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ABSTRACT

In this thesis. a case of the similarity solution of laminar convective boundary layer flow around
a vertical slender body with transpirations has been investigated. Fiestly, the governing boundary
layer partial differential equations have been made dimensionless and then simplified by using
Boussinesq approximation. Secondly, similarity transformations are introduced on the basis of
detailed analysis in order to transform the simplified coupled partial differential equations into a
set of ordinary differential equations. In the present thesis one of the important similarity case.
out of four cases has been studied. Under the considered case. the transformed complete
similarity equations are solved numerically by using computer software MATLAB. Further. the
flow phenomena have been characterized with the help of obtained flow controlling parameters
such as suction/blowing parameter, buoyancy parameter, Prandtl number, body-radius parameter
and other driving parameter. Finally, the effects of these involved parameters on the velocity and
temperature fields are presented graphically. It is observed that a small suction or blow ing played

a significant role on the patterns of Tow and temperature ficlds.
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CHAPTER 1

Introduction and Literature Review

Fluid dynamics is a subject of widespread interest to researcher and it become an obvious
challenge for the scientists, engineers as well as users to understand more about fluid motion.
An important contribution to the fluid dynamics is the concept of boundary layer flow
introduced first by L. Prandtl [1]. The concept of the boundary layer is the consequence of
the fact that flows at high Reynolds numbers can be divided into unequally spaced regions. A
very thin layer (called boundary layer) in the vicinity (of the object) in which the viscous
effects dominate. must be taken into account, and for the bulk of the flow region. the
viscosity can be neglected and the flow corresponds to the inviscid outer flow. Although the
boundary layer is very thin, it plays a vital role in the fluid dynamics. Boundary layer theory
has become an essential study now-a-days in analyzing the complex behaviors of real fluids.
The concept of boundary layer can be used to simplify the Navier-Stocks’ equations to such
an extent that the viscous effects of flow parameters are evaluated, and these are useable in
many practical problems (viz. the drag on ships and missiles, the efficiency of compressors

and turbines in jet engines, the effectiveness of air intakes for ram and turbojets and so on).

Further the boundary layer effects caused by free convection are frequently observed in our
environmental happenings and engineering devices. We know that if externally induced flow
is provided and flows arising naturally solely due to the effect of the differences in density
caused by temperature or concentration differences in the body force field (such as
gravitational field), this type of flow is called free convection’ or ‘natural convection® flow.
The density difference causes buoyancy effects and these effects act as “driving forces” duc
to which the flow is generated. IHence free convection is the process of heat transfer which
occurs due to movement of the fluid particles by density differences associated with
temperature differences in a fluid. In such case, the free stream velocity falls away. in deed.
no reference velocity does a priori exist. If the density in the vicinity of the surface is kept

constant, natural convection flow can not be formed. Thus, the natural convection is an elfect
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of variable properties, where there is a mutual coupling between momentum and heat
transport. The direct origin of the formation of natural convection flow is a heat transfer via
conduction through the fixed surfaces surrounding the fluid. If the surface temperature is
greater than that of ambient fluid, heat is transferred from the surface to the fluid leads to an
increase in temperature of the fluid close the surfaces and to a change in the density, because
it is temperature dependent. If the density decreases with increasing temperature. buovancy
forces arise close to the surface and warmer fluid moves upwards. Such buoyancy forces are
proportional to the coefficient of thermal expansion 3, , defined as Gr = —LL%}) |

P £ pr=eonstant

where p, T and p are density, temperature and pressure respectively. It is observed that

1 ; : 5
Pr = 7 for a perfect gas, and we see that stream is well approximated by the perfect-gas
result 7" = 1at low pressure and high temperature. Also Br < = for a liquid and may even

be negative, and S, > = for imperfect gas, particularly at high pressure. By s also useful
in estimating the dependence of enthalpy ‘%’ on pressure, from the thermodynamic relation
~ dp 5 s
dh=C,dT +(1- B,T)——, where T is the absolute temperature and C, is the specific heat at
Yo,
constant temperature. For the perfect gas, the second term vanishes. so that & = i(7) only.

The natural convection studies begun in the year 1881 with Lorentz and continued at a
relatively constant rate until recently. This mode of heat transfer occurs very commonly. the
cooling of transmission lines, electric transformers and rectifiers, the heating of rooms by usc
of radiators, the heat transfer from hot pipes and ovens surrounded by cooled air. cooling the
reactor core (in nuclear power plant) and carry out the heat generated by nuclear fission cte.
The Mixed convection flows, combined forced and free convection flows. arise in many
transport processes in engineering devices and in nature. This follows are characterized by
the buoyancy parameter (measure of the influence of the free convection in comparison with
that of forced convection on the fluid flow) which depends on the flow configuration and the
surface heating conditions. Bulks of information are now available in literature about the

boundary layer form of natural convection flows over bodies of different shapes. The



theoretical, experimental and numerical analysis for the natural and the mixed convection
boundary layer flow about isothermal, vertical porous flat plates have been carried out widely
by many authors in view of its applications in many engineering and geographical problems.
Ramanaiah et al. [2] considered the problem of mixed convection over a horizontal plate

subjected to a temperature or surface heat flux varying as a power of x.

Schmidt [3] was apparently the first researcher who investigated experimentally the behavior
of the flow near the leading edge above a flat horizontal surface. The theoretical analysis of
the laminar, two-dimensional, steady natural convection boundary layer flow on a semi-
infinite horizontal flat plate was first considered by Stewartson [4] (later corrected by Gill et
al. [5] ). In that analysis he used the Buossinesq approximation to show how the boundars
layer analysis could be incorporated with the natural convection on rectangular plates. which

are of high plane form aspect ratio.

Rotem and Claassen [6] investigated the boundary layer equation over a semi-infinite
horizontal surface of uniform temperature and results were presented for some specific
values of Prandtl number with its limits from zero to infinity. The effect of buoyancy force
that exist in boundary layer flow, over a horizontal surface, where the surface temperature
differs from that of ambient fluid. was studied by Sparrow and Minkowycz [7]. The fice

convection above a heated and almost horizontal plate has been treated by Jones |8].

The problem of mixed convection due to a heated or cooled vertical flat plate provides one of
the most basic scenarios for heat transfer theory and thus is of considerable theoretical and
practical interest and has been extensively studied by Sparrow et al. [9], Wilks [10]. Afzal
and Banthiya [11]., Hunt and Wilks [12], Lin and Chen [13], Hussain and Afzal [14]. Merkin
ct al. [15] and many others. However. the problem of forced. free and mixed convection
flows past a heated or cooled body with porous wall is of interest in relation to the boundary
layer control on airfoil, lubrication of ceramic machine parts and food processing. Watanabe
[16] has considered the mixed convection boundary layer flow past an isothermal vertical
porous flat plate with uniform suction or injection. Satter [17] made analytical studies on the

combined forced and free convection flow in a porous medium.



A vast literature of similarity solution has appeared in the area of fluid mechanics. heat
transfer, and mass transfer, etc. as it is one of the important means for the reduction of a
number of independent variable with simplifying assumptions. It is revealed that the
similarity solution, which being attained for some suitable values of different paramcters.
might be thought of being the solution of the convective boundary-layer context either near
the leading edge or far away in the downstream. Deswita et al. [18] obtained a similarity
solution for the steady laminar free convection boundary layer flow on a horizontal plate with

variable wall temperature.

The boundary layer type of the natural convection flow, which occurs on the upper surface of
heated horizontal surface has been investigated theoretically and experimentally by many
others Rotem and Claassen [6], Pera and Gebhart [19 , 20] and Goldstein et al. [21]. It is scen
from their experiments and also from the flow visualization of Husar and Sparrow [22] that a
boundary layer starts from each edge of a plate edge, each boundary layer having its lcading
at a straight-side plate edge. The boundary layer development occurs normal to the
corresponding edge so that collisions between opposing boundary layer flows occur on the
plate surface. After collision, the fluid cheeked in the boundary layer forms a rising buovant

plume.

The solution of a system of coupled partial differential equations with boundary conditions is
often difficult and even impossible to solve with the usual classical method. Thus. it is
imperative to reduce the number of variables from the system which reached in a stage of
great extent. Similarity solution is one of the important means for the reduction of a number
of independent variables with simplifying assumptions and finally the system of partial
differential equations reduces to a set of ordinary differential equations successfully. The
study of complete similarity solutions of the unsteady laminar natural convection boundary
layer flow above a heated horizontal semi-infinite porous plate have been considered by
Hossain and Mojumder [23] and Hossain et al. [24]. The similarity solutions in the context of
mixed convection boundary layer flow of steady viscous incompressible fluid over a porous
vertical flat plate were discussed by Ishak et al. [25]. Ramanaiah and Malarvizhi [26] studicd
the similarity solutions of free, mixed and forced convection problems in a saturated porous

media.



In 1978, Johnson and Cheng [27] examined the necessary and sufficient conditions under
which similarity solutions exist for free convection boundary layers adjacent to flat plates in
porous media. The solutions obtained in their work were more general than those appearing
in the previous studies. With a parameter associated with the body shapes a similarity
solution on the natural convection flow has also been studied by Pop and Takhar [28].
Ferdows et al. [29] have been made a similarity analysis for the forced as well as free
convection boundary layer flow of an electrically conducting viscous incompressible fluid
past a semi-infinite non-conducting vertical porous plate by introducing a time dependent

suction.

Most of the above analysis were based on the Boussinesq approximation where density.
viscosity, thermal conductivity and specific heat variations are ignored except for the
necessary inclusion of the density-variation in the body force term and have been concerned
with the seeking of similarity solutions in which the surface temperature varies with the

distance from surface leading edge.

An analysis is performed by Chen et al. [30] to study the flow and heat transfer characteristic
of laminar natural convection in boundary layer flows from horizontal. inclined and vertical

plates with power law variation of the wall temperature.

In most of the above analysis the boundary layer of the natural convection flows were
considered over heated or uniformly heated horizontal vertical, horizontal or near horizontal.
semi-infinite, rectangular porous plates. The surface is impermeable to the fluid. so that there
IS no transpiration i.e.. suction or blowing velocity normal to the surface. This led 1o the

Kinematic boundary condition v, = 0.

The problem of boundary layer control has become very important factor: in actual
application it is often necessary to prevent separation. The separation of the boundary layer is
generally undesirable. since separated flow causes a great increase in the drag experienced by

the body. So it is often necessary to prevent separation in order (o reduce pressure drae

Suction (or blowing) is one of the useful means in preventing boundary layer scparation. 1he
effect of suction consists in the removal of decelerated particles from the boundary layer

before they are given a chance to cause separation. The surface is considered to be permeable
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to the fluid, so that the surface will allow a non-zero normal velocity and fluid is cither
sucked or blown through it. In doing this however. no-slip condition #, =0 at the surface

(non-moving) shall continue to remain valid.

In driving the boundary layer equation, it is anticipated that the v-component of the velocity

is small quantity of the order of magnitude O Re? | and it is assumed that the suction (or

blowing) velocity v, =0 normal to the surface has its magnitude of order (characteristic

Reynolds number) 2. The consequence of this is that outer flow is independent of v and
Y q p 7

the boundary condition at the surface is givenby y =0, u = 0. v=v (x).

For ordinary boundary layer flows of adverse pressure gradients, the boundary layer flow
will eventually separate from the surface. Separation of the flow causes many undesirable
features over the whole field: for instance if separation occurs on the surface of an airfoil. the
lift of the airfoil will decrease and the drag will enormously increase. In some problems we
wish to maintain laminar flow without separation. Various means have been proposed to

prevent the separation of boundary layer flows; suction and blowing are two of them.

Many authors have made mathematical studies on these problems, especially in the casc of
steady flow. Among them the name of Cobble [31] may be cited who obtained the conditions
under which similarity solutions exist for hydromagnetic boundary layer flow past a scmi-
infinite flat plate with or without suction. Following this, Soundalgekar and Ramanamurthy
[32] analyzed the thermal boundary layer. Then Singh [33] studied this problem for large
values of suction velocity employing asymptotic analysis in the spirit of Nanbu et al. [34].
Singh and Dikshit [35] have again adopted the asymptotic method to study the
hydromagnetic effect on the boundary layer development over a continuously moving plate.
In a similar way Bestman [36] studied the boundary layer flow past a semi infinite heated

porous plate for two component plasma.

On the other hand, engineers engaged in high speed flow are facing an important problem
regarding the cooling of the surface to avoid the structural failures as a result of frictional

heating and other factors. In these respect the possibility of using blowing at the surface is a



measure to cool the body in the high temperature fluid. Blowing of secondary fluid through
porous walls is of practical importance in film cooling of turbine blades combustion
chambers. In such applications blowing usually occurs normal to the surface and the blowed
fluid may be similar to or different from the primary fluid. In some recent applications.
however, it has been recognized that the cooling efficiency can be enhanced by vectored
injection at an angle other than 90° to the surfacer. In addition, most previous calculations
have been limited to blowing rates ranging from small to moderate. Suction or blowing
causes double effects with respect to the heat transfer. On the one hand, the temperature
profile is influenced by the changed velocity field in the boundary-layer, leading to a change
in the heat conduction at the surface. On the other hand, convective heat transfer occurs at the

surface along with the heat conduction for v, #0. A summary of flow separation and its

control can be found in Chang [37. 38].

The study of natural convection on a horizontal plate with suction and blowing is of huge
interest in many engineering applications, for instance, transpiration cooling. boundary layer
control and other diffusion operations. The effects of blowing and suction on forced or free
convection flow over vertical as well as horizontal plates were analyzed in a systematic way
by Gortler [39], Sparrow and Cess [40], Koh and Hartnett [41], Gersten and Gross [42].
Merkin [43, 44, 45], Vedanayagam et al. [46], Hasio-Tsung and Wen-Shing [47] and

Acharya et al. [48] etc.

Using the usual asymptotic approach to obtain the similar solutions of the steady natural
convection boundary layer for a non-similar flow situation on a horizontal plate with large
suction approximation has been developed by Afzal and Hussain [49]. A detailed study on
similarity solutions for free convection boundary layer flow over a permeable wall in a fluid
saturated porous media was carried out by Chaudhary ct al. [50]. They have shown that the
system depends on the power law exponent and the dimensionless surface mass transfer rate.
They also examined the range of exponent under which the solution exists. With constant
plate temperature and particular distribution of blowing rate Clarke and Riley [51] obtained a
special case of similarity solution, allowing variable fluid density. But there is still a shortage
ol accurate data for a wide range of both suction and blowing rate. Lin and Yu [52] presented

a non-similar solution for the laminar free convection flow over a semi-infinite heated
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upward-facing horizontal porous plate with suitable transpiration rate as a power-law
variation. Emphasis was given for an isothermal plate under the condition of uniform
blowing or suction. Lately, using a parameter concerned pseudo-similarity technique of time
and position coordinates, Cheng and Huang [53] studied the unsteady laminar boundary layer
flow and heat transfer in the presence and absence of heat source or sink on a continuous
moving and stretching isothermal surface with suction and blowing. In their analysis they
paid attention on the temporal developments of the hydrodynamic and thermal characteristics
after the sudden simultaneous changes in momentum and heat transfer. Recently. an analysis
is performed by Aydin and Kayato [54] for the laminar boundary layer flow over a porous
horizontal flat plate, particularly, to study the effect of uniform suction/injection on the heat
transfer. Using the constant surface temperature as thermal boundary condition they also

investigated the effect of Prandtl number on heat transfer.

Recently, Hossain and Mojumder [55] presented the similarity solution for the steady laminar
free convection boundary layer flow generated above a heated horizontal rectangular surface.
They investigated the effect of suction and blowing on fluid flow and heat transfer as well as
skin friction coefficients. They also found that suction increased skin-friction and heat

transfer coefficients whereas injection caused a decrease in both.

Hossain et al. [56] obtained a complete similarity solution of the unsteady laminar combined
free and forced convection boundary layer flow about a heated vertical porous plate in
viscous incompressible fluid and investigated the effects of several involved parameters on
the velocity and temperature fields and other flow parameters like skin friction, heat transfer
coelficients across the boundary layer. The combined free and force convective laminar fluid
motion caused by a heated (or cooled) vertical slender body moving through a viscous fluid
has not so far been widely studied. Van Dyke [57] successfully analyzed a natural convection
flow near a vertical thin needle for the case of a constant surface temperature. Kuiken [38]
has studied the axi-symmetric free convective boundary layer along an isothermal vertical

cylinder of constant thickness.

The problem of forced laminar flow over thin needles, such that the boundary layver thickness
is comparable to the local needle thickness, has been investigated by Lee [59] and Narain and

Uberoi [60]. The combined free and force convective laminar fluid flow for the steady case

8



has been studied also by Narain and Uberoi [61] for slender needles for the cases of
isothermal wall and uniform wall heat flux. Furthermore, less attention has been paid to the
corresponding unsteady problems of needle flows which may have applications in the ficld of

aeronautics, atomic power, chemical engineering and electrical engineering elc.

Recently, Hasanuzzaman et al. [62, 63] presented similarity solution of convective laminar
boundary layer flow around a vertical slender body with suction and blowing. In their
analysis, four different similarity cases have been arised (viz. Case A, Case B, Case C and
Case D). But they considered two similarity cases (Case B and Case D) out of those four
cases. In this present study. we have investigated another similarity case for the complete
similarity solution of combined convection laminar boundary layer flow around a vertical
slender body with suction and blowing. We have considered the effects of several involved
parameters on the velocity and temperature fields and other flow parameters like skin friction
and heat transfer coefficients across the boundary layer. The thermal distributions on the
outer surface of the body as well as the motion of the body itself are assumed to be unsteady.
Furthermore. throughout the investigation, the effect of suction or blowing has been taken
into consideration and we have investigated small suction or blowing velocity on these

parameters as well.

In attacking this problem the equations expressing conservation of mass, momentum and
energy will be formulated in a manner which readily admits the variation of thermodynamic
and transport properties of fluid with temperature and pressure. The governing non

dimensional boundary layer partial differential equations are simplified first based on the
Boussinesq approximation. The similarity transformations are then introduced on the basis of
detailed analysis in order to transform the simplified coupled partial differential equations
into a set of ordinary differential equations. The transformed complete similarity equations
are then solved numerically by using computer software. The flow phenomenon has been
characterized with the help of obtained flow controlling parameters such as suction

parameter, buoyancy parameter, Prandtl number and the other driving parameter.

The numerical solutions including the velocity and temperature fields are to be presented for
different selected values of the appeared dimensionless parameters. The influences of these

various parameters on the velocity and temperature profiles will be exhibited in the present

)



analysis. It may be expected that the effects of suction and blowing can play an important
role on the velocity and temperature fields. so that their effects should be taken into account

with other useful parameters associated.

Here we adopt the method of classical “separation of variables’ which is of the simplest and
most straightforward method of determining similarity solutions. This method was first
initiated by Abbott and Kline [64], (1960). In this method, a form of similarity variable is
chosen, the given PDE is transformed under the selected co-ordinate system. The dependent
variables are to be expressed in terms of the product of separable functions of the new
independent variables where each function is dependent on the single variable. Substitution
of the product from of the dependent variables into the original partial differential equation
generally leads to an equation in which no functions of single variable can be isolated on the
two sides of the equation unless certain parameters are to be specified. Usually. these
parameters can be specified quite readily and “separation of the variables™ is achieved. On
this way the separation proceeds until the one side becomes an ordinary differential equation.
This thesis is composed of Five Chapters. An introduction of basic principles ol boundary
layer theory, natural convection flows, suction and blowing phenomena with historical

review of earlier researches and background of our problem are presented in CHAPTER 1.

Basic equations governing the problem. dimensional analysis with simplifying assumptions
and similarity transformations with possible similarity cases are given in CHAPTER 11. In
CHAPTER 111, a detailed discussion of one of the four similarity cases, namely. Case A has
been given. Under the considered case, analytical approach for combined convection have
also been discussed there. The numerical solutions with the graphs for some selected values
of the appeared parameters are presented in CHAPTER IV. In CHAPTER V, the conclusions
gained from this work and brief descriptions for further works related to our present rescarch

have been discussed.



CHAPTER-II

Mathematical Formulations

2.1 Basic Equations

Let an axi-symmetric heated (or cooled) slender body of finite axial length is immersed
vertically in a viscous fluid of variable properties. The surface temperature (=7 ). the
velocity and the temperature of the undisturbed fluid (u, and 7)) close to the body surface
but outside the boundary-layer are all general functions of x and . 7y, is the radial distance
from the axis of symmetry to the surface of the body, x is the distance measured along the

axis of symmetry of the body and ¢ is the time. The physical configuration and the

coordinate system of the problem are shown in Figure 2.1.

Figure 2.1: Physical configuration and coordinate system.

The influence of body force generated by buoyancy effects on the flow field near the
surface is significant if the Froude number of such a flow field is of order unity. That is.

the non dimensional form of the buoyancy force is



T -T gL,
Zw e Sxe ~ ()] 2.1)
e (1)

where g is the gravity component in the x-direction, L. is a suitable characteristic length
and U is a suitable characteristic velocity. In attacking this problem the equations
expressing conservation of mass, momentum and energy will be formulated in a manner
which readily admits the variation of thermo-dynamic and transport properties of the fluid

with temperature and pressure.

[f u, v are the components of the velocity in the x and r directions respectively then the

equation governing the motion of the fluid as shown in Figure 2.1 may be written as

follows:
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Also p is the density, p is the pressure, ¢/ and A are the dynamic and second

coefficients of viscosity, T the temperature, & the thermal conductivity, C, the specific

L[ op) . ; < ; g
heat at constant pressure and f, =—— T? 18 the coefficient of thermal expansion ol
PANOL J5

the fluid. As usual in the boundary-layer approximation, the equations (2.2)-(2.5) arc

reduced to (on the basis of dimensional analysis in boundary-layer theory):

ép O 0 ,
- i - "y :0 (2(})
I ot Ox (oru) or (prv)

&zgx_la_%,iﬁ[#ra_“) .7)

Dt pox  pror or

5
(s 2 (2.8)
or
DT . 1 3[,4@} (2.9)
Dt pCr or or

The boundary conditions to be specified here are as follows:

(i) For a solid surface the fluid must adhere to the surface of body (i.e. the non-slip

condition of the viscous flows) and the surface must be a stream line
ie. u(x,r.t)=0 when » =0
ulx,r,t) =0, v(ix.r,t)=v, when r= I

(ii) The fluid at a large distance from the body surface must be undisturbed by the

boundary layer, i.e.

u(x,r,f)=%-’- as r —>

U, . . - .
or, u(x,o0,t) = ET . u, being in general a function of both x and .



(iii) The temperature of the fluid at the surface of the body must be equal to the body

surface temperature. Hence 7 =7, when r=0 or, r=r,
Hence H(x,r,r) = O(x,rw,r) =]

ie. 0(x,0,1)=1

as 8 =1 ie ()(x,r“,_.r)zl

(iv) The temperature at a large distance from the body surface must be equal o the

undisturbed fluid temperature 7, i.e. &(x.r,.1)=0 when r -
or, Q(x, o0, t): 0

In the non-dimensional form of the boundary-layer momentum equations (2.7) and (2.8).

the terms of order Re ™' are ignored whilst in the energy equation (2.9), terms of order

H

)

Re™'and FE (for the stress work terms) are also ignored. Here R, =—- and
u,

05 :
E= m are the Reynolds and Eckert numbers of the flow respectively. We are
;} = [

concerned with those types of boundary-layer flows where Re —oc and E<<1.
Imposing the boundary conditions at the outer edge of the boundary layer
op : .
@spg—>p,, u>u,I'>T ,p—>p, and B —0) equations (2.7)-(2.9) are now
r

transformed to:

5 ou, s ou, 5 op, 1
vy g {?—: e .\'__ e ]
© Ot < ox = ox

p=plx,) &L
oT.  oT

=, vl =0 (2.12)
ot Ox

Here subscript e’ refers to conditions in the outer or external flow. The values with the
subscript are the values to which the solutions in the boundary-layer must be matched as

the boundary-layer co-ordinate normal to the surface tends to infinity. In general

14



U, ; T , P, are functions of x and /. However, equation (2.12) has the solution
I, =constant for a given fluid element. In such follows, it will be assumed that
I, = constant throughout the flow field. By virtue of (2.6)-(2.9) and (2.10)-(2.12). the

transformed boundary-layer equations which are to be studied in this chapter are written

in the following forms:

op O c .
po—_ — Wi )+ — T :O (2.])}
= g+ (o)
Du ou ou 10 ou
—=(p—p + P — U, —=r+——| pur— 2.14)
p=={p-p.)z. p{az : 8x} rar[’” a},] (
DT 10 oT
oC .__:__(;-/(ﬁ_) (2.15)
"Dt ror\. or)
2.2. Transformations
The equations (2.13)-(2.15) take the following forms for a Boussinesq fluid:
) %)
,\i(m)-r{‘-(w)zo (2.16)
ox or
Du ou, ou, v 0 ou
—=-g B ATO+—+u —+——| r— (2.17)
Dt ot Ox ror\ or
g’i=—{u£(logﬂ?")+ i(l(}gz}?“ﬂ()+LK~a—(r@) (2.18)
Dt ox Of [ Prror\ or
«©, T o
where v =% ; Pr:; Lo T=T, =AT, , AT =T, —T; , @= L e .and T, =7 is
P k L= |

treated here as constant temperature for the ambient fluid. Since the state relations
isp= p(T), it follows that p, = p, (constant). 7' and 7, in general depend on both x
and 7. A solution of the equations (2.16)-(2.18) is now sought. these equations being valid
in the limit Re—> o0 and £ —> 0. In our present investigation we have considered only the

first order boundary- layer approximations and the higher orderd effects are i gnored.

The complexity of the above governing differential equations makes the use of

simplifying approximations desirable so that tractable solutions may be obtained. The

15



method of similarity provides a convenient and accurate procedure for computing heat
transfer, skin friction and other laminar boundary-layer characteristics. Guided by the
idea of similarity solution the independent variables (x,#,#) are changed to a new set of

variables (§,¢5 y 2') where the relations between the two sets are
£ =ix, T =, e (2.19)

Here y(x,r) is thought to be proportional to the square of the local boundary-layer
thickness. This definition of ¢ arises purely for reasons of convenience in using the axi-

symmetric from of the equations. From (2.19). we get

E:i_ﬂyri (2.20)
o o0t y 0O¢
a8 8,0 (2.21)
ox 0F y "o¢
i;i’_ a ("F 1"!]
or v o¢ o

Here suffices denote partial differentiation with respect to corresponding arguments. The
continuity equation (2.16) is identically satisfied by introducing a stream function

w(x, r, t) defined by

m:a_‘—*” (2:23)
cr

— (2.24)
Oox

=72 i o L (2.25)

Using a non-dimensional scaling factor U for the velocity component # we can write

BBl
U o¢ | U



@
or, (¢, 4, 7) -y (6.0 D)= U[ Zdp
ﬁl}

=y UF(£4,7) (say) (2.26)

@

where F(&,4, 7)= I%d{:ﬁ and @, is the value of @ on the body. That is,
¢

Ty
Sl 227
%= 200,1) '

In view of (2.21), (2.24) and (2.26) we can write

A [3~£ ]w(rf $.7)

ot 7%

_ovlgr) ¢, dwlsdr)
os Yy o

5 $. 9, 2
=% —{y UF(Ep.7)+y(.8,.7)}- ?h@{’ UF(Eg.7)+y(l.d,.7))

or,—rv=(yUF),-¢y, UF, -r,v, (2.28)

where — TV =W (£,6,,7) (2.29)

We assumed that the surface of the body is porous. thercfore v, =0 represents the

suction or blowing effects and since v = rv (x) only we take w.(&.¢,.7)# 0. In this

situation the convective operator F becomes
t

Dr ot ax or

_ 0 45 6} o (w _a__ﬂ i_l _ - "
or a¢+a¢[ ][55 }’y{aﬁJ r{(},UF) — 07U, =1y W}y

3
o¢

17



or 7" op o

o ¢ 0 6{yUF—w(§,¢o,r)}[i_£y a)_(rUFLi
o ' op

Y y 0¢
+l¢y5mi+mﬁ_
V4 op y O¢
d 8 @ il 8 (UF), &
=—-fy,—+ UF, —-—¢y.UF,— - o
or y  0¢ oc op y 09
+l¢}/§UF¢i +£”ivi_a.,
4 o¢ y 0¢
UF ;
:_a__{ﬂ r+(}/ ){_?'ﬂVw}i_{_UFw_a__ (230)
or |y i y )0¢ 0¢

At this stage the boundary conditions are simplified as

F(£0.7)= F(¢.¢.7)=0

F(£.0,7)=0, F,(&0.7)=1

6(£,0,7)=1, O, 4,,7)=1

O(£,00,7)=0

In attempting separation of variables for (&,8,7) and O(£,4,7) we write
F(¢.4.7)= L)) 0(£.9.7)=m(&,7)9(¢) 231)

Since 8(:_?,%, 7)=1, we may put without loss of generality

m(&,7)=1 and then 9 (4,)=1 (2.32)



v 0 [razrj_ vor
ror\ or r y o¢

AL
?545[ asﬁ{@é

Hence ¥, ——

o ol

JH

—
[S9]
J
(%]

S

(2.34)

(2.35)



By virtue of the above equations from (2.19) to (2.35) the momentum equation (2.17)

reduce to

~ AUF 4 V =y
Lty E;vr+(/ ) A i+UF¢i Ay ﬁ?ATQJra ¢;v e
4 ¥ y |o¢ o Jog\ y ot o¢

s, ey B

ok vy

ey M .
e 4 2—V¢ULf¢, o g
y ¥

o ( 0 {cﬁ r+(7UF)§ _ﬁva}_@_wp G J d {yurw(g )

ATO
o¢  *oE |og y J it

SO B O L B O SV 2

z —=y,—+u,——u,—y.—+—9gULS, +_UL7
or y'op c0E “ytep gy My
3 UF). fll @ 0
& (C _{9/ _’_(}’ )_— _'IMJI I l_(_____+(: r 1 @ (;VLF-’_W(" Lt W = _.U-.ﬂ AT
o7 |7 y v Jos oz )osl ;
=

+au" -—ﬁyr?ﬁ+ut_—a—fi’—ue£}ﬁ:£ _¢UL}(¢¢¢+_L; /wn

or y "o “of Cycop y Y

- (i_{ﬂ LOUF) nY, }i+UF 0 Jaé( ULT )= g B,ATO

ou, ¢ Ou ou, ¢ 0u,
+ _yr + u, c y-f
or y 0¢ o0& y © 0

2 2v
¢U1fm . UL)‘

il

2t ,ﬁag}(UL“,) —g.B,ATO

ou, ou, ou, ou, 2v A
i iy ¢}/r_ e___”eﬂyg +__¢ULf¢¢¢+_UL‘f¢@
or y 0p 05 "y o vy Z

m--—g-({..-’!f' )_{;ﬁ v, + (’VUF)J _ﬂii-'.'.'.l_"q_'({;;j;]Jr( IF, - ({ ;/ ): ~g B.ATO
y y r L T g -t

ou, ou, ou ou, 2v ~ 2v ~
f e, ¢yr—¢+u‘,—— ueﬂyg —¢ULj;W+—-ULj;¢
oty O¢ og y " 0p vy 2



0 ULf ). wv, -
or, (UL), 7. -2y + i) _nr, ULy, +U(Lf) Z (uLf,)=~g.B,a10
7 Y Y s
+ai_£ rﬁ“_e e%_ eﬁf’; €u2+2—V¢UL};w+2—VUL};w
or y = 0¢ &f y "~ 0¢ y
i 2 UL). :
o, ({L),_;;—ffy,w,f;m-(y )J ULf,, +2ULf, +ULf,(UL). f, = —g B,ATO
y 4 y
; - 4 =] B s s
+ Q{— - ;a o, + U, {;”,' - u(,fyj f—j-!- + —J—g:ﬁl_..-"z’,_;';m w2 /
or a¢ 0 y "o y v
¥ T v ¢ = :’V (},UL) ¥ erw - 18 iy o
—\UL). f, ———y . UL UL +-—— ULf,,+—ULf,(UL). f,
STALIY ULy ey, ety ety SUL)S,

¥ y 0ou, ou, ~ =
= =5 BNTG [y, 20 o +2v
UL &.Pr UL(af * ok : Joo

or,UL( L), fy =87 fop = UL f Jop + 13V il o + (UL, 1

AUy ou, ~ ~
—= g.B,ATO AP )+ 2V 20 1

e = = Pt . ey s == 1|
or, a,,_;‘01 —(¢+ (i.\}(.'n_fw —(al +d, )/.f,‘_,;,; dyfos +ay [ = a0 +ag 4 2:){( @ +as)f, - |
\ / i

[Using equation 2.39]

o, 2‘;{((5 +a,)f. N}J + {a0(¢7+a3)+ ag};% +(a +az)fﬁ?;jg

! - (2.36)
—af; —af;+a8+a,=0

and energy equation (2.18) reduces to

o Ln8)-2, 2 n9) VTL 2 (15, 202 2 (s

09 o¢
{u—(IOUAT)Jr—— log AT }(m& + LE;«[?gé-—* m9) L
0 Pyogl| J
UL), ~ ;
or, —ﬂy‘_&'ﬂ = % )"{ 19, +—r""V”' 9,
b4 ¥ 4

-{u - towar)Sogan)}9)s 12200 2 (0)

P yog
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L"I; e ,V,
oF. _ﬂﬂ’r% _uﬁ% g
¥

¥ ¥
= _{ug(mg AT)+§(10g AT)}(3)+ %;—{2‘?‘9 |

r

or,—(a, +a,) ]7195& a, 9; —(g?+i.‘—‘_'—)(:;'U g
2y

¢ o ¢ 0 2v 1’
— -2y, Z1(log AT)+[——-Z 3. —1(log AT)}S =il
~y{u £§ yha;ﬁ](og s y;v,ag}l(og )} T T

[Using equation 2.39 and multiplying by ¥ ]

2, o DR
or, - (a, +u_j)|/}9é5 by 95— +ay) ay I5=—y {u (log AT ) (log AT) } 8+ _f: [d) )8 e

or,—(a +a,) }’"9@, {a{, (n;é +a; )+ ag} 71 —¢( £)(log AT )+ (log AT), }9+2?
(6 +a)s, )

or, —(a, +a,) _7{95" {ao (g?+a3)+ a, }SJ =—y{UL ?5 (log AT):+(log AT) }8

+% {(ﬁ+c:3 )‘gﬁ}g

r

or, —(a, +a3)f.9— {aﬂ(;sﬁ +a3)+ a[,}éf (asf +a, )+ {(qﬁi +a. )'9 }

e

~J

or, 7})—‘{( +.a, ]9 }* e {(:n(g3+a3)+ uq}.% +(a, +a, )‘7'9-@ (.r + (.\/ ).9 =0 (2.
The transformed boundary conditions are
£,0)=0, fi(o)=1, 6(0)=1, 6(c)=0 (2.38)
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where
(f) V. =4,
(if) (UL ) =y.UL+ ;/(UL)_: =a, +a,

(i) =g, = &,
2y
(."v) /({{j;;)r =d,
() AUL) =aq, (2.39)

(i) 7:(UL)=q,

("""f) _égxﬁrﬂ’r =ds

(vii.") E‘Vi {(uu )_, +¥ (ue )5 } =da

ix) 7(logAT), = a,

(
(x) yUL{log .x'\?‘}‘_ =q
(

N

(xi) o T AT

Similar solutions of (2.36) and (2.37) exist only when all a’s defined in equations (2.38)
are finite and independent of ¢ and 7 . Thus, all a’s must be treated as constants. In such
cases, the equations (2.36) and (2.37) lead to a set of non-linear ordinary differential
equations (i.e. equations containing one independent variable). If . = 0, UL is treated
then as the non-dimensional characteristic velocity (e.g. maximum velocity) induced by
buoyancy effects at a particular station (x.r). On the other hand, if w, =0 without loss
of generality we may put UL = u. to simplify the outer boundary condition. This then
asserts that the velocity component u is non-dimensionalised by the external forcing
velocity. Thus the equations (2.34) give us the relations for (/L or consequently w, and y
separately. The latter are the scale factors for the velocity component # and the square of
the ordinate r. Hence the contractions of & and 7 expressed in terms of the «’s in

equations (2.38) become the conditions to transform the boundary-layer equations into

similarity equations.



Integrating (i) of (2.39), we get

¥ = a,r + B(¢) (2.40)
Again integrating (ii) of (2.39), we get

yUL =(a, +a,)¢ + A(z) (2.41)

Differentiating (2.40) with respect to & and using (vi) of (2.39) we get

s = 95{ El=or (2:42)

Similarly, differentiating (2.41) with respect to 7 and making use of conditions (ii) and

(iv) of 2.39) we get  (yUL), = dA(r)

dr
or,y(UL)r +y UL = dA(T)
dr
or,ULa, +a,UL = dA(e)
dr
an g .j_ () (2.43)
{2

As result of (2.42) and (2.43) it may be obtained that

{ (T)} {3(5)} a(a, +a,) (2.44)

Since y and UL depend solely on the choice of 4 (r) and B (&), the equation (2.44) plays a

significant role in determining the possible cases of similarity solutions.
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These possible cases are:

Case A: Both -3 A7)
dr
Case B: Both —{A4(z)}
dr
d 1
Case C: —{A(r)}=0
r

Case D: —d-{A(z')} #0

and

and

and

and

G e
i {B (f )} are constants (2.46)
dé /
f%@@ﬂio (2.47)

< (B(e))-0 | 088

d&

[t is seen that the similarity conditions (2.39) lead to four possible classes of similarity

listed in equations (2.45)-(2.48). However, in the present situation an additional condition

for similarity arises because ¢, (cquation (2.27)) must be constant also. Since r, is o

function of x only. for ¢, to be constant therefore requires that y is a function of x only.

(

Thus similarity is achieved in the present problem in those circumstances. With this

context, the various similarity cases (case A, case B, case C, case D) arised above, an

important similarity case (case A) for combined convection has been discussed in Chapter

II.
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CHAPTER III

Similarity Solution: Study of Case A

3.1 Analysis for combined convection (u‘,oo (x+xﬂ)ﬁ)

We shall now discuss in detail the restrictions on the general equations for the case A:

dA_(r) =0 and % = 0. These restrictions are illustrated in equations (2.44). In view

dt
of equations (2.41) and (2.42), the equation (2.44) can be written as
AT
“1’7() = UL(cz_1 +dy ) =0=a, =~a,. provided UL #0
ar
and
dBIE)_ Ay
dé UL

UL is a function of & only. Now we get from equation (2.40).

yUL =(a, +a, )+ A, A is constant.

Differentiating with respect to &, we obtain

(YUL), =(a, +a,),

as a, =0, we have

(}/UL): =a, (3.1)
Since UL is a function of & only, therefore y might either be a function of & or
constant. Again from (vi) of equation (2.38), we get

a, =y:UL

or, y.UL=0 ( a, =0}

or, y. =0 where, UL #0.
Integrating, we obtain

7:K1 (

(98]
(g

where, K, is a constant of integration.
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Further, we have from (v) of equation (2.38),

a, = y(UL), (3.
We get from equations (3.1) and (3.3),

y(UL), = (WUL),

(S
Lo
—

yUL\UL).
or, % = (L),
. On); _ (),
© UL yUL

Integrating, we obtain
In(UL) = In(UL)+In(K, )
or, In(yUUL) = In(K,UL)
or, UL =K, UL

Ly=K, (3.4)
Without loss of generality we may write UL =u, for combined convection flows. By
virtue of equations (3.3) — (3.4) the general conditions for similarity requirements (2.38)
yield relations between the constants (i.e. a’s). These relations are

a,=-a,, a, =0, a,,a, arbitrary,

Ty

2y

>
_w s
=g |2 PR
Loy |

y
c=—=—g B AT
G5=r g.b

= Kl gxﬁTAT |: UL = (‘929: + A)]

s =

K Ha,E+ A)
or, a; =—g B, ATK (a,& + A)™

q

a, = 6{E{(HH ), +u,(,),}

or, ag === {(UL), +UL(UL), } o UL= ch
UL I
or, a; = U%L—{UL(UL);} -‘.‘ (UL), = 0}




or, ag = ;V(UL]g

or, a, = a, { a, = y(UL)_E}

a- = y(log AT)

le.

a, = yUL{log AT}

T

=0

Kl {mg['“sULJ} [ e —aSUL}
oz g.bry g.Bry

( Since UL and y are function of & or constant only )

2. =0

]

or, ag = yUL%{log AT}

or,

or.,

or,

()

or

3

or,

or.

or,

or,

dg

{

-
o

a

=~
==

ag =

a

dg

ag

dg

- m_@l{ 1og[“’5”"“ J} { e ‘“SUL]
¢ g.Bry .8y

= yUL % Hog(—ay) +log(UL)~log g, —log B, — log(y )|

g

. yUL{—(as )t +é(UL)§}

-1
ds

(as );

= —yUL

L
+ e (UL)f

-~ +a, { a, = y(UL)g}

UL 2 ) .
- g_‘ﬁ.{.ATKf(ach+A) 2”2 +d, { a; :""g\-/jr'&TKll(azé:+“{I) l
a,

o = yULg B, ATK (a,6 + 4) a,
= gxﬂTATKIZ (azé: i A)_I

= aszL(azf + A)_! +a,

= a,{l+ K,UL(a,¢ + A) | [ y= K,}
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or, a, = a [l + K K (@6 + A){a, + 4)” [ UL = ‘—a{: A}

or, ag = a,(1+1)
or, ag =2a, and a, is arbitrary.

In view of the above relations, the general equations (2.36) and (2.37) take the following

forms in this case:

2:){(_+ a, )}%{-ﬂ }5 + {ao(;3+a3 )+ ay }?a:a +(a, + az)jﬁ_i; —az}’;z ~a4f;ﬁ +a9+a, =0
or. 2:){(&/5_ i ).}‘;{; ]tw + {un(_+u )i e }/ - f]‘ = u/1 + u”_;’-_l +l@td; =0 (3.3)
|: gy =0, ay=—ag; d;=a;

and

i [{¢+” } l & {‘70((3+a3)+ 09}9"; +(a| +G’3)‘?:95 "(a? +ax)‘ﬂ}%3 =0

or, —[ﬂa} ‘9¢]a ao(¢+a3)+a9}9 +a,/9-2a,f;9=0 (3.6)

[ a =0, a,=0, g, = 2a2}

Substituting 7 =a,f

=

n=—¢
&,
We obtain —Q_— - _a_a_g_
o¢ On o¢
19
a, on
Then equation (3.5) becomes
1 o g :
OU (a f'}—i—a ) 3 f:;r; —+{CF‘]((X|??+G3)+CIQ} 'i) :_H_:+a" fal.fr_r:;
L 7 o, 2

. 2
a’:f (24
—az[—’i] +a, _I_fr; +a.9+a,=0
= 2

@, |

2v a a,a a
L 5 3 ) Bt . 9 2 4
or. a-{?}fw +g—f’*"f tanf,, t—— = Ty T jw +ay [ ~ayf, tayfta.9+a, =0
! | j

) |
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2

2U ™ rh'
or, — :;/W G : -
a, 2K, a, 2K,

2 5 v U
Dividing by —-,
al

: 2
Auf e g | 1% | G PRI a] g _a (x[ /
nm 2K| ; i/ 2 nn 1) 2K[a1 nn ) nn - A F."
a,a asx a,a
B8 et gy T R
v v v
a bl
1 : a a, . - Ko :
Choosing —*@, =f and —“=1, finally writing —2— =R, the transformed
v v 2K,

equations of (3.5) and (3.6) are

: s U
2(??]:3’? + Rn fw )’f it Uf;m -+ Rﬂj:'}!j it .fn-.f;gr,r & ﬁﬁqq = ﬂ.f;} + f Fi—— u '9 i ﬁ O

e

!

[.. N aya, = [ a, o, o raVe g UG -‘
. | . =1, — — b, TR, == — -
l 2K, v U v v i,

ot 21+ Ry Mf g + fi |+ [+ Ry + B )+ 1, + BU- 124 £, + :J 9=0

[

2

o8, 207+ Ry ) fry + @+ 174+ Ry + F, + B)f,,, + Bl - f:)+fq+U—§.9=O G3.7)
U

e

and

2 1 1 1 : :
—lf[(a]r;} +c'.*3)—-—9,‘,} — + [ao(a:,); +a3)+c.rg]—.9u +a,a, f LL?” - 205 ﬁfﬂﬂ == {}
I Q , % a, a, a,

v a a,a a )
{T;SU +;3:—‘9,?:[ +agn, +——=9,+=29 +a,f9,-2a,f,9=0
n

or.
a, Pr | a,
2v LV
o n+R,)S, . =20, 1.8=0
o1 bra [(? 0) ] | 2 | p W3 =2a, f.
1"2(,~a—3 a :—!”—’ a, ==r,)
o, 2K, ]
Dividing by 3
a, Pr
2[(:;+R0)9,?]q e ’Pr Rl 'RS Pr+ F,8 Pr+ 2% fPr.9 LH £ Prg=0
v

T |
=
|
" = d
I
1
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’
dy, I, ay . : 2 : :
fm?] +agnf,, +—— Ton +;]W + alﬁw ~a,f,; +ayf, a3 +a,
|
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or,2(7+R,)8,, +28, +Prng +PrR9, +PrF 8 +Prpf9 —2Prff 9=0

ny
ayar, _ L B= a,a,
v v
2 s .
or,2(n+ R,)$,, + P, (i’_+ n+Ry+F,+p)8,-2Prff,9=0 (3.8)
L
The boundary conditions are 7(0) = /.(0)= 8(eo) =0, &5 (x0)=9(0)=1 (3.9)

Here the free convection velocity U, . caused by the temperature ditference (7,

connected with by the following equation:

U; =-g BAT(E+€,) (3.10)

where (g"+§u). i.e.(x+xl,). is the local characteristic length. The controlling

parameters established here are Pr. the Prandtl number of the fluid, R, . the body radius

5

parameter, ——, the square of the ratio between the free convection velocity U,

(Ostrach [65]) and the forcing velocity #, and [, the exponent of the external velocity
variation (I-fl_ oc (x+ax; ) ) The latter exponent is consequently related to the exponent of
the surface temperature variation (A?' o (w3 )7 ') For the above class of similarity
solution, the following restrictions must be satisfied:

() u, c(x+x,)

@) (T, =T, ) oc (a+ 2, )"

-8

2
ks iyt
(iii) ny o< (x--i— ,rU) 2 Ry =

2v(x+ xU)
The case [f =0 results in the outer flow moving with constant velocity around a vertical

2vR,

body which is a paraboloid of revolution with latusrectum of length and the surface

u,
temperature varies inversely as the distance along the axis measured from the stagnation
point. Thé restrictions (/)and (/i) are basically for forced flow, originally established by
Probstein and Elliott [66]. The similarity function, similarity variable, the velocity
components and the body-radius parameter (R, ) related to the equations (3.8) and (3.9)

dare
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log(UL)
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Hence u = H‘,f,, (77)
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Hence R, = Talre)

(3.15)

[t is Interesting to mention here that in the absence of buoyancy effects (e.g. U;-=0) the

similarity solution of the momentum equation given by Glauert and Lighthill [67] may be

obtained for =0 in present case with a minor change in similarity variable

{n to 2%)

3.2 Flow Parameters
The viscous drag of a body moving through a fluid is obtained from the shearing stress
distribution at the wall. This is one of the boundary-layer characteristics of interest. The

shearing stress at the wall is

ou
Ty = f— (3.16)
or r=ry
and in terms of the similarity variable.
Ou ¢
oy it a =y
or

zﬂiji{ﬁ{?UF+W@3%Jq}
y 0¢ | O¢ g

ziiiw}
4o g )
0| é
vy UL ~
Sk 7
b
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4 I
)
=, 28 1)
=uu, 22 £,0)
- a2 (f?f £,00)
= pu,n, (%%ﬁ” (0)
Hence 7, :ﬁéf—éﬁj;m(o) (3.17)

Usually, the skin friction and Reynolds number are combined to given the boundary-layer

shear stress at the wall in the form,

C,\R. =2.2R £, (0) (3.18)

where

C = &_‘T (local skin friction)

ou;
+.X
R, =———27 (local Reynolds number)

FyU,

= (local body radius parameter)
2V(x + x“)

and (x + xU) is the local characteristic length.

[t is necessary to know the heat transfer rate between the boundary-layer and the wall.
The heat transfer rate at the wall is given by Fourier’s law and is related to the non-
dimensional temperature function by

T
Cie =“K%: atr=r,

y Of

K r ol
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¥ VB

(UL),
B

$,(0)

_kw AT

V

9,(0)

Hence g, = —%9 (0) (3:19)
0

Hence the counterpart of the equation (3.17) is
\[_ ~2R, 9, ( (3.20)

Due to the non-linearity of the ordinary differential equation it is not possible to obtain
analytical solutions of the equations (3.7)—(3.8) together with the boundary conditions

(3.9). Therefore numerical solutions are obtained for specified values of the controlling

2
parameters £y, , Pr, R, [ and - ; ’

(-4

3.3 Numerical Scheme and Procedure

The set of differential equations (3.7)—~(3.8) with the boundary conditions (3.9) are solved
numerically by using computer software MATLAB. The velocity /, and temperature Y
are determined as a function of coordinate 77. The numerical results thus obtained in

terms of the similarity variables are displayed in graphs for several selected values of the

2

established parameters F,, S,
s
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CHAPTER IV

4.1 Numerical Results and Discussion

To obtain the solution of differential equations (3.7)—(3.8) with the boundary conditions
(3.9), we have adopted a numerical procedure based on computer software. The effects of
suction parameter £, driving parameter S (the ratio between the changes of local

i ¥ o b (.»" f
boundary-layer thickness with regard to position and time), the buoyancy parameter —=:-

]

u,

(the square of the ratio between the fluid velocity caused by buoyancy ecffects and
external velocity for the forced flow). the body radius parameter Ry and the Prandtl
number Pr are plotted in the Figure 4.1-4.10. To observe the effect of £, the other four

a
&

parameters /3, —; Ro and Pr are taken constants. Similarly, we observe the effect of the
u,
i
parameters 3, ——, Ro and Pr by taking the rest four parameters constant respectively.
i,

e
The effect of F, on the velocity and temperature fields are plotted in Figure 4.1 and
Figure 4.2 respectively. From Figure 4.1, it is observed that in all cases (suction ( /[, >0)
and blowing (F, <0)) the velocity is starting at zero, then velocity increases with the
increase of # near the leading edge. The maximum velocity appears at 7 ~2.7 and
finally moves towards 1.0 asymptotically. Here we see that for the case of suction
(£,>0). the velocity increases with decreasing F, but for blowing case (I, <0).
velocity increases with the increase of the magnitude of blowing. The usual stabilizing
effect of the suction parameter on the boundary layer growth is also evident from this
figure. From Figure 4.2 it is observed that for the both cases suction and blowing
temperature decreases quickly close to the leading edge and away from it temperature

decreases asymptotically and finally leads to zero with the increasing of 7. For the case

of suction (/] >0) the temperature decreases slowly with the decreasing suction. But ol
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the case of blowing (F,<0) the temperature decreases, more with decreasing of the

magnitude of blowing and finally asymptotically leads to zero for larger 7.

i)

02§ 5

2
Figure 4.1: Velocity profiles for different values of F, (with fixed values of U—f =0.5,
u

€

R, =0.1, Pr=0.71 and g =0.5).
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—Fw=0.35
——Fw=0.3
Fw=0.1
Fw=0.3
———Fw=05 i

7 8 9 10

Figure 4.2: Temperature profiles for different values of F, (with fixed values
2

of Jr = 0.5, R, =0.1, Pr=0.71 and S =0.5).

2

e

P

k

properties of the medium. Here velocity exhibits minor changes while temperature

The other controlling parameter is the Prandtl number Pr, (= ) which depends on the

exhibits significant changes with the variation of Prandtl number Pr. As it is observed
from Figure 4.3 that, the velocity is starting at zero, then velocity increases with the
increase of 7 near the leading edge. The maximum velocity appears at 7 ~2.4 and
finally moves towards 1.0 asymptotically. Velocity increases negligibly with the increase
of Pr before being 1.0 asymptotically in all cases for large value of 7. From Figure 4.4
we see that in all cases the temperature is starting from 1.0 and temperature decreases
quickly with decreasing Pr close to the leading edge and finally leads to zero smoothly

for larger 7.
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Figure 4.3: Velocity profiles for different values of Pr (with fixed values of U—i =0.3,
3

&

p=0.5, F,=0.5 and R, =0.1).
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—Pr=5.0
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u.aﬁl ~——Pr=150 |

6(n)

Figure 4.4: Temperature profiles for different values of Pr (with fixed values of

U2
u_ZF =0.5, F, =0.5, R,=0.1 and B =0.5).

The body radius parameter R, depends on the shape of the slender body. There is a
remarkable consequence of the variation of R, on the velocity and temperature fields as
are observed in Figure 4.5 and Figure 4.6. Like before, for all values of R,, velocity starts
from zero and then increases with the increase of 7 and the maximum velocity appears
when 77~ 2.4 and then finally leads to 1.0, where as the temperature starting from 1.0,
then decreases with the increasing of 7 and finally asymptotically leads to zero for larger
n. We see from Figure 4.5 that within the boundary layer, velocity highly increases with
the increase of R,, before asymptotically being 1.0 for large value of 7. From Figure 4.6
it is observed that temperature decreases sharply with the increases in R, before being

zero asymptotically for larger value of 7.
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Figure 4.5: Velocity profiles for different values of R, (with fixed values of U—EF |
u

e

F,=0.5,Pr=0.71 and B =0.5).
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Figure 4.6: Temperature profiles for different values of R, (with fixed values of

i
Qg‘-:o.s,m:o.ﬂ, F, =05 and 8 =0.5).
U

e

2
Figure 4.7 and Figure 4.8 show the effect of buoyancy parameter U—; on the velocity and

e

temperature fields respectively. We see from the Figure 4.7 that all cases the velocity is

: ; ; ; e . Ui
starting at zero and increasing asymptotically to 1.0. But with increasing —- the rate of
utf

change of velocity increases slightly. The maximum velocity appears when 7 ~ 2.6. Thus

before being asymptotically goes to 1.0 far away; velocity is higher for higher values of

2

u—; within the boundary layer. Since the energy equation is independent of the buoyancy

e

2
parameter —-, no effect of this parameter on the temperature field is observed as shown
U

e

in Figure 4.8.
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Figure 4.7: Velocity profiles for different values of ——ZF—- (with fixed values of f#=0.5,



2a 2
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08¢ 2, 2 i
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2

Figure 4.8: Temperature profiles for different values of —— (with fixed values of
u’

B=05,Pr=0.71, F, =05 and R, =0.1).

Figure 4.9 and Figure 4.10 exhibit the effects of the driving parameter 8 on the velocity

and temperature fields, respectively. The velocity and temperature fields exhibit
remarkable changes with the variation of S as observed from Figure 4.9 and Figure 4.10

respectively. From Figure 4.9 it is observed that in all cases the velocity is starting at zero

and increasing asymptotically to 1.0. But the velocity increases with increasing S and
maximum velocity appears when 7 ~2.3 for #=1.0 and then finally leads to 1.0
asymptotically for larger value of 7. Like before, temperature decreases faster with the
decreasing £ and finally leads to zero asymptotically for larger value of 7 as shown in

Figure 4.10.

45



2

U
Figure 4.9: Velocity profiles for different values of £ (with fixed values of —-=0.5,
u

-]

Pr=0.71, F, =0.5 and R, =0.1).
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Figure 4.10: Temperature profiles for different values of g (with fixed values of

i
—£=0.5,Pr=0.71, F, =0.5 and R, =0.1).
U
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CHAPTER V

Conclusions and Recommendations

By using the technique of similarity solutions, the governing boundary layer
equations for the two dimensional mixed convective laminar boundary layer flow
around a vertical slender body have been solved in this present thesis. It is
considered that the surface of the slender body is porous so that the effects of

suction and blowing are taken into account. Different similarity cases arise with the

; dA dB . e
choice of == and — either zero or not equal to zero or constants. Similarity
T

solutions for one of the cases, namely, 2—‘4:0 and i—f= 0, have been studied in this

thesis. Through out the studies very small suction or blowing value have been

considered. On the basis of findings. it is observed that:

Velocity increases with decreases of suction but for the case of blowing the velocity

increases with the increase of magnitude of blowing.

(b) Temperature decreases with decreasing suction but temperature decreases more with

(c)

decrease of the magnitude of blowing.
Velocity increases negligibly with the increase of Pr and finally the least to the value

1.0 asymptotically for larger value of 7.

(d) Temperature decreases quickly with decreasing Pr close to the leading edge and

(e)

finally leads to zero smoothly for larger 7.
Velocity increases with the increase of R, and finally leads to 1.0 asymptotically for

large 7.
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(f) Temperature decreases sharply with the increase of R, and finally approaches zero

asymptotically for large 7.

4
(g) With the increase in the buoyancy parameter

the rate of change of velocity

2

increases slightly and finally leads to 1.0 asymptotically for larger 7.

U}
(h) No effect of buoyancy parameter —g— on the temperature field is observed.

(4

(i) The velocity increases with increasing driving parameter 3 and finally leads to 1.0
asymptotically for larger value of 7.

() Temperature decreases faster with the decreasing 4 and finally leads o zcro
asymptotically for larger value of 7.

Rest of the similarity cases should be analyzed for better understanding of the
problem.
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