

i

TITLE PAGE

Solving Multi-Objective Assignment Problem with Decision Maker’s

Preferences by Using Genetic Algorithm

By

Md. Mahbubur Rahman

A thesis report is submitted in partial fulfilment of the requirements for the degree of

Master of Science in Mechanical Engineering.

Khulna University of Engineering & Technology

Khulna 9203, Bangladesh

June 2019

ii

DECLARATION

iii

APPROVAL

iv

ACKNOWLEDGEMENTS

ACKNOWLEDGEMENTS

First of all the author would like to convey his gratitude to the Almighty ALLAH. Without

his blessings, this activity would never be a success. The author would like to thank all

the people who contributed in some way to the work described in this thesis. The author

thanks supervisor Dr. Md. Kutub Uddin, Professor, Department of Mechanical

Engineering (ME), Khulna University of Engineering & Technology (KUET), Khulna,

whose active guidance through the thesis period enabled the author to complete it.

Without his valuable suggestions and generous support from the beginning of the thesis,

completion of this paper was hardly possible. During the tenure, he imparts me the

intellectual freedom in my work, supporting my attendance at various conferences,

engaging me in new ideas, and demanding a high quality of work in all my endeavours.

Author also extend his gratitude to Dr. Sobahan Mia, Professor & Head, ME, KUET, for

giving the opportunity of taking a part of such job. The author is grateful to all the teachers

and staffs of the ME, KUET, Khulna, for their cordial cooperation during the course.

The author would like to thank all the committee members in the board of examiners,

especially Dr. Md. Mosharraf Hossain, Professor, Department of Industrial and

Production Engineering, Rajshahi University of Engineering & Technology (RUET),

Rajshahi, for his interest in the given work. The author also pays homage to Prof. Dr.

Quazi Sazzad Hossain, Vice-Chancellor, KUET, for the financial and non-financial

support to complete the thesis.

June 2019 Md. Mahbubur Rahman

v

ABSTRACT

ABSTRACT

The multi-objective assignment problem is basically the N men –N tasks problem, where

a single task has to be assigned to an individual with a view of optimizing the outcomes.

A common challenge is to address the conflicting objectives which produce Pareto–

optimal solutions. The main feature of the work is- normalizing all the criteria into a

single scale regardless of their measurement units and their demand of minimum or

maximum, which reliefs the researchers from careful attention in quantifying the quality

criteria. The methodology also included the decision maker’s preferences regarding the

objectives. While solving the problem through a genetic algorithm, a new encoding

scheme is used together with a partially matched crossover (PMX). The working principle

of the proposed algorithm is illustrated with a numerical example and its effectiveness

has been compared with some well-established methodologies. It is found that the

proposed algorithm provides a better solution with minimal computational effort.

Keywords: Assignment problem, Multi-objective, Decision maker’s preferences, and

Genetic Algorithm.

vi

CONTENTS

CONTENTS

Content Page

TITLE PAGE...i

DECLARATION ..ii

APPROVAL ... iii

ACKNOWLEDGEMENTS ... iv

ABSTRACT ... v

CONTENTS .. vi

LIST OF FIGURES ...viii

LIST OF TABLES ... ix

CHAPTER I INTRODUCTION .. 1

1.1 General Introduction .. 1

1.2 Objectives of the Study .. 2

1.3 Organization of Thesis ... 2

CHAPTER II LITERATURE REVIEW .. 3

2.1 Literature Review .. 3

2.2 Summary of the Literature Review... 7

CHAPTER III THEORETICAL CONSIDERATION .. 8

3.1 Types of Objective Criteria .. 8

3.2 Transformation of Multi-Objective to a Single Objective ... 8

3.2.1 Case One ... 9

3.2.2 Case Two ... 10

3.2.3 Case Three ... 14

3.2.4 Case Four... 16

CHAPTER IV DEVELOPMENT OF MODEL AND SOLUTION METHODOLOGY 20

4.1 The Model ... 20

4.1.1 Notation ... 20

4.1.2 Mathematical Model .. 21

4.2 The Genetic Algorithm for the MOAP ... 23

4.2.1 Basis of the Formulation .. 23

4.2.2 The Details of the Proposed Algorithm ... 24

4.3 Numerical Illustration and Computational Experience .. 29

4.3.1 Performance Study ... 29

vii

4.3.2 Comparisons of the Proposed Approach with Other Methodologies 31

CHAPTER V RESULTS & DISCUSSIONS ... 37

5.1 Results... 37

5.2 Discussions.. 39

CHAPTER VI CONCLUSIONS ... 41

6.1 Conclusions ... 41

6.2 Limitation .. 41

6.3 Future Possible Works ... 42

REFERENCES ... 43

APPENDIX A .. 46

viii

LIST OF FIGURES

LIST OF FIGURES

Figure

No.

The caption of the Figures Page

Figure 4.1: Convergence to the global maximum fitness .. 30

Figure 4.2: Sensitivity of total cost, total time and total quality to their relative weightage 31

Figure 5.1: Results in two methodologies for three examples ... 37

Figure 5.2: Improvement by the proposed methodology for each criterion in equal priority 38

ix

LIST OF TABLES

LIST OF TABLES

Table

No.

The caption of the Tables Page

Table 3.1: A three objective assignment problem .. 9

Table 3.2: Assigning negative sign before the value of quality ... 9

Table 3.3: Translated single objective problem .. 10

Table 3.4: Objective rating factor determination .. 11

Table 3.5: Determination of relative importance of different Subjective factors 12

Table 3.6: Determination of relative importance of each site for the skill of the worker 12

Table 3.7: Determination of relative importance of each site for customer proximity 13

Table 3.8: Determination of relative importance of each site for community attitude 13

Table 3.9: Summary of subjective factors evaluation ... 13

Table 3.10: A three-objective assignment problem .. 14

Table 3.11: The three-objective assignment problem with the quantified quality 15

Table 3.12: The normalized operation cost, time and quality ... 15

Table 3.13: A three-objective assignment problem .. 16

Table 3.14: Solution of the assignment problem .. 16

Table 3.15: Performance data of four alternatives .. 17

Table 3.16: Normalized rating ... 17

Table 3.17: Weight of each criterion (Depending on decision maker) 17

Table 3.18: Weighted decision criteria .. 18

Table 3.19: Ideal alternative and nadir alternative .. 18

Table 3.20: Distance measure of each alternative... 19

Table 3.21: Ranking of alternatives ... 19

Table 4.1: A MOAP .. 22

Table 4.2: A numerical example of a MOAP [29] .. 29

Table 4.3: Effect of population size changing on different parameters 30

Table 4.4: 6 tasks-6 workers MOAP solution .. 32

Table 4.5: 10 tasks-10 workers three-objective assignment problem .. 33

Table 4.6: 10 tasks-10 worker MOAP solution .. 34

Table 4.7: 14 tasks-14 workers three-objective assignment problem .. 35

Table 4.8: 14 tasks-14 workers MOAP solution ... 36

1

CHAPTER I INTRODUCTION

CHAPTER I

INTRODUCTION

1.1 General Introduction

The assignment problem (AP) is one of the fundamental topics in combinatorial

optimization in the branch of operation research. There is the vast use of assignment

problem in production planning, transportation, telecommunication, VLSI design,

economics etc. It deals with the allocation of the various resources to the various

activities on one to one basis so that an optimal assignment is made in the best possible

way.

“The best person for the task” is a cleverness description of assignment model. The

situation is demonstrated by assigning workers of varying degrees of skill to tasks. The

accomplishment of a task with a skilled worker costs less than one in which an operator

is not skilful. The objectives of the assignment model are to determine the minimum –

cost assignment of workers to tasks [1].

In the real arena, management has many objectives for workers allocation to tasks. We

often come in close contact with an assignment problem, where, cost and time are jointly

co-related [2]. Multi-objective assignment model usually considers time, cost, safety,

quality etc. simultaneously. Single objective optimization is easy to solve but the multi-

objective problem is complex because of the conflicting nature of the objectives. These

problems give rise to a set of trade-off among optimal solutions, popularly known as

Pareto-optimal solutions. For the multi-objective assignment model, all the criteria are

not equally important. Generally, decision maker imparts priority ranking among the

objectives, e.g., time is less important than quality. By incorporating the decision maker’s

preferences into the problem, the problem becomes hard to solve.

2

In computer science and operations research, a genetic algorithm (GA) is metaheuristic

optimization algorithm inspired by the process of natural selection that belongs to the

larger class of evolutionary algorithms (EA). Generally, the genetic algorithm is used to

generate high-quality solutions to optimization and search problems by relying on bio-

inspired operators such as mutation, crossover, and selection [3]. The genetic algorithm

searches the space of solutions by combining the best features of two good solutions into

a single one [4]. Genetic algorithms do not guarantee always to provide the exact optimal

solutions, but they will definitely help to find better optimal solutions as compared to

other methodologies within less amount of time [5].

1.2 Objectives of the Study

The main focus of the present work is to develop an efficient solution methodology for

the multi-objective assignment problem. The methodology will include the decision

maker’s preferences. The specific objectives of the thesis are given below:

i. To develop a methodology based on a genetic algorithm (GA) to solve the multi-

objective assignment problem (MOAP) with decision maker’s preferences.

ii. To make the algorithm efficient with easier computation.

1.3 Organization of Thesis

The organization of the thesis is as follows: Chapter 2 discusses the overview of related

research about assignment problem, MOAP and genetic algorithm (GA). Chapter 3

discusses the theoretical consideration. Chapter 4 demonstrates the methodology of

proposed research in details. Chapter 5 presents the results and discussion of the proposed

model. Chapter 6 includes conclusions, limitation and future scopes of the intended work.

https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Operations_research
https://en.wikipedia.org/wiki/Metaheuristic
https://en.wikipedia.org/wiki/Natural_selection
https://en.wikipedia.org/wiki/Evolutionary_algorithm
https://en.wikipedia.org/wiki/Optimization_%28mathematics%29
https://en.wikipedia.org/wiki/Search_algorithm
https://en.wikipedia.org/wiki/Mutation_%28genetic_algorithm%29
https://en.wikipedia.org/wiki/Crossover_%28genetic_algorithm%29
https://en.wikipedia.org/wiki/Selection_%28genetic_algorithm%29

3

CHAPTER II LITERATURE REVIEW

CHAPTER II

LITERATURE REVIEW

2.1 Literature Review

The linear assignment problem is a special type of linear programming problem where

assignees are being assigned to perform tasks in one to one basis [6]. It addresses the

question of how to set assignee to tasks in an injective way so that the assignment cost

(or profit) is minimum (or maximum).

Kuhn [7] proposed an algorithm for the linear assignment problem known as the

Hungarian method. It is primarily designed for hand computation [8]. Its running time

complexity is O(n3) that is very tedious with a large number of the task [9]. The problem

can also be formulated as an integer-programming model and solved by Branch-and-

Bound technique. The Hungarian algorithm for solving the assignment model is more

efficient than branch-and-bound algorithms [10]. Hungarian method deals with a single

objective. Solving multiple objectives optimization problem is beyond the capacity of this

method. This methods basically works with the quantity which is needed to be minimized

such as cost. Nowadays it is often requirement handling the quantity which needs to be

maximized such as quality.

Sahu and Thapadar [11] solved Single Assignment Problem with genetic algorithm and

Simulated Annealing. They did an experimental investigation into solving the

Assignment model using Genetic Algorithm and Simulated Annealing. Various

parameters affecting the algorithms are studied and their influence on convergence to the

final optimum solution is shown.

Kirubha [12] solved assignment problem under fuzzy environment. In his paper, the

various aspects of fuzzy assignment problem and travelling salesman problem have been

dealt with. The method of solving can be understood easily and applied for practice.

4

Further, the method can be slightly modified and used for solving other linear

programming problem like Transportation problem.

The travelling salesman problem (TSP) was first proposed by Irish mathematician W.R.

Hamilton in the 19th century. The travelling salesman problem (TSP) can be transformed

into an assignment problem [13]. The goal of the problem is to find the shortest route of

the salesman starting from a given city, visiting all other cities only once and finally

coming back to the same city where he started. This is known as NP (non-deterministic

polynomial time) problem in a combinatorial optimization. To solve this problem

different researchers used heuristic, metaheuristic and optimal methods like dynamic

programming, linear programming, branch and bound method, cutting plane algorithms,

stimulated annealing and Markov chain.

Liu and Gao [14] proposed an equilibrium optimization problem and extended the

assignment problem to the equilibrium multi-job assignment problem, and equilibrium

multi-job quadratic assignment problem and used a genetic algorithm to solve the

proposed models. In his paper, the equilibrium optimal problem is proposed and then

some equilibrium problems such as the equilibrium multi-job assignment problem, the

equilibrium multi-job quadratic assignment problem and the minimum costs and

equilibrium multi-job assignment problem are studied. Furthermore, a genetic algorithm

is designed for solving the proposed programming models and some numerical examples

are given to verify the efficiency of the designed algorithm. The designed algorithm can

be easily modified to solving the weighted minimum edge cover set problem of the

complete bipartite graph.

Huang and Zhang [15] develop the method for fuzzy assignment problem with restriction

of qualification. In that paper, they bring forward the person unequal to jobs assignment

problem with restriction of qualification, make the mathematics model, and give the

sufficient and necessary condition for judging the existence of solution; combine with the

algorithm of traditional assignment problem, they give the method for assignment

problem with restriction of qualification. As for the maximum case, the modelling and

judging methods are the same, and the solution method is similar.

5

In the real arena, management has many objectives for tasks allocation to workers. We

often come in close contact with an assignment problem, where, cost and time are jointly

co-related [1]. Multi-objective assignment model usually considers time, cost, safety,

quality etc. simultaneously. Single objective optimization is easy to solve but the multi-

objective problem is complex because of the conflicting nature of the objectives. These

problems give rise to a set of trade-off among optimal solutions, popularly known as

Pareto-optimal solutions.

Pramanik and Biswas [1] solved the MOAP with Generalized Trapezoidal Fuzzy

Numbers. It deals with the imprecise costs, time and effectiveness instead of its precise

information. It also uses linear programming to find the solution. Euclidean distance is

used for selecting a proper priority structure for obtaining a compromise optimal solution.

The concept presented, in his paper, is illustrated with MOAP involving generalized

trapezoidal fuzzy numbers to check the effectiveness of the proposed method.

Bao et al. [16] uses 0-1 programming to translate a MOAP into a linear programming

problem. The provided method can handle non-quantification or quality situation. In the

prerequisite that all tasks can be assigned effectively, the use of resources can be

minimized and the assignment problem can be solved efficiently. Moreover, by adjusting

the weight in each objective, the provided approach, in fact, is a general form to the

original one-objective assignment problem. There may be multiple local optimum

solutions. Linear programming has not the ability to avoid being trapped in local optimal

solution as it starts searching from a single point and moves to nearby better solution

point. This may lead to trapped in local optimal solution [17]. Since the demand for

quality is maximal instead of minimal, the reciprocal of the quantified quality has been

taken as the normalized quality.

Tsai et. al. [18] proposed a new methodology to solve the problem of multi-objective

fuzzy deployment of manpower. They transform the multi-objective problem into a fuzzy

linear programming. In this methodology, a careful attention must be paid to the

determinations of the weights among the resources. The management emphasis may skew

to an erroneous assignment for an inappropriate set of weights.

6

Geetha and Nair [19] shows that the assignment problem has two aspects, namely, the

cost and the time. In that paper, an objective of minimizing the cost of assignment with

an additional ‘supervisory’ cost, which depends on the total time of completion of the

project is formulated and a method of finding an optimal solution for the problem is

developed. They proposed that in the case of a transportation problem, a similar model

can be developed and the algorithm can be modified easily to solve.

On the other hand, in computer science and operations research, genetic algorithm (GA)

is a stochastic search and optimization technique inspired by the process of natural

selection that belongs to the larger class of evolutionary algorithms (EA) [3]. GA is

commonly used to generate high-quality solutions to optimization and search problems

by relying on bio-inspired operators such as mutation, crossover, and selection [20]. GA

is applicable for both constrained and unconstrained optimization problems [21]. GA has

the ability to avoid being trapped in local optimal solution as it starts searching from

multiple points and the mutation operator scatters solution points globally [22].

Deb and Kalyanmoy [23] solved multi-objective optimization using an evolutionary

algorithm. He employed generative multiple-criteria decision-making (MCDM)

methodology to solve multiple objectives optimization. He works with the fast-growing

field of multi-objective optimization based on evolutionary algorithms. First, the

principles of single-objective evolutionary optimization (EO) techniques have been

discussed so that readers can visualize the differences between evolutionary optimization

and classical optimization methods. The Evolutionary Multi-objective Optimization

(EMO) principle of handling multi-objective optimization problems is to find a

representative set of Pareto-optimal solutions. Since an EO uses a population of solutions

in each iteration, EO procedures are potentially viable techniques to capture a number of

trade-off near-optimal solutions in a single simulation run. This chapter has described a

number of popular EMO methodologies, presented some simulation studies on test

problems, and discussed how EMO principles can be useful in solving real-world multi-

objective optimization problems through a case study of spacecraft trajectory

optimization. Finally, his work has discussed the potential of EMO and its current

research activities. The principle of EMO has been utilized to solve other optimization

problems that are otherwise not multi-objective in nature. The diverse set of EMO

7

solutions have been analyzed to find hidden common properties that can act as valuable

knowledge to a user. EMO procedures have been extended to enable them to handle

various practicalities. Finally, the EMO task is now being suitably combined with

decision-making activities in order to make the overall approach more useful in practice.

EMO addresses an important and inevitable fact of problem-solving tasks. EMO has

enjoyed a steady rise in popularity in a short time. EMO methodologies are being

extended to address practicalities. He mentions that in the area of evolutionary computing

and optimization, EMO research and application currently stands as one of the fastest

growing fields.

For the multi-objective assignment model, all the criteria are not equally important.

Generally, decision maker imparts priority ranking among the objectives, eg., time is less

important than quality. By incorporating the decision maker’s preferences into the

problem, the problem becomes hard to solve.

2.2 Summary of the Literature Review

From the literature review, it has been manifested that many research has been worked

on this problem. Traditionally, the assignment problem is solved by considering a single

objective. But in real life situation, it is observed that the application of MOAP is

increased day by day. The attempt of this research is to solve MOAP using a genetic

algorithm. A new methodology based on a genetic algorithm (GA) principles will be

developed that will incorporate multi-objective and decision maker preferences to get a

better result in less time than the other methods.

8

CHAPTER III THEORETICAL CONSIDERATION

CHAPTER III

THEORETICAL CONSIDERATION

The following section will discuss different types of objective criteria and transformation

of multi-objective to a single objective.

3.1 Types of Objective Criteria

Many types of research [4-7] have been developed to solve the assignment problem. Most

of the developed methods for the assignment problem consider the only one-objective

situation at a time, such as the minimum cost assignment problem, the minimum finishing

time etc. assignment problem. The minimum cost assignment problem focuses on how to

assign tasks to workers so that the total operation cost can be minimized. Such problems

have been generally discussed and well developed in many operations research textbooks

and in papers [1-7]. In the defence affair, often, the cost is less important than time. They

may focus on how to assign the tasks to workers so that the total operation time can be

minimized. There are some other criteria which are to be maximized rather than

minimized such as quality, safety, precision etc. All of them are not quantifiable criteria

but qualitative criteria.

3.2 Transformation of Multi-Objective to a Single Objective

In the industry, management has many objectives for the allocation of workers to tasks.

We often come across with an assignment problem, where, cost and time are jointly co-

related [4]. Time, cost, safety, quality etc. are often a simultaneous consideration in multi-

objective assignment model. Single objective optimization is easy to solve but the multi-

objective problem gets complex because of the conflicting nature of the objectives. These

problems give rise to a set of trade-off among optimal solutions, popularly known as

9

Pareto-optimal solutions. Sometimes, it is necessary to take an aggregate decision

regarding all the objectives criteria. This subsection describes the different ways to

convert multi-objective to a single objective.

3.2.1 Case One

Yadaiah and Haragopal [24] proposed a method to translate multi-objectives assignment

problem to single objective problem. They added a negative sign to the criteria that have

to be maximized. For example Table 3.1 is written as Table 3.2.

Table 3.1: A three objective assignment problem

Worker \cost, time,

quality\ Task
M1 M2

W1

15

5

3

16

4

5

W 2

13

5

3

14

4

1

Table 3.1 stands for a MOAP. Here two workers are to assign in two tasks so that cost

and time are minimized meanwhile quality is maximized.

Table 3.2: Assigning negative sign before the value of quality

Worker \cost, time,

quality\ Task
M1 M2

W1

15

5

-3

16

4

-5

W 2

13

5

-3

14

4

-1

Then they sum the cost, time and quality for an assignment of a worker to a task. This

operation translates the multi-objective to the single objective problem. This is illustrated

below (Table 3.3).

10

Table 3.3: Translated single objective problem

Worker \cost,

time, quality\

Task

M1 M2

W1 17 15

W 2 15 17

Hungarian method or other methods can be used to solve the problem as a single objective

problem in Table 3.3. This methodology gives the proper result when all the units of the

criteria are equivalent i.e. 1 unit cost equivalent to 1 unit quality. But it is hardly possible

to express all the criteria in an equivalent unit.

3.2.2 Case Two

Dervitsiotis [25] choose facility location based on objective factor (e.g. cost) and subjective

factors (e.g. skill of worker, customer proximity, community attitude, and communication

network). That method explained below.

Now it is to develop a measure of preference that combines both objective and subjective

factors for each site to select the best location. A versatile method specially designed for

the location-selection problem is a model developed by Brown and Gibson. Now it is being

gone through following sequence of steps:

Step 1: There is the objective factor determination. Usually, all relevant costs are summed

to compute the total annual cost for each site Ci. Next the objective factor OFi is determined

by multiplying Ci by the sum of the reciprocal site costs ∑ (1/Ci) and taking the reciprocal.

11

Table 3.4: Objective rating factor determination

Items

The site (i)

Location 1 Location 2

A
n

n
u

al
 c

o
st

s

($
m

il
li

o
n
s)

 Human

Resource
4.65 4.43

Transportation 2.30 2.33

Total costs (Ci) 6.95 6.76

Reciprocal (1/Ci) 0.1439 0.1479

Sum of Reciprocal(∑1/Ci) 0.2918

Objective rating factor

(OFi={ Ci(∑1/Ci)}
-1)

0.4931 0.5069

Step 2: Key subjective factors determination and their subjective-factor measure SFi

estimation is done for each site by

a. Deriving a factor rating wj for each subjective factor (j= 1, 2, 3……., n) using a

forced choice pairwise comparison procedure. Accordingly, one factor is selected

over another, or they are rated equally.

The paired comparisons as follows:

i. Skill of worker versus customer proximity: skill of worker as more important.

ii. Skill of worker versus community attitude: skill of worker as more important.

iii. Customer proximity versus community attitude: both judged equally

important.

The information can be summarized in Table 3.5 in which it can compute the subjective-

factor importance index wj.

12

Table 3.5: Determination of relative importance of different Subjective factors

Factor

j

Pairwise

comparison

Relative

importance,

wi
1 2 3

Skill of worker 1 1
0.50

Customer proximity 0 1 0.25

Community attitude 0 1 0.25

b. Ranking each site for each factor separately Rij (0≤Rij ≤1, ∑Rij=1)

For each subjective factor separately it repeats the same pairwise comparisons with sites to

determine their relative ranking Rij. For the sites considered for location, selection is shown

in Table 3.6, Table 3.7 and Table 3.8. A skilled worker is any worker who has a special

skill, training, knowledge, and (usually acquired) ability in their work. A skilled worker

may have attended a college, university or technical school. Or, a skilled worker may have

learned their skills on the job. Examples of skilled labour jobs include software

development, paramedics, police officers, painters, craftsmen, and accounting.

Table 3.6: Determination of relative importance of each site for the skill of the worker

Site i Pairwise

comparison

 Sum of

 preferences

Relative

importance, Ri1

1

Location 1 1 1 1

Location 2 0 0 0

Customer proximity is inevitable for business success. Higher customer proximity reduces

transportation cost and minimizes advertising and awareness creating cost. It also builds a

relationship with the customer. Community attitudes are attitudes held by groups of people

that live in communities. Community attitudes play an important role in industrialization.

For example, Tata Nano is not established in a west bangle.

13

Table 3.7: Determination of relative importance of each site for customer proximity

Site, i

Pairwise

comparison
Sum of

preferences

Relative

importance, Ri2

1

Location 1 1 1 0.50

Location 2 1 1 0.50

Table 3.8: Determination of relative importance of each site for community attitude

Site, i

Pairwise

comparison
Sum of

preferences

Relative

importance, Ri3 1

Location 1 1 1 0.50

Location 2 1 1 0.50

In the column for each pairwise comparison possible, we assign 1 to the factor preferred

and 0 to other, while for the case equivalence both factors are assigned a value of 1. It is

important in using such a procedure to check preferences for consistency. Thus if factor 1

is preferred to factor 2 and factor 2 is preferred to factor 3, factor 1 must be preferred to 3;

otherwise, the responses are inconsistent [8].

c. Combining for each site the subjective factor rating,

 SFi = w1 Ri1 + w2 Ri2 + ……..+ wn Rnj (3.1)

Step 3: Combining Objective rating factor and Subjective rating factor to determine

overall location-preference measure:

Having completed the evaluation of both objective and subjective factors, we can now

proceed to combine the results and determine an overall location preference measure

(LPMi) for each site.

Table 3.9: Summary of subjective factors evaluation

Factor

Site, i Relative

importance Location 1 Location 2

Skill of Worker 1 0 0.50

Customer proximity 0.5 0.5 0.25

Community attitude 0.5 0.5 0.25

SFi 0.75 0.25

14

 Then the location-preference measure will be

 𝐿𝑃𝑀𝐿𝑂𝑐𝑎𝑡𝑖𝑜𝑛 1 = 0.4931 + 0.75 = 1.2431 (3.2)

 𝐿𝑃𝑀𝐿𝑂𝑐𝑎𝑡𝑖𝑜𝑛 2 = 0.5069 + 0.25 = 0.7569 (3.3)

Step 4: The site with the maximum LPM is to select. Here site Location 1 has the highest

LPM value and it is selected for the location facility.

This methodology eliminates the barriers of case one methodology. It does not require

the expression of all criteria in equivalent units. An alternative solution gets the value in

criteria as a percentage, where 100% is 1. The total sum of all the alternative solutions

value in criteria is 1 in a normalized table.

3.2.3 Case Three

Bao et al. [16] uses 0-1 programming to translate a MOAP into a linear programming

problem. The objective is to minimize cost, time and maximize quality simultaneously.

Table 3.10: A three-objective assignment problem

Worker \cost, time,

quality\ Task
M1 M2

W1

15

5

Fair

16

4

Good

W2

13

5

Fair

14

4

Poor

It needs to evaluate the quality criteria such as “good”, “fair”, and “poor”. One of the

ways for this purpose is to quantify these quality criteria. For example: assign the criterion

“good” as “5” point, the criterion “fair” as “3” point, and the criterion “poor” as “1” point

and then rewrite Table 3.10 as Table 3.11.

15

Table 3.11: The three-objective assignment problem with the quantified quality

Worker \cost, time,

quality\ Task
M1 M2

W1

15

5

3

16

4

5

W2

13

5

3

14

4

1

Note that the units for measuring time and cost and quality are different, it is not suitable

to put “operation time” directly into the objective function. One direction for solving such

a dilemma is to normalize first both the operation cost and operation time, that is, to divide

both cost and time in Table 3.11 by the maximum cost and time, respectively. For

example, the maximum operation cost, time in Table 3.11 is 16 and 5 respectively, so all

the cost and time must be divided by 16 and 5 respectively. Since the demand for quality

is maximal instead of minimal, the reciprocal of the quantified quality can be taken as the

normalized quality.

Table 3.12: The normalized operation cost, time and quality

 Worker \cost,

time, quality\

Task

M1 M2

W1

0.938

1.000

0.333

1.000

0.800

0.200

W2

0.831

1.000

0.333

0.875

0.800

1.000

This normalized value will be used in the linear programming objective function. The

methodology explained, in this case, give the results similar to case two. An alternative

solution gets the value in criteria as a percentage, where 100% is 1. An alternative solution

having a criteria value highest possess the value 1 in a normalized table. This method

does not normalized quality in a better way when there is no quality value equal to 1 in

the problem, then the normalized table lacks of the maximum value of quality 1.

16

3.2.4 Case Four

Hwang et al. [26] transform multi-objective to single objective by the technique for an

order of preference by similarity to ideal solution (TOPSIS) methodology. It is based

upon the concept that the chosen alternative should have the shortest distance from the

positive ideal solution and the farthest from the negative ideal solution. TOPSIS can

incorporate relative weights of criterion importance.

The idea of TOPSIS can be expressed in a series of steps [27].

(1) Obtain performance data for n alternatives over m criteria xij (i=1,...,n, j=1,...,K).

Table 3.13: A three-objective assignment problem

Worker \cost, time,

quality\ Task
M1 M2 M3

W1

15 18 14

10 7 6

3 5 3

W2

19 14 20

5 6 7

2 1 5

W3

18 15 19

7 5 5

5 3 2

The solution of the assignment problem given in Table 3.13 is shown in Table 3.14

Table 3.14: Solution of the assignment problem

Solution/

Worker/ Task
M1 M2 M3

Alternative 1 1 2 3

Alternative 2 1 3 2

Alternative 3 2 3 1

Alternative 4 2 1 3

Alternative 5 3 1 2

Alternative 6 3 2 1

17

Total cost, total time and total quality of each solution is given in Table 3.15

Table 3.15: Performance data of four alternatives

Solution/Performance/

Criteria

Total

cost

Total

time

Total

quality

Alternative 1 48 21 6

Alternative 2 50 22 11

Alternative 3 48 16 8

Alternative 4 56 17 9

Alternative 5 56 21 15

Alternative 6 46 19 9

(2) Calculate normalized rating (vector normalization is used), rij.

Table 3.16: Normalized rating

Solutions Cost Time Quality

Alternative 1 0.4998 0.5348 0.3453

Alternative 2 0.5206 0.5602 0.6330

Alternative 3 0.4998 0.4075 0.4603

Alternative 4 0.5831 0.4329 0.5179

Alternative 5 0.5831 0.5348 0.8632

Alternative 6 0.4790 0.4839 0.5179

(3) Develop a set of importance weights Wk, for each of the criteria. The basis for

these weights can be anything, but, usually, is ad hoc reflective of relative

importance.

 𝑉𝑖𝑗 = 𝑤𝑗 . 𝑟𝑖𝑗 (3.4)

Table 3.17: Weight of each criterion (Depending on decision maker)

Criteria Cost Time Quality

Weight 1/3 1/3 1/3

18

Table 3.18: Weighted decision criteria

Solutions Cost Time Quality

Alternative 1 0.1666 0.1783 0.1151

Alternative 2 0.1735 0.1867 0.2110

Alternative 3 0.1666 0.1358 0.1534

Alternative 4 0.1944 0.1443 0.1726

Alternative 5 0.1944 0.1783 0.2877

Alternative 6 0.1597 0.1613 0.1726

(4) Identify the ideal alternative (extreme performance on each criterion) S+.

 𝑆+ = {𝑣1
+, 𝑣12

+ , … . 𝑣𝑗
+, … . 𝑣𝑘

+}

 = {(max 𝑣𝑖𝑗 | jϵ 𝐽1), (𝑚𝑖𝑛 𝑣𝑖𝑗 | jϵ 𝐽2), 𝑖 = 1,2, … , 𝑛}

Where J1 is a set of benefit attributes and J2 is a set of cost attributes.

(5) Identify the nadir alternative (reverse extreme performance on each criterion)S−.

 𝑆− = {𝑣1
−, 𝑣12

− , … . 𝑣𝑗
−, … . 𝑣𝑘

−}

 = {(min 𝑣𝑖𝑗 | jϵ 𝐽1), (𝑚𝑎𝑥 𝑣𝑖𝑗 | jϵ 𝐽2), 𝑖 = 1,2, … , 𝑛}

Table 3.19: Ideal alternative and nadir alternative

 Alternative Cost Time Quality

Ideal A*= 0.1597 0.1358 0.2877

Nadir A-= 0.1944 0.1867 0.1151

(6) Develop a distance measure over each criterion to both ideal (D+) and nadir (D−).

 𝐷𝑖
+ = √∑(𝑣𝑖𝑗 − 𝑣𝑗

+)2

𝑗

 (3.5)

 𝐷𝑖
− = √∑(𝑣𝑖𝑗 − 𝑣𝑗

±)2

𝑗

 (3.6)

19

Table 3.20: Distance measure of each alternative

Variable Distance Variable Distance

D1
+ 0.1779 D1

- 0.0290

D2
+ 0.0931 D2

- 0.0981

D3
+ 0.1344 D3

- 0.0695

D4
+ 0.1205 D4

- 0.0715

D5
- 0.0548 D5

- 0.1728

D6
- 0.1179 D6

- 0.0719

(7) For each alternative, determine a ratio R equal to the distance to the nadir divided by

the sum of the distance to the nadir and the distance to the ideal,

 𝑅 =
𝐷−

𝐷− + 𝐷+
 (3.7)

Table 3.21: Ranking of alternatives

Solutions Ratio, R
Value of

ratio, R
Rank

Alternative 1 R1 0.1403 6

Alternative 2 R2 0.5131 2

Alternative 3 R3 0.3409 5

Alternative 4 R4 0.3724 4

Alternative 5 R5 0.7592 1

Alternative 6 R6 0.3788 3

(8) Rank alternative according to ratio R (in Step 7) in descending order.

(9) Recommend the alternative with the maximum ratio: Alternative 5 is selected.

This methodology formulated the MOAP considering quality. The fuzzy method

optimizes cost–time-quality more effectively.

20

CHAPTER IV DEVELOPMENT OF MODEL AND SOLUTION METHODOLOGY

CHAPTER IV

DEVELOPMENT OF MODEL AND SOLUTION METHODOLOGY

In this section, a model is developed and the solution methodology for solving the multi-

objective problem is introduced.

4.1 The Model

The representation of notation and the mathematical model are done as follows.

4.1.1 Notation

Subscripts

i Worker number

j Task number

n Number of total worker/ task

r Chromosome’s number

m Number of total solutions/ chromosomes

c Cost

t Time

q Quality

Parameters and matrixes

Mc The Cost matrix

Mt The Time matrix

Mq The Quality matrix

Cij The element of the ith row and jth column in the cost matrix

Tij The element of the ith row and jth column in the time matrix

21

Qij The element of the ith row and jth column in the quality

matrix

b Gene

L Number of total genes in a chromosome

Cmax Maximum cost

Tmax Maximum time

Qmax Maximum quality

Nc Normalized cost matrix

Nt Normalized time matrix

Nq Normalized quality matrix

Cnij The element of the ith row and jth column in the normalize

cost matrix

Tnij The element of the ith row and jth column in the normalize

time matrix

Qnij The element of the ith row and jth column in the normalize

quality matrix

Wc Weightage of cost

Wt Weightage of time

Wq Weightage of quality

Pm Probability of mutation

4.1.2 Mathematical Model

A MOAP deals with cost, time, quality etc. [13]. The objectives of an assignment problem

are to minimize both operating cost and operating time and to maximize quality

simultaneously [14]. Suppose we have to assign n workers to n tasks in such a way that

the overall operation cost, labour-time, and quality level are optimized.

It is noted that the units for measuring time, cost and quality are different. Generally, the

quality criteria are expressed as “good”, “fair”, and “poor”. Therefore, it is necessary to

quantify this quality criterion in terms of numerical value [21]. We assign 1 for “good”,

3 for “fair” and 5 for “poor” or researcher can express quality into more level in any

22

interval. This assignment imparts the highest value to the lowest quality and the lowest

value to the highest quality [16]. It converts the requirement of maximum quality in

MOAP into a minimum value of quality. Now the demand for the value of all the criteria

viz. cost, time and quality is minimal. The assignment cost, time and quality are given in

Table 4.1.

Table 4.1: A MOAP

Criteria

Worker, i

Task, j

1 2 .. n

Cost,

 Cij

1 C11 C12 .. C1n

2 C21 C22 .. C2n

..

n Cn1 Cn2 .. Cnn

Time,

 Tij

1 T11 T12 .. T1n

2 T21 T22 .. T2n

..

n Tn1 Tn2 .. Tnn

Quality,

 Qij

1 Q11 Q12 .. Q1n

2 Q21 Q22 .. Q2n

..

n Qn1 Qn2 .. Qnn

The problem can be stated as,

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ 𝑋𝑖𝑗𝐶 𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1 (4.1)

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ 𝑋𝑖𝑗𝑇𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1 (4.2)

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ 𝑋𝑖𝑗𝑄𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1 (4.3)

Where

 𝑋𝑖𝑗 = {1 𝑖𝑓 𝑖𝑡ℎ 𝑤𝑜𝑟𝑘𝑒𝑟 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑗𝑡ℎ 𝑡𝑎𝑠𝑘
0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4.4)

 ∑ 𝑥𝑖𝑗 = 1; 𝑗 = 1, 2, … . . , 𝑛 (𝑜𝑛𝑙𝑦 𝑜𝑛𝑒 𝑝𝑒𝑟𝑠𝑜𝑛 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑗𝑡ℎ 𝑡𝑎𝑠𝑘)𝑛
𝑖=1 (4.5)

 ∑ 𝑥𝑖𝑗 = 1; 𝑖 = 1, 2, … . . , 𝑛𝑛
𝑗=1 (𝑜𝑛𝑙𝑦 𝑜𝑛𝑒 𝑡𝑎𝑠𝑘 𝑖𝑠 𝑑𝑜𝑛𝑒 𝑏𝑦 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑤𝑜𝑟𝑘𝑒𝑟) (4.6)

23

4.2 The Genetic Algorithm for the MOAP

In this sub-section, we present the basis and the details of the proposed genetic algorithm.

4.2.1 Basis of the Formulation

The values of one criterion (e.g. cost) may be very high and for another criterion (e.g.

time) may be very low. In the case of minimization, the criteria having high values play

an important role by ignoring the criteria having low value [18]. So it requires the

conversion of all the criteria into a similar scale. The process of normalization translate

all the criteria into a similar scale. For the purpose of normalization, first, maximum

operation cost and maximum operation time and maximum operation quality are

determined. To find the normalized matrix, all the cost, time and quality are divided by

the maximum operation cost, maximum operation time, and maximum operation quality

respectively.

Maximum cost,

 𝐶𝑚𝑎𝑥 = 𝑀𝑎𝑥 (𝐶𝑖𝑗) (4.7)

Maximum time,

 𝑇𝑚𝑎𝑥 = 𝑀𝑎𝑥 (𝑇𝑖𝑗) (4.8)

Maximum quality,

 𝑄𝑚𝑎𝑥 = 𝑀𝑎𝑥 (𝑄𝑖𝑗) (4.9)

Normalized cost matrix,

 𝑁𝑐 = 𝐶𝑛𝑖𝑗 = 𝑀𝑐/𝐶𝑚𝑎𝑥 = [𝐶𝑖𝑗/𝐶𝑚𝑎𝑥] (4.10)

Normalized time matrix,

 𝑁𝑡 = 𝑇𝑛𝑖𝑗 = 𝑀𝑡/𝑇𝑚𝑎𝑥 = [𝑇𝑖𝑗/𝑇𝑚𝑎𝑥] (4.11)

Normalized quality matrix,

 𝑁𝑞 = 𝑄𝑛𝑖𝑗 = 𝑀𝑞/𝑄𝑚𝑎𝑥 = [𝑄𝑖𝑗/𝑄𝑚𝑎𝑥] (4.12)

24

4.2.2 The Details of the Proposed Algorithm

The basic structure of the proposed GA algorithm to solve MOAP is as follows:

Step 1. Create an initial population of m chromosomes where
𝑚

2
 is an even number

(generation 0).

Step 2. Evaluate the fitness of each chromosome.

Step 3. Select parents from the current population via proportional selection (i.e. the

selection probability is proportional to the fitness). The number of total parents is

𝑚

2
.

Step 4. Choose at random a pair of parents for mating and apply partially mapped

crossover (PMX) to create two offspring. A parent is chosen for mating for one

time.

Step 5. Apply mutation operator to offsprings, and insert the resulting offsprings in the

new population with their parents.

Step 6. Repeat steps 5 and 6 until all parents are selected and mated. (i.e. offspring are

created).

Step 7. Find the best chromosome from all the parents and child of the new population.

Replace the ‘best chromosome so far’ by the best chromosome of the new

population when the later one is superior.

Step 8. Replace the old population of chromosomes by the new one.

Step 9. Go back to step 2 if the last generation does not provide a better solution for

several iterations. Otherwise, the final solution is the ‘best chromosome so far’

created during the search.

In the forthcoming section, we will describe the details of the implementation of GA in

solving MOAP.

25

4.2.2.1 Representation of solution

The representation of the solution structure of the MOAP is discussed here. Symbolic

ordered gene (i.e. the value of two alleles cannot be same [19]) strings of length n (total

number of tasks) are used to represent solution (chromosome), henceforth called tasks

chromosome. The chromosome has one allele for each task. The position of an allele in

task chromosome represent the task number while the allele value is the worker number

who is assigned to that task [20]. For example, let a string consists of genes (4, 3, 1, 5, 2).

The allele at the first locus of the string signifies that the worker number 4 is assigned to

task number 1, worker number 3 is assigned to task number 2, and so on.

4.2.2.2 Initial population

The encoded solution is represented as a chromosome. The initial set of solutions i.e. the

population size of m is generated randomly where
𝑚

2
 is an even number, allowing the

entire range of possible solutions (the search space).

For a particular solution i.e. chromosome, the genes,

𝑏𝑗 = 𝑖 𝑤ℎ𝑒𝑟𝑒 𝑖𝑡ℎ 𝑤𝑜𝑟𝑘𝑒𝑟 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑗𝑡ℎ 𝑡𝑎𝑠𝑘 𝑓𝑜𝑟

 𝑗 = 1, 2, … . . , 𝑛

(4.13)

And the chromosome r,

 𝑐ℎ𝑟𝑚𝑟 = 𝑏𝑗 𝑓𝑜𝑟 𝑟 = 1, 2, … . . , 𝑚 𝑎𝑛𝑑 𝑗 = 1, 2, … . . , 𝑛 (4.14)

4.2.2.3 Fitness function

The fitness function works as objective an function which is needed to be maximized. In

this study, the function Fr is used to form fitness functions for chromosome number r.

26

First, the total normalized cost, the total normalized time, and the total normalized quality

are determined. It is often given different priority on cost, time and quality. The Fitness

of a chromosome depends on this priority. The Wc, Wt and Wq are a weightage of the

cost, time and quality respectively. Since the MOAP is a minimization problem, the high

fitness value is associated with minimized cost, minimized time and minimized quality

value. It is to make the fitness choice criteria maximum, thus the inverse of sum product

of priority and respective total normalized values is taken in equation (4.18).

For a particular chromosome i.e. solution,

The total normalized cost,

 𝑇𝑜𝑡 𝑐 = ∑ 𝐶𝑛 𝑏𝑗 𝑗
𝑛
𝑗=1 (4.15)

The total normalized time,

 𝑇𝑜𝑡 𝑡 = ∑ 𝑇𝑛 𝑏𝑗 𝑗
𝑛
𝑗=1 (4.16)

The total normalized quality,

 𝑇𝑜𝑡 𝑞 = ∑ 𝑄𝑛 𝑏𝑗 𝑗
𝑛
𝑗=1 (4.17)

The fitness of chromosome,

 𝐹𝑟 = 1/ (𝑊𝑐 ∗ 𝑇𝑜𝑡𝑐 + 𝑊𝑡 ∗ 𝑇𝑜𝑡𝑡 + 𝑊𝑞 ∗ 𝑇𝑜𝑡𝑞) (4.18)

4.2.2.4 Reproduction

In the present implementation, the proportional selection (i.e. the selection probability is

proportional to the fitness) is used is use [21]. The expected number of chromosomes

going from the parent generation to the mating pool depends on the individual fitness

values [22]. The probability of selection for chromosome r is

 𝑝𝑠𝑒𝑙𝑒𝑐𝑡𝑟 =
𝐹𝑟

∑ 𝐹𝑟
𝑚
𝑟=1

 (4.19)

27

4.2.2.5 Crossover

Every chromosome is an order list of the workers, so the direct swap is not possible.

Partially Matched Crossover (PMX) and cycle crossover (CX) are widely used for the

crossover of ordered chromosomes [23]. PMX and CX are not really competitive with the

order-preserving crossover operators [28]. Partially Matched Crossover (PMX) which

was initially developed for tackling the “Travelling Salesman Problem”, is chosen as the

crossover operator in this model. The crossover in the proposed methodology is explained

below.

Each individual in the mating pool has the same chance of being parent independent of

its fitness. Two parent chromosomes from the mating pool are chosen randomly.

Crossover occurs between this two parents. The locus of the cross-over points is generated

randomly. For example, it is to crossover between,

chrm1 = (1 8 2 4 7 6 5 3) and

chrm2 = (2 7 5 3 1 6 8 4).

Two random number is generated between 1 and L (L=7 in this case). Let it ‘3’ and ‘5’.

The locus of the crossover point is shown by ‘dot’ before position ‘3’ and after position

‘5’.

chrm1 = (1 8 . 2 4 7 . 6 5 3)

chrm2 = (2 7 . 5 3 1 . 6 8 4)

Now the portion between the selected crossover points is swapped and the rest of the

values are changed according to the PMX rule [25]. After exchanging the information,

the two offspring are,

chrm1’ = (7 8 . 5 3 1 . 6 2 4)

chrm2’ = (5 1 . 2 4 7 . 6 8 3)

28

The resulting two chromosomes, called the offspring, added to the population with their

parents. The offspring cannot be chosen for crossover until the next generation. The

process is repeated until the mating pool is not empty, where a parent in the mating pool

take part in crossover for only one time.

4.2.2.6 Mutation

This mutation operator is the closest in philosophy to the biological mutation operator

because it only slightly modifies the original chromosome [26]. In this accomplishment,

we have done the two alleles swapping for each chromosome, in offspring, with the

probability of mutation, pm. For illustration, let us consider the chromosome, from the

previous example,

chrm1’= (7 8 5 3 1 6 2 4)

Suppose the locus chosen for mutation is 2 and 5. Then, after mutation, the new

chromosome (offspring) will be,

chrm1’’= (7 1 5 3 8 6 2 4)

4.2.2.7 Termination

When there is no improvement of the highest fitness value attained for successive (n+10)

generations, it stops creating a new generation. And the chromosome having the highest

fitness in all the generations is taken as a solution of the MOAP.

4.2.2.8 Extracting the values of decision variables from the best chromosome

Chromosomes i.e. solution is made of genes, like 𝑟𝑡ℎ chromosome,

 𝑐ℎ𝑟𝑚𝑟 = 𝑏𝑗 𝑓𝑜𝑟 𝑗 = 1, 2, … . . , 𝑛 (ℎ𝑒𝑟𝑒 𝑏𝑗 𝑖𝑠 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑗𝑡ℎ 𝑔𝑒𝑛𝑒) (4.20)

29

Now, we will set the values of decision variables according to the chromosome, as

follows.

For 𝑖 = 1, 2, … . . , 𝑛 and 𝑗 = 1, 2, … . . , 𝑛

 𝑋𝑖𝑗 = {
1 𝑓𝑜𝑟 𝑖 = 𝑏𝑗

 0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4.21)

4.3 Numerical Illustration and Computational Experience

4.3.1 Performance Study

The genetic algorithm was coded in ANSI C programming language using only simple

array data structure and implemented on a PC (Core i3, Intel processor of 2.2 GHz). Let

us consider a problem where cost, time and quality are considered. And we have to assign

6 workers to 6 tasks based on the data in Table 4.2.

Table 4.2: A numerical example of a MOAP [29]

Criteria

Worker, i

Task, j

1 2 3 4 5 6

Cost,

 Cij

1 6 3 5 8 10 6

2 6 4 6 5 9 8

3 11 7 4 8 3 2

4 9 10 8 6 10 4

5 4 6 7 9 8 7

6 3 5 11 10 12 8

Time,

 Tij

1 4 20 9 3 8 9

2 6 18 8 7 17 8

3 2 8 20 7 15 7

4 12 13 14 6 9 10

5 9 8 7 14 5 9

6 17 13 3 4 13 7

Quality,

 Qij

1 1 3 1 1 1 5

2 3 5 3 5 7 5

3 1 7 5 3 5 7

4 5 9 3 5 7 3

5 3 9 7 5 3 3

6 3 3 5 7 5 7

30

Using the methodology provided in this work with the equal priority of cost, time and

quality the solution is following which corresponds to the total cost of 42 units, the total

time of 41 units and the total quality of 14 units. The solution is

 𝑥14 = 𝑥23 = 𝑥31 = 𝑥46 = 𝑥55 = 𝑥62 = 1

Figure 4.1: Convergence to the global maximum fitness

We get the optimum result at the generation number 17 for the population size of 24. It is

shown in the Figure 4.1. We also test the problem with various population sizes. The

effect population size changing on the other parameters is shown in Table 4.3.

Table 4.3: Effect of population size changing on different parameters

Trial No.

Population

size,

m

CPU time to

get the best

solution

(second)

No. of iteration

required to get

the best solution

The best fitness

value attained so far

1 24 0.016 17 0.0140735

2 40 0.016 22 0.0140735

3 60 0.016 15 0.0140735

4 100 0.016 4 0.0140735

5 200 0.016 7 0.0140735

6 400 0.016 3 0.0140735

In the following figure we will see how different values of priority weightages

(independent variable) affect the dependent values viz. total cost, total time and total

0.100
0.105
0.110
0.115
0.120
0.125
0.130
0.135
0.140
0.145

F
it

n
es

s
V

al
u
e

Best fitness value so far Average fitness value

31

quality. The weightage of one criteria has been changed while keeping the weightage of

other criteria ‘1’ in this experiment.

Figure 4.2: Sensitivity of total cost, total time and total quality to their relative

weightage

4.3.2 Comparisons of the Proposed Approach with Other Methodologies

To further review of the proposed approach, the results of the developed approach has

been compared with the experimental result produced by the multi-objective fuzzy

deployment methodology developed by Tsai et al. [11]. and a new approach of Bao et al.

[9]. The method of Tsai et al. and the method of Bao et al. have produced similar results.

So we will mention multi-objective fuzzy deployment methodology of Tsai et al. in the

comparisons.

4.3.2.1 Example 1

At first, we will consider a small size problem viz. 6 tasks-6 workers three-objective

assignment problem (Table 4.4). After solving this problem, we get the following result.

0

10

20

30

40

50

60

70

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

T
o
ta

l
u
n

it

Weightage

Total cost (weightage of time and quality are 1)

Total time (weightage of quality and cost are 1)

Total quality (weightage of cost and time are 1)

32

Table 4.4: 6 tasks-6 workers MOAP solution

Methodology

Worker order

Total

normalized

cost

Total

normalized

time

Total

normalized

quality

Total

normalized

value

Proposed

methodology

W3, W6, W2,

W1, W5, W4
3.5000 2.0500 1.5556 7.01055

Multi-objective

fuzzy Deployment

methodology

W2, W6,W1,

W3,W5,W4
3.0000 2.5000 1.7778 7.2778

This solution results in 42 units operation cost, 41 units operation time and 14 units

quality. When the above problem is solved by multi-objective fuzzy deployment

methodology [13], it finds the solution that results in 36 units operation cost, 50 units

operation time and 16 units quality.

4.3.2.2 Example 2

Now we considering medium size problem viz. 10 tasks-10 worker three-objective

assignment problem, shown in Table 4.5.

33

Table 4.5: 10 tasks-10 workers three-objective assignment problem

Criteria
Worker,

i

Tasks, j

1 2 3 4 5 6 7 8 9 10

cij

1 6 3 5 8 4 10 8 4 4 6

2 6 4 6 5 8 9 7 14 3 7

3 11 7 4 8 7 8 6 16 12 6

4 9 10 8 6 10 9 7 14 2 7

5 10 13 7 4 8 7 10 7 14 10

6 11 12 10 8 4 4 6 5 4 13

7 12 4 6 5 8 7 4 8 8 12

8 13 7 4 8 7 10 7 14 5 4

9 14 10 8 6 16 13 6 16 8 7

10 18 11 7 4 8 11 7 14 14 6

tij

1 4 20 9 3 10 4 20 9 3 10

2 6 18 8 7 12 6 18 8 7 12

3 7 8 9 7 14 3 8 20 7 14

4 12 14 8 6 16 12 13 14 6 16

5 11 8 9 7 14 2 8 9 7 18

6 13 8 15 16 8 18 8 8 6 15

7 12 13 8 6 16 12 13 8 13 9

8 11 14 9 7 8 13 14 6 4 8

9 13 13 8 6 7 14 2 8 19 20

10 9 7 8 13 6 16 12 13 14 14

qij

1 1 3 1 1 1 3 5 3 5 3

2 3 5 3 5 3 1 7 5 3 5

3 1 7 5 3 5 5 9 3 5 3

4 5 9 3 5 3 1 7 5 3 5

5 1 7 5 5 5 5 9 3 5 3

6 9 3 3 3 1 5 5 3 3 5

7 7 5 5 5 5 7 3 3 5 3

8 3 3 7 3 7 9 3 5 3 3

9 5 5 9 5 9 5 5 1 5 5

10 3 5 7 5 3 1 7 5 3 7

After solving the 10 tasks-10 workers three-objective assignment problem (Table 4.5),

the result is shown in Table 4.6.

34

Table 4.6: 10 tasks-10 worker MOAP solution

Methodology
Worker order

Total

normalized

cost

Total

normalized

time

Total

normalized

quality

Total

normalized

value

Proposed

methodology

W3, W10, W2,

W1, W6, W5,

W9, W7, W4,

W8

3.7222 2.9500 3.3333 10.0056

Multi-objective

fuzzy Deployment

methodology

W3, W7, W1,

W5, W10, W2,

W9, W6, W4,

W8,

3.2222 3.6000 3.3333 10.1556

The proposed methodology results in 67 units operation cost, 59 units operation time and

30 units quality. When the above problem is solved by multi-objective fuzzy deployment

model, it finds the following solution that results in 58 units operation cost, 72 units

operation time and 30 units quality.

4.3.2.3 Example 3

At last, we are considering large size problem viz. 14 tasks-14 workers three-objective

assignment problem mentioned in Table 4.7.

35

Table 4.7: 14 tasks-14 workers three-objective assignment problem

Criteria Worker,

i

Tasks, j

1 2 3 4 5 6 7 8 9 10 11 12 13 14

cij

1 6 3 5 8 4 10 8 4 4 6 7 4 8 7

2 6 4 6 5 8 9 7 14 3 7 10 8 4 4

3 11 7 4 8 7 8 6 16 12 6 6 5 8 7

4 9 10 8 6 10 9 7 14 2 7 4 8 7 10

5 10 13 7 4 8 7 10 7 14 10 8 6 16 13

6 11 12 10 8 4 4 6 5 4 13 7 4 8 7

7 12 4 6 5 8 7 12 4 7 4 8 10 8 4

8 13 7 4 8 7 10 7 8 10 8 6 6 16 7

9 14 10 8 6 16 13 6 5 11 7 4 7 14 10

10 18 11 7 4 6 5 8 8 7 4 8 4 8 7

11 13 7 4 7 4 8 10 8 6 16 7 8 6 16

12 12 10 8 10 8 6 6 16 14 2 10 7 4 6

13 4 6 5 11 7 4 7 14 7 14 6 4 7 4

14 7 4 8 7 4 8 10 7 5 4 4 8 7 10

tij

1 16 8 18 8 10 4 20 9 13 8 8 8 20 8

2 6 16 12 13 12 6 18 8 14 13 13 13 14 15

3 7 8 13 8 19 3 8 20 8 4 8 8 9 8

4 6 7 14 13 14 12 13 14 15 6 18 8 20 8

5 6 3 8 4 20 2 8 9 8 6 16 15 16 8

6 13 8 15 6 18 8 20 8 6 15 6 18 8 20

7 12 13 8 6 16 15 16 8 13 8 6 16 15 16

8 11 14 9 7 8 8 6 6 4 8 13 8 19 3

9 20 9 3 8 13 14 7 8 19 20 14 13 14 12

10 18 8 7 7 14 2 10 13 14 14 8 4 20 2

11 8 20 7 3 8 20 12 4 20 13 8 19 3 8

12 8 6 16 16 2 7 14 6 18 14 13 14 12 13

13 9 7 8 18 18 6 16 7 8 8 4 20 2 8

14 3 8 13 15 12 7 18 12 14 15 6 18 8 20

36

Table 4.7: 14 tasks-14 workers three-objective assignment problem (Cont.)

Criteria Worker,

i

Tasks, j

1 2 3 4 5 6 7 8 9 10 11 12 13 14

qij

1 1 3 1 1 1 3 5 3 5 3 5 5 3 3

2 3 5 3 5 3 1 7 5 3 3 3 1 3 5

3 1 7 5 3 5 5 9 3 5 3 3 1 3 5

4 5 9 3 5 3 1 7 5 3 3 3 7 7 5

5 1 7 5 5 5 5 9 3 5 5 5 7 5 3

6 9 3 3 3 1 5 5 3 5 3 3 1 3 5

7 7 5 5 5 5 7 3 3 5 5 5 5 5 5

8 3 3 7 3 7 9 3 5 3 3 3 7 3 7

9 5 5 9 5 9 5 5 3 3 1 3 5 3 9

10 3 5 7 5 3 1 7 5 3 7 5 7 5 3

11 7 5 5 5 3 3 5 3 3 3 5 5 5 3

12 3 3 3 1 3 5 3 3 5 5 3 7 3 7

13 5 5 5 5 5 1 3 5 3 3 1 3 5 3

14 3 7 3 7 7 5 5 1 5 3 5 7 5 3

After solving the 14 tasks-14 workers three-objective assignment problem (Table 4.7),

the result is shown in Table 4.8.

Table 4.8: 14 tasks-14 workers MOAP solution

Methodology
Worker order

Total

normalized

cost

Total

normalized

time

Total

normalized

quality

Total

normalized

value

Proposed

methodology

W14, W1, W2,

W5, W12, W10,

W9, W7, W6,

W4, W13, W3

W11, W8

4.3333 3.8000 5.3333 13.4667

Multi-objective

fuzzy Deployment

methodology

W5, W1, W2,

W6, W11, W10,

W9, W7, W8,

W4, W14, W3,

W12, W13

4.4444 5.0500 4.444 13.9388

This solution by proposed methodology results in 78 units operation cost, 76 units

operation time and 48 units quality. When the above problem is solved by multi-objective

fuzzy deployment it finds the solution that results in 80 units operation cost, 101 units

operation time and 40 units quality.

37

CHAPTER V RESULTS & DISCUSSIONS

CHAPTER V

RESULTS & DISCUSSIONS

5.1 Results

In this section, we will demonstrate the solutions of the above three example in two

methodologies i.e. proposed methodology and multi-objective fuzzy deployment

methodology at glance. It reveals that in the first example, solution by proposed

methodology reduces 9 units time and 2 units quality with sacrificing of 6 unit cost with

respect to the result of multi-objective fuzzy deployment methodology. Similarly, in the

second example i.e. 10 tasks-10 workers multi-objective problem, the solution by

proposed methodology reduces 13 units time with the increase of 9 units cost. And, in the

third example solution i.e. 14 tasks-14 workers multi-objective problem, the solution by

proposed methodology reduces 2 units cost and 25 units time with the increasing 8 units

quality.

Figure 5.1: Results in two methodologies for three examples

36

50

16

58

72

30

80

101

4042 41

14

67
59

30

77
86

44

0

20

40

60

80

100

120

Cost Time Quality Cost Time Quality Cost Time Quality

6 tasks-6 workers 10 tasks-10 workers 14 tasks-14 workers

U
n

it
s

Criteria

Methodology of D. Tsai et al. Proposed methodology

38

Figure 5.2: Improvement by the proposed methodology for each criterion in equal

priority

The above three multi-objective problems have been solved with the equal priority of

cost, time and quality. There is the demonstration of percentage improvement for each

criterion by proposed model from the multi-objective fuzzy deployment methodology in

Figure 5.2. The above comparisons give the manifestation that the solutions of multi-

objective problems by proposed model are acceptable and even better than the solutions

by multi-objective fuzzy deployment model.

New Approach of Bao et al. [9] cannot normalize quality properly when there is no

assignment having the quality of ‘1’. In this case, the reciprocal of quality distributes

normalize quality in an interval [0,1) while the others normalized criteria is distributed in

an interval [0,1]. The proposed methodology distributes all the criteria into a normalized

value of interval [0,1].

The benefit of the proposed methodology is that firstly, it doesn’t require careful attention

to the determinations of the weight among the resources like the methodology of Tsai et

al. Careful attention requires experts i.e. time and cost, thus the proposed methodology

reduces the time for weightage allocation among the resources in MOAP. Secondly, its

calculation is easier than other methods. Thirdly, this method incorporates priority of the

-17%

18%

13%

-16%

18%

0%

4%

15%

-10%

-20%

-15%

-10%

-5%

0%

5%

10%

15%

20%

Cost Time Quality Cost Time Quality Cost Time Quality

6 tasks-6 workers 10 tasks-10 workers 14 tasks-14 workers

Im
p

r
o
v
e
m

e
n

t

Criteria

39

resources in decision making. The above comparisons manifest that the outcomes of the

proposed methodology are very encouraging.

It is revealed that the proposed methodology is acceptable to solve MOAP. This

methodology imparts better solutions with the determination of decision variables that

give well-optimized cost, time and quality than multi-objective fuzzy deployment

methodology [18]. This research provides simplicity, flexibility and structured thinking

to MOAP. The proposed methodology structures the preferences of the decision maker.

5.2 Discussions

MOAP can be solved by finding the best solution by testing all the possible solutions (by

permutation) for hours on a powerful computer, but it would be costly. The proposed

methodology find the optimum solution for small problem and closet to optimum solution

for a big problem very quickly on a small microcomputer. Excel is available for the

solutions up to 14 tasks-14 workers three-objective assignment problem by multi-

objective fuzzy deployment methodology. The developed software for applying the

proposed methodology can solve up to 99 tasks-99 workers MOAP within five seconds

in 2 GB ram, 2.2 GHz personal computer.

There were the multi-objectives which were conflicting among them to get a better

solution. These conflicting nature of objectives give rise to a set of trade-off among

optimal solutions. The quality objective has been normalized in a new way which can

handle any non-quantified entity. Generally, the demand for the quality need to be

maximized, in this methodology quality is quantified in such a way that converts the

demand of quality need to be minimized. Then the demand for the value of all the criteria

viz. cost, time and quality are to be minimized.

The total cost, total time and total quality is sensitive to each priority weightage in a

certain range. Beyond this range, there are the saturation point of total cost, total time and

total quality whether it increase or decrease the priority i.e. weightage of a criteria (Figure

4.2). It is manifested that the total cost and the total time are more sensitive to its priority

40

than the total quality. The elements in the cost matrix and the time matrix have more

variation than the quality matrix, which results in the less sensitiveness of total quality

than the total coast and total time.

This method enriched with comprising this decision maker priority weightage. The

decision maker often adds priority to different criteria e.g. speed is two times preferable

to load for a fighter plane. At the last portion of the thesis, the comparison of proposed

method with multi-objective fuzzy deployment method results that assignment problem

has been formulated and solved effectively.

41

CHAPTER VI CONCLUSIONS

CHAPTER VI

CONCLUSIONS

6.1 Conclusions

In the present paper, the MOAP has been formulated to solve by genetic algorithm. This

works formulates the conflicting objectives (Pareto–optimal), converts maximal criteria

into minimal criteria and imparts priority to each objective. The quality objective has been

normalized in a way which can handle any non-quantified entity [16]. Generally, the

demand for the quality need to be maximized, in this methodology quality is quantified

in such a way that converts the demand of quality need to be minimized. Then the demand

for the value of all the criteria viz. cost, time and quality are to be minimized. A procedure

has been demonstrated to solve the problem based on a genetic algorithm. The algorithm

seems to be quite effective in finding the globally optimal solution to the MOAP within

a reasonable time.

6.2 Limitations

The developed software can handle up to 99 tasks-99 workers multi-objective assignment.

There is the comparison of solutions between proposed methodology and fuzzy

deployment methodology up to 14 tasks-14 workers MOAP, because, free software is

available for the solution of linear programming of 300 decision variables. It would be

better if the comparison took place for the solutions of a large number of tasks and a large

number of workers MOAP. Additionally, Genetic algorithms can often escape from the

local optimums if they are shallow enough [27]. GA cannot able to guarantee that our

genetic algorithm has found the global optimum solution to our problem, the best it can

do is hope for is a close approximation of the optimal solution.

42

6.3 Future Possible Works

The traditional direction of solving the assignment problem is ‘minimum time’, which

may not be true in a real situation. In the real world, the manager may want to assign tasks

so that each doer has standard time to finish the task which is fixed for all the worker.

There is the requirement of research that how to solve the assignment problem with the

direction of ‘standard time’ instead of ‘minimized’.

43

REFERENCES

REFERENCES

[1] Pramanik and Biswas, Multi-objective Assignment Problem with Generalized

Trapezoidal Fuzzy Numbers, International Journal of Applied Information

System, vol 2, pp 13-20 (2012).

[2] Reddy, S., Multi-objective optimization considering cost, emission and loss

objectives using PSO and fuzzy approach, International Journal of Engineering

& Technology, Vol 7, No. 3, pp 1552-1557 (2018).

[3] Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning,

Reading, Addison-Wesley Publishing Company, Inc., 1st edition, Boston (1989).

[4] Ortiz-Boyer, Herv ́as-Mart ́ınez and Garc ́ıa-Pedrajas, A Crossover Operator for

Evolutionary Algorithms Based on Population Features, Journal of Artificial

Intelligence Research, Vol 24, pp 1-48 (2005).

[5] Soni and Kumar, Dr., Study of Various Crossover Operators in Genetic

Algorithms, International Journal of Computer Science and Information

Technologies, vol 5, pp 7235-7238 (2014).

[6] Singh, Dubey, G.C. and Shrivastava, A Comparative Analysis of Assignment

Problem, Journal of Engineering (IOSRJEN), Vol 2, No 8, pp 01-15 (2012).

[7] Khun, H.W., The Hungarian method for assignment problem, Naval Research

Logistics, vol 2, No. Quarterly, pp 83-97 (1955).

[8] Taha, Operation Research: An Introduction, 8th edition, New Delhi (2006).

[9] BERTSEKAS, A New Algorithm for the Assignment Problem, Mathematical

Programming, North-Holland Publishing Company, vol 21, pp 152-171 (1981).

[10] Gillett, Introduction to Operations Research A Computer-Oriented Algorithmic

Approach. Tata McGraw-Hill Publishing Company Limited, New Delhi, ch 3, ch

4 (1979).

[11] Sahu and Thapadar, Solving the Assignment problem using Genetic Algorithm

and Simulated Annealing, International Journal of Applied Mathematics1, vol 36,

No 1, pp 7-11, (2017).

[12] Kirubha, Prompting Method for Solving Fuzzy Assignment Problem under Fuzzy

Environment, Imperial Journal of Interdisciplinary Research (IJIR), Vol 2, Issue-

44

4, ISSN: 2454-1362 (2016).

[13] Yiwen and Yaodong, Fuzzy random TSP, Fifth international conference on

electronic business, Hong Kong, vol 5, pp 901-907 (2005).

[14] Liu and Gao, Fuzzy weighted equilibrium multi job assignment problem and

genetic algorithm. Applied mathematical modelling, vol 33, pp 3926-3935 (2009).

[15] Huang and zhang, Solution method for fuzzy assignment problem with restriction

of qualification. 6th international conference on intelligent system design and

application (2006).

[16] Bao, Tsai and Tsai, A New Approach to Study the Multi-Objective Assignment

Problem, An Interdisciplinary Journal, vol 53, pp 123-132 (2007).

[17] Ishizuka and Matsuo, SL method for computing a near-optimal solution using

linear and nonlinear programming in cost based hypothetical reasoning,

Knowledge based system, Elsevier, vol 15, pp 369-376 (2002).

[18] Tsai, Wei and Cheng, Multiobjective fuzzy deployment of manpower,

International Journal of the Computer, the Internet and Management, vol 7, pp

1-7 (1999).

[19] Geetha, S. and Nair, K. P. K., A variation of the assignment problem, European

Journal of Operational research, Vol 68, No 3, pp 422-426 (1993).

[20] Boussaïd, Lepagnot and Siarry, A survey on optimization metaheuristics,

Elsevier, information Sciences, vol 237, pp 82–117 (2013).

[21] Yeniay, Penalty Function Methods for Constrained Optimization with Genetic

Algorithms, Mathematical and Computational Applications, Vol 10, No 1, pp 45-

56 (2005).

[22] Mitchell, An Introduction to Genetic Algorithms, MIT Press, ISBN

0−262−13316−4 (HB), 0−262−63185−7 (PB), Fifth printing (1999).

[23] Deb, Kalyanmoy, Multi-Objective Optimization using Evolutionary Algorithms,

John Wiley & Sons Ltd, New York, ISBN:047187339X (2001).

[24] Yadaiah and Haragopal, V.V., Multi-Objective Optimization of Time-Cost-

Quality Using Hungarian Algorithm, American Journal of Operations Research,

vol 6, pp 31-35 (2016).

[25] Dervitsiotis, Operation Management, McGraw-Hill Ltd, New York (1981).

[26] Hwang, Ching-lai and Yoon, Multiple Attribute Decision Making: Methods and

Applications, Springer-Verlag, New York (1981).

45

[27] Mousa, A. A., Using genetic algorithm and TOPSIS technique for multi-objective

transportation problem: a hybrid approach, International Journal of Computer

Mathematics, vol 87, No 13, pp 3017-3029 (2014).

[28] Starkweather, T., McDaniel, S., Mathias, K. and Whitley, D., A comparison of

genetic sequencing operators, 4th International Conference on Genetic Algorithms

(ICGA '91), University of California at San Diego, San Diego, pp 69-76 (1991).

46

APPENDIX A

APPENDIX A

C code for MOAP solution software:

#include<stdio.h>

#include<conio.h>

#include<stdlib.h>

int n3=20; //population size

float pr1=1,pr2=1,pr3=1;// Priority

int n77=400; // heighest no of excess generation

int num=6; //number of machine

int n1,n2,n4;

char fname[50]; //target file name

FILE *fp;

int mut; // %chance of mutation

int gen; // result at the generation of

typedef struct Chrom

 { int bit[100]; float fit; int parent;

 }chrom;

typedef struct Tablecell

 { int cost; float ncost;

 int time; float ntime;

 int quality; float nquality;

 }cell;

void *TakeInput(cell[100][100]);

void *processTable(cell node[100][100]);

void *printTable(cell node[100][100]);

void *printProcesTable(cell node[100][100]);

void *Generategens(chrom currentGen[n4],cell node[100][100]);

void *SelectNextGenPar(chrom currentGen[n4],chrom nextGen[n4]);

void *crossover(chrom currentGen[n4],cell node[100][100]);

void *fitness(chrom currentGen[n4],cell node[100][100]);

void *sort(chrom currentGen[n4]);

void *mutation(chrom currentGen[n4]);

void *result(chrom currentGen[n4],cell node[100][100]);

int main()

{ system("COLOR F0");//n1=n3/2; n2=n1+1; n4=n3+1;

 int i,h; float priority;

 cell node[100][100];

 TakeInput(node);

 //solution start

47

 enter2: printf("\n\n Please enter the priority of criteria cost,

time and quality respectively:");

 printf("\n (Default Priority: Cost=1,Time=1,Quality=1)\n For

Default Priority press: 9977\n ");

 scanf("%f",&priority);

 if(priority==9977) goto enter3;

 pr1=priority;

 scanf("%f%f",&pr2,&pr3);

 enter3: printf("\n");

 printf("\nEnter the population size p \n(where p/2 is an even

number): ");

 scanf("%d",&n3);

 n1=n3/2; n2=n1+1; n4=n3+1;

 printf("\nEnter the percent chance of mutation: ");

 scanf("%d",&mut);

 chrom currentGen[n4], nextGen[n4];

 currentGen[0].fit=0;

 Generategens(currentGen,node);

 fitness(currentGen,node); //store fitness of each chromosome to

her body and store best chromosome at

 // at currentGen[0].fit

 int ResistIteration=n77;

 float fitnessPrevious=0, fitnessNow=1;

 for(i=1;i<=500;i++)

 { if((fitnessNow-fitnessPrevious)==0)

 ResistIteration=ResistIteration-1;

 if(ResistIteration==0) break;

 //printf("\nI AM HERE"); getch();

 fitnessPrevious=currentGen[0].fit;

 SelectNextGenPar(currentGen, nextGen);

 crossover(nextGen,node);

 mutation(nextGen);

 for(h=1;h<=n3;h++)

 {

 currentGen[h]=nextGen[h];

 }

 fitness(currentGen,node);

 fitnessNow=currentGen[0].fit;

 }

 printf("\n\n No. of Generation:%d",i-n77);

 gen=i-n77;

 printf("\n\n Maximum Fitness:%f",currentGen[0].fit);

 result(currentGen,node);

 return(0);

}

void *SelectNextGenPar(chrom currentGen[n4],chrom nextGen[n4])

{ //printf("\nNow in Select next gen parent ");

48

 int a=0,b,c, e, h, i,j,k ; float totFit=0,cumFit=0, randN;

 // finding totlal fitness// cunFit=cumilative fitness

 for(i=1;i<=n3;i++)

 { totFit= totFit+currentGen[i].fit;

 }

 //getch();

 nextGen[1]=currentGen[0];

 for(i=2;i<=n1;i++)

 { randN=(((float)rand()/RAND_MAX))*totFit;

 cumFit=0;

 for(j=1;j<=n3;j++)

 { cumFit=cumFit+currentGen[j].fit;

 if(cumFit>=randN)

 { //printf("\nc%2.3f r%f", cumFit,randN);

 nextGen[i]=currentGen[j];

 break;

 }

 }

 }

}

void *TakeInput(cell node[100][100])

{ int i,j,d, row=num, column=num, random, correction,

considerTime,considerCost,considerQuality;

 printf("\n\n Do You Have Data Table(Press 1) or Want to Create New

One (Press 0)?:\n");

 scanf("%d",&d);

 if (d==1) {goto ReadData;}

 //*130 Creating New data table

 int v; //num=No of tasks/worker, v= element in the matrix

 printf("Insert the Number of Tasks:");

 scanf("%d",&num);

 printf("\nEnter New file name to write data\n");

 scanf("%s",&fname);

 fp=fopen(fname,"w");

 fprintf(fp,"Tasks_No:\t%d\n",num);

 fprintf(fp,"\nCost_Matrix\n");

 for(i=1;i<=num;i++)

 {

 for(j=1;j<=num;j++)

 {

 //scanf("%d",&v);

 v=40+rand()%10;

 fprintf(fp, "%d\t", v);

49

 }

 fprintf(fp,"\n");

 }

 fprintf(fp,"\nTime_Matrix\n");

 for(i=1;i<=num;i++)

 {

 for(j=1;j<=num;j++)

 {

 // scanf("%d",&v);

 v=30+rand()%10;

 fprintf(fp, "%d\t", v);

 }

 fprintf(fp,"\n");

 }

 fprintf(fp,"\nQuality_Matrix\n");

 for(i=1;i<=num;i++)

 {

 for(j=1;j<=num;j++)

 {

 //scanf("%d",&v);

 v=10+rand()%10;

 fprintf(fp, "%d\t", v);

 }

 fprintf(fp,"\n");

 }

 fclose(fp);

 printf("\n\nYour Document is ready, \n\n\t\tThank You\n\n");

//130*/

/*/input data manually

 printf("\n\n Please enter the Table info viz cost, time and quality

respectively\n");

 for(i=1;i<=column;i++)

 { printf(" Column-%d: \n",i);

 for(j=1;j<=row;j++)

 { if(pr1>0)

 scanf("%d",&node[j][i].cost);

 if(pr2>0)

 scanf("%d",&node[j][i].time);

 if(pr3>0)

 scanf("%d",&node[j][i].quality);

 printf("\n\n");

 }

 }*/

//*112 read data from txt file

 ReadData: i=1;

 char s[50]; //s to store string

50

 int a[50][50]; // num= Number of tasks

 if (d==1)

 { printf("\nEnter the file name to read data\n");

 scanf("%s",&fname);

 fp=fopen(fname,"r");

 }

 fp=fopen(fname,"r");

 fscanf(fp,"%s",&s); printf("%s\t",s);

 fscanf(fp,"%d",&num); printf("%d\n\n",num);

 fscanf(fp,"%s",&s); // printf("%s\n",s); //take "Cost Matrix"

 for(i=1;i<=num;i++)

 {

 for(j=1;j<=num;j++)

 {

 fscanf(fp,"%d",&node[i][j].cost);

 // printf("%.2d\t",node[i][j].cost);

 }

 // printf("\n");

 }

 fscanf(fp,"%s",&s); // printf("\n%s\n",s); //take "Cost

Matrix"

 for(i=1;i<=num;i++)

 {

 for(j=1;j<=num;j++)

 {

 fscanf(fp,"%d",&node[i][j].time);

 //printf("%.2d\t",node[i][j].time);

 }

 // printf("\n");

 }

 fscanf(fp,"%s",&s); // printf("\n%s\n",s); //take "Cost

Matrix"

 for(i=1;i<=num;i++)

 {

 for(j=1;j<=num;j++)

 {

 fscanf(fp,"%d",&node[i][j].quality);

 // printf("%.2d\t",node[i][j].quality);

 }

 //printf("\n");

 }

 fclose(fp);

//112*/

//*/

51

 printTable(node);

 /*// makimg corrections if input has error

 printf("\n Enter Column No and Row No For Correction\n (For No

Correction press: 9977) \n ");

 scanf("%d",&correction);

 for(;correction!=9977;)

 { i=correction;

 scanf("%d",&j);

 printf(" Enter cost time and quality for

column=%d,row=%d\n",i,j);

 if(pr1>0)

 scanf("%d",&node[j][i].cost);

 if(pr2>0)

 scanf("%d",&node[j][i].time);

 if(pr3>0)

 scanf("%d",&node[j][i].quality);

 printTable(num,node);

 printf("\n Enter Column No and Row No For Correction\n (For No

Correction press: 9977) \n ");

 scanf("%d",&correction);

 }// */

 processTable(node);

}

void *printTable(cell node[100][100])

{ int i,j, row=num, column=num;

 printf("\n\n Your table is: Cost/ Time/ Quality\n");

 printf(" mc1 mc2 mc3 mc4.........\n");

 for(i=1;i<=row;i++)

 { printf("wc%d:",i);

 for(j=1;j<=column;j++)

 printf("%7d",node[i][j].cost);

 printf("\n ");

 for(j=1;j<=column;j++)

 printf("%7d",node[i][j].time);

 printf("\n ");

 for(j=1;j<=column;j++)

 printf("%7d",node[i][j].quality);

 printf("\n\n");

 }

}

void *processTable(cell node[100][100])

{ int i,j, row=num, column=num,

largestCost=1,largestTime=1,largestQuality=1;

 for(i=1;i<=row;i++)

 { for(j=1;j<=column;j++)

 {

52

 if(node[i][j].cost>largestCost)

 largestCost=node[i][j].cost;

 }

 for(j=1;j<=column;j++)

 {

 if(node[i][j].time>largestTime)

 largestTime=node[i][j].time;

 }

 for(j=1;j<=column;j++)

 { if(node[i][j].quality>largestQuality)

 largestQuality=node[i][j].quality;

 }

 }

 for(i=1;i<=row;i++)

 {

 for(j=1;j<=column;j++)

node[i][j].ncost=(float)(node[i][j].cost)/(float)largestCost;

 for(j=1;j<=column;j++)

node[i][j].ntime=(float)node[i][j].time/(float)largestTime;

 for(j=1;j<=column;j++)

node[i][j].nquality=(float)node[i][j].quality/(float)largestQuality;

 }

 //printProcesTable(num,node);

}

void *printProcesTable(cell node[100][100])

{ int i,j, row=num, column=num;

 printf("\n\n Your Normalized table is\n");

 printf(" mc1 mc2 mc3 mc4.........\n");

 for(i=1;i<=row;i++)

 { printf("wc%d:",i);

 for(j=1;j<=column;j++)

 printf("%7.3f",node[i][j].ncost);

 printf("\n ");

 for(j=1;j<=column;j++)

 printf("%7.3f",node[i][j].ntime);

 printf("\n ");

 for(j=1;j<=column;j++)

 printf("%7.3f",node[i][j].nquality);

 printf("\n\n");

 }

}

void *Generategens(chrom currentGen[n4],cell node[100][100])

{ int h,i,j, value, random;

 //printf("\n\n First Generation is:");

53

 for(h=1;h<=n3;h++)

 { for(i=1;i<=num;i++)

 { random=rand();

 random=1+(random%num);

 recheck:

 for(j=1;j<=i;j++)

 { if(currentGen[h].bit[j]==random)

 { if(random==num)

 random=1;

 else

 random=random+1;

 goto recheck;

 }

 }

 currentGen[h].bit[i]=random;

 }

 }

 return(0);

}

void *fitness(chrom currentGen[n4],cell node[100][100])

{ int i,j,h;

 float sumCost,sumTime,sumQuality;

 for(h=1;h<=n3;h++) // h=no of chromosome

 { sumCost=0.0;

 sumTime=0.0;

 sumQuality=0.0;

 for(i=1;i<=num;i++)//i= index for column or mc, j=row or

worker no.

 { j=currentGen[h].bit[i];

 sumCost=sumCost+node[j][i].ncost;

 //printf("\nh%d j%d i%d ncost

%3.3f",h,j,i,node[j][i].ncost);

 sumTime= sumTime+node[j][i].ntime;

 sumQuality=sumQuality+node[j][i].nquality;

 }

currentGen[h].fit=1.0/(sumCost*pr1+sumTime*pr2+sumQuality*pr3);

 }

 // Store the best chromosome at currentGen[0]

 for(h=1;h<=n3;h++)

 {

 if (currentGen[0].fit<currentGen[h].fit)

 currentGen[0]=currentGen[h];

 }

}

void *mutation(chrom nextGen[n4])

{ //printf("\nNow in Mutation ");//getch();

54

 int h, p,q, temp,decide;

 decide=rand()%100;

 if(decide<=mut) // % of mutation

 {

 h=n2+rand()%n1;

 p=1+rand()%num;

 q=1+rand()%num;

 if(h==1) h=h+1;

 temp=nextGen[h].bit[p];

 nextGen[h].bit[p]=nextGen[h].bit[q];

 nextGen[h].bit[q]=temp;

 //printf("\n Mutation Ocured at chrom:%d bit=%d

bit=%d",h,p,q);//getch();

 }

}

void *crossover(chrom nextGen[n4],cell node[100][100])

{ int a,b,c, e, i,j,k, randN, p,q, m,n, h, count,d,

test2;

 //printf("\nNow in crossover "); //getch();

 for(i=n2;i<=n3;i++) // make all bit 0, initially

 {

 for(j=1;j<=num;j++)

 nextGen[i].bit[j]=0;

 //nextGen[i].parent=0;

 }

 for(i=1;i<=n2;i++) // make parent bit 0, initially

 { nextGen[i].parent=0;

 }

 for(e=n2;e<n3;) //crossover start

 { c=e;

 // set a; a is the 1st chromosome to met

 randN=1+rand()%n1;

 for(;;)

 {if(nextGen[randN].parent==1)

 { if(randN==n1)

 { randN=1;

 continue;

 }

 randN=randN+1;

 continue;

 }

 a=randN;

 nextGen[a].parent=1;

 break;

 }

 // set b , b is the 2nd chromosome to met

 randN=1+rand()%n1;

 for(;;)

55

 {if(nextGen[randN].parent==1)

 { if(randN==n1)

 { randN=1;

 continue;

 }

 randN=randN+1;

 continue;

 }

 b=randN;

 nextGen[b].parent=1;

 break;

 }

 // select the crossover point

 p=1+rand()%num;

 q=1+rand()%num;

 if(p>q)//Swappig so that p is less than q

 { p=p+q;

 q=p-q;

 p=p-q;

 }

 //printf("\nFor chrom%2.d and chrom%2.d): p=%d,

q=%d",e,e+1,p,q);

 count=0;

 CC: count=count+1;

 for(i=p;i<=q;i++)

 nextGen[c].bit[i]=nextGen[b].bit[i];

 for(i=p;i<=q;i++)

 { for(j=p;j<=q;j++)

 { if(nextGen[a].bit[i]==nextGen[b].bit[j])

 { // printf("\nTest i=%d",i);

 goto BB;

 }

 }

 k=i;

 AA:

 for(m=0;m<=num;m++)

 { if(nextGen[a].bit[m]==nextGen[b].bit[k])

 { if(m<p||m>q)

 {

nextGen[c].bit[m]=nextGen[a].bit[i];

 //printf("\nTest2 i=%d",i);

 }

 else

 { k=m;

 goto AA;

 }

 }

 }

 BB: test2=8;

56

 }

 for(i=1;i<=num;i++)

 if(nextGen[c].bit[i]==0)

 nextGen[c].bit[i]=nextGen[a].bit[i];

 if(count==1)

 {d=a;a=b;b=d;c=c+1; goto CC; }//swap a,b. c go to next

currentGen

 e=e+2;

 }

}

void *sort(chrom currentGen[n4])

{ int e, i,h;

 chrom temp;

 for(e=1;e<=n3;e++)

 {

 for(i=n3;i>=2;i--)

 { if(currentGen[i].fit>currentGen[i-1].fit)

 { temp=currentGen[i];

 currentGen[i]=currentGen[i-1];

 currentGen[i-1]=temp;

 }

 }

 }

}

void *result(chrom currentGen[n4],cell node[100][100])

{ int i,j,h, sumCost=0,sumTime=0,sumQuality=0;

 printf("\n\n\nResult:\nBest combination is:");

 printf(" T1 T2 T3 T4 \n Worker

No:");

 for(i=1;i<=num;i++)

 printf("%4.0d ",currentGen[0].bit[i]);

 //printf("\n\nTotal Cost:");

 for(i=1;i<=num;i++)//i=column or for a mc, gene=row or worker

no.

 { j=currentGen[0].bit[i];

 sumCost=sumCost+node[j][i].cost;

 //printf("\nh%d j%d i%d ncost

%3.3f",h,j,i,node[j][i].ncost);

 sumTime= sumTime+node[j][i].time;

 sumQuality=sumQuality+node[j][i].quality;

 }

 printf("\n\n Total Cost: %d \n Total Time: %d\n Total

Quality:%d",sumCost,sumTime,sumQuality);

 printf("\n\n\n The

End.......\n\n");

 //111 write some information to data file for future

57

 fp=fopen(fname,"a");

 fprintf(fp,"\n\nResult:\nNumber of task is:%d",num);

 fprintf(fp,"\npriority of cost, time and quality are:%.2f,

%.2f and %.2f",pr1,pr2,pr3);

 fprintf(fp, "\nMutation percent chance:%d\n",mut);

 fprintf(fp,"\nBest combination is:");

 fprintf(fp," T1 T2 T3 T4 \n

Worker No:");

 for(i=1;i<=num;i++)

 fprintf(fp,"%4.0d ",currentGen[0].bit[i]);

 fprintf(fp,"\nTotal Cost: %d \nTotal Time: %d\nTotal

Quality:%d",sumCost,sumTime,sumQuality);

 fprintf(fp,"\nPopulation size: %d",n3);

 fprintf(fp,"\nNo. of Generation:%d",gen);

 fclose(fp);

 //111 fprintf(fp,"\n");

}

--The End--

	TITLE PAGE
	DECLARATION
	APPROVAL
	ACKNOWLEDGEMENTS
	ABSTRACT
	CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER I INTRODUCTION
	1.1 General Introduction
	1.2 Objectives of the Study
	1.3 Organization of Thesis

	CHAPTER II LITERATURE REVIEW
	2.1 Literature Review
	2.2 Summary of the Literature Review

	CHAPTER III THEORETICAL CONSIDERATION
	3.1 Types of Objective Criteria
	3.2 Transformation of Multi-Objective to a Single Objective
	3.2.1 Case One
	3.2.2 Case Two
	3.2.3 Case Three
	3.2.4 Case Four

	CHAPTER IV DEVELOPMENT OF MODEL AND SOLUTION METHODOLOGY
	4.1 The Model
	4.1.1 Notation
	4.1.2 Mathematical Model

	4.2 The Genetic Algorithm for the MOAP
	4.2.1 Basis of the Formulation
	4.2.2 The Details of the Proposed Algorithm
	4.2.2.1 Representation of solution
	4.2.2.2 Initial population
	4.2.2.3 Fitness function
	4.2.2.4 Reproduction
	4.2.2.5 Crossover
	4.2.2.6 Mutation
	4.2.2.7 Termination
	4.2.2.8 Extracting the values of decision variables from the best chromosome

	4.3 Numerical Illustration and Computational Experience
	4.3.1 Performance Study
	4.3.2 Comparisons of the Proposed Approach with Other Methodologies
	4.3.2.1 Example 1
	4.3.2.2 Example 2
	4.3.2.3 Example 3

	CHAPTER V RESULTS & DISCUSSIONS
	5.1 Results
	5.2 Discussions

	CHAPTER VI CONCLUSIONS
	6.1 Conclusions
	6.2 Limitations
	6.3 Future Possible Works

	REFERENCES
	APPENDIX A

