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Abstract 

 

 
Transportation models are of multidisciplinary fields of interest. In classical transportation 
approaches, the flow of allocation is controlled by the cost entries and/or manipulation of 
cost entries – so called Distribution Indicator (DI) or Total Opportunity Cost (TOC). But 
these DI or TOC tables are formulated by the manipulation of cost entries only. None of 
them considers demand and/or supply entry to formulate the DI/ TOC table. In this 
research we have developed Weighted Opportunity Cost (WOC) matrix, which is off 
course a new idea, for the control of the flow of allocations.  It is noted that this WOC   
matrix is formulated by the manipulation of supply and demand entries along with cost 
entries as well. In this WOC matrix, the supply and demand entries act as weighted factors. 
Now it is known that, in Least Cost Matrix method, the flow of allocations are controlled 
by the least cost entries only and we do not need to change allocation direction in sub-
sequence steps. On the other hand in Vogel’s Approximation Method, the flow of 
allocation is controlled by the DI table and this table is updated after each allocation step. 
Motivated by this idea, we have reformed the WOC matrix as Sequentially Updated 
Weighted Opportunity Cost (SUWOC) matrix. The significance difference of these two 
matrices is that, WOC matrix is invariant through all over the allocation procedures 
whereas SUWOC matrix is updated in each step of allocation procedures. Note that here 
update (/invariant) means changed (/unchanged) the weighted opportunity cost of the cells. 
Finally by incorporating this SUWOC matrix in LCM, we have developed a new approach 
to find out Initial Feasible Basic Solution of Transportation Problems.  Some experiments 
have been carried out to justify the validity and the effectiveness of the proposed SUWOC-
LCM approach. Experimental results have shown that the SUWOC-LCM approach 
outperforms. Moreover sometime this approach is able to find out optimal solution too.   
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CHPTER I 

 

 

Introduction 
 

 

1.1  Background 

 

Transportation problem is a particular class of linear programming which is associated 

with day to day activities in our life and mainly deals with logistics. It helps in solving 

problems on distribution and transportation of resources from one place to another. The 

goods are transported from a set of sources (e.g., factory) to a set of destinations (e.g., 

warehouse) to meet the specific requirements. 

 

The transportation problem arises in many fields of applications e.g. industry, 

communication network, planning, scheduling transportation and allotment etc. 

Transportation problem deals with the problem how to plan production and transportation 

in such an industry given several plants at different location and large number of customers 

of their products. The transportation problem received this name because many of its 

applications involve in determining how to optimally transport goods [Asase (2011)]. 

 

Because of its major application in solving problems which involving several products 

sources and several destinations of products, this type of problem is frequently called “The 

Transportation problem”. The classical transportation problem is referred to as special case 

of Linear Problem (LP) and its model is applied to determine an optimal solution of 

delivery available amount of satisfied demand in which the total transportation cost is 

minimized [Gupta and Hira (2000)]. 

 

 

1.2  Literature Review  

 

The first linear programming formulation of a problem that is equivalent to the general 

linear programming problem was given by Kantorovich (1939), who also proposed a 
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method for solving it. He developed it during World War II as a way to plan expenditures 

and returns so as to reduce costs to the army and increase losses incurred by the enemy. 

About the same time as Kantorovich, the Dutch-American economist Koopman (1949) 

formulated classical economic problems as linear programs. Kantorovich and Koopmans 

later shared the Nobel Prize in economics. Khachiyan (1979) devised the ellipsoid method. 

More recent, Karmarkar (1984a-1984b) developed a new method to solved LPP.  

 

The basic transportation problem was originally developed by Hitchcock (1941) and later 

discussed in details by Koopman (1949). Efficient methods of solution are derived from 

the Simplex algorithm and were developed in 1947. The transportation problem can be 

converted as a standard linear programming problem, which can be solved by the Simplex 

method. However, because of its very special mathematical structure, it was recognized 

early that the Simplex method applied to the transportation problem can be made quite 

efficient in terms of how to evaluate the necessary Simplex-method information (variable 

to enter the basis, variable to leave the basis and optimality conditions). 

 

The simplest procedure for finding an initial basic feasible solution  was  proposed  by  

Dantzig  (1951)  and  was  termed the  Northwest  Corner  rule  by  Charnes  and  Cooper 

(1954). Later Dantzig (1963) proposed the method of solving Linear LPP by Simplex 

method in 1963. Simplex algorithm was used to solve the LPP. But it was laborious. For 

this reason, researchers try, wherever possible, to simplify the way of calculations. 

Resultant of one such effort is Transportation Model.  

 

Charnes and Cooper (1954) developed the Stepping Stone Method which provides an 

alternative way of determining the simplex-method information. Dantzig (1963) used the 

Simplex method in the transportation problem as the Primal Simplex transportation 

method. An initial basic feasible solution for the transportation problem can be obtained by 

using the North West Corner (NWC) rule. 

 

Arsham et al. (1989) introduced a new algorithm for solving the transportation problem. 

The proposed method used only one operation, the Gauss Jordan pivoting method, which 

was used in Simplex method. The final table can be used for the post optimality analysis of 
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transportation problem. This algorithm is faster than Simplex, more general than Stepping 

Stone and simpler than both in solving general transportation problem. 

 

Many researchers have developed a numbers of transportation algorithms and also research 

works are ongoing for better results. Moreover for finding Initial Basic Feasible Solution 

(IBFS) much of the research works are concerned with cost matrix and manipulation of 

cost matrix. It is noted that in TP, all the optimized algorithms initially need an IBFS to 

obtain the optimal solution [Korte and Vygen (2012), Sifaleras (2013) and Bazaraa (2009)]. 

 

There are various simple heuristic methods available to get an IBFS, such as, North-West 

Corner method, Row Minimum method, Column Minima method, Least Cost Matrix 

method etc. [Taha (2003)]. Among all the simple heuristic methods, the Least Cost Matrix 

(Matrix Minima) is relatively efficient and this method considers the lowest cost cell of the 

Transportation Table (TT) for making allocation in every stage. 

 

Vogel's Approximation Method is a well-known algorithm for IBFS [Reinfeld and Vogel 

(1958)] which provides good IBFS too. In this method, author developed a Distribution 

Indicator (DI) table for the purpose of allocations. In DI table author introduced the 

penalties which are determined from the difference of smallest and next to the smallest cost 

entries. The allocation flow is done according to the DI Table. Vogel’s Approximation 

Method (VAM) provides comparatively better Initial Basic Feasible Solution. It is noted 

that, the DI table namely penalty rows and columns are updated after each allocation.  

 

After VAM method, researchers proposed several versions of the VAM method by 

modifying some tricks [Shimshak et al., (1981), Goyal (1984), Ramakrishnan (1988), 

Islam (2012), Korukoglu and Balli (2011), Amirul (2012), Hakim (2012), Kawser (2016) 

and Azad (2017)].  

 

Recently, Sharma and Bhadane (2016) presented an alternative method to North West 

Corner method by using statistical tool called Coefficient of Range (CoR). On the other 

hand, Azad et al. [Azad (2017)] at first developed TOC then they formed DI tableau for 

allocation by considering the average of TOC of cells along each row identified as Row 

Average Total Opportunity Cost (RATOC) and the average of TOC of cells along each 



4 
 

column identified as Column Average Total Opportunity Cost (CATOC).Allocations of 

costs are started in the cell along the row or column which has the highest RATOCs or 

CATOCs. 

 

As Transportation Problems (TP) is playing very important role to ensure in time 

availability of raw materials and finished goods from different sources to distinct 

destinations, many researchers are continuously research to develop better transportation 

algorithms. Most of the research works concern with the cost matrix, we mean 

manipulation of cost entries to form Distribution Indicator (DI) /or Total Opportunity Cost 

Matrix whatever be the structure of supply row and demand column. 

 

 

1.3   Goal of the Study 

 

It is noted that, all the approaches discussed above are concerned with the cost entries and 

/or the manipulation of cost entries to form DI or TOC table whatever be the structure of 

supply and demand. None of them considered supply/ demand to formulate DI or TOC in 

allocation procedures. But it might be assumed that, supply and demand play a vital role in 

the formulation of cost allocation table to obtain a better solution. 

 

As we hope, there are significant effects of demand and supply entries in DI/TOC table, we 

have tried to develop an allocation flow indicator matrix by considering demand and 

supply entries as a weight factor correspond to each cost entry. It is no doubt that, it was 

very difficult to form a significant weight factor by considering demand and supply entries. 

After finding effective weight parameter we have paid attention to formulate weighted 

based distribution indicator. 

 

Therefore, the first aim of research is to formulate a virtual weighted opportunity cost 

(WOC) table by considering supply and demand entries as a weight factor. Then 

incorporating the concept of VAM upon WOC, a virtual dynamic weighted cost 

opportunity matrix is formulated.  Finally we have developed a new sequential updated 

weighted-cost based algorithm embedded on LCM method to find IBFS of TP.   

For effectiveness and efficiency of the proposed algorithm intensive experiments have 
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been carried out. From the experimental results it may conclude that our proposed cost 

minimization based transportation algorithm is efficient and comparable to other existing 

approaches regarding primal solutions.  

 

 

1.4  Arrangement of the Thesis 

 

In Chapter I the introduction of the research works is presented. Moreover the 

background, literature review and goal of the study are discussed in this chapter. Chapter 

II presents about the preliminaries. In Chapter III, extensive investigations are carried out 

to formulate weighted opportunity cost matrix. In Chapter IV several experiments are 

performed by incorporating the WOC matrix upon LCM approach. We have developed an 

algorithm named SUWOC-LCM which is discussed in the Chapter IV. Moreover in this 

chapter we have presented some numerical instances to justify and the effectiveness of the 

proposed algorithm. The optimality of the IBFS of the approach is discussed in this chapter 

too. Finally concluding remarks about the research works are given in Chapter VI. The 

list of the references is at the end of the thesis as well. 
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CHPTER II 

 

 

Preliminaries  
 
 

2.1 Introduction 

 

In this chapter we will present some basic concepts related to the research works. Mainly 

we will focus on the transportation problem (TP). It is known that TP is a special class of 

linear programming problem, which deals with shipping commodities from source to 

destinations with certain constrains. The objective of the TP is to determine the shipping 

schedule that minimizes the total shipping cost while satisfying supply and demand limits. 

In a transportation problem, we have certain origins, which may represent factories where 

items are produced. On the other hand the produced items are supplied to a certain number 

of destinations according to their demands. This must be done in such a way as to 

maximize the profit or minimize the transportation cost. Thus we have the places of 

production as origins and the places of supply as destinations. Sometimes the origins and 

destinations are also termed as sources and sinks, respectively. 

 

 

2.2 Network of Transportation Model 

 

 

 

 
 

 

 

 

 

 

Figure.2.1 Schematic view of the Transportation Network Model 
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The general transportation problem is represented by the network in Figure 2.1.  There are 

m sources and n destinations (sinks), each represented by a node.  The arcs represent the 

routes linking the sources and the destinations. Arc (i,j) joining source i to sink j carries 

two types of information: the unit  transportation cost, cij, and the amount shipped, xij. The 

amount of supply at source i is ai and the amount of demand at sink j is bj. The objective 

of the model is to determine the unknown xij that will minimize the total transportation cost 

while satisfying all supply and demand restrictions [Taha (2003)]. 

 

 

2.3 Mathematical Model of the TP 

 

The above network model of the transportation problem can be presented as a 

mathematical model especially Linear Programming (LP) model as follows: 

 

Minimize 𝑍𝑍 = ∑ ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖𝑖𝑖𝑛𝑛
𝑖𝑖=1

𝑚𝑚
𝑖𝑖=1                                                                                        (2.1) 

Subject to 

 ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑛𝑛
𝑖𝑖=1 = 𝑎𝑎𝑖𝑖∀𝑖𝑖 =  1, 2, 3,⋯ ,𝑚𝑚                                                                       (2.2) 

              ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑚𝑚
𝑖𝑖=1 = 𝑏𝑏𝑖𝑖∀𝑗𝑗 =  1, 2, 3, . . . 𝑛𝑛                                                                                      (2.3) 

𝑥𝑥𝑖𝑖𝑖𝑖 ≥ 0; 𝑎𝑎𝑖𝑖 ≥ 0; 𝑏𝑏𝑖𝑖 ≥ 0   ∀𝑖𝑖 = 1,2,⋯ ,𝑚𝑚and𝑗𝑗 = 1,2,⋯ ,𝑛𝑛                                                  (2.4) 
where Z : Total transportation cost to be minimized, which is the objective function. 

cij: Unit transportation cost of the commodity from each source i to destination j. 

xij: Number of units of commodity sent from source i to destination j, which is called 

decision variable. 

ai: Level of supply at each source i. 

bj: Level of demand at each destination j. 

The Equations (2.2) indicate supply constraints and (2.3) indicate demand constraints. In 

brief Equations (2.2) and (2.3) are called capacity constraints whereas constraint (2.4) is 

called non-negative restrictions conditions. Note that the problem is called balanced if 

Total Supply = Total Demand. Mathematically,  

 

 ∑ 𝑎𝑎𝑖𝑖 = ∑ 𝑏𝑏𝑖𝑖𝑛𝑛
𝑖𝑖=1

𝑚𝑚
𝑖𝑖=1                                                                                                                (2.5) 
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Otherwise the problem will be unbalanced.  

Now Equation (2.1) indicates that the above TP has 𝑚𝑚𝑛𝑛 variable, Equation (2.2) have m 
constraints and Equation (2.3) have n constraints. That is the above TP has m+n constraints 
excluding the non-negativity constraints (2.4). Now for a balanced transportation problem 
we have  ∑ 𝑎𝑎𝑖𝑖𝑚𝑚

𝑖𝑖=1 = ∑ 𝑏𝑏𝑖𝑖𝑛𝑛
𝑖𝑖=1  . A consequence of this is that the problem is defined by n + m 

− 1 supply and demand variables. Since, if  𝑎𝑎𝑖𝑖, 𝑖𝑖 = 1,2,⋯ ,𝑚𝑚 and 𝑏𝑏𝑖𝑖 , 𝑗𝑗 = 1,2,⋯ ,𝑛𝑛 are 
specified, then one of  𝑎𝑎𝑖𝑖, can be found from (2.5). This means that one of the constraint 
equations is not required. Thus, a balanced transportation model has n + m − 1 independent 
constraint equations. Since the number of basic variables in a basic solution is the same as 
the number of constraints, solutions of this problem should have n + m − 1 basic variable, 
xij, (which is non-zero for non-degenerated solution) and all the remaining variables will 
be non-basic and thus have the value zero. 
 
 
2.4 Assumptions of Transportation Problem 

 

a) Only a single type of commodity is being shipped from an origin to a destination.  

b) Total supply is equal to the total demand. ∑ 𝑎𝑎𝑖𝑖𝑚𝑚
𝑖𝑖=1 = ∑ 𝑏𝑏𝑖𝑖𝑛𝑛

𝑖𝑖=1 , where both ai (supply) 

and bj (demand) are all positive integers. 

c) The unit transportation cost of the item from all the sources to destinations is 

certainly and preciously known. 

d) The objective is to minimize the total cost. 

 

 

2.5 Transportation Tableau 

 

Though the TP problem can be solved as a regular Linear Programming model but its 

special structure allows us to solve the problem more conveniently using the 

Transportation Tableau shown in the Table 2.1. In the Transportation Tableau Oi indicates 

ith source with amount of availability is ai, which is shown in the far right column. On the 

other hand Dj denotes jth destination with demand bj, which is shown in the bottom row of 

the tableau. The unit shipping cost from origin, Oi, to destination, Dj, be cij which is shown 

in the (i,j) cell of the cost matrix [cij] of the table.   
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Table 2.1 Tabular view of a Transportation Problem (TP) 

 

 

 

 

 

 

 

 

 

 

 

2.6 Some Important Definitions of Transportation Problem 

 

(a) Feasible Solution (FS):A Set of non-negative allocations 𝑥𝑥𝑖𝑖𝑖𝑖 > 0 which satisfies the 

row and columnrestrictions of the TP is known as feasible solution. 

 

(b) Basic Feasible Solution (BFS): A feasible solution to an m origin and n destination 

TP is said to be basic feasible solution if the number of positive allocations are (m+n-1). 

 
(c) The Initial Basic Feasible Solution (IBFS): If the sum of origin capacities equals the 

sum of destination requirements of a transportation problem involving m origins and n

destinations, then a feasible solution of the TP always exists. Any feasible solution 

satisfying m+n-1 of the m+n constraints is a redundant one and hence can be deleted. This 

means that a feasible solution to a TP can have at most only m+n-1 strictly positive 

component. 

 
(d) Degenerate Solution and Non- degenerate Basic Feasible Solution: 

A feasible solution to a m- origins and n- destinations problem is said to be Basic Feasible 

Solution if the number of positive allocations are (𝑚𝑚 + 𝑛𝑛 − 1).  If the number of allocations 

in basic feasible solution are less than (𝑚𝑚 + 𝑛𝑛 − 1), it is called Degenerate Basic Feasible 

Solution (DBFS) otherwise non-degenerate. That is a basic feasible solution to Equations 

(2.1 – 2.4) is called degenerate if one or more the basic variables are zero. Note that to 

 

Destinations  
Supply 

O
ri

gi
ns

 

 D1 D2 ⋯ ⋯ Dn 
O1 𝑐𝑐11 𝑐𝑐12 ⋯ ⋯ 𝑐𝑐1𝑛𝑛 𝑎𝑎1 

O1 𝑐𝑐21 𝑐𝑐22 ⋯ ⋯ 𝑐𝑐2𝑛𝑛 𝑎𝑎2 
⋮ ⋮ ⋮ ⋯ ⋯   

⋮ ⋮ ⋮ ⋯ ⋯   
Om 𝑐𝑐𝑚𝑚1 𝑐𝑐𝑚𝑚2 ⋯ ⋯ 𝑐𝑐𝑚𝑚𝑛𝑛 𝑎𝑎𝑚𝑚 

 Demand b1 b2 ⋯ ⋯ bn  
  Requirement  
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resolve degeneracy, we make use of an artificial quantity, d, which is very small. The 

quantity d is assigned to that unoccupied cell, which has the minimum transportation cost. 

Again it is noted that a non-degenerate basic feasible solution is a basic feasible solution 

with exactly m+n-1 positive xij, that is, all basic variables are positive. 

 

 

2.7 Solution Algorithm for the Transportation Problem 

 

The solution algorithm to a transportation problem can be summarized into following 

steps: 

a) Formulate the problem and set up in the matrix form: 

The formulation of transportation problem is similar to LP problem formulation. Here the 

objective function is the total transportation cost and constrains are the supply and demand 

available at each source and destination, respectively. 

b) Obtain an initial basic feasible solution: 

There are several methods exist in literature to find out Initial Basic Feasible Solution 

(IBFS) like  Least Cost Method (LCM), Vogel’s Approximation Method (VAM) etc. 

c) Find out optimal solution:   

There are also several methods exist in literature to find out optimal solution from the 

IBFS such as Modified Distribution (MODI) method and Stepping Stone Method. 

 

We have briefly presented the algorithm of LCM method, since our proposed algorithm is 

developed based on LCM method. Moreover since, in our  proposed algorithm, the 

allocation procedures is updated after each allocation like VAM method, so we have also 

briefly shown the algorithm of VAM method below.  

 

2.7.1 Least Cost Matrix (LCM) Method 

Least Cost Matrix (LCM) or Matrix minimum method is a method for computing IBFS of 

a transportation problem where the basic variables are chosen according to the minimum 

unit cost of transportation. The main steps of LCM algorithm are given below:  

Step 1. Identify the smallest cost in the cost matrix of the transportation table, and allocate 

maximum possible allocation to the corresponding cell such that the allocation will be 

minimum between the corresponding supply (row) and demand (column) units.  
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Step 2. Cross out the satisfied supply (row) or demand (column) i.e. which is minimum. 

Also update the unallocated amounts to the row or column.  

Step 3. Repeat step 1 and step 2 for the resulting reduced transportation table until all the 

requirements are satisfied.  

It is noted that whenever the minimum cost is not unique, make an arbitrary choice among 

the minima. 

 

2.7.2 Vogel’s Approximation Method (VAM) 

VAM is an improved version of the Least-Cost Matrix method that generally, but not 

always, produces better starting solutions. VAM is based upon the concept of minimizing 

opportunity (or penalty) costs. The Opportunity cost for a given supply row or demand 

column is defined as the difference between the lowest cost and next lowest cost 

alternative. The main steps involved in determining an initial solution using VAM are as 

follows: 

Step 1. Compute the difference between the minimum each row and each column cost and 

the next minimum cost corresponding to each row and each column which is called penalty 

cost. 

Step 2. Identify the row or column with the largest penalty and assign highest possible 

value to the variable having smallest shipping cost in that row or column. Suppose it is the 

cell Cij. Then allocate min (ai,bj)to this cell Cij. 

Step 3. Now if the min (ai, bj) = ai then the availability of the ith origin is exhausted and 

demand at the jth destination remains as bj – ai and the ith row is cross out. Again if min 

(ai, bj) = bj, then demand at the jth destination is fulfilled and the availability at the ith 

origin remains to be ai– bj and the jth column is cross out. 

Step 4. Compute new penalties with same procedure until one row or column is left out. 

Step 5. Repeat steps 2, 3, and 4 with the remaining table until all origins are exhausted and 

all demands are fulfilled. 

 

 

2.8 Optimality Test and Procedure for Optimal Solution of TP 

 

A feasible solution is said to be optimal if it minimizes the total transportation cost. There 

are basically two well known methods available to test the optimality as well as to find 
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Optimal solution (if the IBFS is not optimal) from the obtained IBFS of the TP. The well-

know methods are given below: 

(a) Modified Distribution Method (MODI) 

(b) Stepping Stone Method. 

Anyway here we have discussed the MODI only. The main steps of the method are given 

below: 

Steps 

1. Determine an initial basic feasible solution using any method such as Least Cost 

Method. 

2. Determine the values of dual variables, ui and vj,  using  𝑢𝑢𝑖𝑖 + 𝑣𝑣𝑖𝑖 = 𝑐𝑐𝑖𝑖𝑖𝑖 

3. Compute the opportunity cost using ∆𝑖𝑖𝑖𝑖= �𝑢𝑢𝑖𝑖 + 𝑣𝑣𝑖𝑖� − 𝑐𝑐𝑖𝑖𝑖𝑖 

4. Check the sign of each opportunity cost. 

(a) If the opportunity costs of all the unoccupied cells are either positive or 

zero, the given solution is the optimal solution. On the other hand, 

(b) If one or more unoccupied cell has negative opportunity cost, the given 

solution is not an optimal solution and further savings in transportation 

cost are possible. 

5. Select the unoccupied cell with the smallest negative opportunity cost as the cell to 

be included in the next solution. 

6. Draw a closed path or loop for the unoccupied cell selected in the previous step. 

Note that, the right angle turn in this path is permitted only at occupied cells and at 

the original unoccupied cell. 

7. Assign alternate plus and minus signs at the unoccupied cells on the corner points 

of the closed path with a plus sign at the cell being evaluated. 

8. Determine the maximum number of units that should be shipped to this unoccupied 

cell. The smallest value with a negative position on the closed path indicates the 

number of units that can be shipped to the entering cell. Now, add this quantity to 

all the cells on the corner points of the closed path marked with plus signs, and 

subtract it from those cells marked with minus signs. In this way, an occupied cell 

becomes an occupied cell. 

9. Repeat the whole procedure until an optimal solution is obtained. 
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CHAPTER III 

 

 

Formulation of Weighted Opportunity Cost Matrix 

 

 
3.1 Introduction 

 

Transportation network flow models are multidisciplinary field of interest. Here we will 

consider a simple real five example in business arena. Then the physical problem is 

formulated as a mathematical model as a Linear Programming (LP) Model. Then this LP 

will be represented as TP in transportation tableau in which we have a cost matrix along 

with supply and demand entries.  Finally, we will develop a Weighted Opportunity Cost 

(WOC) matrix which is actually be a distribution indicator matrix. 

 

 

3.2 Transportation Model of a Physical Problem 

 

It is mentioned earlier that we will consider a real life physical problem. We have 

considered the following simple Example 3.2.1. 

 

 

Example 3.2.1: A company has 5 production centers i.e. factories O1, O2, O3, O4and O5 in 

given locations with production capacities of 10, 25, 15, 20 and 30 ton (per day), 

respectively, of a certain product with which it must supply 5 warehouses, D1, D2, D3, D4 

and D5, where the demand of the warehouses are 20, 10, 5, 30 and 35 ton (per day), 

respectively, The unit costs of transportation, from factory Oi to destination (warehouse) 

Dj is shown in the  (i,j)th, cell Cij, of the cost matrix [cij] which is shown in the Table 3.1. 
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Table 3.1.The unit cost of transportation from the factories to the warehouses 

Warehouse 

Fa
ct

or
ie

s 

 D1 D2 D3 D4 D5 

O1 1 
 

2 
 

3 
 

4 
 

5 
 O2 2 

 
3 
 
 

4 
 

5 
 

6 
 O3 3 

 
4 
 

5 
 

6 
 

7 
 O4 4 

 
5 
 

6 
 

7 
 

8 
 O5 5 

 
6 
 

7 
 

8 
 

9 
  

 

3.2.1  Formulation of mathematical model 

Step 1: Key decision to be made is to find how much quantity of production from which 

factories to which warehouses is shipped so as to satisfy the constraints and minimize the 

cost. Since there are 5 factories (Origins) and 5 warehouse (Destinations), so there are 5×5 

i.e. 25 possible variables: x11,x12, x13, x14, x14, x15, x21, x22, x23, x24, x25, x31, x32,x33, x34, 

x35, x41, x42, x43, x44, x45, x51, x52, x53, x54 and x55. These variables represent the quantities 

of product to be shipped from different factories to different warehouses and can be 

represented in the form of a matrix shown in the Table 3.2 below: 

 

 Table 3.2. Amount of transportation commodity in matrix form   

Warehouse 

Fa
ct

or
ie

s 

 D1 D2 D3 D4 D5 

O1 x11 
 

x12 x13 
 

x14 
 

x15 
 O2 x21 

 
x22 

 
 

x23 
 

x24 
 

x25 
 O3 x31 x32 

 
x33 

 
x34 

 
x35 

 O4 x41 
 

x42 
 

x43 
 

x44 
 

x45 
 O5 x51 

 
x52 

 
x53 

 
x54 

 
x55 

  

 

In general, we can say that the key decision to be made is to find the quantity of units to be 

transported from each origin to each destination. Thus, if there are m origins and n 

destinations, then xij are the decision variables (quantities to be found), where i = 1, 2, 

...,m, and j = 1, 2, ..., n. 

Step 2 (set non negativity constraint): Feasible alternatives are sets of values of xij, 

where 𝑥𝑥𝑖𝑖𝑖𝑖 > 0. 



15 
 

Step 3 (set objective function): Objective is to minimize the cost of transportation i.e., 

           Minimize 𝑍𝑍 = {1𝑥𝑥11 + 2𝑥𝑥12 + 3𝑥𝑥13 + 4𝑥𝑥14 + 5𝑥𝑥15 

                                   + 2𝑥𝑥21 + 3𝑥𝑥22 + 4𝑥𝑥23 + 5𝑥𝑥24 + 6𝑥𝑥25 

                                   + 3𝑥𝑥31 + 4𝑥𝑥32 + 5𝑥𝑥33 + 6𝑥𝑥34 + 7𝑥𝑥35 

                                   + 4𝑥𝑥41 +  5𝑥𝑥42 + 6𝑥𝑥43 + 7𝑥𝑥44 + 8𝑥𝑥45 

                                   +5𝑥𝑥51 + 6𝑥𝑥52 + 7𝑥𝑥53 + 8𝑥𝑥54 + 9𝑥𝑥55 } 

In general, we can say that if cij is the unit cost of shipping from ith source to jth 

destination, the objective is  

Minimize 𝑍𝑍 = ∑ ∑ 𝑐𝑐𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖𝑛𝑛
𝑖𝑖=1

𝑚𝑚
𝑖𝑖=1  

Step 4 (set capacity constraints): Constraints are  

(i) According to the  availability or supply: 

𝑥𝑥11 + 𝑥𝑥12 + 𝑥𝑥13 + 𝑥𝑥14 + 𝑥𝑥15 = 10           (for factory 1) 

𝑥𝑥21 + 𝑥𝑥22 + 𝑥𝑥23 + 𝑥𝑥24 + 𝑥𝑥25 = 25          (for factory 2) 

𝑥𝑥31 + 𝑥𝑥32 + 𝑥𝑥33 + 𝑥𝑥34 + 𝑥𝑥35 = 15            (for factory 3) 

𝑥𝑥41 + 𝑥𝑥42 + 𝑥𝑥43 + 𝑥𝑥44 + 𝑥𝑥45 = 20           (for factory 4) 

𝑥𝑥51 + 𝑥𝑥52 + 𝑥𝑥53 + 𝑥𝑥54 + 𝑥𝑥55 = 30          (for factory 5) 

Thus in all, there are 5 constraints (equal to the number of factories). 

 In general, there will be m constraints, if number of origins is m, with n number of 

destinations, which can be expressed as 

 ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑛𝑛
𝑖𝑖=1 = 𝑎𝑎𝑖𝑖,        𝑖𝑖 = 1, 2, 3, … ,𝑚𝑚. 

(ii)  According to the requirement or demand: 

𝑥𝑥11 + 𝑥𝑥21 + 𝑥𝑥31 + 𝑥𝑥41 + 𝑥𝑥51 = 20           (for warehouse 1) 

𝑥𝑥12 + 𝑥𝑥22 + 𝑥𝑥32 + 𝑥𝑥42 + 𝑥𝑥52 = 10           (for warehouse 2) 

𝑥𝑥13 + 𝑥𝑥23 + 𝑥𝑥33 + 𝑥𝑥43 + 𝑥𝑥53 = 5               (for warehouse 3) 

𝑥𝑥14 +  𝑥𝑥24 + 𝑥𝑥34 + 𝑥𝑥44 + 𝑥𝑥54 = 30            (for warehouse 4) 

𝑥𝑥15 + 𝑥𝑥25 + 𝑥𝑥35 + 𝑥𝑥45 + 𝑥𝑥55 = 35           (for warehouse 5) 

 

In general, there will be n constraints, if number of destinations is n, with m number of 

origins, which can be expressed as 

 ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑚𝑚
𝑖𝑖=1 = 𝑏𝑏𝑖𝑖,        𝑗𝑗 = 1, 2, 3, … , 𝑛𝑛. 

Thus we have found that the given situation involves (5×5 = 25) variables and (5 + 5 = 10) 

constraints. In general, such a situation will involve (m×n) variables and (m+n) 
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constraints. 

Step 5 (Balanced TP): It is observed that total availability of factories (supply) is 

 ∑ 𝑎𝑎𝑖𝑖5
𝑖𝑖=1 = 100, (10+25+15+20+30),  

and total capacity of warehouse (demand) is 

∑ 𝑏𝑏𝑖𝑖5
𝑖𝑖=1 = 100,(20+10+5+30+35). 

i.e.∑ 𝑎𝑎𝑖𝑖5
𝑖𝑖=1 = ∑ 𝑏𝑏𝑖𝑖5

𝑖𝑖=1 , the problem is balanced TP.  

In general, if number of origins is m and number of destinations is n, then for balanced 

problem 

            ∑ 𝑎𝑎𝑖𝑖𝑚𝑚
𝑖𝑖=1 = ∑ 𝑏𝑏𝑖𝑖𝑛𝑛

𝑖𝑖=1 . 

Since, in general, the transportation model is balanced, so one of these constraints must be 

redundant. Thus, the model has m + n -1 independent constraint equations, which means 

that the starting basic feasible solution consists of m + n -1 basic variables. It is observed 

that in this model, the objective function and the constraints are linear functions. The 

following points may be noted in a transportation model: 

a) All supply as well as demand constraints are of equality type. 

b) They are expressed in terms of only one kind of unit. 

c) Each variable occurs only once in the supply constraints and only once in the 

demand constraints. 

d) Each variable in the constraints has unit coefficient only. 

Therefore, the transportation model is a special case of general L.P model where in the 

above four conditions hold good and can be solved by a special technique called the 

transportation technique (namely Transportation tableau) which is easier and shorter than 

the other technique. 

 

3.2.2 Transportation model (Transportation Tableau) 

The above mathematical LP model of the given physical problem can be reformed as a 

Transportation Tableau so that we can solve the problem by any transportation algorithm. 

The transportation tableau of the given problem is displayed in the Table 3.3.  
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Table 3.3. A transportation Table of the given problem 
 Destinations 

O
rig

in
s 

 D1 D2 D3 D4 D5 Supply 

O1 1 
 

2 
 

3 
 

4 
 

5 
 

10 

O2 2 
 

3 
 
 

4 
 

5 
 

6 
 

25 

O3 3 
 

4 
 

5 
 

6 
 

7 
 

15 

O4 4 
 

5 
 

6 
 

7 
 

8 
 

20 

O5 5 
 

6 
 

7 
 

8 
 

9 
 

30 

 Demand 20 10 5 30 35 Total 100 
 

After formulation of transportation tableau we have to check whether  ∑ 𝑎𝑎𝑖𝑖𝑚𝑚
𝑖𝑖=1 = ∑ 𝑏𝑏𝑖𝑖𝑛𝑛

𝑖𝑖=1  is 

true or not. If yes, the problem is said to be a balanced or self contained or standard 

problem. If not, a dummy origin or destination (as the case may be) is added to balance the 

supply and demand.  

 

 

3.3  Formulation of Weighted Opportunity Cost Matrix 

 

In classical transportation approaches, like North-West Corner Rule, Least Cost Matrix 

(LCM) method etc, the flow of allocation is controlled by the cost entries only; and/or 

manipulation of cost entries – so called Distribution Indicator (DI) such as VAM method or 

Total Opportunity Cost (TOC) like modified VAM method. But these DI tables are formed 

by the manipulation of cost entries only. None of them considers demand and/or supply 

entry to formulate the DI/ TOC table. We have a new idea (i.e. incorporating demand 

/supply) for the control of the flow of allocations which is called Weighted Opportunity 

Cost (WOC) matrix.  It is noted that, this weighted opportunity cost matrix is formulated 

by the manipulation of supply and demand entries along with cost entries. In this WOC 

matrix, the supply and demand entries act as weighted factors on the WOC matrix. 

 

3.3.1  Finding cell weight 

At first we will find out the maximum possible allocation of any cell Cij where 

transportation cost is cij (unit cost from origin i to destination j). Since the availability of 

the origin i is ai (units) and the demand at destination j is bj (units). So the maximum 
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possible allocation at cell Cij is obviously min (ai, bj). Now since the maximum possible 

ability of allocation of each cell Cij is min (ai, bj), so the total possible maximum 

allocation of all cells be ∑ ∑ min(𝑎𝑎𝑖𝑖𝑛𝑛
𝑖𝑖=1

𝑚𝑚
𝑖𝑖=1 , 𝑏𝑏𝑖𝑖). Therefore for each cell Cij, its weight 

factor is:  

 𝑤𝑤𝑖𝑖𝑖𝑖 = min�𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖�/∑ ∑ min�𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖�𝑛𝑛
𝑖𝑖=1

𝑚𝑚
𝑖𝑖=                                                        (3.1) 

So that ∑ ∑ 𝑤𝑤𝑖𝑖𝑖𝑖 = 1𝑛𝑛
𝑖𝑖=1

𝑚𝑚
𝑖𝑖=1 . But since the factor “1/∑ ∑ min�𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖�𝑛𝑛

𝑖𝑖=1
𝑚𝑚
𝑖𝑖= ” is common to 

𝑤𝑤𝑖𝑖𝑖𝑖∀ 𝑖𝑖, 𝑗𝑗, so we might ignore this factor. Therefore the weight factor at cell Cij be 

 𝑤𝑤𝑖𝑖𝑖𝑖 = min�𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖�                                                                                                 (3.2) 

It is noted that this reduces a significant amount of computational cost. 
 

3.3.2  Finding appropriate weighted opportunity cost entries 

After successful formulation of cell weight, out next task is to formulation of weighted 

opportunity cost matrix. But we have a problem – since cell with lower cost has preference 

for allocation, on the other hand the cell with larger weight has preference for allocation. 

So we cannot simply multiply weight to cell cost to find meaning full elements of weighted 

cost matrix.  To overcome this difficulty and for the formulation of meaningful weighted 

cost matrix, we should transform one of the two so that the multiplication of the two will 

be meaningful. This can be done by inversing the cost elements. Therefore the virtual 

weighted opportunity cost corresponding cell cost cij be 
w𝑐𝑐𝑖𝑖𝑖𝑖 =  1

𝑐𝑐𝑖𝑖𝑖𝑖
× min �𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖�                                                                                                   (3.3) 

where w𝑐𝑐𝑖𝑖𝑖𝑖  and cij denote weighted virtual  cell cost and actual value of cost at the cell cij 

respectively. 

But one problem again takes place. What happen if cell cost is zero? So to prevail over this 

difficulty we need some more special attentions. We can overcome this shortcoming by 

considering zero costs and costs which is greater than zero but less than one.  So if there 

exist any cell whose cost entry is zero, then we can formulate the weighted cost to the cell 

Cpq as follows:   

i. If �𝑐𝑐𝑖𝑖𝑖𝑖: 0 < 𝑐𝑐𝑖𝑖𝑖𝑖 < 1 ∀𝑖𝑖, 𝑗𝑗  � ≠ Φ (i.e. null set), then set w𝑐𝑐𝑝𝑝𝑝𝑝 = 𝑀𝑀 × min�𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖� 

where  𝑀𝑀 = max  �𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑖𝑖∀𝑖𝑖, 𝑗𝑗� /[min �𝑐𝑐𝑖𝑖𝑖𝑖: 0 < 𝑐𝑐𝑖𝑖𝑖𝑖 < 1 ∀𝑖𝑖, 𝑗𝑗�]. 

ii. Else if �𝑐𝑐𝑖𝑖𝑖𝑖: 0 < 𝑐𝑐𝑖𝑖𝑖𝑖 < 1 ∀𝑖𝑖, 𝑗𝑗� = Φ , set  w𝑐𝑐𝑝𝑝𝑝𝑝 = 𝑁𝑁 × min�𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖� 

where 𝑁𝑁 = max �𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑖𝑖∀𝑖𝑖, 𝑗𝑗� 
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3.3.3 Algorithm of weighted opportunity cost matrix 

Now we are able to overcome all the shortcomings to formulate the weighted cost.   

Therefore the algorithm of Weighted Cost Matrix (WOC) [w𝑐𝑐𝑝𝑝𝑝𝑝] is as follows:  

(a) If 𝑐𝑐𝑝𝑝𝑝𝑝 = 0 and  �𝑐𝑐𝑖𝑖𝑖𝑖: 0 < 𝑐𝑐𝑖𝑖𝑖𝑖 < 1 ∀𝑖𝑖, 𝑗𝑗  � ≠ Φ (i.e. null set), then set w𝑐𝑐𝑝𝑝𝑝𝑝 = 𝑀𝑀 ×

min�𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖� 

where  𝑀𝑀 = max  �𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑖𝑖∀𝑖𝑖, 𝑗𝑗� /[min �𝑐𝑐𝑖𝑖𝑖𝑖: 0 < 𝑐𝑐𝑖𝑖𝑖𝑖 < 1 ∀𝑖𝑖, 𝑗𝑗�]. 

(b) Else if 𝑐𝑐𝑝𝑝𝑝𝑝 = 0   and �𝑐𝑐𝑖𝑖𝑖𝑖: 0 < 𝑐𝑐𝑖𝑖𝑖𝑖 < 1 ∀𝑖𝑖, 𝑗𝑗� = Φ , set  w𝑐𝑐𝑝𝑝𝑝𝑝 = 𝑁𝑁 × min�𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖� 

where 𝑁𝑁 = max  �𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑖𝑖∀𝑖𝑖, 𝑗𝑗� 

(c) Else if 𝑐𝑐𝑝𝑝𝑝𝑝 > 0 ∀𝑖𝑖, 𝑗𝑗  then set  w𝑐𝑐𝑝𝑝𝑝𝑝=   1
𝑐𝑐𝑝𝑝𝑝𝑝

× min (𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖) 

3.4  Numerical Illustration  

 

For numerical illustration we consider the above Example 3.1 whose cost matrix along 

with its supply and demand entries is given in the Table 3.3. But for the better visualization 

we again copy it here – which is shown at (a) of the Table 3.4. It is observed that in this 

Example 3.1, all the cost entries are greater than zero i.e. 𝑐𝑐𝑖𝑖𝑖𝑖 > 0, so the algorithm executes 

only the third case of the WOC algorithm (section 3.3.3). Formally  

(c) Else if 𝑐𝑐𝑖𝑖𝑖𝑖 > 0 ∀𝑖𝑖, 𝑗𝑗  then set w𝑐𝑐𝑖𝑖𝑖𝑖=   1
𝑐𝑐𝑖𝑖𝑖𝑖

× min (𝑎𝑎𝑖𝑖,𝑏𝑏𝑖𝑖) 

So, for the cell  𝑐𝑐11 > 0, the weighted opportunity cost  

w𝑐𝑐11=   1
𝑐𝑐11

× min(𝑎𝑎1,𝑏𝑏1) = �1
1
� × min(10, 20) = 10/1 

 

Table 3.4.Transportation Tableau and corresponding WOC Tableau 

 

 

 

 

 

 

 

 

 

 (a)Transportation Tableau  
 D1 D2 D3 D4 D5 S 

O1 1 
 

2 
 

3 
 

4 
 

5 
 

10 

O2 2 
 

3 
 
 

4 
 

5 
 

6 
 

25 

O3 3 
 

4 
 

5 
 

6 
 

7 
 

15 

O4 4 
 

5 
 

6 
 

7 
 

8 
 

20 

O5 5 
 

6 
 

7 
 

8 
 

9 
 

30 

D 20 10 5 30 35  

 

 (b)WOC  Tableau 
 D1 D2 D3 D4 D5 S 

O1 10/1 
 

10/2 
 

5/3 
 

10/4 
 

10/5 
 

10 

O2 20/2 
 

10/3 
 
 

5/4 
 

25/5 
 

25/6 
 

25 

O3 15/3 
 

10/4 
 

5/5 
 

15/6 
 

15/7 
 

15 

O4 20/4 
 

10/5 
 

5/6 
 

20/7 
 

20/8 
 

20 

O5 20/5 
 

10/6 
 

5/7 
 

30/8 
 

30/9 
 

30 

D 20 10 5 30 35  
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Similarly we can find out all the weighted opportunity cost according to the algorithm of 

WOC. The final WOC Tableau corresponding to the Transportation Tableau 3.4(a) is 

shown in 3.4(b). 

 

In the Example 3.1, all the cost entries are greater than zero, so we have considered another 

Example 3.2 whose transportation tableau is shown in the Table 3.5. 

 

Example 3.2: Cost of transportation from the factories to the warehouses, demand and 

supply are shown in the Table 3.5. 

 

Table 3.5 Cost of transportation from the factories to the warehouses 
 D1 D2 D3 D4 Supply 

O1 0 
 

0 
 

4 
 

5 
 

20 

O2 1 
 

4 
 
 

2 
 

15 
 

25 

O3 3 
 

2 
 

1 
 

4 
 

10 

O4 4 
 

5 
 

6 
 

3 
 

10 

Demand 5 10 30 20 
 

It is observed in the Table that there are two entries whose values are zero i.e. 𝑐𝑐11 = 𝑐𝑐12 =

0. Moreover, we observed in the transportation tableau 3.5 that there is no any cell cost 

which lies between zero and one. So for finding out weighted opportunity cost for cells C11 

and C12 we need case (b) of the WOC algorithm. Formally 

(b)   Else if  �𝑐𝑐𝑖𝑖𝑖𝑖: 0 < 𝑐𝑐𝑖𝑖𝑖𝑖 < 1 ∀𝑖𝑖, 𝑗𝑗� = Φ , set w𝑐𝑐𝑝𝑝𝑝𝑝 = 𝑁𝑁 × min�𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖� 

where 𝑁𝑁 = max  �𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑖𝑖∀𝑖𝑖, 𝑗𝑗� 

On the other hand except cells C11 and C12, all other cell costs are greater than zero. 

Therefore in these situations we need case (c) of the WOC algorithm.  Formally  

(c) Else if 𝑐𝑐𝑖𝑖𝑖𝑖 > 0 ∀𝑖𝑖, 𝑗𝑗  then set w𝑐𝑐𝑝𝑝𝑝𝑝=   1
𝑐𝑐𝑖𝑖𝑖𝑖

× min (𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖) 

 

Now for find out weighted cost of the cells whose cost entries are zero, we need to find out 

the value 𝑁𝑁 = max  �𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑖𝑖∀𝑖𝑖, 𝑗𝑗�. It is observed that N = 30. Again for the cell C11, the min 

{supply, demand} is 5. Therefore, the weighted cost for the cell C11 is w𝑐𝑐11 = 30 × 5 =

150. Similarly we can able to find out well weighted cost entries. The complete WOC is 
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displayed in the table 3.6. 

Table 3.6. The WOC table for the Transportation tableau (Table 3.5) of Example 3.2 
 D1 D2 D3 D4 Supply 

O1 30×5=150 
 

30×10=300 
 

20/4 
 

20/5 
 

20 

O2 5/1 
 

10/4 
 
 

25/2 
 

20/15 
 

25 

O3 5/3 
 

10/2 
 

10/1 
 

10/4 
 

10 

O4 5/4 
 

10/5 
 

10/6 
 

10/3 
 

10 

Demand 5 10 30 20 
 

It is observed in the table 3.6 that though both the cell C11 and C12 have zero transportation 

cost but according to WOC for allocation procedure the cell  C12 prefers first  as its weight 

factor is larger than that of C11 i.e. w𝑐𝑐12(= 300) > P

w𝑐𝑐11(= 150). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



22 
 

 

CHAPTER IV 

 

 

Proposed Algorithm  

 

 

4.1 Introduction 

 

In the previous chapter we have successfully developed weighted opportunity cost (WOC) 

matrix by incorporating supply and demand as weight factor. Now we need to solve the 

transportation problem (TP) by applying this concept. In order to develop an algorithm by 

incorporating WOC matrix, we need a base algorithm which is able to solve the 

transportation problem (TP).   

 

 

4.2 Proposed Algorithm of SUWOC-LCM  

 

It is known that Least Cost Matrix (LCM) is very simple and effective to find out IBFS of 

TP. In LCM, the allocation flows are directly controlled by cost matrix – least cost prefers 

first over larger costs for allocation. In LCM, there is no any special Distribution Indicator 

(DI), rather than cost matrix, which forces the direction of flow of allocation. On the other 

hand VAM’s method, which is more efficient to find out IBFS, has DI for control the flow 

of allocations. As we mentioned earlier that it’s DI is formulated by the manipulation of 

only cost entries. Moreover, it has one more significant feature – the DI table is updated 

after each allocation steps. It is noted that we have developed the WOC matrix by 

incorporating supply/demand entries as weighted factor. But we know after each allocation 

the amount of demand /supply is changed. So the weighted factor should be changed. By 

exploiting these emerging ideas, we have developed here a Sequentially Updated Weighted 

Opportunity Cost (SUWOC) matrix. Finally embedded this SUWOC upon LCM 

algorithm, here we have developed a modified algorithm named SUWOC-LCM approach 

for finding IBFS of TP. 

In the proposed SUWOC-LCM, the flow of allocation is controlled by the SUWOC matrix 



23 
 

rather than cost matrix such that the cell with larger weight factor is preferred first for 

allocation. Moreover after each step of allocation procedures, SUWOC matrix may be 

changed and updated according to the present status of demand /supply entries. The 

algorithm of SUWOC-LCM is given below: 

 

Alg. SUWOC-LCM() 

Step 1 (Input): read cost matrix [cij], supply [ai ] and demand [bj ] 

Step 2 (Find Allocation Units): find possible maximum allocation units of each cell [cij]: 

min (ai, bj). 

Step 3 (Find Weighted Opportunity Cost of each Cell w𝑐𝑐𝑖𝑖𝑖𝑖):  

(i) If𝑐𝑐𝑖𝑖𝑖𝑖 > 0,  set  w𝑐𝑐𝑖𝑖𝑖𝑖=   1
𝑐𝑐𝑖𝑖𝑖𝑖

× min (𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖) 

(ii) else if 𝑐𝑐𝑖𝑖𝑖𝑖 = 0 and �𝑐𝑐𝑝𝑝𝑝𝑝: 0 < 𝑐𝑐𝑝𝑝𝑝𝑝 < 1 ∀𝑝𝑝, 𝑞𝑞  � ≠ Φ [null set] then set 
w𝑐𝑐𝑖𝑖𝑖𝑖 = 𝑀𝑀 × min�𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖� 

where 𝑀𝑀 = max�𝑎𝑎𝑝𝑝 , 𝑏𝑏𝑝𝑝∀𝑝𝑝, 𝑞𝑞� /[min�𝑐𝑐𝑝𝑝𝑝𝑝: 0 < 𝑐𝑐𝑝𝑝𝑝𝑝 < 1 ∀𝑝𝑝, 𝑞𝑞�]. 

(iii) else if 𝑐𝑐𝑖𝑖𝑖𝑖 = 0 and {𝑐𝑐𝑝𝑝𝑝𝑝: 0 < 𝑐𝑐𝑝𝑝𝑝𝑝 < 1 ∀𝑝𝑝, 𝑞𝑞  } = Φ ,  then set 
w𝑐𝑐𝑖𝑖𝑖𝑖=𝑁𝑁 × min�𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖� where 𝑁𝑁 = max�𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑖𝑖∀𝑖𝑖, 𝑗𝑗� 

Step 4 (Formulation of WOC matrix i.e. [w𝑐𝑐𝑖𝑖𝑖𝑖]: Do Step 2 and Step 3 for each i and j 

until the WOC matrix i.e.[w𝑐𝑐𝑖𝑖𝑖𝑖]is formed. 

Step 5 (Allocation procedure): 

Allocate amount of min (ai, bj) at cell Cij s.t. w𝑐𝑐𝑖𝑖𝑖𝑖 = max{ w𝑐𝑐𝑝𝑝𝑝𝑝;  ∀ 𝑝𝑝, 𝑞𝑞}  

Step 6 (Updating transportation tableau and WOC):  

(i) If 𝑎𝑎𝑖𝑖 = min�𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖�then set 𝑎𝑎𝑖𝑖 = 0 and cross out ciq and  w𝑐𝑐𝑖𝑖𝑝𝑝∀ 𝑞𝑞 and then  

(a) update demand 𝑏𝑏𝑖𝑖′ =  �𝑏𝑏𝑖𝑖 − 𝑎𝑎𝑖𝑖� ; 

(b) update jth column of WOC matrix [ w𝑐𝑐𝑖𝑖𝑖𝑖] s.t. 
         w𝑐𝑐𝑝𝑝𝑖𝑖′ = P

w𝑐𝑐𝑝𝑝𝑖𝑖 × min�𝑎𝑎𝑝𝑝,  𝑏𝑏𝑖𝑖′� / min�𝑎𝑎𝑝𝑝,𝑏𝑏𝑖𝑖�   ∀𝑝𝑝 

(ii) Else set 𝑏𝑏𝑖𝑖 = 0 and cross out cpj and  w𝑐𝑐𝑝𝑝𝑖𝑖∀ 𝑝𝑝 and then  

(a) update supply 𝑎𝑎𝑖𝑖′ =  �𝑏𝑏𝑖𝑖 − 𝑎𝑎𝑖𝑖�; 

(b) update ith row of WOC matrix [ w𝑐𝑐𝑖𝑖𝑖𝑖] s.t. 
        w𝑐𝑐𝑖𝑖𝑝𝑝′ = P

w𝑐𝑐𝑖𝑖𝑝𝑝 × min�𝑎𝑎𝑖𝑖′,  𝑏𝑏𝑝𝑝� / min�𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑝𝑝�   ∀𝑞𝑞 

Step 7 (Termination condition): Repeated the Step 5and Step 6unless termination 
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condition meets i.e. 𝑎𝑎𝑖𝑖 = 0 ∀ 𝑖𝑖 or  𝑏𝑏𝑖𝑖 = 0 ∀ 𝑗𝑗 

[i.e. Continuing the allocation procedures until possible all allocations will be completed]. 

 

4.3 Experiments and Discussions 

 

To justify the effectiveness and to examine the validity of the proposed algorithm we will 

consider the previous typical Example. 3.1. For better visualization we would like to 

display it again, mainly the Transportation tableau which is shown in the Table 4.1. 

 

Table 4.1 Transportation tableau of Example 3.1 
 D1 D2 D3 D4 D5 Supply 

O1 1 
 

2 
 

3 
 

4 
 

5 
 

10 

O2 2 
 

3 
 
 

4 
 

5 
 

6 
 

25 

O3 3 
 

4 
 

5 
 

6 
 

7 
 

15 

O4 4 
 

5 
 

6 
 

7 
 

8 
 

20 

O5 5 
 

6 
 

7 
 

8 
 

9 
 

30 

Demand 20 10 5 30 35 
 

Solution: Since the WOC matrix of the Example 3.1 is already formed in the previous 

Chapter III, here we just copy it and shown in the Table 4.2. Note that in this problem all 

the cost entries are greater than zero i.e. 𝑐𝑐𝑖𝑖𝑖𝑖 > 0, so for initial formulation of WOC matrix 

we need only the formula:        w𝑐𝑐𝑖𝑖𝑖𝑖 =   1
𝑐𝑐𝑖𝑖𝑖𝑖

×  min (𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖) 

 

Table 4.2 Initial Weighted Opportunity Cost (WOC) Matrix  
 D1 D2 D3 D4 D5   Supply 

O1 10/1 
 

10/2 
 

5/3 
 

10/4 
 

10/5 
 

10 
O2 20/2 

 
10/3 

 
 

5/4 
 

25/5 
 

25/6 
 

25 
O3 15/3 

 
10/4 

 
5/5 

 
15/6 

 
15/7 

 
15 

O4 20/4 
 

10/5 
 

5/6 
 

20/7 
 

20/8 
 

20 
O5 20/5 

 
10/6 

 
5/7 

 
30/8 

 
30/9 

 
30 

Demand 20 10 5 30 35 
 

For hand calculation, we have now incorporated this WOC matrix into the corresponding 

Transportation Tableau (TT). The schematic view of the incorporated WOC matrix into TT 
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is shown in the Table 4.3. In this table each weighted opportunity cost is given to the upper 

left corner of each corresponding cell whereas each actual cost is given to the upper right 

corner of each corresponding cell. 

 

Table 4.3. The schematic view of WOC Matrix and TT of a TP 
 D1 D2 D3 D4 D5 Supply 

O1 10/1   1 
 

10/2   2 
 

5/3    3 
 

10/4     4 
 

10/5    5 
 

10 

O2 20/2   2 
 

10/3   3 
 
 

5/4    4 
 

25/5     5 
 

25/6    6 
 

25 

O3 15/3   3 
 

10/4   4 
 

5/5    5 
 

15/6     6 
 

15/7    7 
 

15 

O4 20/4   4 
 

10/5   5 
 

5/6    6 
 

20/7     7 
 

20/8    8 
 

20 

O5 20/5   5 
 

10/6   6 
 

5/7    7 
 

30/8     8 
 

30/9    9 
 

30 

Demand 20 10 5 30 35 
 

Now we will allocate to each cell according to the SUWOC-LCM approach. For better 

understanding we want to discuss the allocation procedures step by step as below:   

 

Table 4.4 After 1st Step : the  SUWOC matrix and TT of the TP 
 D1 D2 D3 D4 D5   Supply 

O1 10/1    1    
× 

10/2         2              
 

5/3     3  
 

10/4          4 
 

10/5          5 
 

10 

O2 20/2    2           
20 

10/3,5/3   3     
  

              

5/4     4 
 

25/5,5/5     5   
 

25/6,5/6     6 
 

25 , 5 

O3 15/3    3        
× 

10/4        4      
 

5/5     5 
 

15/6          6 
 

15/7          7 
 

15 

O4 20/4    4   
× 

10/5        5  
 

5/6     6  
 

20/7          7   
 

20/8          8 
 

20 

O5 20/5    5    
× 

10/6        6        
 

5/7     7 
 

30/8          8 
 

30/9    9 
   

30 

Demand 20 10 5 30 35 
 

1st Step: It is observed in the Table 4.3 that there are two equal largest weighted 

opportunity cost cells namely w𝑐𝑐11 = w𝑐𝑐21 = 10 , though their corresponding cell cost are 

not identical namely 𝑐𝑐11 = 1 and 𝑐𝑐21 = 2  . Now we have randomly selected one of the 

two cells, say cell C21.  Then according to the algorithm we have allocated amount of 

min(𝑎𝑎2,𝑏𝑏1) = min (25, 20) = 20 to this cell, C21. Therefore we have 𝑥𝑥21 = 20. Now we 

have to update relevant issues.  Here 𝑏𝑏1(= 20) < 𝑎𝑎2(= 25), therefore the demand of 
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destinations D1 is satisfied completely and hence cross out off the first column (j =1) 

namely and diminish a2 by b1 as 𝑎𝑎2′ =  |25 − 20| = 5. Then we have to update the 

remaining weight costs of that row (i =2 ∀j). After first Step the pictorial view of the WOC 

matrix as well as TT is shown in the Table 4.4. 

 

2nd  Step: It is observed in the Table 4.4 that after first step the remained largest weight 

opportunity cost  is w𝑐𝑐12 = 10/2. Therefore according to the algorithm we have allocated 

amount of min(𝑎𝑎1,𝑏𝑏2) = min (10, 10) = 10 to the cell C12, and so 𝑥𝑥21 = 10. Since 

here 𝑎𝑎1 = 10 = 𝑏𝑏2, therefore the supply of source O1 and demand of destination D2 are 

both satisfied completely and hence cross out off the first row and second column 

simultaneously. After second Step the pictorial view of the WOC matrix incorporated in TT 

is shown in the Table 4.5. 

 

Table 4.5 After 2nd  Step : the  SUWOC matrix and TT of the TP 
 D1 D2 D3 D4 D5   Supply 

O1 10/1   1    
× 

10/2         2              
10 

5/3     3  
× 

10/4          4 
× 

10/5          5 
× 

10 

O2 20/2   2           
20 

10/3,5/3   3     
×  

              

5/4     4 
 

25/5,5/5     5   
 

25/6,5/6     6 
 

25 , 5 

O3 15/3   3        
× 

10/4        4      
× 

5/5     5 
 

15/6          6 
 

15/7         7 
 

15 

O4 20/4   4   
× 

10/5        5  
× 

5/6     6  
 

20/7          7   
 

20/8         8 
 

20 

O5 20/5   5    
× 

10/6        6        
× 

5/7     7 
 

30/8          8 
 

30/9         9 
   

30 

Demand 20 10 5 30 35 
 

3rd  Step: After second step, it is noticed in the reduced Table 4.5  that the largest  

weighted opportunity cost is now w 𝑐𝑐54 = 30/8. Therefore, allocate the amount of  𝑥𝑥54 =

min(𝑎𝑎5,𝑏𝑏4) = min (30, 30) = 30 to the cell C54.  Now since 𝑎𝑎5 = 30 = 𝑏𝑏4, therefore the 

supply of source O5 and demand of destination D4 are both satisfied completely and hence 

cross out off the fifth row and fourth column again simultaneously. So after third step, the 

WOC matrix incorporated in TT is given in the Table 4.6. 
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Table 4.6 After 3rd  Step : the  SUWOC matrix and TT of the TP 
 D1 D2 D3 D4 D5   Supply 

O1 10/1   1    
× 

10/2         2              
10 

5/3     3  
× 

10/4          4 
× 

10/5          5 
× 

10 

O2 20/2   2           
20 

10/3,5/3   3     
×  

              

5/4     4 
 

25/5,5/5     5   
× 

25/6,5/6     6 
 

25 , 5 

O3 15/3   3        
× 

10/4        4      
× 

5/5     5 
 

15/6          6 
× 

15/7         7 
 

15 

O4 20/4   4   
× 

10/5        5  
× 

5/6     6  
 

20/7          7   
× 

20/8         8 
 

20 

O5 20/5   5    
× 

10/6        6        
× 

5/7     7 
× 

30/8          8 
30 

30/9         9 
×   

30 

Demand 20 10 5 30 35 
 

4th  Step: After third step, we observed in the table 4.6  that the remained largest  weighted 

opportunity cost is now w 𝑐𝑐45 = 20/8. Therefore allocate the amount of  𝑥𝑥45 =

min(𝑎𝑎4,𝑏𝑏5) = min (20, 35) = 20 to the cell C45. Now since 𝑎𝑎4 = 20 < 30 = 𝑏𝑏5, therefore 

the supply of the origin O4 is satisfied completely and hence crosses out off the fourth row 

and diminishes b5 by a4 as |35 − 20| = 5. Then we have updated the remaining weighted 

opportunity costs of that column j =5. So after 4th step, Table 4.7 represents the updated 

WOC matrix as well as TT of the TP.   

 

Table 4.7 After 4th  Step: the SUWOC matrix and TT of the TP 
 D1 D2 D3 D4 D5   

Supply 
O1 10/1   1    

× 
10/2         2              

10 
5/3     3  

× 
10/4          4 

× 
10/5          5 

× 
10 

O2 20/2   2           
20 

10/3,5/3   3     
×  

              

5/4     4 
 

25/5,5/5     5   
× 

25/6,5/6     6 
 

25 , 5 

O3 15/3   3        
× 

10/4        4      
× 

5/5     5 
 

15/6          6 
× 

15/7         7 
 

15 

O4 20/4   4   
× 

10/5        5  
× 

5/6     6  
× 

20/7          7   
× 

20/8         8 
20 

20 

O5 20/5   5    
× 

10/6        6        
× 

5/7     7 
× 

30/8          8 
30 

30/9         9 
×   

30 

Demand 20 10 5 30 35, 15 
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Table 4.8 After 5th Step: the SUWOC matrix and TT of the TP 
 D1 D2 D3 D4 D5   Supply 

O1 10/1   1    
× 

10/2         2              
10 

5/3     3  
× 

10/4          4 
× 

10/5          5 
× 

10 

O2 20/2   2           
20 

10/3,5/3   3     
×  

              

5/4     4 
 

25/5,5/5     
5   

 

25/6,5/6     6 
× 

25 , 5 

O3 15/3   3        
× 

10/4        4      
× 

5/5     5 
× 

15/6          6 
× 

15/7         7 
15 

15 

O4 20/4   4   
× 

10/5        5  
× 

5/6     6  
× 

20/7          7   
× 

20/8         8 
20 

20 

O5 20/5   5    
× 

10/6        6        
× 

5/7     7 
× 

30/8          8 
30 

30/9         9 
×   

30 

Demand 20 10 5 30 35, 15 
 
5th  Step: After fourth step, it is noticed in the table 4.7 that largest  weighted opportunity 

cost remained is w 𝑐𝑐35 = 15/7. Therefore allocate the amount of  𝑥𝑥35 = min(𝑎𝑎3, 𝑏𝑏5) = min 

(15, 15) = 15 to the cell C35. Now since 𝑎𝑎3 = 15 = 15 = 𝑏𝑏5, therefore the supply of source 

O3 and demand of destination D5 are both satisfied completely and hence cross out off the 

third row and fifth column. So after 5th step, the WOC matrix incorporated in TT is given 

in the Table 4.8. 

 

Table 4.9 After 6th Step: the SUWOC matrix and TT of the TP 
 D1 D2 D3 D4 D5 Supply 

O1 10/1   1    
× 

10/2         2              
10 

5/3     3  
× 

10/4          4 
× 

10/5          5 
× 

10 

O2 20/2   2           
20 

10/3,5/3   3     
×  

              

5/4     4 
5 

25/5,5/5     5   
× 

25/6,5/6     6 
× 

25 , 5 

O3 15/3   3        
× 

10/4        4      
× 

5/5     5 
× 

15/6          6 
× 

15/7         7 
15 

15 

O4 20/4   4   
× 

10/5        5  
× 

5/6     6  
× 

20/7          7   
× 

20/8         8 
20 

20 

O5 20/5   5    
× 

10/6        6        
× 

5/7     7 
× 

30/8          8 
30 

30/9         9 
×   

30 

Demand 20 10 5 30 35, 15 
 

6th  Step: After fifth step, it is noticed in the Table 4.8  that only the remain unoccupied 

cell is C23 and undistributed  supply is 5 which is obviously equal to demand to the 

corresponding column. Therefore all the rest amount (= 5) is allocated in this cell, C23. So 
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the supply of source O2 and the demand of destinations D3 are both satisfied. Finally after 

6th  step the pictorial view of the WOC matrix as well as TT is shown in the Table 4.9. It is 

observed that all the allocation is completed. So the initial basic feasible solution obtained 

by the proposed method is as follow:  

  x12 = 10, x21 = 20, x23 = 5, x35 = 15, x45 = 20, and x54 = 30. 

Therefore the total transportation cost according to the proposed method is  

 = 2×10 + 2×20 + 4×5 + 7×15 +8×20 +8×30 

 = 515. 

 

Now to investigate the efficiency and effectiveness of the proposed algorithm, we will 

compare this result with LCM and VAM methods.  The results of comparison among the 

three approaches regarding the example 3.1 are shown in the Table 4.10. We notice that the 

result of our proposed algorithm SUWOC-LCM is best compared to all the other 

approaches considered here namely LCM and VAM method. 

 

Table 4.10 Comparison among SUWOC-LCM, LCM and VAM approaches of the Ex. 3.1 

Method  SUWOC-LCM LCM   VAM 

Result 515 585 585 

 

 

4.4 Further Experiments and Discussions 

Now to compare the performance of the proposed SUWOC-LCM method to existing 

approaches we have performed further experiments.  For this experimental study we have 

considered some instances given in the first column of the Table 4.11. For the comparison 

study we consider two well-known approaches namely LCM and VAM methods. The 

experimental results are displayed in the Table 4.11.  

 

It is observed in the Table 4.11 that out of 12 instances, the proposed SUWOC-LCM 

outperform in 2 instances namely Example No.  4 and 5 compared to both LCM and VAM 

methods.  It is also noticed that in two cases (Example No. 7 and 11) the results of VAM 

and proposed method are identical but better that of LCM method. Again in one case 

namely Example No. 3, the solutions of LCM and SUWOC-LCM are identical but better 

than that of VAM approach. In Example No. 6 the proposed method performed better than 
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VAM method but worse than LCM method. In 4 cases namely Example No.1, 2, 10 and 12, 

the results of all the three methods are identical. But it is also noticed that in Example No. 

8 and Example No. 9 the results of the proposed method are worst compared to other two 

methods. It is worthwhile to mention here that out of 12 instances in 5 instances the 

proposed method is able to find out optimal solutions. 

  

 

Table 4.11: Comparison of SUWOC-LCM, LCM and VAM approaches in TP 

Ex.  No. Problem SUWOC-LCM LCM VAM Optimal 

Value 

1 cij:{(5,7,9,11); (7,9,11,13); 

(9,11,13,15); (11,13,15,17)} 

S: (10, 25, 30, 35)   

D: (20, 30,15, 35) 

1210 1210 1210 1210 

2 cij:{(6,4,1); (3,8,7); (4,4,2)} 

S: (50,40,60)   

D: (20,95,35) 

555 555 555 555 

3 cij:{(2,4,1,3); (4,3,5,2); 

(5,2,3,6)} 

S: (10,20,10)   

D: (9,11,6,14) 

85 85 90 85 

4 cij:{(3,3,5); (6,5,4); (6,10,7)} 

S: (9,8,10)   

D: (7,12,8) 

131 159 143 125 

5 cij:{(9,8,5,7); (4,6,8,7); 

(5,8,9,5)} 

S: (12,14,16)   

D: (8,18,13,3) 

240 248 248 240 

6 cij:{(4,19,22,11); (1,9,14,14); 

(6,6,16,14)} 

S: (100,30,70)   

2160 2090 2170 2040 
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D: (40,20,60,80) 

7 cij:{(9,12,9,6,9,10); (7,3,7,7,5,5); 

(6,5,9,11,3,11); (6,8,11,2,2,10)} 

S: (5,6,2,9)   

D: (4,4,6,2,4,2) 

112 114 112 112 

8 cij:{(4,5,8,4); (6,2,8,1); 

(8,7,9,10)} 

S: (52,57,54)   

D: (60,45,8,50) 

795 674 674 674 

9 cij:{(5,2,4,1); (5,2,1,4); (6,4,8,2); 

(4,6,5,4) (2,8,4,5)} 

S: (30,20,12,30,46)   

D: (31,50,30,27) 

429 423 391 381 

10 cij:{(2,5,4); (6,1,2); (4,5,2)} 

S: (4,6,6)   

D: (3,7,6) 

29 29 29 29 

11 cij:{(19,30,50,10); (70,30,40,60); 

(40,8,70,20)} 

S: (7,9,18)   

D: (5,8,7,14) 

779 814 

 

779 743 

12 cij:{(10,0,20,11); (12,7,9,20); 

(0,14,16,18)} 

S: (20,25,15)   

D: (10,15,15,20) 

480 480 480 460 

 

 

From these primary experimental investigations, we may conclude that the performance of 

the proposed algorithm comparatively better than both LCM and VAM method. But it is 

noted that solution obtained by the proposed method is IBFS and there is no any guaranty 

that the solution to be optimal. 
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4.5 Optimal Solution 

In this section we will test the optimality of the IBFS. If the solution is not optimal, then 

we need to apply other approach which optimizes the IBFS. An optimal solution is one 

where there is no other set of transportation routes that will further reduce the total 

transportation cost.  To test the optimality and/or to obtain optimal solution here we have 

considered the well-known method - Modified Distribution Indicator (MODI) method. 

 

4.5.1 Modified Distribution Indicator (MODI) method 

To obtain an optimal solution by making successive improvements to initial basic feasible 

solution until no further decrease in the transportation cost is possible. Thus, we have to 

evaluate each unoccupied cell in the transportation table in terms of an opportunity of 

reducing total transportation cost. An unoccupied cell with the largest negative opportunity 

cost is selected to include in the new set of transportation routes (allocations). This value 

indicates the per unit cost reduction that can be achieved by raising the shipment allocation 

in the unoccupied cell from its present level of zero. This is also known as an incoming cell 

(or variable). The outgoing cell (or variable) in the current solution is the occupied cell 

(basic variable) in the unique closed path (loop) whose allocation will become zero first as 

more units are allocated to the unoccupied cell with largest negative opportunity cost. That 

is, the current solution cannot be improved further. This is the optimal solution. 

 

4.5.2 An Optimal solution by using (MODI) method 

To find an optimal solution of the initial basic feasible solution we have considered another 

example 4.2 of a transportation problem. 

Example 4.2:  The transportation tableau of a transportation problem is shown in the Table 

4.12. 

 

Table 4.12 A typical example of TP 
 D1 D2 D3 D4 Supply 

O1 9 
 

8 
 

5 
 

7 
 

12 

O2 4 
 

6 
 
 

8 
 

7 
 

14 

O3 5 
 

8 
 

9 
 

5 
 

16 

Demand 8 18 13 3 
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Solution: It first by the proposed SUWOC-LCM method, we need to find IBFS of the 

problem.  So we have carried out experiment on this problem and the pictorial view of the 

final solution (IBFS) is shown in the Table 4.13.  

Table 4.13 Solution of TP by using proposed algorithm SUWOC-LCM 
 D1 D2 D3 D4   Supply 

O1 8/9      9    
× 

12/8          8              
× 

12/5         5  
12 

3/7       7 
× 

12 

O2 8/4      4           
× 

14/6          6     
14  

              

13/8,1/8   8 
× 

3/7       7   
× 

14 

O3 8/5      5        
8 

16/8,4/8    8      
4 

13/9,1/9   9 
1 

3/5       5 
3 

16,8, 5,1 

Demand 8 18, 4 13, 1 3 
  

So the initial basic feasible solution obtained by the proposed method is  

 x13 = 12, x22 = 14, x31 = 8, x32 = 4, x33 = 1, and x34 = 3. 

Therefore the total transportation cost = 5×12 + 6×14 + 5×8 + 8×4 +9×1 +5×3 = 240. 

 

Now by using MODI algorithm we will find out the optimal solution of the problem in 

which we will use this IBFS obtained by the proposed method. Therefore we have to 

calculate the cell evaluations corresponding to all non-basic or unoccupied cells. 

Here we find the values ui and vj using the relation  𝑢𝑢𝑖𝑖 + 𝑣𝑣𝑖𝑖 = 𝑐𝑐𝑖𝑖𝑖𝑖 for all basic (occupied) 

cells. 

For basic cell:  

(1, 3):  𝑢𝑢1 + 𝑣𝑣3 = 5 … (1) 

 (2, 2):  𝑢𝑢2 + 𝑣𝑣2 = 6 … (2) 

 (3, 1):  𝑢𝑢3 + 𝑣𝑣1 = 5 … (3) 

 (3, 2):  𝑢𝑢3 + 𝑣𝑣2 = 8 … (4) 

 (3, 3):  𝑢𝑢3 + 𝑣𝑣3 = 9 … (5) 

 (3, 4): 𝑢𝑢3 + 𝑣𝑣4 = 5 … (6) 

Let arbitrarily u3=0 as third row contains the maximum number of occupied cells. 

     ∴(3) ⇒v1 = 5 

(4) ⇒v2 = 8 

(5) ⇒v3 = 9 

(6) ⇒v4 = 5 

(1) ⇒u1 = -4 
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(2) ⇒u2 = -2 

∴u1 = -4, u2 = -2, u3= 0, v1 = 5, v2 = 8, v3 = 9 and v4 = 5 

Which are displayed right side and below the Table 4.13. 

 

Table 4.14 Optimal Solution of TP  
 D1 D2 D3 D4 ui 

O1 -8 
9 

 

-4 
8 

 

12          5 
 

-6 
7 

 

-4 

O2 -1 
4           

 

14           6 
 

 

-1 
8 

 

        -4 
7   

 

-2 

O3 8        5        
 

4            8      
 

1          9 
 

3       5 
 

0 

vj 5 8 9 5 
Cell evaluation for unoccupied cells: ∆𝑖𝑖𝑖𝑖= �𝑢𝑢𝑖𝑖 + 𝑣𝑣𝑖𝑖� − 𝑐𝑐𝑖𝑖𝑖𝑖 

For cell:  

(1, 1): ∆11= (𝑢𝑢1 + 𝑣𝑣1) − 𝑐𝑐11 = −4 + 5 − 9 = −8 

(1, 2): ∆12= (𝑢𝑢1 + 𝑣𝑣2) − 𝑐𝑐12 = −4 + 8 − 8 = −4 

(1, 4): ∆14= (𝑢𝑢1 + 𝑣𝑣4) − 𝑐𝑐14 = −4 + 5 − 7 = −6 

(2, 1): ∆21= (𝑢𝑢2 + 𝑣𝑣1) − 𝑐𝑐21 = −2 + 5 − 4 = −1 

(2, 3): ∆23= (𝑢𝑢2 + 𝑣𝑣3) − 𝑐𝑐23 = −2 + 9 − 8 = −1 

(2, 4):∆24= (𝑢𝑢2 + 𝑣𝑣4) − 𝑐𝑐24 = −2 + 5 − 7 = −4 

 

Displayed these values of cell evaluation for unoccupied cells on the proposed Sequentially 

Updated Weighted Opportunity Cost matrix based Least Cost Method (SUWOC-LCM) of 

the corresponding cell. Here all ∆𝑖𝑖𝑖𝑖≤ 0 i.e. all the cell evaluation is negative the solution is 

optimum and optimum solution is  

x13= 12, x22 = 14, x31 = 8, x32 = 4, x33 = 1, and x34 = 3 and minimum cost is z = 240 units.   

It is worthwhile to remarks that, the result obtained by the proposed algorithm is optimum 

which 240.  On the other the IBFS of the LCM method and VAM method are 248 and 248 

respectively and obviously these are not optimum.  
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CHAPTER V 

 

 

Conclusion 

 

 

Transportation Problem, which is a special type of linear programming problem, has been 

playing very important role in business arena. The main task in TP is to minimize 

transportation cost as well as other relevant issues so that the profit is maximized. 

Researchers are continuously hunting for finding better transportation algorithms. 

Regarding the methods of finding initial basic feasible solution, much of the research 

works concern with the transportation cost entries, and/or the manipulation of cost entries 

to form Distribution Indicator (DI) /or Total Opportunity Cost Matrix whatever be the 

structure of supply entries and demand entries. 

 

 

But in the real market it is observed that supply and demand plays a vital role in business 

field. Exploiting this idea, we have formulated a weighted opportunity cost (WOC) matrix 

in which supply and demand entries act as a weight factor upon transportation cost entries. 

After successful formulation of WOC matrix we intend to develop an effective algorithm 

for solving TP. It is known that in LCM method, the strategy of allocation flow is initially 

defined i.e. least cost prefers first. On the other hand in the VAM method, the strategy of 

allocation flow is depended upon Distribution Indicator (DI). The motivated feature of 

VAM is that after each allocation the DI is updated. Therefore by incorporating the concept 

of VAM upon WOC, a virtual dynamic weighted cost opportunity matrix is formulated.  

Finally we have developed a new sequential updated weighted-cost based algorithm 

embedded on LCM method (SUWOC-LCM) to find IBFS of TP. 

 

 

Several experiments have been performed to investigate the performance of the proposed   

algorithm. Experimental results reveal that the proposed method is effective as well as 
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efficient to find out the IBFS of TP. Moreover some time the proposed method able to find 

out optimal solution too. On the average exception of few instances the proposed method 

has performed better than VAM or LCM methods to find out IBFS of TP.  

 

 

Anyway our main contribution of this research is that we have incorporated a new and 

unique idea in transportation arena. As it is a new way to think about solving TP, we hope 

by further intensive research some excellent outputs might come out.  
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