

 Thesis No: CSER-M-19-04

 UNIVERSITY COURSE SCHEDULING USING PROMINENT NATURE INSPIRED

TECHNIQUES

by

Sk. Imran Hossain

Department of Computer Science and Engineering

Khulna University of Engineering & Technology

Khulna 9203, Bangladesh

April, 2019

i

University Course Scheduling using Prominent Nature Inspired

Techniques

by

Sk. Imran Hossain

Roll No: 1607506

A Thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science and Engineering

Department of Computer Science and Engineering

Khulna University of Engineering & Technology

Khulna 9203, Bangladesh

April, 2019

ii

Declaration

This is to certify that the thesis work entitled “University Course Scheduling using

Prominent Nature Inspired Techniques” has been carried out by Sk. Imran Hossain in the

Department of Computer Science and Engineering, Khulna University of Engineering &

Technology, Khulna 9203, Bangladesh. The above thesis work or any part of this work has

not been submitted anywhere for the award of any degree or diploma.

Signature of Supervisor

Signature of Candidate

iii

Approval

This is to certify that the thesis work submitted by Sk. Imran Hossain entitled “University

Course Scheduling using Prominent Nature Inspired Techniques” has been approved by the

board of examiners for the partial fulfillment of the requirements for the degree of Master of

Science in Computer Science and Engineering in the Department of Computer Science and

Engineering, Khulna University of Engineering & Technology, Khulna, Bangladesh in

April, 2019.

BOARD OF EXAMINERS

iv

Acknowledgement

At first, I would like to thank Almighty for showering all his blessings on me whenever I

needed. It is my immense pleasure to express my indebtedness and deep sense of gratitude

to my supervisor Dr. Muhammad Aminul Haque Akhand, Professor & Head, Department of

Computer Science and Engineering (CSE), Khulna University of Engineering & Technology

(KUET) for his continuous encouragement, constant guidance and keen supervision

throughout of this study. I am especially grateful to him for giving me his valuable time

whenever I need and always providing continuous support in my effort.

Last but not least, I am grateful to my parents, family member and friends for their patience,

support and encouragement during this period.

April, 2019 Author

v

Abstract

The University Course Scheduling Problem (UCSP) is a highly constrained real-world

combinatorial optimization task. Solving UCSP means creating an optimal course schedule

by assigning courses to specific rooms, instructors, students, and timeslots by taking into

account the given constraints. Several studies have reported different metaheuristic

approaches for solving UCSP including Genetic Algorithm (GA) and Harmony Search (HS)

algorithm. Various Swarm Intelligence (SI) optimization methods have also been

investigated for UCSP in recent times and a few Particle Swarm Optimization (PSO) based

methods among them with different adaptations are shown to be effective. In this study, two

novel PSO and Group Search Optimizer (GSO) based methods are investigated for solving

highly constrained UCSP in which basic PSO and GSO operations are transformed to tackle

combinatorial optimization task of UCSP and a few new operations are introduced to PSO

and GSO to solve UCSP efficiently. In the proposed methods, swap sequence-based velocity

and movement computation and its application are developed to transform individual

particles and members in order to improve them. Selective search and forceful swap

operation with repair mechanism are the additional new operations in the proposed methods

for updating particles and members with calculated swap sequences. The proposed PSO with

selective search (PSOSS) and GSO with selective search (GSOSS) methods have been tested

on an instance of UCSP resembling the course structure of the Computer Science and

Engineering Department of Khulna University of Engineering & Technology which has

many hard and soft constraints. Experimental results revealed the effectiveness and the

superiority of the proposed methods compared to other prominent metaheuristic methods

(e.g., GA, HS).

vi

Contents

 PAGE

Title Page i

Declaration ii

Approval iii

Acknowledgement iv

Abstract v

Contents vi

List of Tables viii

List of Figures ix

Nomenclature x

CHAPTER I Introduction 1

 1.1 Overview of Timetabling Problem 1

 1.2 University Course Scheduling Problem (UCSP) 1

 1.3 Thesis Objectives 2

 1.4 Thesis Organization 3

CHAPTER II Literature Review
4

 2.1 Prominent Nature Inspired Optimization

Algorithms

4

 2.1.1 Particle Swarm Optimization (PSO) 4

 2.1.2 Group Search Optimizer (GSO) 6

 2.1.3 Genetic Algorithm (GA) 9

 2.1.4 Harmony Search (HS) 10

 2.2 Existing Methods to Solve UCSP 12

 2.2.1 GA based Methods to Solve UCSP 12

 2.2.2 HS based Methods to Solve UCSP 12

 2.2.3 PSO based Methods to Solve UCSP 13

 2.2.4 Previous Works from the Department of

CSE, KUET

13

 2.3 Observation on Existing Methods 13

 2.4 Scope of Research 14

CHAPTER III Methodology
15

 3.1 Terminologies 15

 3.1.1 Solution Encoding for UCSP 16

 3.1.2 Fitness Calculation 17

vii

 3.1.3 Swap Operator and Swap Sequence for

UCSP

18

 3.1.4 Forceful Swap Operation with Repair

Mechanism

19

 3.1.5 Selective Search 21

 3.1.6 Population Initialization 21

 3.2 PSO with Selective Search (PSOSS) for Solving

UCSP

21

 3.2.1 Particle Encoding 22

 3.2.2 Velocity Computation using Swap Operator

and Swap Sequence

22

 3.2.3 PSOSS Algorithm for Solving UCSP 23

 3.2.4 Illustration of Solution Update Mechanism

in PSOSS

28

 3.3 GSO with Selective Search (GSOSS) for Solving

UCSP

30

 3.3.1 Member Encoding 30

 3.3.2 Member Categorization 30

 3.3.3 Producer’s Scanning 31

 3.3.4 Scrounging 31

 3.3.5 Dispersed Members’ Random Operation 31

 3.3.6 GSOSS Algorithm for Solving UCSP 31

 3.3.7 Illustration of an iteration of GSOSS

Algorithm

37

CHAPTER IV Experimental Studies 39

 4.1 Experimental Setup 39

 4.2 Experimental Environment 40

 4.3 Input Data Preparation 42

 4.4 Experimental Results and Analysis 44

CHAPTER V Conclusions

 5.1 Findings 52

 5.2 Future Research Directions 53

PUBLICATION FROM THE THESIS 54

REFERENCES 55

viii

LIST OF TABLES

Table No Caption of the Table Page

4.1 Batch and course information 42

4.2 Course information for each instructor 43

4.3 Information for classrooms and laboratories 43

4.4 Average and best fitness comparison among GA, PSO, HS,

GSO, GSOSS and PSOSS of 25 trials for different population

sizes

46

4.5 Instructors’ satisfaction values achieved by implemented

methods

48

4.6 Sample Timetable for Instructor 𝑒1 generated by GA, PSO,

HS, PSM and PSOSS methods

49

ix

LIST OF FIGURES

Figure No Caption of the Figure Page

3.1 Solution representation for UCSP 16

3.2 Mapping of timeslots of a solution in days and periods 17

3.3 Sample preference values for instructors 18

3.4 Instructor wise Swap Sequences (SSs) of complete SS 19

3.5 Illustration of the repair mechanism 20

3.6 Illustration of the solution update mechanism of a particle in

PSOSS

29

3.7 Illustration of an iteration of GSOSS 38

4.1 Input preference values for instructors 41

4.2 Performance analysis of fitness for different population sizes 44

4.3 Performance analysis of fitness in different iterations 45

x

Nomenclature

UCSP University Course Scheduling Problem

SI Swarm Intelligence

PSO Particle Swarm Optimization

GSO Group Search Optimizer

PSOSS PSO with Selective Search

GSOSS GSO with Selective Search

GA Genetic Algorithm

HS Harmony Search

ILP Integer Linear Programming

TS Tabu Search

ACO Ant Colony Optimization

SO Swap Operator

SS Swap Sequence

1

CHAPTER I

Introduction

Timetabling problems deal with event scheduling considering various constraints. These

problems are NP-hard and can be either optimisation or feasibility problems. University

Course Scheduling Problem (UCSP) is one of the most difficult timetabling optimization

problems. This chapter provides an overview of timetabling problem, introduces UCSP as a

timetabling problem, describes objectives of the thesis and also contains the thesis

organization.

1.1 Overview of Timetabling Problem

Timetabling problems deal with scheduling of a fixed number of events using a fixed number

of timeslots and resources in order to satisfy a set of constraints [1]–[3]. These problems are

NP-hard [4], [5]. The set of the constraints of timetabling problems is usually divided into a

set of hard constraints and a set of soft ones. Hard constraints are the conditions that must be

satisfied for a working timetable whereas the soft constraints are conditions that may be

violated but affect the solution’s quality [6]. Some versions of the problem consider an

objective representing for instance the cost (to be minimized) or the acceptability (to be

maximized) of the schedule, while some other versions are pure feasibility problems.

Timetabling problems have found many applications in different domains such as employee

allotment, transport systems, educational organizations, sports activities and industrial

applications [7]. In higher educational institutions, examination and course scheduling are

two important common and challenging tasks for optimizing physical and human resources

[8]. The University Course Scheduling problem (UCSP) typically is among the difficult

timetabling optimization problems requiring a large number of soft and hard constraints to

be satisfied.

1.2 University Course Scheduling Problem (UCSP)

The goal of UCSP is to assign all classes and laboratory sessions to instructors, rooms, and

timeslots considering the hard and soft constraints in such a way that no dispute arises in

2

these assignments [9]. Mathematically, the UCSP is defined as a triple 〈𝐸, 𝑇, 𝐶〉, where 𝐸 =

{𝑐𝑖, 𝑠𝑗 , 𝑖𝑘} contains three sets: set of classes 𝑐𝑖, set of students 𝑠𝑗, and set of instructors 𝑖𝑘;

𝑇 = {𝑡1, … , 𝑡𝑛} is a set of time slots and 𝐶 = {𝐶1, … , 𝐶𝑛} is the set of hard and soft

constraints. The task is to assign 𝐸𝑖 to the time slot 𝑇𝑖 satisfying constraints 𝐶𝑖 where 𝐶𝑖 ∈ 𝐶.

The challenges of the UCSP are the constraints, for example, instructors’ dispositions,

educational policies of the school, availability of teaching staffs and other physical resources.

In UCSP, each instructor can teach one class at a timeslot and students can just go to one

class at any given time. Other similar kinds of constraints are treated as hard constraints that

must be satisfied. Common soft constraints of the UCSP are instructors’ preferences for

favored days and timeslots, expected to be satisfied to the extent possible. In the UCSP the

main issue is to handle room allocation for lectures considering the maximum capacity of

each room, the number of enrolled students in a course and other related facilities[10], [11].

Both hard and soft constraints may vary from institution to institution based on their

resources and facilities. Any resource modification or update (including capacity alteration

in resources) requires rescheduling of classes, which is very common at the beginning of a

term.

1.3 Thesis Objectives

Various Swarm Intelligence (SI) optimization methods have been investigated for UCSP in

recent times and a few Particle Swarm Optimization (PSO) based methods among them with

different adaptations are shown to be effective. In this study, two novel PSO and Group

Search Optimizer (GSO) based methods are investigated for solving highly constrained

UCSP in which basic PSO and GSO operations are transformed to tackle combinatorial

optimization task of UCSP and a few new operations are introduced to PSO and GSO to

solve UCSP efficiently. In the proposed methods, swap sequence-based velocity and

movement computation and its application are developed to transform individual particles

and members in order to improve them. Selective search and forceful swap operation with

repair mechanism are the additional new operations in the proposed methods for updating

particles and members with calculated swap sequences. Objectives of this thesis work are:

• To solve UCSP using PSO with Selective Search (PSOSS).

• To solve UCSP using GSO with Selective Search (GSOSS).

3

• To evaluate the significance of using selective search and forceful swap application

with repair mechanism in PSOSS and GSOSS.

• To compare the performance of the proposed PSOSS and GSOSS methods with

other traditional methods like Genetic Algorithm (GA) and Harmony Search (HS).

1.4 Thesis Organization

The thesis is organized in five chapters.

Chapter I provides introductory discussion on timetabling problems, UCSP, thesis objectives

and thesis organization.

Chapter II provides overview of prominent nature inspired optimization algorithms, brief

discussion on existing methods to solve UCSP, observation on existing methods and scope

of the research.

Chapter III describes the proposed PSOSS and GSOSS methods in detail.

Chapter IV contains experimental studies. In this chapter experimental setup, environment,

input data preparation, experimental results and analysis are discussed.

Chapter V provides concluding remarks and possible future research directions.

4

CHAPTER II

Literature Review

Nature acts a source of inspiration for researchers and most of the new optimization

algorithms are nature inspired. Several nature inspired optimization algorithms have been

applied on University Course Scheduling Problem (UCSP) and they are found to be effective

but there remains a lot of scope of research in this field. This chapter provides overview of

a few nature inspired algorithms like Particle Swarm Optimization (PSO), Group Search

Optimizer (GSO), Genetic Algorithm (GA), Harmony Search (HS). It also includes brief

discussion on existing methods to solve UCSP, observation on existing methods and scope

of research.

2.1 Prominent Nature Inspired Optimization Algorithms

Nature is the primary source of inspiration for researchers and most of the new optimization

algorithms are nature inspired. Most of the nature inspired algorithms are biology inspired

and among them some draws inspiration from Swarm Intelligence (SI). Many algorithms

also draw inspiration from physical or chemical systems. Some algorithms like HS draw

inspiration even from music. Most of the nature inspired algorithms starts with an initial

population and tries to improve or evolve this population based on natural phenomenon.

There is a vast number of nature inspired optimization algorithms and for this study we have

considered PSO, GSO, GA and HS. Following subsections provide brief overview of these

algorithms to make the thesis paper self-contained.

2.1.1 Particle Swarm Optimization (PSO)

PSO is an optimization algorithm based on the social behavior of swarms mimicking the

movement of organisms (e.g., bird, fish, bat and firefly) in a swarm [12]–[15]. It works with

a population of particles and every particle indicates a candidate solution of the optimization

problem in multidimensional search space [16]. The fitness of each particle is calculated

using a fitness function which is associated with the problem at hand. PSO starts with a

population of particles which are randomly assigned to the search space. At every iteration,

5

each particle of PSO adjusts its position based on velocity calculated considering (i) its

present position, (ii) personal best position and (iii) global best position of the population.

The personal best position of a particle is the best position found by the particle so far and

the global best position is the best position found by all the particles. This process continues

until it reaches a stopping criterion [17] and then the global best position is considered as the

final outcome. PSO has found many applications in many domains [11], [18], [19].

Consider a search space of 𝑑 dimensions consisting of 𝑧 number of particles. If a particle’s

current position is 𝑋𝑝, personal best position is 𝐵𝑝 and global best position among all the

particles is 𝐺 then, the velocity of a particle 𝑉𝑝 is calculated using the following equation:

 𝑉𝑝
(𝑡)

= 𝑤𝑉𝑝
(𝑡−1)

+ 𝑐1 𝑟1 (𝐵𝑝 − 𝑋𝑝
(𝑡−1)

) + 𝑐2𝑟2(𝐺 − 𝑋𝑝
(𝑡−1)

) (2.1)

where, 𝑤 is the inertia factor, 𝑐1 is the cognitive coefficient, 𝑐2 is the social coefficient, and

{𝑟1, 𝑟2} ∈ [0,1] are random values. Inertia factor 𝑤 scales the influence of the previous

velocity, 𝑐1 limits the size of the step the particle takes towards its personal best and 𝑐2 limits

the size of the step the particle takes towards its global best [20]. The position of the particle

is updated using the following equation:

𝑋𝑝
(𝑡)

= 𝑋𝑝
(𝑡−1)

+ 𝑉𝑝
(𝑡)

× 𝑇 (2.2)

where, 𝑇 represents time to convert velocity into distance and its value is assumed 1.

The basic steps of PSO are as follows:

Step 1. Initialization:

a. Create a population of 𝑧 particles by randomly positioning them in the search space.

b. Calculate fitness of each particle and assign its current position (𝑋𝑝) as personal best

position (𝐵𝑝).

c. Find the global best position (G) among all the particles.

Step 2. Position Update of Each Particle:

d. Calculate the velocity using Eq. (2.1).

e. Move to the new position according to Eq. (2.2).

f. Calculate fitness.

g. Update personal best position (𝐵𝑝) and global best position (𝐺) considering fitness

of new position.

Step 3. Termination and Outcome:

Go to Step 2 if termination criterion is not met; otherwise, stop and consider global best

position (𝐺) as the final outcome.

6

2.1.2 Group Search Optimizer (GSO)

GSO is inspired by animal searching behaviour and social foraging [21], [22]. It adopts the

scrounging strategies of house sparrows and employs especially animal scanning

mechanism. General social foraging model mainly follows the producer-scrounger (P-S)

model, in which the group members search either for finding producer or for joining

scrounger opportunities. There are three kinds of member in the group: (i) producer that

searches for food; (ii) scrounger that performs area copying behaviour in order to keep

searching for opportunities to join the resources found by the producer; (iii) ranger (or

dispersed members) that employs searching strategies of random walks for randomly

distributed resources and performs random walk motion. At each iteration, the member

located at the most promising resource is the producer, a number of members except

producer in the group are selected as scroungers, and the remaining members are rangers. In

an n-dimensional search space, the i-th member of the group at iteration 𝑡 located in a

position is denoted as 𝑥𝑖
𝑡 ∈ 𝑅𝑛 with a head angle of 𝜙𝑖

𝑡 = [𝜙𝑖1
𝑡 , ⋯ , 𝜙𝑖𝑛−1

𝑡]. The search

direction of the i-th member is a unit vector denoted as 𝐷𝑖
𝑡(𝜙𝑖

𝑡) = [𝑑𝑖1
𝑡 ,⋯ , 𝑑𝑖𝑛

𝑡] ∈ 𝑅𝑛. The

individual components of the direction vector can be obtained from a Polar to Cartesian

coordinate transformation as follows

𝑑𝑖1
𝑡 = ∏𝑐𝑜𝑠(𝜙𝑖𝑞

𝑡)

𝑛−1

𝑞=1

 (2.3)

𝑑𝑖𝑗
𝑡 = 𝑠𝑖𝑛(𝜙𝑖𝑗−1

𝑡) × ∏𝑐𝑜𝑠(𝜙𝑖𝑞
𝑡)

𝑛−1

𝑞=𝑗

,  𝑗 ∈ {2,3,⋯ , 𝑛 − 1} (2.4)

𝑑𝑖𝑛
𝑡 = 𝑠𝑖𝑛(𝜙𝑖𝑛−1

𝑡) (2.5)

When a member of the group goes outside the search space, it is brought back to its previous

position inside the search space. In GSO, the member located at the most favourable area of

the search space at iteration t, i.e. the member with the best fitness, is considered as the

producer 𝑥𝑝
𝑡 . The producer making a stopover at that location and searches the space for

optimal resources. Animals do use high resolution vision mechanism that enable them to

encode large field of view, which is far too complex for GSO to implement. In GSO, a simple

scanning mechanism used by white crappie is utilised. The scanning mechanism of the white

crappie starts at zero degree then scan in the lateral direction by sampling three points in a

random manner in the vision field: one point at zero-degree 𝑥𝑧, one point on the hand side

7

𝑥𝑟and one point at the left-hand side hypercube 𝑥𝑙. The three points for the producer 𝑥𝑝
𝑡 are

described by

𝑥𝑧 = 𝑥𝑝
𝑡 + 𝑟1𝑙𝑚𝑎𝑥𝐷𝑝

𝑡(∅𝑡) (2.6)

𝑥𝑟 = 𝑥𝑝
𝑡 + 𝑟1𝑙𝑚𝑎𝑥𝐷𝑝

𝑡 (
∅𝑡 + 𝑟2𝜃𝑚𝑎𝑥

2
) (2.7)

𝑥𝑙 = 𝑥𝑝
𝑡 + 𝑟1𝑙𝑚𝑎𝑥𝐷𝑝

𝑡 (
∅𝑡 − 𝑟2𝜃𝑚𝑎𝑥

2
) (2.8)

where 𝑟1 ∈ [0,1] is a random number, 𝑟2 ∈ (0,1) is a uniformly distributed random sequence,

𝜃𝑚𝑎𝑥 ∈ 𝑅 is the maximum pursuit angle and 𝑙𝑚𝑎𝑥 ∈ 𝑅 is the maximum pursuit distance.

Producer will then find the best point with the highest fitness value. If this new point has

better fitness value than the current point, then it will update the current point with new point.

Otherwise it will remain in the current point and change the head angle to a randomly

generated head angle defined by

𝜙𝑖
𝑡+1 = 𝜙𝑖

𝑡 + 𝑟2𝛼𝑚𝑎𝑥 (2.9)

where 𝛼𝑚𝑎𝑥is the maximum turning angle. If the producer cannot reach a better position

after some iterations 𝜏, it will orient the heading angle back to zero degree. A number of

members become scroungers in the group. They mainly search for opportunities and join the

resources found by the producer. Three scrounging behaviours are observed in house

sparrows in [23], which led them to model producer-scrounger (PS) behaviours, i.e. the

search strategies. The three strategies used in PS model are:

(i) Area copying - searching in the immediate area around the producer;

(ii) Following - following another animal around;

(iii) Snatching - taking a resource directly from the producer.

Area copying is found to be the common scrounging behaviour in sparrows [23].Therefore,

area copying is used in the GSO algorithm. The area copying behaviour of the i-th scrounger

at iteration t is described as a random walk toward the producer defined by

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑟3 ∘ (𝑥𝑝
𝑡 − 𝑥𝑖

𝑡) (2.10)

where 𝑟3 ∈ [0,1] is a uniform random sequence. The operator ‘∘’ is a Hadamard product of

the Schur product to compute the entry-wise product of the two vectors. While showing

copying behaviour, the scroungers also keep looking for other opportunities. This behaviour

is described by Eq. (2.9). The members in the group often have different searching and

competitive abilities, which make the remaining members to disperse from their current

locations according to their foraging efficiency. Different dispersal techniques are seen in

8

animals, birds and insects such as ranging behaviour for habitat preferences. Ranging is a

phase of search for resources without any cues. In GSO algorithm, dispersed members are

called rangers. It is common for rangers to do random walks, which are thought to be the

efficient searching method for randomly distributed resources. The i-th member, now a

ranger, takes a random head angle using Eq. (2.9) and selects a random distance at iteration

t defined by

𝑙𝑖 = 𝑟1 × 𝑙𝑚𝑎𝑥 (2.11)

where
1 [0,1]r  is a random number and 𝑙𝑚𝑎𝑥is the maximum pursuit distance a ranger can

travel. The maximum pursuit 𝑙𝑚𝑎𝑥 is calculated according to

𝑙𝑚𝑎𝑥 = ‖𝑈 − 𝐿‖ = √∑ (𝑈𝑖 − 𝐿𝑖)2
𝑛

𝑖=1
 (2.12)

where
iU and

iL are the upper and lower bounds for the i th dimension.

Using the random distance, i-th member jumps on to the new point defined by

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑙𝑖 × 𝐷𝑖
𝑡(𝜙𝑡+1) (2.13)

Animals use simple strategy of maximizing resources and limiting the search to profitable

patch. For example, when animals detect edge of the resource, they go back to the patch. In

GSO, this simple strategy is used. When a member goes outside the boundary of the search

space, it will head back to within the search space by resetting variables that caused crossing

boundary.

The basic steps of GSO are as follows:

Step 1. Initialization

a. Create a group of 𝑤 members by randomly positioning them in the search space.

Step 2. Member Categorization

a. Calculate fitness of each member of the group.

b. Sort members according to fitness value.

c. Select member having best fitness as producer, specified percentage of worst members

as dispersed members and rest of the members as scroungers.

Step 3. Producer’s Scanning

a. Producer scans search area for better position and moves to new better position.

Step 4. Scrounging

a. Each scrounger moves towards producer.

9

Step 5. Dispersed Members’ Random Operation

a. Each dispersed member moves to new position using random walk.

Step 6. Termination and Outcome

a. Recalculate the group with updated producer, scroungers and dispersed members.

b. Go to Step 2 if termination criterion is not met; otherwise recalculate producer and

consider its solution as final outcome.

2.1.3 Genetic Algorithm (GA)

GA is a population-based search and optimization algorithm inspired by Darwinian

evolution and natural selection [24]. GA has three operators, namely, crossover, mutation,

and selection. The GA works with a population initialized randomly that undergoes

crossover with a crossover probability 𝑝𝑐 ∈ [0,1] and mutation with a mutation probability

𝑝𝑚 ∈ [0,1] [25]–[30]. The individuals in the population survive to next generation based on

their fitness. GA obtains a solution with the highest fitness after several generations (i.e.

iterations), which is considered the optimal solution [31]–[33]. GA has found successful

applications in many domains [34], [35]. In GA an initial population of individuals is evolved

for producing better solutions. Each individual is a complete solution to the problem at hand

and is characterized by a set of parameters called Genes. These Genes are joined together to

form a solution called Chromosome. Traditionally, solutions are encoded in binary as a string

of 1s and 0s. A fitness function is used to calculated fitness of each individual which depends

on the optimization problem. Individuals are selected, crossed and mutated in hope of

creating individuals having better fitness value.

The steps of GA are as follows:

Step 1. Initialization

Create initial population by generating specified number of random individuals.

Step 2. Fitness Calculation

Calculate fitness of each individual of the population using a fitness function.

Step 3. Selection

Select individuals from the population so that they can breed a new generation. Selection

probability generally depends on the fitness value so that, individuals having better

fitness get a higher chance of reproducing.

10

Step 4. Crossover

Breed off-springs by crossing two random individuals from the pool of selected

individuals at Step 3. Number of pairs depends on crossover rate. Most common

crossover method is single point crossover. In single point crossover a random point

called 'crossover point' is picked and between the two parent chromosomes bits to the

right of that point are swapped. This process produces two off-springs, each having

genetic information from both parents. These off-springs are incorporated in new

population by replacing the parents.

Step 5. Mutation

Mutate a number of individuals in the population based on mutation probability. For

binary encoding mutation is done by flipping some of the bits of a chromosome.

Step 6. Termination and Outcome

Go to Step 2 if termination criterion is not met; otherwise, stop and consider best solution

from the population as the final outcome.

A variant of new population construction process is to retain a number of best individuals

without alteration from current population to next population. This is done to ensure that

solution of best fitness generated by GA is retained over iterations. This concept is known

as elitism.

2.1.4 Harmony Search (HS)

HS is a population-based search and optimization algorithm inspired by an improvisation

process in musical performance [36]. Search efficiency and exploratory power of HS has

been reported in [37]. In HS, a solution is called a harmony, population is termed as

Harmony Memory (HM) and population size is called Harmony Memory Size (HMS). An

initial population of HM is randomly generated. A candidate harmony is improvised for each

iteration using memory consideration, pitch adjustment, and random selection. The new

harmony is compared with the worst harmony. The worst harmony is replaced by the new

harmony if it is better than the worst harmony and the HM is updated. This process is

repeated until a predetermined number of improvisations. The music improvisation is a

process of searching for the better harmony by trying various combinations of pitches that

should follow any of the following three rules [36]:

1. Playing any one pitch from the memory.

11

2. Playing an adjacent pitch of one pitch from the memory.

3. Playing a random pitch from the possible range.

HS algorithm mimics this process and follows any of the three rules below:

1. Choosing any value from the HS memory.

2. Choosing an adjacent value from the HS memory.

3. Choosing a random value from the possible value range.

The three rules in the HS algorithm are effectively directed using two essential parameters:

Harmony Memory Considering Rate (HMCR) and Pitch Adjusting Rate (PAR).

The steps of HS algorithms are as follows:

Step 1. Initialization

Initialize the HS memory HM. The initial HM consists of a given number of randomly

generated solutions to the optimization problems under consideration. For an n-

dimension problem, an HM with the size of HMS can be represented as follows:

HM =

[

𝑥1
1 𝑥2

1 … 𝑥𝑛
1

𝑥1
2 𝑥2

2 … 𝑥𝑛
2

⋮ ⋮ ⋮ ⋮
𝑥1

HMS 𝑥2
HMS … 𝑥𝑛

HMS]

where [𝑥1
𝑖 𝑥2

𝑖 … 𝑥𝑛
𝑖] (𝑖 = 1, 2, … , HMS) is a solution candidate.

Step 2. New Solution Improvisation

From HM improvise a new solution [𝑥1
′ 𝑥2

′ … 𝑥𝑛
′] where each component 𝑥𝑗

′ is

generated based on HMCR. HMCR is the probability of selecting a component from

existing members of HM. So, 1-HMCR is the probability of generating 𝑥𝑗
′ component

randomly. If 𝑥𝑗
′ comes from HM then it is selected from 𝑗th dimension of a randomly

chosen HM member, and then it can be mutated based on mutation probability PAR.

Step 3. HM Update

If the fitness of the new solution obtained from Step 2 is better than the worst member

of HM, then replace the worst member with new solution.

Step 4. Termination and Outcome

Go to Step 2 if termination criterion is not met; otherwise, stop and consider best

solution from HM as the final outcome.

12

2.2 Existing Methods to Solve UCSP

A number of exact and meta-heuristic [38] approaches have been applied to different

scheduling tasks including UCSP in the last few years. Integer Linear Programming (ILP) is

an exact approach which optimizes an objective function of a mathematical model. ILP has

been applied to scheduling problems including course timetabling problem [39], [40]. Some

of the meta-heuristic approaches are Genetic Algorithm (GA) [6], [41]–[46], Tabu Search

(TS) [8], Simulated Annealing (SA) [47], [48], Evolutionary Algorithm [49], [50], Hybrid

Evolutionary Algorithm [51], Hybrid Evolutionary Approach with Nonlinear Great Deluge

[52], Hybrid Electromagnetism-like Mechanism with Great Deluge [53], and Harmony

Search (HS) algorithm [54], [55]. A TS based approach was proposed for UCSP with

emphasis on the University of Dar-assalaam that generates schedule by heuristically

minimizing penalties over infeasible solutions in [8]. A metaheuristic algorithm for UCSP

combining Heuristics, SA, Variable Neighborhood Descent, and TS was proposed in [1].

2.2.1 GA based Methods to Solve UCSP

A GA based method is proposed to solve weekly course timetabling problem in [56]. This

approach uses problem-specific chromosome representation and knowledge-augmented

genetic operators for avoiding illegal timetables generation. A GA method for UCSP with

multiple constraints is investigated in [42], which resulted in a timetable more acceptable to

instructors. GA with a guided search strategy and local search techniques for the university

course timetabling is proposed in [57]. This approach uses guided search strategy to create

offspring and local search to improve the search efficiency. Course timetabling problem is

modelled as a bi-criteria optimization problem and solved by a hybrid Multi-objective GA

in [58]. This approach makes use of Hill Climbing and Simulated Annealing algorithms in

addition to the standard GA approach.

2.2.2 HS based Methods to Solve UCSP

HS algorithm is used for university course timetabling problem in [54] which generates

viable solution compared to previous works. A hybrid HS with hill climbing for local

exploitation improvement and global best concept of PSO for improved convergence is

proposed for university course timetabling problem in [55].

13

2.2.3 PSO based Methods to Solve UCSP

Recently, SI based optimization methods such as Ant Colony Optimization (ACO) [59],

[60], Honey-Bee Mating Optimization [61] have been investigated for UCSP and other

timetabling problems. In SI based optimization methods, Particle Swarm Optimization

(PSO) is very popular [62] and various PSO based strategies have been examined for UCSP.

A PSO based method considering a bunch of constraints and a repair mechanism for all

infeasible solutions is proposed for UCSP in [11]. This method was applied for class

scheduling of the department of information management of Kun-Shan University in

Taiwan. An adaptive PSO based technique in which teachers are allowed to set their own

weights to each hard and/or soft constraint is investigated to solve UCSP in [63]. A hybrid

PSO method incorporating local search is proposed for generating timetable for Greece high

school in [64]. Two different versions of PSO for UCSP, the inertia weight version and the

constriction version is investigated in [16]. This study also utilizes interchange heuristic to

explore the neighbouring solution space for improving solution quality.

2.2.4 Previous Works from the Department of CSE, KUET

ACO with GA is used in [65] for solving UCSP where ACO is used to provide UCSP's

solution and GA operations such as selection and mutation is employed to improve UCSP’s

solution. Modified Hybrid PSO is implemented in [66] considering various hard and soft

constraints to solve a real-world UCSP. Grammatical Evolution is used in [67] for solving

UCSP.

2.3 Observation on Existing Methods

PSO is popular due to its computational simplicity and adaptation ability [62]. PSO works

with a population of particles; and, at every iteration, it calculates velocities for individual

particles and adjusts those positions based on the velocities. PSO was proposed for

continuous optimization (also called function optimization) in floating point numeric domain

where interaction among particles (i.e., velocity calculation) are maintained through

mathematical operations (e.g., addition, subtraction, and multiplication). On the other hand,

any timetabling, especially UCSP, is a combinatorial optimization task and discrete in

nature. To deal with such optimization tasks using PSO, high school timetabling [63], [64]

and university course scheduling [11], [16] problems are first transformed into floating point

numeric domain and then PSO is applied to obtain a workable solution. In these methods, a

14

particle is encoded through floating point numeric representation of courses, instructors,

rooms; and PSO operations (i.e., floating point numeric operations of velocity calculation

and position update) are applied to improve it. Instead of transforming the UCSP to floating

point numeric domain, a practical approach would be the modification of the algorithm.

Performance of GSO on 23 unimodal and low dimension multimodal benchmark functions

is verified in [21], [22], which shows competitive performance of GSO over GA and PSO.

GSO is also applied for training of weights of a three-layer feedforward neural network,

which is considered a continuous hard optimization problem due to the high-dimensional

multimodal search space [21], [22]. GSO also shows competitive performance in this case

compared to scaled conjugate gradient, GA, evolutionary programming, evolution strategies,

and PSO. To the best of our knowledge, GSO has not been used to solve UCSP.

2.4 Scope of Research

From the observation of existing methods, it is clear that there is a scope of transforming the

PSO for UCSP without transforming the UCSP to floating point numeric domain. Also, GSO

seems to be promising for solving UCSP. As GSO has not been used to solve UCSP there is

a scope of utilizing GSO for optimizing UCSP. In this study, swap sequence has been

adapted for velocity/movement calculation; and selective search as well as forceful swap

operation with repair mechanism has been introduced to PSO and GSO for dealing with

highly constrained nature of UCSP.

15

CHAPTER III

Methodology

This chapter presents the proposed Particle Swarm Optimization with Selective Search

(PSOSS) and Group Search Optimizer with Selective Search (GSOSS) methods in detail in

different subsections explaining the transformation of PSO and GSO operations to tackle the

combinatorial optimization task of University Course Scheduling Problem (UCSP) and the

additional new operations introduced in PSOSS and GSOSS. Section 3.1 introduces some

terminologies used in this study. Section 3.1.1 describes solution encoding for the UCSP in

consideration. Section 3.1.2 describes the fitness calculation process for a solution. Section

3.1.3 introduces swap operator and swap sequences for UCSP. Forceful swap operation with

repair mechanism and selective search, the added significant features of PSOSS and GSOSS,

are described in section 3.1.4 and section 3.1.5, respectively. Section 3.2 presents the PSOSS

method for solving UCSP. Sections 3.2.1 and section 3.2.2 explain the transformation of

PSO operations to handle UCSP. The algorithm and illustration of the working procedure of

PSOSS are presented in section 3.2.3 and section 3.2.4, respectively. Section 3.3 presents

the GSOSS method for solving UCSP. Section 3.3.1 to section 3.3.5 explain the

transformation of GSO operations to handle UCSP. The algorithm and illustration of

working procedure of GSOSS are presented in section 3.3.6 and section 3.3.7, respectively.

3.1 Terminologies

Some terminologies including solution encoding for UCSP, solution’s fitness calculation

process, Swap Operator and Swap Sequence for UCSP, Forceful swap operation with repair

mechanism, selective search, population initialization are described in following

subsections.

16

 3.1.1 Solution Encoding for UCSP

The UCSP in consideration consists of 𝑢 number of instructors, 𝑞 number of courses, 𝑠

number of rooms, and ℎ number of timeslots. Each yearly student intakes are grouped

together in a batch and the total number of batches is 𝑜. Each batch may be further subdivided

into 𝑘 number of subgroups. The proposed PSOSS uses 𝑧 number of particles to solve the

UCSP. Sets of instructors, courses, rooms, timeslots, batches, subgroups are represented as

follows:

 −𝑆𝑒𝑡 𝑜𝑓 𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑟𝑠, 𝐼 = {𝑒𝑖 | 𝑖 = 1,… , 𝑢}

−𝑆𝑒𝑡 𝑜𝑓 𝐶𝑜𝑢𝑟𝑠𝑒𝑠, 𝐶 = {𝑐𝑖 | 𝑖 = 1,… , 𝑞}

−𝑆𝑒𝑡 𝑜𝑓 𝑅𝑜𝑜𝑚𝑠, 𝑅 = {𝑟𝑖 | 𝑖 = 1,… , 𝑠}

−𝑆𝑒𝑡 𝑜𝑓 𝑇𝑖𝑚𝑒𝑠𝑙𝑜𝑡𝑠, 𝑇 = {𝑡𝑖 | 𝑖 = 1,… , ℎ}

−𝑆𝑒𝑡 𝑜𝑓 𝐵𝑎𝑡𝑐ℎ𝑒𝑠, 𝐵 = {𝑏𝑖 | 𝑖 = 1,… , 𝑜}

−𝑆𝑒𝑡 𝑜𝑓 𝑆𝑢𝑏𝑔𝑟𝑜𝑢𝑝𝑠, 𝐽 = {𝑣𝑖 | 𝑖 = 1,… , 𝑘}

Each instructor object contains information about assigned courses and preference for

conducting a class in a particular timeslot. Each course object contains information about the

number of timeslots required for a class, number of classes per week, course type

(theory/laboratory) and number of students per class. Each room object contains information

about allowed courses and seat capacity. Each timeslot represents a teaching period and the

total number of timeslots (ℎ) is 45 (9 periods in each day for 5 working days of a week).

Each batch object contains subgroups and information about number of assigned students to

that batch. Each subgroup object contains information about the number of assigned

students. A Solution of UCSP in consideration, 𝑆𝑖 where 𝑖 is the solution number is

represented by instructor-wise solutions in a one-dimensional matrix as shown in Fig. 3.1.

Fig. 3.1 (a) is the instructor-wise summary view of a solution where 𝑆𝑖,1 , 𝑆𝑖,2, … , 𝑆𝑖,𝑢 denote

the 1st, 2nd,…, 𝑢th instructor’s solution, respectively. Fig. 3.1 (b) shows a solution’s detailed

Figure 3.1: Solution representation for UCSP.

17

view of 45 timeslots for each instructor and each timeslot identifies one of the nine teaching

periods in a day for five working days in a week. The total number of timeslots is 45 × 𝑢 for

𝑢 instructors; timeslots 𝑒1, 𝑡1 − 𝑒1, 𝑡45 for the first instructor, 𝑒2, 𝑡1 − 𝑒2, 𝑡45 for the second

instructor, and so on. Each timeslot comprises assigned course, room, batch, and subgroup

information as shown in Fig. 3.1(b). Fig. 3.2 represents the mapping of timeslots of a solution

in days and periods. As an example, timeslot 𝑒1, 𝑡44 represents 5th working day’s 8th period

of the first instructor.

3.1.2 Fitness Calculation

Each instructor’s preference for conducting a class in a particular timeslot is represented by

an integer value as shown in Fig. 3.3. A higher value corresponds to a higher preference of

an instructor to conduct the class in that particular timeslot. Whereas, a negative value shows

the instructor’s non-preference. The fitness of 𝑖th solution 𝑆𝑖 is calculated by considering

fitness of each of the instructor’s solution which belongs to that solution using the following

equation:

𝐹(𝑆𝑖) = ∑𝐹(𝑆𝑖,𝑗),

𝑢

𝑗=0

 (3.1)

where, 𝐹(𝑆𝑖) is the fitness of the solution, and 𝐹(𝑆𝑖,𝑗) is the fitness of the 𝑖th solution’s 𝑗th

instructor’s solution. Now, fitness of each instructor’s solution is calculated by considering

quality and violation of the instructor’s solution using the following equation:

𝐹(𝑆𝑖,𝑗) = 𝑄(𝑆𝑖,𝑗) − 𝑉(𝑆𝑖,𝑗), (3.2)

Figure 3.2: Mapping of timeslots of a solution in days and periods.

18

where, 𝑄(𝑆𝑖,𝑗) is the quality of the instructors’ solution, and 𝑉(𝑆𝑖,𝑗) is the violation of the

instructor’s solution. Preference values of corresponding positions where courses are

assigned to an instructor are summed up to calculate the quality of an instructor’s solution.

Violation of the instructors’ solution is calculated using the following equation:

𝑉(𝑆𝑖,𝑗) = ∑ 2𝑙𝑎

𝑡𝑐

𝑎=1

, (3.3)

where, 𝑡𝑐 is the total number of blocks of consecutive classes in an instructor’s solution and

𝑙𝑎 is the number of classes in 𝑎th block. The exponential in Eq. (3.3) is used to mimic the

human nature. If the number of consecutive classes increases, then the dissatisfaction of an

instructor increases rapidly. For example, three consecutive classes are much more difficult

(practically almost impossible) to manage for an instructor than two consecutive classes.

3.1.3 Swap Operator and Swap Sequence for UCSP

A Swap Operator (SO) denotes the index of items to be swapped in a list [68]–[70].

Consider the list 𝐴 = {𝑎, 𝑏, 𝑐, 𝑑} with indices {0, 1, 2, 3}:

A SO(1,3) produces a new list 𝐵 = 𝐴 + SO(1,3) as follows:

here, ‘+’ does not mean any arithmetic operation rather it means the swap operation SO(𝑖, 𝑗)

on A.

A a b c d

Index 0 1 2 3

Figure 3.3: Sample preference values for instructors.

19

A Swap Sequence (SS) is a group of SOs defined as [68]–[70]:

𝑆𝑆 = { 𝑆𝑂1, 𝑆𝑂2, 𝑆𝑂3, ⋯ , 𝑆𝑂𝑛} (3.4)

Deployment of an SS means application of all the SOs in an SS in that very particular order.

Moreover, if applying SS on a list A yields a list B (i.e., B = A + SS), then it can be written as

𝑆𝑆 = 𝐵 − 𝐴 (3.5)

For example, if 𝑆𝑆 = {(1,3), (2,0)} then, 𝐵 = 𝐴 + 𝑆𝑆. This operation is illustrated below:

The SS to convert one solution of a UCSP to another one is a collection of swap sequences

which is measured in an instructor-to-instructor basis. Consider a UCSP consisting of two

instructors 𝑒1 and 𝑒2 each having two courses {𝑐1, 𝑐2} and {𝑐3, 𝑐4}, respectively. Fig. 3.4

shows two different solutions A and B for the UCSP in consideration. In solution A,

instructor 𝑒1 has a course 𝑐1 in timeslot 1 and another course 𝑐2 in timeslot 3 whereas in

solution B, course 𝑐1 is in timeslot 0 and 𝑐2 is in timeslot 2. So, the required SS for converting

the schedule of 𝑒1 in solution A to schedule of 𝑒1 in solution B is 𝑆𝑆1 = {(1,0), (3,2)}.

Similarly, 𝑆𝑆2 = {(0,3), (2,1)}. So, the complete swap sequence for converting solution A

to solution B is 𝑆𝑆 = {𝑆𝑆𝑖1 , 𝑆𝑆𝑖2} = {{(1,0), (3,2)}, {(0,3), (2,1)}}.

3.1.4 Forceful Swap Operation with Repair Mechanism

Forceful Swap Operation with Repair Mechanism is an added feature of PSOSS and GSOSS

methods. UCSP is highly constrained in nature and most of the constraints are interrelated.

Consequently, if a class needs to be shifted to a new timeslot then all the involved members

Figure 3.4: Instructor wise Swap Sequences (SSs) of complete SS.

20

such as instructor, students, and room need to be free in that timeslot. As a result, most of

the swaps cannot be applied because of violation of constraints. Forcefully applying an SO

can cause conflicts. Therefore, a repair mechanism is involved in forceful SO operation to

make sure that no invalid solution results in that process. The repair mechanism works by

randomly moving conflicting courses to non-conflicting positions. The repair mechanism is

illustrated in Fig. 3.5. Consider a UCSP instance consisting of two instructors 𝑒1 and 𝑒2.

Instructor 𝑒1 has course 𝑐1 of batch 𝑏1, subgroup 𝑣1in room 𝑟1 and course 𝑐2 of batch 𝑏3,

subgroup 𝑣2 in room 𝑟3 at timeslots 5 and 8, respectively. Instructor 𝑒2 has course 𝑐4 of batch

𝑏2, subgroup 𝑣1 in room 𝑟2 and course 𝑐3 of batch 𝑏3, subgroup 𝑣2 in room 𝑟5 at timeslots 3

and 5, respectively. Now, if an SO(5,8) is applied forcefully on the solution of 𝑒1 then, course

𝑐2 of 𝑒1 comes at timeslot 5 which results in a conflict with 𝑒2 because subgroup 𝑣2 of batch

𝑏3 is already engaged in a class with 𝑒2 (shown with circle in Fig. 3.5). This conflict is

resolved by moving the conflicting course of 𝑒2 to a randomly chosen non-conflicting

timeslot 7.

Figure 3.5: Illustration of the repair mechanism.

21

3.1.5 Selective Search

Selective search is one of the most important features of PSOSS and GSOSS. In selective

search, each solution generated by applying an SO of SS is considered as an intermediate

solution. Suppose, 𝑆𝑆 = {𝑆𝑂1, 𝑆𝑂2, 𝑆𝑂3,⋯ , 𝑆𝑂𝑛} then the selective search can be written as

𝑆𝐶1 = 𝑆𝐶 + 𝑆𝑂1

𝑆𝐶2 = 𝑆𝐶1 + 𝑆𝑂2

⋮
𝑆𝐶𝑛 = 𝑆𝐶𝑛−1 + 𝑆𝑂𝑛

In the above cases, 𝑆𝐶1, 𝑆𝐶2, ⋯ , 𝑆𝐶𝑛 are the intermediate solutions and the intermediate

solution having the highest fitness becomes the final solution 𝑆𝐶 in selective search as

defined by the following equation:

𝑆𝐶 = max{𝑆𝐶𝑓} , 𝑓 = 1,2,⋯ , 𝑛 (3.6)

SS generating the final solution is SS = {𝑆𝑂1, 𝑆𝑂2, 𝑆𝑂3,⋯ , 𝑆𝑂𝑓}, 1≤ f ≤ n.

The ultimate solution 𝑆𝐶 in selective search is the intermediate solution possessing the

highest fitness value. Thus, the selective search technique explores the opportunity of

keeping better solution from the intermediate solutions.

3.1.6 Population Initialization

Like other population-based algorithms, the proposed PSOSS and GSOSS methods also

starts with an initial population. Each individual (particle in PSOSS and member in GSOSS)

in the initial population is assigned a random solution. A random solution is generated by

randomly assigning timeslots to the assigned courses of all instructors. Timeslots are

allocated by maintaining all the hard constraints and it is checked that courses requiring

multiple consecutive slots do not include any break periods. Weighted random distribution

is used for assigning rooms to courses so that, a room having the highest load has the lowest

probability of getting selected.

3.2 PSO with Selective Search (PSOSS) for Solving UCSP

Proposed PSOSS method works with a population of particles in which individual particle

contains a feasible solution, calculates velocity of each individual particle using swap

sequence and updates each particle with the computed velocity through selective search and

forceful swap operation with repair mechanism. The particle encoding, velocity computation

and other operations are described in the following subsections.

22

3.2.1 Particle Encoding

The proposed PSOSS uses 𝑧 number of particles to solve the UCSP. Set of particles is

represented as follows:

 −𝑆𝑒𝑡 𝑜𝑓 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠, 𝑃 = {𝑝𝑖 | 𝑖 = 1, … , 𝑧}

Each particle object contains a feasible solution to the UCSP i.e. the complete schedule for

instructors, batches, and rooms.

3.2.2 Velocity Computation using Swap Operator and Swap Sequence

SO and SS have been used in the proposed PSOSS method for velocity calculation. In the

proposed method, swap sequence SS is treated as velocity to update a particle’s solution at

each iteration which is calculated using the following equation

𝑆𝑆 = 𝛼(𝑆𝐺𝐵 − 𝑆𝐶) + 𝛽(𝑆𝑃𝐵 − 𝑆𝐶)  𝛾𝑆𝑆𝑃𝐴 (3.7)

where, 𝑆𝐺𝐵 is the global best solution of the swarm, 𝑆𝐶 is the current so

lution of the particle, 𝑆𝑃𝐵 is the personal best solution of the particle, 𝑆𝑆𝑃𝐴 is the previously

velocity applied,  is merge operation and {𝛼, 𝛽, 𝛾} are selection probabilities for selecting

a bunch of SOs from the corresponding SSs. 𝑆𝐺𝐵 − 𝑆𝐶 represents instructor-wise SSs to

reach 𝑆𝐺𝐵 from 𝑆𝐶 and 𝑆𝑃𝐵 − 𝑆𝐶 is the instructor-wise SSs to reach 𝑆𝑃𝐵 from 𝑆𝐶.. If

𝑆𝑆𝐺𝐵 = 𝑆𝐺𝐵 − 𝑆𝐶 and 𝑆𝑆𝑃𝐵 = 𝑆𝑃𝐵 − 𝑆𝐶 then, Eq. (3.7) can be rewritten as:

𝑆𝑆 = 𝛼𝑆𝑆𝐺𝐵 + 𝛽𝑆𝑆𝑃𝐵  𝛾𝑆𝑆𝑃𝐴 (3.8)

After selection of SOs with },,{  , 𝑆𝑆 becomes

𝑆𝑆 = 𝑆𝑆𝑆𝐺𝐵 + 𝑆𝑆𝑆𝑃𝐵  𝑆𝑆𝑆𝑃𝐴 = 𝑆𝑆𝑆𝐺𝐵 + 𝑆𝑆𝑀 (3.9)

where, 𝑆𝑆𝑆𝐺𝐵, 𝑆𝑆𝑆𝑃𝐵 , 𝑆𝑆𝑆𝑃𝐴 are the selected SS from 𝑆𝑆𝐺𝐵, 𝑆𝑆𝑃𝐵 and 𝑆𝑆𝑃𝐴,

respectively and 𝑆𝑆𝑀 is the swap sequence resulting from merging 𝑆𝑆𝑆𝑃𝐵 with 𝑆𝑆𝑆𝑃𝐴.

As 𝑆𝑆𝑆𝐺𝐵 and 𝑆𝑆𝑀 may contain redundant SOs, redundant swaps are removed from them

and they become 𝑆𝑆𝑆𝐺𝐵𝑀 and 𝑆𝑆𝑀𝑀, respectively. Finally, 𝑆𝑆 becomes:

𝑆𝑆 = 𝑆𝑆𝑆𝐺𝐵𝑀 + 𝑆𝑆𝑀𝑀 (3.10)

A portion of 𝑆𝑆𝑆𝐺𝐵𝑀 is forcefully applied to current solution 𝑆𝐶 to ensure that 𝑆𝐶 moves

a little towards 𝑆𝐺𝐵. Selective search is used to retain best intermediate solution while

applying 𝑆𝑆. The sequence of SOs generating the best intermediate solution is considered as

the final velocity which becomes the previously applied velocity for the next iteration.

23

3.2.3 PSOSS Algorithm for Solving UCSP

The proposed PSOSS method for solving UCSP is shown in Algorithm 3.1.1. The notations

and inputs of the proposed algorithm are listed at the beginning of the Algorithm 3.1.1.

Algorithm 3.1.1: PSOSS-UCSP

Input:

Instructors’ Information, Batches’ Information,

Courses’ Information, Classrooms’ Information, Break Times’ information,

𝑛 - total number of iterations

𝑧 - total number of particles

𝑢 - total number of instructors

𝛼 - selection probability of a swap from swap sequence to global best solution

𝛽 - selection probability of a swap from swap sequence to personal best solution

𝛾 - selection probability of a swap from previously applied swap sequence

𝑓 - percentage of swaps to be forced towards global best solution

𝑙 - length of random swap sequence

Output:

An optimal solution of UCSP

Variables:

𝑡 - iteration counter

𝑆𝐶𝑖 - 𝑖th particle’s current solution

𝑆𝑅 - A random solution

𝑆𝑃𝐵𝑖 - 𝑖th particle’s personal best solution

𝑆𝑆𝑃𝐴𝑖 - 𝑖th particle’s previously applied swap sequence

𝑆𝐺𝐵 - global best solution

𝑆𝑆𝐻 - swap sequence holder for selective search

𝑆𝐻 - solution holder for selective search

𝑆𝑆𝑅 - random swap sequence

𝑆𝑆𝐺𝐵 - swap sequence to global best solution

𝑆𝑆𝑃𝐵 - swap sequence to personal best solution

𝑆𝑆𝑆𝐺𝐵 - selected swap sequence to global best solution

𝑆𝑆𝑆𝑃𝐵 - selected swap sequence to personal best solution

24

𝑆𝑆𝑆𝑃𝐴 - selected swap from previously applied swap sequence

𝑆𝑆𝑀 - swap sequence by merging 𝑆𝑆𝑆𝑃𝐵 and 𝑆𝑆𝑆𝑃𝐴

𝑆𝑆𝑆𝐺𝐵𝑀 - minimized swap sequence from 𝑆𝑆𝑆𝐺𝐵

𝑆𝑆𝑆𝐺𝐵𝑀𝑗 - 𝑗th instructor’s swap sequence in 𝑆𝑆𝐺𝐵𝑀

𝑆𝑆𝑀𝑀 - minimized swap sequence from 𝑆𝑆𝑀

𝑆𝑆𝑀𝑀𝑗 - 𝑗th instructor’s swap sequence in 𝑆𝑆𝑀𝑀

𝑁𝑆𝐹 - number of swaps to be forced towards global best solution

𝑆𝑆𝐶𝐴 - currently applied swap

𝑃 - set of particles

𝐶𝐶 - set of conflicting classes

Step 1: Initialization

1. 𝑡 ← 1

2. create 𝑧 number of particles and append them to 𝑃

3. for 𝑖 ← 1 to 𝑧 do //for each particle

4. 𝑆𝐶𝑖 ← 𝑆𝑅

5. calculate fitness of 𝑆𝐶𝑖 as described in section 3.1.2

6. 𝑆𝑃𝐵𝑖 ← 𝑆𝐶𝑖

7. 𝑆𝑆𝑃𝐴𝑖 ← Ø

8. end for

9. 𝑆𝐺𝐵 ← solution(max 𝑃)

Step 2: Computation and application of velocity

1. for 𝑖 ← 1 to 𝑧 do //for each particle

2. 𝑆𝑆𝐻 ← Ø

3. 𝑆𝐻 ← Ø

4. 𝑆𝑆𝐶𝐴 ← Ø

5. Step 2.1: Calculate velocity using Eq. (3.7), Eq. (3.8), Eq. (3.9) and Eq. (3.10)

6. if 𝑆𝑆𝑃𝐴𝑖 = Ø then

7. 𝑆𝑆𝑃𝐴𝑖 ← 𝑆𝑆𝑅 of length 𝑙

8. end if

9. 𝑆𝑆𝐺𝐵 ← 𝑆𝐺𝐵 – 𝑆𝐶𝑖

10. 𝑆𝑆𝑃𝐵 ← 𝑆𝑃𝐵𝑖 – 𝑆𝐶𝑖

25

11. 𝑆𝑆𝑆𝐺𝐵 ← 𝛼 ∗ 𝑆𝑆𝐺𝐵

12. 𝑆𝑆𝑆𝑃𝐵 ← 𝛽 ∗ 𝑆𝑆𝑃𝐵

13. 𝑆𝑆𝑆𝑃𝐴 ← 𝛾 ∗ 𝑆𝑆𝑃𝐴𝑖

14. 𝑆𝑆𝑀 ← 𝑆𝑆𝑆𝑃𝐵  𝑆𝑆𝑆𝑃𝐴 //merge 𝑆𝑆𝑆𝑃𝐵 with 𝑆𝑆𝑆𝑃𝐴

15. 𝑆𝑆𝑆𝐺𝐵𝑀 ← swapMinimizer(𝑆𝑆𝑆𝐺𝐵) //remove redundant swaps

16. 𝑆𝑆𝑀𝑀 ← swapMinimizer(𝑆𝑆𝑀)

17. Step 2.2: Apply 𝒇 percent of swaps from 𝑺𝑺𝑺𝑮𝑩𝑴 using forceful swap

operation with repair mechanism and selective search

18. for 𝑗 ← 1 to 𝑢 do //for each instructor

19. 𝑁𝑆𝐹 ← 𝑓 ∗ |𝑆𝑆𝑆𝐺𝐵𝑀𝑗|

20. for 𝑎 ← 1 to 𝑁𝑆𝐹 do

21. 𝑆𝐶𝑖 ← 𝑆𝐶𝑖 + 𝑆𝑆𝑆𝐺𝐵𝑀𝑗[𝑎] forcefully

22. Step 2.2.1: Repair mechanism

23. 𝐶𝐶 ←list of conflicting classes in 𝑆𝐶𝑖 resulting from 𝑆𝑆𝑆𝐺𝐵𝑀𝑗[𝑎]

application

24. if 𝐶𝐶 ≠ Ø then

25. for all 𝑐𝑐 𝜖 𝐶𝐶

26. move 𝑐𝑐 to a randomly selected non-conflicting position

27. end for

28. end if

29. 𝑆𝑆𝐶𝐴 ← 𝑆𝑆𝐶𝐴 ∪ {𝑆𝑆𝑆𝐺𝐵𝑀𝑗[𝑎]}

30. selectiveSearch(𝑆𝐶𝑖 , 𝑆𝑆𝐶𝐴, 𝑆𝐻, 𝑆𝑆𝐻)

31. end for

32. end for

33. Step 2.3: Apply remaining swaps of 𝑺𝑺𝑺𝑮𝑩𝑴 using selective search

34. for 𝑗 ← 1 to 𝑚 do //for each instructor

35. 𝑁𝑆𝐹 ← 𝑓 ∗ |𝑆𝑆𝑆𝐺𝐵𝑀𝑗|

36. for 𝑎 ← 𝑁𝑆𝐹 + 1 to |𝑆𝑆𝑆𝐺𝐵𝑀𝑗| do

37. if 𝑆𝑆𝑆𝐺𝐵𝑀𝑗[𝑎] is applicable then

38. 𝑆𝐶𝑖 ← 𝑆𝐶𝑖 + 𝑆𝑆𝑆𝐺𝐵𝑀𝑗[𝑎]

39. 𝑆𝑆𝐶𝐴 ← 𝑆𝑆𝐶𝐴 ∪ {𝑆𝑆𝑆𝐺𝐵𝑀𝑗[𝑎]}

40. selectiveSearch(𝑆𝐶𝑖 , 𝑆𝑆𝐶𝐴, 𝑆𝐻, 𝑆𝑆𝐻)

26

41. end if

42. end for

43. end for

44. Step 2.4: Apply 𝑺𝑺𝑴𝑴 using selective search

45. for 𝑗 ← 1 to 𝑢 do //for each instructor

46. for 𝑎 ← 1 to |𝑆𝑆𝑀𝑀𝑗| do

47. if 𝑆𝑆𝑀𝑀𝑗[𝑎] is applicable then

48. 𝑆𝐶𝑖 ← 𝑆𝐶𝑖 + 𝑆𝑆𝑀𝑀𝑗[𝑎]

49. 𝑆𝑆𝐶𝐴 ← 𝑆𝑆𝐶𝐴 ∪ {𝑆𝑆𝑀𝑀𝑗[𝑎]}

50. selectiveSearch(𝑆𝐶𝑖 , 𝑆𝑆𝐶𝐴, 𝑆𝐻, 𝑆𝑆𝐻)

51. end if

52. end for

53. end for

54. Step 2.5: Update 𝑺𝑪𝒊, 𝑺𝑺𝑷𝑨𝒊 and 𝑺𝑷𝑩𝒊

55. 𝑆𝐶𝑖 ← 𝑆𝐻

56. 𝑆𝑆𝑃𝐴𝑖 ← 𝑆𝑆𝐻

57. calculate fitness of 𝑆𝐶𝑖 as described in section 3.1.2

58. if fitness(𝑆𝐶𝑖) > fitness(𝑆𝑃𝐵𝑖) then

59. 𝑆𝑃𝐵𝑖 ← 𝑆𝐶𝑖

60. end if

61. end for

Step 3: Update 𝑺𝑮𝑩

1. 𝑆𝐺𝐵𝑇 ← solution(max 𝑃)

2. if fitness(𝑆𝐺𝐵𝑇) > fitness(𝑆𝐺𝐵) then

3. 𝑆𝐺𝐵 ← 𝑆𝐺𝐵𝑇

4. end if

Step 4: Check the stopping criterion

1. while 𝑡 ≠ 𝑛 do

2. 𝑡 ← 𝑡 + 1

3. repeat Step 2 and Step 3

27

4. end while

Step 5: Return 𝑺𝑮𝑩 as result

Algorithm 3.1.2 selectiveSearch

Input: 𝑆𝐶𝑖 , 𝑆𝑆𝐶𝐴, 𝑆𝐻, 𝑆𝑆𝐻

1. if 𝑆𝐻 = Ø ∨ fitness(𝑆𝐻)<fitness(𝑆𝐶𝑖) then

2. 𝑆𝐻 ← 𝑆𝐶𝑖

3. 𝑆𝑆𝐻 ← 𝑆𝑆𝐶𝐴

4. end if

In the proposed method, the initial population of particles is generated by creating a specified

number of particles. Each particle’s current solution 𝑆𝐶𝑖 gets initialized by a random solution

𝑆𝑅 as described in section 3.1.6. The fitness of each particle’s current solution is calculated

as described in section 3.1.2. 𝑆𝐶𝑖 also becomes the personal best solution 𝑆𝑃𝐵𝑖 initially. The

previously applied swap sequence for a particle 𝑆𝑆𝑃𝐴𝑖 is initially empty. The solution having

the highest fitness among all the particles is selected as the global best solution 𝑆𝐺𝐵. In each

iteration, velocity for each particle is calculated using (3.7), Eq. (3.8), Eq. (3.9) and Eq.

(3.10). SH is used to hold best intermediate solution and SSH holds the swap sequence that

produces SH. For each particle, SH and SSH are emptied to be used for selective search.

𝑆𝑆𝐶𝐴 is used to hold the applied swap sequence on a particle’s solution in each iteration and

it is also emptied initially. If the previously applied swap sequence 𝑆𝑆𝑃𝐴𝑖 of a particle is

empty, then a randomly generated swap sequence 𝑆𝑆𝑅 of length 𝑙 is assigned to 𝑆𝑆𝑃𝐴𝑖 . 𝑆𝑆𝑅

is generated by creating 𝑙 number of unique SOs for each instructor. For example, if a UCSP

instance consists of two instructors namely 𝑒1 and 𝑒2 then a possible random swap sequence

of length 2 is {(2,10),(5,8)} for 𝑒1 and {(3,6),(1,7)} for 𝑒2. Then, instructor-wise swap

sequences to reach 𝑆𝐺𝐵 and 𝑆𝑃𝐵𝑖 from 𝑆𝐶𝑖 are calculated which are represented by 𝑆𝑆𝐺𝐵(=

𝑆𝐺𝐵– 𝑆𝐶𝑖) and 𝑆𝑆𝑃𝐵(= 𝑆𝑃𝐵𝑖 – 𝑆𝐶𝑖), respectively. Some swaps are selected for each

instructor from 𝑆𝑆𝐺𝐵 based on the selection probability 𝛼 denoted by 𝑆𝑆𝑆𝐺𝐵(= 𝛼 ∗ 𝑆𝑆𝐺𝐵).

Similarly, 𝑆𝑆𝑆𝑃𝐵(= 𝛽 ∗ 𝑆𝑆𝑃𝐵) and 𝑆𝑆𝑆𝑃𝐴(= 𝛾 ∗ 𝑆𝑆𝑃𝐴𝑖) are the selected swaps from

𝑆𝑆𝑃𝐵 and 𝑆𝑆𝑃𝐴𝑖, respectively. 𝑆𝑆𝑆𝑃𝐵 and 𝑆𝑆𝑆𝑃𝐴 are merged together to 𝑆𝑆𝑀(=

𝑆𝑆𝑆𝑃𝐵  𝑆𝑆𝑆𝑃𝐴). Redundant swaps are removed from 𝑆𝑆𝑆𝐺𝐵 and 𝑆𝑆𝑀 using

swapMinimizer() function, results of which are denoted by 𝑆𝑆𝑆𝐺𝐵𝑀 and 𝑆𝑆𝑀𝑀,

28

respectively. After that, for each instructor a portion, f ∗ |𝑆𝑆𝑆𝐺𝐵𝑀𝑗| of 𝑆𝑆𝑆𝐺𝐵𝑀 is selected

where, 𝑆𝑆𝑆𝐺𝐵𝑀𝑗 is the swap sequence corresponding to 𝑗th instructor and 𝑓 is the percentage

of swaps to be forced towards global best solution. Swaps of this selected portion are

forcefully applied to 𝑆𝐶𝑖 and resulting conflicts are resolved by randomly moving the

conflicting classes to non-conflicting positions as described in section 3.1.4. Rest of the

swaps are applied to 𝑆𝐶𝑖 if they do not create any conflicts. Similarly, the swaps from 𝑆𝑆𝑀𝑀

are applied only if they are applicable. Each applied swap gets added to 𝑆𝑆𝐶𝐴 which holds

currently applied swap sequence for a particle and the selective search technique is used after

applying each swap to ensure that the best intermediate solution is retained. Algorithm 3.1.2

shows the required steps of selective search. It simply updates SH and SSH with 𝑆𝐶𝑖 and

𝑆𝑆𝐶𝐴, respectively only if 𝑆𝐶𝑖 is found to be better than SH. Finally, after the application of

all the swaps the best intermediate solution 𝑆𝐻 becomes particle’s solution 𝑆𝐶𝑖 and the swap

sequence 𝑆𝑆𝐻 that produces 𝑆𝐻 becomes 𝑆𝑆𝑃𝐴𝑖 for next iteration. Then, 𝑆𝑃𝐵𝑖 is updated if

𝑆𝐶𝑖 is found better than 𝑆𝑃𝐵𝑖 . Finally, 𝑆𝐺𝐵 is recalculated and the algorithm goes to the

next iteration. The algorithm uses a predefined number of iterations 𝑛 as the termination

criterion. After termination 𝑆𝐺𝐵 is considered as the final outcome.

3.2.4 Illustration of Solution Update Mechanism in PSOSS

A schematic representation of the solution update mechanism of a particle in the proposed

method is shown in Fig. 3.6. Suppose, a system consists of three instructors 𝑒1, 𝑒2 and 𝑒3,

each having five weekly timeslots. In Fig. 3.6, 𝑆𝐶 is a particle’s current solution which

consists of individual solution of all three instructors, 𝑆𝐺𝐵 is the global best solution and

𝑆𝑃𝐵 is the particle’s personal best solution. 𝑆𝑆𝐺𝐵(= 𝑆𝐺𝐵 – 𝑆𝐶) represents instructor-wise

swap sequences to reach 𝑆𝐺𝐵 from 𝑆𝐶 , and 𝑆𝑆𝑃𝐵(= 𝑆𝑃𝐵 – 𝑆𝐶) is the instructor-wise swap

sequences to reach 𝑆𝑃𝐵 from 𝑆𝐶. 𝑆𝑆𝑃𝐴 is the previously applied swap sequence. The circle

(○) symbol inside the swap sequences represents a swap operator. In the first step, some

swaps are selected for each instructor from 𝑆𝑆𝐺𝐵 based on the selection probability 𝛼

denoted by 𝑆𝑆𝑆𝐺𝐵(= 𝛼 ∗ 𝑆𝑆𝐺𝐵). Similarly, 𝑆𝑆𝑆𝑃𝐵(= 𝛽 ∗ 𝑆𝑆𝑃𝐵) and 𝑆𝑆𝑆𝑃𝐴(= 𝛾 ∗

𝑆𝑆𝑃𝐴) are the selected swaps from 𝑆𝑆𝑃𝐵 and 𝑆𝑆𝑃𝐴, respectively. The redundant swaps are

removed from 𝑆𝑆𝑆𝐺𝐵 using swapMinimizer() function, result of which is denoted by

𝑆𝑆𝑆𝐺𝐵𝑀 (swaps numbered 1, 2, 3, 4, 5 and 6 in Fig. 3.6) . Then, 𝑆𝑆𝑆𝑃𝐵 and 𝑆𝑆𝑆𝑃𝐴 are

merged together to 𝑆𝑆𝑀(= 𝑆𝑆𝑆𝑃𝐵  𝑆𝑆𝑆𝑃𝐴) before removing the redundant swaps from

29

them. The redundant swaps are removed from 𝑆𝑆𝑀 using swapMinimizer() function, result

of which is denoted by 𝑆𝑆𝑀𝑀 (swaps numbered 7, 8, 9, 10, 11 and 12 in Fig. 3.6). After

that, a portion of 𝑆𝑆𝑆𝐺𝐵𝑀 is selected using the equation ∗ |𝑆𝑆𝑆𝐺𝐵𝑀| , where 𝑓 is the force

percentage. This selected portion of 𝑆𝑆𝑆𝐺𝐵𝑀 is denoted by 𝑆𝑆𝑆𝐺𝐵𝑀𝐹𝐴 (swaps numbered

1, 3 and 5 in Fig. 3.6) and the rest of the swaps are denoted by 𝑆𝑆𝑆𝐺𝐵𝑀𝑇𝐴 (swaps numbered

2, 4 and 6 in Fig. 3.6). Swaps of 𝑆𝑆𝑆𝐺𝐵𝑀𝐹𝐴 are forcefully applied to 𝑆𝐶 and then the swaps

of 𝑆𝑆𝑆𝐺𝐵𝑀𝑇𝐴 are applied to 𝑆𝐶 if they do not create any conflicts. Any conflict resulting

from forceful swap operation is handled by repair mechanism as described in section 3.1.4.

Similarly, the swaps from 𝑆𝑆𝑀𝑀 are applied only if they are applicable. In Fig. 3.6, a

Figure 3.6: Illustration of the solution update mechanism of a particle in PSOSS.

30

solution resulting from application of a swap is represented by assigning that swap number

above the solution. For example, if a swap say 1 is applied on solution 𝑆𝐶 then it becomes

𝑆𝐶1 and similarly applying swap 3 on 𝑆𝐶1 makes it 𝑆𝐶3. In the example shown in Fig. 3.6,

swaps numbered 1, 3 and 5 are forcefully applied on initial solution 𝑆𝐶 making it 𝑆𝐶5. Then,

swap numbered 2 gets applied on 𝑆𝐶5 resulting in 𝑆𝐶2 as there is no conflicts. Solution stays

at 𝑆𝐶2 because swaps numbered 4, 6 and 7 are not applied because of conflicts. Then, rest

of the swaps 8, 9, 10, 11 and 12 are applied because they do not cause any conflicts. The

best one among these solutions is then picked as particle’s current solution 𝑆𝐶. Accordingly,

𝑆𝑃𝐵 and 𝑆𝐺𝐵 are updated for the next iteration.

3.3 GSO with Selective Search (GSOSS) for Solving UCSP

Proposed GSOSS method works with a group of members in which individual member

represents a feasible solution, calculates movement of scroungers and dispersed members

using swap sequence and updates each member with the computed movement through

selective search and forceful swap operation with repair mechanism. The member encoding,

categorization, producer’s scanning, scrounging, dispersed members’ random operation and

other operations are described in the following subsections.

3.3.1 Member Encoding

The proposed GSOSS uses 𝑤 number of members, 𝑥 number scroungers and 𝑦 number of

dispersed members to solve the UCSP. Sets of members, scroungers and dispersed members

are represented as follows:

 −𝑆𝑒𝑡 𝑜𝑓 𝑀𝑒𝑚𝑏𝑒𝑟𝑠,𝑀 = {𝑚𝑖 | 𝑖 = 1,… ,𝑤}

−𝑆𝑒𝑡 𝑜𝑓 𝑆𝑐𝑟𝑜𝑢𝑛𝑔𝑒𝑟𝑠, 𝑆𝐶 = {𝑠𝑐𝑖 | 𝑖 = 1,… , 𝑥}

−𝑆𝑒𝑡 𝑜𝑓 𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑒𝑑 𝑀𝑒𝑚𝑏𝑒𝑟𝑠, 𝐷 = {𝑑𝑖 | 𝑖 = 1, … , 𝑦}

Each member object contains a feasible solution to the UCSP. 𝑆𝐶 and 𝐷 are subsets of 𝑀.

3.3.2 Member Categorization

GSOSS works with a population of members. The fitness function of Eq. (3.1) described in

section 3.1.2 is used to calculate fitness of solutions of all the members of a population. The

member having best fitness solution is selected as producer, worst 20% members become

dispersed members and rest of the members become scroungers.

31

3.3.3 Producer’s Scanning

In each iteration of GSOSS algorithm producer tries to improve fitness of its solution. This

is done by shifting courses of producer’s solution to slots having higher preference values

from respective instructors.

3.3.4 Scrounging

In the proposed GSOSS method swap sequence is used for calculating the movement of

scroungers. For each scrounger 𝑠𝑐 a swap sequence 𝑆𝑆𝑃𝑅 to reach producer is first

calculated using following equation:

𝑆𝑆𝑃𝑅 = 𝑆𝑃𝑅 − 𝑆𝑠𝑐 (3.11)

where 𝑆𝑆𝑃𝑅 is the producer’s solution and 𝑆𝑠𝑐 is the scrounger’s solution. Then a portion

of 𝑆𝑆𝑃𝑅 is selected with swap selection probability 𝛼 𝜖 [0,1]:

𝑆𝑆𝑆𝑃𝑅 = α ∗ 𝑆𝑆𝑃𝑅 (3.12)

Finally, redundant swaps are removed from 𝑆𝑆𝑆𝑃𝑅 and it becomes 𝑆𝑆𝑆𝑃𝑅𝑀 which is used

to move scrounger towards producer. 𝑆𝑆𝑆𝑃𝑅𝑀 is applied on a scrounger solution using

forceful swap operation with repair mechanism selective search. A portion of 𝑆𝑆𝑆𝑃𝑅𝑀 is

forcefully applied to a scrounger solution to ensure that the scrounger moves a little towards

the producer.

3.3.5 Dispersed Members’ Random Operation

In the proposed GSOSS method movement of a dispersed member is also calculated using

swap sequence. In case of a disperse member, a randomly generated swap sequence 𝑆𝑆𝑅 of

length 𝑙 is used for its random movement. 𝑆𝑆𝑅 is generated by creating 𝑙 number of unique

SOs for each instructor. Before applying 𝑆𝑆𝑅 on a dispersed member redundant swaps are

removed from 𝑆𝑆𝑅 and it becomes 𝑆𝑆𝑅𝑀. 𝑆𝑆𝑅𝑀 is applied on a dispersed member using

forceful swap operation with repair mechanism and selective search.

3.3.6 GSO with Selective Search (GSOSS) for Solving UCSP

The proposed GSOSS method for solving UCSP is shown in Algorithm 3.2.1. The notations

and inputs of the proposed algorithm are listed at the beginning of the Algorithm 3.2.1.

Algorithm 3.2.1: GSOSS-UCSP

Input:

Instructors’ Information, Batches’ Information,

32

Courses’ Information, Classrooms’ Information, Break Times’ information,

𝑛 - total number of iterations

𝑤 - total number of members

𝑢 - total number of instructors

𝛼 - selection probability of a swap from scrounger’s swap sequence to producer

𝑓 - percentage of swaps to be forced towards producer

𝑙 - length of random swap sequence

Output:

An optimal solution of UCSP

Variables:

𝑡 - iteration counter

𝑆𝑖 - 𝑖th member’s solution

𝑃𝑅 - producer

𝑆𝑃𝑅 - producer’s solution

𝑆𝑅 - a random solution

𝑆𝐻 - solution holder for selective search

𝑆𝑆𝑅 - random swap sequence

𝑆𝑆𝑅𝑗 - 𝑗th instructor’s swap sequence in 𝑆𝑆𝑅𝑗

𝑆𝑆𝑃𝑅 - swap sequence to producer’s solution

𝑆𝑆𝑆𝑃𝑅 - selected swap sequence to producer’s solution

𝑆𝑆𝑆𝑃𝑅𝑀 - minimized swap sequence from 𝑆𝑆𝑆𝑃𝑅

𝑆𝑆𝑆𝑃𝑅𝑀𝑗 - 𝑗th instructor’s swap sequence in 𝑆𝑆𝐺𝑃𝑅𝑀

𝑁𝑆𝐹 - number of swaps to be forced

𝑀 - set of members

𝑆𝐶 - set of scroungers

𝑥 - total number of scroungers

𝐷 - set of dispersed members

𝑦 - total number of dispersed members

𝐶𝐶 - set of conflicting classes

Step 1: Initialization

10. 𝑡 ← 1

11. create 𝑤 number of members and append them to 𝑀

33

12. for 𝑖 ← 1 to 𝑤 do //for each member

13. 𝑆𝑖 ← 𝑆𝑅

14. calculate fitness of 𝑆𝑖 as described in section 3.1.2

15. end for

Step 2: Member Categorization

1. descendingSort(M) //descending sort members according to fitness value

2. 𝑃𝑅 ← 𝑀[0] //select member having highest fitness as producer

3. 𝐷 ← worst 20% of 𝑀

4. 𝑆𝐶 ← 𝑀 − 𝑃𝑅 − 𝐷

Step 3: Producer’s Scanning

1. 𝑃𝑅 ← improveProducer(𝑃𝑅)

Step 4: Scrounging

62. for 𝑖 ← 1 to 𝑥 do //for each scrounger

63. 𝑆𝐻 ← Ø

64. 𝑆𝑆𝑃𝑅 ← 𝑆𝑃𝑅 − 𝑆𝑖

65. 𝑆𝑆𝑆𝑃𝑅 ← α ∗ 𝑆𝑆𝑃𝑅

66. 𝑆𝑆𝑆𝑃𝑅𝑀 ← swapMinimizer(𝑆𝑆𝑆𝑃𝑅)

67. Step 4.1: Apply 𝒇 percent of swaps from 𝑺𝑺𝑺𝑷𝑹𝑴 using forceful swap

operation with repair mechanism and selective search

68. for 𝑗 ← 1 to 𝑢 do //for each instructor

69. 𝑁𝑆𝐹 ← 𝑓 ∗ |𝑆𝑆𝑆𝑃𝑅𝑀𝑗|

70. for 𝑎 ← 1 to 𝑁𝑆𝐹 do

71. 𝑆𝑖 ← 𝑆𝑖 + 𝑆𝑆𝑆𝐺𝐵𝑀𝑗[𝑎] forcefully

72. repairSolution(𝑆𝑖)

73. selectiveSearch(𝑆𝑖 , 𝑆𝐻)

74. end for

75. end for

76. Step 4.2: Apply remaining swaps of 𝑺𝑺𝑺𝑷𝑹𝑴 using selective search

77. for 𝑗 ← 1 to 𝑢 do //for each instructor

34

78. 𝑁𝑆𝐹 ← 𝑓 ∗ |𝑆𝑆𝑆𝑃𝑅𝑀𝑗|

79. for 𝑎 ← 𝑁𝑆𝐹 + 1 to |𝑆𝑆𝑆𝑃𝑅𝑀𝑗| do

80. if 𝑆𝑆𝑆𝑃𝑅𝑀𝑗[𝑎] is applicable then

81. 𝑆𝑖 ← 𝑆𝑖 + 𝑆𝑆𝑆𝐺𝐵𝑀𝑗[𝑎]

82. selectiveSearch(𝑆𝑖 , 𝑆𝐻)

83. end if

84. end for

85. end for

86. 𝑆𝑖 ← 𝑆𝐻

87. calculate fitness of 𝑆𝑖 as described in section 3.1.2

88. end for

Step 5: Dispersed Members’ Random Operation

1. for 𝑖 ← 1 to 𝑦 do //for each dispersed member

2. 𝑆𝐻 ← Ø

3. 𝑆𝑆𝑅 ← random swap sequence of length 𝑙

4. 𝑆𝑆𝑅𝑀 ← swapMinimizer(𝑆𝑆𝑅)

5. Step 5.1: Apply 𝒇 percent of swaps from 𝑆𝑆𝑅𝑀 using forceful swap operation

with repair mechanism and selective search

6. for 𝑗 ← 1 to 𝑢 do //for each instructor

7. 𝑁𝑆𝐹 ← 𝑓 ∗ |𝑆𝑆𝑅𝑀𝑗|

8. for 𝑎 ← 1 to 𝑁𝑆𝐹 do

9. 𝑆𝑖 ← 𝑆𝑖 + 𝑆𝑆𝑅𝑀𝑗[𝑎] forcefully

10. repairSolution(𝑆𝑖)

11. selectiveSearch(𝑆𝑖 , 𝑆𝐻)

12. end for

13. end for

14. Step 5.2: Apply remaining swaps of 𝑆𝑆𝑅𝑀 using selective search

15. for 𝑗 ← 1 to 𝑢 do //for each instructor

16. 𝑁𝑆𝐹 ← 𝑓 ∗ |𝑆𝑆𝑅𝑀𝑗|

17. for 𝑎 ← 𝑁𝑆𝐹 + 1 to |𝑆𝑆𝑅𝑀𝑗| do

18. if 𝑆𝑆𝑅𝑀𝑗[𝑎] is applicable then

35

19. 𝑆𝑖 ← 𝑆𝑖 + 𝑆𝑆𝑅𝑀𝑗[𝑎]

20. selectiveSearch(𝑆𝑖 , 𝑆𝐻)

21. end if

22. end for

23. end for

24. 𝑆𝑖 ← 𝑆𝐻

25. calculate fitness of 𝑆𝑖 as described in section 3.1.2

26. end for

Step 4: Termination and Outcome

5. 𝑀 ← 𝑃 ∪ 𝑆𝐶 ∪ 𝐷

6. while 𝑡 ≠ 𝑛 do

7. 𝑡 ← 𝑡 + 1

8. repeat Step 2, Step 3 and Step 4

9. end while

10. descendingSort(M) //descending sort members according to fitness value

11. 𝑃𝑅 ← 𝑀[0] //select member having highest fitness as producer

12. return 𝑆𝑃𝑅 //consider producer’s solution as outcome

Algorithm 3.2.2 improveProducer

Input: 𝑃R //Producer

1. 𝑃𝑅𝑡𝑒𝑚𝑝 ← 𝑐𝑜𝑝𝑦(𝑃𝑅)

2. 𝐶 ← list of courses scheduled for 𝑃𝑅𝑡𝑒𝑚𝑝

3. for all 𝑐 𝜖 𝐶

4. 𝑆𝐿 ← list of slots having better preference values than 𝑐’s current position

5. for all 𝑠𝑙 𝜖 𝑆𝐿

6. move 𝑐 to slot 𝑠𝑙

7. calculate fitness of 𝑃𝑅𝑡𝑒𝑚𝑝

8. if fitness(𝑃𝑅)<fitness(𝑃𝑅𝑡𝑒𝑚𝑝) then

9. return 𝑃𝑅𝑡𝑒𝑚𝑝

10. end if

11. end for

36

12. end for

13. return 𝑃𝑅

Algorithm 3.2.3 repairSolution

Input: 𝑆𝑖 //solution to repair

14. 𝐶𝐶 ← list of conflicting classes in 𝑆𝑖

15. if CC ≠ Ø then

16. for all cc ϵ CC

17. move cc to a randomly selected non-conflicting position

18. end for

19. end if

Algorithm 3.2.4 selectiveSearch

Input: 𝑆𝑖 , SH

5. if SH = Ø ∨ fitness(SH)<fitness(𝑆𝑖) then

6. 𝑆𝐻 ← 𝑆𝑖

7. end if

In the proposed algorithm, initial group of members 𝑀 is generated by creating specified 𝑤

number of members. Each member’s solution gets initialized by a random solution. The

fitness of each member’s solution is calculated as described in section 3.1.2. In each iteration,

𝑀 gets sorted in descending order according to fitness value of members. Then, the member

having the highest fitness is selected as the producer 𝑃𝑅, worst 20% members become

dispersed members 𝐷 and rest of the members gets added to scroungers’ list, 𝑆𝐶. After that,

producer 𝑃𝑅’s fitness is improved using improveProducer() function as shown in Algorithm

3.2.2. improveProducer() function tries to improve fitness of 𝑃𝑅’s solution by shifting

courses to slots having higher preference values. After improving producer scroungers get

processed. For each scrounger 𝑆𝐻 is emptied to be used for selective search. 𝑆𝐻 is used to

hold best intermediate solution in selective search. Then, instructor-wise swap sequences to

reach 𝑃𝑅’s solution 𝑆𝑃𝑅 from scrounger sc’s solution 𝑆𝑆𝑃𝑅 is calculated. Some swaps are

selected for each instructor from 𝑆𝑆𝑃𝑅 based on the selection probability 𝛼 denoted by

𝑆𝑆𝑆𝑃𝑅. Redundant swaps are removed from 𝑆𝑆𝑆𝑃𝑅 using swapMinimizer() function, result

of which are denoted by 𝑆𝑆𝑆𝑃𝑅𝑀. After that, for each instructor a portion of 𝑆𝑆𝑆𝑃𝑅𝑀 is

selected using the equation 𝑓 ∗ |𝑆𝑆𝑆𝑃𝑅𝑀𝑗|, where 𝑓 is the force percentage and 𝑆𝑆𝑆𝑃𝑅𝑀𝑗 is

37

the swap sequence corresponding to an instructor 𝑗. Swaps of this selected portion are

forcefully applied to scrounger’s solution and resulting conflicts are resolved using

repairSolution function. Algorithm 3.2.3 shows the required steps of repairSolution function

which works by randomly moving the conflicting classes to non-conflicting positions as

described in section 3.1.4. Rest of the swaps are applied only if they do not create any

conflicts. The selective search technique is used after applying each swap to ensure that best

intermediate solution is retained. Algorithm 3.2.4 shows the required steps of selective

search. It simply updates SH only if new solution is found better than SH. Finally, after the

application of all the swaps the best intermediate solution SH becomes scrounger’s solution.

Operation for dispersed members are quite similar to operations on scroungers rather the fact

that, dispersed members work with random swap sequence instead of swap sequence to

producer. The algorithm uses a predefined number of iterations 𝑛 as the termination criteria.

After termination, producer 𝑃𝑅’s solution 𝑆𝑃𝑅 is considered as the final solution.

3.3.7 Illustration of an iteration of GSOSS Algorithm

A schematic representation of an iteration of the proposed method in shown in Fig. 3.7.

Suppose, a system consisting of three instructors 𝑒1, 𝑒2 and 𝑒3, each having five weekly slots

that is needed to be scheduled. In Fig. 3.7, 𝑀 is the initial group of members. 𝑀 is sorted in

descending order according to fitness values of the members. Member having best fitness

becomes the producer 𝑃𝑅, worst 20% members become dispersed members 𝐷 and rest of

the members become scroungers, 𝑆𝐶(= 𝐺 − 𝑃 − 𝐷). In the first step, producer 𝑃𝑅 is

improved using improveProducer() function. Then, for each scrounger sc, instructor-wise

swap sequences to reach producer’s solution 𝑆𝑃𝑅 from scrounger sc’s solution SSC is

calculated which is represented by 𝑆𝑆𝑃𝑅(= 𝑆𝑃𝑅 – 𝑆𝑠𝑐). The circle (○) symbol inside the

swap sequences represents a swap operator. Some swaps are selected for each instructor

from 𝑆𝑆𝑃𝑅 based on the selection probability α denoted by 𝑆𝑆𝑆𝑃𝑅(= 𝛼 ∗ 𝑆𝑆𝑃𝑅).

Redundant swaps are removed from 𝑆𝑆𝑆𝑃𝑅 using swapMinimizer() function, result of which

are denoted by 𝑆𝑆𝑆𝑃𝑅𝑀 (green coloured swaps numbered 1, 2, 3, 4, 5 and 6 in Fig. 3.7) .

Then, a portion of 𝑆𝑆𝑆𝑃𝑅𝑀 is selected using the equation 𝑅𝑀 [1: 𝑓 ∗ | 𝑆𝑆𝑆𝑃𝑅𝑀 |] , where

𝑓 is the force percentage. This selected portion of 𝑆𝑆𝑆𝑃𝑅𝑀 is denoted by 𝑆𝑆𝑆𝑃𝑅𝑀𝐹𝐴 (swaps

numbered 1, 3 and 5 in Fig. 3.7) and the rest of the swaps are denoted by 𝑆𝑆𝑆𝑃𝑅𝑀𝑇𝐴 (green

coloured swaps numbered 2, 4 and 6 in Fig. 3.7). Swaps of 𝑆𝑆𝑆𝑃𝑅𝑀𝐹𝐴 are forcefully applied

to 𝑆𝑠𝑐 and then the swaps of 𝑆𝑆𝑆𝑃𝑅𝑀𝑇𝐴 are applied to 𝑆𝑠𝑐 only if they do not create any

38

conflicts. Any conflict resulting from forceful swap application is handled by repair

mechanism as described in section 3.1.4. In the example shown in Fig. 3.7, swaps numbered

1, 3 and 5 are forcefully applied on initial solution 𝑆𝑠𝑐 making it 𝑆𝑠𝑐
5 . Then, swap numbered

2 gets applied on 𝑆𝑠𝑐
5 resulting in 𝑆𝑠𝑐

2 as there is no conflict. Solution stays at 𝑆𝑠𝑐
2 because

swaps numbered 4 and 6 are not applied because of conflicts. The best one among these

solutions is then picked as 𝑠𝑐’s solution. On the other hand, for each dispersed member 𝑑 ∈

𝐷 a random swap sequence is applied on its solution 𝑆𝑑. The process of applying random

swap sequence to a dispersed member is same as in case of scrounger. Finally, 𝑀 is updated

using 𝑃, SC and 𝐷 for the next iteration.

Figure 3.7: Illustration of an iteration of GSOSS.

39

CHAPTER IV

Experimental Studies

This chapter investigates the effectiveness and performance of the proposed using Particle

Swarm Optimization with Selective Search (PSOSS) and using Group Search Optimizer

with Selective Search (GSOSS) methods for obtaining a workable timetable. The

performance of the proposed methods has been compared with the performances of Genetic

Algorithm (GA) and Harmony Search (HS) for the same problem set with comparable

experimental and parameter settings. In short, the proposed PSOSS and GSOSS are

transformations of PSO and GSO respectively for University Course Scheduling Problem

(UCSP) plus selective search and forceful swap operation with repair mechanism. Therefore,

the standard PSO and GSO are also brought into the comparison excluding the two additional

operations incorporated into PSOSS and GSOSS to identify the significance of the

operations. This chapter also provides an experimental analysis for a better understanding of

the performance of the proposed method.

4.1 Experimental Setup

For solving UCSP with GA, single point crossover with a crossover rate of 0.70 is used.

Repair mechanism ensures that valid solutions are generated after crossover. Mutation is

performed by randomly changing the timeslot of a course for a randomly selected instructor

with a mutation probability of 0.20. Elitism is also considered for implementation with an

elite list of size 2.

In this study of UCSP, HS algorithm is implemented with a Harmony Memory Consideration

Rate (HMCR) of 0.95 and a Pitch Adjustment Rate (PAR) of 0.1.

There is a common parameter alpha (α) in GSOSS and GSO because GSOSS is an extension

of GSO. Value of α considered for implementation is 0.9. Also a force rate of 100% has been

used for GSOSS.

40

There are several parameters common in PSOSS and PSO because PSOSS is an extension

of PSO. The common parameters are alpha (𝛼), beta (𝛽) and gamma (𝛾); and the values

considered for implementation are 0.3, 0.5 and 0.2, respectively. Also, a force rate of 100%

has been used for PSOSS.

Boost C++ libraries [71] have been used for implementation of the methods. The methods

have been implemented in Visual C++ of Microsoft’s Visual Studio 2013 on Windows 10

platform on Intel(R) Core(TM) i7-7700 CPU @ 3.60 GHz processor, and 16 GB RAM.

4.2 Experimental Environment

In the experimental environment, instructors’ flexibility is considered. The weekly timeslots

for instructors and their preferences are given in Fig 3.2 and Fig. 3.3, respectively. The

preferences varied from -1 to 5, where -1 means the lowest preference and 5 means the

highest preference. Experiments with input data resembling the course structure of the

department of Computer Science and Engineering (CSE) of Khulna University of

Engineering & Technology (KUET) have been conducted. In KUET, there are 5 days for

teaching in a week and each teaching day is divided into 9 teaching timeslots of 50 minutes

duration. The duration of each laboratory session of undergraduate level as well as a

postgraduate class is three consecutive timeslots.

Considered hard constraints:

- A student can only go to a single class in a timeslot.

- An instructor cannot conduct multiple classes in a timeslot.

- Courses cannot be assigned to break periods.

- Courses requiring multiple slots such as laboratory courses cannot include break

periods.

- Courses can be assigned to allowed rooms only.

Considered soft constraints:

- Maintain preference of instructor as much as possible.

- Keep the number of consecutive classes as few as possible for instructors.

41

Figure 4.1: Input preference values for instructors.

42

4.3 Input Data Preparation

Fig. 4.1 lists the used preference values of all the instructors. There are five batches of

students in the considered dataset: four batches in the undergraduate level and one batch at

the postgraduate level. Four batches of undergraduate level are represented by 𝑏1, 𝑏2, 𝑏3 and

𝑏4, respectively. Postgraduate batch is represented by 𝑏5. Each of the batches in

Table 4.1: Batch and course information

Batch Name Course

Code

Classes /

Week

Timeslots

/ Class

Type of

Course

Number of

Students

𝑏1/1st Year

Undergraduate

CSE 1201 3 1 Theory 60

CSE 1202 2 3 Laboratory 30

CSE 1203 3 1 Theory 60

CSE 1204 2 3 Laboratory 30

EEE 1217 3 1 Theory 60

EEE 1218 1 3 Laboratory 30

CHEM 1207 3 1 Theory 60

CHEM 1208 1 3 Laboratory 30

MATH 1207 3 1 Theory 60

ME 1270 1 3 Laboratory 30

𝑏2/2nd Year

Undergraduate

CSE 2200 2 3 Laboratory 30

CSE 2201 3 1 Theory 60

CSE 2202 2 3 Laboratory 30

CSE 2207 3 1 Theory 60

CSE 2208 1 3 Laboratory 30

CSE 2213 3 1 Theory 60

EEE 2217 3 1 Theory 60

EEE 2218 2 3 Laboratory 30

MATH 2207 3 1 Theory 60

𝑏3/3rd Year

Undergraduate

CSE 3200 2 3 Laboratory 30

CSE 3201 3 1 Theory 60

CSE 3202 2 3 Laboratory 30

CSE 3203 3 1 Theory 60

CSE 3204 1 3 Laboratory 30

CSE 3207 3 1 Theory 60

CSE 3211 3 1 Theory 60

CSE 3212 1 3 Laboratory 30

ECE 3215 3 1 Theory 30

𝑏4/4th Year

Undergraduate

CSE 4207 3 1 Theory 60

CSE 4208 1 3 Laboratory 30

CSE 4211 3 1 Theory 60

CSE 4212 1 3 Laboratory 30

CSE 4239 3 1 Theory 60

IEM 4227 3 1 Theory 60

HUM 4207 3 1 Theory 60

𝑏5/

Postgraduate

CSE 6225 1 3 Theory 10

CSE 6465 1 3 Theory 10

CSE 6471 1 3 Theory 10

43

undergraduate level is divided into two subgroups namely 𝑣1 and 𝑣2. In total, 38 courses are

Table 4.2: Course information for each instructor

Instructor

ID

Number

of

Courses

Course Code Weekly Course

Load

(Timeslots/Week)

𝑒1 4 CSE 1203, CSE 1204, CSE 2201, CSE 2202 18

𝑒2 4 CSE 3211, CSE 3212, CSE 4239, CSE 6225 12

𝑒3 2 CSE 3201, CSE 3202 9

𝑒4 1 CSE 3200 6

𝑒5 3 CSE 4211, CSE 4212, CSE 6471 9

𝑒6 2 CSE 4207, CSE 6465 6

𝑒7 1 CSE 2207 3

𝑒8 1 CSE 1201 3

𝑒9 1 CSE 2208 3

𝑒10 2 CSE 2200, CSE3207 9

𝑒11 1 CSE 3203 3

𝑒12 1 CSE 1202 6

𝑒13 1 CSE 4208 3

𝑒14 1 CSE 2213 3

𝑒15 1 CSE 3204 6

𝑒16 1 EEE 1217 3

𝑒17 1 EEE 1218 3

𝑒18 1 EEE 2217 3

𝑒19 1 EEE 2218 6

𝑒20 1 MATH 1207 3

𝑒21 1 MATH 2207 3

𝑒22 1 ECE 3215 3

𝑒23 1 ME 1270 3

𝑒24 1 IEM 4227 3

𝑒25 1 CHEM 1207 3

𝑒26 1 CHEM 1208 3

𝑒27 1 HUM 4207 3

Table 4.3: Information for classrooms and laboratories

Room ID Room Type Room capacity Allowable Courses

𝑟1 Lecture 60

Any theory course

𝑟2 Lecture 60

𝑟3 Lecture 60

𝑟4 Lecture 60

𝑟5 Lecture 60

𝑟6 Laboratory 30 CSE 2200, CSE 3202, CSE 4208, CSE 4212

𝑟7 Laboratory 30 CSE2200, CSE4212, CSE3212, CSE2208, CSE3202

𝑟8 Laboratory 30 CSE 1202, CSE 2202

𝑟9 Laboratory 30 CSE1204

𝑟10 Laboratory 30 CSE3204

𝑟11 Laboratory 30 ME1270

𝑟12 Laboratory 30 EEE1218, EEE2218

𝑟13 Laboratory 30 CHEM1208

44

taught by 27 instructors. Odd-numbered courses represent theory courses and even-

numbered courses represent laboratory courses. Table 4.1 shows which courses belong to

which batch, number of weekly classes required for a course, time duration of a class, course

type and the number of registered students of a course. Table 4.2 shows the number of

courses assigned to an instructor, the courses allocated to each instructor and the weekly

course load of each instructor. Table 4.3 shows the room id, room type, maximum seating

capacity and allowable courses that can be taught in that room. There are two types of rooms:

lecture room and laboratory room. As the laboratory rooms support a maximum of 30

students, a batch of 60 students needs to be divided into two subgroups of 30 students.

4.4 Experimental Results and Analysis

Proposed PSOSS and GSOSS are population-based methods and; therefore, population size

is one of the important parameters similar to other population-based algorithms including

GA and HS to which the performance of the proposed methods will be compared to. The

population size is a parameter of meta-heuristic algorithms having an impact on the

computational cost of the algorithm that increases with growing population size. On the other

hand, convergence speed is a performance measure for metaheuristic algorithms where the

Figure 4.2: Performance analysis of fitness for different population sizes.

250

300

350

400

450

500

0 50 100 150 200 250 300 350 400 450 500

F
it

n
es

s

Population

Fi tness Varying Populat ion for Iterat ion = 500

GA PSO HS GSO GSOSS PSOSS

45

maximum number of iterations required to reach an optimal solution is an important

parameter. The first set of performance measures for the methods are the population size and

the number of iterations. The next set of performance measures for the methods are the

fitness values of solutions, instructors’ satisfaction followed by the sample timetables

generated for an instructor. The two sets of performance measures will be carried out in this

section such that the methods can be compared to each other.

Fitness values of GA, PSO, HS, GSO, GSOSS and PSOSS are measured by varying the

population size from 5 to 500 and the best fitness values are plotted over the population sizes

in Fig. 4.2. It is observed from the figure that fitness of all the methods improves more or

less with population size except for HS algorithm. The performance of HS algorithm

decreases continuously after population size of 20. If the HMS (i.e., population) in HS

algorithm is high, the probability of selecting solution for different instructors from different

entities of HM also increases while improvising a new harmony (complete solution) resulting

in a conflict which causes the HS algorithm to fail to create a new harmony. This might be

the reason for choosing small HMS in existing research on HS algorithm [54], [55].

However, the performances of the proposed GSOSS and PSOSS are better than the HS

algorithm with any population size. The HS algorithm has shown the best fitness value 382

for population size of 10. On the other hand, the fitness of PSOSS with a population size of

Figure 4.3: Performance analysis of fitness in different iterations.

250

300

350

400

450

500

0 100 200 300 400 500 600 700 800

F
it

n
es

s

Iteration

Fi tness Varying Iterat ion for Populat ion = 200

GA PSO HS GSO GSOSS PSOSS

46

10 was 431, which is 437 in case of GSOSS. The best achieved fitness by PSOSS was 471

with a population size of 450 and the best achieved fitness by GSOSS was 458 with a

population size of 500. On the other hand, the best fitness values achieved for GA, PSO and

GSO are 425 (for population size of 400), 357 (for population size of 350) and 404 (for

population size of 250), respectively. At a glance, PSOSS is much better than the rest of the

methods and GSOSS is also found superior to other compared methods.

Fig 4.3 compares the achieved fitness of the methods from iteration 5 to 800 for fixed

population size of 200 on a sample run. The figure reflects the convergence nature of the

methods with iteration. It is remarkable from the figure that the fitness value of any method

is very poor at the beginning (e.g., 5, 10) and improves over iterations. As an example, for

iteration 10, the achieved fitness values are 322, 309, 299, 330, 362 and 348 for GA, PSO,

HS, GSO, GSOSS and PSOSS, respectively. On the other hand, the methods achieved the

fitness values 368, 329, 312, 407, 446, 450 at iteration 100. From the figure it is observed

that after 500 iterations only PSO is shown to have improved the performance and it achieved

the best fitness value 362 at iteration 510 and onwards. On the other hand, the best fitness

values achieved by GA, HS, GSO, GSOSS and PSOSS are 428 (at iteration 490 and

onwards), 321 (at iteration 415 and onwards), 407 (at iteration 60 and onwards), 446 (at

iteration 55 and onwards) and 462 (at iteration 155 and onwards), respectively. The figure

Table 4.4: Average and best fitness comparison among GA, PSO, HS, GSO, GSOSS

and PSOSS of 25 trials for different population sizes

Method Population Average Fitness Std. Deviation of

Fitness

Best Fitness

GA

200 421.08 6.26 428

300 416.76 7.82 427

400 420.08 7.52 428

PSO

200 343.64 12.97 369

300 346.17 10.59 356

400 345.05 7.96 357

HS

5 371.52 9.11 394

10 365.80 9.29 382

20 347.64 9.36 364

GSO

200 394.00 8.02 414

300 391.45 5.34 398

400 394.69 6.66 404

GSOSS

200 448.84 6.11 446

300 449.73 5.67 456

400 456.67 5.32 458

PSOSS

200 460.44 5.12 471

300 460.83 4.76 470

400 462.87 5.41 471

47

revealed the faster convergence of the proposed GSOSS and PSOSS as well as the

outperformance in comparison with other methods in terms of iteration variations. GSOSS

achieves fast convergence due to its producer scanning feature.

Fig. 4.2 and Fig 4.3 also clearly reveal the significance of selective search and application

of forceful swap operation in the proposed GSOSS and PSOSS methods. The performance

variation in terms of fitness between PSO and PSOSS, GSO and GSOSS as seen in Fig. 4.2

and Fig 4.3 reflects the effects of these operations. The best achieved fitness value of PSO

was 357 in Fig. 4.2 for population size of 350 in terms of population variation. At the same

population size of 350, PSOSS achieved fitness value of 467 which is much better than that

of PSO. Outperformance of PSOSS over PSO is also clearly visible in Fig 4.3 in terms of

iteration variation. The best achieved fitness value of GSO was 404 in Fig. 9 for population

size of 250 in terms of population variation. At the same population size of 350, GSOSS

achieved fitness value of 433 which is much better than that of GSO. Outperformance of

GSOSS over GSO is also clearly visible in Fig 4.3 in terms of iteration variation. Due to the

use of the forceful swap operation in PSOSS, all the particles move a little towards the global

best solutions and selective search ensures that the best intermediate solution is retained

while applying an SS. These are the reasons why PSOSS performs much better than PSO

and the rest of the investigated methods.

Table 4.4 shows the average fitness with standard deviation and the best fitness comparison

among all the investigated methods for different population and iteration sizes. Fig. 4.2

shows that HS algorithm works well only for small population sizes and the fitness obtained

for all other methods have proved to be better for population size larger than 100. Therefore,

in the experiments, population sizes used for GA, PSO, GSO, GSOSS and PSOSS are 200,

300 and 400 whereas population sizes used for HS algorithm are 5,10 and 20. According to

Fig 4.3, GA, HS, GSO, GSOSS and PSOSS do not show any significant improvement of

fitness after 500 iterations but PSO keeps showing better results up to 510 iterations. Due to

this fact, the number of iterations used for all the experiments is 600 for all methods. Each

method was run for 25 times for particular population size and the presented results in the

table are the outcome are the outcome of 25 trials for each setting. The best results for each

method are highlighted in boldface type in the table. From the table, it is observed that best

fitness acheived by GA, PSO, HS, GSO and GSOSS are 428, 369, 394, 414, and 458

respectively. Whereas, the proposed PSOSS is shown to achieve 471 which is much better

48

than the rest of the methods. The best solutions produced by individual methods are analyzed

below.

A new measure of satisfaction of individual instructors is considered in this study for better

realization of the quality of the solutions (i.e. the produced course schedules) by different

methods. One of the objectives of optimizing UCSP is to satisfy the instructors’ preferences

as much as possible. Satisfaction of an instructor can be expressed in percentage and 100%

satisfaction means courses of the instructor are assigned to timeslots heaving the highest

preference values (here 5). Satisfaction of 𝑖th particle’s/member’s 𝑗th instructor in a Solution

𝑆𝑖,𝑗, 𝑆𝑎𝑡𝑖𝑠𝑓𝑎𝑐𝑡𝑖𝑜𝑛(𝑆𝑖,𝑗) is computed according to the formula:

𝑆𝑎𝑡𝑖𝑠𝑓𝑎𝑐𝑡𝑖𝑜𝑛(𝑆𝑖,𝑗) =
𝐹(𝑆𝑖,𝑗)

𝑀(𝑒𝑗)
∗ 100 (4.1)

where, 𝑀(𝑒𝑗) is the maximum possible fitness and 𝐹(𝑆𝑖,𝑗) is the achieved fitness (calculated

using Eq. (3.2) of 𝑗th instructor’s solution. Table 4.5 shows the achieved satisfaction value

Table 4.5: Instructors’ satisfaction values achieved by implemented methods

Instructor
Course

Load

 Achieved Satisfaction in %

GA PSO HS GSO GSOSS PSOSS

𝑒1 18 74.07 75.31 85.19 91.36 97.53 96.30

𝑒2 12 91.23 82.46 78.95 90.98 92.98 92.98

𝑒3 9 65.91 77.27 70.45 81.82 86.36 88.64

𝑒4 6 90.00 43.33 100 90.00 96.67 90.00

𝑒5 9 88.89 100 70.37 66.67 88.89 88.89

𝑒6 6 77.27 54.55 68.18 54.55 77.27 77.27

𝑒7 3 69.23 30.77 46.15 100 69.23 69.23

𝑒8 3 84.62 53.85 46.15 53.85 69.23 92.31

𝑒9 3 50.00 33.33 50.00 41.67 66.67 83.33

𝑒10 9 88.89 55.56 74.07 59.26 85.19 85.19

𝑒11 3 66.67 58.33 58.33 58.33 91.67 100

𝑒12 6 66.67 37.50 66.67 54.17 58.33 58.33

𝑒13 3 66.67 66.67 50.00 66.67 66.67 66.67

𝑒14 3 75.00 50.00 66.67 91.67 100 100

𝑒15 6 62.50 58.33 58.33 29.17 58.33 66.67

𝑒16 3 83.33 66.67 66.67 100 91.67 75.00

𝑒17 3 66.67 50.00 50.00 50.00 58.33 66.67

𝑒18 3 75.00 66.67 66.67 83.33 50 66.67

𝑒19 6 62.50 70.83 54.17 66.67 58.33 62.50

𝑒20 3 83.33 66.67 66.67 91.67 100 100

𝑒21 3 83.33 66.67 50.00 66.67 83.33 50.00

𝑒22 3 41.67 66.67 33.33 50.00 50 50.00

𝑒23 3 83.33 58.33 83.33 25.00 58.33 83.33

𝑒24 3 83.33 100 83.33 83.33 100 100

𝑒25 3 91.67 50.00 83.33 66.67 66.67 83.33

𝑒26 3 66.67 83.33 50.00 50.00 66.67 83.33

𝑒27 3 58.33 25.00 58.33 83.33 75 91.67

Avg. Satisfaction 75.62 65.19 69.61 73.14 80.92 83.92

49

(in %) for all the instructors in the best solutions produced by the methods whose fitness

values are marked in Table 4.4 as the best fitness. The table also includes weekly course load

for each instructor and instructor wise best achieved satisfaction values for individual

methods are marked in bold face type for a better understanding. Among 27 instructors,

PSOSS achieved the best satisfaction values for fifteen instructors. On the other hand, GA,

PSO, HS, GSO, and GSOSS achieved the best satisfaction values for seven, six, three, four

and eight cases, respectively. Therefore, the average satisfaction value achieved by PSOSS

is much higher than the rest of the methods. The average satisfaction of the best solution

produced by PSOSS is 83.22. On the other hand, the achieved satisfactions for GA, PSO,

HS, GSO, and GSOSS are 75.62, 65.19, 69.61, 73.14, and 80.92, respectively. This is a

significant performance indicator of the proposed PSOSS method. Result obtained from

GSOSS is also satisfactory compared to other implemented methods.

Table 4.6 (a)-(f) shows schedules for instructor 𝑒1 from the best solutions (marked in Table

4.5) generated by GA, PSO, HS, GSO, GSOSS, and PSOSS. From the schedule generated

by PSOSS shown in Table 4.6 (e), it can be seen that 𝑒1 has a Laboratory class CSE 1204 in

timeslots 7, 8 and 9 on Sunday which is desirable because 𝑒1 has maximum preference of 4

in these periods for Sunday as stated in Fig 4.1. Similarly, timetable for other days also

adheres to instructor 𝑒1’s preference in most of the cases. GSOSS also produces good

schedule considering instructor 𝑒1’s preference. In comparison with schedules produced by

other methods (i.e., GA, PSO, HS and GSO), the schedules generated by PSOSS and GSOSS

for the instructor 𝑒1 are more satisfactory in terms of 𝑒1’s preference values. This observation

is similar for most of the instructors in case of PSOSS and thus PSOSS is found to be an

effective method for solving USCP.

Table 4.6: Sample Timetable for Instructor 𝑒1 generated by GA, PSO, HS, GSO, GSOSS

and PSOSS methods

(a) GA

Day
Timeslot

1 2 3 4 5 6

L
U

N
C

H

 B
R

E
A

K

7 8 9

Sun
CSE2201

(𝑟5|𝑏2|𝑒1)

CSE2201

(𝑟3|𝑏2|𝑒1)

Mon
CSE1203

(𝑟2|𝑏1|𝑒1)

CSE1203

(𝑟5|𝑏1|𝑒1)

CSE1204

(𝑟9|𝑏1|𝑣1|𝑒1)

Tue
CSE2202

(𝑟8|𝑏2|𝑣2|𝑒1)

CSE2201

(𝑟1|𝑏2|𝑒1)

Wed
CSE1203

(𝑟5|𝑏1|𝑒1)

CSE2202

(𝑟8|𝑏2|𝑣1|𝑒1)

CSE1204

(𝑟9|𝑏1|𝑣2|𝑒1)

Thu

50

(b) PSO

Day
Timeslot

1 2 3 4 5 6

L
U

N
C

H

 B
R

E
A

K

7 8 9

Sun
CSE2202

(𝑟8|𝑏2|𝑣2|𝑒1)

Mon
CSE1204

(𝑟9|𝑏1|𝑣1|𝑒1)

Tue
CSE1203

(𝑟3|𝑏1|𝑒1)

CSE1203

(𝑟1|𝑏1|𝑒1)

CSE2201

(𝑟3|𝑏2|𝑒1)

Wed
CSE2202

(𝑟8|𝑏2|𝑣1|𝑒1)

CSE2201

(𝑟2|𝑏2|𝑒1)

Thu
CSE2201

(𝑟3|𝑏2|𝑒1)

CSE1203

(𝑟5|𝑏1|𝑒1)

CSE1204

(𝑟9|𝑏1|𝑣2|𝑒1)

(c) HS

Day
Timeslot

1 2 3 4 5 6

L
U

N
C

H

 B
R

E
A

K

7 8 9

Sun
CSE1203

(𝑟4|𝑏1|𝑒1)

CSE2201

(𝑟5|𝑏2|𝑒1)

CSE1203

(𝑟5|𝑏1|𝑒1)

Mon
CSE2202

(𝑟8|𝑏2|𝑣1|𝑒1)

CSE1204

(𝑟9|𝑏1|𝑣1|𝑒1)

Tue
CSE1203

(𝑟4|𝑏1|𝑒1)

Wed
CSE1204

(𝑟9|𝑏1|𝑣2|𝑒1)

CSE2201

(𝑟3|𝑏2|𝑒1)

CSE2201

(𝑟3|𝑏2|𝑒1)

Thu
CSE2202

(𝑟8|𝑏2|𝑣2|𝑒1)

(d) GSO

Day
Timeslot

1 2 3 4 5 6

L
U

N
C

H

 B
R

E
A

K

7 8 9

Sun
CSE2202

(𝑟8|𝑏2|𝑣2|𝑒1)

Mon
CSE1203

(𝑟4|𝑏1|𝑒1)

CSE2201

(𝑟4|𝑏2|𝑒1)

CSE2202

(𝑟8|𝑏2|𝑣1|𝑒1)

Tue
CSE1204

(𝑟9|𝑏1|𝑣2|𝑒1)

CSE1203

(𝑟5|𝑏1|𝑒1)

Wed
CSE1204

(𝑟9|𝑏1|𝑣1|𝑒1)

CSE2201

(𝑟5|𝑏2|𝑒1)

CSE2201

(𝑟4|𝑏2|𝑒1)

Thu
CSE1203

(𝑟1|𝑏1|𝑒1)

(e) GSOSS

Day
Timeslot

1 2 3 4 5 6

L
U

N
C

H

 B
R

E
A

K

7 8 9

Sun
CSE2201

(𝑟1|𝑏2|𝑒1)

CSE1203

(𝑟3|𝑏1|𝑒1)

Mon
CSE1203

(𝑟1|𝑏1|𝑒1)

CSE2201

(𝑟5|𝑏2|𝑒1)

CSE1204

(𝑟9|𝑏1|𝑣2|𝑒1)

Tue
CSE2202

(𝑟8|𝑏2|𝑣1|𝑒1)

CSE2201

(𝑟3|𝑏2|𝑒1)

Wed
CSE1204

(𝑟9|𝑏1|𝑣1|𝑒1)

CSE1203

(𝑟2|𝑏1|𝑒1)

Thu
CSE2202

(𝑟8|𝑏2|𝑣2|𝑒1)

51

(f) PSOSS

Day
Timeslot

1 2 3 4 5 6

L
U

N
C

H

 B
R

E
A

K

7 8 9

Sun
CSE1204

(𝑟9|𝑏1|𝑣1|𝑒1)

Mon
CSE2202

(𝑟8|𝑏2|𝑣2|𝑒1)

CSE1203

(𝑟3|𝑏1|𝑒1)

Tue
CSE2201

(𝑟1|𝑏2|𝑒1)

CSE2201

(𝑟1|𝑏2|𝑒1)

CSE2201

(𝑟2|𝑏2|𝑒1)

CSE1203

(𝑟3|𝑏1|𝑒1)

Wed
CSE2202

(𝑟8|𝑏2|𝑣1|𝑒1)

CSE1204

(𝑟9|𝑏1|𝑣2|𝑒1)

Thu
CSE1203

(𝑟5|𝑏1|𝑒1)

52

CHAPTER V

Conclusions

University Course Scheduling Problem (UCSP) is one of the toughest timetabling problems

and solving UCSP has been an active research area for several decades. In this thesis two

novel Particle Swarm Optimization (PSO) and Group Search Optimizer (GSO) based

methods namely PSO with Selective Search (PSOSS) and GSO with Selective Search

(GSOSS) have been proposed for solving UCSP. This chapter will draw a short summary of

the key points of this thesis and possible future research directions based on the outcome of

the present work.

5.1 Findings

This work proposes two innovative methods called PSOSS and GSOSS incorporating swap

sequence based velocity/movement calculation, selective search and forceful swap

application with repair mechanism to solve UCSP.

The proposed methods differ from existing methods, including many variants of PSO-based

approaches, where UCSP is transformed into an equivalent floating point numeric domain.

The proposed PSOSS approach uses a swap sequence based discrete PSO with a number of

modifications. The velocity swap sequence is managed in two different parts: sequence for

global best; and sequence combining personal best and previous velocity. A portion of swap

sequence to global best is considered to be applied forcefully with repair mechanism to

change other dependent schedules. After applying SOs one by one, the best intermediate

solution is considered as the final solution based on selective search.

Proposed GSOSS method utilizes swap sequence for movement of scroungers and dispersed

members and also uses forceful swap application with repair mechanism for updating both

the scroungers and dispersed members.

The results obtained by our proposed PSOSS and GSOSS methods show significant

improvement in solving UCSP compared to other traditional methods. PSOSS outperformed

other implemented traditional methods in terms of quality of solutions.

53

5.2 Future Research Directions

• Proposed PSOSS and GSOSS methods can be utilized to generate schedule for whole

university instead of a single department.

• Selective search and forceful swap application with repair mechanism techniques

introduced in this thesis can be incorporated with other algorithms for solving

different optimization problems.

• It would be an interest research topic to see how PSOSS and GSOSS perform

considering co-teaching constraint.

• More sophisticated method for improving producer’s solution in case of GSOSS and

creating an initial random solution considering instructors’ preference may produce

better results.

54

PUBLICATION FROM THE THESIS

Sk. Imran Hossain, M. A. H. Akhand, M. I. R. Shuvo, N. Siddique, and H. Adeli,

“Optimization of University Course Scheduling Problem using Particle Swarm Optimization

with Selective Search,” Expert Systems with Applications, vol. 127, pp. 9–24, Aug. 2019.

https://doi.org/10.1016/j.eswa.2019.02.026 (IF:3.768).

55

REFERENCES

[1] M. Chiarandini, M. Birattari, K. Socha, and O. Rossi-Doria, “An effective hybrid

algorithm for university course timetabling,” J. Sched., vol. 9, no. 5, pp. 403–432,

Oct. 2006.

[2] R. Mencía, M. R. Sierra, C. Mencía, and R. Varela, “Genetic algorithms for the

scheduling problem with arbitrary precedence relations and skilled operators,” Integr.

Comput. Aided. Eng., vol. 23, no. 3, pp. 269–285, Jun. 2016.

[3] Y. Tang, R. Liu, F. Wang, Q. Sun, and A. A. Kandil, “Scheduling Optimization of

Linear Schedule with Constraint Programming,” Comput. Civ. Infrastruct. Eng., vol.

33, no. 2, pp. 124–151, Feb. 2018.

[4] M. A. Al-Betar and A. T. Khader, “A hybrid harmony search for university course

timetabling,” in Multidisciplinary International Conference on Scheduling : Theory

and Applications (MISTA 2009), 2009.

[5] M. R. Garey and D. S. Johnson, “A Guide to the Theory of NP-Completeness,” A

Series of Books in the Mathematical Sciences. 1979.

[6] P. Pongcharoen, W. Promtet, P. Yenradee, and C. Hicks, “Stochastic Optimisation

Timetabling Tool for university course scheduling,” Int. J. Prod. Econ., vol. 112, no.

2, pp. 903–918, Apr. 2008.

[7] Y. Yue, J. Han, S. Wang, and X. Liu, “Integrated Train Timetabling and Rolling Stock

Scheduling Model Based on Time-Dependent Demand for Urban Rail Transit,”

Comput. Civ. Infrastruct. Eng., vol. 32, no. 10, pp. 856–873, Oct. 2017.

[8] A. . Mushi, “Tabu search heuristic for university course timetabling problem,” African

J. Sci. Technol., vol. 7, no. 1, pp. 34–40, Jun. 2010.

[9] M.-R. Feizi-Derakhshi, H. Babei, and J. Heidarzadeh, “A survey of approaches for

university course timetabling problem,” in Proceedings of 8th International

Symposium on Intelligent and Manufacturing Systems (IMS), 2012, pp. 307–321.

[10] Z. Naji Azimi, “Hybrid heuristics for Examination Timetabling problem,” Appl.

Math. Comput., vol. 163, no. 2, pp. 705–733, Apr. 2005.

[11] D.-F. Shiau, “A hybrid particle swarm optimization for a university course scheduling

problem with flexible preferences,” Expert Syst. Appl., vol. 38, no. 1, pp. 235–248,

Jan. 2011.

[12] J. Kennedy and R. C. Eberhart, Swarm Intelligence. San Francisco, CA, USA: Morgan

56

Kaufmann Publishers Inc., 2001.

[13] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in Proceedings of

ICNN’95 - International Conference on Neural Networks, 1995, vol. 4, pp. 1942–

1948.

[14] A. Iglesias, A. Gálvez, and M. Collantes, “Multilayer embedded bat algorithm for B-

spline curve reconstruction,” Integr. Comput. Aided. Eng., vol. 24, no. 4, pp. 385–

399, Sep. 2017.

[15] F. A. B. S. Ferreira, H. A. S. Leitão, W. T. A. Lopes, and F. Madeiro, “Hybrid firefly-

Linde-Buzo-Gray algorithm for Channel-Optimized Vector Quantization codebook

design,” Integr. Comput. Aided. Eng., vol. 24, no. 3, pp. 297–314, Jun. 2017.

[16] R.-M. Chen and H.-F. Shih, “Solving University Course Timetabling Problems Using

Constriction Particle Swarm Optimization with Local Search,” Algorithms, vol. 6, no.

2, pp. 227–244, Apr. 2013.

[17] E. Montero and L. Altamirano, “A PSO algorithm to solve a Real Course+Exam

Timetabling Problem,” in International conference on swarm intelligence, 2011, pp.

14–15.

[18] R. Tavakkoli-Moghaddam, M. Azarkish, and A. Sadeghnejad-Barkousaraie, “A new

hybrid multi-objective Pareto archive PSO algorithm for a bi-objective job shop

scheduling problem,” Expert Syst. Appl., vol. 38, no. 9, pp. 10812–10821, Sep. 2011.

[19] T.-H. Wu, J.-Y. Yeh, and Y.-M. Lee, “A particle swarm optimization approach with

refinement procedure for nurse rostering problem,” Comput. Oper. Res., vol. 54, pp.

52–63, Feb. 2015.

[20] K.-H. Chao, Y.-S. Lin, and U.-D. Lai, “Improved particle swarm optimization for

maximum power point tracking in photovoltaic module arrays,” Appl. Energy, vol.

158, pp. 609–618, Nov. 2015.

[21] S. He, Q. H. Wu, and J. R. Saunders, “A Group Search Optimizer for Neural Network

Training,” in Lecture Notes in Computer Science (including subseries Lecture Notes

in Artificial Intelligence and Lecture Notes in Bioinformatics), 2006, pp. 934–943.

[22] S. He, Q. H. Wu, and J. R. Saunders, “Group Search Optimizer: An Optimization

Algorithm Inspired by Animal Searching Behavior,” IEEE Trans. Evol. Comput., vol.

13, no. 5, pp. 973–990, Oct. 2009.

[23] C. J. Barnard and R. M. Sibly, “Producers and scroungers: A general model and its

application to captive flocks of house sparrows,” Anim. Behav., vol. 29, no. 2, pp.

57

543–550, May 1981.

[24] J. H. Holland, “Adaptation in Natural and Artificial Systems: An Introductory

Analysis with Applications to Biology, Control, and Artificial Intelligence,” MIT

Press. 1992.

[25] C. Kyriklidis and G. Dounias, “Evolutionary computation for resource leveling

optimization in project management,” Integr. Comput. Aided. Eng., vol. 23, no. 2, pp.

173–184, Mar. 2016.

[26] F. Padillo, J. M. Luna, F. Herrera, and S. Ventura, “Mining association rules on Big

Data through MapReduce genetic programming,” Integr. Comput. Aided. Eng., vol.

25, no. 1, pp. 31–48, Dec. 2017.

[27] P. E. Pillon, E. C. Pedrino, V. O. Roda, and M. C. Nicoletti, “A hardware oriented ad-

hoc computer-based method for binary structuring element decomposition based on

genetic algorithms,” Integr. Comput. Aided. Eng., vol. 23, no. 4, pp. 369–383, Sep.

2016.

[28] D. B. Fogel, “An introduction to simulated evolutionary optimization,” in

Evolutionary Computation: The Fossil Record, 1998.

[29] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning.

Addison-Wesley Publishing Company, 1989.

[30] C. K. H. Lee, “A review of applications of genetic algorithms in operations

management,” Eng. Appl. Artif. Intell., vol. 76, pp. 1–12, Nov. 2018.

[31] H. Adeli and S.-L. Hung, Machine Learning - Neural Networks, Genetic Algorithms,

and Fuzzy Systems. John Wiley and Sons, New York, 1994.

[32] N. Siddique, Intelligent Control, vol. 517. Cham: Springer International Publishing,

2014.

[33] N. Siddique and H. Adeli, Computational Intelligence. Oxford, UK: John Wiley &

Sons Ltd, 2013.

[34] R. L. Kadri and F. F. Boctor, “An efficient genetic algorithm to solve the resource-

constrained project scheduling problem with transfer times: The single mode case,”

Eur. J. Oper. Res., vol. 265, no. 2, pp. 454–462, Mar. 2018.

[35] C. Yu, Q. Semeraro, and A. Matta, “A genetic algorithm for the hybrid flow shop

scheduling with unrelated machines and machine eligibility,” Comput. Oper. Res.,

vol. 100, pp. 211–229, Dec. 2018.

[36] Zong Woo Geem, Joong Hoon Kim, and G. V. Loganathan, “A New Heuristic

58

Optimization Algorithm: Harmony Search,” Simulation, vol. 76, no. 2, pp. 60–68,

Feb. 2001.

[37] S. Das, A. Mukhopadhyay, A. Roy, A. Abraham, and B. K. Panigrahi, “Exploratory

Power of the Harmony Search Algorithm: Analysis and Improvements for Global

Numerical Optimization,” IEEE Trans. Syst. Man, Cybern. Part B, vol. 41, no. 1, pp.

89–106, Feb. 2011.

[38] Z. Yang et al., “Multi-objective inventory routing with uncertain demand using

population-based metaheuristics,” Integr. Comput. Aided. Eng., vol. 23, no. 3, pp.

205–220, Jun. 2016.

[39] R. Bruni and P. Detti, “A flexible discrete optimization approach to the physician

scheduling problem,” Oper. Res. Heal. Care, vol. 3, no. 4, pp. 191–199, Dec. 2014.

[40] N. Boland, B. D. Hughes, L. T. G. Merlot, and P. J. Stuckey, “New integer linear

programming approaches for course timetabling,” Comput. Oper. Res., vol. 35, no. 7,

pp. 2209–2233, Jul. 2008.

[41] W. Li et al., “Mountain Railway Alignment Optimization with Bidirectional Distance

Transform and Genetic Algorithm,” Comput. Civ. Infrastruct. Eng., vol. 32, no. 8, pp.

691–709, Aug. 2017.

[42] Y.-Z. Wang, “Using genetic algorithm methods to solve course scheduling problems,”

Expert Syst. Appl., vol. 25, no. 1, pp. 39–50, Jul. 2003.

[43] W. Zhao, S. Guo, Y. Zhou, and J. Zhang, “A Quantum-Inspired Genetic Algorithm-

Based Optimization Method for Mobile Impact Test Data Integration,” Comput. Civ.

Infrastruct. Eng., vol. 33, no. 5, pp. 411–422, May 2018.

[44] O. Valenzuela, X. Jiang, A. Carrillo, and I. Rojas, “Multi-Objective Genetic

Algorithms to Find Most Relevant Volumes of the Brain Related to Alzheimer’s

Disease and Mild Cognitive Impairment,” Int. J. Neural Syst., vol. 28, no. 09, p.

1850022, Nov. 2018.

[45] R. Paz, E. Pei, M. Monzón, F. Ortega, and L. Suárez, “Lightweight parametric design

optimization for 4D printed parts,” Integr. Comput. Aided. Eng., vol. 24, no. 3, pp.

225–240, Jun. 2017.

[46] A. Martínez-Álvarez, R. Crespo-Cano, A. Díaz-Tahoces, S. Cuenca-Asensi, J. M.

Ferrández Vicente, and E. Fernández, “Automatic Tuning of a Retina Model for a

Cortical Visual Neuroprosthesis Using a Multi-Objective Optimization Genetic

Algorithm,” Int. J. Neural Syst., vol. 26, no. 07, p. 1650021, Nov. 2016.

59

[47] D. Abramson, “Constructing School Timetables Using Simulated Annealing:

Sequential and Parallel Algorithms,” Manage. Sci., vol. 37, no. 1, pp. 98–113, Jan.

1991.

[48] N. Siddique and H. Adeli, “Simulated Annealing, Its Variants and Engineering

Applications,” Int. J. Artif. Intell. Tools, vol. 25, no. 06, p. 1630001, Dec. 2016.

[49] A. Prieto, F. Bellas, P. Trueba, and R. J. Duro, “Real-time optimization of dynamic

problems through distributed Embodied Evolution,” Integr. Comput. Aided. Eng., vol.

23, no. 3, pp. 237–253, Jun. 2016.

[50] J. Wright and I. Jordanov, “Quantum inspired evolutionary algorithms with improved

rotation gates for real-coded synthetic and real world optimization problems,” Integr.

Comput. Aided. Eng., vol. 24, no. 3, pp. 203–223, Jun. 2017.

[51] S. Abdullah, E. K. Burke, and B. McCollum, “A hybrid evolutionary approach to the

university course timetabling problem,” in 2007 IEEE Congress on Evolutionary

Computation, 2007, pp. 1764–1768.

[52] J. Henry, J. Henry Obit, D. Ouelhadj, D. Landa-Silva, and R. Alfred, “) An

evolutionary non- Linear great deluge approach for solving course timetabling

problems An Evolutionary Non-Linear Great Deluge Approach for Solving Course

Timetabling Problems,” Int. J. Comput. Sci. Issues, vol. 9, no. 4, pp. 1–13, 2012.

[53] H. Turabieh, S. Abdullah, and B. McCollum, “Electromagnetism-like Mechanism

with Force Decay Rate Great Deluge for the Course Timetabling Problem,” in Lecture

Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), 2009, pp. 497–504.

[54] M. A. Al-Betar and A. T. Khader, “A harmony search algorithm for university course

timetabling,” Ann. Oper. Res., vol. 194, no. 1, pp. 3–31, Apr. 2012.

[55] M. A. Al-Betar, A. T. Khader, and M. Zaman, “University Course Timetabling Using

a Hybrid Harmony Search Metaheuristic Algorithm,” IEEE Trans. Syst. Man, Cybern.

Part C (Applications Rev., vol. 42, no. 5, pp. 664–681, Sep. 2012.

[56] W. Erben and J. Keppler, “A genetic algorithm solving a weekly course-timetabling

problem,” in Lecture Notes in Computer Science (including subseries Lecture Notes

in Artificial Intelligence and Lecture Notes in Bioinformatics), 1996, pp. 198–211.

[57] S. Yang and S. N. Jat, “Genetic Algorithms With Guided and Local Search Strategies

for University Course Timetabling,” IEEE Trans. Syst. Man, Cybern. Part C

(Applications Rev., vol. 41, no. 1, pp. 93–106, Jan. 2011.

60

[58] C. Akkan and A. Gülcü, “A bi-criteria hybrid Genetic Algorithm with robustness

objective for the course timetabling problem,” Comput. Oper. Res., vol. 90, pp. 22–

32, Feb. 2018.

[59] M. Ayob and G. Jaradat, “Hybrid Ant Colony systems for course timetabling

problems,” in 2009 2nd Conference on Data Mining and Optimization, 2009, pp. 120–

126.

[60] H. Li and H. Zhang, “Ant colony optimization-based multi-mode scheduling under

renewable and nonrenewable resource constraints,” Autom. Constr., vol. 35, pp. 431–

438, Nov. 2013.

[61] N. R. Sabar, M. Ayob, G. Kendall, and R. Qu, “A honey-bee mating optimization

algorithm for educational timetabling problems,” Eur. J. Oper. Res., vol. 216, no. 3,

pp. 533–543, Feb. 2012.

[62] A. Alexandridis, E. Paizis, E. Chondrodima, and M. Stogiannos, “A particle swarm

optimization approach in printed circuit board thermal design,” Integr. Comput.

Aided. Eng., vol. 24, no. 2, pp. 143–155, Mar. 2017.

[63] I. X. Tassopoulos and G. N. Beligiannis, “Solving effectively the school timetabling

problem using particle swarm optimization,” Expert Syst. Appl., vol. 39, no. 5, pp.

6029–6040, Apr. 2012.

[64] I. X. Tassopoulos and G. N. Beligiannis, “A hybrid particle swarm optimization based

algorithm for high school timetabling problems,” Appl. Soft Comput., vol. 12, no. 11,

pp. 3472–3489, Nov. 2012.

[65] Al-Mahmud and M. A. H. Akhand, “ACO with GA operators for solving University

Class Scheduling Problem with flexible preferences,” in 2014 International

Conference on Informatics, Electronics & Vision (ICIEV), 2014, pp. 1–6.

[66] T. Ferdoushi, P. K. Das, and M. A. H. Akhand, “Highly constrained university course

scheduling using modified hybrid particle swarm optimization,” in 2013 International

Conference on Electrical Information and Communication Technology (EICT), 2014,

pp. 1–5.

[67] F. Sharifa and R. Afroza, “A Study on Grammatical Evolution,” Khulna University

of Engineering & Technology, 2003.

[68] I. Khan and M. K. Maiti, “A swap sequence based Artificial Bee Colony algorithm

for Traveling Salesman Problem,” Swarm Evol. Comput., vol. 44, pp. 428–438, Feb.

2019.

61

[69] Kang-Ping Wang, Lan Huang, Chun-Guang Zhou, and Wei Pang, “Particle swarm

optimization for traveling salesman problem,” in Proceedings of the 2003

International Conference on Machine Learning and Cybernetics (IEEE Cat.

No.03EX693), 2003, pp. 1583–1585.

[70] M. A. H. Akhand, P. C. Shill, M. F. Hossain, A. B. M. Junaed, and K. Murase,

“Producer-Scrounger Method to Solve Traveling Salesman Problem,” Int. J. Intell.

Syst. Appl., vol. 7, no. 3, pp. 29–36, Feb. 2015.

[71] “Boost C++ Libraries.” [Online]. Available: https://www.boost.org/.

