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Abstract 
 

 

In this thesis, we have extended  He’s homotopy perturbation method for obtaining the 

approximate analytical solution of second order generalized strongly nonlinear Duffing 

equation with varying coefficients in presence of significant small damping based on the 

extended form of the Krylov-Bogoliubov-Mitropolskii (KBM) method. Accuracy and 

validity of the solutions obtained by the present method are compared with the 

corresponding numerical solutions obtained by the well-known fourth order Runge-

Kutta method in graphically. The method has been illustrated by examples. In this study, 

the present technique gives acceptable results avoiding any numerical complexity. The 

results presented through figures show that the approximations are of extreme accuracy 

with significant damping. The proposed method is simple and suitable for solving the 

above mentioned nonlinear damped systems. 
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CHAPTER I 

 

Introduction 

Over the past decades, the study of nonlinear problems has been the interest of many 

researchers. Since most of the phenomena in our world are nonlinear and are 

described by nonlinear ordinary or partial differential equations, so the study of 

nonlinear oscillators is of great importance not only in all areas of physics but also in 

applied mathematics, engineering and other disciplines.   

In general, the physicists and engineers use the linear solutions of the nonlinear 

problems imposing some proper restrictions. But such linearization is not always easy 

to apply to the researchers and sometimes, it does not able to give the physically 

acceptable approximations. Consequently, the original nonlinear differential equations 

itself must be considered.  The exact solutions of those nonlinear differential 

equations are usually unobtainable. Therefore, researchers have focused on analytical 

approximation methods or numerical methods to solve those nonlinear differential 

equations. But the positions of the particles/objects are desired by the numerical 

methods only where as the positions as well as the amplitudes and phases of the 

particles/objects are obtained by the analytical methods. So, the analytical techniques 

are important and powerful tools to solve these original nonlinear differential 

equations. Usually, it is too much difficult to solve nonlinear differential equations 

with generalized nonlinearities and varying coefficients in presence of damping 

effects for their complexity and tedious work. 

To solve these nonlinear differential equations, various perturbation methods have 

been widely used [2-27]. The traditional perturbation techniques are based on the 

assumption that a small parameter and linear term must exist in the equations, which 

are too over-strict to find wide application of these techniques. The limitation of the 

perturbation methods is that the approximate solutions are required to be expressed in 

a set of power series associated with small parameters. However, the solutions of 

some nonlinear problems cannot meet this requirement. In order to overcome the 

limitation of the perturbation methods, several analytical approximation methods such 

as Homotopy perturbation method (HPM) [28-35], Harmonic balance method (HBM) 

[36] and Variational iteration method (VIM) [37] have been developed.  

In general, it is often more difficult to find an approximate solution than a numerical 

one of a given nonlinear oscillatory system. There are many analytical approaches to 
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construct the approximate periodic solutions of nonlinear differential equations. 

Perturbations methods are the most common and widely used technique for solving 

nonlinear differential equations, whereby the solution is expanded in the power series 

of a small parameter. The perturbation methods provide accurate results for weak 

nonlinearities but it is unable to give the desire results when nonlinearities becomes 

strong. 

The homotopy perturbation method is a one kind of asymptotic method. The basic 

assumption of the homotopy perturbation method is that the solution of the given 

nonlinear equations can be written as power series of homotopy parameter. In contrast 

to the traditional perturbation methods, this technique does not require a small 

parameter and linear term in the equations. In accordance to the homotopy 

perturbation technique, a homotopy with an imbedding parameter ]1,0[p  is 

constructed and the imbedding parameter is considered as a “small parameter”. The 

results at the first approximations obtained by the homotopy perturbation technique 

are more accurate than the solutions obtained by the traditional perturbation 

techniques at the second and higher approximations.     

 

At first van der Pol [1] paid attention to the new (self-excited) oscillations and 

indicated that their existence is inherent in the nonlinearity of the differential 

equations characterizing the process. Thus, this nonlinearity appears as the very 

essence of these phenomena and by linearizing the differential equations in the sense 

of small oscillations, one simply eliminates the possibility of investigating such 

problems. Thus, it is necessary to deal with the nonlinear differential equations 

directly instead of evading them by dropping the nonlinear terms. To solve nonlinear 

differential equations, there exist some methods such as perturbation method [2-27], 

homotopy perturbation method [28-35], harmonic balance method [36], variational 

iterative method [37], etc. Among these methods, the method of perturbations, i.e., 

asymptotic expansions in terms of a small parameter are first and more frequently 

used.  

A perturbation method known as “the asymptotic averaging method” in the theory of 

nonlinear oscillations was first introduced by Russian famous scientists Krylov and 

Bogoliubov (KB) [2] in 1947. Primarily, the method was developed only for obtaining 

the periodic solutions of second order weakly conservative nonlinear differential 
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systems. Later, the method of KB has been improved and justified by Bogoliubov and 

Mitropolskii [3] in 1961. In literature, this method is known as the Krylov-

Bogoliubov-Mitropolskii (KBM) [2, 3] method.  

  

At the beginning, The KBM [2, 3] method was developed for obtaining only the 

periodic solutions of second order weakly nonlinear differential systems without 

damping. Now a days, this method is used for obtaining the solutions of second, third 

and fourth order weakly nonlinear differential systems for oscillatory, damped, over 

damped, and critically damped cases by imposing some special restrictions with 

quadratic and cubic nonlinearities. Several authors [4-27] have investigated and 

developed many significant results concerning the solutions of the weakly nonlinear 

differential systems based on the KBM method.  

 

The KB [2] method is an asymptotic method in the sense that 0 . An asymptotic 

series itself may not be convergent, but for a fixed number of terms, the approximate 

solution approaches toward the exact solution. Averaging asymptotic KBM [2, 3] 

method and the multiple-time scale method [25, 26] are frequently used two 

techniques in the theory of nonlinear oscillations in literature. Particularly the KBM 

method is convenient and extensively used technique for determining the approximate 

solutions among the methods used for studying the weakly nonlinear differential 

systems with cubic nonlinearity. The KBM method starts with the solution of linear 

equation (sometimes called the generating solution of the linear equation) assuming 

that in the nonlinear cases, the amplitude and phase variables in the solution of the 

linear differential equation are time dependent functions instead of constants. This 

method introduces an additional condition on the first derivative of the assumed 

solution for determining the solution of second order nonlinear differential systems. 

The KBM method demands that the asymptotic solutions are free from secular terms. 

These assumptions are mainly valid for second and third order  nonlinear differential 

systems. But, for the fourth order differential equations, the correction terms 

sometimes contain secular terms, although the solution is generated by the classical 

KBM asymptotic method. For this reason, sometimes the traditional solutions fail to 

explain the proper situation of the nonlinear systems. One needs to impose some 



 4 

special conditions for removing the presence of secular terms to get the desired 

results.  

He [28-31] has developed a homotopy perturbation technique for solving second 

order strongly nonlinear differential systems. In this method the solution is considered 

as the summation of an infinite series which converges rapidly to the exact solutions. 

This technique has been employed to solve a large variety of nonlinear differential 

equations. Uddin et al. [32], Uddin and Sattar [33], Dey et al. [34] have been 

extended the homotopy perturbation method to damped nonlinear differential systems. 

Recently, Uddin and Saiful [35] have developed an analytical technique for solving 

strongly nonlinear damped systems with fractional power restoring force. Rahman 

and Lee [36] have developed new modified multi-level residue harmonic balance 

method for solving nonlinear vibrating double-beam problem. 

 

In this research, an analytical technique is extended to find the approximate solutions 

of second order generalized strongly nonlinear Duffing equation with varying 

coefficients in presence of small damping effects based on the He’s  homotopy 

perturbation [28-36] and the extended form of the KBM [2,3] method. On the other 

hand, the proposed technique can take full advantage of the traditional perturbation 

techniques. Analytical approximate techniques are more appealing because of their 

analytical expressions which are inherent in physical meaning and more suitable for 

parametric study. In contrast, the numerical methods are comparatively easy to 

program but they need heavy computational effort and proper initial guess values. To 

justify the proposed method, the analytical approximate solution is compared to those 

numerical solution obtained by the fourth order Runge-Kutta method for different 

values of the parameters in graphically. 

 

In Chapter II, the review of literature is presented. An analytical technique has been 

extended for solving second order generalized strongly nonlinear Duffing equation 

with varying coefficients in presence of small damping in Chapter III,. Finally, in 

Chapter IV, the concluding remarks are given. 
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CHAPTER II 

 

 
Literature Review 

 

 
Few issues occurring in different field of applied sciences and in various engineering 

problems are linear whereas as a large number of oscillation problems are nonlinear. 

So, the nonlinear oscillations in applied mathematics, physical sciences, mechanical 

structures, engineering, medical science and economics have been directed towards a 

topic to intensive research for many years. In various engineering problems like long 

span bridges, aerospace vehicles, robot arms, the beam/plate modeling and the 

corresponding vibrations analyses are quiet important. The mathematical formations 

of various engineering problems are governed by nonlinear ordinary or partial 

differential equations. Practically, most of all differential equations involving physical 

phenomena and in various engineering problems are nonlinear. In general, the 

physicists and engineers use the linear solutions of those problems imposing some 

proper restrictions. But such linearization is not always easy to apply to the 

researchers and sometimes, it does not able to give the physically acceptable 

approximations. Consequently, the original nonlinear differential equations itself must 

be considered. The exact solutions of those nonlinear differential equations are 

usually unobtainable. Therefore, some researchers have focused on numerical 

methods or analytical methods to solve these problems. But the positions of the 

particles/objects can be obtained by the numerical methods with proper guess values 

only where as the positions as well as the amplitudes and phases of the 

particles/objects are obtained by the analytical methods with ignoring the noise. So, 

the analytical techniques are important and powerful tools to solve these original 

nonlinear differential equations. Usually, it is too much difficult to solve nonlinear 

differential equations with generalized strong nonlinearities and varying coefficients 

in presence of damping effects for their complexity and tedious work.  In general, it is 

often more difficult to find approximate solution than a numerical one of a given 

nonlinear oscillatory system. There are many analytical approaches to construct the 

approximate periodic solutions of nonlinear differential equations. Perturbations 

methods are the most common and widely used technique for solving nonlinear 

differential equations, whereby the solution is expanded in the power series of a small 
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parameter. Among the perturbations methods, Krylov-Bogoliubov-Mitropolskii 

(KBM) method [2-4], Lindstedt-Poincare (LP) method [5] and multiple time scale 

method [4] are frequently used. The perturbation methods provide accurate results for 

weak nonlinearities but it unable to give the desired results when nonlinearity 

becomes strong. 

 

During last several decades in the th20  century, some famous Russian scientists like 

Krylov and Bogoliubov [2], Bogoliubov and Mitropolskii [3], Mitropolskii [4], have 

investigated the nonlinear dynamics. For solving nonlinear differential equations, 

there exist some methods. Among the methods, the method of perturbations, i.e., an 

asymptotic expansion in terms of small parameter is foremost. In 1947, Krylov and 

Bogoliubov (KB) [2] considered the equation of the form 

 ),,,,(2  txxfxx    (2.1) 

where x  denotes the second order derivative with respect to t,   is a small positive 

parameter and f is a power series in  , whose coefficients are polynomials in 

txx sin,,   and tcos . In general, f  does not contain either   or t  explicitly. In KBM 

[2, 3] method, it is assumed that the amplitude and phase variables in the solution of 

the linear equations are time dependent functions instead of constants in nonlinear 

differential systems. This procedure introduces an additional condition on the first 

derivative of the assumed solution for determining the desired results. To describe the 

behavior of nonlinear oscillations by the solutions obtained by the perturbation 

method, Poincare [5] discussed only periodic solutions. Duffing [6] has investigated 

many significant results for the periodic solutions of the following damped nonlinear 

differential systems  

 .2 32 xxxkx     (2.2) 

Sometimes different types of nonlinear phenomena occur, when the amplitude of a 

dynamic system is less than or greater than unity. The damping is negative when the 

amplitude is less than unity and the damping is positive when the amplitude is greater 

than unity. The governing equation having these phenomena is 

 .0)1( 2  xxxx    (2.3) 

In literature, this equation is known as van der Pol [1] equation and is used in 

electrical circuit theory. Kruskal [7] has extended the KB [2] method to solve the fully 

nonlinear differential equation of the following form 
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 ).,,( xxFx    (2.4a) 

Cap [8] has studied nonlinear differential system of the form 

 ).,(2 xxFxx     (2.4b) 

Generally, F  does not contain   or t  explicitly, so the equation (2.1) leads to 

 ).,(2 xxfxx     (2.5) 

In the treatment of nonlinear oscillations by the perturbation methods, only periodic 

solutions are discussed, transients are not considered by different investigators, where 

as KB [2] have discussed transient response. 

When ,0  the equation (2.5) reduces to linear equation and its solution can be 

obtained as  

 ).cos(   tax  (2.6) 

where a  and   are arbitrary constants and the values of these arbitrary constants are 

determined by using the given initial conditions. 

When ,0  but is sufficiently small, then in KB [2] it is assumed that the solution of 

equation (2.5) is still given by equation (2.6) together with the derivative of the form 

 ).sin(   tax  (2.7) 

where a  and   are functions of t, rather than being constants. In this case, the 

solution of equation (2.5) is 

 ))(cos()( tttax    (2.8) 

and the derivative of the solution is 

 )).(sin()( tttax    (2.9) 

Differentiating the assumed solution equation (2.8) with respect to time t, we obtain  

 ).(,sinsincos ttaaax     (2.10) 

Using the equations (2.7) and (2.10), we get 

 .sincos   aa   (2.11) 

Again, differentiating equation (2.9) with respect to t, we have  

 .coscossin 2   aaax   (2.12) 

Putting the value of x  from equation (2.12) into the equation (2.5) and using 

equations (2.8) and (2.9), we obtain 

 ).sin,cos(cossin  aafaa    (2.13) 

Solving equations (2.11) and (2.13), we have 
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 ),sin,cos(sin 



aafa   (2.14) 

 ).sin,cos(cos 



 aaf

a
  (2.15) 

It is observed that, a basic differential equation (2.5) of the second order in the 

unknown x , leads to two first order differential equations (2.14) and (2.15) in the 

unknowns a  and   to get its solutions. 

Moreover, 
.

a  and 
.

  are proportional to   and they are slowly varying functions of 

the time t  with period .
2




T  It is noted that these first order differential equations 

are now written in terms of the amplitude a  and phase   as dependent variables. 

Therefore, the right sides of equations (2.14) and (2.15) show that both a  and 
.

  are 

periodic functions of period T . In this case, the right-hand terms of these equations 

contain a small parameter   and also contain both a  and ,  which are slowly 

varying functions of the time t  with period .
2




T  We can transform the equations 

(2.14) and (2.15) into more convenient form. Now, expanding 

)sin,cos(sin  aaf   and )sin,cos(cos  aaf   in a Fourier series with 

phase ,  the first approximate solution of equation (2.5) is obtained by averaging 

equations (2.14) and (2.15) with period 


2
T  in the following form 

 

,)sin,cos(cos
2

,)sin,cos(sin
2

2

0

2

0
























daaf
a

daafa





 (2.16) 

where a  and   are independent of time t  under the integral signs.  

Later, KB method has been extended mathematically by Bogoliubov and Mitropolskii 

[3], and has been extended to non-stationary vibrations by Mitropolskii [4]. They have 

assumed the solution of equation (2.5) in the following form 

 ),(),(............),(),(cos 1

2

2

1

 n

n

n Oauauauax   (2.17) 
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where ,ku  ).......,,2,1( nk   are periodic functions of   with period ,2  and the 

terms a  and   are functions of time t  and is obtained by solving the following first 

order ordinary differential equations 

 ),()(..........)()( 1

2

2

1

 n

n

n OaAaAaAa   (2.18 a) 

 ).()(.......)()( 1

2

2

1

 n

n

n OaBaBaB   (2.18 b) 

The functions kk Au ,  and ,kB  ).......,,2,1( nk   are to be chosen in such a way that 

the equation (2.17), after replacing a  and   by the functions defined in equation 

(2.18), is a solution of equation (2.5). Since there are no restrictions in choosing 

functions kA  and ,kB  it generates the arbitrariness in the definitions of the functions 

ku  (Bogoliubov and Mitropolskii [3]). To remove this arbitrariness, the following 

additional conditions are imposed 

  



2

0
,0cos),( dauk  (2.19a) 

  



2

0
.0sin),( dauk  (2.19b) 

Secular terms are removed by using these conditions in all successive approximations. 

Differentiating equation (2.17) two times with respect to t , and then substituting the 

values of xx  ,  and x  into equation (2.5), and using the relations equation (2.18) and 

equating the coefficients of ,k  ).......,,2,1( nk  , we obtain 

 ),sincos(2),())(( )1(2   kk

k

kk ABaafuu    (2.20) 

and  

 ),sin,cos(),()0(  aafaf   (2.21a) 

 

).)()((2sin)2(

cos)()sin,(cos

))(sincos()sin,cos(),(

1111
1

111

1
1

2

1

1111

)1(

.











uBuA
da

dB
AaBA

da

dA
ABaaf

uBaAaafuaf

a

x

x







 (2.21b) 

 

where )( ku  denotes partial derivative with respect to   and )1( kf  is a periodic 

function of   with period 2  which depends also on the amplitude a . Therefore, 

)1( kf  and ku  can be expanded in a Fourier series in the following form 
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 


 



1

)1()1()1(

0

)1( ),sin)(cos)(()(),(
n

k

n

k

n

kk nahnagagaf  (2.22a) 

 


 



1

)1()1()1(

0 ),sin)(cos)(()(),(
n

k

n

k

n

k

k nanavavau  (2.22 b) 

 

where 

 .)sin,cos(
2

1
)(

2

0

)1()1(

0   






daafag kk   (2.23) 

Here, 0)1(

1

)1(

1   kkv   for all values of k , since both integrals of equation (2.19) are 

vanished. Substituting these values into the equation (2.20), we obtain 

 































2

)1()1(

)1(

1

)1(

1

)1(

0

2

)1()1(22)1(

0

2

].sin)(cos)([

sin)2)((cos)2)(()(

]sin)(cos)()[1()(

n

k

n

k

n

k

k

k

kk

n

k

n

k

n

k

nahnag

nAahnBaagag

nanavnav

 (2.24) 

Now, equating the coefficients of the harmonics of the same order, we get 

 

.1,
)1(

)(
)(,

)1(

)(
)(

,
)(

)(,02)(,02)(

22

)1(

)1(

22

)1(
)1(

2

)1(

0)1(

0

)1(

1

)1(

1





















n
n

ah
a

n

ag
av

ag
avAahBaag

k

nk

n

k

nk

n

k
k

k

k

k

k









 (2.25) 

These are the sufficient conditions to obtain the desired order of approximations. For 

the first approximation, we have 

 ,sin)sin,cos(
2

1

2

)(
2

0

)0(

1
1  






dataf
ah

A  (2.26a) 

 .cos)sin,cos(
2

1

2

)(
2

0

)0(

1
1  






dataf
aa

ag
B  (2.26b) 

Thus, the variational equations in equation (2.18) become 

 ,sin)sin,cos(
2

2

0

 







daafa  (2.27a) 

 .cos)sin,cos(
2

2

0

 







 daaf

a
  (2.27b) 
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It is seen that the equation (2.27) are similar to the equation (2.16). Thus, the first 

approximate solution obtained by Bogoliubov and Mitropolskii [3] is identical to the 

original solution obtained by KB [2]. The correction term 
1u  is obtained from 

equation (2.22) by using equation (2.25) as 

 
 










 2
22

)0()0(

2

)0(

0
1

)1(

sin)(cos)()(

n

nn

n

nahnagag
u  (2.28) 

The solution equation (2.17) together with 
1u  is known as the first order improved 

solution in which a  and   are obtained from equation (2.27). If the values of the 

functions 
1A  and 

1B  are substituted from equation (2.26) into the second relation of 

equation (2.21b), the function )1(f  is determined. In the similar way, the functions 

22 , BA  and 
2u  can be found. Therefore, the determination of the second order 

approximation is completed. The KB [2] method is very similar to that of van der Pol 

[1] method and related to it. van der Pol [1] has applied the method of variation of 

constants to the basic solution tbtax  sincos   of ,02  xx   on the other 

hand KB [2] has applied the same method to the basic solution )cos(   tax  of 

the same equation. Thus, in the KB [2] method the varied constants are a  and ,  

while in the van der Pol’s method the constants are a  and b . The KB [2] method 

seems more interesting from the point of view of physical applications, since it deals 

directly with the amplitude and phase of the quasi-harmonic oscillations. The solution 

of the equation (2.4a) is based on recurrent relations and is given as the power series 

of the small parameter. Cap [8] has solved the equation (2.4b) by using elliptical 

functions in the sense of KB [2]. The KB [2] method has been extended by Popov [9] 

to damped nonlinear differential systems represented by the following equation 

 ),,(2 2 xxfxxkx     (2.29) 

where xk 2  is the linear damping force and .0  k  It is noteworthy that, because 

of the importance of the Popov’s method in the physical nonlinear differential 

systems, involving damping force, Mendelson [10] and Bojadziev [11] have retrieved 

Popov’s [9] results. In case of damped nonlinear differential systems, the first 

equation of equation (2.18a) has been replaced by 

 ).()(............)()( 1

2

2

1

 n

n

n OaAaAaAaka   (2.18a) 
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Murty and Deekshatulu [12] have developed a simple analytical method to obtain the 

time response of second order over damped nonlinear differential systems with small 

nonlinearity represented by the equation (2.29), based on the KB [2] method. In 

accordance to the KBM [2, 3] method, Murty et al. [13] have found a hyperbolic type 

asymptotic solution of an over damped system represented by the nonlinear 

differential equation (2.29), i.e., in the case k . They have used hyperbolic 

functions, cosh  and sinh  instead of their circular counterpart, which are used by 

KBM [2, 3], Popov [9] and Mendelson [10]. Murty [14] has presented a unified KBM 

method for solving the nonlinear differential systems represented by the equation 

(2.29), which cover the undamped, damped and over-damped cases. Bojadziev and 

Edwards [15] have investigated solutions of oscillatory and non-oscillatory systems 

represented by equation (2.29) when k  and   are slowly varying functions of time t. 

Initial conditions may be used arbitrarily for the case of oscillatory or damped 

oscillatory process. But, in case of non-oscillatory systems cosh  or sinh  should 

be used depending on the given set of initial conditions (Murty et al. [13], Murty [14], 

Bojadziev and Edwards [15]). Arya and Bojadziev [16, 17] have examined damped 

oscillatory systems and time dependent oscillating systems with slowly varying 

parameters and delay. Sattar [18] has developed an asymptotic method to solve a 

second order critically damped nonlinear differential system represented by equation 

(2.29). He has assumed the asymptotic solution of the equation (2.29) in the following 

form 

 ),(),(...........),()1( 1

1

 n

n

n Oauauax   (2.30) 

where a  is defined by the equation (2.18a) and   is defined by  

 )()(...........)()(1 1

2

2

1

 n

n

n OaCaCaC   (2.18b) 

Also Sattar [19] has extended the KBM method for three dimensional over damped 

nonlinear systems. Osiniskii [20] has extended the KBM method to the following 

third order nonlinear differential equation 

 ),,,(321 xxxfxcxcxcx    (2.31) 

where   is a small positive parameter and f is a given nonlinear function. He has 

assumed the asymptotic solution of equation (2.31) in the form 

 ),(),,(...........),,(cos 1

1

 n

n

n Obaubaubax   (2.32) 
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where each ku  ).......,,2,1( nk   is a periodic function of   with period 2  and 

ba,  and   are functions of time t, and they are given by 

 ),()(...........)()( 1

2

2

1

 n

n

n OaAaAaAaa   (2.33a) 

 ),()(...........)()( 1

2

2

1

 n

n

n ObBbBbBbb   (2.33b) 

 ),()(...........)()( 1

2

2

1

 n

n

n ObCbCbC   (2.33c) 

 

where  i ,  are the eigen values of the equation (2.31) when .0  

Lin and Khan [21] have also used the KBM method for solving biological problems. 

Proskurjakov [22] has investigated periodic solutions of nonlinear systems by using 

the Poincare and KBM methods, and compared the two solutions.  

Alam and Sttar [23] have investigated a unified KBM method for solving nth  

)3,2( n  order nonlinear differential equation with varying coefficients. Nayfeh [24, 

25] and Murdock [26] have developed perturbation methods and theory for obtaining 

the solutions of weakly nonlinear differential systems. Sachs et al. [27] have 

developed a simple ODE model of tumor growth and anti-angiogenic or radiation 

treatment. 

 

 

The homotopy perturbation method (HPM) was first proposed by the Chinese 

mathematician Ji Huan He [28]. The essential idea of this method is to introduce a 

homotopy parameter, say p , which varies from 0 to 1. At 0p , the system of 

equations usually has been reduced to a simplified form which normally admits a 

rather simple solution. As p  gradually increases continuously toward 1, the system 

goes through a sequence of deformations, and the solution at each stage is closed to 

that at the previous stage of the deformation. Eventually at 1p  the system takes the 

original form of the equation and the final stage of the deformation give the desired 

solution. 

He [28] has investigated a novel homotopy perturbation technique for finding a 

periodic solution of a general nonlinear oscillator for conservative systems. He [30] 

has considered the following nonlinear differential equation in the form 

 ,,0)()(  rrfuA  (2.34) 

with the boundary conditions 
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 ,,0),( 



r

t

u
uB  (2.35) 

where A  is a general differential operator, B  is a boundary operator, )(rf  is a 

known analytical function,   is the boundary of the domain  . Then He [28] has 

written Eq. (2.34) in the following form 

 ,0)()()(  rfuNuL  (2.36) 

where L  is linear part, while N  is nonlinear part. He [28] has constructed a 

homotopy  ]1,0[:),( prv  which satisfies 

  rprfuApuLvLppv ],1,0[,0)]()([)]()()[1(),( 0  (2.37a) 

or 

 ,0)]()([)()()(),( 00  rfvNpupLuLvLpv  (2.37b) 

where ]1,0[p  is an embedding parameter, 0u  is an initial approximation of 

equation (2.34), which satisfies the boundary conditions. Obviously, from equation 

(2.37), it becomes 

 ,0)()()0,( 0  uLvLv  (2.38) 

 .0)()()1,(  rfvAv  (2.39) 

The changing process of p  from zero to unity is just that of ),( prv  from )(0 ru  to 

)(ru . He [28] has assumed the solution of Eq. (2.37) as a power series of p  in the 

following form 

 .2

2

10  vppvvv  (2.40) 

The approximate solution of Eq. (2.34) is given by setting 1p  in the form 

 .210  vvvu  (2.41) 

The series (2.41) is convergent for most of the cases, and also the rate of convergence 

depends on how one chooses )(uA .  

He [29] has developed some new approaches to solve Duffing equation with strongly 

and high order nonlinearity without damping. He [30] has obtained the approximate 

solution of nonlinear differential equation with convolution product nonlinearities.  

 Also, He [31] has presented a new interpretation of homotopy perturbation method. 

Uddin et al. [32] and Uddin and Sattar [33] have presented an approximate technique 

for solving second order strongly nonlinear differential systems with damping by 

combining the He’s [28-31] homotopy perturbation and the extended form of the 
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KBM [2-4] methods. Recently, Dey et al. [34] have also developed an approximate 

solutions of second order strongly and high order nonlinear Duffing equation with 

slowly varying coefficients in presence of small damping based on He’s [28-31] 

homotopy perturbation and the extended form of the KBM [2-4] methods. Recently, 

Uddin and Saiful [35] have developed an analytical technique for solving strongly 

nonlinear damped systems with fractional power restoring force by combining He’s 

HPM and the extended form of the KBM method. Rahman and Lee [36] have 

developed new modified multi-level residue harmonic balance method for solving 

nonlinear vibrating double-beam problem. He [37] has presented a variational 

iteration method for solving strongly nonlinear differential systems. 
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.CHAPTER III 

 

An Analytical Technique for Solving Second Order Generalized Strongly Nonlinear 

Duffing Equation with Varying Coefficients in Presence of Small Damping 

 

3.1 Introduction 

The development of analytical techniques for solving strongly nonlinear damped 

differential systems is a subject of considerable interest that arises in all areas of applied 

mathematics, physics, engineering, medical science, economics and other disciplines, 

since most of the phenomena in the real world are essentially nonlinear and described by 

the nonlinear differential systems in presence of small damping. In general, it is often 

very difficult to get an approximate analytical solution for strongly generalized nonlinear 

differential systems with varying coefficients in presence of small damping than a 

numerical one. The most well-known common methods for constructing the approximate 

analytical solutions to the nonlinear oscillators are the perturbation techniques. Among 

these techniques the Krylov-Bogoliubov-Mitropolskii (KBM) [2-4] method, the 

Lindstedt-Poincare (LP) method [24- 26], and the multiple time scales [24] method are 

frequently used. Perturbation methods are based on an assumption that small parameters 

must exist in the equations, which is too strict to find wide application of the classical 

perturbation techniques. It determines not only the accuracy of the perturbation 

approximations, but also the validity of the perturbation methods itself. However, in 

science and engineering, there exist many nonlinear oscillatory problems which do not 

contain any small parameter, especially those appear in nature with strong nonlinearities. 

Therefore, many new techniques have been proposed to eliminate the “small parameter” 

assumption. Among these, the homotopy perturbation method (HPM) is a popular one. 

The method is a coupling of the traditional perturbation method and homotopy in 

topology. This method, which does not require a small parameter in an equation, has a 

significant advantage in that, it provides an analytical approximate solution to a wide 

range of nonlinear problems in applied sciences. 

Arya and Bojadziev [17] have presented time dependent oscillating systems with 

damping, slowly varying parameters and delay. In recent years, He [29] has developed 

some new approaches to Duffing equation with strongly and high order nonlinearity. In 

another paper, He [30] has obtained the approximate solution of nonlinear differential 
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equation with convolution product nonlinearities. He [31] has presented a new 

interpretation of homotopy perturbation method. Uddin et al. [32] have presented an 

approximate technique for solving strongly nonlinear differential systems with cubic 

nonlinearity in presence of small damping. Uddin and Sattar [33] have also presented an 

approximate technique for solving Duffing` equation with slowly varying coefficients and 

cubic nonlinearity in presence of small damping. Dey et al. [34] have presented an 

approximate solutions of second order strongly and high order nonlinear Duffing equation 

with slowly varying coefficients in presence of small damping. 

 From our study, it has been seen that the author [28-31] have studied nonlinear 

differential systems without considering any damping effects. But most of the physical 

and engineering problems occur in nature as nonlinear differential systems with varying 

coefficients in presence of small damping. The aim of this research is to extend an 

approximate analytical technique combining the He’s homotopy perturbation technique 

and the extended form of the KBM method for solving the second order generalized 

strongly nonlinear Duffing equation with varying coefficients in presence of small 

damping. The presented procedure can eliminate the limitations of classical perturbation 

and He’s homotopy perturbation techniques, and the solution procedure is very simple 

and lead to high accurate solutions which are valid for the whole solution domain. 

 

3.2. The Method 

Let us assume the strongly nonlinear generalized Duffing oscillator with slowly varying 

coefficients in presence of small damping modeling in the form  

  ,),(),(),(),(2 7755331 xxfxxfxxfxxfxexkx nn
    (3.1) 

with the initial conditions 

 ,0)0(,)0( 0  xbx   (3.2) 

where over dots denote differentiations with respect to time ,t  t   is slow time,   is 

a parameter small, 1  is a parameter but not necessarily small k2  is the linear damping 

coefficient, 0b  is an initial amplitude,  si '  are constants and nixxfi  7,5,3),,(   are 

given nonlinear functions which satisfies the following condition 

 ).,(),( xxfxxf ii
   (3.3) 

To solve the equation (3.1), we are going to use the following transformation [32, 33] 
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 tketyx  )( . (3.4) 

Now differentiating equation (3.4) twice with respect to time t  and substituting xx  ,  

together with x  into equation (3.1), we obtain 

  


 
n

i

tktk

ii

tk eykyeyfeykey
5,3,1

1

2 )(,)(   . (3.5) 

According to the homotopy perturbation [28-35] method, equation (3.5) can be re-written 

as  

  ,)(,
5,3,1

1

2




 
n

i

tktk

ii

tk eykyeyfeyyy    (3.6) 

where 

 .2    ke  (3.7) 

Herein   is known as the frequency of the nonlinear differential systems and   is an 

unknown function which can be evaluated by eliminating the secular terms. In the case of 

the damped nonlinear differential systems   is a time dependent function and it varies 

slowly with time t . To handle this situation, we are interested to use the extended form 

[4] of the KBM [2,3] method. According to this method, we choose the solution of 

equation (3.6) in the following form 

 ,cosby   (3.8) 

where b  and   vary slowly with time t . In literature b  and   are known as the 

amplitude and phase variables respectively and they keep an important role to nonlinear 

physical systems. The amplitude b  and phase variable   satisfy the following first order 

ordinary differential equations 

 
,),(),()(

,),(),(

2

2

1

2

2

1













bCbC

bBbBb
 (3.9) 

 Now differentiating equation (3.8) twice with respect to time t , utilizing the relations 

equation (9) and substituting yy ,  into equation (3.6) and then equating the coefficients 

of sin , cos  and neglecting )( 2O  ,we obtain 

 ,0),2/( 11  CbB   (3.10) 

where prime denotes differentiation with respect to slow time  . Now putting equation 

(3.8) into equation (3.4) and equation (3.10) into equation (3.9), we obtain the following 

equations  

 

 ,costkebx   (3.11) 
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).(

),2/(











 bkb
 (3.12) 

Thus, the first approximate analytical solution of equation (3.1) is given by equation 

(3.11) with the help of equations (3.7) and (3.12). Usually the integration of equation 

(3.12) is performed by well-known techniques of calculus [24-26], but sometimes they 

are calculated by a numerical procedure [14-19]. 

 

3.3. Examples 

3.3.1 To justify the validity of the presented method, let us consider the strongly 

generalized nonlinear Duffing equation with a linear damping effects for 5,3i  in the 

following form 

 ),(2 5

5

3

31 xxxexkx     (3.13) 

where .),(,),( 5

5

3

3 xxxfxxxf    Now using the transformation equation (3.4) into 

equation (3.13) and then simplifying them, we obtain 

 ).()( 45

5

23

31

2 tktk eyeyykey     (3.14) 

According to the homotopy perturbation [28-35] technique, equation (3.14) can be written 

as 

 ),( 45

5

23

31

2 tktk eyeyyyy     (3.15) 

where   is given by equation (3.7). According to the extended form [4] of the KBM 

[2,3] method, the solution of equation (3.15) is obtained from equation (3.8). 

By the trigonometric identity, we know 
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for all odd n . Now using the value of y  from equation (3.8) into the right hand side of 

equation (3.15) and using the trigonometric identity equation (3.16) for 5,3n  and then 

rearranging, we obtain 
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The requirement of no secular terms in particular solution of equation (3.15) implies that 

the coefficients of the cos  terms are zero. Setting these terms to zero, we obtain 

 ,0
16

5

4

3 45

51

23

31 
 tktk ebeb

b


  (3.18) 

which leads to (for non trivial solution 0b ) 
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31

tktk ebeb 
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  (3.19) 

Putting the value of   from equation (3.19) into equation (3.6), then it leads to 
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

 
 (3.20) 

From equation (3.20) it is clear that, the frequency of the damped nonlinear differential 

systems depends on both amplitude b  and time t. When 0t  then equation (3.20) 

yields  
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k


   (3.21) 

Integrating equation (3.12), we get 
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 (3.22) 

where 0b  and 0  are constants of integration and is known as the initial amplitude and 

phase variable of the systems respectively. Now putting equation (3.22) into equation 

(3.20), we obtain a biquadratic algebraic equation in   in the following form 

 ,024  rqp   (3.23) 

where 
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  (3.24) 

The solution of equation (3.23) is computed by using the well-known Newton-Raphson 

method. Thus, the first order analytical approximate solution of equation (3.13) is given 

by  

 ,costkebx   (3.25) 

where 0  is obtained by equation (3.21),   is calculated from equation (3.23), b  and   

are carried out by equation (3.22). 
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3.3.2 As a second example, let us consider the strongly generalized nonlinear Duffing 

oscillator with a linear damping effects modeling in the following form 

 ).(2 7

7

5

5

3

31 xxxxexkx     (3.26) 

Now by using the transformation equation (3.4) into equation (3.26) and then simplifying 

them, we obtain 

 ).()( 67
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45
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23

31

2 tktktk eyeyeyykey     (3.27) 

According to the homotopy perturbation [28-35] method, equation (3.27) yields  

 ),( 67

7

45
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23

31

2 tktktk eyeyeyyyy     (3.28) 

where   is obtained by equation (3.7). By the extended form of the KBM [2-4] method, 

the solution of equation (3.28) is performed by equation (3.8). 

For 7n , the trigonometric identity equation ( 3.16) leads to  

 .64/)cos353cos215cos77(coscos7    (3.29) 

The requirement of no secular terms in particular solution of equation (3.28) implies that 

the coefficients of the cos  terms are zero. Setting these terms to zero, we obtain 
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  (3.30) 

which leads to 

 .
64

35

16

5

4

3 66

71

44

51

22

31

tktktk ebebeb 




  (3.31) 

Putting the value of   from equation (3.31) into equation (3.7), yields 
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 (3.32) 

From equation (3.32), we obtain (as 0t ) 
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By integrating the first equation of equation (3.12) and using it into equation (3.32), we 

obtain a fifth degree algebraic equation in   in the following form 

 ,0235  srqp   (3.34) 

where 
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 (3.35) 

The solution of equation (3.34) is obtained by using the well-known Newton-Raphson 

method. 

Thus, the first order analytical approximate solution of equation (3.26) is given by 

 ,costkebx   (3.36) 

 ,)(,
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0
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0 



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t

dbb  (3.37) 

where 0  is obtained by equation (3.33),   is calculated from equation (3.32), b  and   

are given by equation (3.37). 
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CHAPTER  IV 

 

 

Results and Discussion 

 

In this research, we have extended He’s homotopy perturbation method to solve the 

second order strongly generalized nonlinear Duffing oscillators with significant small 

damping effects. The classical perturbation methods [1-5] are failed to solve the 

generalized strongly nonlinear Duffing type problems in presence of damping and He’s 

homotopy perturbation method is failed to handle the strongly generalized nonlinear 

Duffing type problems in presence of damping. But the suggested method has been 

successfully applied to solve second order strongly as well as weakly generalized 

nonlinear differential systems with significant small damping effects. The first order 

approximate solutions of equation (3.13) and equation (3.26) are computed with small 

damping by equations. (3.25) and (3.36) respectively and the corresponding numerical 

solutions are obtained by using fourth order Runge-Kutta method. The variational 

equations for the amplitude and phase variable appeared in a set of first order differential 

equations. The integration of these variational equations is carried out by the well-known 

techniques of calculus [24-26]. In a lack of analytical solutions, they are solved by 

numerical procedure [23, 32-35]. The amplitude and phase variable change slowly with 

time t . The behavior of amplitude and phase variable characterize the oscillating 

processes and amplitude tends to zero in presence of small damping for large time t  

( ).,. tei . On the other hand, our proposed technique can take full advantages of the 

classical perturbation methods. The solutions obtained by the present method show a 

good agreement with those solutions obtained by the numerical procedure [23, 32-35] 

with several significant small damping effects.  

It is noticed that the present method is suitable for second order strongly as well as 

weakly generalized nonlinear Duffing oscillators with significant small damping effects 

while the classical perturbation and He’s homotopy perturbation methods are not suitable 

for such cases. Comparisons are made between the solutions obtained by the present 

technique and those obtained by the numerical procedure in Figs. 4.1-4.3 for both 

strongly )0.1( 1   as well as weakly )1.0( 1   generalized nonlinear differential systems 

with significant small damping effects in graphically. Also the solution of the Duffing 

equation for cubic nonlinearity is obtained from equation (3.13) and equation (3.26) by 

setting 0,0 75    with significant small damping (Figs. 4.3) which agrees to the 

results of [32]. Thus, the present method is proved to be a powerful mathematical tool to 

find the approximate solutions of strongly as well weakly generalized nonlinear 

differential systems in presence of significant small damping effects. 
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Fig. 4.1 (a) First approximate solution of equation (3.13) is denoted by   (dash-dots 

lines) by the presented analytical technique with the initial conditions 0,5.0 00  b  or 

]00989.0)0(,5.0)0([  xx   with 0.1,0.1,0.1,1.0,1.0 531  k  and 

,3

3 xf   
5

5 xf  . Corresponding numerical solution is denoted by - (solid line). 
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Fig. 4.1 (b) First approximate solution of equation (3.13) is denoted by   (dash-dots 

lines) by the presented analytical technique with the initial conditions 0,5.0 00  b  or 

]03327.0)0(,5.0)0([  xx   with 0.1,0.1,1.0,1.0,1.0 531  k  and 

,3

3 xf   
5

5 xf  . Corresponding numerical solution is denoted by - (solid line). 
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Fig. 4.2 (a) First approximate solution of equation (3.26) is denoted by   (dash - dots 

lines) by the presented analytical technique with the initial conditions 0,5.0 00  b  or 

]05790.0)0(,5.0)0([  xx   with 0.1,0.1,0.1,0.1,1.0,2.0 7531  k  

and 7

7

5

5

3

3 ,, xfxfxf  . Corresponding numerical solution is denoted by - (solid 

line). 
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Fig. 4.2 (b) First approximate solution of equation (3.26) is denoted by   (dash-dots 

lines) by the presented analytical technique with the initial conditions 0,5.0 00  b  or 

]08260.0)0(,5.0)0([  xx   with 0.1,0.1,0.1,1.0,1.0,2.0 7531  k  

and 7

7

5

5

3

3 ,, xfxfxf  . Corresponding numerical solution is denoted by - (solid 

line). 
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Fig.4.3 (a) First approximate solution of equation (3.13) is denoted by   (dash-dots 

lines) by the presented analytical technique with the initial conditions 0,5.0 00  b  or 

]00550.0)0(,7.0)0([  xx   with 0.0,0.0,0.1,0.1,1.0,1.0 7531  k  

and .3

3 xf  Corresponding numerical solution is denoted by - (solid line). 
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Fig. 4.3 (b) First approximate solution of equation (3.13) is denoted by   (dash-dots 

lines) by the presented analytical technique with the initial conditions 0,5.0 00  b  or 

]04156.0)0(,7.0)0([  xx   with 0.0,0.0,0.1,1.0,1.0,1.0 7531  k  

and 
3

3 xf  . Corresponding numerical solution is denoted by - (solid line). 
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CHAPTER V 

 

 

Conclusions 

 

 

It is well known that the classical perturbation methods are limited to weakly nonlinear 

systems. In our study, we have obtained approximate solutions of strongly as well as 

weakly generalized nonlinear Duffing equation with slow varying coefficients in presence 

of small damping. It is noticed that the first approximate solutions show a good 

agreement with the numerical (considered to be exact) solutions. The present method has 

been successfully implemented to illustrate the effectiveness and convenience of the 

suggested procedure. So the proposed method is more computationally efficient than the 

He’s homopty perturbation and extended form of the KBM methods. The determination 

of position, amplitude and phase of nonlinear differential systems is very important in 

mechanics. 

 

From the figures (Figs. 4.1- 4.3), it is clear that the first approximate solutions show good 

agreement with those solutions obtained by the fourth order Runge-Kutta method with the 

several small and significant damping in the whole solution domain. It is also noticed that 

He’s HPM is incapable for solving nonlinear differential systems in presence of any 

damping and KBM method is fail to handle strongly nonlinear differential systems. Both 

limitations have been overcome by the proposed method. 

This method is effective for solving second order strongly generalized nonlinear damped 

physical problems and converging rapidly to the exact solutions. So our proposed method 

can serve as a useful mathematical tool for dealing strongly as well as weakly generalized 

nonlinear damped systems with varying cofficients. The proposed method does not 

require a small parameter in the equation like the classical one. 
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