - 1. Each element in Ij  is labeled N[j][k] such 

that k = 0,1,2,..., ii - 1. Thus N is a x  n matrix. For each I of length n, the average value is 

defined as 

I 
E, :=—N[/][k] 

k=t) 

where Ej is the average value of the zi contained in sub period J of length n. The time series 

of accumulated departures X[/][k] from the mean value for each sub period I is defined as 

X[j][k] :=Z (N[j][i]— E,), 1= 0,1,2,...,a-1, k = 0,1,2,...,n—1 

Thus X is also an a x  n matrix. The range is defined as the maximum minus the minimum 

value of XIj][k]  within each sub period 1 

R, := max(X[ j][k]) - rnin(X[/][k]) 
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where k = 0,1,2,. . ., n —1. The sample standard deviation calculated for each sub period I is 
PE 

I n-I  
(-(NI/I[kI- F 2 )112 ) 

k=I) 

Each range, R, , is now normalized by dividing by the Si  corresponding to it. Therefore, the 

resealed range for each I, sub period is equal to R, / S1  . We had contiguous sub periods of 

length n. Therefore, the average R/S value for a fixed length n is defined as 

I a RIJ 

U J =Q S1  

The length n is increased to the next higher value, and (T - 1) In is an integer value. We use 

values of n that include the beginning and ending points of the time series, and steps 

described above are repeated until n = (T - 1)12. 

We can now apply 

(R/S) = C/2 

or 

log((R/S),) = log(c) + H log(n) 

by performing an ordinary least squares regression on log(n) as the independent variable and 

log(R/S), as the dependent variable. The intercept is the estimate for log(c), the constant. 

The slope of the equation is the estimate of the Hurst exponent, H. In general, one runs the 

regression over values of n ~: 10. Small values of 11 produce unstable estimates when sample 

sizes are small. 
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Chapter 3 
- 

Chaos and Neural Networks 

3.1 Neural networks 

Neural networks are mathematical models based on observations that have been made on 

biological neuron cells. One has to keep in mind that artificial neural networks are a mere 

simple and small model of the brain neuron. The brain is composed of approximately 1010  

neurons, each one of which can have up to 10000 connections to other neurons; there are 

different types of neurons and around 50 different chemicals that are used for transmission of 

signals. In general, a neural network is in assembly of interconnected artificial neurons. Each 

neuron has inputs and produces a single output which then forms the input for other neurons 

in the network [21]. 

3.2 The Multilayered Feedforsvard Neural Network 

There exist different types of neural networks depending on the topology of the connections. 

A multilayered feedforward neural network is composed of several layers. Each layer 

consists of several neurons parallel to each other and is fully connected to the neuron of the 

layers above and below. Each neuron receives for input the output values of all the neurons of 

the layer below. The output produced serves as an input for all the neurons of the layer above 

as shown in Fig.3.1. 

()utput 

)utput Layer 

1-Jidden layer(s) 

Input Layer 

-rhieshold 
Input 

Fig 3.1: Model of Artificial Neural Network 
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The input signal propagates through the network in a forward direction, on a layer-by layer 

basis. The layers in-between, called the hidden layers, sequentially compute their outputs and 

pass them on as inputs to the next layer until the top most layers; the output layer is reached 

which produces the actual output of the network. 

3.3 The Artificial Neuron 

Figure 3.2 shows the niatheniatical model of the biological neuron. The biological neuron, 

simply described, is a cell that receives electrical signals, by chemical means, from 

extensions that are called dendrites. These signals are weighted by the strength of the 

connection to the cell. An artificial neuron has several input lines and one output line. To 

each input line a weight is assigned. The input of the line is multiplied with that weight value. 

Then the products of each incoming line are summed to produce the activation value. In 

general, there are three types of activation functions. First, there is the Threshold Function 

which takes on a value of 0 if the summed input is less than a certain threshold value (v), and 

the value I if the summed input is greater than or equal to the threshold value. Secondly, 

there is the Piecewise-Linear function. This function again can take on the values of 0 or I, 

but can also take on values between that depending on the amplification factor in a certain 

region of linear operation. Thirdly, there is the sigmoid function. This function can range 

between 0 and 1, but it is aso sometimes useful to use the -1 to 1 range. An example of the 

sigmoid Function is the hyperbolic tangent Function. then the threshold value of' the neuron 

is subtracted from the activation value and the result is used in a non-linear function which 

produces the output of the neuron [22]. We will use the sigmoid function Jg(X) -__1  
I+e

- 

(fig 3.2). The parameter corresponds to the steepness of the transition from 0 to 1. Tlus, to 

sun1marize, this is how the output of the neuron is computed: 

• Activation value: A = ii',I, + 0 

• Output value: 0 = J(A) 
1 

l+e 
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ii' '2 

Figure 3.2: An Artificial Neuron Model 

\Vhere Ii  and w, are the input value and the weight that correspond with the ith input line of 

the neuron. Tis the temperature and corresponds to the steepness of the sigmoid function. 

3.4 Back Propagation 

Back propagation was first proposed by McClclland and Rumelhart [23] and is the widest 

used algorithm for training neural networks today. This learning is called supervised learning. 

This means that a supervisor supplies the neural network with target value(s) that correspond 

to the input pattern that is presented. These are used to compute the error of the actual output. 

This error information is then used by the learning algorithm to determine how the weights 

are to be adapted in order to obtain an output closer to the desired one. Hopefully, the 

algorithm will converge to correct weight combination. We rely on the generalizing ability of 

the neural network to produce the right output on similar inputs. The generalizing ability is 

related to the topology of the network, the weight combination reached and also the 

representativeness of the learning set that was used to train the network. 

In this version of the back propagation just described the weights are adapted after each one 

of the patterns of the set is fed to the network. We call this non-epoch learning. In epoch 

learning the algorithm is slightly different. The computations are the same, with the only 

difference that the adaptation of the weights is done after the whole set is used. This means 

that at each step, the errors and the adaptations are computed but they take place after the 

whole set is used. This is of course only possible when the whole set is known. 
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3.5 Verhulst Equation 

x1  =av,(1—x,) 

This family of equations with a as a parameter is called logistic maps. The parameter gives 

the steepness of the function and is a very important for the behavior of the function as we 

shall see. 

We divided the description in different regions depending on the value of the parameter a: 

a 0 <a <1: In this region the iteration converges to the trivial solutionx0  = 0. 

a I <a <3: The iteration converges to the non-trivial solution x1  = 1 - 1/a for any 

start value in (0, 1). It does so the fastest when a = 2 and the first derivative 

lv(x) 
of v(x), 

c 
is equal to zero. 

dx 

o 3 <a <3.569999: We pass value 3 something interesting happens. The iteration 

no longer converges to a single value but a so called bifurcation occurs and the 

iteration converges to 2 values periodically. As we keep increasing a more and 

more bifurcation'; keep appearing faster and faster. The bifurcations continue until 

reaches the value 3.5699999 where we enter the chaotic regime. 

o 3.5 69999 < a <4 The iterative process does not settle to predictable periodic 

values but becomes unpredictable. For example we have a periodicity of 3 for 

a = 3.839 and one of period 5 fora = 3.74. These regions also undergo 

bifurcations when is increased. 

3.6 Chaos in Back Propagation Learning 

As mentioned in the previous chapter the back propagation algorithm app ears to have similar 

behavior with the verhulst equation. In [24] the authors showed that by varying the learning 

rate, the output of the network exhibits a period doubling route to a chaotic regime while 

learning in a similar manner the logistic map does. Others have also showed a relation of 

neural networks and chaotic behavior [25, 26]. Wang showed that chaos can occur even in a 

simple neural network consisting of two neurons, one inhibitory and one excitatory. This was 

proved analytically, 
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3.7 Relation of Back Propagation and the Verhuist Equation 

Before we continue with the experiments, we will first present the relation of the back 
1 

propagation algorithm and the verhulst equation. If we look at the adaption rule for weights 

and thresholds in the back propagation algorithm we see a similarity with the verhulst 

equation. The variable corresponding to the variable in the verhulst equation is in this case 

the learning rate. 

X1.1 = (LV, (1 - 

Adaptation rule for output nodes: 

= /3(i, - 0,,, )0,,, (1 - 0m )0, 
. 

' 13 

and for hidden nodes: ) 

A,,W1, = /l( 8  pk111k1 )O, (I - 0, )O, - 

The interesting part in the adaption equation is the 0(1 - 0) which is the same as the term in 

the verhulst equation. In the second equation the weight W is a part of the equation for0, 

namely o = i/(i + efhü1)  which makes the whole a recursive system. The changes in W, 

affect the output O and 0, in turn affects the adaption of W,. Because of this we expect a 

similar behavior when we look at the values that the network produces while the back 

propagation is used for teaching the network. 

3.7 .1 Explanation of Classification of Neural Network in Chaos with Hurst Exponent 

It is very difficult to compute classification of the neural network (NN) when it falls into 

time out condition during chaos. The update rule for NN trained with back propagation 

(BP) algorithm involves the function of the form x(1-x) which is responsible for 

exhibiting chaos in the output of the network at increased learning rate. The HE is 

computed from the time series taken from the output of a NN. The distinct values of 1-IE 

for different input patterns suggest that the misclassification & classification 

probabilities for xor network can be determined. The result is validated with the help of 

bifurcation diagram of the output of the NN. It is found that the values of HE are 

repositioned marginally depending on the size of NN. In effect, the NN escapes from the 

randomness at larger size of NN. 
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3.7.2 Network training 

Back-propagation (BP) is n Imous training method used in multilayer feed-forward neural 

networks (NNs). NNs, that are networks of artilicial neurons, are capable of variety of task 

such as classification, pattern recognition, forecasting, function approximation etc. The 

artificial neuron is a simple mathematical model motivated from the biological neuron of the 

brain. The interesting property of these networks is their ability to learn.They do so by 

adapting the weights of connections between the neurons. The widest used type of neural 

network today is multilayer feed-forward neural network using the backpropagation 

algorithm as the learning method. 

Chaos in neural network has attracted much interest in recent years [1,2]. There have been 

many resports that claim chaos plays important role in neural networks. The phenomern that 

appears random but is regulated by under a deterministic rule is called deterministic chaos. 

Choas can be found in living organs such as brain activity [3]. In the brain, spontaneous 

neural activity exhibits some properties of deterministic chaos [4]. Several papers have 

discussed the emergence of chaos in NNs[5,6]. Nozawa [7] showed the existence of chaos in 

Euler approximation of the I loplielci network by adding a negative self-feedback connection. 

Chaotic simulated annealing (CSA) is proposed by Chen and Aihara [8] and uses a 

sufficiently large negative self-feedback to a Hopfield neural network and gradually reduces 

the self-feedback. The object of above paper was to get the benefit from NN in chaos. 

The occurance of chaos in backpropagation algorithm was shown in [9]. The BP network 

exhibits chaos due to the presence of a term of the form x(I-x) in the update rule of it, 

although other parameters are involved in the update rule. Weight space instead of output of 

the network was taken against learning rate in [9] to describe the chaos formation. The role of 

chaos for classification was not addressed in any of the above reports. Therefore, a definite 

study on this issue is still missing. 'l'his paper explains empirically the classification 

probability of BP network at chaotic regime with the help of Hurst exponent (HE). HE is a 

new statistical tool to analyse the time series. This method represents the entire time series 

into several subintervals. This has a great advantage for the system where time series are 

collected in a regular interval fashion. 
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3.7.3 Basics of BP in chaos 

Fully connected multilayer neural networks, consist of one input layer, one output layer, and 

one or more hidden layers is trained by BP. Weights are updated minimizing the MSE 

function: 

_c'r 
- 
- 

pL: _I I PI 

Sigmoid logistic function is used as activation function in BP: 

= - 
• t-, ,. 

One needs to compute the derivative of the sigmoid function to update the weight in BP 

algorithm. The derivative of it is f(x) (1-f(x)) which is the main driving force to converge the 

chaos in BP network. The update rules for output and hidden unit weights are as follows. 

= ,8(t — O)Olj  (l — O,)O,,, 

A,,JVJ, = AZ  C514 Wky  )O, (I 
- 

01  )O,,,.........(2) 

This equation has complete chaotic dynamics for appropriate choice of parameter alpha. It 

has been known that the chaos may appear in weight space and output space of the network 

when the learning rate is increased. In this paper the output of the NN is taken as main 

parameter with respect to learning rate. Since the output is the appropriate candidate for 

classifying the input patterns. 

3.8 Description of the Experiment and simulation result 

The first derivative of sigmoid logistic function, which is used in adapting weight in a NN, 

contains a term similar with that of verhuist equation. 

In chaotic regime, network is unable to classify all the patterns. We investigate this 

classification probability (CP) using Hurst exponent and fractal dimension and validated by 

bifurcation diagram. 

In order to investigate the classification of NN, we take 2-bit parity problem. Back-

propagation learning is used with online mode. The NN is trained with BP algorithm with a 

learning rate starting from 0. 1 with a step of 0. 1. The outputs of last 50 iterations are taken 

among 20,000 iterations in each run. The network is trained 600 times. 1-lence the time series 

contains 30,000 data points. These data points are taken to construct the bifurcation diagram. 

In order to see the classification in chaos, the experimental data are taken when NN runs in 
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chaos. Additional 30,000 data points are collected with different initial weights and with a 

- 
learning rate of 30.00. 

Three different sizes of the NN are taken for the experiment. They are 2-2-2, 2-3-2 and 2-

4-2. A size of 2-2-2 means two inputs - two hidden units - two output units NN. An 

additional hidden unit gives four additional connection weights in a NN. For each size of NN, 

a total of 30,000 data points are collected from the training of NN. HE is computed from 

these time series data. Since the NN has winner-takes-all strategy to make decision at the 

output of the MN, there are two outputs. 

3.8.1 Using Hurst exponent 
The numerical values of 1-IF and fractal dimension are listed in Tables 3.1 & 3.2. There are 

some interesting observations from the values of HE described below. These are the main 

focuses of the work. 

Randomness to persistence: We know that if HE = 0.5 the data are determined to be 

random. From the Table 3.1. one can see that the data for pattern '11' has the HE 

approximately equal to 0.5 for a NN size of 2-2-2. Since the number of outputs of NN is 

two. We can easily understand that the pattern '11' is misclassified since much 

randomness is included in the data. It is observed that the randomness is reduced and 

persistence is increased gradually from pattern '11' to '10' '01' and '00'. This is 

reasonable since online mode learning is usually noisy than batch mode training to 

achieve the target concept. 

Hurst exponent to classification probability: Can we correlate HE with network 

4, classification? Our suggestion is yes. There are a number of reasons behind this. From 

the Tables 3.1& 3.2, it is seen that the HE is approximately unity for pattern '00'. We 

want to claim that this pattern is classified. Since there is no uncertainty for other 

chances. However, the values of HEs are in between 0.6 and 0.8 for '01' and '10' 

patterns. This means there is a mixture of Probabilities whether or not patterns '0j'' and 

'10' are classified. We can say that pattern '01' is classified since the value of HE 

corresponding to this pattern is approximately 0.80 or more. Therefore, this pattern is 

certainly classified. The classification uncertainty increases for the pattern '10'. Since 

the value of HE for pattern '10' is approximately 0.6 or more. This means that the 

chance of classification is slightly larger than the pattern '11'. If we consider that the 

pattern '10' is classified then the total classification probability of the network is 3/4  = 
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75% in chaos and misclassification probability is 25%. However, this is not always the 

case because a considerable number of runs fall into time out conditions. 

Neural network size to classification probability: There is a nice dependence of 

classification probability on the size of the network in chaos. It is known that the 

minimum network for 2-bit parity is 2-2-2. This is the necessary and sufficient size for 

this problem. In chaos, the possibility of weight oscillation is limited. That is why 

sometimes the network goes into time out condition. We found the value of HE for '11' 

pattern in 2-2-2 NN is about 0.50. This is very near to the random series. The 

probability of classification is almost nil. 1-lowever, when we increase the size of the 

NN to 2-3-2, the probability of miscIassi1cation decreases by a certain amount as 

shown in Table 3.1 & 3.2 (sec column 4 and 6). The randomness in the time series is 

reduced by (0.5746-0.5010) = 0.0736 for 2-3-2 network and (0.58 19-0.5010) = 0.0809 

for 2-4-2 network respectively as shown in Table 3.1. The values of other 1-lEs for other 

patterns are approximately similar from 2-2-2 to 2-3-2 and 2-4-2 sized NN. 

Hurst exponent to neural network size: One interesting thing is that HE is related 

in some extend with the size of the network. If the size of the network is increased the 

HE is also increased meaning that the network tends to reduce classification uncertainty 

and moves towards classification states, although it is not clear how many times the 

network classifies and how many times it does not classify. It is clear that the network 

escapes from the randomness at increased size of the network. 

V. Hurst exponent to fractal dimension: It is known that fractal dimension (FD) is 

related with Hurst exponent with an equation of from (2-H). One can comment on their 
1 

dynamics with fractal dimension. Large FD indicates large amount of noise is included 

in the time series. Therefore higher FD means that the underlying dynamics behind the 

series involves much randomness in one or the other. 

Table 3.1 Hurst Exponent and Fractal dimension of 2-bit parity network for first output unit. 

Pattern 

- 

Network 2-2-2 
Hurst Fractal 
Exponent dimension 

Network 
Hurst 
Exponent 
0.9889 

2-3-2 
Fractal 
dimension 
1.0111 

Network 
Hurst 
Exponent 

2-4-2 
Fractal 
dimension 

00 0.9898 1.0102 0.9877 1.0123 
01 0.7978 1.2022 0.8055 1.1945 0.8164 1.1836 
10 0.6865 1.3135 0.6500 1.3500 0.6786 1.3214 
11 0.5010 1.499 0.5746 1.4254 0.5819 1.4181 
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3.8.2 Validation using bifurcation diagram 

The truth table for two-bit parity problem is shown below. In each run we kept a record of 

the last 50 output values generated by the network. These values are then plotted against the 

corresponding learning rate value resulting in a bifurcation diagram. Using the bifurcation 

diagram, classification can be explained as shown in Fig. 3.3. The winner-take-all network 

has two output units for two classes as arranged in Tables 3.1 and 3.2. The target outputs for 

the input patterns '00', '01', '10' and '11 are assigned as 'Dl' 10' '10' and 01' 

respectively. The actual outputs of the network are shown in Fig. 3.3 for all input patterns 

from learning rate 0 to 60 with a step of 0.1. From the Fig. 3.3, one can understand very 

easily that first three patterns 00, 01. 10 are classified but the fourth pattern 11 was not 

classified since it is similar with pattern 10. The output should be identical for input patterns 

of 10' and '01' and the same are true, for input patterns '00' and 11'. The oscillation of 

bifurcation of the output for '11' pattern is similar with opposite class when the network 

enters into chaotic regime. Therefore, this pattern '11 is misclassified. 

0 0 0 

0 1 1 0 

0 1 0 

0 1 
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Fig. 3.3 Bifurcation diagram of output of 2-bit parity network. Figures of left column for 
output unit I and that of right column for output unit 2. 

3.8.3 Validation with Lyapunov Exponents: 

The maximum Lyapunov exponent must be positive 1or a time series to be chaotic. We have 

tested the time series for Lyapunov exponents and found that they are all positive for all the 

networks and outputs. 
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Table 3.2: Lyapunov exponents for the time series 

obtained Ironi two-bit (XOR) network 

Network 

size 

2-2-2 2-3-2 2-4-2 

First Output 

Unit 

0.2118 0.0835 
- 

0.1630 
0.7588 0.5973 0.7261 
0.6208 0.4817 0.5915 
1.1347 

- 
0.5922 0.9026 

3.9 Other benchmark problems 

Table 3.3 describes the characteristics of benchmark data sets. The cancer data set has 350 

input patterns, 9 attributes and two classes. The diabetes data set contains 384 input patterns, 

8 attributes and 2 classes. 

Table 3.3 
Characteristics of Classification Datasets. 

Problem 

_J 
Training 
Examples  

Attributes Class 

Cancer J 350 9 2 
Diabetes 384 8 2 

a) Cancer Problem: 

In this case, the learning rate is fixed at 30.00. The outputs of the last 50 iterations are taken 
from 200 iterations in each run. The network is trialed 200 times. Hence the time series 
contains 10,000 data points. Since there is large number of training patterns (350), we have 
just investigated the two patterns 

- one from each class in order to study the characteristics of 
chaos for the problem. Each time a new network is taken and trained and the outputs of first 
unit at the output layer are stored to make the time series to be investigated. The HEs and 
FDs are computed and listed in Table 3.4 for both classes. It is seen that the NN structure has 
a significant effect on HEs. HE decreases with the increase of hidden nodes in the network as 
shown in Table 3.4 There may be one reason behind this. 

We know that there is a relation between network size and over fitting. If the network is 
oversized it begins to ovcrfit. It means that the network mixes up Some randomness in their 
activations although it stays outside the classification zone. 

-4. 
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- Table 3.4 
Hurst exponent and fractal dimension of cancer problem for first output unit. 

Class Network 9-2-2 Network 9-3-2 Network 9-4-2 

A FT FD A U FD A I-I FD 
Class 1 1.3012 0.99 1.01 1.2418 0.88 1.12 0.6863 0.73 1.27 
Class 2 0.5316 1.00 1.00 0.6901 0.88 1.12 0.6745 0.73 1.27 

Fig. 3.4 shows the bifurcation diagram lbr the first output unit activation. It is drawn for two 
examples- one from first class and one from other. Figure shows that classification falls in the 
chaotic regime. 

0 5 10 15 20 25 30 0 5 10 15 20 25 30 
Learning Rate Learning Rate 

Fig: 3.4 Bifurcation diagram of output of cancer problem. a) First pattern from Class 1, and 
b) First pattern from Class 2. 

We have shown return map for cancer problem in Fig. 3.5 Fig. 3.5(a), 3.5(c) and 3.5(e) 

indicate the time series of the outputs of the 9-2-2, 9-3-2 and 9-4-2 network at LR 30.00 for 

the class 1. Similarly Fig. 3.5(b), 3.5(d), and 3.5(f) indicate the time series of the 9-2-2, 9-3-2 

and 9-4-2 network for class I at 30.00 LR. It is clear that the distribution of the output 

activations gradually decrease at the increase of' network structure. This means the larger 

network has the ability to absorb the deviation of the points. The relation between the 

network structure and the complexity in chaotic regime will be discussed in Section 
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Fig. 3.5 Return map for cancer problem. 

In chaos theory, control of chaos is based on the fact that any chaotic attractor contains an 

infinite number of unstable periodic orbits. Chaotic dynamics then consists of a motion where 

the system state moves in the neighborhood of one of these orbits for a while, then falls close 
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to a different unstable periodic orbit where it remains for a limited time, and so forth. This 

results in a complicated and unpredictable wandering over longer periods of time. 

Control of chaos is the stabilization, by means of small system perturbations, of one of these 

unstable periodic orbits. The result is to render an otherwise chaotic motion more stable and 

predictable, which is often an advantage. 'l'he perturbation must be tiny, to avoid significant 

modification of the system's natural dynamics. In this paper we choose structure of the neural 

network to stabilize chaos some extend. 

b) Diabetes Problem: 

We have taken three NN structures (8-2-2, 8-3-2, and 8-4-2) to collect series of output 
activations. The data for the last 50 iterations are taken from 200 iterations in each run. The 
network is trialed 200 times. Hence the time series contains 10,000 data points. There are 384 
training examples for diabetes problem. We generate the time series considering the first 
example from class I and first example from class 2. The 1-lEs and FDs are listed in Table 
3.5. 

lablc 3.5 
Hurst exponent and fractal dimension of diabetes problem for first output unit. 

Class Network 8-2-2 Network 8-3-2 Network 8-4-2 -- 

_______ 
A H FD A I-I PD X H PD 

Class 1 1.5479 1.00 1.00 0.9254 0.74 1.26 1.3369 0.65 1.35 

- 

Class 2 1.5229 1.00 1.00 0.7994 0.74 1.26 1.0665 0.65 1.35 

T 

1 

0.8 

0.6 

0 
0.4 

0.2 

0 

Bifurcation diagram is shown in Fig. 3.6. In this case, the actual output should lie around zero 
because the target output was zero. 
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Fig: 3.6 Bifurcation diagram ol output of diabetes problem. a) Class 1, first pattern, and b) Class 2, first 
Pattern. 
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Chapter 4 

Conclusion 

This paper investigates the several chaotic behaviors of supervised neural networks. 
Lyapunov exponent (LE), Hurst Exponent (liE), fractal dimension (FD) and bifurcation 
diagram has been used to conjecture the findings. The chaotic dynamics of NNs for two-bit 
parity, cancer, and diabetes classification problems is investigated. It is found that HE can 
explain classification probability of NNs under chaos. The misclassification probability 
increases for pattern 00 to 11 for parity problem. 'l'lie most difficult pattern is found to be ii. 
since the HE is most uncertain state at 0.5. It is found that the distribution of the network 
output is absorbed at the increase of size of the network. As a result chaosness is some extend 
marginally reduced. It is however interesting to see how much chaos is removed. 

-r 

-4 
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