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Abstract 

 

Capacitated Vehicle Routing Problem (CVRP) is a real life constraint satisfaction problem in 

which customers are optimally assigned to individual vehicles (considering their capacity) to 

keep total travel distance of the vehicles as minimum as possible while serving customers. 

Various methods are used to solve CVRP in last few decades, the most popular way of solving 

CVRP is splitting the task into two different phases: firstly, assigning customers under different 

vehicles and secondly, finding optimal route of each vehicle. Sweep clustering algorithm is 

well studied for clustering nodes. On the other hand, route optimization is simply a traveling 

salesman problem (TSP) and a number of TSP optimization methods are applied for this 

purpose. This study investigates a variant of Sweep algorithm for clustering nodes and different 

Swarm Intelligence (SI) based methods for route generation to get optimal CVRP solution. In 

conventional Sweep algorithm, cluster formation starts from 00 and consequently advance 

toward 3600 to consider all the nodes. In this study, a variant Sweep cluster is investigated from 

different starting angle. A heuristic based adaptive method is developed to select cluster 

formation starting angle. On the other hand, two well-known optimization methods (i.e., 

Genetic Algorithm and Ant Colony Optimization) and two recent SI based algorithms (i.e., 

Producer-Scrounger Method and Velocity Tentative Particle Swarm Optimization) are 

considered for route optimization. The experimental results on a large number of benchmark 

CVRPs revealed that different starting angles have positive effect on Sweep clustering and 

finally, VTPSO is able to produce better solution than other SI methods. Finally, the proposed 

mythology is found to achieve better CVRP solutions for several problems when compared 

with several prominent existing methods.  
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Chapter I 

Introduction 

The Vehicle Routing Problem (VRP) is one of the most studied combinatorial optimization 

problems and is concerned with the optimal design of routes to be used by a fleet of vehicles 

to serve a set of customers. Capacitated VRP (CVRP) is the most common and basic variant of 

the problem which considers equal capacities for all vehicles. The most popular way of solving 

CVRP is splitting the task into two different phases: firstly, assigning customers under different 

vehicles and secondly, finding optimal route of each vehicle. This chapter introduces CVRP 

and basic solution methods of it. Finally, it also contains thesis objectives and organization of 

the thesis. 

1.1 Introduction to VRP and CVRP 

VRP [1-6] is a complex combinatorial optimization problem which was first introduced by 

Dantzig and Ramser in 1959 [1] and it has been widely studied since. The VRP can be described 

as the problem of designing optimal delivery or collecting routes from one or several depots to 

a number of geographically scattered customers, subject to side constraints. The most general 

form of VRP is the Capacitated VRP (CVRP) [7-12] considering equal capacities for all 

vehicles. The VRP plays a central role in the fields of physical distribution and logistics. The 

primary objective of VRP is to reduce the number of vehicles, the total travel distance or even 

the time spent on the road. But most of the times these objectives, are considered 

simultaneously, in a hierarchical fashion. 

In general, CVRP consists of a depot and a set of customers with known demands. Each 

customer is assigned to exactly one vehicle route. Each vehicle starts from a depot and delivers 

the goods required, then returns to the depot. Since vehicle has capacity limit the total demand 

of any route must not exceed its capacity.  

The CVRP is considered to be the classical version of the VRP. A formal definition of the 

problem is as follows. Let G = (V, E) be a complete graph with a set of vertices V = {0,…n}, 

where the vertex 0 represents the depot and the remaining ones the customers. Each edge {i,j

E} has a non-negative cost ijc  and each customer iV   = V\{0} has a demand id . Let C 

={1,……,m} be the set of homogeneous vehicles with capacity Q. The CVRP consists in 

constructing a set up to m routes in such a way that: (i) every route starts and ends at the depot; 
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(ii) all the demands are accomplished; (iii) the vehicle's capacity is not exceeded; (iv) a 

customer is visited by only a single vehicle; (v) the sum of costs is minimized. 

There is relation between CVRP and TSP: CVRP may be considered as a modification and/or 

update of TSP. TSP is the problem of finding a minimal length closed tour that visits all cities 

of a given set exactly once. It does not consider any capacity limit. On the other hand, CVRP 

generates several routes considering vehicle capacity and depot is the common in all the routes. 

Therefore, route finding of each vehicle in CVRP is a small TSP problem. Figure 1.1 

demonstrates TSP and CVRP.   
 

  
                                                                   

 

 

 

1.2 Variants of CVRP 
 

The VRP arises naturally as a central problem in the fields of transportation, distribution, and 

logistics [1]. In some market sectors, transportation means a high percentage of the value added 

to goods. Therefore, the utilization of computerized methods for transportation often results in 

significant savings ranging from 5% to 20% in the total costs, as reported in [3]. In some real 

world VRPs there are often side constraints due to other restrictions. Some of the well-known 

models [3, 5, 9] are: 

Route 1 

Route 3 

Route 2 

A single route 

a) TSP 
b) CVRP 

Customer

Depot 

Fig. 1.1: Comparison between TSP and CVRP. 
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 Capacitated Vehicle Routing Problem (CVRP): The CVRP is the simplest and the most 

studied problem. CVRP works with predefined demands and locations of customers to 

serve/delivery. The delivery for a customer cannot be split. In other words, the demand 

of a customer must be satisfied via only one visit. All vehicles are assumed to have the 

same loading capacity. They depart from a single depot at the beginning and return to 

the depot at the end. The service or delivery time for each customer may or may not be 

considered. The objective is to minimize the total traveling distance or time for all 

vehicles to serve all customers. 

 Distance-constrained Vehicle Routing Problem (DVRP): The DVRP is a variant of the 

CVRP. Each route of a vehicle is constrained by a maximum length of distance or time. 

Because of the distance constraint, the total traveling distance in each route cannot 

exceed the maximum prescribed length. 

 Vehicle Routing Problem with Time Windows (VRPTW): The VRPTW is another 

variant of the CVRP. In the VRPTW, the distance constraint may or may not be 

considered. Each customer has a time interval, referred to as a time window. The visit 

of a vehicle to a customer must occur within his or her time window. In case of early 

arrival at a customer’s location, the vehicle is allowed to wait until the beginning of the 

customer’s time window. The time windows are defined by assuming that all vehicles 

start from a depot at the beginning. 

 Vehicle routing problem with pickup and delivery (VRPPD): In a VRPPD, vehicles are 

required not only to deliver products to a set of delivery locations, but also to pick goods 

or wastes up at a set of pickup locations. Unlike other VRPs, products to be delivered 

 

 

                     

 VRPTW VRPB VRPPD 

VRPBW VRPPDTW 

CVRP DCVRP 

Fig 1.2: Variants of CVRP 
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are not provided at the depot; rather, they must be picked up. For multiple pickups, the 

loading capacity of a vehicle must be considered in the problem. Time windows for the 

pickup and the delivery at each location may or may not be considered in the problem.  

 Vehicle Routing Problem with LIFO: Similar to the VRPPD, except an additional 

restriction is placed on the loading of the vehicles: at any delivery location, the item 

being delivered must be the item most recently picked up. This scheme reduces the 

loading and unloading times at temporarily unload items other than the ones that should 

be dropped off. 

 Multiple Depot Vehicle Routing Problem (MDVRP): The vendor uses many depots to 

supply the customers. 

 Split delivery Vehicle routing problem (SDVRP): The customers may be served by 

different vehicles. 

 Stochastic vehicle routing problem (SVRP): The demands, service time and/or travel 

time are random. 

 Vehicle routing problem with backhauls (VRPB): A VRP in which customers can 

demand or return some commodities. 

 

1.3 CVRP Solving Techniques 

The CVRP is a well-known integer programming problem which falls into the category of NP-

Hard problems, which means that the computational effort required to solve this problem 

increases exponentially with the problem size. For such problems it is often desirable to obtain 

approximated solutions, so that they can be found quickly enough and are sufficiently accurate 

for the purpose. Usually this task is accomplished by using various heuristic methods, which 

rely on some insight into the nature of the problem. 

CVRP is a popular combinatorial optimization problem and a number of methods have been 

investigated for solving CVRP up to date. The methods include exact approaches, constructive 

methods, two-phase way etc [3, 6]. Exact approaches compute every possible solution until the 

best is reached. Branch-and-bound and branch-and-cut algorithms are quite popular in the 

category of exact approaches [3, 13-15]. Constructive methods use two main techniques for 

constructing VRP solutions: merging existing routes using a savings criterion, and gradually 

assigning vertices to vehicle routes using an insertion cost. The well-known algorithms are 

Clarke and Wright Savings, matching based, multi-route improvement heuristics [16]. In 2-
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Phase way the CVRP is solved into two different phases: assigning customers under different 

vehicles and finding optimal route of each vehicle. 2-Phase ways also categorized into two 

groups: (i) Cluster-First Route-Second (CFRS) and (ii) Route-First-Cluster-Second (RFCS). 

Sweep algorithm is well studied in 2-phase way for clustering customers into groups so that 

customers in the same group are geographically close together and can be served by the same 

vehicle [10, 17-23]. 

 

Route optimization for a vehicle is simply a TSP [18] and a number of optimization methods 

are investigated for this purpose. Genetic Algorithm (GA), Simulated Annealing (SA), Tabu 

Search (TS) with their numerous variations are used for CVRP route optimization [2, 24, 25]. 

The pioneer Swarm Intelligence (SI) methods Ant Colony Optimization (ACO) and Particle 

Swarm Optimization (PSO) are also found efficient for route optimization [26, 27]. 

 

1.3 Objectives of the Thesis 

Among the existing CVRP solving techniques, CFRS with Sweep algorithm clustering is 

widely studied. The aim of the study is to investigate better CVRP solving technique in the line 

of CFRS. Limitation of Sweep is investigated and a variant of it proposed to achieve better 

clustering. On the other hand, popular TSP methods, including recently developed methods, 

are investigated for route optimization. To reach the goal this study will be carried out with the 

following specific objectives: 

 Study of CVRP and existing ways to solve it.  

 Investigate Sweep clustering algorithm for vehicle wise node assignment. 

 Investigate a variant of Sweep algorithm owing to achieve optimal clusters. 

 Study of existing optimization techniques of route generation of individual vehicle. 

 Investigate SI based methods to find optimal route for individual cluster. 

 Compare performance on the benchmark CVRPs to identify effective method of CVRP. 

 

 

1.4 Organization of the Thesis 

The main attraction of this thesis is the variant Sweep algorithm for efficient vehicle 

assignment and SI methods to optimize routes. The thesis has five chapters. An introduction to 

CVRP and its applications to solve optimization tasks has been given in Chapter I. Chapter 

wise overviews of rest of the thesis are as follows.  
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Chapter II is for literature review that includes description CVRP with its constraints and 

existing solution methods to solve CVRP. The chapter also identifies the legging of existing 

methods and gives motivation to development of new method.  

Chapter III explains the proposed variant Sweep algorithm and process of route optimization 

in detail.  

Chapter IV reports the experimental results for the benchmark problems for variant Sweep 

clustering and route optimizing using GA, ACO, PSM and VTPSO.  

Chapter V is for the conclusions of this thesis together with the outline of future directions of 

research opened by this work.  
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Chapter II 

 Literature Review 

CVRP is a constraint satisfaction problem in which customers are served by finite number of 

vehicles and try to keep total travel distance of the vehicles as minimum as possible. Various 

methods have been investigated to solve CVRP in last few decades and the methods may 

categorize as exact approaches, constructive methods, two-phase approaches etc. A two-phase 

approach first clusters customers to assign into different vehicles and then determines optimal 

route of each vehicle. Sweep algorithm is the most popular for clustering in the two-phase ways 

which is rigorously studied in this thesis. This chapter categorically reviews existing methods 

to solve CVRP. As a conclusion this chapter draws the scope of the research. 

2.1 CVRP and its Constraints 

CVRP is a real life constraint satisfaction problem in which customers are assigned to 

individual vehicles considering their capacity; and the objective of CVRP is to minimize the 

total traveling distance for all vehicles to serve all customers [7-12, 28, 29]. CVRP works with 

predefined demands and locations of customers to serve. The service/delivery for a customer 

cannot be split, i.e., the demand of a customer must be satisfied via only one visit. All vehicles 

are assumed to have the same loading capacity and they depart from a single depot at the 

beginning and return to the depot at the end. The service or delivery time at each customer may 

or may not be considered.  

Figure 2.1 shows the pictorial view of CVRP: the rectangle in the center indicates depot and 

circles indicate customers. Every customer has its identification number and also there is a 

demand (D) with them. There are four vehicles available with capacity 10. The demand of each 

 

Fig. 2.1: A typical CVRP [30]. 
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customer and the travel cost of each edge in the solution are given in the figure. A feasible 

route is given by R1 = (0, 3, 2, 0). The cost and load of the route are 27 and 13, respectively. 

A complete solution of CVRP is given by x = {R1, R2, R3, R4}.  

CVRP is important due to its various practical applications. For example, garbage collection 

companies need to plan the routes for collecting the garbages in the urban area; bus companies 

need to plan the time and the routes for buses and drivers. Other practical CVRP applications 

include mail delivery, street cleaning, school bus routing, routing of salespeople and 

maintenance units, transportation of handicapped people, heating oil distribution, parcel pick-

up and delivery, and many others [9, 31].  

Some studies are available to solve specific CVRP task. Xiaoyan Li [32] studied CVRP for 

solving the delivery problem of St. Mary’s Food Bank’s Distribution Center and minimized 

the number of trucks and total travel time while picking up all goods from 54 donors. Wen et 

al. [30] managed transportation of a Danish consultancy Transvision using identical vehicles 

to transport orders from suppliers to customers. Demiral et al. [33] constructed a method to 

solve School Bus Routing Problem. They founded optimal school bus routes for the Isparta 

Milli Piyango Anadolu High School, Isparta, Turkey. S. Amini et al. [34] proposed a method 

for a real-world case study of a Chlorine Capsule distribution company to the water reservoir 

in Tehran. Their results indicate that the algorithm can reduce the cost and time significantly. 

Faulin et al. [35] solved the logistic problems related to a canning company situated in Navarre, 

Spain. They discussed several solutions to a real case in the agribusiness sector in Navarre, 

Spain. In [12] the authors solved the delivery problem of Coca-Cola distribution center in 

Rajshahi City Corporation, Bangladesh to minimize the traveling distance and to determine an 

optimal distribution plan that meets all the demands 

A number of constrains have to be maintained to solve CVRP. Mathematically, a CVRP is 

defined as 

Minimize v
ij

Ni Nj Vv
ij XC

  

                                                           (2.1) 

        Subject to 1
Vv

v
iy  for  Ni                                                  (2.2) 

        



Ni

v
j

v
ij yx for Nj and Vv                                           (2.3) 
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       v
i

Nj

v
ij yx 



 for Ni and Vv                                       (2.4) 

       Qyd v
i

Ni
i 



 for Vv                                                      (2.5) 

       11 
Ni

v
ix  for Vv                                                            (2.6) 

       11 
Nj

v
jx for Vv                                                          (2.7) 

In this formulation, the objective function is expressed by Eq. (2.1) which states that the total 

travelling distance of all vehicles is to be minimized. Eq. (2.2) represents the constraint that 

each customer must be visited once by one vehicle, where 
v
iy =1 if vehicle v visits customer i , 

and 0 otherwise. It is guaranteed in Eq. (2.3) and Eq. (2.4) that each customer is visited and left 

with the same vehicle, where 1v
ijx  if vehicle v travels from customer i  to customer j , and 0 

otherwise. A constraint in Eq. (2.5) ensures that the total delivery demands of vehicle v do not 

exceed the vehicle capacity. Eq. (2.6) and Eq. (2.7) express that vehicle availability should not 

be exceeded.  

2.2 Existing Approaches to Solve CVRP 

Various methods have been investigated to solve CVRP in last few decades. Fig. 2.2 shows the 

common solution methods of CVRP [36]. The existing methods may categorize as exact 

approaches, constructive methods, two phase way etc. The following subsection briefly 

describes existing approaches under different categories.  

 
2.2.1 Exact Approaches 

Exact approaches compute every possible solution and best one is considered as an outcome 

[16]. Branch-and-Bound and Branch-and-Cut algorithms are quite popular in the category of 

exact approaches [3, 13-15]. The common problem of such approaches is the huge time to 

check all possible solutions which increases with the problem size.   
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2.2.1.1 Branch and Bound Algorithm 

Branch and Bound is one of the pioneer techniques for solving combinatorial problems such as 

CVRP [7, 15, 37, 39]. The principle idea of Branch and Bound is to divide the main problem 

into sub-problems (branching), and evaluate the lower and upper bounds for these sub-

problems (bounding). If it is found that a sub-problem does not contain the optimal solution, it 

is discarded (pruning). Otherwise, the sub-problem will be further branched and bounded. 

When dealing with a maximization problem, an upper bound is used, and analogously when 

handling a minimization problem such as the CVRP, a lower bound is used [7]. Algorithm 2.1 

shows the Branch and Bound algorithm. 

Several studies are available for solving CVRP using Branch-and-Bound algorithms. G. 

Laporte et al. [37] solved CVRP using Branch and Bound algorithm. Computational tests were 

performed on a number of randomly generated problems. The algorithm was quite successful 

in solving problems involving up to 100 cities. Christofides et al. [13] solved CVRP based on 

spanning trees using Branch and Bound. They presented computational tests for a number of 

problems covering only 25 customers. Toth et al. [3] reviewed several exact algorithms based 

 

 

 

 

 

 

 

 

 

 

Fig 2.2: Solution methods of CVRP. 
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on the branch and bound approach proposed in the last few years for the solution of CVRP. 

They showed the computational results comparing the performance of different algorithms on 

a set of benchmark instances [38]. Dastghaibifard et al. [39] proposed a new parallel branch 

and bound algorithm for the solution of CVRP. They did experiments on the so-called A, B, 

and P benchmark CVRP instances [40] with the parallel algorithm and obtained good result. 

2.2.1.2 Branch and Cut Algorithm 

Branch and Cut algorithm is currently the best available exact approach for the solution of the 

CVRP [14]. The algorithm attempts to strengthen the Linear Programming Relaxation (LPR) 

of an Integer Program (IP) with new inequalities before branching a partial solution. Linear 

programming relaxation is the problem that arises by replacing the constraint that each variable 

must be 0 or 1 by a weaker constraint, that each variable belong to the interval [0,1] [41]. An 

integer program (IP) is a linear program in which all variables must be integers [42]. In Branch 

and Cut algorithm the main problem is split into multiple (usually two) versions. The new linear 

programs are then solved using the simplex method and the process repeats [43]. The simplex 

method is a method for solving problems in linear programming which tests adjacent vertices 

of the feasible set in sequence so that at each new vertex the objective function improves or is 

Algorithm 2.1: Branch and Bound Algorithm 

1. Initialization  

        Compute lower and upper bounds 

a. Set 
1L  = )(Slb  and 

1U = )(Sub , where S is the main problem and ublb  ,

are the lower and upper bound functions.  

b. Terminate if 
11 LU  . 

2. Branching  

Partition (split) S into two sub-problems as S=S1   S2 

3. Bounding  

a. Compute lower and upper bounds for the sub-problems. 

b. Update lower and upper bounds on optimum solution. 

i. Update lower bound: )}(),(min{ 212 SSL lblb               
ii. Update upper bound: )}(),(min{ 212 SSU ubub   

iii. Terminate if 
22 LU  . 

 

c. Split S1 or S2, and repeat Step 3(a). 
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unchanged [40]. In the first step of the algorithm, non-integral solutions to LP relaxations serve 

as upper bounds and integral solutions serve as lower bounds [43]. Branch and Cut algorithm 

of Laporte, Nobert and Desrochers (1985) [15] for CVRP is described in Algorithm 2.2.   

Several studies are available for solving CVRP using Branch and Cut algorithms. Augerat et 

al. [31] was the first to describe an exact Branch and Cut algorithm for the CVRP. Toth et al. 

[65] solved E-VRP benchmark problems with Branch and Cut algorithm and achieved better 

performance. Ralphs et al. [62] proposed a Branch and Cut algorithm and solved the A-VRP 

and B-VRP benchmark CVRP problems. Lysgaard et al. [44] investigated a new Branch and 

Cut algorithm for CVRP and solved three instances of Augerat with optimal value for the first 

time. Baldacci et al. [66] also developed a Branch and Cut approach CVRP and CVRP with 

time window. They solved six classes of instances and compared performance among the 

methods.  

 
 

Algorithm 2.2: Branch and Cut Algorithm 

1. Initialization 

a. Take Z = Solution of relaxed problem and Z*= cost of best solution. 

b. Divide the main problem into sub-problems. 

c. Solve the problem using simplex method to obtain Z . 

2. Feasibility Check  

a. Compare Z  with the Z*. If  Z  ≥ Z* update the list of sub problems and choose the next 

sub problem then start from Step 1, otherwise continue.   

b. Force the variables that are not in the sub-problem to zero. 

c. Purge ineffective constraints. 

d. Generate distance and capacity constraints. 

e. Generate several cuts.  

3. Branching 

a. Create new sub problems by branching. If the solution is integer then update Z* and 

continue.   

b. Backup search tree. 

c. Update the list of problems. 

4. Terminate if the list of sub problems empty. Otherwise choose the next sub-problem and 
go to Step 1. 
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2.2.2 Constructive Methods 

Constructive methods use two main heuristic techniques for solving CVRP: merging existing 

routes using a savings criterion, and gradually assigning vertices to vehicle routes using an 

insertion cost. The well-known algorithms in this category are: i) Clarke and Wright Savings 

Algorithm and ii) Matching based Savings Algorithm. Such heuristic approaches are straight 

forward but unable to identify alternate solutions. 

2.2.2.1 Clarke and Wright Savings Algorithm 

The Clarke and Wright savings algorithm [22, 45, 46] is one of the most known constructive 

methods for CVRP. It was developed on by Clarke and Wright [47]. This algorithm is based 

on a so-called savings concept, an estimate of the cost reduction obtained by serving two 

customers sequentially in the same route, rather than in two separate ones. The basic savings 

concept expresses the cost savings obtained by joining two routes into one route as illustrated 

in Fig. 2.3, where point 0 represents the depot.  

 

 

 

 

 

 

Initially in Fig. 2.3(a) customers i and j are visited on separate routes. An alternative to this is 

to visit the two customers on the same route, for example in the sequence i-j as illustrated in 

Fig. 2.3(b). Because the transportation costs are given, the savings that result from driving the 

route in Fig. 2.3(b) instead of the two routes in Fig. 2.3(a) can be calculated. Denoting the 

transportation cost between two given points i and j by cij the total transportation cost Da in Fig. 

2.3(a) is: 

                                  0000 jjiia ccccD                                                    (2.8) 

Equivalently, the transportation cost in Fig. 2.3(b) is: 

                                     0jijoib cccD                                                                 (2.9)  

By combining the two routes, savings Sij is generated as     

                                  ijs = 0ic + jc0 - ijc                                                              (2.10) 

Fig. 2.3: Illustration of the savings concept 

(a) (b) 

0 

i j 

0 

i j 
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Therefore, the more the savings distance (Sij) between two customers, the more distant they 

are from the origin and the closer they are to each other. 

In Savings algorithm, at first pairwise savings distances (PSD) are calculated and all pairs of 

customer points are sorted in descending order of PSD values. It initiates a route with first node 

pair of PSD and subsequently checks other node pairs to insert in the route considering node 

adjacency and vehicle capacity. When a pair of nodes i-j is considered, if i matches with start 

and end node then j is considered for insertion if vehicle capacity allows. Route construction 

stops when all the customers are assigned to a vehicle. The algorithm has two versions: i) Series 

(creates one route at a time) and ii) Parallel (creates multiple route at a time). 

In series approach, a route is competed and then process another one with remaining node pairs 

of PSD. Algorithm 2.3 shows the Series version of Clarke and Wright savings algorithm where 

k denotes the route index. A route Rk is initiated (Step 2(a)) with the first pair of nodes of sorted 

PSD. Consequently checks other node pairs are checked to compete the route (Step 2(b)). If 

some nodes are remained then another route is constructed repeating Step 2(a) and Step 2(b). 

Multiple routes are initiated in parallel version of Savings algorithm and a node pair is checked 

against all available routes. If a pair don’t fit in the existing routes a new route is created with 

the pair, while the node pair is skipped in series approach. After each insertion, the partial 

routes are considered for merging. Two routes are combined into one if their edges match, 

Algorithm 2.3: Clarke and Wright’s Savings Algorithm (Series approach) 

1. Initialization 

a. Calculate pairwise savings distance (PSD) using Eq. (3). 

b. Sort PSD in descending order of savings distance. 

c. Set k = 1 // route index. 

2. Route Generation 

a. Create kth route Rk {0-ns-ne-0} with the node pair of first value of PSD. 

b. Process each of remaining node pair (i,j) of PSD for the current route Rk 

If nodes i or j matches with ns or ne and vehicle capacity does not exceed with it  

- Rk is updated inserting i or j with ns or ne.  

- Remove the i-j pair from PSD.  

c. If PSD is empty then Terminate; Otherwise k = k +1 and go to Step 2.a 
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combined route demand don’t exceed the vehicle capacity and also the resulting route does not 

have any duplicate node. In parallel savings, only one pass requires through the savings pair 

list for route construction. Algorithm 2.4 shows the parallel version of Clarke and Wright 

Savings algorithm. 

A number of studies are available for solving CVRPs based on Clarke and Wright savings 

algorithm. A. Poot [46] introduced a Savings based heuristic for a Dutch consultancy firm 

specialized in applied operations research. They used ten real-life data sets of four different 

companies and obtained suitable results. S. R. Venkatesan et al. [22] used Clarke and Wright 

savings method for A-VRP benchmark dataset. M. Straka [48] proposed a methodology based 

on Clarke and Wright savings method for optimization of transport planning of Tesco Prešov 

distribution center in Slovakia. The designed methodology brought increased efficiency in the 

planning and distribution process. T. Doyuran [49] discussed several enhancements of the 

Algorithm 2.4: Clarke and Wright’s Savings Algorithm (Parallel approach) 

1. Initialization 

a. Calculate pairwise savings distance (PSD) using Eq. (3). 

b. Sort PSD in descending order of savings distance. 

c. Create first route R1 {0-ns-ne-0} with the node pair of first value of PSD. 

d. Set K=1 //  Total existing routes 

2. Route Generation 

a. Take top node pair (i,j) of PSD 

b. Check the node pair (i,j) with the existing routes Rk 

If the nodes (i or j) matches with {ns or ne} and vehicle capacity does not exceed 
with its demand  

- Rk is updated inserting i or j with ns or ne.  

- Go to Step 3 // Merge Routes 

Else 

- K = K+1 

- Create a new route RK {0-ns-ne-0} with the node pair of PSD. 

c. Terminate If PSD is empty Otherwise Go to Step 2.a 

 

3. Merge Routes 

a. If first or last node of two routes matches such as 0-i-j-0 and 0-k-j-0. 

AND the total demand of the combined route satisfy vehicle capacity 

       - Merge the routes as 0-i-j-k-0 

b. Terminate when no more merge possible Otherwise Go to Step 3.a  
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Clarke and Wright savings algorithm and proposed a new algorithm. Computational study on 

several benchmark problems revealed the effectiveness of the algorithm. T. Pichpibula [50] 

presented a new approach called the improved Clarke and Wright savings algorithm (ICW) to 

solve CVRP and tested for several benchmark CVRPs. It combines the Clarke and Wright 

savings algorithm with tournament and roulette wheel selection operators.  

2.2.2.2 Matching based Savings Algorithm 

Matching based Savings algorithm changes the original savings approach of replacing 

sequential and single-tour merging procedure by a matching-based procedure which merges 

multiple partial solutions in each step [3, 51, 52]. At the beginning it produces individual routes 

for each node and then try to merge the routes. The number of route merged at each iteration 

is determined by solving a matching problem, maximizing the savings obtained in the present 

iteration. At each iteration the savings (Spq) obtained by merging routes Rp and Rq is computed 

as: 

                )()()( qpqppq RRCRCRCS                                    (2.11)  

Where )( pRC is the cost of optimum TSP tour over pR . Algorithm 2.5 shows the Matching 

based Savings algorithm. Authors of [52] analyzed real container distribution problems in Port 

of Izmir, Turkey with the algorithm. 

 

2.2.3 Two-Phase Way: Cluster-First-Route-Second Algorithm 

Cluster-First-Route-Second (CFRS) is the most popular two-phase way of solving CVRP. 

CFRS first performs clustering of nodes with distinct measure and then determines vehicle 

routes for each cluster considering it as a TSP. The well-known CFRS are: i) Fishar and 

Jaikumar Algorithm, ii) Sweep Algorithm, iii) Petal Algorithm. 

Algorithm 2.5: Matching based Savings Algorithm 

1. Initialization 

Generate routes for each individual node 

2. Merge Route 

a. Calculation Savings for Pairwise Routes using Eq. (2.11) 

b. Merge Routes considering vehicle capacity 

c. Stop while no merge possible otherwise go to Step 2.a   
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2.2.3.1 Fisher and Jaikumar Algorithm   

Fisher and Jaikumar algorithm [3, 12, 53] first generates seeds and a cluster is built based on 

each seed. Generalized assignment problem (GAP) is used to minimize the distance within the 

cluster. The GAP seeks an allocation of jobs to capacitated resources at minimum total 

assignment cost, assuming a job cannot be split among multiple resource [54]. Finally, optimal 

vehicle route will be generated for each cluster. The basic idea of Fisher and Jaikumar approach 

can be described in terms of the following reformulation of CVRP as a nonlinear GAP. 

                                    
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where )( kyf  is the cost of an optimal TSP tour of the customer in }1|{)(  ikk yiyN  . The 
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The solution of this GAP defines a feasible assignment of customers to vehicles. The number 

of vehicles (K) is fixed. Assignment cost is given by  

��� = ����(0, �) + ����(�, ��) ����(0, ��)                       (2.17) 

 

 
 

 
 

 

 

0 

S 
i i 

S 

0 

b. Visiting both seed and customer i a. Seed customer route 

Fig. 2.4: Example of Fisher and Jaikumar algorithm 
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In the figures, 0 denotes the depot, S is the seed customer and i is the customer being considered 

for insertion. Fig. 2.4(a) shows the back and forth route of seed customer and depot. Fig. 2.4(b) 

shows the route if customer i is visited in the way of returning from seed customer to depot. 

Now the travelled distance dS of visiting the seed customer and returning to depot is, 

dS = d0S + dS0 = 2dS                                                                   (2.18) 

And if customer i is visited on the way while visiting seed, then the distance Di, 

di = dS + dSi + di0                                                                        (2.19) 

Substituting Eq. (5) from Eq. (6),  

Insertion cost Cik= di - dS = dSi + di0 - dS                                          (2.20)  

The algorithm is described in Algorithm 2.6. 

 

Fig 2.5 shows that the customers are divided into four cones (as number of vehicle = 4) and 

from each cone, the farthest node from the origin is chosen as the seed customer for that region. 

Then insertion is calculated for each customer with respect to their seed. In the main Fisher and 

Jaikumar algorithm, a geometric method based on polar angle has been proposed on the 

partition of the plane into K cones according to the customer weights. The seed vertices are 

dummy customers located along the rays bisecting the cones. Once the clusters have been 

determined, the TSPs are solved optimally using a constraint relaxation-based approach. 

Among several real life cases, Islam [12] used Fisher and Jaikumar algorithm for solving CVRP 

in the case study of Coca-cola deliveries in Rajshahi distribution center. 

Algorithm 2.6: Fisher and Jaikumar Algorithm 

1. Seed Selection 

a. Divide the nodes in angular planes by the number of vehicles: obtain cones equal to the 
number of vehicles. 

b. Choose a seed customer from each cone that is farthest from the origin. 

2. Insertion Cost Calculation 

a. Calculate insertion cost for each non-seed nodes with respect to seeds using Eq. (2.20). 

b. Sort the non-seed nodes descending order of distance from depot, SNS.  

3. Assignment to Seed  

    For each node from SNS 

 - Insert the node to a seed which gives minimum insertion cost and does not exceed 
vehicle capacity.  
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2.2.3.2 The Sweep Algorithm 

Sweep algorithm is a constrained-based heuristic which applies to planar instances of the 

CVRP [10, 17-23, 55]. In Sweep, feasible clusters are initially formed by rotating a ray centered 

at the depot. At first polar angle of each nodes are calculated using Eq. (2.21) and order the 

nodes according to polar angle. Then, nodes are clustered according to the polar angles. The 

first cluster considers the nodes from the beginning until capacity of a vehicle does not exceed. 

Similarly all the nodes are clustered into different vehicles. For a complete CVRP solution, 

vehicle route is obtained for each Sweep cluster through any TSP optimization method. 

)/(tan1 xy                                                                      (2.21) 

In the equation Ɵ is the angular value of a node in degree (customer location).  

Figure 2.6 shows the graphical representation of cluster formation in Sweep algorithm. The 

dots represent the nodes and the straight lines represent the Sweep hand that moves anti-

clockwise. This type of sweeping is called forward sweep. And in backward sweep, clustering 

 

Figure 2.6: Cluster formation in Sweep algorithm 

Fig. 2.5: Seed customer selection 
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direction is clockwise which means though clustering starts from 00, then it advances algorithm 

from 3600 to 00.  The Sweep algorithm is described in Algorithm 2.7. 

A large number of Sweep based studies are available to solve CVRP. The capability of Sweep 

in solving the CVRP for public transport was investigated in [18]. Author compared the 

performance of routes obtained by Sweep with that of current routes. The result shows that 

Sweep is capable of solving vehicle routing problem for public transport under certain 

constraints. N. Suthikarnnarunai [19] routing problem of University of The Thai Chamber of 

Commerce in Bangkok using Sweep algorithm with 2-opt. A. Boonkleaw [20] proposed a 

Sweep algorithm to solve morning newspaper delivery problem of Bangkok, Thailand which 

aims to improve delivery time. Venkatesan et al. [22] solved Augerat benchmark CVRPs using 

Sweep algorithm.  

A number of studies also incorporated different techniques to improve Sweep clustering.  K. 

Shin [8] introduced cluster adjustment approach in Sweep and route generated with Lin-

Kernighan heuristic method. Na [23] et al. introduced nearest neighbor approach in Sweep and 

route optimized with 2-opt edge exchange method. An additional operation with Sweep 

increases the computation cost in these methods.  

Several hybrid studies are available that combine Sweep with other methods. M. 

Yousefikhoshbakht [21] proposed a hybrid algorithm combining Ant Colony System, Sweep 

algorithm and 3-opt local search was for solving CVRP. In [56] CVRP has been solved using 

Sweep algorithm jointly with Clark and Wright savings algorithm to find out best route 

between warehouse and distribution centers on Chen’s benchmark problem. Recently, Aziz et 

Algorithm 2.7: Sweep Algorithm 

1. Initialization 

a. Compute the polar coordinates of each customer using Eq. (2.21). 

b. Sort the customer according to polar angles.  

     c. Set C = 1. // Cluster index 

 

2. Clustering 

a. Sweeping nodes to current cluster C by increasing polar angle.  

b. Stop when adding the next node would exceed vehicle capacity.  

c. Create a new cluster C+1 by resuming the sweep where the last one left off.  

d. Repeat Steps 2.a –2.c, until all customers have been included in a cluster. 
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al. [10] proposed a hybrid algorithm of Sweep algorithm and nearest neighbor algorithm for 

CVRP. The method tested on Augerat’s Euclidean benchmark dataset and also solved the dairy 

products delivery problem of Tiba Company for Trade and Distribution in Egypt.  

2.2.3.3 The Petal Algorithm 

Petal algorithm uses Sweep concepts to create initial tours in four geometric regions. Then it 

competes the initial routes based on insertion cost, the additional cost incur in a tour with the 

node. Finally, it generates additional tours based on Nearest-Neighbor concepts with the 

remaining nodes [3, 57, 58]. Algorithm 2.8 shows the Petal algorithm. 

Ryan et al. [58] investigated an efficient shortest path technique for producing the optimal petal 

solution solving CVRP. They extended the definition of a petal route and showed that the 

optimal generalized petal solution can be produced efficiently by multiple applications of a 

shortest path algorithm. J. Renaud et al. [57] proposed an improved version of the original petal 

algorithm that generates a set of good feasible routes and selects some of these routes using a 

set partitioning problem [59]. C. Hjorring [60] presented a genetic algorithm based heuristic 

for CVRP which uses a specially designed crossover that combines the cyclic orders of two 

solutions to form a new cyclic order. The petal method was used to transform the cyclic order 

into a CVRP solution. 

2.2.4 Two Phase Way: Route-First-Cluster-Second Algorithm 

Route-First-Cluster-Second (RFCS) method [61] constructs a giant TSP tour with all the nodes 

in first phase disregarding other constraints, and decompose this tour into feasible vehicle 

Algorithm 2.8: Petal Algorithm 

1. Initial Tour Creation 
 Create initial tours in four Geometric regions using Sweep considering vehicle capacity. 

// Maximum number of initial tour is four  

 

2. Complete the Initial Tours  
  For each or remaining node 

If vehicle capacity does not exceed with its insertion 

- Insert it in different positions of each initial tour and compute insertion cost 

- Assign to the initial tour for smallest insertion cost  

 

3. Tour Creation with Remaining Nodes  
  Create additional tours with Nearest-Neighbor method considering vehicle capacity. 
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routes in second phase. This idea applies to problems with a free number of vehicles. It was 

first put forward by Beasley who observed that the second phase problem is a standard shortest 

path problem on an acyclic graph. Algorithm 2.9 shows the RFCS steps and Fig. 2.9 shows a 

demonstration of it. 

  

 

 

2.3 Scope of the Research 

The CFRS is most popular way of solving CVRP: firstly, assigning customers under different 

vehicles and secondly, finding optimal route of each vehicle. Among various solution methods 

of CVRP Sweep algorithm is well studied for clustering customers in which cluster formation 

starts from 00 and consequently advances toward 3600 to consider all the nodes. Such rigid 

starting is identified that total cluster formation may exceed total number of available vehicles 

for some instances. It is worth mentionable that starting from different angles may give 

different clusters and explores chance to get better CVRP solution after route optimization. 

Therefore, a variant of Sweep algorithm considering starting angle as a user defined parameter 

might give better node assignments to individual vehicles 

Route generation is aimed to link all nodes in every cluster starting from and ending to the 

same depot. Route generation of individual vehicle is a TSP optimization task and any TSP 

optimization method is useful. Particle swarm optimization (PSO) has been used in some 

Algorithm 2.9: Route-First-Cluster-Second Algorithm 

1. Routing 

Solve a single TSP problem with the nodes relaxing the vehicle capacity constraint. 

 2. Clustering 

Cut the TSP solution into routes that satisfy the vehicle capacity. 

Fig. 2.7: Demonstration of Route-First and Cluster-Second method. 
method 



23 
 

studies to find optimum vehicle route. Other prominent methods such as Genetic Algorithm 

and Ant Colony Optimization [26, 27] as well as recently proposed Producer-Scrounger 

Method [63] and Velocity Tentative PSO (VTPSO) [64] might be interesting for route 

optimization and may achieve better outcome.  
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Chapter III 

Solving CVRP Using Variant Sweep and Swarm Intelligence 

 

The aim of this study is to identify the effective Capacitated Vehicle Routing Problem (CVRP) 

solving method considering Sweep algorithm to vehicle wise cluster the nodes and Swarm 

Intelligence (SI) based methods to optimize route of each vehicle. A variant version of Sweep 

is considered in this study for better outcome. Route optimization is a traveling salesman 

problem (TSP); and therefore, prominent TSP solving methods including Genetic Algorithm, 

Ant Colony Optimization and Particle Swarm Optimization are considered in this study. This 

chapter first describes the proposed variant Sweep for clustering nodes and then briefly 

discusses the route optimization methods.   

3.1 Variant Sweep Clustering 

It is already described in the previous section that standard Sweep considers polar angle of 

nodes and capacity of vehicle. In general, standard Sweep considers depot located at (0, 0) co-

ordinate in two dimensional plane. It first calculates polar angle of each individual node and 

order the nodes according to polar angle. Finally, cluster formation starts from 00 and 

consequently advance toward 3600 to assign all the nodes under different vehicles considering 

vehicle capacity [19, 22]. Problem with such rigid starting from 00 is identified that total 

clusters formation may exceeds total number of available vehicles for some instances. It is 

worth mentionable that cluster formation may differ for different starting angles and explores 

chance to get better CVRP solution after route optimization.  

Figure 3.1 demonstrates the inadequacy with standard Sweep and its improvement way for a 

sample CVRP. The CVRP consists with 10 nodes with different demands around the depot and 

the total demand of the nodes 157 will be served vehicles having capacity 100. Fig. 3.1(a) 

shows the cluster formation with standard Sweep starting from 00: Cluster 1 covers demand 64 

with two nodes, Cluster 2 covers demand 80 with two nodes, Cluster 3 covers demand 95 with 

four nodes; and remaining demand 18 is assigned in Cluster 4.Therefore, required number of 

vehicles in standard Sweep is 4. But three vehicles (total capacity 100*3=300) might enough 

to serve all the nodes heaving total demand 157. Fig. 3.1 (b) shows cluster formation with 

Sweep technique but starting from 900 in which all the nodes are assigned into three clusters 

each one demand is below vehicle capacity: Cluster 1 covers demand 80 with three nodes, 
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Cluster 2 covers demand 95 with four nodes, Cluster 3 covers remaining three nodes with 

demand 82. Three clusters also found sufficient to cover all the nodes for starting angle 1350. 

It is obvious that total CVRP cost for three vehicles will be less than the cost for four vehicles. 

Therefore, this study considers the starting angle of cluster formation as user defined parameter 

and the method called variant Sweep. 

Algorithm 3.1 shows the steps of proposed variant Sweep algorithm. First three steps of the 

initialization section are same as standard Sweep: update nodes’ coordinates considering depot 

 

(a) Clustering of nodes through standard Sweep with starting angle 00. 

(b) Clustering of nodes through variant Sweep with starting angle 900 and 1350
. 

 
Fig. 3.1: Clustering of nodes with standard and variant sweep algorithms. 
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as location as (0,0), compute polar angle of each node and order the nodes according to polar 

angle to a list ONL.  

Cluster formation starts in variant Sweep from the defined angle Ɵs and nodes are assigned into 

different clusters considering vehicle capacity. First the method identify the position of Ɵs in 

ONL (Step 1). As like standard Sweep, variant method assigns nodes into a cluster while 

vehicle capacity does not exceed (Steps 2 and 3) otherwise new cluster forms for unassigned 

nodes (Step 4). Since the variant Sweep may starts any location of ONL, Step 5 transforms 

node assignment from bottom of ONL to the beginning of ONL. It is notable that for Ɵs = 00 the 

proposed method will be standard Sweep and Step 5 will not be executed.  

 

3.1.1 Selection of Cluster Formation Starting Angle (Ɵs)  

It is already explained that appropriate starting angle for cluster formation is an important 

matters in the proposed variant Sweep algorithm. It is possible to check the proposed method 

with fixed different angles. But such trial and check method is required to set for every 

individual method. Therefore as alternative, a heuristic method is investigated in this study 

which aim is to identify the appropriate cluster formation starting angle (Ɵs) for a given 

problem.   

Algorithm 3.1:  Variant Sweep Algorithm 

1. Initialization 
a. Update coordinates of the nodes considering depot as (0, 0) in the two-dimensional 

plane.  

b. Compute the polar angle of each node. 

c. Order the nodes according to polar angle, ONL 

d. Select starting angle of cluster formation, Ɵs 

e. Cluster C=1  

2. Clustering 

a. Identify position of Ɵs in ONL.  

b. Sweeping nodes to current cluster C by increasing polar angle.  

c. Stop when adding the next node would exceed vehicle capacity.  

d. Create a new cluster C+1 by resuming the sweep where the last one left off.  

e. Repeat Steps 2.b –2.d, until all customers have been included in a cluster. 

Outcome 
All the nodes are assigned into total C clusters. 
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The proposed heuristic approach consider angle difference of consecutive nodes in ONL and 

distance between the nodes and distances from the depot. The approach first calculates 

preference value (pƟ) of each consecutive nodes and maximum pƟ is considered as the 

outcome of starting angle (Ɵs). Suppose the depot and other two consecutive nodes are D, N1 

and N2, respectively.  Polar angles of the nodes are Ɵ1 and Ɵ2. The distances of the nodes 

from the depot is dN1 and dN2; and distance between the nodes is dN12.  Fig. 3.2 shows the 

graphical representation of the matter for better understanding. Preference value (pƟ) for the 

starting angle between the nodes N1 and N2 means to place the nodes in two different clusters 

and is calculated using Eq. (3.1).  

pƟ=	α*(Ɵ2-	Ɵ1)+β	*{dN12	+	Min(dN1,	dN2)}                 (3.1) 

 

In the equation, α and β are the arbitrary constants to emphasis angle difference and node 

distances, respectively.  According to first part of Eq. (3.1), the preference value increases with 

angular difference of the nodes (i.e.,	Ɵ2- Ɵ1 ). The second part of the equation is minimum 

distance to travel the two nodes from depot. If both the nodes are far from the depot as well as 

distance between them are large then the outcome will be large. On the other hand, pƟ value 

 
 

Fig. 3.2: Demonstration of cluster formation start angle selection. 
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will be low even larger angle difference when both the nodes are closed to depot. After 

calculating the pƟ values for all the consecutive nodes, the maximum value is considered as 

the starting angle. If pƟ value for nodes N1 and N2 is found maximum then cluster formation 

will be start from N2 for anti-clock wise cluster formation.    

 

3.2 Optimal Vehicle Route Generation 

In solving CVRP, optimal route generation of each individual vehicle is a crucial part while 

any clustering (e.g., standard Sweep or variant Sweep) method is used to cluster nodes. In 

general, a clustering method divides total CVRP nodes into vehicle number of clusters. The 

aim of route generation is the optimal path finding of each vehicle starting from the depot and 

returning to depot after serving all its assigned nodes. Therefore, route generation of individual 

vehicle is simply a small sized TSP problem considering the depot as a common city point and 

any TSP optimization method may use for this purpose. To generate route for a vehicle, a TSP 

cost matrix considering nodes for a particular vehicle is prepared and then a TSP optimization 

is employed to work with the cost matrix as an independent TSP. More specifically, in sample 

case of Fig. 3.1, Cluster 1 belongs nodes 4, 5, 6 and 7 for Ɵs= 1350 and therefore algorithm will 

prepare TSP cost matrix of five cities including depot as a TSP city. Algorithm 3.2 shows the 

steps of vehicle route generation of individual vehicles and provide CVRP solution.      

In this study, three prominent SI based methods investigated for route optimization. Genetic 

Algorithm (GA) also considered along with SI methods for optimization as it is a prominent 

and pioneer optimization method. Among the SI methods, Ant Colony Optimization (ACO) is 

the well-known prominent method for TSP, and Producer-Scrounger Method (PSM) and 

Velocity Tentative Particle Swarm Optimization (VTPSO) are two very recent well performed 

Algorithm 3.2: Vehicle Route Generation Steps 

1. Input 
Vehicle wise nodes from variant Sweep clustering with Algorithm 3.1. 

2. Route Generation for Each Vehicle 

a. Include depot as a node in the cluster.  

b. Prepare a TSP cost matrix with the nodes of the cluster. 

c. Employ TSP optimization method to generate optimal route for the vehicle. 

Outcome 
CVRP solution with optimal routes of all the vehicles. 
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methods for TSP. Brief descriptions to optimize route of individual vehicles are explained in 

the following subsections. 

3.2.1 Genetic Algorithm (GA) 

GA is inspired by biological systems’ fitness improvement through evolution and is the pioneer 

and widely used to solve many scientific and engineering problems. Common features of GA 

are: populations of chromosomes (i.e., solutions), selection according to fitness, crossover to 

produce new offspring, and random mutation of new offspring.  

Selection:  Rank based selection is common in GA [24]. It first ranks the population according 

to fitness of solutions. Selection of solutions for next generation is perform considering the 

ranks of the solutions.  

Crossover: It is a process in which two chosen chromosomes combine their genetic materials 

to produce a new offspring which possesses both their characteristics. Two strings are picked 

from the mating pool at random to crossover [24]. Among several crossover techniques, only 

Enhanced Edge Recombination (EER) method is used to solve TSP. In EER, an adjacency table 

[24] (called Edge Table) is prepared that lists links into and out of a city found in the two parent 

sequences. Element of a sequence with a common edge is marked as inverting sign to emphasis 

in selection. The description of EER is available in [24]. 

Mutation: Mutation [24] is the process by which offsprings are generated with a single parent. 

Position swap of two randomly selected nodes is the common way of mutation operation for 

TSP.  

Elitism: Elitism is a method which copies the best chromosome to the new offspring 

population before crossover and mutation. When creating a new population by crossover or 

mutation, the best chromosome might be lost. Elitism keeps the best solutions to a stack and 

helps to improve performance of GA.  

3.2.2 Ant Colony Optimization (ACO) 

ACO is inspired from ants’ foraging behavior and is the prominent method for solving TSP. 

ACO is the first algorithm aiming to search for an optimal path in a graph, based on the 

behavior of ants seeking a path between their colony and a source of food. It considers 

population size as the number cities in a given problem and starts placing different ants in 

different cities. A particular ant considers next city to visit based on the visibility heuristic (i.e., 
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inverse of distance) and intensity of the pheromone on the path. After the completion of a tour, 

each ant lays some pheromone on the path. Before pheromone deposit, pheromone evaporation 

of real ant is adopted by reducing pheromone of all the links by a fixed percentage. This 

behavior allows the artificial ants to forget bad choices made in the past. To check whether a 

city has been visited or not, a tabu list is maintained which is a set of all cities that are to be 

visited [26]. Finally, all the ants follow the same route after certain iteration. The detail 

description of ACO available in [26]. If an ant in city i, the probability to go city j can be 

calculated by the following equation and parameters: 
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�[��,�]
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� is the set of cities the ant still has to visit.  

��,� =
�

��,�
  is the reciprocal of the distance from i to j. 

��,� is the amount of pheromone on the arc from i to j. 

 is the importance of the intensity in the probabilistic transition. 

  is the importance of the visibility of the trail segment.  

After the completion of a tour, each ant lays some pheromone on the path. The pheromone is 

updated by the following equations.                        
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 is the trail persistence or evaporation rate.  

3.2.3 Producer Scrounger Method (PSM) 

PSM [63] is a new technique to solve TSP inspiring from the animal group living behavior. It 

models roles and interactions of three types of animal group members: producer, scrounger 

and dispersed. PSM considers a producer having the best tour, few dispersed members having 

worse tours and scroungers. In each iteration, the producer scans for better tour, scroungers 

explore new tours while moving toward producer’s tour; and dispersed members randomly 
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checks new tours. For producer’s scanning, PSM randomly selects a city from the producer’s 

tour and rearranges its connection with several near cities for better tours. Swap operator and 

swap sequence based operation is employed in PSM to update a scrounger towards the 

producer. Finally, producer is considered as the solution of a given problem. The description 

of this method is available in [63]. 

Producer Scanning for Better Tour:  

Producer checks (i.e., scans) several alternative tours based on current tour. The producer at first 

randomly selects a city (e.g., C) in its tour. Then select some nearest cities from C according to 

distance. Suppose one of the nearest cities is N1. Now the producer will create connection 

between these two cities C and N1. There are four alternative ways to connect the two selected 

cities. Removing C from its current location and placing before and after N1 will provide two 

new tours. Similarly, removing N1 from its current location and placing before and after C will 

provide other two new tours. After scanning with several cities, the producer will conceive the 

best scanned tour if it is better than the current tour. Number of nearest cities to check is defined 

as a parameter. 

Scrounging to follow the Producer:  

Scroungers search for opportunities to join the resources found by the producer. To solve TSP, 

a scrounger tries to explore better tour between tours of the scrounger itself and the producer. 

Swap operator (SO) and swap sequence (SS) based operation is employed for scrounging. A SO 

indicates two cities in a tour those positions will be swapped. Suppose, a TSP problem has ten 

cities and a solution is 1-2-3-6-4-5-7-8-9-10. A SO(4,6) gives the new solution S’. 

 

�’	 = 	�	 + 	��(4,6) 

					= 	 (1 2 3 6 4 5 7 8 9 10) + ��(4,6) 

					= 1 2 3 5 4 6 7 8 9 10																				    (3.5) 

Here ‘+’ means to apply SO(s) on the solution. 

A swap sequence is made up of one or more swap operators.  

�� = (���, ���, ���, . . . ���),                          (3.6) 

where ���, ���, ���, . . . ��� are the swap operators. Implementation of a SS means apply all 

the SOs on the solution in order. The order of SOs in a SS is important [10] because implication 

of same SOs in different order may give different solutions from the original solution. It is 

notable that different SSs acting on a solution may produce the same new solution. Moreover, 

if applying swap sequence SS on tour A gives tour B (i.e., B=A + SS) then  
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��	 = 	� �.             (3.7) 

To move a scrounger towards the producer, first SS is calculated using Eq. (3.7) from tours of 

the scrounger and the producer; and then a portion of the SS is applied on the scrounger. 

Implication of a portion of SS with several SOs rather than entire SS (with all SOs) ensures the 

scrounger to explore a new tour towards the producer. For simplicity, SS portion (i.e., number 

of SOs from the beginning) is considered picking a random number between 1 and total SOs 

in the calculated SS. Such random selection of SS portion might help to explore different tours 

by different scroungers as well as increase diversity in the population. A scrounger will be 

producer in the next iteration if it finds a better tour than the current producer and other 

scroungers. 

3.2.4 Velocity Tentative Particle Swarm Optimization (VTPSO) 

VTPSO [64] is the most recent SI based method to solve TSP extending Particle Swarm 

Optimization (PSO). In PSO, every particle represents a tour and changes its tour at every 

iteration with velocity calculated considering the best tour encountered before by itself (called 

as particle best) and the best tour encountered by the swarm (called as global best). SS based 

operation like PSM is considered for velocity calculation. In traditional PSO, the new tour of 

TSP is considered after applying all the SOs of a SS and no intermediate measure is considered. 

On the other hand, VTPSO considers the calculated velocity SS as a tentative velocity and 

conceives a measure called partial search (PS) to apply calculated SS to update particle’s 

position (i.e., TSP tour).  

VTPSO calculates velocity SS as like other PSO based methods. At each iteration step, 

VTPSO calculates velocity SS using Eq. (3.8) considering (i) last applied velocity (v(t-1)), (ii) 

previous best solution of the particle (Pi) and (iii) global best solution of the swarm (G).  
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The outcome of Eq. (3.8) is swap sequence where the negative (‘-’) sign operation is performed 

as of Eq. (3.7). VTPSO does not apply calculated velocity SS on a particle to get its new 

position like traditional methods. But through PS technique it measures performance of tours 

applying SOs of the calculated SS one after another, and the final velocity is considered for 

which it gives better tour. Therefore, PS technique explores the option of getting better tour 

considering the intermediate tours with a SS applying its SOs one by one. 

 Suppose	��
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		are the tentative intermediate tours; and the final 

tour ��
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	in PS is the tentative tour having the minimum tour cost. 
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.	 Finally, 

the velocity considered as 	��
(�)

= ���, ���, ���, . . . ���    1 < j ≤ n.    

The final velocity may also get from new and previous positions of the particle using the 
equation 
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VTPSO calculates fitness of every new position (Xi) of a particle and compares to its previous 

best Pi. If Xi is found better than Pi then VTPSO applies Self-Tentative operation on (Xi) owing 

to improve it furthermore.  



 

34 
 

Chapter IV 

Experimental Studies 

 

This chapter experimentally investigates the efficacy of proposed Variant Sweep algorithm to 

cluster customers and selected optimization methods for route generation. A set of benchmark 

problems were chosen as a test bed and performance evaluated different experimental settings. 

Finally, an experimental analysis has been given for better understanding of the way of 

performance improvement in proposed method for solving CVRP. 

4.1 Bench Mark Data and General Experimental Methodology 

In this study, total 51 benchmark CVRPs from two different sets of Augerat benchmark 

problems [16] of A-VRP and P-VRP have been considered in this study. In A-VRP, number of 

customer varies from 32 to 80, total demand varies from 407 to 932, number of vehicle varies 

from 5 to 10 and capacity of individual is 100 for all the problems. For example, A-n32-k5 has 

32 customers and 5 vehicles. On the other hand, in P-VRP number of customer varies from 16 

to 101, total demand varies from 246 to 22500 and vehicle capacity varies from 35 to 3000. 

Table 4.1 and Table 4.2 show the brief description of the A-VRP and P-VRP benchmark 

problems, respectively. A numeric value in the problem name presents the number of nodes 

and vehicles. The detailed description of the problems are available in provider’s website [16]. 

According to Table 4.1 and Table 4.2, the selected benchmark problems belong large varieties 

in number of nodes, vehicles and demands; and therefore, provides a diverse test bed. 

Benchmark problems are required to use in the experiments. A customer is represented as a co-

ordinate in a problem. Coordinates are updated considering depot as [0, 0] for easy calculation. 

Distance matrix is prepared using the coordinates. Polar angle of each customer is calculated 

using Eq. (2.21) for angle based sweep operation. Standard Sweep (i.e., Ɵs = 00) does not have 

any parameter to set and it starts cluster formation from 00 (i.e., Ɵs = 00). In variant Sweep, the 

values of α and β were set to 0.6 and 0.2, respectively and found effective for most of the 

problems. In few other problems α and β values are tuned between 0.2 and 0.6. Both anti clock 

and clock wise sweep operations are considered in both standard and variant Sweep algorithm. 
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In this study, prominent TSP optimization methods i.e., GA, ACO, PSM and VTPSO, are 

applied to generate optimal route of cluster-wise individual vehicles to get final CVRP solution. 

A fair experimental setting was maintained for each of optimization method for better outcome 

in route optimization. In ACO, alpha and beta were set to 1 and 3, respectively. On the other 

hand, the RNC (rate of near cities consideration) for producer scanning in PSM was set to 0.1. 

The algorithms are implemented on Visual C++ of Visual Studio 2013. The experiments have 

been done on a PC (Intel Core i5-3470 CPU @ 3.20 GHz CPU, 4GB RAM) with Windows 7 

OS.  

Table 4.1: Description of A-VRPs benchmark problems for CVRP. 

Sl. Problem Name Total Nodes 
Number of 

Vehicle 
Individual Vehicle 

Capacity 
Total Demand 

1 A-n32-k5 32 5 100 410 

2 A-n33-k5 33 5 100 446 

3 A-n33-k6 33 6 100 541 

4 A-n34-k5 34 5 100 460 

5 A-n36-k5 36 5 100 442 

6 A-n37-k5 37 5 100 407 

7 A-n37-k6 37 6 100 570 

8 A-n38-k5 38 5 100 481 

9 A-n39-k5 39 5 100 475 

10 A-n39-k6 39 6 100 526 

11 A-n44-k6 44 6 100 570 

12 A-n45-k6 45 6 100 593 

13 A-n45-k7 45 7 100 634 

14 A-n46-k7 46 7 100 603 

15 A-n48-k7 48 7 100 626 

16 A-n53-k7 53 7 100 664 

17 A-n54-k7 54 7 100 669 

18 A-n55-k9 55 9 100 839 

19 A-n60-k9 60 9 100 829 

20 A-n61-k9 61 9 100 885 

21 A-n62-k8 62 8 100 733 

22 A-n63-k9 63 9 100 873 

23 A-n63-k10 63 10 100 932 

24 A-n64-k9 64 9 100 848 

25 A-n65-k9 65 9 100 877 

26 A-n69-k9 69 9 100 845 

27 A-n80-k10 80 10 100 942 
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4.2 Detailed Experimental Observation on Selected Problems  

This section presents detailed results for two selected problems A-n53-k7 and P-n65-k10. The 

population size of GA, PSM and VTPSO was 100; whereas, number of ants in ACO was equal 

to the number of nodes assigned to a vehicle as it desired. The number of iteration was set at 

200 for the algorithms. For better understanding, experiments conducted for four fixed starting 

angles (Ɵs=00, 900, 1800 and 2700) along with adaptively selected angle. It is notable that Ɵs=00 

represents standard Sweep.   

Table 4.3 shows the total clusters for different starting angles (Ɵs) in variant Sweep and 

optimized route cost with different methods for A-n53-k7 problem. The problem has 53 nodes 

and total 664 demand to be served with seven vehicle having capacity 100. From the table it is 

observed that total number of clusters for Ɵs=00 (i.e., in standard Sweep) is 8 that is more than 

Table 4.2: Description of P-VRP’s benchmark problems for CVRP. 

Sl. Problem Name Total Nodes 
Number of 

Vehicle 
Individual Vehicle 

Capacity 
Total Demand 

1 P-n16-k8 16 8 35 246 

2 P-n19-k2 19 2 160 310 

3 P-n20-k2 20 2 160 310 

4 P-n21-k2 21 2 160 298 

5 P-n22-k2 22 2 160 308 

6 P-n22-k8 22 8 3000 22500 

7 P-n23-k8 23 8 40 313 

8 P-n40-k5 40 5 140 618 

9 P-n45-k5 45 5 150 692 

10 P-n50-k7 50 7 150 951 

11 P-n50-k8 50 8 120 951 

12 P-n50-k10 50 10 100 951 

13 P-n51-k10 51 10 80 777 

14 P-n55-k7 55 7 170 1042 

15 P-n55-k8 55 8 160 1042 

16 P-n55-k10 55 10 115 1042 

17 P-n55-k15 55 15 70 1042 

18 P-n60-k10 60 10 120 1134 

19 P-n60-k15 60 15 80 1134 

20 P-n65-k10 65 10 130 1219 

21 P-n70-k10 70 10 135 1313 

22 P-n76-k4 76 4 350 1364 

23 P-n76-k5 76 5 280 1364 

24 P-n101-k4 101 4 400 1458 
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available vehicles. Total clusters are also 8 for Ɵs= 2700. On the other hand, number of clusters 

equal to total vehicles (i.e., 7) for Ɵs= 900 and 1800. It is also remarkable that CVRP cost (i.e., 

total travel distance) for 7 clusters is lower than the cases of 8 clusters after route optimization. 

It is interesting from the table that total clusters are also 7 for adaptively selected angle 220.60. 

The best CVRP cost for an algorithm among different Ɵs is marked as bold-faced type. For the 

problem the best CVRP cost achieved after optimizing for with GA, ACO, PSM and VTPSO 

are 1091, 1131, 1190 and 1090, respectively. The best values are found for adaptively selected 

Ɵs = 220.60 and fixed Ɵs=1800.  

The results of Table 4.3 for problem A-n53-k7 clearly indicate that proposed heuristic approach 

is able to select appropriate starting angle in variant Sweep and hence better CVRP solution. It 

is also observed that the CVRP solutions are same for both Ɵs = 220.60 and Ɵs=1800. For the 

problem, the angle difference between the angle wise consecutive nodes 33 (at 146.310) and 3 

(at 220.600) is 74.290
 which is the largest angle difference. The two nodes are also relatively 

far from the depot; therefore, heuristic approach selected such point as starting angle and is 

found appropriate. Since Ɵs=1800 is resides between the nodes 33 and 3, the cluster formation 

for Ɵs = 220.60 and Ɵs=1800 are same; and hence the CVRP outcome are also same.        

Table 4.4 shows the total clusters for different starting angles (Ɵs) in variant Sweep and 

optimized route cost with different methods for P-n65-k10 problem. The problem has 65 nodes 

and total 1219 demand to be served with ten vehicle having capacity 130.  From the table it is 

observed that total number of clusters for Ɵs=00 (i.e., in standard Sweep) is 11 that is more than 

available vehicles. Total clusters are also 11 for Ɵs= 900. On the other hand, number of clusters 

equal to total vehicles (i.e., 10) for Ɵs= 1800 and 2700. It is also remarkable that final CVRP 

cost for 10 clusters is lower than the cases of 11. For the problem the best CVRP cost achieved 

Table 4.3: Clusters for different starting angle (Ɵs) in variant Sweep and CVRP cost after route 
optimizing using GA, ACO, PSM and VTPSO for A-n53-k7 problem. 

Ɵs Clusters 
CVRP Cost 

Before Route 
Optimizing 

CVRP cost after optimizing with  

GA ACO PSM VTPSO  

00 8 1604 1175 1211 1174 1174  

900 7 1654 1125 1160 1109 1109  

1800 7 1504 1091 1131 1090 1090  

2700 8 1775 1171 1196 1171 1171  

220.60* 7 1504 1091 1131 1090 1090  

* Angle selected adaptively through proposed heuristic approach.  
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(i.e., 837) for Ɵs=1800 with GA, PSM and VTPSO. On the other hand, the heuristic approach 

selected starting angle is Ɵs = 278.430 and outcome is same for fixed Ɵs = 2700 with 10 clusters. 

Although the outcome is inferior to best outcome with Ɵs = 1800, the outcome is better than 

standard Sweep with Ɵs = 00. 

Figure 4.1 is the graphical representation of the solution of A-n53-k7 problem for standard 

Sweep clustering (i.e., Ɵs=00). Nodes are divided into eight clusters and Cluster 8 is for 

remaining three nodes having total demand 29. On the other hand, Cluster 1 covers total 

demand of 79 although vehicle capacity 100. The CVRP costs route optimization with GA and 

ACO are 1175 and 1212, respectively. On the other hand, PSM and VTPSO gave same solution 

with CVRP cost 1174 as shown in Fig. 4.1(c). The reason for worst CVRP cost with ACO 

might be inclination with pheromone in ACO and solutions for Cluster 4 and Cluster 6 are bad 

with respect to other methods. On the other hand, slightly different solution of GA from 

PSM/VTPSO is shown for Cluster 6.  

Figure 4.2 is the graphical representation of the solution of A-n53-k7 problem for variant 

Sweep clustering with adaptively selected Ɵs = 220.60 or fixed Ɵs=1800. In this case total 

demands are fulfilled by seven clusters that is equal to number of vehicles. Among the four 

route optimization methods, CVRP cost with ACO is the worst and the value is 1131. Similar 

to standard Sweep, it achieved worse solution for Cluster 4 and Cluster 6. The best CVRP 

solution for the problem is achieved by PSM and VTPSO and achieved CVRP cost is 1090.   

On the other hand, GA is showed competitive result with PSM/VTPSO showing different result 

only for Cluster 6 and CVRP cost 1091. Finally, the comparative description with graphical 

representation of Figs. 4.1 and 4.2 clearly identified the proficiency of proposed variant Sweep 

over standard Sweep.   

Table 4.4: Clusters for different starting angle (Ɵs) in variant Sweep and CVRP cost after 
route optimizing using GA, ACO, PSM and VTPSO for P-n65-k10 problem. 

Ɵs Clusters 
CVRP Cost 

Before Route 
Optimizing 

Total travel cost after optimizing with 

GA ACO PSM VTPSO 

00 11 1142 864 933 864 864 

900 11 1151 877 946 874 874 

1800 10 1154 837 900 837 837 

2700 10 1256 860 890 859 859 

278.430* 10 1256 860 890 859 859 

* Angle selected adaptively through proposed heuristic approach.  
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(a) Route optimization using GA. 

 

(b)  Route optimization using ACO. 

 

(c)  Route optimization using PSM and VTPSO. 

Fig. 4.1: Graphical representation of A-n53-k7 solution with standard Sweep clustering 

(i.e., Ɵs=00). 
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(a) Route optimization using GA. 

 

(b)  Route optimization using ACO. 

 

(b)  Route optimization using PSM and VTPSO. 

Fig. 4.2: Graphical representation of A-n53-k7 solution with variant Sweep clustering 

with adaptively selected Ɵs = 220.60 or fixed Ɵs=1800. 
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4.3 Experimental Results and Performance Comparison 

This section first identifies the proficiency of variant Sweep clustering over standard Sweep 

clustering while using GA, ACO, PSO, PSM and VTPSO for route optimization. Finally the 

outcome of the proposed method with the prominent methods in solving benchmark CVRPs. 

The population size of GA, PSM and VTPSO was 100; whereas, number of ants in ACO was 

equal to the number of nodes assigned to a vehicle as it desired. For the fair comparison, the 

number of iteration was set at 200 for the algorithms. The selected parameters are not optimal 

values, but considered for simplicity as well as for fairness in observation. 

Table 4.5 compares CVRP cost for clustering with standard Sweep and variant Sweep on A-

VRP benchmark problems. Bottom of the table shows average and best/worst summary over 

the total 27 problems. In variant Sweep, cluster formation starting angle is problem dependent 

and selected through proposed heuristic approach. The starting angle is different for different 

problems as seen in the table. On the other hand, standard Sweep is for only Sweep clustering 

with Ɵs=00.  

From the Table 4.5, it is observed that most of the cases variant Sweep outperformed it 

corresponding standard Sweep clustering. It is notable that for a particular route optimization 

(e.g., GA), the outperformance of variant Sweep is only for different starting angles in variant 

Sweep. As an example, for A-n33-k6 problem, standard Sweep (i.e, Ɵs=00) with GA achieved 

CVRP cost of 874. For the same problem the outcome of variant Sweep with adaptively 

selected starting angle 303.180 is 751. The route optimization with GA, ACO, PSM and 

VTPSO on variant Sweep cluster outperformed corresponding standard Sweep cluster in 20, 

17, 20 and 16 out of 27 cases, respectively. Only a few cases, standard Sweep is found better 

than variant Sweep. As an example, for only A-n69-k9 problem with route optimization with 

VTPSO, standard Sweep achieved CVRP cost 1254 but variant Sweep achieved slightly larger 

CVRP cost and it is 1259.  On the basis of average CVRP cost over 27 problems, variant Sweep 

is outperformed over standard Sweep for any optimization method.  The average CVRP cost 

for standard Sweep with GA, ACO, PSM and VTPSO are 1202.04, 1224.96, 1200.93 and 

1200.26, respectively. On the other hand, achieved average CVRP cost for variant Sweep with 

GA, ACO, PSM and VTPSO are 1169.48, 1195.33, 1169.19 and 1168.63, respectively. Among 

variant Sweep based methods, PSM and VTPSO outperformed GA and ACO. Finally, CVRP 

cost with VTPSO are found best among the methods and it showed best (i.e., minimum) CVRP 

costs for all 27 problems.  
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Table 4.6 compares CVRP cost for clustering with standard Sweep and variant Sweep on P-

VRP benchmark problems. Bottom of the table shows summary of result presented for 24 

problems. From the table it is observed that most of the cases variant Sweep outperformed it 

corresponding standard Sweep clustering. A notable difference in the P-VRP problems from 

A-VRP problems of Table 4.5 is that adaptively selected starting angle is same for several 

problems. Examination on the data revealed that such problems have similar type of node 

coordinates.  On the basis of average CVRP cost over 24 problems, variant Sweep is 

Table 4.5: CVRP cost comparison for clustering with standard Sweep and variant Sweep on A-
VRP benchmark problems. 

Sl. Problem 
CVRP Cost for Standard Sweep  Starting 

Angle  
(Ɵs) 

CVRP Cost Variant Sweep with 
heuristically Selected Angle  

GA ACO PSM VTPSO GA ACO PSM VTPSO 

1 A-n32-k5 882 897 882 882 152.02 882 897 882 882 

2 A-n33-k5 788 802 788 788 195.95 698 717 698 698 

3 A-n33-k6 874 877 874 874 303.18 751 758 751 751 

4 A-n34-k5 867 875 867 867 203.2 785 808 785 785 

5 A-n36-k5 942 965 942 942 323.13 881 917 881 881 

6 A-n37-k5 795 821 795 795 248.84 756 774 756 754 

7 A-n37-k6 1131 1141 1131 1131 264.29 1112 1128 1112 1112 

8 A-n38-k5 857 870 857 857 148.57 813 845 813 813 

9 A-n39-k5 881 912 877 877 180 877 914 877 877 

10 A-n39-k6 991 997 997 991 246.8 978 975 972 972 

11 A-n44-k6 1164 1229 1164 1164 253.3 1057 1116 1056 1056 

12 A-n45-k6 1117 1138 1117 1115 138.01 1075 1081 1073 1073 

13 A-n45-k7 1305 1333 1305 1305 180 1307 1339 1305 1305 

14 A-n46-k7 985 1015 983 983 75.96 977 1010 975 975 

15 A-n48-k7 1152 1164 1153 1152 3.18 1153 1165 1152 1152 

16 A-n53-k7 1175 1212 1174 1174 220.6 1091 1131 1090 1090 

17 A-n54-k7 1374 1374 1366 1361 4.09 1380 1374 1361 1361 

18 A-n55-k9 1201 1192 1190 1190 318.96 1191 1192 1190 1190 

19 A-n60-k9 1554 1602 1552 1552 170.54 1503 1528 1505 1503 

20 A-n61-k9 1220 1238 1219 1219 333.43 1170 1186 1164 1164 

21 A-n62-k8 1534 1560 1532 1532 263.66 1409 1435 1409 1408 

22 A-n63-k9 1825 1852 1825 1823 153.43 1824 1852 1823 1823 

23 A-n63-k10 1480 1511 1477 1477 6.34 1477 1511 1480 1477 

24 A-n64-k9 1598 1628 1598 1598 94.57 1598 1628 1598 1598 

25 A-n65-k9 1369 1394 1368 1368 237.99 1320 1327 1317 1317 

26 A-n69-k9 1258 1280 1254 1254 352.09 1269 1275 1259 1259 

27 A-n80-k10 2136 2195 2138 2136 149.04 2137 2195 2136 2136 

Average  1202.04 1224.96 1200.93 1200.26   1165.59 1188.07 1163.7 1163.41 

Outperformance of variant Sweep over corresponding 
Standard Sweep based method  

 20 17 20 16 

Best Count  12 0 23 27 
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outperformed over standard Sweep for any optimization method.  The average CVRP cost for 

standard Sweep with GA, ACO, PSM and VTPSO are 653.38, 664.88, 649.42 and 645.38, 

respectively. On the other hand, achieved average CVRP cost for variant Sweep with GA, 

ACO, PSM and VTPSO are 645.54, 655.71, 643.42 and 637.17, respectively. The route 

optimization with GA, ACO, PSM and VTPSO on variant Sweep cluster outperformed 

corresponding standard Sweep cluster in 14, 16, 15 and 16 out of 24 cases, respectively. Only 

a few cases, standard Sweep is found better than variant Sweep. At a glance, CVRP costs with 

VTPSO are found best among the methods and PSM is shown competitive to VTPSO: VTPSO 

and PSM showed minimum CVRP cost for all 24 problems and 20 cases, respectively. 

Table 4.6: CVRP cost comparison for clustering with standard Sweep and Variant Sweep on P-
VRP benchmark problems. 

Sl. Problem 
CVRP Cost for Standard Sweep Starting 

Angle 
(Ɵs) 

CVRP Cost Variant Sweep with 
heuristically Selected Angle 

GA ACO PSM VTPSO GA ACO PSM VTPSO 

1 P-n16-k8 545 545 545 545 335.1 549 554 549 549 

2 P-n19-k2 239 242 236 236 335.1 246 246 246 246 

3 P-n20-k2 238 254 238 238 335.1 249 249 249 249 

4 P-n21-k2 241 261 238 238 335.1 211 217 211 211 

5 P-n22-k2 237 264 243 237 335.1 216 223 216 216 

6 P-n22-k8 668 668 668 668 238.39 633 633 633 633 

7 P-n23-k8 687 687 687 687 333.43 634 636 634 634 

8 P-n40-k5 495 509 492 492 119.48 492 504 483 483 

9 P-n45-k5 530 569 528 528 119.48 524 556 524 524 

10 P-n50-k7 585 620 585 585 278.43 589 599 583 583 

11 P-n50-k8 692 709 690 690 278.43 677 713 677 677 

12 P-n50-k10 783 794 783 783 278.43 783 793 783 783 

13 P-n51-k10 804 827 804 804 208.3 804 822 802 802 

14 P-n55-k7 620 626 602 602 278.43 595 619 595 595 

15 P-n55-k8 613 634 614 609 242.59 589 608 589 586 

16 P-n55-k10 742 757 742 742 278.43 745 767 745 745 

17 P-n55-k15 1133 1140 1133 1133 278.43 1099 1106 1099 1099 

18 P-n60-k10 835 845 835 835 278.43 830 848 830 830 

19 P-n60-k15 1092 1106 1092 1092 278.43 1119 1136 1119 1119 

20 P-n65-k10 867 912 864 864 278.43 859 880 859 859 

21 P-n70-k10 900 924 900 900 278.43 914 951 911 911 

22 P-n76-k4 645 641 627 605 104.04 681 630 658 612 

23 P-n76-k5 702 683 679 655 144.16 689 675 662 647 

24 P-n101-k4 788 740 761 721 115.46 766 772 785 699 

Average  653.38 664.88 649.42 645.38   645.54 655.71 643.42 637.17 

Outperformance of variant Sweep over corresponding 
Standard Sweep based method 

 14 16 15 16 

Best Count  16 3 20 24 
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To identify the proficiency of proposed variant Sweep based approach its outcome have been 

compared with prominent CVRP methods. Among the selected methods, hybrid heuristic 

approach (HHA) [10], Sweep + Cluster Adjustment [8] and Sweep nearest [23] are also used 

Sweep based clustering to assign nodes to different vehicles but followed different approaches 

for route generation of individual vehicles. HHA [10] is the most recent CVRP method which 

used nearest neighbor method for route optimization. Centroid-based 3-phase [8] method is 

also considered in result comparison because it also found an effective method to solve similar 

benchmark CVRPs. The method follows three different steps: cluster formation with centroid 

based approach from the farthest point, centroid based cluster adjustment and finally route 

generation using Lin-Kernighan heuristic method.      

Table 4.7 and Table 4.8 compare outcome of variant Sweep based method with the selected 

exiting methods in solving A-VRP and P-VRP benchmark problems. In the comparison Variant 

Sweep+VTPSO is considered as a proposed method since it outperformed others variant Sweep 

based methods and the results presented for a particular problem is same of Table 4.5 and Table 

4.6. On the other hand, presented results of the existing methods are the reported results in 

corresponding papers. If results are not available for problems with a particular exiting method 

then those are marked as ‘-’. The best (i.e., minimum) CVRP cost among the five methods for 

a particular problem is marked as bold face type. Bottom of a table also shows pairwise 

Win/Draw/Loss summary among the methods for better understanding. According to Table 

4.7, Centroid-based 3-phase is the overall best and HHA is the worst showing average CVRP 

cost of 1134.67 and 1310.11, respectively. On the other hand, proposed Variant 

Sweep+VTPSO is shown competitive to Centroid-based 3-phase showing average CVRP cost 

1168.63. The proposed method showed best CVRP solution for five cases and outperformed 

Centroid-based 3-phase for 10 cases out of 27 cases.  More interesting, the proposed method 

outperformed HHA, Sweep + Cluster Adjust and Sweep Nearest for 27, 15 and 10 cases, 

respectively. 
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The comparative results in Table 4.8 identified the proposed Variant Sweep + VTPSO is the 

best for P-VRP benchmark problems. The proposed method is shown the best for 10 cases out 

of 24 cases and achieved average cost of 637.17. The proposed method outperformed HHA, 

Centroid-based 3-phase, Sweep + Cluster Adjust, Sweep Nearest on 23, 12, 13 and 6 cases, 

respectively, out of 24 cases. It is notables that Sweep Nearest tested only 10 problems. 

Between two exiting Sweep based methods, HHA only outperformed proposed method only 

Table 4.7: CVRP cost comparison with existing methods on A-VRP benchmark problems. 

Sl. Problem 
HHA  
[10] 

Centroid-
based 3-phase 

[8]  

Sweep + 
Cluster 

Adjust [8] 

Sweep 
Nearest [23] 

Variant Sweep 
+ VTPSO 

1 A-n32-k5 1012 881 872 853 882 

2 A-n33-k5 847 728 788 702 698 

3 A-n33-k6 919 770 829 767 751 

4 A-n34-k5 933 812 852 803 785 

5 A-n36-k5 1126 814 884 840 881 

6 A-n37-k5 876 756 734 797 754 

7 A-n37-k6 1180 1027 1050 966 1112 

8 A-n38-k5 920 819 874 801 813 

9 A-n39-k5 1147 864 971 886 877 

10 A-n39-k6 1065 881 966 - 972 

11 A-n44-k6 1356 1037 1092 1020 1056 

12 A-n45-k6 1210 1040 1043 991 1073 

13 A-n45-k7 1361 1288 1281 1235 1305 

14 A-n46-k7 1071 992 1013 1022 975 

15 A-n48-k7 1292 1145 1143 1181 1152 

16 A-n53-k7 1261 1117 1116 - 1090 

17 A-n54-k7 1414 1209 1320 - 1361 

18 A-n55-k9 1317 1155 1192 1134 1190 

19 A-n60-k9 1733 1430 1574 1446 1503 

20 A-n61-k9 1285 1201 1184 1158 1164 

21 A-n62-k8 1604 1470 1559 1392 1408 

22 A-n63-k9 2001 1766 1823 1763 1823 

23 A-n63-k10 1542 1405 1523 1475 1477 

24 A-n64-k9 1821 1587 1597 1586 1598 

25 A-n65-k9 1429 1276 1351 1299 1317 

26 A-n69-k9 1333 1283 1254 1225 1259 

27 A-n80-k10 2318 1883 2014 1896 2136 

 Average  1310.11 1134.67 1181.44 1134.92 1163.41 

 Best/Worst 0/27 8/0 2/0 12/0 5/0 

   Pairwise Win/Draw/Loos Summary 

 HHA - 27/0/0 27/0/0 24/0/0 27/0/0 

 
Centroid-based 3-

phase 
 - 7/0/20 15/0/9 10/0/17 

 Sweep + Cluster Adjust   - 21/0/3 15/1/11 

 Sweep Nearest    - 10/0/17 
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for P-n16-k8 that is very small sized problem. Finally, the proposed Variant Sweep+VTPSO is 

identified the proficiency of variant Sweep in clustering and VTPSO in route optimizing. 

 

  

Table 4.8: CVRP cost comparison with existing methods on P-VRP benchmark problems. 

Sl. Problem 
HHA  
[10] 

Centroid-
based 3-phase 

[8]  

Sweep + 
Cluster 

Adjust [8] 

Sweep 
Nearest [23] 

Variant Sweep + 
VTPSO 

1 P-n16-k8 546 497 568 463 549 

2 P-n19-k2 253 256 236 264 246 

3 P-n20-k2 267 240 238 217 249 

4 P-n21-k2 288 240 238 211 211 

5 P-n22-k2 274 245 237 219 216 

6 P-n22-k8 667 672 687 721 633 

7 P-n23-k8 743 703 645 558 634 

8 P-n40-k5 563 505 499 516 483 

9 P-n45-k5 662 533 525 - 524 

10 P-n50-k7 647 583 585 - 583 

11 P-n50-k8 721 669 675 - 677 

12 P-n50-k10 808 740 779 - 783 

13 P-n51-k10 857 779 806 - 802 

14 P-n55-k7 679 610 611 - 595 

15 P-n55-k8 690 654 601 - 586 

16 P-n55-k10 832 749 763 - 745 

17 P-n55-k15 1180 1022 1056 - 1099 

18 P-n60-k10 896 786 823 - 830 

19 P-n60-k15 1159 1006 1086 - 1119 

20 P-n65-k10 964 836 856 - 859 

21 P-n70-k10 989 891 902 - 911 

22 P-n76-k4 753 685 603 690 612 

23 P-n76-k5 671 737 647 - 647 

24 P-n101-k4 891 698 702 789 699 

 Average  708.33 639.00 640.33 464.8 637.17 

 Best/Worst 0/20 10/1 3/1 4/2 10/0 

  Pairwise Win/Draw/Loos Summary 

 HHA - 21/0/3 22/0/2 8/0/2 23/0/1 

 
Centroid-based 3-

phase 
 

- 10/0/14 5/0/5 12/1/11 

 Sweep + Cluster Adjust  - - 5/0/5 13/1/10 

 Sweep Nearest    - 6/1/3 
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4.4 Experimental Analysis  

The results presented in Table 4.5 and Table 4.6 are for fixed population and iteration in the 

optimization technique; and therefore it is required to investigate variation effect of population 

and iteration in the methods on CVRP cost. Finally, the effect of population size on route 

optimizing has been investigated for A-n53-k7 and P-n65-k10 problems. Population size was 

varied from 5 to 100 for GA, PSM and VTPSO; whereas, the number of ants in ACO was equal 

to the number of cities as it desired.  

Fig. 4.3 shows CVRP cost (i.e., total travel cost) for population variation; experiment 

conducted for fixed 200 iteration for fair comparison. The number of clusters (i.e., vehicles) 

were 7 and 10 for A-n53-k7 and P-n65-k10 problems, respectively. From the figure it is 

observed that CVRP cost is invariant for ACO because population variation was not employed 

for it. On the other hand, GA is most sensitive with population size: CVRP cost through GA 

was very bad with respect to others at small population size (e.g., 5) and was competitive at 

larger population size. From the figure it is also observed that recent SI methods PSM and 

VTPSO are better than ACO and GA in population variation. At a glance, VTPSO is shown to 

outperform any other method for any population size and PSM is competitive to VTPSO. 

Fig. 4.4 shows CVRP cost varying iteration from 10 to 200 while population size was fixed at 

100 for each of GA, PSM and VTPSO. Similar to previous experiments, the number of ants in 

ACO was equal to the number of nodes in a cluster. From the figure it is observed that CVRP 

cost is higher at small iteration (e.g., 10) and improved with iteration up to a certain level such 

as 100, in general. However GA is shown very worse than others for small number of iteration. 

Form the figure it also observed that recent SI methods PSM and VTPSO are better than ACO 

and GA in iteration variation. 
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(a) A-n53-k7 problem 

 

(b)  P-n65-k10 problem 

Fig. 4.3: Effect of population size in route optimization method on CVRP cost. 
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(a) A-n53-k7 problem 

 

(b)  P-n65-k10 problem 

Fig. 4.4: Effect of iteration in route optimization method on CVRP cost. 
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Chapter V 

Conclusions 

 

Optimization has been an active area of research for several decades. Capacitated Vehicle 

Routing Problem (CVRP) is the most popular combinatorial optimization problem and interest 

grows in recent years to solve it new ways. This thesis investigated a CVRP solving method 

with a variant of Sweep to assign nodes into different clusters and prominent TSP optimization 

method to generate individual vehicle’s route for individual cluster’s nodes. This chapter will 

now give a short summary of the main points described in this thesis. Also, it discusses possible 

future works based on the outcome of the present work.  

5.1 Achievements 

A popular way of solving CVRP is to cluster the nodes according to vehicles using Sweep 

algorithm first and then generate route for each vehicle with TSP algorithm. In general, Sweep 

cluster construction starts from the node having lowest polar angle. In this study, a variant 

Sweep clustering is investigated which starts cluster formation from different starting angle to 

achieve better CVRP solution. A heuristic based adaptive method is developed to select 

appropriate cluster formation starting angle. Finally, GA, ACO, PSM and VTPSO are applied 

to generate optimal route with the clusters. The experimental result on the benchmark problems 

revealed that different starting angles have positive effect on Sweep clustering. On the other 

hand, recent SI based methods PSM and VTPSO are found better than GA and ACO to generate 

vehicle routes. 

5.2 Perspectives 

There are several future potential directions that follow from this study. In this study, angle 

difference and distance from the depot are considered to select starting angle. Scheme with 

node demand might be interesting. Moreover, it might be interesting to incorporate SI based 

methods on other cluster first route second CVRP methods.  
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