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Abstract 

In this project work an attempt has been taken to predicting the effects of process 

parameters on weidment characteristics in MIG welding with the help of artificial neural 

network technique. 

Electrode wire diameter, Electrode wire feed rate, Welding speed, Welding current and Arc 

length have been chosen as influential process parameters. More or less, these are the 

influential factors in deciding the weidment characteristics. 

Weldment characteristics like Bead Geometty, Depth of Penetration, Depth of Heat 

Affected Zone (HAZ) and Hardness of weld metal are important characteristics on the basis 

of structure and these have been considered in this project work. 

Metal Inert Gas (MIG) Welding process with automatic or robotic system in various 

industries is a demanding welding process now-a-days and this process is being used with 

increasing rate of applications. Due to these reasons, MIG welding process has been chosen 

for this project work and a semi-automatic MIG welding machine have been used. Single 

straight beads have been welded on the surface of the specimens of the medium carbon 

steel plate. 

Artificial Neural Network (ANN) refers to computing systems whose central theme is 

borrowed from the analogy of biological neural networks and the basic unit of such 

networks is a simple mathematical model. In this research work the Real-Time Recurrent 

Learning algorithm of ANN have been used with actual inputs and outputs of experimental 

values as inputs to the algorithm to complete the computational tasks. 

It has been observed that the computational values of weldment characteristics obtained by 

ANN are very close to the experimental values of those. So the ANN based approach can 

be used effectively for predicting the weidment characteristics in MIG welding. 
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CHAPTER 1 

1.1 General Introduction 

INTRODUCTION / UET 
San 

On the basis of industrial fabrication application, due to various reasons welding is a very 

versatile and useful process. In most cases time, labor, cost and structural integrity are 

effective with respect to different types of welding method, applicable welding conditions, 

process implementation method, base material and size etc. Now-a-days some welding 

methods are useful in industry around the world on the basis of above reasons satisfactorily. 

MIG welding process is one of them whose demand is increasing rapidly but eventually a 

little research work has been done with that. So, MIG welding process has been chosen for 

this work. 

Actually there has a lot of scope to work in MIG welding process due to different process 

parameters and weidment characteristics to consider. But due to the limitations of the 

availability of experimental facilities; in this research work the process parameters and 

weldment characteristics have been considered to some limited numbers. 

Predicting is nothing but in simple sense is understanding about what will happen and how 

much intensive that will be on outputs of a process by varying inputs. Incase of this 

research work inputs are some process parameters of MIG welding process and outputs are 

weidment characteristics. Predicting processes are of different types; among them - 

Mathematical modeling, Numerical analysis and Artificial Neural Network modeling are 

most acceptable and reasonable due to various reasons. As mentioned in the above 

Artificial Neural Network modeling has been chosen for this work due to its capability to 

solve difficult and complex problems and recently welding related many researchers have 

been using ANN model to understand and predict their targeted information. 



In this research work prediction has been done in this way that, by varying some process 

parameters, e.g., electrode wire diameter, electrode wire feed rate, welding current, etc. 

consider the variation of weldment characteristics. To do this, Real-Time Recurrent 

Learning Algorithm, i.e., a supervised learning algorithm of ANN model has been used. 

As mentioned in various literatures it is very clear that, with different welding conditions 

the resulting characteristics of weldment differ significantly. So the main objective of this 

project work is to predict the weldment characteristics with variations of different MIG 

welding process parameters. And the other significant goals are as follows: 

To incorporate the modern and versatile MIG welding process; by doing this the 

experimental task have been performed 

To develop an Artificial Neural Network model and process (train) it using 

experimental values 

• To compare the experimental values with computational (using ANN model) 

values of weldment characteristics obtained at different process parameters for 

predicting. 

At present there exists a great demand to predict a predetermined quality weldment using 

MIG with automatic or robotic system in various industries. Not only this, the demand is 

increasing day by day. So prediction of the effect of process parameters on weldment 

characteristics is very important and has got a great extent of applications. 

V 
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1.2 Welding Basics and MIG Welding 

1.2.1 Welding Basics 

1.2.1.1 Introduction 

Welding is a process for joining different materials. The large bulk of materials that are 

welded are metals and their alloys, although the term welding is also applied to the joining 

of other materials such as thermoplastics. 

Welding joins different metals/alloys with the help of a number of processes in which heat 

is supplied either electrically or by means of a gas torch. In order to join two or more pieces 

of metal together by one of the welding processes, the most essential requirement is Heat. 

Pressure may also be employed, but this is not, in many processes essential. 

The use of welding in today's technology is extensive. It had a phenomenal rise since 

about 1930; this growth has been faster than the general industrial growth. Many common 

eveiyday-use items, e.g., automobile cars, aircrafts, ships, electronic equipment, machinery, 

household appliances, etc., depend upon welding for their economical construction [1]. 

1.2.1.2 History of Arc Welding 

Electric arc was first described by Davy in England, in the year 1809, but the beginning of 

arc welding could become possible only with the improvements in electric dynamos or 

generators between 1877 and 1880. Auguste de Meritens established arc welding process in 

1881 which was applied to join certain components of electrical storage batteries. 

Arc and molten pool shielding with an inert gas (CO2) was ad vented by Alexander in USA 

in the year 1928 and the patent for TIG welding was received by Hobart and Devers in 

1930 in USA. First gas tungsten arc spot welding torch based upon TIG welding was 

introduced around 1946. Metal Inert Gas (MIG) welding came out in 1948 as a result of 

3 
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further researches and developments carried out on Covered Electrode Metal Arc and 

Tungsten Inert Gas welding processes. The credit for submerged arc welding goes to 

Kennedy, Rodermund and Jones (1935) of USA. Electro slag welding is a further 

development of submerged arc welding and it came to appearance round about 1953 in 

Russia. 

Stud welding was found by Martin in 1918 and was used in British (Royal) Navy. Round 

about 1938, Nelsen rediscovered this process in USA and in about 1958 Van den Blink and 

others suggested the use of fusible collar in stud welding. 

4 
The atomic hydrogen welding was developed on the basis of the research carried out by 

Langrnuir (1921, USA) on the dissociation of diatomic molecule in electric arc. Plasma arc 

welding is a step ahead of TIG welding. It was developed in USA in the year 1953. Plasma 

cutting was used in 1955 and satisfactory plasma spraying and plasma welding were carried 

out in 1960 and 1963 respectively [I]. 

1.2.1.3 Classification of Welding Processes 

There are about 35 different welding and brazing processes and several soldering methods 

in use by industry today. There are various ways of classifying the welding and allied 

processes. For example, they may be classified on the basis of: 
41 

• Source of heat, i.e., flame, arc, etc. 

Type of interaction, i.e., liquid/liquid (fusion welding) or solid/solid (solid state 

welding). 

In general, various welding and allied processes are classified as follows: 

y 

Gas Welding 

- Air-acetylene Welding 

- Oxy-hydrogen Welding 

Arc Welding 

- Carbon Arc Welding 

- Oxy-acetylene Welding 

- Pressure gas Welding 

- Shielded Metal Arc Welding 

ri 



- Flux Cored Arc Welding - Submerged Arc Welding 

- TIG (or GTAW) Welding - MIG (or GMAW) Welding 

- Plasma Arc Welding - Electro slag and Electro gas Welding 

- Stud Arc Welding 

c) Resistance Welding 

- Spot Welding - Seam Welding 

- Projection Welding - Resistance Butt Welding 

- Flash Butt Welding - Percussion Welding 

- High Frequency Resistance Welding 

Solid State Welding 

- Cold Welding - Diffusion Welding 

- Explosive welding - Forge Welding 

- Friction Welding - Hot Pressure Welding 

- Roll Welding - Ultrasonic welding 

Thermo-Chemical Welding Processes 

- Thermit Welding - Atomic Hydrogen Welding 

Radiant Energy Welding Processes 

- Electron Beam Welding - Laser Beam Welding [1]. 

1.2.1.4 Commonly Weld able Metals 

Metals can be classified as - 

a) Ferrous & b) Non-ferrous 

a) Ferrous materials contain iron and the one element people use more than all others 

is iron. Ferrous materials are the most important metals/alloys in the metallurgical 

and mechanical industries because of their very extensive use. Ferrous materials 

finding day-to-day welding applications are: 

- Wrought Iron - Cast Iron 

- Carbon Steels (Low. Medium & High Carbon Steels) - Cast Steels 

- Alloy Steels - Stainless Steels , etc. 
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b) Non-ferrous materials are those that are not iron-based. Like ferrous materials, non-

ferrous materials also find extensive industrial applications. Non-ferrous materials 

finding day-to-day welding applications are: 

- Aluminum and its alloys - Copper and its alloys 

- Magnesium and its alloys - Nickel and its alloys 

- Zinc and its alloys, etc. [1]. 

1.2.1.5 Advantages of Welding 

A good weld is as strong as the base metal 

General welding equipment is not very costly and they are portable also 

Welding permits considerable freedom in design 

A large number of metals/alloys both similar and dissimilar can be joined by 

welding [1]. 

1.2.1.6 Disadvantages of Welding 

Welding gives out harmful radiations (light), fumes and spatter 

Edge preparation of the work pieces is generally required before welding them 

A skilled welder is a must to produce a good welding job 

Welding heat produces metallurgical changes. The structure of the welded joint 
A 

is not same as that of the parent metal [1]. 

1.2.1.7 Practical Applications of Welding 

Welding has been employed in industry as a tool for: 

Regular fabrication of automobile cars, air-crafts, refrigerators, etc. 

Repair and maintenance work, e. g., joining broken parts, rebuilding worn out 

components, etc. [1]. 
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1.2.1.8 A few important applications of welding are listed below: 

- Aircraft Construction - Bridges 

- Buildings - Pressure Vessels and Tanks 

- Storage Tanks - Rail Road Equipment 

- Piping and Pipelines - Ships 

- Trucks and Trailers - Machine tool frames, Cutting tools & Dies 

- 1-lousehold and Office Furniture - Automobile Construction 

- Earth moving machinery and Cranes, etc. [1]. 

1.2.2 Metal Inert Gas (MIG) Welding 
. 

1.2.2.1 Definition 

It is an arc welding process wherein coalescence is produced by heating the job with an 

electric arc established between a continuously fed metal electrode and the job. No flux is 

used but the arc and molten metal are shielded by an inert gas, which may be argon, helium, 

carbon dioxide or a gas mixture [1]. 

1.2.2.2 Equipments 

A a) Welding power source and cables 

Welding torch and wire electrode coiled on a spool 

Wire feed mechanism and controls consisting of a pair of driving rolls, electric 

motor, etc. 

Shielding gas cylinder, pressure regulator and flow meter 

Controls for switching on and off the current, electrode wire and inert gas [1]. 

Ir 
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1.2.2.3 Principle of Operation (Semi-automatic process) 

Before igniting the arc, gas and water flow is checked. Proper current and wire feed speed 

is set and the electrical connections are ensured. The arc is struck by any one of the two 

methods. In the first method current and shielding gas flow is switched on and the electrode 

is scratched against the job as usual practice for striking the arc. 

: IF 

> 

Figure: 1.2 (a) Photograph of MIG Welding Machine, Equipments and Welder 

In the second method, electrode is made to touch the job, is retracted and then moved 

forward to carry out welding; but before striking the arc, shielding gas, water and current is 

switched on. About 15 mm length of the electrode is projected from the torch before 

striking the arc. During welding, torch remains about 10-12 mm away from the job and arc 

length is kept between 1.5 to 4 mm. 
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Figure: 1.2 (b) MIG Welding Setup 
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Figure: 1.2 (c) MIG Welding Operation 

A- 

Arc length is maintained constant by using the principles of self-adjusted arc, and self—

controlled arc in semi-automatic (manually operated) and automatic welding sets 

respectively [1]. 

1.2.2.4 Metals Welded 

Base metals commonly welded by MIG Welding are: 

Carbon and low alloy steels 

Stainless steels 

Heat-resisting alloys 
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Aluminum and its alloys 

Copper and its alloys (other than high zinc alloys) 

Magnesium alloys [1]. 

1.2.2.5 Advantages 

Because of continuously fed electrode, MIG welding process is much faster as 

compared to TIG or stick electrode welding 

It can produce joints with deep penetration 

Thick and thin, both types of work pieces can be welded effectively 

Large metal deposition rates are achieved by MIG welding process 

The process can be easily mechanized 

1) No flux is used. MIG welding produces smooth, neat, clean and spatter free 

welded surfaces which require no further cleaning. This helps reducing total 

welding cost 

g) Higher arc travel speeds associated with MIG welding reduce distortion 

considerably [1]. 

1.2.2.6 Disadvantages 

The process is slightly more complex as compared to TIG or stick electrode 

welding because a number of variables (like electrode stick out, torch angle, 

welding parameters, type and size of electrode, welding torch manipulation, 

etc.) are required to be controlled effectively to achieve good results 

Welding equipment is more complex, move costly and less portable 

Since air drafts may disperse the shielding gas, MIG welding may not work 

well in outdoor welding applications 

Weld metal cooling rates are higher than with the processes that deposit slag 

over the weld metal [1]. 

1- 
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1.2.2.7 Applications 

The process can be used for the welding of carbon, silicon and low alloy 

steels, stainless steels, aluminum, magnesium, copper, nickel, and their alloys, 

titanium, etc. 

For welding tool steels and dies 

For the manufacture of refrigerator parts 

MIG welding has been used successfully in industries like aircraft, 

automobile, pressure vessel, and ship building [1]. 

II K UF7 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Research Works 

Weidment characteristics like penetration, bead geometry and depth of J-IAZ are extremely 

important characteristics for structural integrity. SMA welding process is used throughout 

the world for its simplicity and versatility. Electrode diameter, current, voltage, are travel 

speed, electrode feed rate, arc length and arc spread are influential factors in deciding the 

weldment characteristics. The effects of these process parameters on weldment 

characteristics in case of SMA welding process have been studied. Bead-on-plate 

experiments have been conducted using a preset feed based SMA welding machine. 

Weldment characteristics tike depth of penetration, depth of HAZ and number of undercuts, 

has been examined. An artificial neural network based modeling of the experiments has 

been successfully done to predict the patterns of results obtained from the experiments [2]. 

Bead geometry (bead height and width) and penetration (depth and area) are important 

physical characteristics of a weldment. Several welding parameters seem to affect the bead 

geometry and penetration. It has been observed that high arc-travel rate or low arc-power 

normally produced poor fusion. Higher electrode feed rate produced higher bead width 

making the bead flatter. Current, voltage and arc-travel rate influence the depth of 

penetration. The other factors that influence the penetration are heat conductivity, arc-

length and arc-force. Longer arc-length produces shallower penetration. Too small arc-

length may also give rise to poor penetration, if the arc-power is very low. Use of artificial 

neural networks to model the SMA welding process has been explored. Back-propagation 

neural networks have been used to associate the welding process variables with the features 

of the bead geometry and penetration. These networks have achieved good agreement with 

the training data and have yielded satisfactory generalization. A neural network could be 
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eflèctivcly implemented for estimating the weld bead and penetration geometric parameters 

[3]. 

Weidment characteristics like penetration, bead geometry and depth of heat affected zone 

are extremely important characteristics for structural integrity. Electric arc welding process 

is used throughout the world for its simplicity and versatility. Electrode diameter, culTent, 

voltage, arc travel speed, electrode feed rate, arc length and are spread are influential 

factors in deciding the weldment characteristics. The effects of these process parameters on 

weldment characteristics in case of electric arc welding process have been studied. Bead on 

plate experiments have been conducted using a manual feed based metal arc welding 

machine. Weldmcnt characteristics like depth of penetration, depth of heat affected zone 

and bead geometry have been examined. An artificial neural network based modeling of the 

experiments has been successfully done to predict the patterns of results obtained from the 

experiments [4]. 

Gas metal arc (GMA) welding process has been chosen as a metal joining technique due to 

the wide range of usable applications, cheap consumables and easy handling. The welding 

quality is generally controlled by the welding parameters. To achieve a high level of 

welding performance and quality, a suitable algorithm is required to fully understand the 

influence of welding parameters on bead geometry in the GMA welding process. An 

intelligent system in GMA welding processes using MATLAB/SIMULINK software has 

been developed. Based on multiple regressions and a neural network, the mathematical 

models are derived from extensive experiments with different welding parameters and 

complex geometrical features. The developed system enables to input the desired weld 

dimensions and select the optimal welding parameters. The experimental results were 

proved the capability of the developed system to select the welding parameters in GMA 

welding process according to complex external and internal geometrical features of the 

substrate [5]. 

In fusion welding process, a monolithic structure is obtained at the weldment between the 

two pieces to be joined. This monolithic structure called the welded zone has got different 
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shapes, which depend upon the type of welding process and its parameters. The strength of 

the welded structure depends upon the extent to which the metal penetrates between the 

joint and the volume of the parent metal that gets melted. The shape of the weldment 

governs mechanical properties of the structure. The weldment shape is generally 

represented by bead width, bead height and bead penetration. Neural network-based 

approaches have been developed to predict the locus of weld fusion zone [6]. 

Mathematical models are necessary to control the ever increasing automated or robotic 

welding processes for achieving optimum results. The effect of arc voltage, wire feed rate, 

welding speed, plate thickness, nozzle-to-plate distance, electrode-to-work angle and 

electrode polarity on weld bead geometry and shape relationship have been investigated by 

the statistical tool of fractional factorial technique in automatic submerged arc welding of 

high strength low alloy steels. The developed models have been tested for their adequacy 

and the coefficients were tested for their significance to arrive at the final mathematical 

models [7]. 

Automatic weld surfacing is being employed increasingly in the process and power 

industries. Because of its high reliability, all-position capability, ease of use, low cost and 

high productivity, GMAW has become a natural choice for automatic surfacing. With 

increasing use of GMAW in its automatic mode, there will be increased dependence on the 

use of equations to predict the dimensions of the weld bead. The development of such 

mathematical equations using a four-factor 5-level factorial technique to predict the 

geometly of the weld bead in the deposition of 316L stainless steel onto structural steel IS 

2062 is presented. The models developed have been checked for their adequacy and 

significance by using the F-test and the t-test, respectively. Main and interaction effects of 

the control factors on dilution and bead geometry are presented in a graphical form that 

helps in selecting quickly the process parameters to achieve the desired quality of overlay 

[8]. 

The welding process variables of welding current, arc voltage, welding speed, gas flow 

rate, and offset distance, which influence weld bead shape, are coupled with each other but 

not directly connected with weld bead shape individually. Therefore, it is very difficult and 

Qd 
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time consuming to determine the welding process variables necessary to obtain the desired 

weld bead shape. Mathematical modeling in conjunction with many experiments must be 

used to predict the magnitude of weld bead shape. Even though experimental results are 

reliable, prediction is difficult because of the coupling characteristics. The 2n - 1 fractional 

factorial design method have been used to investigate the effect of welding process 

variables on fillet joint shape. Finally, a neural network based on the back propagation 

algorithm and an optimum design based on mathematical modeling has been implemented 

to estimate the weld parameters for the desired fillet joint shape. Mathematical modeling 

based on multiple nonlinear regression analysis has been used for modeling the gas metal 

arc welding (GMAW) parameters of the fillet joint [9]. 

Experimental designs technique on the experimental data available from conventional 

experimentation, application of neural network for predicting the weld bead geometric 

descriptors and use of genetic algorithm for optimization of process parameters have been 

explained by an integrated method with a new approach using experimental design matrix. 

The properties of the welded joints are affected by a large number of welding parameters. 

Modeling of weld bead shape is important for predicting the quality of welds. To model the 

welding process for predicting the bead shape parameters (also known as bead geometry 

parameters) of welded joints, modeling and optimization of bead shape parameters in 

tungsten inert gas (TIG) welding process have been developed. Multiple linear regression 

technique has been used to develop mathematical models for weld bead shape parameters 

of TIG welding process, considering the effects of main variables as well as two factor 

interactions. Also by using the same experimental data, an attempt has been made to predict 

the bead shape parameters using back-propagation neural network. To optimize the process 

parameters for the desired front height to front width ratio and back height to back width 

ratio, genetic algorithmic approach has been applied [10]. 

To automate a welding process, which is the present trend in fabrication industry, it is 

essential that mathematical models have to be developed to relate the process variables to 

the weld bead parameters. Because of its high reliability, deep penetration, smooth finish 

and high productivity, submerged arc welding (SAW) has become a natural choice in 
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industries for fabrication, especially for welding of pipes. Mathematical models have been 

developed for SAW of pipes using five level factorial techniques to predict three critical 

dimensions of the weld bead geometry and shape relationships. The models developed have 

been checked for their adequacy and significance by using the F-test and the t-test, 

respectively. Main and interaction effects of the process variables on bead geometry and 

shape factors are presented in graphical form and using which not only the prediction of 

important weld bead dimensions and shape relationships but also the controlling of the 

weld bead quality by selecting appropriate process parameter values are possible [11]. 

The effects of various welding parameters on welding penetration in Erdemir 6842 steel 

having 2.5 mm thickness welded have been investigated by robotic gas metal arc welding. 

The welding current, arc voltage and welding speed have been chosen as variable 

parameters. The depths of penetration have been measured for each specimen after the 

welding operations and the effects of these parameters on penetration have been researched. 

The welding currents have been chosen as 95, 105, 115 A, arc voltages have been chosen as 

22, 24, and 26 V and the welding speeds have been chosen as 40, 60 and 80 crn/min for all 

experiments. It has been observed that, increasing welding current increased the depth of 

penetration. In addition, are voltage is another parameter in incrimination of penetration. 

However, its effect is not as much as current's [12]. 

Welding input parameters play a very significant role in determining the quality of a weld 

joint. The joint quality can be defined in terms of properties such as weld-bead geometry, 

mechanical properties, and distortion. Generally, all welding processes are used with the 

aim of obtaining a welded joint with the desired weld-bead parameters, excellent 

mechanical properties with minimum distortion. Nowadays, application of design of 

experiment (DoE), evolutionary algorithms and computational network are widely used to 

develop a mathematical relationship between the welding process input parameters and the 

output variables of the weld joint in order to determine the welding input parameters that 

lead to the desired weld quality [13]. 
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Considering the above literatures review, it is obvious that in one hand recently there has 

done a little work using MIG welding processes to observe the effects of process 

parameters on weidment characteristics. And in another hand it is also obvious that many 

researchers related with welding have been using neural network model with greater rate to 

compute complex calculations, as well as to predict weidment characteristics. Due to these 

reasons MIG welding process and Artificial Neural Network have been used in this work. 
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CHAPTER 3 

ARTIFICIAL NEURAL NETWORK 

3.1 Introduction 

Work on artificial neural networks, commonly referred to as "neural networks", has been 

motivated right from its inception by the recognition that the human brain computes in an 

entirely different way from the conventional digital computer. The brain is a highly 

complex, nonlinear and parallel computer (information-processing system). It has the 

capability to organize its structural constituents, known as neurons, so as to perform certain 

computations (e.g., pattern recognition, perception, and motor control) many times faster 

than the fastest digital computer in existence today. Consider, for example, the sonar of a 

bat. Sonar is an active echo-location system. In addition to providing information about 

how far away a target (e.g., a flying insect) is, a bat sonar conveys information about the 

relative velocity of the target, the size of the target, the size of various features of the target, 

and the azimuth and elevation of the target (Suga,1990a,b). The complex neural 

computations needed to extract all this information from the target echo occur within a 

brain the size of a plum. Indeed, an echo-locating bat can pursue and capture its target with 

AP a facility and success rate that would be the envy of a radar or sonar engineer. 

How, then, does a human brain or the brain of a bat do it? At birth, a brain has great 

structure and the ability to build up its own rules through what we usually refer to as 

"experience". Indeed, experience is built up over time, with the most dramatic development 

(i.e., hard-wiring) of the human brain taking place during the first two years from birth; but 

the development continues well beyond that stage. 

A "developing" neuron is synonymous with a plastic brain: Plasticity permits the 

developing nervous system to adapt to its surrounding environment. Just as plasticity 
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appears to be essential to the functioning of neurons as information-processing units in the 

human brain, so it is with neural networks made up of artificial neurons. In its most general 

form, a neural network is a machine that is designed to model the way in which the brain 

performs a particular task or function of interest; the network is usually implemented by 

using electronic components or is simulated in software on a digital computer. 

To achieve good performance, neural networks employ a massive interconnection of simple 

computing cells referred to as "neurons" or "processing units". We may thus offer the 

following definition of a neural network viewed as an adaptive machine: 

A neural network is a massively parallel distributed processor made up of simple 

processing units, which has a natural propensity Jbr storing experiential knowledge and 

making it available for use. It resembles the brain in two respects: 

Knowledge is acquired by the network fro,n its environment through a learning 

process. 

Interneuron connection strengths, known as synaptic weights, are used to store 

the acquired knowledge. 

The procedure used to perform the learning process is called a learning algorithm, the 

function of which is to modify the synaptic weights of the network in an orderly fashion to 

attain a desired design objective. 

Ao 

Neural networks are also referred to in literature as neurocomputers, connection isi 

networks, parallel distributed processors, etc. [14]. 



3.2 Models of a Neuron 

A neuron is an information-processing unit that is fundamental to the operation of a neural 

network. The block diagram of Figure: 3.2 (a) show the model of a neuron, which forms 

the basis for designing (artificial) neural networks. Here we identify three basic elements of 

the neuronal model: 

A set of synapses or connecting links, each of which is characterized by a weight or 

strength of its own. Specially, a signal Xj at the input of synapse j connected to 

neuron k is multiplied by the synaptic weight Wkj.  It is important to make a note of 

the manner in which the subscripts of the synaptic weight WkJ  are written. The first 

subscript refers to the neuron in question and the second subscript refers to the 

input end of the synapse to which the weight refers. Unlike a synapse in the brain, 

the synaptic weight of an artificial neuron may lie in a range that includes negative 

as well as positive values. 

An adder for summing the input signals, weighted by the respective synapses of the 

neuron; the operations described here constitutes a linear combiner. 

An activation function for limiting the amplitude of the output of a neuron. The 

activation function is also referred to as a squashing function in that it squashes 

(limits) the permissible amplitude range of the output signal to some finite value. 
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Figure: 3.2 (a) Nonlinear Model of a Neuron 
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Typically, the normalized amplitude range of the output of a neuron is written as the closed 

unit interval [0, 1] or alternatively [-1, 1]. 

The neuronal model of Figure: 3.2 (a) also include an externally applied bias, denoted by 

bk. The bias bk has the effect of increasing or lowering the net input of the activation 

function, depending on whether it is positive or negative, respectively. 

In mathematical terms, we may describe a neuron k by writing the following pair of 

equations: 

,fl 

Uk =I Wk/XJ (3.2.1) 

I and 

Yk = P(U k  +bk ) (3.2.2) 

Where x1, X2.  .......  x, are the input signals; wkl, Wk2 ...........  Wk,,, are the synaptic weights of 

neuron k; Uk  is the linear combiner output due to the input signals; bk is the bias; q() is the 

activation function; and yk  is the output signal of the neuron. The use of bias bk has the 

effect of applying an afJlne transformation to the output Uk of the linear combiner in the 

model of Figure: 3.2 (a), as shown by 

VkUk+bk (3.2.3) 

In particular, depending on whether the bias bk is positive or negative, the relationship 

between the induced local field or activation potential Vk of neuron k and the linear 

combiner output Uk is modified in the manner illustrated in Figure : 3.2 (b); hereafter the 

term "induced local field" is used. Note that as a result of this affine transformation, the 

graph of vk versus Uk no longer passes through the origin. 

- 

Figure: 3.2 (b) Affine Transformation produced by the presence of a bias; note that Vk= bk 

at Uk=O 
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The bias bk is an external parameter of artificial neuron k. We may account for its presence 

as in Esq. (3.2.2). Equivalently, we may formulate the combination of Esq. (3.2.1) to (3.2.3) 

as follows: 

Vk = WkJXJ (3.2.4) 

And 

Yak (p(vk ) (3.2.5) 

In Esq. (3.2.4) we have added a new synapse. Its input is 

XO — +l (3.2.6) 

And its weight is 

1VkO=be (3.2.7) 

We may therefore reformulate the model of neuron k as in Figure: 3.2 (c). In this figure 

the effect of the bias is accounted for by doing two things: 

• Adding a new input signal fixed at +1. 

• Adding a new synaptic weight equal to the bias bk. 

Fixed input x0  = +1 

rxi 

Inputs - 

x,, 

las) 

Activation 
function 

Output 
Yk 

mming 
nCtion 

Synaptic 
weights 

(including bias) 

Figure: 3.2 (c) Another Nonlinear Model of a Neuron 

Although the models of Figures: 3.2 (a) and 3.2 (c) are different in appearance, they are 

mathematically equivalent [14]. 
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3.3 Activation Function 
01 

The activation function, denoted by(v), defines the output of a neuron in terms of the 

induced local field v. 1-lere we identify three basic types of activation functions: 

3.3.1 Threshold Function 

For this type of activation function, described in Figure: 3.3 (a), we have 

I ifr ~0 
= (3.3.1) 

In engineering literature, this form of a threshold function is commonly referred to as a 

Heaviside function. Correspondingly, the output of neuron k employing such a threshold 

function is expressed as 

Yk= (3.3.2) 
< 0 

Where vk is the induced local field of the neuron; that is, 

in 

Vk = Z  w,x1  +bk (3.3.3) 

Such a neuron is referred to in the literature as the McCulloch-Pitts model, in recognition of 

the pioneering work cone by McCulloch and Pitts (1943). In this model, the output of a 

neuron takes on the value of 1 if the induced local field of that neuron is non negative, and 

0 otherwise. This statement describes the all-or none property of the McCulloch-Pitts 

model. 
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Figure: 3.3 (a) Threshold Function 
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3.3.2 Piecewise-Linear Function 

For the piecewise-linear function described in Figure: 3.3 (b), we have 

of f 

'
QI 

9400s
h 

2 

IL 1 1 
q(v) = v +->v> 

L'2 2 
2 

(3.3.4) 

Where the amplification factor inside the linear region of operation is assumed to be unity. 

This form of an activation function may be viewed as an approximation to a nonlinear 

amplifier. 
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Figure: 3.3 (b) Piecewise-Linear Function 

The following two situations may be viewed as special forms of the piecewise-linear 

function: 

. A linear combiner arises if the linear region of operation is maintained without 

running into saturation. 

The piecewise-linear function reduces to a threshold function if the amplification 

factor of the linear region is made infinitely large. 

3.3.3 Sigmoid Function 

The sigmoid function, whose graph is s-shaped, is by far the most common form of 

activation function used in the construction of artificial neural networks. It is defined as a 

strictly increasing function that exhibits a graceful balance between linear and nonlinear 

behavior. An example of the sigmoid function is the logistic function, defined by 
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1 

= 1+ exp(—av) 
(3.3.5) 

where a is the slope parameter of the sigmoid function. By varying the parameter a, we 

obtain sigmoid functions of different slopes, as illustrated in Figure: 33 (c). 
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Figure: 3.3 (c) Sigmoid Function for varying slope parameter 'a' 

7 
In fact, the slope at the origin equals a/4. In the limit, as the slope parameter approaches 

infinity, the sigmoid function becomes simply a threshold function. Whereas a threshold 

function assumes the value of 0 or 1, a sigmoid function assumes a continuous range of 

values from 0 to 1. Note also that the sigmoid function is differentiable, whereas the 

threshold function is not. 

The activation functions defined in Esq. (3.3.1), (3.3.4), and (3.3.5) range from 0 to +1. It is 

sometimes desirable to have the activation function range from -1 to +1, in which case the 

activation function assumes an antisymmetric form with respect to the origin; that is, the 

activation function is an odd function of the induced local field. Specially, the threshold 

function of Esq. (3.3.1) is now defined as 

f 

i tfv>O 

q,(v)=o fi'=O 
-1 fi.<0 

(3.3.6) 

This is commonly referred to as the signum function. For the corresponding form of a 

sigmoid function we may use the hyperbolic tangent function, defined by 

p(v) = tanh (v) (3.3.7) 

Allowing an activation function of the sigmoid type to assume negative values as 

prescribed by Esq. (3.3.7) has analytic benefits [14]. 

) 
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3.4 Network Architectures 

fr- 

The manner in which the neurons of a neural network are structured is intimately linked 

with the learning algorithm used to train the network. We may therefore speak of leai-ning 

algorithms (rules) used in the design of neural networks as being structured. In general, we 

may identify three fundamentally different classes of network architectures: 

3.4.1 Single-Layer Feed forward Networks 

In a layered neural network the neurons are organized in the form of layers. In the simplest 

form of a layered network, we have an input layer of source nodes that projects onto an 

output layer of neurons (computations nodes), but not vice versa. In other words, this 

network is strictly a feed forward or acyclic type. It is illustrated in Figure: 3.4 (a) for the 

case of four nodes in both the input and output layers. Such a network is called a single-
layer network, with the designation "single-layer" referring to the output layer of 

computation nodes (neurons). We do not count the input layer of source nodes because no 

computation is performed there. 

il 

Input Iaycr Output  layer 
of source of neurons 

nø<ICs 

Figure: 3.4 (a) Feed forward or Acyclic Network with a Single Layer of Neurons 

3.4.2 Multilayer Feed forward Networks 

The second class of a feed forward neural network distinguishes itself by the presence of 

one or more hidden layers, whose computation nodes are correspondingly called hidden 
neurons or hidden units. The function of hidden neurons is to intervene between the 

external input and the network output in some useful manner. By adding one or more 
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hidden layers, the network is enabled to extract higher-order statistics. In a rather loose 

sense the network acquires a global perspective despite its local connectivity due to the 

extra set of synaptic connections and the extra dimension of neural interactions 

(Churchiand and Sejnowski, 1992). The ability of hidden neurons to extra higher-order 

statistics is particularly valuable when the size of the input layer is large. 

The source nodes in the input layer of the network supply respective elements of the 

activation pattern (input vector), which constitute the input signals applied to the neurons 

(computation nodes) in the second layer (i.e., the first hidden layer). The output signals of 

the second layer are used as inputs to the third layer, and so on for the rest of the network. 

Typically the neurons in each layer of the network have as their inputs the output signals of 

the preceding layer only. The set of output signals of the neurons in the output (final) layer 

of the network constitutes the overall response of the network to the activation pattern 

supplied by the source nodes in the input (first) layer. The architectural graph in Figure: 3.4 

(b) illustrates the layout of a multilayer feed forward neural network for the case of a single 

hidden layer. For brevity the network in Figure: 3.4 (b) is referred to as a 10 - 4 - 2 network 

because it has 10 source nodes, 4 hidden neurons, and 2 output neurons. As another 

example, a feed forward network with in source nodes, h1  neurons in the first hidden layer, 

h2  neurons in the second hidden layer, and q neurons in the output layer is referred to as an 

rn-hi -h2-q network. 

The neural network in Figure: 3.4 (h) is said to be fully connected in the sense that every 

node in each layer of the network is connected to every other node in the adjacent forward 

layer. If, however, some of the communication links (synaptic connections) are missing 

from the network, we say that the network is partially connected. 
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Figure: 3.4 (b) Fully Connected Feed fonvard or Acyclic Network with One 1-lidden Layer 

and One Output Layer 

3.4.3 Recurrent Networks 

A recurrent neural network distinguishes itself from a feed forward neural network in that 

it has at least one feedback ioop. For example, a recurrent network may consist of a single 

layer of neurons with each neuron feeding its output signal back to the inputs of all the 

other neurons, as illustrated in the architectural graph in Figure: 3.4 (c). In the structure 

depicted in this figure there are no self-feedback loops in the network; self-feedback refers 

to a situation where the output of a neuron is fed back into its own input. The recurrent 

network illustrated in Figure: 3.4 (c) also has no hidden neurons. In Figure: 3.4 (d), we 

illustrate another class of recurrent networks with hidden neurons. The feedback 

connections shown in Figure: 3.4 (d) originate from the hidden neurons as well as from the 

output neurons. 

zj..1I -.J1y 

Figure: 3.4 (c) Recurrent Networks with no Self-Feedback Loops and no Hidden Neurons 
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Figure: 3.4 (d) Recurrent Network with Hidden Neurons 

The presence of feedback loops, whether in the recurrent structure of Figure: 3.4 (c) or that 

of Figure: 3.4 (d), has a profound impact on the learning capability of the network and on 

its performance. Moreover, the feedback loops involve the use of particular branches 

composed of unit-delay elements (denoted by z'), which result in a nonlinear dynamical 

behavior, assuming that the neural network contains nonlinear units [14]. 
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3.5 Neural Learning 

We define learning in the context of neural networks, is adapted from Mendel and 

McClaren (1970), as: 

Learning is a process by which the free parameters of a neural network are adapted 

through a process of stimulation by the environment in which the network is embedded. The 

type of learning is determined by the manner in which the parameter changes take place. 

This definition of the learning process implies the following sequence of events: 

• The neural network is stimulated by an environment. 

• The neural network undergoes changes in its free parameters as a result of this 

stimulation. 

• The neural network responds in a new way to the environment because of the 

changes that have occurred in its internal structure. 

A prescribed set of well-defined rules for the solution of a learning problem is called a 

learning algorithm. As one would expect, there is no unique learning algorithm for the 

design of neural networks. Rather, we have a "kit of tools" represented by a diverse variety 

of learning algorithms, each of which offers advantages of its own. Basically, learning 

algorithms differ from each other in the way in which the adjustment to a synaptic weight 

w of a neuron is formulated. Another factor to be considered is the manner in which a neural 

network (learning machine), made up of a set of interconnected neurons, relates to its 

environment. In this latter context we speak of a learning paradigm that refers to a model 

of the environment in which the neural network operates. 

There have five basic learning rules: 

I. Error-correction learning; it is rooted in optimum filtering. 

2. Memory-based learning; it operates by memorizing the training data 

explicitly. 
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Hebbian learning. 

Competitive learning. 

Hebbian learning and competitive learning are both inspired by 

neurobiological considerations 

Boltzmann learning; it is different because it is based on ideas borrowed from 

statistical mechanics. 

There have three basic and fundamental learning paradigms: 

Credit-assignment problem; which is basic to the learning process 

Learning with a teacher 

Learning without a teacher [14]. 

3.5.1 Learning with a Teacher 

This is also referred to as supervised learning. Figure: 3.5 (a) show a block diagram that 

illustrates this form of learning. In conceptual terms, we may think of the teacher as having 

knowledge of the environment, with that knowledge being represented by a set of input—

output examples. The environment is, however, unknown to the neural network of interest. 

Suppose now that the teacher and the neural network are both exposed to a training vector 

(i.e., example) drawn from the environment. By virtue of built—in—knowledge, the teacher 

is able to provide the neural network with a desired response for that training vector. 

Indeed, the desired response represents the optimum action to be performed by the neural 

network. The network parameters are adjusted under the combined influence of the training 

vector and the error signal. The error signal is defined as the difference between the desired 

response and the actual response of the network. This adjustment is carried out iteratively 

in a step - by - step fashion with the aim of eventually making the neural network emulate 

the teacher; the emulation is presumed to be optimum in some statistical sense. In this way 

knowledge of the environment available to the teacher is transferred to the neural network 

through training as fully as possible. When this condition is reached, we may then dispense 

with the teacher and let the neural network deal with the environment completely by itself. 

'1 
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The form of supervised learning we have just described is the error—correction learning 

discussed previously. It is a closed—loop feedback system, but the unknown environment is 

not in the loop. As a performance measure for the system we may think in terms of the 

mean—square error or the sum of squared errors over the training sample, defined as a 

function of the free parameters of the system. This function may be visualized as a 

multidimensional error—peiformance suiface or simply error suiface, with the free 

parameters as coordinates. The true error surface is averaged over all possible input—output 

examples. Any given operation of the system under the teacher's supervision is represented 

as a point on the error surface. 

Vocr 

Figure: 3.5 (a) Block Diagram of a Learning with a Teacher 

For the system to improve performance over time and therefore learn from the teacher, the 

operating has to move down successively toward a minimum point of the error surface; the 

minimum point may be a local minimum or a global minimum. A supervised learning 

system is able to do this with the useful information it has about the gradient of the error 

surface corresponding to the current behavior of the system. The gradient of an error 

surface at any point is a vector that points in the direction of steepest descent. In fact, in the 

case of supervised learning from examples, the system may use an instantaneous es/un ate 

of the gradient vector, with the example indices presumed to be those of time. The use of 

such an estimate results in a motion of the operating point on the error surface that is 

typically in the form of a "random walk". Nevertheless, given an algorithm designed to 

minimize the cost function, an adequate set of input - output examples, and enough time 

permitted to do the training, a supervised learning system is usually able to perform such 

tasks as pattern classification and function approximation [14]. 
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3.5.2 Real-Time Recurrent Learning 

Real-Time Recurrent Learning algorithm derives its name from the fact that adjustments 

are made to the synaptic weights of a fully connected recurrent network in real time, that is, 

while the network continues to perform its signal processing function (Williams and Zipser, 

1989). Figure: 3.5 (b) shows the layout of such a recurrent network. It consists of q neurons 

with in external inputs. The network has two distinct layers: a concatenated input-feedback 

layer and a processing layer of computation nodes. Correspondingly, the synaptic 

connections of the network are made up of feed forward and feedback connections. 

The state-space model of the network is defined by the following two equations 

X (11+1) =q( W,x(n)+ W,u(n)) (3.5.1) 

y (n) - Cx (n) (3.5.2) 

where W is a q-by-q matrix, W, is a q-by-(m+1) matrix, C is a p-by-q matrix; and 

R - R q is a diagonal map. The process Esq. (3.5.1) is reproduced here in the 

following expanded form: 

x (n + 1) 
= 

ço(w(n)) (3.5.3) 

( w(n)) 

where it is assumed that all the neurons have a common activation functionq(.). The (q + m 

+ 1)-by-i vector wj  is the synaptic weight vector of neuron] in the recurrent network, that 

is, 

[WI 

.
w= I j=i,2..........q 

1 .J 
(3.5.4) 

where w.j  and wb.J  are the]th columns of the transposed weight matrices W' and W, 

respectively. The (q + m + 1)-by-i vector (n) is defined by 

I 

rx(ii)1 

[u(n)j 
(3.5.5) 
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where x(i) is the q-by-i state vector and u(n) is the (m + 1)-by-i input vector. The first 

element of u (n) is +1 and, in a corresponding way, the first element of Wb.3  is equal to the 

bias b applied to neuronj. 

S. a.. 
vector 

Cuipos s

I

Scctur 

Figure: 3.5 (b) Fully connected recurrent network for formulation of the RTRL algorithm 

To simplify the presentation, we introduce three new matrices A1  (n), U (n) and t (n), 

described as follows: 

1. A1 (n) is a q-by-(q + m + 1) matrix defined as the partial derivative of the state 

vector x(n) with respect to the weight vector 

f3x(n) 
1=1,2. ....... q (3.5.6) 

aw1  

IK 2. U(n) is a (q + m + 1) matrix whose rows are all zero, except for the jth row that is 

equal to the transpose of vector (n) 

0 

U(n)= 4 7 (n) +—jth row, j = 1,2 ............... q (3.5.7) 

0 

3. 1(n) is a q-by-q diagonal matrix whose kth diagonal element is the partial 

derivative of the activation function with respect to its argument, evaluated 

atw'4(n) 

(I)(n) = diag(q'(w4n)).......'(w4(n))..........p'(w,(n))) (3.5.8) 
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With these definitions, we may now differentiate Esq. (3.5.3) with respect tow1. Then, 

using the chain rule of calculus, we obtain the following recursive equation: 

A(n + 1) = J)(n) [W(n)A(n)+U.(n)], j= 1,2......, q (3.5.9) 

This recursive equation describes the nonlinear stale dynamics (i.e., evolution of the state) 

of the real-time recurrent learning process. 

To complete the description of this learning process, we need to relate the matrix A (n) to 

the gradient of the error surface with respect to w1. To do this, we first use the measurement 

Esq. (3.5.2) to define the p-by-i error vector: 

e (n) = d (n) 
- 

y (n) 

=d(n)—Cx(n) (3.5.10) 

The instantaneous sum of squared errors at time ii is defined in terms of e (n) by 

E(n) = — eT(n)e(n) 

(3.5.11) 

The objective of the learning process is to minimize a cost function obtained by summing 

E(n) over all time n; that is, 

Etotai = E(n) 
n 

To accomplish this objective we may use the method of steepest descent, which requires 

knowledge of the gradient matrix, written as 

a 
V t, Etotai = Etotai ow 

a 
= 

E(n) 

E(n) 

where \7,  E(n) is the gradient of E(n) with respect to the weight matrix W = {wk  }. we 

may, if desired, continue with this equation and derive update equations for the synaptic 

weights of the recurrent network without invoking approximations. 1-lowever, in order to 

develop a learning algorithm that can be used to train the recurrent network in real time, we 
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must use an instantaneous estimate of the gradient, namely V. E(n), which results in an 

approximation to the method of steepest descent. 

Returning to Esq. (3.25) as the cost function to be minimized, we differentiate it with 

respect to the weight vector w1, obtaining 

a (ae(n) 
E(n)=I )e(n) 

= -CI e(n) (3.5.12) 
ow1 ) 

-CA1(n)e(n), 1=1,2 ........... q 

The adjustment applied to synaptic weight vector w (n) of neuronj is therefore determined 

by 

E(n) (3.5.13) 

= q CA(n)e(n), j=1,2........ 

where 17 is the learning-rate parameter and A1  (n) is itself governed by Esq. (3.23). 

The only remaining item is that of specifying the initial conditions to start the learning 

process. For this purpose we set 

A,(0)=O forallj (3.5.14) 

the implication of which is that initially the recurrent network resides in a constant state. 

Table: 3.5 presents a summary of the real-time recurrent learning algorithm. The 

formulation of the algorithm as described here applies to an arbitraiy activation function 

() that is differentiable with respect to its argument. For the special case of a sigmoidal 

nonlinearity in the form of a hyperbolic tangent function, we have 

x1 (n + 1) = (v1 (n)) 

= tanh(v1 (n)) 

and 

36 



'( (n)) = 
5(v, (ii)) 

av1 (n) 

= 

I— x(n+1) 

of F 

OLUI 
(3.5.15) 

where v1  (n) is the induced local field of neuronj and x1  (n + 1) is its state at n + 1. 

Table: 3.5 Summary of the Real-Time Recurrent Learning Algorithm 

Parameters: 
in = dimensionality of input space 
q = dimensionality of state space 

I,' p = dimensionality of output space 
w synaptic weight vector of neuronj, = 1, 2 ........ q. 

Initialization: 
Set the synaptic weights of the algorithm to small values selected from a uniform 
distribution. 
Set the initial value of the state vector x (0) = 0. 
Set A,(0)=0forj=l,2 ....... q. 

Computations: Compute for n = 0, 1, 2...... 
A1 (n+ l)= I'(n)[W(n)A(n)+U 1 (n)] 

e (n) = d (n) - Cx (n) 
tw(iz) = q C A j  (n) c (n) 

The definitions of x (n), A j  (n), U (n) and ct(n) are given in Esq. (3.17), (3.20), (3.21), 

and (3.22. resDectivelv. 

The use of the instantaneous gradient \7,,•  E(n) means that the real-time recurrent learning 

algorithm described here deviates from a non-real-time one based on the true gradient V, 

Etotai . While the real-time recurrent learning algorithm is not guaranteed to follow the 

precise negative gradient of the total error function Etotai (W) with respect to the weight 

matrix W, the practical differences between the real-time and non-real-time versions are 

often slight; these two versions become nearly identical as the learning-rate parameter 77  is 

reduced. The most severe potential consequence of this deviation from the true gradient-

following behavior is that the observed trajectory (obtained by plotting E(n) versus the 

I 
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elements of the weight matrix W(n)) may itself depend on the weight changes produced by 

the algorithm, which may be viewed as another source of feedback and therefore a cause of 

instability in the system. We can avoid this effect by using a learning-rate parameter 

small enough to make the time scale of the weight changes much smaller than the time 

scale of the network operation (Williams and Zipser, 1989) [14]. 

y 
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CHAPTER 4 

PROCEDURES / METHODOLOGY 

4.1 Introduction 

Experimental Procedure/Methodology is nothing but the adopted processes and the 

sequence of those are known as experimental procedure/methodology. In this research work 

the considered processes and their sequences are as follows: 

• Selection and preparation of specimens 

• Selection the necessary machines & workshops 

• Selection the variable process parameters 

• Selection the weidment characteristics to be measured 

• Perform welding to make bead on the specimens 

• Measuring and recording the process parameters variations 

• Measuring and recording the weidment characteristics values as experimental 

results 

• Computing through an Artificial Neural Network Model (using Real-Time 

Recurrent Learning algorithm) and recording the weidment characteristics values as 

computational results 

• Comparing the experimental values with the computational values. 
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4.2 Experimental Procedures 

Medium carbon steel plate of 12 mm thickness has been chosen as base metal upon which 

welding has been performed. 120 pieces of size 150 mm x  75 mm has been cut away from 

a large flat plate using oxy-acetylene flame as specimens. The specimens then cleaned 

before welding. 

-: - 
L ---- 

.- 

- -- -- 

Figure: 4.2 (a) Sketch of Specimen with Dimensional Configuration 

To perform welding (i.e., a straight bead on the flat surface of specimens) Transmig 350C 

semi-automatic MIG Welding machine of MUREX company of England has been chosen. 

Welding workshop of Hope Technical Institute, Khulna has been selected and their welding 

teacher has been chosen as welder. To prepare the specimen, perform welding (single and 

straight bead on surface of the specimen) and to measure the weidment characteristics 

except hardness - the welding shop and the metallurgy laboratory of Mechanical 

Engineering Department of Khulna University of Engineering & Technology, Khulna; to 

measure the Rockwell hardness - Bangladesh Industry and Technical Assistance Center 

(BITAC), Khulna have been used. 

Process parameters are nothing but some conditions, which are maintain during welding 

process. With variety of welding process to process these parameters means conditions will 

vary. In a typical welding process there may choose a lot of parameters. But it should have 
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mind that, in a typical welding process every parameters variation have very significant 

effects on weidment characteristics. 

However, in MIG welding process the followings may consider as process parameters: 

- Metal of work piece & electrode wire 

- Electrode wire diameter 

- Electrode wire feed rate 

- Used inert gas 

- Gas supply pressure 

- Electrode polarity 

- Are spread  

- Thickness of work piece 

- Welding current 

- Welding speed (table or hand speed) 

- Arc length 

- Welding voltage 

- Arc start process 

- Electrode-to-work angle 

- Welding joint preparation 

In this research work the followings have been considered as mci/or process parameters - 

- Electrode wire diameter - Current in ampere 

- Electrode wire feed rate 

Considering the welding machine capability and facility, requirement for this work and 

availability of other facilities the following process parameters values have been finally 

selected as input variables: 

. 0.8 & 1.0 mm diameter medium carbon steel electrode wire 

• 20 step welding current between 194 - 340 amp range 

• 4600 & 5600 mm/min electrode wire feed rate. 

More or less the following process parameters have been considered as constant throughout 

the entire experiment, e.g., welding speed around 140 mm/mm, arc length around 3 mm, 

carbon dioxide (CO2) gas have been used as inert gas, gap length in between nozzle and 
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plate have been maintained in the range of 5 - 7 mm and electrode angle have been 
r. 

maintained in the range of 650— 750• 

Again weidment characteristics are nothing but some quality of weidment means welded 

zone or jointed zone. 

And weldrnent characteristics may consider as follows: 

- Bead width 

- Depth of penetration 

- Hardness of penetrated zone 

- Metallurgy of penetrated zone 

- Spattering rate 

- Bending strength of bead  

- Bead height or reinforcement 

- Depth of heat affected zone 

- Metallurgy of reinforcement 

- Number of undercuts 

- Tensile strength of bead 

- Weidment appearance 

- Crack or blow hole or porosity producing rate into the molten zone 

In this research work the followings have been considered as weidment characteristics - 

- Bead Width - Bead 1-leight 

- Depth of Penetration - Depth of I-IAZ 

- Hardness of penetrated zone 

After marking the specimens using number punch to give identity as sample serial number, 

a straight bead has made along the middle line of width on the surface of the specimens. 

During this all considered process parameter variations according to sample serial number 

have been recorded. 

About 50 mm long pieces have been cut away from the middle position of the straight bead 

from every welded piece and have been taken for further experiment. The two ends along 

straight bead of those pieces have grinded with pedestal grinding machine, polished with 0, 

2, 3, 4 grade emery paper and lastly with polishing machine embraced with cloth. 
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Figure: 4.2 (b) Photograph of MIG Welding operation 

11 

Figure: 4.2 (c) Photograph of Weidment 

After performing required polishing of both ends properly, etched with 5% nitric acid 

solution (Nital) and then bead width, bead height, depth of penetration, depth of HAZ have 

been measured with digital slide caliper and recorded. 
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Figure: 4.2 (d) Sketch of Weld Bead Geometry and 1-leat Affected Zone 

, 

Figure: 4.2 (e) Photograph of Bead Width, Bead Height, Penetrated and Heat Affected 

Zone of Weldment. 

After this, using Rockwell hardness testing machine, hardness number of penetrated zone 

of every pieces have been taken on C scale and recorded. Then the average 40 reasonable 

values have been taken for further computation purpose through ANN model, because three 

pieces have been taken as a set of specimens. 

After finishing the all experimental tasks, used process parameters values and measured 

weidment characteristics values have been recorded as experimental results along with the 
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sample serial numbers in tabular form. And after performing computational tasks through 

Real-Time Recurrent Learning algorithm, used process parameters values and obtained 

weidment characteristics values have been recorded as computational results along with the 

sample serial numbers in tabular form also. 

In 'CHAPTER 5 Results and Discussions' the results in tabular form have been given and 

comparison in between experimental and computational values have been illustrated in 

graphical form also. 

I 
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CHAPTER 5 

RESULTS AND DISCUSSIONS 

5.1 Results 

The experimental and computational values of weidment characteristics, which have been 

obtained respectively from the experiments using different process parameters variation and 

through ANN model using experimental values of process parameters as well as weldment 

characteristics as inputs, have been recorded separately and given in the subsequent tables. 

The comparison in between the experimental and computational values with same process 

parameters variation have been given as graphical form in the subsequent figures also. 
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5.1.1 Experimental Results 

Table: 5.1 (a) Values of Bead Width, Bead Height, Depth of Penetration & Heat Affected 

Zone and Hardness using current range from 194 263 amps for electrode wire diameter 

and feed rate respectively 0.8 mm and 4600 mm/mm. 

Process Parameters Weldment Characteristics 
Sample 
Serial 
No 

Wire 
Dias 
(mm) 

Wire feed 
rate 

(mnl/min) 

Welding 
current 
(amp) 

Bead 
Width 
(miri) 

Bead 
Height 
(mm) 

Depth of 
Penetration 

(mm) 

Depth 
of 

(iini) 

Hardness 
ofof 

Weldment 
0.8 4600 194 7.00 3.50 1.50 1.50 20.00 

5 0.8 4600 

_
202 7.00 3.50 1.50 1.50 20.00 

8 0.8 4600 f 209  7.50 3.50 2.00 1.50 25.00 
12 0.8 4600 1 217 7.50 3.50 2.00 1.50 20.00 
15 0.8 4600 225 8.00 3.50 2.00 2.00 25.00 
47 0.8 4600 232 8.50 3.50 2.50 2.50 15.00 
50 0.8 4600 240 9.00 3.50 2.50 2.00 20.00 
53 0.8 4600 248 9.50 3.00 2.50 2.00 20.00 
56 0.8 4600 255 10.00 3.00 2.50 2.00 15.00 
59 0.8 1  4600 263 10.00 3.00 2.50 2.00 20.00 

Table: 5.1(b) Values of Bead Width, Bead Height, Depth of Penetration & 1-Teat Affected 

Zone and Hardness using current range from 271 
- 340 amp for electrode wire diameter 

and feed rate respectively 0.8 mm and 5600 mm/mm. 

Process_Parameters  Weldment Characteristics 
Sample 
Serial 

32 

Wire 
Dias 
(mm) 

0.8 

Wire feed 
rate 

(mnilniin) 

5600 

Welding 
current 
(amp) 

271 

Bead 
Width 
(mm) 

11.00 

Bead 
Height 
(mm) 

3.50 

Depth of 
Penetration 

(mm) 

2.50 

Depth 

2.00 

of 
HAZ HAZ 

 

Hardness 
of 

20.00 
34 0.8 5600 278 11.00 3.50 2.50 2.00 20.00 
38 0.8 5600 286 11.00 3.50 2.50 2.50 20.00 
42 0.8 5600 294 11.50 3.00 3.00 2.50 15.00 
44 0.8 5600 302 11.50 3.00 3.00 2.00 20.00 
18 0.8 5600 309 12.00 3.00 3.00 3.00 10.00 
21 0.8 5600 317 12.50 3.00 3.00 3.00 15.00 
22 0.8 5600 325 12.50 3.00 3.50 3.00 15.00 
25 0.8 5600 332 13.00 3.00 3.50 3.00 15.00 
29 0.8 5600 340 13.00 3.00 I 3.00 3.00 10.00 
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Table: 5.1 (c) Values of Bead Width, Bead Height, Depth of Penetration & Heat Affected 

Zone and Hardness using current range from 194 - 263 amp for electrode wire diameter 

and feed rate respectively 1.0 mm and 4600 mm/nun. 

- Process_Parameters  Weldment Characteristics  

Sample 
Serial 
No. 

Wire 
Dias 
(rum) 

Wire feed 
rate 

(mm/mm) 

Welding 
culTent 
(amp) 

Bead 
Width 
(mm) 

Bead 
Height 
(mm) 

Depth of 
Penetration 

(mm) 

Depth 
of 

HAZ 

Hardness 
of 

Weldment 

62 1.0 4600 194 8.00 4.00 2.00 1.50 20.00 
64 1.0 4600 202 8.00 4.00 2.00 1.50 20.00 
69 1.0 4600 209 10.00 4.00 2.50 2.00 20.00 
71 1.0 4600 217 10.00 4.00 2.50 2.00 25.00 
74 1.0 4600 225 11.00 4.00 3.00 2.00 20.00 
77 1.0 4600 232 12.50 4.50 3.00 2.50 15.00 
81 1.0 4600 240 12.50 4.50 3.00 2.00 20.00 
83 1.0 4600 248 12.50 4.00 3.50 2.50 20.00 
86 1.0 4600 255 13.50 3.50 3.50 2.50 20.00 
89 1.0 4600 263 13.50 3.50 3.50 2.50 15.00 

Table: 5.1 (d) Values of Bead Width, Bead Height, Depth of Penetration & 1-leat Affected 

Zone and Hardness using current from range 271 - 340 amp for electrode wire diameter 

and feed rate respectively 1.0 mm and 5600 mm/mm. 

Process_Parameters  Weldment Characteristics 
Sample 
Serial 
No 

Wire 
Dias 
(mm) 

Wire feed 
rate 

(ninu./min) 

Welding 
current 
(amp) 

Bead 
Width 
(mm) 

Bead 
Height 
(mm) 

Depth of 
Penetration 

(mm) 

Depth 
of 

HAZ HAZ 
 

Hardness 
of 

93 1.0 5600 271 14.00 4.00 2.50 3.00 15.00 
96 1.0 5600 278 14.50 4.00 2.50 3.00 10.00 
97 1.0 5600 286 15.00 4.00 3.50 2.50 20.00 

101 1.0 5600 294 15.00 3.00 3.00 3.00 15.00 
103 1.0 5600 302 15.00 3.50 3.00 2.50 20.00 
108 1.0 5600 309 15.50 3.00 3.00 2.50 20.00 
111 1.0 5600 317 15.50 3.00 3.50 3.50 20.00 
113 1.0 5600 325 16.00 3.00 2.50 3.50 15.00 
115 1.0 5600 332 16.00 3.00 3.00 3.50 15.00 
119 1.0 5600 340 16.00 2.50 3.00 2.50 10.00 
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5.1.2 Computational Results 

0

-  , 

g 

•p,  

Table: 5.1 (e) Values of Bead Width, Bead Height, Depth of Penetration & Heat Affected 

Zone and Hardness using current range from 194 - 263 amp for electrode wire diameter 

and feed rate respectively 0.8 mm and 4600 mm/mm. 

Process_Parameters  Weldme11t_Characteristics  

Sample 
Serial 
No 

Wire 
Dias 
(mm) 

Wire feed 
rate 

(mm/mm) 

Welding 
current 
(amp) 

Bead 
Width 
(mm) 

Bead 
Height 
(mm) 

Depth of 
Penetration 

(mm) 

Depth  
of 

HAY 
(mr) 

Hardness 
of 

Weidment 

1 0.8 4600 194 7.0251 3.5782 1.5156 1.5251 20.9130 
5 0.8 4600 202 7.0369 3.5693 1.5149 1.5328 20.7557 
8 0.8 4600 209 7.5288 3.5328 2.0243 1.5386 24.7171 
12 0.8 4600 217 7.5327 3.5125 2.0251 1.5397 20.0124 
15 0.8 4600 225 8.0423 3.5122 2.0235 1.9835 25.2629 
47 0.8 4600 232 8.5478 3.5113 2.5109 2.0375 15.5724 
50 0.8 4600 240 9.0492 3.5087 2.5207 2.0247 19.7470 
53 0.8 4600 248 9.5287 3.0763 2.5225 2.0364 19.8871 
56 0.8 4600 255 10.0639 3.0385T 2.5233 2.0428 15.1108 
59 0.8 4600 263 10.0471 3.0238] 2.5247 2.0482 19.2022 

Table: 5.1 (f Values of Bead Width, Bead Height, Depth of Penetration & Heat Affected 

Zone and Hardness using current range from 271 - 340 amp for electrode wire diameter 

and feed rate respectively 0.8 mm and 5600 mm/mm. 

Process_Parameters  Weidment_Characteristics 
Sample 
Serial 
No 

Wire 
Dias 
(mm) 

Wire feed 
rate 

(mm/mm) 

Welding 
current 
(amp) 

Bead 
Width 
(mm) 

Bead 
Height 
(mm) 

Depth of 
Penetration 
(mm) 

Depth  
of 
HAZ 

Hardness 
of 

Weidment 

32 0.8 5600 271 11.0729 3.5293 2.5332 2.0351 19.9796 
34 0.8 5600 278 11.0467 3.5182 2.5126 2.0384 19.9672 
38 0.8 5600 286 11.0821 3.4751 2.5189 2.5297 19.2199 
42 0.8 5600 294 11.5934 3.0187 2.9813 2.5327 15.3415 
44 0.8 5600 302 11.5626 3.0152 2.9887 2.0348 19.4382 
18 0.8 5600 309 12.0345 3.0129 2.9912 2.9832 10.6328 
21 0.8 5600 317 12.5573 3.0151 3.0412 2.9827 15.7019 
22 0.8 5600 325 12.5828 2.9864 3.4896 2.9845 15.7675 
25 0.8 5600 332 13.0652 2.9752 3.4537 3.0556 15.9533 
29 0.8 5600 340 13.0981 2.9678 3.4695 3.0823 10.0337 
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Table: 5.1 (g) Values of Bead Width, Bead Height, Depth of Penetration & 1-leat Affected 

Zone and Hardness using current range from 194 - 263 amp for electrode wire diameter 

and feed rate respectively 1.0 mm and 4600 mm/mm. 

Process_Parameters  Weidment_Characteristics 
Sample 
Sciial 
No 

Wire 
Dias 
(mm) 

Wire feed 
rate 

(mm/nun) 

Welding 
current 
(amp) 

Bead 
Width 
(mm) 

Bead 
Height 
(mm) 

Depth of 
Penetration 

(mm) 

Depth  
of 

HAZ HAZ 

Hardness 
of 

Weidment 

62 1.0 4600 194 8.0326 4.0127 2.0167 1.5298 20.9353 
64 1.0 4600 202 8.0434 4.0495 2.0249 1.5486 20.3198 
69 1.0 4600 209 9.9424 3.9765 2.4876 1.9785 20.7426 
71 1.0 4600 217 9.9365 3.9537 2.4917 1.9637 20.0397 
74 1.0 4600 225 10.9572 3.9821 2.8873 1.9465 20.2920 
77 1.0 4600 232 12.4358 4.4983 2.9185 2.5425 15.6029 
81 1.0 4600 240 12.4208 4.4897 2.9367 2.0521 19.7789 
83 1.0 4600 248 12.4455 3.9873 3.4873 2.5607 19.9204 
86 1.0 4600 255 13.4217 3.4827 3.4913 2.5354 19.1451 
89 1.0 4600 263 13.3854 3.4801 3.4987 2.4598 15.2374 

Table: 5.1 (h) Values of Bead Width, Bead Height, Depth of Penetration & Heat Affected 

Zone and Hardness using current range from 271 - 340 amp for electrode wire diameter 

and feed rate respectively 1.0 mm and 5600 mmlmin. 

Process_Parameters  Weldnuent_Characteristics  

Sample 
Serial 
No. 

Wire 
Dias 
(mm) 

Wire feed 
rate 

(mr-n/mm) 

Welding 
current 
(amp) 

Bead 
Width 
(mm) 

Bead 
Height 
(mm) 

Depth of 
Penetration 

(n-mu) 

Depth  
of 

HAZ 
(mn 

Hardness 
of 

Weldrnent 

93 1.0 5600 271 13.9257 3.9835 2.5378 2.9638 15.8096 
96 1.0 5600 278 14.4308 3.9723 2.5286 2.9752 10.0992 
97 1.0 5600 286 14.9165 3.9687 3.4827 2.5345 19.2533 

101 1.0 5600 294 14.9202 3.0185 2.9138 2.9348 15.3761 
103 1.0 5600 302 14.8705 3.5297 2.9562 2.4936 19.4737 
108 1.0 5600 309 15.4726 3.0141 2.9593 2.5136 19.6690 
111 1.0 5600 317 15.3872 3.0178 3.4897 3.5315 19.7385 
113 1.0 5600 325 15.9217 2.9873 2.5134 3.4883 15.8042 
115 1.0 5600 332 15.9183 2.9756 3.0183 3.4927 15.9898 
119 1.0 5600 340 15.8924 2.5274 3.0127 2.6127 10.0696 
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5.1.3 Comparisons ('Computational' have replaced with 'Predicted' in the Ibliowing figures) 

• Experimental_---_Predicted 

-12 
10 

- 8 

V 
ci 

0 

194 202 209 217 225 232 240 248 255 263 

Current (amp) 

Figure: 5.1(a) Comparison of Bead Width values using current range from 194 - 263 

amps, electrode wire diameter and feed rate respectively 0.8 mm and 4600 mm/mm. 
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Figure: 5.1 (b) Comparison of Bead Width values using current range from 271 - 340 

amps, electrode wire diameter and feed rate respectively 0.8 mm and 5600 mm/mm. 
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Figure: 5.1(c) Comparison of Bead Width values using current range from 194 - 263 

amps, electrode wire diameter and feed rate respectively 1.0 mm and 4600 mmlmin. 
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Figure: 5.1 (d) Comparison of Bead Width values using current range from 271 - 340 

amps, electrode wire diameter and feed rate respectively 1.0 mm and 5600 mm/mm. 
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Figure: 5.1 (e) Comparison of Bead Height values using current range from 194-263 

amps, electrode wire diameter and feed rate respectively 0.8 mm and 4600 mm/mm. 
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Figure: 5.1 (1) Comparison of Bead Height values using current range from 271 - 340 

amps, electrode wire diameter and feed rate respectively 0.8 mm and 5600 mm/mm. 
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Figure: 5.1(g) Comparison of Bead Fleight values using current range from 194 - 263 

amps, electrode wire diameter and feed rate respectively 1.0 mm and 4600 mm/mm. 
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Figure: 5.1 (h) Comparison of Bead Height values using current range from 271 - 340 

amps, electrode wire diameter and feed rate respectively 1.0 mm and 5600 mm/mm. 
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Figure: 5.1(i) Comparison of Depth of Penetration values using culTent range from 194 - 

263 amps, electrode wire diameter and feed rate respectively 0.8 mm and 4600 rnmlmin. 
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Figure: 5.1 0) Comparison of Depth of Penetration values using current range from 271 - 

340 amps, electrode wire diameter and feed rate respectively 0.8 mm and 5600 ntmlmin. 
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Figure: 5.1 (k) Comparison of Depth of Penetration values using current range from 194-

263 amps, electrode wire diameter and feed rate respectively 1.0 mm and 4600 mm/mm. 
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Figure: 5.1 (1) Comparison of Depth of Penetration values using current range from 271 - 

340 amps, electrode wire diameter and feed rate respectively 1.0 mm and 5600 mmlmin. 
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Figure: 5.1 (m) Comparison of Depth of I-IAZ values using current range from 194 - 263 

amps, electrode wire diameter and feed rate respectively 0.8 mm and 4600 mm/mm. 
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Figure: 5.1 (n) Comparison of Depth of HAZ values using current range from 271 -340 

amps, electrode wire diameter and feed rate respectively 0.8 mm and 5600 mm/mm. 
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Figure: 5.1 (o) Comparison of Depth of HAZ values using current range from 194 - 263 

amps, electrode wire diameter and feed rate respectively 1.0 mm and 4600 mm/mm. 
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Figure: 5.1 (p) Comparison of Depth of HAZ values using current range from 271 - 340 

amps, electrode wire diameter and feed rate respectively 1.0 mm and 5600 mm/mm. 
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Figure: 5.1(q) Comparison of Hardness values using current range from 194 - 263 amps, 

electrode wire diameter and feed rate respectively 0.8 mm and 4600 mm/mm. 
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Figure: 5.1 (r) Comparison of I-Iardness values using current range from 271 -340 amps, 

electrode wire diameter and feed rate respectively 0.8 mm and 5600 mm/mm. 
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Figure: 5.1 (s) Comparison of Flardness values using current range from 194 - 263 amps, 

electrode wire diameter and feed rate respectively 1.0 mm and 4600 mm/mm. 

. Experimental -- Pre dicted 

30 

20 

1: 
I 

 

271 278 286 294 302 309 317 325 332 340 

Current (amp) 

Figure: 5.1 (t) Comparison of Hardness values using current range from 271 - 340 amps, 

electrode wire diameter and feed rate respectively 1.0 mm and 5600 mm/mm. 
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5.2 Discussions 

Some important process parameters, which have intensive effect on weidment 

characteristics, have not been possible to consider due to the limitations of variable 

facilities. However, from the figures 5.1 (a) - 5.1 (t) in Art.5.1, the observations have been 

mentioned in the following sections. 

From Figure. 5.1 (a) - 5.1 (d) - it has been observed that for both 0.8 & 1.0 mm diameter 

electrode wire, with increasing the current the bead width increases at both 4600 & 5600 

mmlmin electrode wire feed rate. And it is very clear that, at maximum welding current, 

electrode wire diameter and electrode wire feed rate, the bead width is maximum; because 

Ir the melting rate of electrode wire increases at higher current. 

From Figure: 5.1 (e) - 5.1(h) - it has been observed that for 0.8 & 1.0 mm diameter 

electrode wire there has a little tendency of decreasing in bead height with increasing the 

current & electrode wire feed rate respectively. But the bead height increases with 

increasing electrode wire diameter for individual considerations; because at higher current 

the more molten electrode wire generally minimizes by increasing the bead width, not by 

bead height. 

From Figure: 5.1 'i) - 5.1 'l) - it has been observed that for same electrode wire feed rate 

and within the same welding current range the depth of penetration values have increased 

with increasing the electrode wire diameter. Again it has also been observed that for same 

electrode wire diameter the depth of penetration values have increased with increasing the 

electrode wire feed rate and welding current range simultaneously. Because welding current 

has great effect on welding temperature which is directly involves melting the electrode 

wire and base metal as well as electrode wire diameter has played an effective role to 

maintain the welding zone periphery. 

From Figure: 5.1 (m) —5.1 (p) - it has been observed that for same electrode wire feed rate 

and within the same welding current range the depth of heat affected zone values have 
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increased with increasing the electrode wire diameter. Again it has also been observed that 

for same electrode wire diameter the depth of heat affected zone values have increased with 

increasing the electrode wire feed rate and welding current range simultaneously. Because 

welding current has great effect on welding temperature which is directly involves melting 

the electrode wire and base metal as well as electrode wire diameter has played an effective 

role to maintain the welding zone periphery. 1-lowever, there has observed a little bit 

exceptions have occurred on depth of heat affected zone values, probably due to the lack of 

stability of involved parameters. 

From Table & Figure: 5.1(q) - 5.1(t) - it has been observed that for same electrode wire 

feed rate and within the same welding current range the hardness values have found more 
Ir or less steady for an individual electrode wire diameter. Again for an individual electrode 

wire diameter the hardness values have found in decreasing manner with increasing the 

electrode wire feed rate and welding current range simultaneously. Because up to a 

moderate range of welding temperature and at higher welding temperature, where welding 

temperature is directly proportional to the welding current, the formation of molecular 

structure of penetrated zone are different, so different hardness have found. 

In all the cases the experimental values and the computational values have found to be very 

close, indicating that the computational values are quite dependable to be used for 

prediction. 

5.2.1 Correlation 

As mentioned in a published paper "Modeling and predicting the effects of process 

parameters on weldment characteristics in shielded metal arc welding by M. M. 

Mahapatra, M. Sadat Au, G. L. Dutta and B. Pradhan in Indian Welding Journal, 38(2), 

2005, pp.22-29"; a few important results in graphical form have been copied in the 

following sections, which are almost identical with the results of this research works 

illustrated in Art. 5.1.3 and described in Art. 5.2. Although welding process in one is SMA 

welding and in another is MIG welding. 
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The above figure exhibits the same trends of bead width characteristics as illustrated in 

Figure: 5.1(a) - 5.1(d). 
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The above figure exhibits the same trends of bead height characteristics as illustrated in 

Figure. 5.1(e) - 5.1('h). 
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The above figure exhibits the same trends of depth of HAZ characteristics as illustrated in 

Figure: 5.1(n2) - 5.1,,). 
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions 

Artificial neural networks based approaches can be used effectively for predicting the 

output parameters like bead width, bead height, depth of penetration, depth of HAZ and 

hardness. 

The effects of the welding process parameters on weldment characteristics can be 

summarized in the following way: 

Welding current, electrode wire diameter, electrode wire feed rate appear to be 

important process parameters in MIG welding, with their direct effects on bead 

geometry shape, size, depth of penetration and HAZ also. 

With increase in the current and wire diameter, the bead width increase moderately 

linearly. There has no considerable effect of changing the wire feed rate. 

With increasing the current and wire feed rate there has no notable change in the 

bead height, but increase with increasing the wire diameter. 

With increasing the current for an electrode wire diameter and an electrode wire 

feed rate, the depth of penetration increases. 

Change in process parameters exhibits effect on depth of HAZ in same manner as 

for depth of penetration. 
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f) For every change in process parameters during the experiment shows a significant 

change in hardness. With hardness of base metal having average value of 5, after 

welding these appears as much as in the range of 10 to 20. 

11 
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6.2 Recommendations 

The experiment can be done using more number of important process parameters 

variables which has not been used in this experiment due to some limitations. This 

will result more accurate predictions of the weidment characteristics. 

This method can be applied to other welding processes like hG (Tungsten Inert 

Gas) welding, SAW (Submerged Arc Welding) etc. using semi-automatic and 

automatic processes. 

14 
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Appendix - 1 

Specifications and Calibrations of used all machines & equipments 

Vernier Slide Caliper Company : MAUSER 
Brand : INOX 
Range : 0 25 cm 
Calibration : 1 mm 
Accuracy : 0.01 mm 
(Linearity and Accuracy is satisfactory) 

MIG Welding Machine : Company: ESAB Welding Equipment AB (Sweden) 
Murex Welding Products Ltd. (England) 

Model : Transmig 350C (Semi-automatic) 
Input Voltage: 400 - 415 V, 3 - 50/60 Hz 
Setting Range (DC): 40A/16V - 340A/3 1V 
Open Circuit Voltage: 16 - 40 V 
Open Circuit Power: 240 W 
Efticiency: 77 % 
Wire Feed Speed: 1.9 - 20 rn/mm 
Duty cycle: 30,60 & 100% 
Welding Gun Connection: EURO 
Operating Temperature: -10 to +400  C 
Enclosure class: 1P23 
Application class: S 

-Y 

Rock Well Hardness 
Testing Machine Company 

Model 
Loading Capacity 
Dial Calibration 

HOYTOM Ltd. (Spain) 
1003 A 
31.25— 187.5 kg 
B & C scale 
0 - 100 (Unique division) 
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Appendix —2 

Program on Real-Time Recurrent Learning Algorithm 

/ Real Time Recurrent learning for flux estimation 
Page 756, Book: SIMON HAYKEN 
NO Hidden layer 
Rewrite in New form that is one weight matrix (wa2 1) *1 

#include <stdio.h> 
#include <math.h> 
#include <stdlib.h> 
#include <string.h> 
#include <time.h> 

#definelN 4 
#define STATE 5 
#define OUT 5 
#define MPN 40 
#define constant 0.06 
//#define fi (x) (1 .0exp(2.0*x))/( 1 .O+exp(2.0*x)) 
#define fl(x) 1.0/(1.0+exp(2.0*x)) 
//#define fl(x) (constant*x) 
#define rnd() (((float)randQ/Ox7fff)*(WmaxWmjn)+Wmjn) 

float statepre[MPN] [STATE]; 
float stateprepre[MPN] [STATE]; 
float state_preprepre[MPN] [STATE]; 
float statepreprcj,repre[MPN] [STATE]; 
float input[MPN][IN]; 
float U[STATE] [STATE+IN]; 
float u[MPN][OUT]; 
float wa2 I [STATE] [STATE+IN]; 
float dwa2 I [STATE] [STATE+IN]; 
float diagonal [STATE][STATE]; 
float output[MPN][STATE]; 
float outputpre[MPN] [STATE]; 
float target[MPN][OUT]; 
float partial derivative[STATE] [STATE+IN]; 
float partial derivativepre[STATE] [STATE+IN]; 
float ef; 
float efl[OUT]; 
float e12[MPN][OUT]; 
I/float beta=0.000000008;//current 
I/float beta0.0000000I ;//sarwer 
I/float alpha=0.0000001; 
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float beta=0.000000008; 
float alpha=0.0000000025; 
I/float alpha=O.O; 
float Wmax=0.0001; 
float Wmin=-0.000 1; 

mt tm; 

FILE *fps,*fpsl,*fps3;  

main Q 
{ 

mt i,j, k; 
void propagation(int p); 

void backpropagation(int p); 
void read fileO; 
void readmthO; 

read file(); 
readmthO; 

1* -----------------  Before Learning --------------------- *1 

for(j=O;j <MPN;j++) { 
propagation(j); 

for( k=O; k < OUT; k++ ){ 
ef2[j][k]=O.O; 
e12[j][k] += u[j][k]-target[j][k]; 
} 
} 

for( k=O; k < OUT; k++ ){ 
efi [k]=O.O; 
for(j=O;j <MPN;j++) { 

efi [k]+ef2[j][k]*ef2[j][k]; 

} 
efi [k]=sqrt(efl [k])/MPN; 
} 
for(ef0.0, k=O; k < OUT; k++) { 
ef+efl [k]*efl  [k]; 

} 
ef =sqrt(ef)/OUT; 

tm=O; 
f s3f0pen("error.dat", "w"); 

fs=fopen("resu1t.dat","w"); 
fps 1=fopen("weight.dat","w't); 

II fps3=fopen("error_filtera.dat","w"); 
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//fps=fopen("result filter a.dat","w"); 
//fps 1=fopen("weightl filter a.dat","w"); 

printf("%l Of %d\n", ef, tm); 

1* --------------- Start to learn ---------------------------*/ 

/Ifor( tm=1; ef'0.0000796; trn+±) { 
f6r(tm=1; ei5'0.006061;tm++) { 

for(j=O;j <MPN;j++) { 
propagation(j); 

backpropagation); 
a 

f6r(j=0;j <MPN;j++) { 
propagation(j); 

for( k=0; k < OUT; k±+ ){ 
e12[j][k]=0.0; 

ef2[jj[k] += u{j][k]-target[j][k]; 
a 
a 

for( k0; k < OUT; k++ ) { 
efi [k]0.0; 
for(j=0;j <MPN;j+-F) { 

efi [k]+ef2[j][k]*e12[j][k]; 

efi [k]=sqrt(efl [k])/MPN; 
a 
for(ef=0.0, k=0; k < OUT; k++) { 
ef+=efl [k]*efl  [k]; 

a 
ef=sqrt(ef)/OUT; 

1* for(i=0; i < STATE; i++){ 
for(j=0;j <STATE; j++){ 

fprintf(fs3,"%f ",wa2 1 [i][jj); 

fprintf(fs3,"\n );*/ 

if(tm% 1000=0) { 
printf("%.lOf %d \n", ef, tm); 
fprintf(fs3," %d %.lOf\n't, tm, ef); 

/Iprintf("%. lOf %d 
tm,u[500][1],target[500][1]) 

//fprintf(fps3 , "%. lOf %d %. lOf % 

%.lof %.10fn", ef, 

10f\n", ef, tm,u[500] [ 1],target[500] [1]); 
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printf("%.6f %d\n",eftm); 
frintf(fps,%.6f %d\n",ef,tm); 

1* ------- learning over-saving weights & printing output-------- *1 
II fprintf(fps2, "\nweight between state & hidden neuron\n"); 

for(i0; i <STATE; i++) { 
for(j0; j <STATE+IN; j++){ 

fprintf(fs 1, "%f ", wa2 1 [i][j]); 
fprintf(fpsl,"\n"); 

for(i=0; i < MPN; i++) { 

fprintf(fps, "\t%.6f %.6f %.6f %.6f %.6f %.6f %.6f %.6f %.6f %.6f", 
target[i] [O],u[i] [0], target[i] [1],u[i] [1 ],target[i] [2],u[i] [2], 
target[i] [3],u[i] [3],target[i] [4],u[i] [4]); 

fprintf(fs,"\n"); 

} 
fclose(fps); 

1* -------------  closemain ------------------ *1 

void propagation(int p) 

mt i,j,k,1; 
float net,netl,sum[STATE]; 

for(net=O.0,net 1=0.0, i0; i <STATE; i++) { 
stateprepreprepre[p] [i]=statepreprepre[p] [i]; 
state_pre_pre_pre[p][i]=statejre_pre[p][i]; 

stateprejre[p] [i]statepre[p] [i]; 
statepre[p] [i]=output[p] [i]; 
//input[p] [IN-i ]=statepre_pre[p] [i]; 
/Iinput[p] [IN-2]=statepreprepre[p] [i]; 
/Iinput[p] [IN-3]=stateprepreprepre[p] [i]; 

for(j0;j <STATE; j++){ 
net+=wa2 I [i] Ii] *statepre[p]  Ii]; 

for( k0; k < IN; k++){ 
net 1+=wa2 I [i] [STATE+k] *input[p]  [k]; 

sum[i]=net+netl; 
output[p] [i]f1(sum[i]); 
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} 
for( 1=0; 1 <OUT; I++) { 

//target[p] [1]=stateprc[p] [1]; 
target[p] [I]=output[p] [1]; 

} 

void backpropagation(int p) 

mt ij,k; 
float sum3 [STATE] [STATE+IN],sum4[STATE] [STATE+Th]; 

for(i=0; i <STATE; i++){ 
for(k=0; k < STATE+IN; k++){ 
sum3 [i] [k]=0.0; 
for(j=0;j <STATE; j++){ 

partial derivativepre I] [k]=partial derivative[j] [k]; 
sum3 [i] [k]+=wa2 1 [i] Li] *partjal derjvativepre[j] [k]; 

} 

for(j=0;j <STATE; j++){ 
for(k=0; k < STATE; k++){ 

U[j] [k]=statepre[p] [k]; 
} 

for(i=0; i <IN; i++){ 
U{j] [i+STATE]=input[p] [i]; 

} 

for(j=0;j <STATE; j++){ 
for(k=0; k < STATE+IN; k++) 

sum4[j][k]= sum3[j1[k1+Ufj][k]; 
} 

for(i=0; i < STATE; i++)( 
for6=0;j <STATE; j++){ 

diagonal[i] [j]=0.0; 
} 

//diagonal [i] [i]=( 1 .0+output[p] [j])*(  1 .0-output[p] [i]); 
diagonal [i] [i]=output[p] [i] *( 1 .0-output[p] [i]); 

//diagonal [i] [i]=constant; 

} 
for(i=0; i <STATE; i++){ 

for(k=0; k < STATE+IN; k++){ 
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partial derivative[i] [k]=O.O; 
forjO;j <STATE; j++){ 

partial_derivative[i] [kj+=diagonal [i] U] *sum4U] [k]; 

} 

} 
for(i=0; i <STATE; i++){ 
for(j=O; j <STATE+IN; j++) { 

dwa2 1 [i] [j]=beta*partial  derivativejre[i] [j] *ef2[p]  [i]; 
wa2 1 [i][j]+dwa2 1 [j][j]+alpha*dwa2 1 [i]U]; 

} 

} 
/ wa2l [O][2]=O.O; 
wa2 1 [O][3]0.O; 
wa2 1 [O][4]0.O; 
wa2 1 [O][5]=O.O; 
wa2l [O][6]=O.O;*/ 
//wa2 I [0] [7]=0.0; 

/1 wa2l [1][0]0.O; 

void read file() 

mt i,j; 
float x; 
FILE *fp; 
if(( fp=fopen("train I .dat", "r"))==NULL) { 

IIif(( fp=fopen("field wsla.dat", "r"))==NULL) { 
I/if(( fp=fopen(" filter_a.dat", "r"))==NULL) { 
II if(( fp=fopen("high.dat", "r"))==NULL) { 

for(i0; i <MPN; i++) { 
for(j=O;j <IN;j++){ 
fscanf(fp,"%f ",&x); 
input[i] [j]x; 

for(j0;j <OUT; j++){ 
fscanf(fp, "%f', &x); 
u[i] [j]=x; 
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fclose(fj,); 

void readmth() 

mt i,j; 
float y; 
FILE *fpl; 
//if(( f 1=fopen("weight_dfr2.dat", Urfl))==NULL) { } 
for(i=O; i <STATE; i++) { 

for(j=O; j <STATE+IN; j++) { 
wa2l[i][j] = mdO; 

dwa2l[i][j] = 0.0; 
//fscanf(f1, "%f", &y); 

//wa2 1 [i][j}=y; 
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Appendix —3 

Mathematical Model 

Figure: A3.1 Block diagram of network 
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it can be derived the Eqs. 3.5.1, 3.5.2 and latter on of Art. 3.5 in CHAPTER 3 by replacing 

the values of m, p, q, weight vectors and functions. Where, m = dimensionality of input 

space = 4, p = dimensionality of output space = 5, q = dimensionality of state space = 5. In 

input space, there has a bias, which is dependent on state space dimensionality. By 

following these, the state space model of the network can be rewrite as the following matrix 

form. 

xi(n+1)= tp(Waiixi(n)+....+Wai5x5(n)+Wbiiui(n)+....+Wbi4u4(n)+Wbi5*1) 

X2(fl+l) = (Wa2 jxi(n) + .... + Wa5x5(n) + Wb2iui(n) + .... + Wb24u4(n) + Wb25*1) 

X3(fl+1) = q,(Wa3ixi(n)+....+Wa35x5(n)+Wb3iui(n)+....+Wb34u4(n)+Wb3s*1) 

x4(n+1) = p(Wa4ixi(n) + .... + Wa5x5(n) + Wb41u1(11) + .... + Wb44u4(n) + Wb45*1) 

x5(n+1) (Wa5ix i (n) + .... + Wa55x5(n) + Wb5 iui(n) + .... + Wb54u4(n) + Wb55*1) 

and 

yi(n) = Cx i (n) 

Y2(fl) = Cx2(n) 

y3(fl) = Cx3(n) 

y4(n) = Cx4(n) 

ys(n) = Cx5(n) 

and 

Wa = FW-ajj  Wa12 Wa13  Wa14  Wa15  

Wa21 Wa22 Wa23 Wa24 Wa25 

Wa31 Wa32 Wa33 Wa34 Wa35 

Wa41  Wa42 Wa43 Wa44 Wa45 

a51 Wa52 Wa53 Wa54 Wa55 

-k 



and 

W'b 
- FWbl 1 Wi)12  WI)I3  'Wb14  Wb15  

'SN'b21  "Nb22  "Nb23  W'b24  Wb25  

W'b31  "Nb32  'Wi)33  'W'b34  "Nb35  

"Nb41  "Nb42  "Nb43  Wb44  \Vb45  

'\Nb51  "Nb52  "Nb53  Wb54  "Nb55  

and 

C =ri-o 
o i o 0 O 

o o 1 0 0 

o o 0 1 O 

L°°°±J 

'p 

-4' 



Appendix -4 

Comparison of experimental and computational values of different weldment 
characteristics in tabular form with percentage of error 

Table: A4.1 Bead Width 

Process_Parameters Bead Width Values 
Percentage of 

 Error 
Wire 
Dias 
(mm) 

Wire feed 
rate 

(mmlmin) 

Welding 
current 

Experimental 
(mm) 

(amp)  

Computational 
(mm) 

0.8 4600 194 7.00 7.0251 0.3586 
0.8 4600 202 7.00 7.0369 0.5271 
0.8 4600 209 7.50 7.5288 0.3840 
0.8 4600 217 7.50 7.5327 0.4360 
0.8 4600 225 8.00 8.0423 0.5288 
0.8 4600 232 8.50 8.5478 0.5624 
0.8 4600 240 9.00 9.0492 0.5467 
0.8 4600 248 9.50 9.5287 0.3021 
0.8 4600 255 1 10.00 10.0639 0.6390 
0.8 4600 263 1 10.00 10.0471 1  0.7410 

Table: A4.2 Bead Width 

Process_Parameters Bead Width Values 
Percentage of 

 Error 

Wire 
Dias 
(mm) 

Wire feed 
rate 

(mm/mm) 

Welding 
current 

Experimental 
(mm) 

(amp)  

Computational 
(mm) 

0.8 5600 271 11.00 11.0729 0.6627 
0.8 5600 278 11.00 11.0467 0.4245 
0.8 5600 286 11.00 11.0821 0.7464 
0.8 5600 294 11.50 11.5934 0.8122 
0.8 5600 302 11.50 11.5626 0.5443 
0.8 5600 309 12.00 12.0345 0.2875 
0.8 5600 317 12.50 12.5573 0.4584 
0.8 5600 325 12.50 12.5828 0.6624 
0.8 5600 332 13.00 13.0652 0.5015 
0.8 5600 I 340 13.00 13.0981 0.7546 

RE 



Table: A4.3 Bead Width 

Process_Parameters Bead Width Values 
Percentage of 

Error 

Wire 
Dias 
(mm) 

Wire feed 
rate 

(mm/mm) 

Welding 
current 

Experimental 
(mm) 

(amp)  

Computational 
(mm) 

1.0 4600 194 8.00 8.0326 0.4075 
1.0 4600 202 8.00 8.0434 0.5425 
1.0 4600 209 10.00 9.9424 0.5760 
LO 4600 217 10.00 9.9365 0.6350 
1.0 4600 225 11.00 10.9572 0.3891 
1.0 4600 232 12.50 12.4358 0.5136 
1.0 4600 240 12.50 12.4208 0.6336 
1.0 4600 248 12.50 12.4455 0.4360 
1.0 4600 255 13.50 13.4217 0.5800 
1.0 4600 263 13.50 13.3854 0.8489 

nq 

(1 LJH 

2/ 

Table: A4.4 Bead Width 

Process_Parameters Bead Width Values 
Percentage of 

Error 
Wire 
Dias 
(mm) 

Wire feed 
rate 

(mm/mm) 

Welding 
current 

Experimental 
(mm) 

(amp)  

Computational 
(mm) 

1.0 5600 271 14.00 13.9257 0.5307 
1.0 5600 278 14.50 14.4308 0.4772 
1.0 5600 286 15.00 14.9165 0.5567 
1.0 5600 294 15.00 14.9202 0.5320 
1.0 5600 302 15.00 14.8705 0.8633 
1.0 5600 309 15.50 15.4726 0.1768 
1.0 5600 317 15.50 15.3872 0.7277 
1.0 5600 325 16.00 15.9217 0.4894 
1.0 5600 332 16.00 15.9183 0.5106 
1.0 5600 340 16.00 15.8924 0.6725 



Table: A4.5 Bead Height 

Process_Parameters Bead Height Values 
Percentage of 

 Error 
Wire 
Dias 
(mm) 

Wire feed 
rate 

(mm/mm) 

Welding 
current 

Experimental 
(mm) (amp)  

Computational 
(mm) 

0.8 4600 194 3.50 3.5782 2.2343 
0.8 4600 202 3.50 3.5693 1.9800 
0.8 4600 209 3.50 3.5328 0.9371 
0.8 4600 217 3.50 3.5125 0.3571 
0.8 4600 225 3.50 3.5122 0.3486 
0.8 4600 232 3.50 3.5113 0.3229 
0.8 4600 240 3.50 3.5087 0.2486 
0.8 4600 248 3.00 3.0763 2.5433 
0.8 4600 255 3.00 3.0385 1.2833 
0.8 4600 263 3.00 I 3.0238 1 0.7933 

Table: A4.6 Bead Height 

Process_Parameters Bead Height Values 
Percentage of 

 Error 
Wire 
Dias 
(mm) 

Wire feed 
rate 

(mm/mm) 

Welding 
current 

Experimental 
(mm) 

(amp)  

Computational 
(mm) 

0.8 5600 271 3.50 3.5293 0.8337 
0.8 5600 278 3.50 3.5182 0.5200 
0.8 5600 286 3.50 3.4751 0.7114 
0.8 5600 294 3.00 3.0187 0.6233 
0.8 5600 302 3.00 3.0152 0.5067 
0.8 5600 309 3.00 3.0129 0.4300 
0.8 5600 317 3.00 3.0151 0.5033 
0.8 5600 325 3.00 2.9864 0.4533 
0.8 5600 332 3.00 2.9752 0.8267 
0.8 5600 340 3.00 2.9678 1.0733 
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Table: A4.7 Bead Height 

Process_Parameters Bead Heigt 'S(alues  

Percentage of 
Error 

 

Wire 
Dias 
(mm) 

Wire feed 
rate 

(mmlmin) 

Welding 
current Experimental 

(mm) 
(amp)  

Computational 
(mm) 

1.0 4600 194 4.00 4.0127 0.3175 
1.0 4600 202 4.00 4.0495 1.2375 
1.0 4600 209 4.00 3.9765 0.5775 
1.0 4600 217 4.00 3.9537 1.1575 
1.0 4600 225 4.00 3.9821 0.4475 
1.0 4600 232 4.50 4.4983 0.0378 
1.0 4600 240 4.50 4.4897 0.2289 
1.0 4600 248 4.00 3.9873 0.3175 
1.0 4600 255 3.50 3.4827 0.4943 
1.0 1 4600 1 263 1 3.50 3.4801 0.5686 

Table: A4.8 Bead Height 

Process_Parameters Bead Height Values 
Percentage of 

 Error 
Wire 
Dias 
(mm) 

Wire feed 
rate 

(mm/mm) 

Welding 
current 

Experimental 
(mm) 

(amp)  

Computational 
(mm) 

1.0 5600 271 4.00 3.9835 0.4125 
1.0 5600 278 4.00 3.9723 0.6925 
1.0 5600 286 4.00 3.9687 0.7825 
1.0 5600 294 3.00 3.0185 0.6167 
1.0 5600 302 3.50 3.5297 0.8486 
1.0 5600 309 3.00 3.0141 0.4700 
1.0 5600 317 3.00 3.0178 0.5933 
1.0 5600 325 3.00 2.9873 0.4233 
1.0 5600 332 3.00 2.9756 0.8133 
1.0 5600 340 2.50 2.5274 0.9880 

84 



Table: A4.9 Depth of Penetration 

Process_Parameters fPenetration Values _Depth 

Percentage of 
 Error 

Wire 
Dias 
(mm) 

Wire feed 
rate 

(mm/mm) 

Welding 
current 

. 

Expenmental 
(mm) 

(amp)  

Computational 
(mm) 

0.8 4600 194 1.50 1.5156 1.0400 
0.8 1 4600 202 1.50 1.5149 0.9933 
0.8 4600 209 2.00 2.0243 1.2150 
0.8 4600 217 2.00 2.0251 1.2550 
0.8 4600 225 2.00 2.0235 1.1750 
0.8 4600 232 2.50 2.5109 0.4360 
0.8 4600 240 2.50 2.5207 0.8280 
0.8 4600 248 2.50 2.5225 0.9000 
0.8 4600 255 2.50 2.5233 0.9320 
0.8 4600 263 1 2.50 2.5247 0.9880 

Table: A4. 10 Depth of Penetration 

Process_Parameters Depth of Penetration Values 
Percentage of 

 Error 
Wire 
Dias 
(mm) 

Wire feed 
rate 

(mm/mm) 

Welding 
current 

Experimental 
(mm) 

(amp)  

Computational 
(mm) 

0.8 5600 271 2.50 2.5332 1.0400 
0.8 5600 278 2.50 2.5126 0.9933 
0.8 5600 286 2.50 2.5189 1.2150 
0.8 5600 294 3.00 2.9813 1.2550 
0.8 5600 302 3.00 2.9887 1.1750 
0.8 5600 309 3.00 2.9912 0.4360 
0.8 5600 317 3.00 3.0412 0.8280 
0.8 5600 325 3.50 3.4896 0.9000 
0.8 5600 332 3.50 3.4537 0.9320 

I 0.8 5600 340 3.00 3.4695 0.9880 
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Table: A4.1 I Depth of Penetration 

Process Parameters Depth of Penetration Values 
Percentage of 

Error 
Wire 
Dias 
(mm) 

Wire feed 
rate 

(mmlmin) 

Welding 
current Experimental 

(mm) (amp)  

Computational 
(mm) 

1.0 4600 194 2.00 2.0167 0.8350 
1.0 4600 202 2.00 2.0249 1.2450 
1.0 4600 209 2.50 2.4876 0.4960 
1.0 4600 217 2.50 2.4917 0.3320 
1.0 4600 225 3.00 2.8873 3.7567 
1.0 4600 232 3.00 2.9185 2.7167 
1.0 4600 240 3.00 2.9367 2.1100 
1.0 4600 248 

- 
3.50 3.4873 0.3629 

1.0 4600 255 3.50 3.4913 0.2486 
1.0 4600 263 3.50 3.4987 0.0371 

Table: A4.12 Depth of Penetration 

Process_Parameters Depthof PenetrationValues 
Percentage of 

Error 
Wire 
Dias 
(mm) 

Wire feed 
rate 

(mmlmin) 

Welding 
current Experimental 

(mm) (amp)  

Computational 
(mm) 

1.0 5600 271 2.50 2.5378 1.5120 
1.0 5600 278 2.50 2.5286 1.1440 
1.0 5600 286 3.50 3.4827 0.4943 
1.0 5600 294 3.00 2.9138 2.8733 
1.0 5600 302 3.00 2.9562 1.4600 
1.0 5600 309 3.00 2.9593 1.3567 
1.0 5600 317 3.50 3.4897 0.2943 
1.0 5600 325 2.50 2.5134 0.5360 
1.0 5600 332 3.00 3.0183 0.6100 
1.0 5600 340 3.00 3.0127 0.4233 

Me 



Table: A4. 13 Depth of Heat Affected Zone 

Process_Parameters Depth of HAZ Values 
- 

Percentage of 
 Error 

Wire 
Dias 
(mm) 

Wire feed 
rate 

(mmlmin) 

Welding 
current Experimental 

(mm) 
(amp)  

Computational 
(mm) 

0.8 4600 194 1.50 1.5251 1.6733 
0.8 4600 202 1.50 1.5328 2.1867 
0.8 4600 209 1.50 1.5386 2.5733 
0.8 4600 217 1.50 1.5397 2.6467 
0.8 4600 225 2.00 1.9835 0.8250 
0.8 4600 232 2.50 2.0375 18.5000 
0.8 4600 240 2.00 2.0247 1.2350 
0.8 4600 248 2.00 2.0364 1.8200 
0.8 4600 255 2.00 2.0428 2.1400 
0.8 4600 263 2.00 2.0482 2.4100 

Table: A4.14 Depth of Heat Affected Zone 

Process_Parameters Depthof HAZValues 
Percentage of 

Error 
Wire 
Dias 
(mm) 

Wire feed 
rate 

(mmlmin) 

Welding 
current Experimental 

(mm) (amp)  

Computational 
(mm) 

0.8 5600 271 2.00 2.0351 1.7550 
0.8 5600 278 2.00 2.0384 1.9200 
0.8 5600 286 2.50 2.5297 1.1880 
0.8 5600 294 2.50 2.5327 1.3080 
0.8 5600 302 2.00 2.0348 1.7400 
0.8 5600 309 3.00 2.9832 0.5600 
0.8 5600 317 3.00 2.9827 0.5767 
0.8 5600 325 3.00 2.9845 0.5167 
0.8 5600 332 3.00 3.0556 1.8533 
0.8 5600 340 3.00 3.0823 2.7433 



Table: A4. 15 Depth of Heat Affected Zone 

Process_Parameters Depth of I-IAZ Values 
Percentage of 

Error 
Wire 
Dias 
(mm) 

Wire feed 
rate 

(rnmlmin) 

Welding 
current 

. 

Experimental 
(mm) 

(amp)  

Computational 
(mm) 

1.0 4600 194 1.50 1.5298 1.9867 
1.0 4600 202 1.50 1.5486 3.2400 
1.0 4600 209 2.00 1.9785 1.0750 
1.0 4600 217 2.00 1.9637 1.8150 
1.0 4600 225 2.00 1.9465 2.6750 
1.0 4600 232 2.50 2.5425 1.7000 
1.0 4600 240 2.00 2.0521 2.6050 
1.0 4600 248 2.50 2.5607 2.4280 
1.0 4600 255 2.50 2.5354 1.4160 
1.0 4600 263 I 2.50 2.4598 1.6080 

Table: A4.16 Depth of Heat Affected Zone 

Process_Parameters Depth of I-IAZ Values 
Percentage of 

 Error 
Wire 
Dias 
(mm) 

Wire feed 
rate 

(mm/mm) 

Welding 
current 

Experimental 
(mm) 

(amp)  

Computational 
(mm) 

1.0 5600 271 3.00 2.9638 1.2067 
1.0 5600 278 3.00 2.9752 0.8267 
1.0 5600 286 2.50 2.5345 1.3800 
1.0 5600 294 3.00 2.9348 2.1733 
1.0 5600 302 2.50 2.4936 0.2560 
1.0 5600 309 2.50 2.5136 0.5440 
1.0 5600 317 3.50 3.5315 0.9000 

- 

1.0 5600 325 3.50 3.4883 0.3343 
1.0 5600 332 3.50 3.4927 0.2085 
1.0 5600 340 2.50 2.6127 4.5080 



Table: A4.17 Hardness 

Process Parameters Hardness Values 
Percentage of 

Error 
Wire 
Dias 
(mm) 

Wire feed 
rate 

(mnilmin) 

Welding 
current Experimental 
(amp)  

Computational 

0.8 4600 194 20.00 20.9130 4.5650 
0.8 4600 202 20.00 20.7557 3.7785 
0.8 4600 209 25.00 24.7171 1.1316 
0.8 4600 217 20.00 20.0124 0.0620 
0.8 4600 225 25.00 25.2629 1.0516 
0.8 4600 232 15.00 15.5724 3.8160 
0.8 4600 240 20.00 19.7470 1.2650 
0.8 4600 248 20.00 19.8871 0.5645 
0.8 4600 255 15.00 15.1108 0.7387 
0.8 4600 263 20.00 19.2022 3.9890 

Table: A4. 18 Hardness 

L Process Parameters Hardness Values 
Percentage of 

Error 
Wire 
Dias 
(mm) 

Wire feed 
rate 

(mm/mm) 

Welding 
current Experimental 
(amp)  

Computational 

0.8 5600 271 20.00 19.9796 0.1020 
0.8 5600 278 20.00 19.9672 0.1640 
0.8 5600 286 20.00 19.2199 3.9005 
0.8 5600 294 15.00 15.3415 2.2767 
0.8 5600 302 20.00 19.4382 2.8090 
0.8 5600 309 10.00 10.6328 6.3280 
0.8 5600 317 15.00 15.7019 4.6793 
0.8 5600 325 15.00 15.7675 5.1167 
0.8 5600 332 15.00 15.9533 6.3553 
0.8 5600 340 10.00 10.0337 0.3370 



Table: A4. 19 Hardness 

Process_Parameters Hardness Values 
Percentage of 

Error 

Wire 
Dias 
(mm) 

Wire feed 
rate 

(mmlrnin) 

Welding 
current Experimental 
(amp)  

Computational 

1.0 4600 194 20.00 20.9353 4.6765 
1.0 4600 202 20.00 20.3198 1.5990 
1.0 4600 209 20.00 20.7426 3.7130 
1.0 4600 217 25.00 20.0397 0.1588 
1.0 4600 225 20.00 20.2920 1.4600 
1.0 4600 232 15.00 15.6029 4.0193 
1.0 4600 240 20.00 19.7789 1.1055 
1.0 4600 248 20.00 19.9204 0.3980 
1.0 4600 255 20.00 19.1451 4.2745 
1.0 4600 263 15.00 15.2374 1.5827 

Table: A4.20 Hardness 

Process_Parameters Hardness Values 
Percentage of 

Error 

Wire 
Dias 
(mm) 

Wire feed 
rate 

(mmlmin) 

Welding 
current Experimental 
(amp)  

Computational 

1.0 5600 271 15.00 15.8096 5.3973 
1.0 5600 278 10.00 10.0992 0.9920 
1.0 5600 286 20.00 19.2533 3.7335 
1.0 5600 294 15.00 15.3761 2.5073 
1.0 5600 302 20.00 19.4737 2.6315 
1.0 5600 309 20.00 19.6690 1.6550 
1.0 5600 317 20.00 19.7385 1.3075 
1.0 5600 325 15.00 15.8042 5.3613 
1.0 5600 332 15.00 15.9898 6.5987 
1.0 1  5600 340 10.00 10.0696 0.6960 


