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A 

ABSTRACT 

In this thesis, a case of the simi tarit solution of laminar convecti e houndar layer amLind 

a vertical slender hod \V ith transpirations has been investigated. HrstI. the go\ern 

layer partial differential equations have been made dimensionless and then simpli fled h\ using 

Boussinesq approximation. Secondly, similarity transformations are introduced on the basis of' 

detailed analysis in order to transform the simplified coupled partial differential equations into a 

set of ordinary differential equations. In the present thesis one of the important similarit case. 

out of four cases has been studied. Under the considered case. the transformed complete 

similarity equations are solved numerically by using computer software MATLAB. lurtlicr. the 

flow phenomena have been characterized with the help of obtained flow controlling parameters 

such as suction/blowing parameter, buoyancy parameter, Prandtl number, body-radius parameter 

and other driving parameter. Finally, the effects of these involved parameters on the velocit and 

temperature fields are presented graphically. It is observed that a small suction or hlo\\ ing  pla ed 

a sian i ficant role on the patterns of' llo\\ and  temperature fields. 
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CHAPTER I 

Introcluctioii and Literature Review 

Fluid dynamics is a subject of widespread interest to researcher and it become an obvious 

challenge for the scientists, engineers as well as users to understand more about fluid motion. 

An important contribution to the fluid dynamics is the concept of boundary aver flo\\ 

introduced  first by L. Prandtl [I]. The concept of the boundary layer is the consequence of 

the fact that flows at high Reynolds numbers can be divided into unequally spaced regions. A 

very thin layer (called boundary layer) in the vicinity (of the object) in which the '  scous 

effects dominate, must be taken into account. and l'or the bulk of the f10 region, the 

viscosity can be neglected and the flow corresponds to the inviscid outer flo A lthoiigh 11c 

boundary layer is very thin, it plays a vital role in the fluid dynamics. Boundar layer lheor\ 

has become an essential study now-a-days in analyzing the complex behaviors of real fluids. 

The concept of boundary layer can be used to simplify the Navier-Stocks' equations to such 

an extent that the viscous effects of flow parameters are evaluated, and these are useable in 

many practical problems (viz. the drag on ships and missiles, the efficiency of compressors 

and turbines in jet engines, the effectiveness of air intakes for ram and turhojets and SC) on). 

Further the boundary layer effects caused by free convection are frequently observed ii our 

eiivironmental happenings and engineering devices. We know that if external K induced hlo\\ 

is provided and flows arising naturally solely due to the effect of the differences in densit\ 

caused by temperature or concentration differences in the body force field (such as 

gravitational flekl), this type of flow is called 'free convection' or 'natural convection hlo 

The density di ffCrence causes buoyancy effects and these effects act as 'driving forces' due 

to which the flow is generated. I hence free convection is the process of heat transfer \hiCl) 

occurs due to movement of the fluid particles by density differences associated with 

temperature differences in a fluid. In such case, the free stream velocity falls away. in deed. 

no reference velocity does a priori exist. If the density in the vicinity of the surface is kept 

constant, natural convection flow can not be formed. Thus, the natural convection is an efhCct 



of*  variable properties. where there is a mutual coupling between mornentuni and heat 

transport. The direct origin of the formation of natural convection flo is a heat iransli \ in 

conduction through the fixed surfaces surrounding the fluid. If the surface temperatlire is 

greater than that of ambient fluid. heat is transferred from the surface to the fluid leads to ,in 

increase in temperature of the fluid close the surfaces and to a change in the density, because 

it is temperature dependent. If the density decreases with increasing temperature. huo\ anc 

forces arise close to the surface and armer fluid moves upwards. Such huoanc\ forces are 

proportional to the coefficient of thermal expansion fl7 . defined as ,iJ,. = --I 
ai ' 

where p, T and p are density, temperature and pressure respectively. It is observed that 

= I for a perfect gas, and we see that stream is well approximated by the perfect-gas 

result /1,. T = I at low pressure and high temperature. Also 6,  < for a liquid and ma\ c en 

be negative, and /37  > 1 for imperfect gas, particularly at high pressure. /17  is also useIil 

in estimating the dependence of enthalpy 'Ii' on pressure, from the thermodynamic relation 

dli = (',dT + (I - fl7 T) . where T is the absolute temperature and C1, is the speci lie heat at 
p 

constant temperature. For the perlCct gas, the second term vanishes. SO that Ii h( I) on I. 

The natural convection studies begun in the year 1 881 with Lorentz and continued at a 

relatively constant rate until recently. This mode of heat transfer occurs very commonl. the 

cooling of transmission lines, electric transformers and rectifiers, the heating of rooms h) use 

of' radiators, the heat transfer from hot pipes and ovens surrounded by cooled air, cooling the 

reactor core (in nuclear power plant) and carry out the heat generated by nuclear fission etc. 

ftc Mixed convection 11ows. combi ned forced and free convection Ilu s .ar hail 

transport processes in engineering devices and in nature. This follows are charactcrited b\ 

the buoyancy parameter (measure of the influence of the free convection in comparison '\\ ith  

that of forced convection on the fluid flow) which depends on the flow configuration and the 

surface heating conditions. Bulks of information are now available in literature about the 

boundary layer form of natural convection flows over bodies of' different shapes. The 
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theoretical. experimental and numerical analysis for the natural and the mixed COfl\ e I ioi 

boundary layer flow about isothermal, vertical porous flat plates have been carried out videI 

by many authors in view of its applications in many engineering and geographical problems. 

Ramanaiah et al. [2] considered the problem of mixed convection over a horizontal plate 

subjected to a temperature or surface heat flux varying as a power ofx. 

Schmidt [31 was apparently the lrst researcher who investigated experimentally the beha\ or 

of tue flow near the leading edge above a flat horizontal surthce. The theoretical anal\ sis ol 

the laminar, two-dimensional, steady natural convection boundary layer llo on a semi-

infinite horizontal flat plate was first considered by Stewartson [4] (later corrected bN (ii II ci 

al 151 ). In that analysis he used the 13uossinesq approximation to sho ho the boumlLkmt\ 

layer analysis could be incorporated with the natural convection on rectangular plates. hich 

ai'C of high plane form aspect ratio. 

Rotem and Claasscn [6] investigated the boundary layer equation over a semi-infinite 

horizontal surface of uniform temperature and results were presented for Some specific 

values of Prandtl number with its limits from zero to infinity. The effect of huo\ ancy fi>rce 

that exist in boundary layer flow, over a horizontal surface, where the surface temperature 

(Idlers from that of' ambient fluid, was studied by Sparrow and M[nkowvcz 1 7 1 . The li'ee 

convection above a heated and almost horizontal plate has been treated by .Jones 181. 

The problem ot mixed convection due to a heated or cooled vertical flat plate pros ides one 0! 

the most basic scenarios for heat transfer theory and thus is of considerable theoretical and 

practical interest and has been extensively studied by Sparrow ct al. 1 9] Wilks I 101 , A fral 

and Banthiva I Ij. I hint and WilLs II 21.  Lin and Chen 1131. 1 lussain and A fal I I 1 I. \lerkimi 

em. al . [IS] and many others. I lovevcr. the problem of l'orced. free and mixed coil\ CCIiOI1 

flows past a heated or cooled body with porous wall is of interest in relation to the houndar 

layer control on airfoil, lubrication of ceramic machine parts and food processing. Waianabc 

[161 has considered the mixed convection boundary layer flow past an isothei'mal vertical 

porous flat plate with uniform suction or injection. Satter [17] made analytical studies on the 

combined forced and free  convection flow in a porous medium. 

3 



A vast literature of similarity solution has appeared in the area of fluid mechanics. heat 

transfer. and mass transfer, etc. as it is one of the important means fbr the reduction of a 

number of independent variable with simplifying assumptions. It is revealed that the 

sim i lai'itv solution. which heint attained for some suitable values of,  different paliInetc! 

might be thought of bein2 the solution of the convective boundarv-laer conte.\t either neur 

the leading edge or far away in the downstream. Deswita ci al. [18] obtained a similarii\ 

solution for the steady laminar free convection boundary layer flow on a horizontal plate with 

variable wall temperature. 

The boundary layer type of the natural convection flow, which occurs on the upper siii'f ace Of 

heated horizontal surface has been investigated theoretically and experimentall\ 1)\ many 

others Rotem and Claassen [6], Peru and Gcbhart [19 . 201 and Goldstein et al. 12 II. It i seen 

from their experiments and also from the flow visualization of Husar and Sparro\\ 1221  that a 

boundary layer starts from each edge ol' a plate edge, each boundary layer having its lead in 

at a straight-side plate edge. The boundary layer development occurs normal to the 

corresponding edge so that collisions between opposing boundary layer Ilows occur on the 

plate surfhcc . Af'ter collision, the fluid checked in the boundary layer forms a rising buoyant 

plume. 

The solution ofa system of coupled partial differential equations with boundary conditions is 

often difficult and even impossible to solve with the usual classical method. Thus, it is 

imperative to reduce the number of variables from the system which reached in a stage of' 

great extent. Similarity solution is one of the important means for the reduction of a number 

of independent variables with si mpl i f\ in(-' assumptions and final lv the system of purL jul 

di ffrential equations reduces to a set of ordinary di l'f'erentiaf equations success In I l\ I he 

stud of complete similarity solutions of the unsteady laminar natural convection boundar\ 

layer flow above a heated horizontal semi-infinite porous plate have been considered b 

I lossain and Mojumder [23] and Ilossain ci al. [24]. The similarity solutions in the context ol 

mixed convection boundary layer flow of steady viscous incompressible fluid over a 1101-OLIS  

vertical flat plate were discussed b Ishak ci al. 1251. Ramanaiah and Malarvizhi 1261 studied 

the similarity solutions of free, mixed and forced convection problems in a saturated porous 

media. 
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In 1978. Johnson and Cheng [27] examined the necessary and sufficient conditions under 

which similarity solutions exist for free convection boundary layers adjacent to flat plates in 

porous media. The solutions obtained in their work were more general than those appcarin 

in the previous studies. With a parameter associated with the bod shapes a similarii\ 

solution on the natural convection flow has also been studied by Pop and lakhar 12$. 

Ferdows et al. [29] have been made a similarity analysis for the forced as ell as Iree 

convection boundary layer flow of an electrically conducting viscous incompressible fluid 

past a semi-infinite non-conducting vertical porous plate by introducing a time dependent 

suction. 

Most of' the above analysis were based on the l3oussinesq approximation here dcnsit\ 

viscosity, thermal conductivity and specific heat variations are ignored except for the 

necessary inclusion of the density-variation in the body force term and have been concerned 

with the seeking of similarity solutions in which the surface temperature varies with the 

distance from surface leading edge. 

An analysis is performed by Chen ci al. 1301 to study the flow and heat transfr characteristic 

of laminar natural convection in boundary aver flows Irom horizontal, inclined and 

plates with pover law variation of the wall temperature. 

In most of the above analysis the boundary layer of the natural convection flows ere 

considered over heated or uniformly heated horizontal vertical, horizontal or near horizontal. 

semi-infinite, rectangular porous plates. The surface is impermeable to the fluid, so that there 

is no trallspi rat loll i.e.. suction or blowing velocity normal to the surface. [h is led to the 

kinematic boundary condition v1 , = 0. 

The problem of boundary layer control has become very important factor: in actual 

application it is oflen necessary to prevent separation. The separation of the boundary layer is 

generally undesirable. since separated flow causes a great increase in the drag experienced b 

the bod\. So it is oftciì necessar\ to pre\ ent separation in order to reduce prcs'ic U 

Suction (or blowing) is one of the useful means in preventing boundary layer separation. I he 

eliect of' suction consists in the removal of decelerated particles from the boundar layer 

before they are given a chance to cause separation. The surface is considered to be permeable 



to the fluid. SO that the surface will  allo a non-zero normal velocity and fluid is either 

sucked or blown throurth it. In dome this however, no-Sill)  condition it,,  = 0 al I he .1IrtacL 

(non-moving) shal continue to remain valid. 

In driving the boundary layer equation, it is anticipated that the v-component of the velocity 

is small quantity of the order of magnitude 0 Re 2  and it is assumed that the suction (or 

blowin(y) velocity v = 0 normal to the surface has its magnitude of order (characteristic 

Reynolds number)' 2. The C0flSCLIC11C of this is that outer how is independent of v, and 

the boundary condition at the surface is given by •v = 0 it 0. v = v (x) 

For ordinary boundary layer flows of adverse pressure gradients, the houndar\ layer flo 

will eventually separate from the surfice. Separation of the (low causes many undesirable 

feat],res over the whole held: for instance if separation occurs on the surface of an :iirfoi I. the 

lift of the airfoil will decrease and the drag will enormously increase. In some problems 'e 

wish to maintain laminar flow without separation. Various means have been Pi'Ol)Ose(I to 

prevent the separation of boundary layer flows; suction and blowing are two of them. 

Many authors have made mathematical studies on these problems, especially in the case of 

stead' flow. Among them the name of Cobble [3 I] may be cited who obtained the conditions 

under which sim i Ian Iv solutions exist for hvdrornagneiic bouiidar la en llo\\ pwI  

in finite flat plate with or without suction. l:ollo  ing this. Soundalgekar and Ruinanainunti 

1321 analyzed the thermal boundary layer. Then Singh 1331 studied this problem for Iur.c 

values of suction velocity employing asymptotic analysis in the spirit of Nanbu et al. 13,1 1 .  

Singh and Dikshit [35] have again adopted the asymptotic method to stud\ the 

hvclromagnetic effect on the boundary layer development over a continuously m\:ing  plate. 

In a similar way I3estman [361 studied the boundary layer (low past a semi in finite heated 

porous plate for two component plasma. 

On the other hand, engineers engaged in high speed flow are facing an important problem 

regarding the cooling of the surface to avoid the structural failures as a result of frictional 

heating and other 11ctors. In these respect the possibility of using blowing at the surface k 



measure to cool the body in the high temperature fluid. Blowing of secondary fluid through 

porous walls is of practical importance in film cooling of' turbine blades combustion 

chambers. In such applications blowing usually occurs normal to the surface and tue hlo ed 

fluid may be similar to or different from the primary fluid. In some recent applications. 

however, it has been recognized that the cooling efficiency can be enhanced b\ \ ecioied 

injection at an angle other than 9O  to (lie surfacer, in addition, most previous calculations 

have been limited to blowing rates ranging from small to moderate. Suction or bio ing 

causes double effects with respect to the heat transfer. On the one hand, the temperature 

profile is influenced by the changed velocity field in the boundary-layer, leading to a change 

in the heat conduction at the surface. On the other hand, convective heat transfer occurs at (lie 

surface along with the heat conduction for v ~ 0 . A summary of flow separation and its 

control can be found in Cluing [37. 381. 

The study of natural convection on a horizontal plate with suction and hlo ing is ni huge 

interest in many engineering applications, for instance, transpiration cooling. boundar\ ia er 

control and other diffusion operations. The effects of blowing and suction on fhrced or tree 

convection flow over vertical as veIl as horizontal plates were analyzed in a systematic v a's. 

by (lortler 1391. Sparrow and Ccss 401. Koh and l-Iartnett 1411. Gersten and Gross 1421. 

lerkin 143. 44. 5 I. Vedanayagarn et al. 1461, I lasio-Tsung and Wen-Shine 1 47 1 aid 

Acharya et al. [48] etc. 

Using the usual asymptotic approach to obtain the similar solutions of the steady natural 

convection boundary layer for a non-similar flow situation on a horizontal plate with large 

suction approximation has been developed by Afzal and Hussain [49]. A detailed stud\ on 

sinii larit solutions Ru free convection bouiidary aver 110 O\ Cr a permeable \\ ,III ii l aid 

saturated porous iiied ia as carried out b\ Chaudhary et al. 150 I. lhe\ ha e shlo\\ ii  I Ilat t lie 

system depends on the power law exponent and the dimensionless surf 'ace mass transfer rate. 

They also examined the range of exponent under which the solution exists. With constant 

plate temperature and particular distribution of blowing rate Clarke and Riley [5 11 obtained a 

special case of similarity solution, allowing variable fluid density. But thei'e is still a shortane 

oh accurate data for a wide range of' both suction and blowing rate. Lin and Yu 1521 presented 

a ]lon-similar solution for the laminar free convection flow over a semi-infinite heated 

7 



upward-lacing horizontal porous plate with suitable transpiration rate as a O\\ er-la  

variation. Emphasis was given for an isothermal plate under the condition of' uiiilbrm 

blowing or suction. Lately, using a parameter concerned pseudo-similarity technique of time 

and position coordinates. Cheng and lluang [531 studied the unsteady laminar boundary layer 

flow and heat transfrr in the presence and absence of heat source or sink on a C011IlillIOus 

moving and stretching isothermal surface with suction and blowing. In their anal\ 515 tlie\ 

paid attention on the temporal developments of the hydrodvnamic and thermal characteristic. 

alter the sudden simultaneous changes in momentum and heat transfBr. Recentl. an  anal sk 

is performed by Aydin and Kayato [541 For the laminar boundary layer flov over a poioi,is 

horizontal flat plate, particularly. to study the effect of uniform suction/injection on the heat 

transftr. I. sing the constant surltice temperature as thermal boundary condition the\ ko 

investigated the el'lèct of Prandtl number on heat transfer. 

Recently, Hossain and Mojumder [55] presented the similarity solution for the steady laminar 

free convection boundary layer flow generated above a heated horizontal rectangular surface. 

They investigated the effect of suction and blowing on fluid flow and heat transfer as cll as 

skin friction coefficients. lhev also found that suction increased skin-friction aiid heat 

transfer coefficients \\ hereas  inject ion caused a decrease in both. 

1-lossain et al. [561 obtained a complete similarity solution of the Linsteady laminar combined 

free and forced convection boundary layer flow about a heated vertical porous plate in 

viscous incompressible fluid and investigated the effects of several involved parameters on 

the velocity and temperature fields and other flow parameters like skin friction, heat transfer 

coehhcients across the boundary layer. The combined free and lbrce convective laminar fluid 

motion caused by a heated (or cooled) vertical slender body moving through a viscous fluid 

has not so far been widely studied. Van Dyke [57] successfully analyzed a natural convection 

flow near a vertical thin needle for the case of a constant surface temperature. Kuiken 1581 

has studied the axi-symnietric free convective boundary layer along an isothermal vertical 

cv I inder of' constant thickness. 

The pi'ohlem of' barced laminar flo over thin needles, such thai the houodal'\ !a\ er th i 

is comparable to the local needle thickness, has been investigated by Lee [59] and Narain and 

IJheroi [60]. The combined free and force convective laminar fluid flow for the stead\ case 



has been studied also by Narain and Uberoi [611 for slender needles for the cases of 

isothermal wall and uniform wall heat Ilux. Furthermore, less attention has been paid to the 

corresponding unsteady problems of needle flows which may have applications in the field of 

aeronautics, atomic po\ver, chemical engineering and electrical engineering etc. 

Recently, Hasanuzzaman et al. [62, 63] presented similarity solution of convective laminar 

boundary layer flow around a vertical slender body with suction and blowing. In their 

analysis, four different similarity cases have been arised (viz. Case A, Case B. Case C and 

Case D). But they considered two similarity cases (Case B and Case D) out of those (Our 

cases. In this present study. We hae investigated another similarity case for the complete 

similarity solution of' combined convection laminar boundary layer f10 around a ertical 

slender body with suction and blowing. We have considered the effects of several n\olveLl 

pa rameters on the velocity and temperature fields and other flow parameters like skin friction 

and heat transfer coefficients across the boundary layer. The thermal distributions on the 

outer surface of the body as well as the motion of' the body itsel fare assumed to be unsteady. 

Furthcrnioi'e. throughout the investigation. the effect of' suction or blowing has been taken 

into consideration and we have investigated small suction or blowing velocity on these 

parameters as well. 

In attacking this problem the equations expressing conservation of mass, momentum and 

energy will he f'ormu lated in a manner which readily admits the variation of therniod tiam ie 

and transport properties of fluid ith temperature and pressLire. [he to' era ii - 

dimensional boundar la\ er partial di ilerential equations are 'a nipi i lied list )aL'd an the 

Boussinesq approximation. The similarity trans formations are then introduced on the basis of 

detailed analysis in order to transform the simplified coupled partial differential equations 

into a set of ordinary differential equations. The transformed complete similarity equations 

are then solved numerically by using computer software. The flow phenomenon has been 

characterized with the help of' obtained flow controlling parameters such as suction 

parameter, buoyancy parameter, Prandtl number and the other driving parameter. 

The numerical solutions including the velocity and temperature fields are to he presented for 

different selected values of the appeared dimensionless parameters. The influences of these 

various parameters on the velocity and temperature profiles will he exhibited in the pIe'2I1t 



analysis. It may be expected that the effects of suction and blowing can play an important 

'ole on the veloc itv and tcmperalure lielcis. So that their effects should be taken into ',1CCOL1111  

with other useful parameters associated. 

I lore we adopt the method of classical 'separation of variables' which is of the simplest and 

most straightforward method of determining similarity solutions. This method as lust 

initiated by Abbott and Kline [64]. (1960). In this method, a form of similarit\ variable is 

chosen, the given PD[ is transformed under the selected co-ordinate system. The depeiident 

variables are to be expressed in terms of the product of separable functions of the 1C\\ 

independent  variables where each function is dependent on the single variable. Substitution 

of the product from of the dependent variables into the original partial differential equation 

generally leads to an equation in which no functions of single variable can be isolated on the 

two sides of the equation unless certain parameters are to be specified. Usually. these 

parameters can be specified quite readily and 'separation of the variables" is achie\ed. On 

this a\ the separation proceeds until the one side becomes an ordinar\ di Iteretiliul CUtI. 

This thesis is composed of Five Chapters. An introduction of basic principles of boundar\ 

layer theory, natural convection Ilows, suction and blowing phenomena with historical 

review of earlier researches and background ol'our problem are presented in CHAPTER I. 

Basic equations governing the problem. dimensional analysis with simplifying assumptions 

and simi larit transformations with possible similarity cases are given in Cl IA P1 kR II. In 

Cl IAPT[R Ill, a detailed discussion of one of the four similarity cases. nameR. Case \ [),is 

been given. Under the considered case, analytical approach for combined convection have 

also been discussed there. The numerical solutions with the graphs for some selected values 

of the appeared parameters are presented in CHAPTER IV. In CHAPTER V. the conclusions 

ained troni this work and brici' descriptions br further works related to our present ieaieii 

have been discussed. 
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CHAPTER-Il 

Mathematical Formulations 

2.1 Basic Equations 

Let an axi-symmetric heated (or cooled) slender body of finite axial length is immersed 

vertically in a viscous fluid of variable properties. The surfitce temperature (= T ). the 

velocity and the temperature of the undisturbed fluid (Ue  and 7.) close to the body surlhce 

but outside the boundary-layer are all general functions of x and!. r1  is the radial distance 

from the axis of symmetry to the surface of the body, x is the distance measured along the 

axis of symmetry of the body and t is the time. The physical configuration mid the 

coordinate system of' the problem are shown in Figure 2. 1 

x 

'U 

Ue 
b. 

\_ 

N 'p(x,r,t) 
rw ,9' / 

1""j -9 

ij 

Figure 2.1: Physical conliguration and coordinate system. 

The influence of body force generated by buoyancy effects on the flow held ne:tr the 

surface is significant if the Froude number of such a flow field is of order unity. That is. 

the non dimensional form of the buoyancy force is 



T -TgL w 0(1) (2.1) 
T (J2 

where gx is the gravity component in the x-direction, L is a suitable characteristic length 

and (I is a suitable characteristic velocity. In attacking this problem the equations 

expressing conservation of mass, momentum and energy will be formulated in a manner 

which readily admits the variation of thermo-dynamic and transport properties of the fluid 

with temperature and pressure. 

If ii, r are the components of the velocity in the x and r directions respectively then the 

equation governing the motion of the fluid as shown in Figure 2.1 may he written as 

follows: 

1 

at r[Ox or 
0 (2.2) 

J)ii p 1 Op 1 a r (Ou Ov 
- = —g - -- + --I ,Lir + - 
Di V U dv yr Oi [ \\ Or  Ox 

all 
(2.3) 

ia [2/1  
Ou (Ia

++A.j frv)+
vax Ox rar Ox 

Dv I Op 1 a r (O Ou"\1 2p(Ov v 
- = ---+--I //l -+- 1+-I 
Di p Or p Ox [ ax Or)] pr ( 

i o[ OV a 
p [ . (. 

DT_ 1 o( OT i a(ka2fl _ 'k— ) +  

Di C,,pr Or Or CpOx dv) 
(2) 

1 
< 
Op ôp 

C,.p Ox Or}
+ 
 cpp 

vhere 

( , ,•l I(av'r (vi (au (Ov a'ii 
]+,~

[
aV v Oti

ç9=/L 2— +— + - +l — + — I
Or) r) ax) kOx ar) J Or r Ox 

D a a a and 
Di 01 Ox Or 
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Also p is the density, p is the pressure, i  and 2 are the dynamic and second 

coefficients of viscosity, T the temperature, k the thermal conductivity, c the specific 

ha '\ 
heat at constant pressure and = is the coefficient of thermal expansion ol 

po7 j 

the fluid. As usual in the boundary-layer approximation, the equations (2.2)-(2.5) are 

reduced to (on the basis of dimensional analysis in boundary-layer theory): 

op o 0 
r— ± —(pru)+ —(pry) = 0 (2.6) 

51 ox al- 

Du ISp 1 ( Su 
— =g-----+----I,ur— (2.7) 
Di p5x pr5r' or) 

(2.) 

(2.9) 
Di pCrOr Or) 

The boundary conditions to be specified here are as follows: 

(I) For a solid surface the fluid must adhere to the surface of body (i.e. the non-slip 

condition of the viscous flows) and the surface must be a stream line 

i.e. u(x,r,i)=0 when r = 0 

ie(x.i..I) = 0. v(x.r,t) = v0 when r = 

(ii) The fluid at a large distance From the body sur!iice must be undisturbed liv the 

boundary layer, i.e. 

as r —) 
U 

or. u(x,co,t) = u, being in general a function of both x and I. 

13 



(fU) The temperature of the fluid at the surface of the body must he equal to the body 

surlhce temperature. hence 7' = 7, when r = 0 or. r =  rt  

Hence O(x,r,t) = O(x.ç,t) = 1 

i.e. O(x,0,i)=1 

as 9 = I i.e. O(x.i;,,t)= 1 

(in) Ihe temperature at a large distance from the both surface must he eq nat to the 

undisturbed fluid temperature 7, i.e. O(x. ç.i) = 0 when i 

or, O(x, CO, t) = 0 

In the non-dimensional form of the boundary-layer momentum equations (2.7) and (2.8). 

the terms of'  order Re are ignored whilst in the energy equation (2.9). terms of order 

Re and J (for the stress work terms) are also ignored. Here RC  = ---- and 

j2 

E = are the Reynolds and Eckert numbers of the flow respectively. We are 
—7) 

concerned with those types of boundary-layer Flows where Re —*x and E< 

Imposing the boundary conditions at the outer edge of' the boundary laei 

(asp —> p , u —+ lIe  T -* Te  , p —> p 
3/) 

and — -* 0) equations (2.7)-(2.9) are no\\ 
ar 

transformed to: 

au, aii 
P + PU = pg - --- (2.10) 

at (Dx OX 

p=p(x,t)  

ÔT, aT 
L+U _LØ () 1') 

at Ox 
Ca 

Here subscript 'e refers to conditions in the Outer or external flow. The values \\ iili  the 

subscript are the values to which the solutions in the boundary-layer must be matched as 

the boundary-layer co-ordinate normal to the surface tends to infinity. In general 

-4 
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71.  p are lunclions of' x and I. However, equation (2.12) has the solution 

11 constant br a given fluid element. In Such fbi lows, it will be assumed tliii 

= constant throughout the flow field. By virtue of (2.6)-(2.9) and (2.10)-(2.12). the 

transformed boundary-layer equations which are to be studied in this chapter are written 

in the following forms: 

a a 
+ —(pru)± —(p/T) = 0 

a ox a,' 
(2.13) 

Du 1 5u Oul Ou 
p
Dt 
--=(p-p)g + p---+u ----+- —1 pr—I  

J , 

a, Or) 

DT I a ( aT 
Di I. (•/' 

2.2. Transformations 

The equations (2.13)-(2.15) take the following forms for a Boussinesq fluid: 

-—(ru)-F -
P.  
-()= 0 (2.16) 

Du 5u, v a ( aI 
IV& —=—a fl.AT8+--+u --+--1 r— I (2.17) 

Dt at ' a- r ar ' ar) 

= -Ju--(1ogtT)+ Ooi\ r)bo
---( 
  

Di i a, f Pr r Oi• 

LI IC',, TT where i'= , Pr= I-/0 =AJ ,AJ-111. f. 9= .and 1 =1, is 
p k 

treated here as constant temperature for the ambient fluid. Since the state relations 

isp = p(T), it follows that p. = 00  (constant). T and 2 in general depend on boll) x 

and I. A solution of the equations (2.16)-(2. 18) is now sought. these equations being valid 

in the limit Re —* 00 and I' — 0. In our present investigation we have considered only the 

first order boundary- layer approximations and the higher orderd effects are ignored. 

The complexity of the above governing differential equations makes the use of 

simplifying approximations desirable SO that tractable solutions may be obtained. The 
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method of similarity provides a convenient and accurate procedure for computing heut 

transfer, skin friction and other laminar boundary-layer characteristics. Guided by the 

idea of similarity solution the independent variables (x,r,1) are changed to a new set of 

variables (,Ø , r) where the relations between the two sets are 

I. (•1 t:. 

here (x,t) is thought to be proportional to the square of the local boundary-layer 

thickness. This definition of 0  arises purely for reasons of convenience in using the axi-

symmetric from of the equations. From (2.19). we get 

a 
— or 

(2.20) 

a0 a 
OxO 

(2.21) 

a 
a• 

1 lere suffices denote partial dilièrentiation with respect to corresponding arguments. Ihe 

continuity equation (2.16) is identically satisfied by introducing a stream fwiction 

r. i) defined by 

aqi 
(2.23) 

or 

I-V  aql 
(2.24) 

ax 

By virtue of (2.22) and (2.23) we have 

a J 1 
J/11- = a[y(x.i) 

Using a non-dimensional scaling factor U for the velocity component u we can write 

it  = a J 
U a tru 
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or, w(, 0, r)=y UJdØ 

=y UF,q5,r) (say) (2.26) 

where r) JdØ and 00  is the value of 0 on the body. That is, 
00 

r, 
2yx , I 

In view of(2.2 I ), (2.24) and (2.26) we can write 

— ry =
(a~ Y ao 

a
w(,Ø,r) 

= 
a,t,(4,Ø,r) 0  

a a0 

or, - ry = (y U F) 
- 0 y U - r v (2.28) 

where — rw vw  =iti(4,Ø0 ,r) (2.29) 

We assumed that the surface ol' the bodY is porous. therciore v, -;e 0 rcprcsenLs thc 

suction or blowing effects and since r1 r (x) only we take y. r) /: 0. In this 

situation the convective operator 
D
-  becomes 
Dt 

D a a a 
- + U - + V— 

Di at ax ar 

a0 a a(wY  a a) {( yu.) a 
=---7r + 

a 1
J—r . —'UF —ryvv1-- 
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a(yuF)a 
at y  aq5 ÔØ 1 ôb) y E3Ø 

8 11.V. 8 
+o7u; — + - 

a 

5 0 
Y7. 
 a + UF - 

- (_
u i'). a 

7 2'  ao 

+ØyUF0--- 
+'' 

= 'Tr + 
(U1 rV S 

St 1 - 2' 

At this stage the boundary conditions are simplified as 

F(..r)=0 

ç(,00j)= I 

8(,O,t)=l, 9(,00,r)=l 

In attempting separation of variables for F(,Ø,r) and 8(,0,r) we write 

F(,Ø,r)= L(,r)7(Ø) , e(,çls,T)= m()9(Ø) 

Since 0(,001 r)= 1, we may put without loss of generality 

rn(,r)= 1 and then 9 (o)=  i 

18 
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(2.30) 

(2.31) 

(2.32) 



Now. 

a ( all i' / 0 r 0 1 a
OØ 

(y,í  
- a' Or) r 00 a y 

[20_ 
rao 

= ±r2O-J-_(ULf)~] 
y00[ 0ØaØ 

21 [0  0 
=--1iL-- 

-J] 

=UL - rØ - 
 
—(f )1 

.4 
2' OØI aø'j 

"v or 
= UL :;— [0 

ï oØ 

- 2v 
=----0ULf000  (2.33) 

OUe 

(a-r 

a 0 O 
---7 lie, 

of  

01. 
- o y'OØ 

'\ 
Hence u, (Iul---=u,(

a~ 

a 
-- 

q  
—7 

 o 
- lu 

'Ox r 

0 au, 
or, u --- = u --• - ii,. 7, L 

Ox 

IIJ 

(2.35) 



By virtue of the above equations from (2.19) to (2.35) the momentum equation (2.17) 

reduce to 

F' 5 
1--+UF, -p-- I 

Or lr 7 j ao 80Y) Or y 80 

n Ou 2v 
 o 

 2v 
+ U, —f- - —s- + - ØULJ 00   + UL 1 

0 70 1 2" 

6 fØ (yUF) 1 vVw 8  UF --- (1UF+c1f(0Ori)_g j3 ATO 

7 i Jao 
or. 

JOØ 7 ) 
Ou, 0 Ou, Ou 0 Ou 2v 

+-- --7---+U —i--U —7—+ 
Or 

c C 

00 —OULZ00 + ULT, 

fo  
 1—p— 

+ 
(7u). 

— y'(00) — 

•8r 12' 2' )' ('0 
.' 

(.': 

= 

O r 

0 
r 

all, 
--± 

Ou, 
u,--------uc  

0 3u, 
,—y---+—i(

, 

.. 

2i' - 

L/. ØØ  +—LL 
2v 

I 00 
7 00 O y oØ 7 7 

or, 
 (ar

y + 
(yUF)  rV 

+UF (uLj)= —g flATO 
7 7 JOØ 

da )00  

Ou, 0 Ou, Ou., 0 Ou, 2v 
+— OUI~TOOO 

2v 
LJLt,, 

Or 1  OO O 700 i 2" 

(o 10  
or, ----7 

+ '— 
r.V

I 'I  
O 
—+UF— (ULJ)= -gJ3AT9 

t,8r 7 7 7 ao  O) 

Ou, 0 Ou. Ou, 0 Ou, 2v 
+—UL/ 

2v 

Or 00 7 Ob  y 7 

ill  
Or. (uij_ /r + 

(); LL}. (i.ij+ UF. (ui.j= -gI3, AlP 

311 0 all 0 Ou 2vOUL~  2v
+ULf0  
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liv  01, (w) 
- 

+ - 'w }ULJ + u(L7)  

Du q au. ôu 0 3u 2v 2v 
~—UL/0  

çô y 7 
(7  UL). v. 

L!Lf + ULf, + b Ltd, (UL) f = - g fi A /0 
7 7 7 

ai.i 0 au 
-;' ----01. L /,,,, + -  

a 7 

or. )/ UL7,  
- 

'Y ('Yul-)~ ~ 
UL7 ULf 

+ -L- rV IV ULf, + 
UL 

= --f 
9ji7ATO + u(, LL

) + 2i'q$f, 0  + 2v40  

or, 2(UL)r) - 0rZ - (yUL)7 7 + + 
uIl 

=--7—gj37 AT9 +2v/, 

(+ (l Ja0 t0  -- (a, , ) (!) a, - a0 a, + 2ti(Ø .4.  

[Using equation 2.39] 

(2.36) 

and energy equation (2.18) reduces to 

a 
)--(m9)-4 a  Or, (im9 — (rn ) + aT ()o 7 a 

= 
at I. y  00 I 

Or. - 7r Oo - 
(yUL) 

y + 'v 
so 

7 7 7 

lva = 
-' u—(1ogAT)+ .-(1oAT)}(9)+ __{2o__(9)} 

t. ox ao 
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or. - 
(yUL) y + rV 1  

7 7 1 

= _{ .-(log T) + .-(loAT)}(t9) + {2qs, } 

2 
619  L LL)a() = 

-y{u[ -- 
a 0 

y  a  (1ogT) 
 a 0 a 2v r 2  

-  - 
ô y ab 

[Using equation 2.39 and multiplying by y] 

or, (a1  +,)J9- (l () .(Ø+a) a( = y {u (logAT) 1 (JogAT)j&i  

2v 

a )+- 

IV + , 

or, - (a1 + "2) {a0 ( + a1 )+ (19 =-y {UL j.  (log AT)+ (log AT)} 

2i' i 

+ + a3 ) P1. 

a)i ; } ± a0 +a1 )± ± (a1  ± a,)79 - a, + 0 (2.37) 

The transformed boundary conditions are 

7(0)= 0, 7 )= 1, e(o)= 1, 9(00)= 0 (2.38) 
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where 

(ii) (yUL). =.UL+y(UL). =a1  +a, 

27 

UL 
=Cl4 

(i.) ;/((JL) = (2.39) 

i(UL) = a1  

—g,61AT = a5  
UL 

--(u) +u(uj}= a6  
UL 

7(log/\7) = a., 

(.v) '( Lo!\i} = 

(xi) -': U )  

- a a a andØ = =c6— Øo, ---=.- -= 

2(x,1) ao ao 00 a 

Similar solutions of (2.36) and (2.37) exist only when all a's defined in equations (2.3$) 

are finite and independent of and r . Thus, all a's must be treated as constants. In such 

cases. the equations (2.36) and (2.37) lead to a set of non-linear ordinary di lThreniial 

equations (i.e. equations containing one independent variable). If it, = 0, (IL is treated 

then as the non-dimensional characteristic velocity (e.g. maximum velocity) induced by 

buoyancy effects at a particular station (x.r. On the other hand, if u 0 without loss 

of' generality we may put UL - it, to simplil'v the outer boundary condition. This then 

asserts that the velocity component u is non-dimensionalised by the external 1o161ie 

velocity. Thus the equations (2.34) give us the relations for UL or consequently u and y 

separately. The latter are the scale factors for the velocity component it and the square 01 

the ordinate r. Hence the contractions of and r expressed in terms of the a's in 

51- equations (2.38) become the conditions to transform the boundary-layer equations into 

similarity equations. 
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Integrating (i) of (2.39), we get 

2' = a0 r + B() (2.40) 

Again integrating (ii) of (2.39), we get 

yUL=(a1 +a2 )+A(r) (2.41) 

l)iffcrentiating (2.40) with respect to and using (vi) of (2.39) we get 

Similarly, differentiating (2.41) with respect to r and making use of conditions (ii) and 

(iv) of (2.39) we get (yUL) = 
dA(r) 

dv 

Oi,}I(UL)r, + 7,UI, = 
dA (r) 

dv 

or,ULa4  +a0UL = 
dA(r) 

dv 

or.UL(a0 +a4 )=—{A(r)} (2.43) 
dv 

As result of (2.42) and (2.43) it may be obtained that 

{A(r)}. {B()} = a (a0  + a4 ) (2.44) 
dv d 

Since y  and UL depend solely on the choice of A (r) and B the equation (2.44) plays a 

significant role in determining the possible cases of similarity solutions. 
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These possible cases are: 

Case A: 13oth A(r)} and 
- B()} are zero 

dc 

Case B: Both ---{A(v)} and --{B()} are constants (2.46) 
dv d 

Case C: 61 0 and 0 (2.47) 
dr In 

CaseD: -i--{A(v)}#O and --{B()}=o (2.48) 
dv d 

It is seen that the similarity conditions (2.39) lead to four possible classes of similarity 

listed in equations (2.45)-(2.48). However, in the present situation an additional condition 

tor similarity arises because 0, (equation (2.27)) must be constant also. Since i• is a 

Junction oi.v only. for 00  to he COiiStflflt therefore requires that y is a lunction oJ .v uHI\ 

'I'hus similarity is achieved in the present problem in those circumstances. With this 

context, the various similarity cases (case A, case B, case C, case D) arised above, an 

important similarity case (case A) for combined convection has been discussed in Chapter 

Ill. 
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CHAPTER III 

Similarity Solution: Study of Case A 

3.1 Analysis for combined convection (u( . (x + x0 
)11)  

We shall now discuss in detail the restrictions on the general equations br ihc case .\: 

dA(v) 
= 0 and 

dB() 
i = 0. These restrictions are llustrated in equations (2.44). In view 

dr d 

of equations (2.41) and (2.42), the equation (2.44) can be written as 

ci/I(r) 
= UL(a + a0 ) = 0 a()  = —04 . provided UL # 0 

ci r 

and 

=0 
dj UL 

(1. is a function of only. Now we get from equation (2.40). 

(, a,  ) i. A is cOnStant. 

Differentiating with respect to , we obtain 

(yUL) =(a1  + a,), 

as a1  = 0, we have 

(y(11 (3.1) 

Since UL is a function of only, therefore y might either be a function of or 

constant. Again from (vi) of equation (2.38), we get 

= yUL 

or. y(JL = 0 
1%- 

a1  = 0 

Oi. 7. = 0 where. (ii. # 0. 

Integrating, we obtain 

y = K1  

where, K1  is a constant of integration. 

(3.2) 
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Further, we have from (v) of equation (2.38), 

=y(UL)  

We get from equations (3.1) and (3.3), 

y(UL). =(YUL). 

UL(UL). 
o. = (yuL) 

UL 

(uL).. L) 
or, 

= (ru 
 

UL yUL 

Integrating, we obtain 

In(7()-L) = ln(UL) + In(K1 ) 

or. In(y(/L) In(KUL) 

or, yUL = K 1UL 

:.y=K 
(3.4) 

Without loss of generality we may write UL = U e  for combined convection flows. By 

virtue of equations (3.3) - (3.4) the general conditions for similarity requirements (2.38) 

yield relations between the constants (i.e. a 's). These relations are 

a4  = —a0, a1  = 0, a0,a2  arbitrary, 

a3  =  rIV 

"I 
or. 03 = K 

15

UL 

- 
K 1   

-- K{a2  + 
A} gflAT 

[•. 
UL = 

(a2  + A)] 

K 

, a5  =—gj31 ATK(a2 +A' 

a 
= -EI' {(u ) + U<, (ii,); } 

01. a = 
UL 
i {(UL)r  +UL(UL); } 

I-.. 
UL=Ue] 

01', 1- , = JUL (UL 
 } 

[.: (uL), = o
UL 

] 
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or, a6  = v(UL) 

or. a6 = a 
[. 

a2  = yUL) 

i/(logA/) 

y— 
ô  Ilog(-a5UL)AT= 

-a5UL
? 

JrJ L 

O ( Since UL and y are function of or constant only ) 
i.e. :.a7  =0 

= yUL{logA7 

or, a8  =yUL--{1ogAT} 

or, a8=7UL--1 (-a
5UL'l 

= 

[ 
AT -a5ULl 

1ogI 
a gfly jJ gflu] 

or. 7UL
e.  
 {Iog(-a) + log(L/. ) log g - log fl log(' ) 

or, a8  = UL{_! (a5 ) 

or. a8  = -7UL 

or, a8  = -7UL (a + 

or, a8  = -L 
(a)

+ a2 
I. 

a = (uL)4 ] 

or. a8 = _g61ATK12(Q, ± A)- 2  a, + it, a, = g/31-ATK j (a2  + A)-I ] 
(15  

- yULg J31ATK a2  + A) 2  a, 
or, a8  = 

-g 7.ATK(a2 + A)-' 
+a2 

or, a8  =a2 UL(a,+A) 1 +a2  

or, a8  a,1+K,ULa2+A)} 
I... y

=K1] 

-11 
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or. aq 
[. 

UL= a2+A1 
K, j 

or. a = a-, (1 -i- 1) 

or, a8  = 2a, and a9  is arbitrary. 

In view of the above relations, the general equations (2.36) and (2.37) take the lollowing 

forms in this case: 

2vØ+a3 )- +a0(+a3)+a9}- +(1, +a,)-- _a,,2 —a4  +a9+a(  =0 

or. + a, )t- } (0 + a, a, afi - a,/ - + a. + a. 0 (3 . 

a, = 0, a4  = a0 , 616 = (1, 

and 

[+(13}1 +{a0 (+a3 )+a9 } +(a, +ci)7  —(a7  +a8)SO 

2vr (3.6) or. 
Pr ' 

I... 
a, = 0, a7  = 0, a8  = 2a2  

Substituting / = 

- 

Cl '  

a a a  77 We obtain -= -. 
0 a 7  a 

i a 
a, ai7  

Then equation (3.5) becomes 

2v[(ai17 + a 3 )f;,,,1
'1  1

+  {a (a, + a 3 )+ a9 }/,,, + a2 alf 
1717 a," ] a, a, 

', 

a,/ 1 a, 
—a2  

a, a, 

2vr as 

 - 

(19  or. + f,,,, + a0  77f 91, + 17/9 + '7/11 + (17// qq - a,f,1  + c,f,, + i9 ± U a, L a, a, a, '1 
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2r 2 

__________ 
.3 or. ijf + + i 

a0 rT a9  
+ + Uft;p, + + 0 q '19 2Jci a, 2,  

- '1 

H 
l)ividintt by 

a 

2 
1 a0a1 a0a r 

. 
+ a

2 a1  .  [171 + 
2K 1  a 1 

+ 
v v" ~ 

v 2K1  a 1 
+ 

0 V V '1 

+ 
a0a

1 + (9+ 
a 5a 1 a2a 

= .•-  1 

v v [ ] 
a, a11 a1  

Choosing --a1  = ,B and = 1, finally writing = R()  the translormed 
V u 2K 1 a1  

equations of(3.5) and (3.6) are 

+ R0 f) + if,,, + R0 f,111  + + 
- + f;1 + (9± = 0 

R ,  

2K 1 u 1) 1) 1) Ir 

j LL , = o 
uc  

U 2:  or.2(i±R0 )f +(2± +R0  +F, +flf)j ±fl(1-f,fl±f +--- i 
 

(9 =0 (3.7) 

and 

2v[ 1 1 
—  (a

' 
 /7±a s 9 )—, + [a0 (a,i + a3  )+ a9 ]i(9,, ±a2a1 f19,, -  2a, 

a . 
= 0 

PrL al a 
9 

a1 a1 a1  

or. 
20 

[77(91 + ,,1 + a0 9,1  + a
0a3 a9  

+-9 +a,f99  -2a,f,,9=O 
aPrL a1 J 17 a1 a1  

2 V 
1 ,,  + a0  ± 

 
LY (9 + a[9 - 2a, ./, (9 = 0or. [(17+ R1 )9 

2KP1X (X 
 

a1  

(/3  

[• 

R0  = . (1 3  
a1 2K 1  

Dividing by 
0 

 
a1  Pr' 

2[(7+ R0 ) 1 ] 
+ a0a1 

Prq 1 
 + a0a1 

R0 (9,1  Pr+ FH,S9  Pr+ a2a1 fPr(9,, -2 a
2 a /; 

PI 9  = '1 
V 1) 

C 

•.• R,, = 
r2 

F = — 
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or. 2(i ± I? )9, 29,, + Pr ij9,, - Pr R, 9,, + Pr JT9 + Pr /3/9 - 2 Pr /3/,9 = 0 

[ 

a0a1 
= , , = 

a2a1 ] 

or.2(i + R,091,,, + + RO  + + 13j)9,1  —2Prflf9 = 0 (3.8) 
Pr 

I he boundary conditions are i(o) r.(o) o. t: (jo) 9(0) I 

1 lere the Iree ConveCtiOn VelOCity Li, . causcd h the temperature di Eirencc (i,  

connected with by the following equation: 

U. =-gflAT(+ 0 )  

where ( + ,). i.e. (x + x0 ). is the local characteristic length. The controlling 

parameters established here are Pr. the Prandtl number of the fluid. R( . the body radius 

parameter. ---. the square of the ratio between the free convection velocity L1,•  
li e  

(Ostrach [65]) and the forcing velocity u,, and /3, the exponent of the external velocity 

variation ( (.v + x,, )). The latter exponent is consequently related to the exponcti 

the surface temperature variation (Al x (x i .v )' ). lor the above class ol simi Liii 

solution, the following restrictions must be satisfied: 

(i) U OC (x + x0 
)I  

\ (ii)(T 7,)ci:(x+x0)
2fl-t 
 

I /3 

(iii) r (x+.v0 ) . R0 
= 2i'(x±x0 ) 

The case /3 = 0 results in the outer flow moving with constant velocity around a vertical 

vR 
body which is a paraboloid of revolution with latusrectum 

2 
of length ° and the surlice 

U 

temperature varies inversely as the distance along the axis measured from the stagnation 

point. The restrictions (i)and (iii) are basical I) for breed flow, originally established by 

Probsicin and Elliott [66]. The similarity ltnction, similarity variable, the velocity 

components and the body-radius parameter (R0 ) related to the equations (3.8) and (3.9) 

are 
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2 
(a1  + a2 ) 

21,  

= 

2i' 

2v/3 

r u Hence R0 - e  

2v(x+x0 ) (3.15) 

It is interesti hg to mention here that in the absence of' buoyancy etThcts I U ) the 

sinhilarhty solution of the momentum equation given by (itaucrt and Lighthill 1671 hii:i be 
obtained for fl=o in present case with a minor change in similarity variable 

( 
77 to 2iJ 

3.2 FLow Parameters 

ftc viscous drag of a body moving through a fluid is obtained from the shearing stress 

distribution at the wall. This is one of the boundary-layer characteristics of interest. The 

shearing stress at the wall is 

au 
rrr  =it] 

or (3.16) 

and in terms of the similarity variable. 

a" 
at r = 

ar 

P.r a ía ( — 
aolao~y)  

rÔÔ(iUF+yi(, øo,r) 

= 

7a iaø 

= 

yaLaø j 

i UL - 
=P —-  .t:;  

I 

34 



r;v uc  
= 11 

7 a1  

-I (I 
.1 P/!/ 

W + a-, 
- 

,, V 

r.L2_f (0) = 11 U 
- 

7 Vp 

rir 7(UL)r 
(o) 

7 V,B 

(uL) 
-  f'm() 

v/3 

U Hence r 
,LI /, 

(fIlll(0) 

Usually, the skin friction and Reynolds number are combined to given the hoiindar -layer 

shear stress at the wall in the form, 

c,j= 2f(0)  

where 

C, = 

22 
—i- (local skin friction) 

- puc  

u (x + x0 ) 
R 

- (local Reynolds number) 
V 

R = 
ru, 

(local body radius parameter) 
2v(x+x11 ) 

and (x + x1) ) is the local characteristic length. 

It is necessary to know the heat transfer rate between the boundary-layer and the wall. 

The heat transfer rate at the wall is given by Fourier's law and is related to the non-

dimensional temperature function by 

q1  = 
ar 

—K -h—, at r = rw 
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ad 
= —K-'--AT.- 

- y ao 

7 a 

=_K!t\T'hI2 ,,(o) 
7 V 

=_KATO,a2 (o) 

—K 

= —K ---AT 
- 

(uL), 

V /3 

1-lence = 

K Al cUe 
(0) (3.19) 

v(x + x0 ) 

1-lence the counterpart of the equation (3.17) is 

= —9,,(0) (3.20) 

I)ue to the non-linearity of the ordinary dilirential equation it is not possible to obtain 

analytical solutions of the equations (3.7)—(3.8) together with the boundary condiUons 

(3.9). Therefore numerical solutions are obtained for specified values of the controlling 

U 
parameters J, Pr, R0, fi and ---. 

3.3 Numerical Scheme and Procedure 

The set of difterential equations ().7)—(3.8) with the boundary conditions (3.9) are solved 

numerically by using computer software MATLAB. The velocity /,j  and temperature 

are determined as a function of coordinate i7. The numerical results thus obtained in 

terms of the similarity variables are displayed in graphs for several selected values of the 

established parameters F, /3. Ro and Pr below. 
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CHAPTER IV 

4.1 Numerical Results and Discussion 

To obtain the solution of differential equations (3.7)—(3.8) with the boundary conditions 

(3.9), we have adopted a numerical procedure based on computer soliware. The effects of 

suction parameter F driving parameter /3 (the ratio between the changes of' local 

boundary-layer thickness with regard to position and time), the buoyancy parameter 

(the square of the ratio between the fluid velocity caused by buoyancy eftcts anti 

external velocity for the forced flow), the body radius parameter k and the Prandul 

number Pr are plotted in the Figure 4. 1--4.10. To observe the effect of I' . the other fnir 

parameters fi. . Ro and Pr are taken constants. Similarly, we observe the efIct of the 

2 
parameters )8 , Ro and Pr by taking the rest four parameters constant respectively. 

1'hc cilct of F on the velocity and temperature fields are plotted in Figure 4.1 and 

Figure 4.2 respectively. From Figure 4.1. it is observed that in all cases (suction (P', >() 

and blowing (F < 0)) the velocity is starting at zero. then velocity increases with the 

increase of i near the leading edge. The maximum velocity appears at i 2.7 and 

finally moves towards 1.0 asymptotically. Ilere we see that for the case of suction 

/ >0). the velocity increases with decreasing F but for blowing case (IT < 0). 

velocity increases with the increase of the magnitude of blowing. The usual stabilizing 

effect of the suction parameter on the boundary layer growth is also evident from this 

figure. From Figure 4.2 it is observed that for the both cases suction and blowing 

temperature decreases quickly close to the leading edge and away from it temperature 

decreases asymptotically and Jinall\' leads to zero with the increasing 0! /7 . For the case 

of suction ( I >0) the temperature decreases slowly with the decreasing suction. lut ul 
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the case of blowing (F <0) the temperature decreases, more with decreasing of the 

magnitude of blowing and finally asymptotically leads to zero for larger i. 

1.4 

1.2 

1 

0.6 

0.4 

0.2 

0 1 1 1 I I I 

0 1 2 3 4 5 6 7 8 9 10 

1 

Figure 4.1: Velocity profiles for different values of F (with fixed values of .- 0.5, 
uc  

R0  = 0.1, Pr=0.71 and /3=0.5). 
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Figure 4.2: Temperature profiles for different values of F (with fixed values 

of =0.5, R0  =0.1, Pr=0.71 and /3=0.5). 

The other controlling parameter is the Prandtl number Pr, = 
k 

P) which depends on the 

properties of the medium. Here velocity exhibits minor changes while temperature 

exhibits significant changes with the variation of Prandtl number Pr. As it is observed 

from Figure 4.3 that, the velocity is starting at zero, then velocity increases with the 

increase of q near the leading edge. The maximum velocity appears at i 2.4 and 

finally moves towards 1.0 asymptotically. Velocity increases negligibly with the increase 

of Pr before being 1.0 asymptotically in all cases for large value of i. From Figure 4.4 

we see that in all cases the temperature is starting from 1.0 and temperature decreases 

quickly with decreasing Pr close to the leading edge and finally leads to zero smoothly 

for larger ,. 
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Figure 4.3: Velocity profiles for different values of Pr (with fixed values of 0.5, 
Ue  

/3=0.5, F =0.5 andR0  = 0.1). 
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Figure 4.4: Temperature profiles for different values of Pr (with fixed values of 

F=0.5, RO  =0.1 and 8=0.5). 
Ut , 

The body radius parameter R0  depends on the shape of the slender body. There is a 

remarkable consequence of the variation of R0  on the velocity and temperature fields as 

are observed in Figure 4.5 and Figure 4.6. Like before, for all values of R0 , velocity starts 

from zero and then increases with the increase of i and the maximum velocity appears 

when q 2.4 and then finally leads to 1.0, where as the temperature starting from 1.0, 

then decreases with the increasing of 77 and finally asymptotically leads to zero for larger 

i. We see from Figure 4.5 that within the boundary layer, velocity highly increases with 

the increase of R0 , before asymptotically being 1.0 for large value of 
,. 

From Figure 4.6 

it is observed that temperature decreases sharply with the increases in R0  before being 

zero asymptotically for larger value of i. 
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Figure 4.5: Velocity profiles for different values of R (with fixed values of = 0.5, 
U e  

= 0.5, Pr=0.71 and /1=0.5). 

42 



1 

0.6 

0.4 

[Ip 

1 2 3 4 5 6 7 6 9 10 
1 

1.2 

Figure 4.6: Temperature profiles for different values of R. (with fixed values of 

=O.5,Pr-0.7l, F, =0.5 and 0=0.5). 

u 2  
Figure 4.7 and Figure 4.8 show the effect of buoyancy parameter -- on the velocity and 

Ue  

temperature fields respectively. We see from the Figure 4.7 that all cases the velocity is 

starting at zero and increasing asymptotically to 1.0. But with increasing the rate of 
uc  

change of velocity increases slightly. The maximum velocity appears when i 2.6. Thus 

before being asymptotically goes to 1.0 far away; velocity is higher for higher values of 

within the boundary layer. Since the energy equation is independent of the buoyancy 
Ue  

U I  2. 
parameter —i--, no effect of this parameter on the temperature field is observed as shown 

Ue  

in Figure 4.8. 
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Figure 4.7: Velocity profiles for different values of UF  (with fixed values of /3=0.5, 
U e  

Pr=0.71, F  =0.5 andR0  = 0.1). 
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Figure 4.8: Temperature profiles for different values of (with fixed values of 
Ue  

) 1 = 0.5, Pr —0.71, F = 0.5 and R0  = 0.1). 

Figure 4.9 and Figure 4.10 exhibit the effects of the driving parameter /3 on the velocity 

and temperature fields, respectively. The velocity and temperature fields exhibit 

remarkable changes with the variation of /1 as observed from Figure 4.9 and Figure 4.10 

respectively. From Figure 4.9 it is observed that in all cases the velocity is starting at zero 

and increasing asymptotically to 1.0. But the velocity increases with increasing /3 and 

maximum velocity appears when i 2.3 for /3 = 1.0 and then finally leads to 1.0 

asymptotically for larger value of i. Like before, temperature decreases faster with the 

decreasing /3 and finally leads to zero asymptotically for larger value of q as shown in 

Figure 4.10. 

P1= 
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Figure 4.9: Velocity profiles for different values of fi (with fixed values of = 0.5, 
Ue  

Pr=O.71, F=O.5 andR0  =0.1). 
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Figure 4.10: Temperature profiles for different values of /1 (with fixed values of 

,Pr= 0.71, F=0.5 and R0  =0.1). 
Ue  
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ChAPTER V 

Conclusions and Recommendations 

By using the technique of similarity solutions, the governing boundary laser 

equations for the two dimensional mixed convective laminar boundary layer flo 

around a vertical slender body have been solved in this present thesis. It i 

considered that the surface of the slender body is porous SC) that the effects ol 

suction and blowing are taken into account. Different similarity cases arise with the 

choice of .!4 and 
dB 

 either zero or not equal to zero or constants. Similarity 
dv 

solutions for one of the cases, namely. 0 and = 0, have been studied in this 
ar 

thesis. Throuh out the studies very small suction or hlowin value 1:1 \ C 

considered. On the basis of 1111(1 ings. it is observed that: 

(a) Velocity increases with decreases of suction but for the case of blowing the velocit\ 

increases with the increase of magnitude of blowing. 

(h) Temperature decreases with decreasing suction but temperature decreases more ith 

decrease of the magnitude of blowing. 

Velocity increases negligibly with the increase of I'r and finally the least to the value 

1.0 asymptotically for larger value of i. 

Temperature decreases quickly with decreasing Pr close to the leading edge and 

finally leads to zero smoothly for larger /7. 

Velocity increases with the increase of R and finally leads to 1.0 asvmplol cal I\ I 

large 11.  
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(0 Temperature decreases sharply with the increase of R0  and finally approaches zero 

asymptotically for large i. 

U 2  
With the increase in the buoyancy parameter -f-- the rate of change of velocit\ 

increases slightly and finally leads to 1.0 asymptotically for larger i. 

No effect of buoyancy parameter on the temperature field is observed. 
U e 

The velocity increases with increasing driving parameter ,B and finally leads to 1.0 

asymptotically for larger value of i. 

U) Temperature decreases fisicr with the decreasing /J and finally leads to /t() 

asymptotically for larger value of i7. 

Rest of the similarity cases should be analyzed for better understanding of the 

problem. 
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