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Abstract 
 

 

 

The University Course Scheduling Problem (UCSP) is a highly constrained real-world 

combinatorial optimization task. Solving UCSP means creating an optimal course schedule 

by assigning courses to specific rooms, instructors, students, and timeslots by taking into 

account the given constraints. Several studies have reported different metaheuristic 

approaches for solving UCSP including Genetic Algorithm (GA) and Harmony Search (HS) 

algorithm. Various Swarm Intelligence (SI) optimization methods have also been 

investigated for UCSP in recent times and a few Particle Swarm Optimization (PSO) based 

methods among them with different adaptations are shown to be effective. In this study, two 

novel PSO and Group Search Optimizer (GSO) based methods are investigated for solving 

highly constrained UCSP in which basic PSO and GSO operations are transformed to tackle 

combinatorial optimization task of UCSP and a few new operations are introduced to PSO 

and GSO to solve UCSP efficiently. In the proposed methods, swap sequence-based velocity 

and movement computation and its application are developed to transform individual 

particles and members in order to improve them. Selective search and forceful swap 

operation with repair mechanism are the additional new operations in the proposed methods 

for updating particles and members with calculated swap sequences. The proposed PSO with 

selective search (PSOSS) and GSO with selective search (GSOSS) methods have been tested 

on an instance of UCSP resembling the course structure of the Computer Science and 

Engineering Department of Khulna University of Engineering & Technology which has 

many hard and soft constraints. Experimental results revealed the effectiveness and the 

superiority of the proposed methods compared to other prominent metaheuristic methods 

(e.g., GA, HS). 

 

  



vi 
 

 
 

Contents 
 

  PAGE 

Title Page  i 

Declaration  ii 

Approval  iii 

Acknowledgement  iv 

Abstract  v 

Contents  vi 

List of Tables  viii 

List of Figures  ix 

Nomenclature  x 

 

CHAPTER I  Introduction 1 

 1.1 Overview of Timetabling Problem 1 

 1.2 University Course Scheduling Problem (UCSP) 1 

 1.3 Thesis Objectives 2 

 1.4 Thesis Organization 3 

CHAPTER II Literature Review  
4 

 2.1 Prominent Nature Inspired Optimization 

Algorithms 

4 

  2.1.1 Particle Swarm Optimization (PSO) 4 

  2.1.2 Group Search Optimizer (GSO) 6 

  2.1.3 Genetic Algorithm (GA) 9 

  2.1.4 Harmony Search (HS) 10 

 2.2 Existing Methods to Solve UCSP 12 

  2.2.1 GA based Methods to Solve UCSP 12 

  2.2.2 HS based Methods to Solve UCSP 12 

  2.2.3 PSO based Methods to Solve UCSP 13 

  2.2.4 Previous Works from the Department of 

CSE, KUET 

13 

 2.3 Observation on Existing Methods 13 

 2.4 Scope of Research 14 

CHAPTER III Methodology 
15 

 3.1 Terminologies 15 

  3.1.1 Solution Encoding for UCSP 16 

  3.1.2 Fitness Calculation 17 



vii 
 

 
 

  3.1.3 Swap Operator and Swap Sequence for 

UCSP 

18 

  3.1.4 Forceful Swap Operation with Repair 

Mechanism 

19 

  3.1.5 Selective Search 21 

  3.1.6 Population Initialization 21 

 3.2 PSO with Selective Search (PSOSS) for Solving 

UCSP 

21 

  3.2.1 Particle Encoding 22 

  3.2.2 Velocity Computation using Swap Operator 

and Swap Sequence 

22 

  3.2.3 PSOSS Algorithm for Solving UCSP 23 

  3.2.4 Illustration of Solution Update Mechanism 

in PSOSS 

28 

 3.3 GSO with Selective Search (GSOSS) for Solving 

UCSP 

30 

  3.3.1 Member Encoding 30 

  3.3.2 Member Categorization 30 

  3.3.3 Producer’s Scanning 31 

  3.3.4 Scrounging 31 

  3.3.5 Dispersed Members’ Random Operation 31 

  3.3.6 GSOSS Algorithm for Solving UCSP 31 

  3.3.7 Illustration of an iteration of GSOSS 

Algorithm 

37 

CHAPTER IV Experimental Studies 39 

 4.1 Experimental Setup 39 

 4.2 Experimental Environment 40 

 4.3 Input Data Preparation 42 

 4.4 Experimental Results and Analysis 44 

CHAPTER V Conclusions  

 5.1 Findings 52 

 5.2 Future Research Directions 53 

PUBLICATION FROM THE THESIS 54 

REFERENCES 55 

 

                                                      

  



viii 
 

 
 

LIST OF TABLES 

 

 
 

 

 

 

 

 

  

Table No Caption of the Table Page  

4.1 Batch and course information 42 

4.2 Course information for each instructor 43 

4.3 Information for classrooms and laboratories 43 

4.4 Average and best fitness comparison among GA, PSO, HS, 

GSO, GSOSS and PSOSS of 25 trials for different population 

sizes 

46 

4.5 Instructors’ satisfaction values achieved by implemented 

methods 

48 

4.6 Sample Timetable for Instructor 𝑒1 generated by GA, PSO, 

HS, PSM and PSOSS methods 

49 



ix 
 

 
 

LIST OF FIGURES 

 

Figure No Caption of the Figure Page  

3.1 Solution representation for UCSP 16 

3.2 Mapping of timeslots of a solution in days and periods 17 

3.3 Sample preference values for instructors 18 

3.4 Instructor wise Swap Sequences (SSs) of complete SS 19 

3.5 Illustration of the repair mechanism 20 

3.6 Illustration of the solution update mechanism of a particle in 

PSOSS 

29 

3.7 Illustration of an iteration of GSOSS 38 

4.1 Input preference values for instructors 41 

4.2 Performance analysis of fitness for different population sizes 44 

4.3 Performance analysis of fitness in different iterations 45 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



x 
 

 
 

Nomenclature 

 

 

UCSP University Course Scheduling Problem 

SI Swarm Intelligence 

PSO Particle Swarm Optimization 

GSO Group Search Optimizer 

PSOSS PSO with Selective Search 

GSOSS GSO with Selective Search 

GA Genetic Algorithm 

HS Harmony Search 

ILP Integer Linear Programming 

TS Tabu Search 

ACO Ant Colony Optimization 

SO Swap Operator 

SS Swap Sequence 

 

 



1 
 

 
 

CHAPTER I 

 

 

Introduction 

 

 

Timetabling problems deal with event scheduling considering various constraints. These 

problems are NP-hard and can be either optimisation or feasibility problems. University 

Course Scheduling Problem (UCSP) is one of the most difficult timetabling optimization 

problems. This chapter provides an overview of timetabling problem, introduces UCSP as a 

timetabling problem, describes objectives of the thesis and also contains the thesis 

organization. 

 

1.1 Overview of Timetabling Problem 

Timetabling problems deal with scheduling of a fixed number of events using a fixed number 

of timeslots and resources in order to satisfy a set of constraints [1]–[3]. These problems are 

NP-hard [4], [5]. The set of the constraints of timetabling problems is usually divided into a 

set of hard constraints and a set of soft ones. Hard constraints are the conditions that must be 

satisfied for a working timetable whereas the soft constraints are conditions that may be 

violated but affect the solution’s quality [6]. Some versions of the problem consider an 

objective representing for instance the cost (to be minimized) or the acceptability (to be 

maximized) of the schedule, while some other versions are pure feasibility problems. 

Timetabling problems have found many applications in different domains such as employee 

allotment, transport systems, educational organizations, sports activities and industrial 

applications [7]. In higher educational institutions, examination and course scheduling are 

two important common and challenging tasks for optimizing physical and human resources 

[8]. The University Course Scheduling problem (UCSP) typically is among the difficult 

timetabling optimization problems requiring a large number of soft and hard constraints to 

be satisfied. 

 

1.2 University Course Scheduling Problem (UCSP) 

The goal of UCSP is to assign all classes and laboratory sessions to instructors, rooms, and 

timeslots considering the hard and soft constraints in such a way that no dispute arises in 
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these assignments [9]. Mathematically, the UCSP is defined as a triple 〈𝐸, 𝑇, 𝐶〉, where 𝐸 =

{𝑐𝑖, 𝑠𝑗 , 𝑖𝑘} contains three sets: set of classes 𝑐𝑖, set of students 𝑠𝑗, and set of instructors 𝑖𝑘; 

𝑇 = {𝑡1, … , 𝑡𝑛} is a set of time slots and 𝐶 = {𝐶1, … , 𝐶𝑛} is the set of hard and soft 

constraints. The task is to assign 𝐸𝑖 to the time slot 𝑇𝑖 satisfying constraints 𝐶𝑖 where 𝐶𝑖 ∈ 𝐶. 

The challenges of the UCSP are the constraints, for example, instructors’ dispositions, 

educational policies of the school, availability of teaching staffs and other physical resources. 

In UCSP, each instructor can teach one class at a timeslot and students can just go to one 

class at any given time. Other similar kinds of constraints are treated as hard constraints that 

must be satisfied. Common soft constraints of the UCSP are instructors’ preferences for 

favored days and timeslots, expected to be satisfied to the extent possible. In the UCSP the 

main issue is to handle room allocation for lectures considering the maximum capacity of 

each room, the number of enrolled students in a course and other related facilities[10], [11]. 

Both hard and soft constraints may vary from institution to institution based on their 

resources and facilities. Any resource modification or update (including capacity alteration 

in resources) requires rescheduling of classes, which is very common at the beginning of a 

term. 

 

1.3 Thesis Objectives 

Various Swarm Intelligence (SI) optimization methods have been investigated for UCSP in 

recent times and a few Particle Swarm Optimization (PSO) based methods among them with 

different adaptations are shown to be effective. In this study, two novel PSO and Group 

Search Optimizer (GSO) based methods are investigated for solving highly constrained 

UCSP in which basic PSO and GSO operations are transformed to tackle combinatorial 

optimization task of UCSP and a few new operations are introduced to PSO and GSO to 

solve UCSP efficiently. In the proposed methods, swap sequence-based velocity and 

movement computation and its application are developed to transform individual particles 

and members in order to improve them. Selective search and forceful swap operation with 

repair mechanism are the additional new operations in the proposed methods for updating 

particles and members with calculated swap sequences. Objectives of this thesis work are: 

• To solve UCSP using PSO with Selective Search (PSOSS). 

• To solve UCSP using GSO with Selective Search (GSOSS). 
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• To evaluate the significance of using selective search and forceful swap application 

with repair mechanism in PSOSS and GSOSS. 

• To compare the performance of the proposed PSOSS and GSOSS methods with 

other traditional methods like Genetic Algorithm (GA) and Harmony Search (HS). 

 

1.4 Thesis Organization 

The thesis is organized in five chapters. 

Chapter I provides introductory discussion on timetabling problems, UCSP, thesis objectives 

and thesis organization. 

Chapter II provides overview of prominent nature inspired optimization algorithms, brief 

discussion on existing methods to solve UCSP, observation on existing methods and scope 

of the research. 

Chapter III describes the proposed PSOSS and GSOSS methods in detail. 

Chapter IV contains experimental studies. In this chapter experimental setup, environment, 

input data preparation, experimental results and analysis are discussed. 

Chapter V provides concluding remarks and possible future research directions. 
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CHAPTER II 

 

 

Literature Review 

 

 

Nature acts a source of inspiration for researchers and most of the new optimization 

algorithms are nature inspired. Several nature inspired optimization algorithms have been 

applied on University Course Scheduling Problem (UCSP) and they are found to be effective 

but there remains a lot of scope of research in this field. This chapter provides overview of 

a few nature inspired algorithms like Particle Swarm Optimization (PSO), Group Search 

Optimizer (GSO), Genetic Algorithm (GA), Harmony Search (HS). It also includes brief 

discussion on existing methods to solve UCSP, observation on existing methods and scope 

of research. 

 

2.1 Prominent Nature Inspired Optimization Algorithms 

Nature is the primary source of inspiration for researchers and most of the new optimization 

algorithms are nature inspired. Most of the nature inspired algorithms are biology inspired 

and among them some draws inspiration from Swarm Intelligence (SI). Many algorithms 

also draw inspiration from physical or chemical systems. Some algorithms like HS draw 

inspiration even from music.  Most of the nature inspired algorithms starts with an initial 

population and tries to improve or evolve this population based on natural phenomenon. 

There is a vast number of nature inspired optimization algorithms and for this study we have 

considered PSO, GSO, GA and HS. Following subsections provide brief overview of these 

algorithms to make the thesis paper self-contained. 

 

2.1.1 Particle Swarm Optimization (PSO) 

PSO is an optimization algorithm based on the social behavior of swarms mimicking the 

movement of organisms (e.g., bird, fish, bat and firefly) in a swarm [12]–[15]. It works with 

a population of particles and every particle indicates a candidate solution of the optimization 

problem in multidimensional search space [16]. The fitness of each particle is calculated 

using a fitness function which is associated with the problem at hand. PSO starts with a 

population of particles which are randomly assigned to the search space.   At every iteration, 
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each particle of PSO adjusts its position based on velocity calculated considering (i) its 

present position, (ii) personal best position and (iii) global best position of the population. 

The personal best position of a particle is the best position found by the particle so far and 

the global best position is the best position found by all the particles. This process continues 

until it reaches a stopping criterion [17] and then the global best position is considered as the 

final outcome. PSO has found many applications in many domains [11], [18], [19]. 

Consider a search space of 𝑑 dimensions consisting of 𝑧 number of particles. If a particle’s 

current position is 𝑋𝑝, personal best position is 𝐵𝑝 and global best position among all the 

particles is 𝐺 then, the velocity of a particle 𝑉𝑝 is calculated using the following equation:  

 𝑉𝑝
(𝑡)

= 𝑤𝑉𝑝
(𝑡−1)

+ 𝑐1 𝑟1 (𝐵𝑝 − 𝑋𝑝
(𝑡−1)

) + 𝑐2𝑟2(𝐺 − 𝑋𝑝
(𝑡−1)

) (2.1) 

where, 𝑤 is the inertia factor, 𝑐1 is the cognitive coefficient, 𝑐2 is the social coefficient, and 

{𝑟1, 𝑟2} ∈ [0,1] are random values. Inertia factor 𝑤 scales the influence of the previous 

velocity, 𝑐1 limits the size of the step the particle takes towards its personal best and 𝑐2 limits 

the size of the step the particle takes towards its global best [20]. The position of the particle 

is updated using the following equation: 

𝑋𝑝
(𝑡)

= 𝑋𝑝
(𝑡−1)

+ 𝑉𝑝
(𝑡)

× 𝑇 (2.2) 

where, 𝑇 represents time to convert velocity into distance and its value is assumed 1.   

The basic steps of PSO are as follows: 

Step 1. Initialization:  

a. Create a population of 𝑧 particles by randomly positioning them in the search space.    

b. Calculate fitness of each particle and assign its current position (𝑋𝑝) as personal best 

position (𝐵𝑝).   

c. Find the global best position (G) among all the particles. 

Step 2. Position Update of Each Particle:  

d. Calculate the velocity using Eq. (2.1).  

e. Move to the new position according to Eq. (2.2). 

f. Calculate fitness.  

g. Update personal best position (𝐵𝑝) and global best position (𝐺) considering fitness 

of new position. 

Step 3. Termination and Outcome:  

Go to Step 2 if termination criterion is not met; otherwise, stop and consider global best 

position (𝐺) as the final outcome. 
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2.1.2 Group Search Optimizer (GSO) 

GSO is inspired by animal searching behaviour and social foraging [21], [22]. It adopts the 

scrounging strategies of house sparrows and employs especially animal scanning 

mechanism. General social foraging model mainly follows the producer-scrounger (P-S) 

model, in which the group members search either for finding producer or for joining 

scrounger opportunities. There are three kinds of member in the group: (i) producer that 

searches for food; (ii) scrounger that performs area copying behaviour in order to keep 

searching for opportunities to join the resources found by the producer; (iii) ranger (or 

dispersed members) that employs searching strategies of random walks for randomly 

distributed resources and performs random walk motion. At each iteration, the member 

located at the most promising resource is the producer, a number of members except 

producer in the group are selected as scroungers, and the remaining members are rangers. In 

an n-dimensional search space, the i-th member of the group at iteration 𝑡 located in a 

position is denoted as 𝑥𝑖
𝑡 ∈ 𝑅𝑛 with a head angle of  𝜙𝑖

𝑡 = [𝜙𝑖1
𝑡 , ⋯ , 𝜙𝑖𝑛−1

𝑡 ].  The search 

direction of the i-th member is a unit vector denoted as 𝐷𝑖
𝑡(𝜙𝑖

𝑡) = [𝑑𝑖1
𝑡 ,⋯ , 𝑑𝑖𝑛

𝑡 ] ∈ 𝑅𝑛. The 

individual components of the direction vector can be obtained from a Polar to Cartesian 

coordinate transformation as follows 

𝑑𝑖1
𝑡 = ∏𝑐𝑜𝑠(𝜙𝑖𝑞

𝑡 )

𝑛−1

𝑞=1

 (2.3) 

𝑑𝑖𝑗
𝑡 = 𝑠𝑖𝑛(𝜙𝑖𝑗−1

𝑡 ) × ∏𝑐𝑜𝑠(𝜙𝑖𝑞
𝑡 )

𝑛−1

𝑞=𝑗

,  𝑗 ∈ {2,3,⋯ , 𝑛 − 1} (2.4) 

𝑑𝑖𝑛
𝑡 = 𝑠𝑖𝑛(𝜙𝑖𝑛−1

𝑡 ) (2.5) 

When a member of the group goes outside the search space, it is brought back to its previous 

position inside the search space. In GSO, the member located at the most favourable area of 

the search space at iteration t, i.e. the member with the best fitness, is considered as the 

producer 𝑥𝑝
𝑡 . The producer making a stopover at that location and searches the space for 

optimal resources. Animals do use high resolution vision mechanism that enable them to 

encode large field of view, which is far too complex for GSO to implement. In GSO, a simple 

scanning mechanism used by white crappie is utilised. The scanning mechanism of the white 

crappie starts at zero degree then scan in the lateral direction by sampling three points in a 

random manner in the vision field: one point at zero-degree 𝑥𝑧, one point on the hand side 
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𝑥𝑟and one point at the left-hand side hypercube 𝑥𝑙. The three points for the producer 𝑥𝑝
𝑡 are 

described by 

𝑥𝑧 = 𝑥𝑝
𝑡 + 𝑟1𝑙𝑚𝑎𝑥𝐷𝑝

𝑡(∅𝑡) (2.6) 

𝑥𝑟 = 𝑥𝑝
𝑡 + 𝑟1𝑙𝑚𝑎𝑥𝐷𝑝

𝑡 (
∅𝑡 + 𝑟2𝜃𝑚𝑎𝑥

2
) (2.7) 

𝑥𝑙 = 𝑥𝑝
𝑡 + 𝑟1𝑙𝑚𝑎𝑥𝐷𝑝

𝑡 (
∅𝑡 − 𝑟2𝜃𝑚𝑎𝑥

2
) (2.8) 

where 𝑟1 ∈ [0,1] is a random number, 𝑟2 ∈ (0,1) is a uniformly distributed random sequence, 

𝜃𝑚𝑎𝑥 ∈ 𝑅 is the maximum pursuit angle and 𝑙𝑚𝑎𝑥 ∈ 𝑅 is the maximum pursuit distance. 

Producer will then find the best point with the highest fitness value. If this new point has 

better fitness value than the current point, then it will update the current point with new point. 

Otherwise it will remain in the current point and change the head angle to a randomly 

generated head angle defined by 

𝜙𝑖
𝑡+1 = 𝜙𝑖

𝑡 + 𝑟2𝛼𝑚𝑎𝑥 (2.9) 

where 𝛼𝑚𝑎𝑥is the maximum turning angle. If the producer cannot reach a better position 

after some iterations 𝜏, it will orient the heading angle back to zero degree. A number of 

members become scroungers in the group. They mainly search for opportunities and join the 

resources found by the producer. Three scrounging behaviours are observed in house 

sparrows in [23], which led them to model producer-scrounger (PS) behaviours, i.e. the 

search strategies. The three strategies used in PS model are:  

(i) Area copying - searching in the immediate area around the producer;  

(ii) Following - following another animal around;   

(iii) Snatching - taking a resource directly from the producer.  

Area copying is found to be the common scrounging behaviour in sparrows  [23].Therefore, 

area copying is used in the GSO algorithm. The area copying behaviour of the i-th scrounger 

at iteration t is described as a random walk toward the producer defined by  

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑟3 ∘ (𝑥𝑝
𝑡 − 𝑥𝑖

𝑡) (2.10) 

where 𝑟3 ∈ [0,1] is a uniform random sequence. The operator ‘∘’ is a Hadamard product of 

the Schur product to compute the entry-wise product of the two vectors. While showing 

copying behaviour, the scroungers also keep looking for other opportunities. This behaviour 

is described by Eq. (2.9). The members in the group often have different searching and 

competitive abilities, which make the remaining members to disperse from their current 

locations according to their foraging efficiency. Different dispersal techniques are seen in 
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animals, birds and insects such as ranging behaviour for habitat preferences. Ranging is a 

phase of search for resources without any cues. In GSO algorithm, dispersed members are 

called rangers. It is common for rangers to do random walks, which are thought to be the 

efficient searching method for randomly distributed resources. The i-th member, now a 

ranger, takes a random head angle using Eq. (2.9) and selects a random distance at iteration 

t defined by 

𝑙𝑖 = 𝑟1 × 𝑙𝑚𝑎𝑥 (2.11) 

where 
1 [0,1]r  is a random number and 𝑙𝑚𝑎𝑥is the maximum pursuit distance a ranger can 

travel. The maximum pursuit 𝑙𝑚𝑎𝑥 is calculated according to 

𝑙𝑚𝑎𝑥 = ‖𝑈 − 𝐿‖ = √∑ (𝑈𝑖 − 𝐿𝑖)2
𝑛

𝑖=1
 (2.12) 

where 
iU  and 

iL  are the upper and lower bounds for the i th dimension.  

Using the random distance, i-th member jumps on to the new point defined by 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑙𝑖 × 𝐷𝑖
𝑡(𝜙𝑡+1) (2.13) 

Animals use simple strategy of maximizing resources and limiting the search to profitable 

patch. For example, when animals detect edge of the resource, they go back to the patch. In 

GSO, this simple strategy is used. When a member goes outside the boundary of the search 

space, it will head back to within the search space by resetting variables that caused crossing 

boundary.  

The basic steps of GSO are as follows: 

Step 1. Initialization 

a. Create a group of 𝑤 members by randomly positioning them in the search space. 

Step 2. Member Categorization  

a. Calculate fitness of each member of the group. 

b. Sort members according to fitness value. 

c. Select member having best fitness as producer, specified percentage of worst members 

as dispersed members and rest of the members as scroungers.  

Step 3. Producer’s Scanning 

a. Producer scans search area for better position and moves to new better position. 

Step 4. Scrounging 

a. Each scrounger moves towards producer. 
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Step 5. Dispersed Members’ Random Operation 

a. Each dispersed member moves to new position using random walk. 

Step 6. Termination and Outcome 

a. Recalculate the group with updated producer, scroungers and dispersed members. 

b. Go to Step 2 if termination criterion is not met; otherwise recalculate producer and 

consider its solution as final outcome. 

 

2.1.3 Genetic Algorithm (GA) 

GA is a population-based search and optimization algorithm inspired by Darwinian 

evolution and natural selection [24]. GA has three operators, namely, crossover, mutation, 

and selection. The GA works with a population initialized randomly that undergoes 

crossover with a crossover probability 𝑝𝑐 ∈ [0,1] and mutation with a mutation probability 

𝑝𝑚 ∈ [0,1]  [25]–[30]. The individuals in the population survive to next generation based on 

their fitness. GA obtains a solution with the highest fitness after several generations (i.e. 

iterations), which is considered the optimal solution [31]–[33]. GA has found successful 

applications in many domains [34], [35]. In GA an initial population of individuals is evolved 

for producing better solutions. Each individual is a complete solution to the problem at hand 

and is characterized by a set of parameters called Genes. These Genes are joined together to 

form a solution called Chromosome. Traditionally, solutions are encoded in binary as a string 

of 1s and 0s. A fitness function is used to calculated fitness of each individual which depends 

on the optimization problem. Individuals are selected, crossed and mutated in hope of 

creating individuals having better fitness value.  

The steps of GA are as follows: 

Step 1. Initialization 

Create initial population by generating specified number of random individuals. 

Step 2. Fitness Calculation 

Calculate fitness of each individual of the population using a fitness function.  

Step 3. Selection 

Select individuals from the population so that they can breed a new generation. Selection 

probability generally depends on the fitness value so that, individuals having better 

fitness get a higher chance of reproducing.  
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Step 4. Crossover 

Breed off-springs by crossing two random individuals from the pool of selected 

individuals at Step 3. Number of pairs depends on crossover rate.  Most common 

crossover method is single point crossover. In single point crossover a random point 

called 'crossover point' is picked and between the two parent chromosomes bits to the 

right of that point are swapped. This process produces two off-springs, each having 

genetic information from both parents. These off-springs are incorporated in new 

population by replacing the parents. 

Step 5. Mutation 

Mutate a number of individuals in the population based on mutation probability. For 

binary encoding mutation is done by flipping some of the bits of a chromosome. 

Step 6. Termination and Outcome 

Go to Step 2 if termination criterion is not met; otherwise, stop and consider best solution 

from the population as the final outcome. 

A variant of new population construction process is to retain a number of best individuals 

without alteration from current population to next population. This is done to ensure that 

solution of best fitness generated by GA is retained over iterations. This concept is known 

as elitism.  

 

2.1.4 Harmony Search (HS) 

HS is a population-based search and optimization algorithm inspired by an improvisation 

process in musical performance [36]. Search efficiency and exploratory power of HS has 

been reported in  [37]. In HS, a solution is called a harmony, population is termed as 

Harmony Memory (HM) and population size is called Harmony Memory Size (HMS). An 

initial population of HM is randomly generated. A candidate harmony is improvised for each 

iteration using memory consideration, pitch adjustment, and random selection. The new 

harmony is compared with the worst harmony. The worst harmony is replaced by the new 

harmony if it is better than the worst harmony and the HM is updated. This process is 

repeated until a predetermined number of improvisations. The music improvisation is a 

process of searching for the better harmony by trying various combinations of pitches that 

should follow any of the following three rules [36]: 

1. Playing any one pitch from the memory. 
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2. Playing an adjacent pitch of one pitch from the memory. 

3. Playing a random pitch from the possible range. 

HS algorithm mimics this process and follows any of the three rules below: 

1. Choosing any value from the HS memory. 

2. Choosing an adjacent value from the HS memory. 

3. Choosing a random value from the possible value range. 

The three rules in the HS algorithm are effectively directed using two essential parameters: 

Harmony Memory Considering Rate (HMCR) and Pitch Adjusting Rate (PAR).  

The steps of HS algorithms are as follows: 

Step 1. Initialization 

Initialize the HS memory HM. The initial HM consists of a given number of randomly 

generated solutions to the optimization problems under consideration. For an n-

dimension problem, an HM with the size of HMS can be represented as follows: 

HM =

[
 
 
 

𝑥1
1 𝑥2

1 … 𝑥𝑛
1

𝑥1
2 𝑥2

2 … 𝑥𝑛
2

⋮ ⋮ ⋮ ⋮
𝑥1

HMS 𝑥2
HMS … 𝑥𝑛

HMS]
 
 
 
  

where [𝑥1
𝑖 𝑥2

𝑖 … 𝑥𝑛
𝑖 ] (𝑖 = 1, 2, … , HMS) is a solution candidate. 

Step 2. New Solution Improvisation 

From HM improvise a new solution [𝑥1
′ 𝑥2

′ … 𝑥𝑛
′ ] where each component 𝑥𝑗

′ is 

generated based on HMCR. HMCR is the probability of selecting a component from 

existing members of HM. So, 1-HMCR is the probability of generating 𝑥𝑗
′ component 

randomly. If 𝑥𝑗
′ comes from HM then it is selected from 𝑗th dimension of a randomly 

chosen HM member, and then it can be mutated based on mutation probability PAR. 

Step 3. HM Update 

If the fitness of the new solution obtained from Step 2 is better than the worst member 

of HM, then replace the worst member with new solution. 

Step 4. Termination and Outcome 

Go to Step 2 if termination criterion is not met; otherwise, stop and consider best 

solution from HM as the final outcome. 
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2.2 Existing Methods to Solve UCSP 

A number of exact and meta-heuristic [38] approaches have been applied to different 

scheduling tasks including UCSP in the last few years. Integer Linear Programming (ILP) is 

an exact approach which optimizes an objective function of a mathematical model. ILP has 

been applied to scheduling problems including course timetabling problem [39], [40]. Some 

of the meta-heuristic approaches are Genetic Algorithm (GA) [6], [41]–[46], Tabu Search 

(TS) [8], Simulated Annealing (SA) [47], [48], Evolutionary Algorithm [49], [50], Hybrid 

Evolutionary Algorithm [51], Hybrid Evolutionary Approach with Nonlinear Great Deluge 

[52], Hybrid Electromagnetism-like Mechanism with Great Deluge [53], and Harmony 

Search (HS) algorithm [54], [55]. A TS based approach was proposed for UCSP with 

emphasis on the University of Dar-assalaam that generates schedule by heuristically 

minimizing penalties over infeasible solutions in [8]. A metaheuristic algorithm for UCSP 

combining Heuristics, SA, Variable Neighborhood Descent, and TS was proposed in  [1].  

 

2.2.1 GA based Methods to Solve UCSP 

A GA based method is proposed to solve weekly course timetabling problem in [56]. This 

approach uses problem-specific chromosome representation and knowledge-augmented 

genetic operators for avoiding illegal timetables generation. A GA method for UCSP with 

multiple constraints is investigated in [42], which resulted in a timetable more acceptable to 

instructors. GA with a guided search strategy and local search techniques for the university 

course timetabling is proposed in [57]. This approach uses guided search strategy to create 

offspring and local search to improve the search efficiency. Course timetabling problem is  

modelled as a bi-criteria optimization problem and solved by a hybrid Multi-objective GA 

in [58]. This approach makes use of Hill Climbing and Simulated Annealing algorithms in 

addition to the standard GA approach. 

 

2.2.2 HS based Methods to Solve UCSP 

HS algorithm is used for university course timetabling problem in [54] which generates 

viable solution compared to previous works. A hybrid HS with hill climbing for local 

exploitation improvement and global best concept of PSO for improved convergence is 

proposed for university course timetabling problem in [55]. 
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2.2.3 PSO based Methods to Solve UCSP 

Recently, SI based optimization methods such as Ant Colony Optimization (ACO) [59], 

[60], Honey-Bee Mating Optimization [61] have been investigated for UCSP and other 

timetabling problems. In SI based optimization methods, Particle Swarm Optimization 

(PSO) is very popular [62] and various PSO based strategies have been examined for UCSP. 

A PSO based method  considering a bunch of constraints and a repair mechanism for all 

infeasible solutions is proposed for UCSP in [11]. This method was applied for class 

scheduling of the department of information management of Kun-Shan University in 

Taiwan. An adaptive PSO based technique in which teachers are allowed to set their own 

weights to each hard and/or soft constraint is investigated to solve UCSP in [63]. A hybrid 

PSO method incorporating local search is proposed for generating timetable for Greece high 

school in [64]. Two different versions of PSO for UCSP, the inertia weight version and the 

constriction version is investigated in [16]. This study also utilizes interchange heuristic to 

explore the neighbouring solution space for improving solution quality. 

 

2.2.4 Previous Works from the Department of CSE, KUET 

ACO with GA is used in [65] for solving UCSP where ACO is used to provide UCSP's 

solution and GA operations such as selection and mutation is employed to improve UCSP’s 

solution. Modified Hybrid PSO is implemented in [66] considering various hard and soft 

constraints to solve a real-world UCSP. Grammatical Evolution is used in [67] for solving 

UCSP. 

 

2.3 Observation on Existing Methods 

PSO is popular due to its computational simplicity and adaptation ability [62]. PSO works 

with a population of particles; and, at every iteration, it calculates velocities for individual 

particles and adjusts those positions based on the velocities. PSO was proposed for 

continuous optimization (also called function optimization) in floating point numeric domain 

where interaction among particles (i.e., velocity calculation) are maintained through 

mathematical operations (e.g., addition, subtraction, and multiplication). On the other hand, 

any timetabling, especially UCSP, is a combinatorial optimization task and discrete in 

nature. To deal with such optimization tasks using PSO, high school timetabling [63], [64] 

and university course scheduling [11], [16] problems are first transformed into floating point 

numeric domain and then PSO is applied to obtain a workable solution. In these methods, a 
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particle is encoded through floating point numeric representation of courses, instructors, 

rooms; and PSO operations (i.e., floating point numeric operations of velocity calculation 

and position update) are applied to improve it. Instead of transforming the UCSP to floating 

point numeric domain, a practical approach would be the modification of the algorithm.  

Performance of GSO on 23 unimodal and low dimension multimodal benchmark functions 

is verified in [21], [22], which shows competitive performance of GSO over GA and PSO. 

GSO is also applied for training of weights of a three-layer feedforward neural network, 

which is considered a continuous hard optimization problem due to the high-dimensional 

multimodal search space [21], [22]. GSO also shows competitive performance in this case 

compared to scaled conjugate gradient, GA, evolutionary programming, evolution strategies, 

and PSO. To the best of our knowledge, GSO has not been used to solve UCSP. 

 

2.4 Scope of Research 

From the observation of existing methods, it is clear that there is a scope of transforming the 

PSO for UCSP without transforming the UCSP to floating point numeric domain. Also, GSO 

seems to be promising for solving UCSP. As GSO has not been used to solve UCSP there is 

a scope of utilizing GSO for optimizing UCSP. In this study, swap sequence has been 

adapted for velocity/movement calculation; and selective search as well as forceful swap 

operation with repair mechanism has been introduced to PSO and GSO for dealing with 

highly constrained nature of UCSP.  
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CHAPTER III 

 

 

Methodology 

 

 

This chapter presents the proposed Particle Swarm Optimization with Selective Search 

(PSOSS) and Group Search Optimizer with Selective Search (GSOSS) methods in detail in 

different subsections explaining the transformation of PSO and GSO operations to tackle the 

combinatorial optimization task of University Course Scheduling Problem (UCSP) and the 

additional new operations introduced in PSOSS and GSOSS. Section 3.1 introduces some 

terminologies used in this study. Section 3.1.1 describes solution encoding for the UCSP in 

consideration. Section 3.1.2 describes the fitness calculation process for a solution. Section 

3.1.3 introduces swap operator and swap sequences for UCSP. Forceful swap operation with 

repair mechanism and selective search, the added significant features of PSOSS and GSOSS, 

are described in section 3.1.4 and section 3.1.5, respectively. Section 3.2 presents the PSOSS 

method for solving UCSP. Sections 3.2.1 and section 3.2.2 explain the transformation of 

PSO operations to handle UCSP. The algorithm and illustration of the working procedure of 

PSOSS are presented in section 3.2.3 and section 3.2.4, respectively. Section 3.3 presents 

the GSOSS method for solving UCSP. Section 3.3.1 to section 3.3.5 explain the 

transformation of GSO operations to handle UCSP. The algorithm and illustration of 

working procedure of GSOSS are presented in section 3.3.6 and section 3.3.7, respectively. 

 

3.1 Terminologies 

Some terminologies including solution encoding for UCSP, solution’s fitness calculation 

process, Swap Operator and Swap Sequence for UCSP, Forceful swap operation with repair 

mechanism, selective search, population initialization are described in following 

subsections. 
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 3.1.1 Solution Encoding for UCSP 

The UCSP in consideration consists of 𝑢 number of instructors, 𝑞 number of courses, 𝑠 

number of rooms, and ℎ number of timeslots. Each yearly student intakes are grouped 

together in a batch and the total number of batches is 𝑜. Each batch may be further subdivided 

into 𝑘 number of subgroups. The proposed PSOSS uses 𝑧 number of particles to solve the 

UCSP. Sets of instructors, courses, rooms, timeslots, batches, subgroups are represented as 

follows: 

 −𝑆𝑒𝑡 𝑜𝑓 𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑟𝑠, 𝐼 = {𝑒𝑖 | 𝑖 = 1,… , 𝑢} 

−𝑆𝑒𝑡 𝑜𝑓 𝐶𝑜𝑢𝑟𝑠𝑒𝑠, 𝐶 = {𝑐𝑖 | 𝑖 = 1,… , 𝑞} 

−𝑆𝑒𝑡 𝑜𝑓 𝑅𝑜𝑜𝑚𝑠, 𝑅 = {𝑟𝑖 | 𝑖 = 1,… , 𝑠} 

−𝑆𝑒𝑡 𝑜𝑓 𝑇𝑖𝑚𝑒𝑠𝑙𝑜𝑡𝑠, 𝑇 = {𝑡𝑖 | 𝑖 = 1,… , ℎ} 

−𝑆𝑒𝑡 𝑜𝑓 𝐵𝑎𝑡𝑐ℎ𝑒𝑠, 𝐵 = {𝑏𝑖 | 𝑖 = 1,… , 𝑜} 

−𝑆𝑒𝑡 𝑜𝑓 𝑆𝑢𝑏𝑔𝑟𝑜𝑢𝑝𝑠, 𝐽 = {𝑣𝑖 | 𝑖 = 1,… , 𝑘} 

Each instructor object contains information about assigned courses and preference for 

conducting a class in a particular timeslot. Each course object contains information about the 

number of timeslots required for a class, number of classes per week, course type 

(theory/laboratory) and number of students per class. Each room object contains information 

about allowed courses and seat capacity. Each timeslot represents a teaching period and the 

total number of timeslots (ℎ ) is 45 (9 periods in each day for 5 working days of a week). 

Each batch object contains subgroups and information about number of assigned students to 

that batch. Each subgroup object contains information about the number of assigned 

students. A Solution of UCSP in consideration, 𝑆𝑖 where 𝑖 is the solution number is 

represented by instructor-wise solutions in a one-dimensional matrix as shown in Fig. 3.1. 

Fig. 3.1 (a) is the instructor-wise summary view of a solution where 𝑆𝑖,1 , 𝑆𝑖,2, … , 𝑆𝑖,𝑢 denote 

the 1st, 2nd,…, 𝑢th instructor’s solution, respectively. Fig. 3.1 (b) shows a solution’s detailed  

 
Figure 3.1: Solution representation for UCSP. 
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view of 45 timeslots for each instructor and each timeslot identifies one of the nine teaching 

periods in a day for five working days in a week. The total number of timeslots is 45 × 𝑢 for 

𝑢 instructors; timeslots 𝑒1, 𝑡1 − 𝑒1, 𝑡45 for the first instructor, 𝑒2, 𝑡1 − 𝑒2, 𝑡45 for the second 

instructor, and so on. Each timeslot comprises assigned course, room, batch, and subgroup 

information as shown in Fig. 3.1(b). Fig. 3.2 represents the mapping of timeslots of a solution 

in days and periods. As an example, timeslot 𝑒1, 𝑡44 represents 5th working day’s 8th period 

of the first instructor. 

 

3.1.2 Fitness Calculation 

Each instructor’s preference for conducting a class in a particular timeslot is represented by 

an integer value as shown in Fig. 3.3. A higher value corresponds to a higher preference of 

an instructor to conduct the class in that particular timeslot. Whereas, a negative value shows 

the instructor’s non-preference. The fitness of 𝑖th solution 𝑆𝑖 is calculated by considering 

fitness of each of the instructor’s solution which belongs to that solution using the following 

equation: 

𝐹(𝑆𝑖) =  ∑𝐹(𝑆𝑖,𝑗),

𝑢

𝑗=0

 (3.1) 

where, 𝐹(𝑆𝑖) is the fitness of the solution, and 𝐹(𝑆𝑖,𝑗) is the fitness of the 𝑖th solution’s 𝑗th 

instructor’s solution. Now, fitness of each instructor’s solution is calculated by considering 

quality and violation of the instructor’s solution using the following equation: 

𝐹(𝑆𝑖,𝑗) = 𝑄(𝑆𝑖,𝑗) − 𝑉(𝑆𝑖,𝑗), (3.2) 

 

Figure 3.2: Mapping of timeslots of a solution in days and periods. 
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where, 𝑄(𝑆𝑖,𝑗) is the quality of the instructors’ solution, and 𝑉(𝑆𝑖,𝑗) is the violation of the 

instructor’s solution. Preference values of corresponding positions where courses are  

assigned to an instructor are summed up to calculate the quality of an instructor’s solution. 

Violation of the instructors’ solution is calculated using the following equation: 

𝑉(𝑆𝑖,𝑗) = ∑ 2𝑙𝑎

𝑡𝑐

𝑎=1

, (3.3) 

where, 𝑡𝑐 is the total number of blocks of consecutive classes in an instructor’s solution and 

𝑙𝑎 is the number of classes in 𝑎th block. The exponential in Eq. (3.3) is used to mimic the 

human nature. If the number of consecutive classes increases, then the dissatisfaction of an 

instructor increases rapidly. For example, three consecutive classes are much more difficult 

(practically almost impossible) to manage for an instructor than two consecutive classes.  

 

3.1.3 Swap Operator and Swap Sequence for UCSP 

A Swap Operator (SO) denotes the index of items to be swapped in a list  [68]–[70]. 

Consider the list 𝐴 = {𝑎, 𝑏, 𝑐, 𝑑} with indices {0, 1, 2, 3}: 

 

 

 

A SO(1,3) produces a new list 𝐵 = 𝐴 + SO(1,3) as follows: 

here, ‘+’ does not mean any arithmetic operation rather it means the swap operation SO(𝑖, 𝑗) 

on A. 

A a b c d 

Index 0 1 2 3 

 

 

 

 

 

 

 
Figure 3.3: Sample preference values for instructors. 
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A Swap Sequence (SS) is a group of SOs defined as [68]–[70]: 

𝑆𝑆 = { 𝑆𝑂1, 𝑆𝑂2, 𝑆𝑂3, ⋯ , 𝑆𝑂𝑛} (3.4) 

Deployment of an SS means application of all the SOs in an SS in that very particular order. 

Moreover, if applying SS on a list A yields a list B (i.e., B = A + SS), then it can be written as  

𝑆𝑆 = 𝐵 − 𝐴 (3.5) 

For example, if 𝑆𝑆 = {(1,3), (2,0)} then, 𝐵 = 𝐴 +  𝑆𝑆. This operation is illustrated below: 

 

The SS to convert one solution of a UCSP to another one is a collection of swap sequences 

which is measured in an instructor-to-instructor basis. Consider a UCSP consisting of two 

instructors 𝑒1 and 𝑒2 each having two courses {𝑐1, 𝑐2} and {𝑐3, 𝑐4}, respectively. Fig. 3.4 

shows two different solutions A and B for the UCSP in consideration. In solution A, 

instructor 𝑒1 has a course 𝑐1 in timeslot 1 and another course 𝑐2 in timeslot 3 whereas in 

solution B, course 𝑐1 is in timeslot 0 and 𝑐2 is in timeslot 2. So, the required SS for converting 

the schedule of 𝑒1 in solution A to schedule of 𝑒1 in solution B is 𝑆𝑆1 = {(1,0), (3,2)}. 

Similarly, 𝑆𝑆2 = {(0,3), (2,1)}. So, the complete swap sequence for converting solution A 

to solution B is 𝑆𝑆 = {𝑆𝑆𝑖1 , 𝑆𝑆𝑖2}  =  {{(1,0), (3,2)}, {(0,3), (2,1)}}. 

 

3.1.4 Forceful Swap Operation with Repair Mechanism 

Forceful Swap Operation with Repair Mechanism is an added feature of PSOSS and GSOSS 

methods. UCSP is highly constrained in nature and most of the constraints are interrelated. 

Consequently, if a class needs to be shifted to a new timeslot then all the involved members 

 

Figure 3.4: Instructor wise Swap Sequences (SSs) of complete SS. 
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such as instructor, students, and room need to be free in that timeslot. As a result, most of  

the swaps cannot be applied because of violation of constraints. Forcefully applying an SO 

can cause conflicts. Therefore, a repair mechanism is involved in forceful SO operation to 

make sure that no invalid solution results in that process. The repair mechanism works by 

randomly moving conflicting courses to non-conflicting positions. The repair mechanism is 

illustrated in Fig. 3.5. Consider a UCSP instance consisting of two instructors 𝑒1 and 𝑒2. 

Instructor 𝑒1 has course 𝑐1 of batch 𝑏1, subgroup 𝑣1in room 𝑟1 and course 𝑐2 of batch 𝑏3, 

subgroup 𝑣2 in room 𝑟3 at timeslots 5 and 8, respectively. Instructor 𝑒2 has course 𝑐4 of batch 

𝑏2, subgroup 𝑣1 in room 𝑟2 and course 𝑐3 of batch 𝑏3, subgroup 𝑣2 in room 𝑟5 at timeslots 3 

and 5, respectively. Now, if an SO(5,8) is applied forcefully on the solution of 𝑒1 then, course 

𝑐2 of 𝑒1 comes at timeslot 5 which results in a conflict with 𝑒2 because subgroup 𝑣2 of batch 

𝑏3 is already engaged in a class with 𝑒2 (shown with circle in Fig. 3.5). This conflict is 

resolved by moving the conflicting course of 𝑒2 to a randomly chosen non-conflicting 

timeslot 7. 

 

 

 

 

Figure 3.5: Illustration of the repair mechanism. 
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3.1.5 Selective Search 

Selective search is one of the most important features of PSOSS and GSOSS. In selective 

search, each solution generated by applying an SO of SS is considered as an intermediate 

solution. Suppose, 𝑆𝑆 = {𝑆𝑂1, 𝑆𝑂2, 𝑆𝑂3,⋯ , 𝑆𝑂𝑛} then the selective search can be written as 

𝑆𝐶1 = 𝑆𝐶 + 𝑆𝑂1

𝑆𝐶2 = 𝑆𝐶1 + 𝑆𝑂2

⋮
𝑆𝐶𝑛 = 𝑆𝐶𝑛−1 + 𝑆𝑂𝑛

 

In the above cases, 𝑆𝐶1, 𝑆𝐶2, ⋯ , 𝑆𝐶𝑛  are the intermediate solutions and the intermediate 

solution having the highest fitness becomes the final solution 𝑆𝐶 in selective search as 

defined by the following equation: 

𝑆𝐶 = max{𝑆𝐶𝑓} , 𝑓 = 1,2,⋯ , 𝑛 (3.6) 

SS generating the final solution is SS = {𝑆𝑂1, 𝑆𝑂2, 𝑆𝑂3,⋯ , 𝑆𝑂𝑓},  1≤ f ≤ n.  

The ultimate solution 𝑆𝐶 in selective search is the intermediate solution possessing the 

highest fitness value. Thus, the selective search technique explores the opportunity of 

keeping better solution from the intermediate solutions. 

 

3.1.6 Population Initialization  

Like other population-based algorithms, the proposed PSOSS and GSOSS methods also 

starts with an initial population. Each individual (particle in PSOSS and member in GSOSS) 

in the initial population is assigned a random solution. A random solution is generated by 

randomly assigning timeslots to the assigned courses of all instructors. Timeslots are 

allocated by maintaining all the hard constraints and it is checked that courses requiring 

multiple consecutive slots do not include any break periods. Weighted random distribution 

is used for assigning rooms to courses so that, a room having the highest load has the lowest 

probability of getting selected. 

 

3.2 PSO with Selective Search (PSOSS) for Solving UCSP 

Proposed PSOSS method works with a population of particles in which individual particle 

contains a feasible solution, calculates velocity of each individual particle using swap 

sequence and updates each particle with the computed velocity through selective search and 

forceful swap operation with repair mechanism. The particle encoding, velocity computation 

and other operations are described in the following subsections.  
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3.2.1 Particle Encoding 

The proposed PSOSS uses 𝑧 number of particles to solve the UCSP. Set of particles is 

represented as follows: 

 −𝑆𝑒𝑡 𝑜𝑓 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠, 𝑃 = {𝑝𝑖 | 𝑖 = 1, … , 𝑧} 

Each particle object contains a feasible solution to the UCSP i.e. the complete schedule for 

instructors, batches, and rooms. 

 

3.2.2 Velocity Computation using Swap Operator and Swap Sequence 

SO and SS have been used in the proposed PSOSS method for velocity calculation. In the 

proposed method, swap sequence SS is treated as velocity to update a particle’s solution at 

each iteration which is calculated using the following equation 

𝑆𝑆 =  𝛼(𝑆𝐺𝐵 − 𝑆𝐶) +  𝛽(𝑆𝑃𝐵 − 𝑆𝐶)  𝛾𝑆𝑆𝑃𝐴 (3.7) 

where, 𝑆𝐺𝐵 is the global best solution of the swarm, 𝑆𝐶 is the current so 

lution of the particle, 𝑆𝑃𝐵 is the personal best solution of the particle, 𝑆𝑆𝑃𝐴 is the previously 

velocity applied,  is merge operation and {𝛼, 𝛽, 𝛾} are selection probabilities for selecting 

a bunch of SOs from the corresponding SSs.  𝑆𝐺𝐵 − 𝑆𝐶  represents instructor-wise SSs to 

reach 𝑆𝐺𝐵 from 𝑆𝐶 and 𝑆𝑃𝐵 − 𝑆𝐶 is the instructor-wise SSs to reach 𝑆𝑃𝐵 from 𝑆𝐶.. If 

𝑆𝑆𝐺𝐵 = 𝑆𝐺𝐵 − 𝑆𝐶 and 𝑆𝑆𝑃𝐵 = 𝑆𝑃𝐵 − 𝑆𝐶 then, Eq. (3.7) can be rewritten as:  

𝑆𝑆 =  𝛼𝑆𝑆𝐺𝐵 +  𝛽𝑆𝑆𝑃𝐵   𝛾𝑆𝑆𝑃𝐴 (3.8) 

After selection of SOs with },,{  , 𝑆𝑆 becomes 

𝑆𝑆 =  𝑆𝑆𝑆𝐺𝐵 + 𝑆𝑆𝑆𝑃𝐵  𝑆𝑆𝑆𝑃𝐴 =  𝑆𝑆𝑆𝐺𝐵 +  𝑆𝑆𝑀 (3.9) 

where, 𝑆𝑆𝑆𝐺𝐵, 𝑆𝑆𝑆𝑃𝐵 , 𝑆𝑆𝑆𝑃𝐴 are the selected SS from 𝑆𝑆𝐺𝐵, 𝑆𝑆𝑃𝐵 and 𝑆𝑆𝑃𝐴, 

respectively and 𝑆𝑆𝑀 is the swap sequence resulting from merging 𝑆𝑆𝑆𝑃𝐵 with 𝑆𝑆𝑆𝑃𝐴. 

As 𝑆𝑆𝑆𝐺𝐵 and 𝑆𝑆𝑀 may contain redundant SOs, redundant swaps are removed from them 

and they become 𝑆𝑆𝑆𝐺𝐵𝑀 and 𝑆𝑆𝑀𝑀, respectively. Finally, 𝑆𝑆 becomes: 

𝑆𝑆 =  𝑆𝑆𝑆𝐺𝐵𝑀 +  𝑆𝑆𝑀𝑀 (3.10) 

A portion of 𝑆𝑆𝑆𝐺𝐵𝑀  is forcefully applied to current solution 𝑆𝐶 to ensure that 𝑆𝐶 moves 

a little towards 𝑆𝐺𝐵. Selective search is used to retain best intermediate solution while 

applying 𝑆𝑆. The sequence of SOs generating the best intermediate solution is considered as 

the final velocity which becomes the previously applied velocity for the next iteration. 

 



23 
 

 
 

3.2.3 PSOSS Algorithm for Solving UCSP  

The proposed PSOSS method for solving UCSP is shown in Algorithm 3.1.1. The notations 

and inputs of the proposed algorithm are listed at the beginning of the Algorithm 3.1.1.  

Algorithm 3.1.1: PSOSS-UCSP 

Input:  

Instructors’ Information, Batches’ Information,   

Courses’ Information, Classrooms’ Information, Break Times’ information,  

𝑛 - total number of iterations  

𝑧 - total number of particles 

𝑢 - total number of instructors 

𝛼 - selection probability of a swap from swap sequence to global best solution 

𝛽 - selection probability of a swap from swap sequence to personal best solution 

𝛾 - selection probability of a swap from previously applied swap sequence 

𝑓 - percentage of swaps to be forced towards global best solution 

𝑙 - length of random swap sequence 

 

Output:  

An optimal solution of UCSP 

Variables: 

𝑡 - iteration counter 

𝑆𝐶𝑖 - 𝑖th particle’s current solution 

𝑆𝑅 - A random solution 

𝑆𝑃𝐵𝑖 - 𝑖th particle’s personal best solution 

𝑆𝑆𝑃𝐴𝑖 - 𝑖th particle’s previously applied swap sequence 

𝑆𝐺𝐵 - global best solution 

𝑆𝑆𝐻 - swap sequence holder for selective search 

𝑆𝐻 - solution holder for selective search 

𝑆𝑆𝑅 - random swap sequence 

𝑆𝑆𝐺𝐵 - swap sequence to global best solution 

𝑆𝑆𝑃𝐵 - swap sequence to personal best solution 

𝑆𝑆𝑆𝐺𝐵 - selected swap sequence to global best solution 

𝑆𝑆𝑆𝑃𝐵 - selected swap sequence to personal best solution 
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𝑆𝑆𝑆𝑃𝐴 - selected swap from previously applied swap sequence 

𝑆𝑆𝑀 - swap sequence by merging 𝑆𝑆𝑆𝑃𝐵 and 𝑆𝑆𝑆𝑃𝐴 

𝑆𝑆𝑆𝐺𝐵𝑀 - minimized swap sequence from 𝑆𝑆𝑆𝐺𝐵 

𝑆𝑆𝑆𝐺𝐵𝑀𝑗 - 𝑗th instructor’s swap sequence in 𝑆𝑆𝐺𝐵𝑀 

𝑆𝑆𝑀𝑀 - minimized swap sequence from 𝑆𝑆𝑀 

𝑆𝑆𝑀𝑀𝑗  - 𝑗th instructor’s swap sequence in 𝑆𝑆𝑀𝑀 

𝑁𝑆𝐹 - number of swaps to be forced towards global best solution 

𝑆𝑆𝐶𝐴 - currently applied swap 

𝑃 - set of particles 

𝐶𝐶 - set of conflicting classes 

Step 1: Initialization 

1.  𝑡 ← 1  

2.  create 𝑧 number of particles and append them to 𝑃 

3.  for 𝑖 ← 1 to 𝑧 do //for each particle 

4.   𝑆𝐶𝑖 ← 𝑆𝑅 

5.   calculate fitness of 𝑆𝐶𝑖 as described in section 3.1.2 

6.   𝑆𝑃𝐵𝑖 ← 𝑆𝐶𝑖   

7.   𝑆𝑆𝑃𝐴𝑖 ← Ø 

8.  end for 

9.  𝑆𝐺𝐵 ← solution(max 𝑃) 

  

Step 2: Computation and application of velocity 

1.  for 𝑖 ← 1 to 𝑧 do //for each particle 

2.   𝑆𝑆𝐻 ← Ø  

3.   𝑆𝐻 ← Ø 

4.   𝑆𝑆𝐶𝐴 ← Ø 

5.   Step 2.1: Calculate velocity using Eq. (3.7), Eq. (3.8), Eq. (3.9) and Eq. (3.10) 

6.    if 𝑆𝑆𝑃𝐴𝑖 = Ø then 

7.     𝑆𝑆𝑃𝐴𝑖 ← 𝑆𝑆𝑅 of length 𝑙 

8.    end if 

9.    𝑆𝑆𝐺𝐵 ← 𝑆𝐺𝐵 –  𝑆𝐶𝑖 

10.    𝑆𝑆𝑃𝐵 ← 𝑆𝑃𝐵𝑖 –  𝑆𝐶𝑖   
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11.    𝑆𝑆𝑆𝐺𝐵 ← 𝛼 ∗ 𝑆𝑆𝐺𝐵 

12.    𝑆𝑆𝑆𝑃𝐵 ← 𝛽 ∗ 𝑆𝑆𝑃𝐵 

13.    𝑆𝑆𝑆𝑃𝐴 ← 𝛾 ∗ 𝑆𝑆𝑃𝐴𝑖 

14.    𝑆𝑆𝑀 ← 𝑆𝑆𝑆𝑃𝐵   𝑆𝑆𝑆𝑃𝐴  //merge 𝑆𝑆𝑆𝑃𝐵 with 𝑆𝑆𝑆𝑃𝐴 

15.    𝑆𝑆𝑆𝐺𝐵𝑀 ← swapMinimizer(𝑆𝑆𝑆𝐺𝐵) //remove redundant swaps 

16.    𝑆𝑆𝑀𝑀 ← swapMinimizer( 𝑆𝑆𝑀) 

17.   Step 2.2: Apply 𝒇 percent of swaps from 𝑺𝑺𝑺𝑮𝑩𝑴 using forceful swap 

operation with repair mechanism and selective search 

18.    for 𝑗 ← 1 to 𝑢 do //for each instructor 

19.     𝑁𝑆𝐹 ← 𝑓 ∗ |𝑆𝑆𝑆𝐺𝐵𝑀𝑗| 

20.     for 𝑎 ← 1 to 𝑁𝑆𝐹 do 

21.      𝑆𝐶𝑖 ← 𝑆𝐶𝑖 + 𝑆𝑆𝑆𝐺𝐵𝑀𝑗[𝑎] forcefully 

22.      Step 2.2.1: Repair mechanism 

23.       𝐶𝐶 ←list of conflicting classes in 𝑆𝐶𝑖 resulting from 𝑆𝑆𝑆𝐺𝐵𝑀𝑗[𝑎]    

application 

24.       if 𝐶𝐶 ≠ Ø then 

25.        for all 𝑐𝑐 𝜖 𝐶𝐶 

26.         move 𝑐𝑐 to a randomly selected non-conflicting position 

27.        end for  

28.       end if 

29.      𝑆𝑆𝐶𝐴 ← 𝑆𝑆𝐶𝐴 ∪ {𝑆𝑆𝑆𝐺𝐵𝑀𝑗[𝑎]} 

30.      selectiveSearch(𝑆𝐶𝑖 , 𝑆𝑆𝐶𝐴, 𝑆𝐻, 𝑆𝑆𝐻) 

31.     end for  

32.    end for  

33.   Step 2.3: Apply remaining swaps of 𝑺𝑺𝑺𝑮𝑩𝑴 using selective search 

34.    for 𝑗 ← 1 to 𝑚 do //for each instructor 

35.     𝑁𝑆𝐹 ← 𝑓 ∗ |𝑆𝑆𝑆𝐺𝐵𝑀𝑗| 

36.     for 𝑎 ← 𝑁𝑆𝐹 + 1 to |𝑆𝑆𝑆𝐺𝐵𝑀𝑗| do 

37.      if 𝑆𝑆𝑆𝐺𝐵𝑀𝑗[𝑎] is applicable then 

38.       𝑆𝐶𝑖 ← 𝑆𝐶𝑖 + 𝑆𝑆𝑆𝐺𝐵𝑀𝑗[𝑎] 

39.       𝑆𝑆𝐶𝐴 ← 𝑆𝑆𝐶𝐴 ∪ {𝑆𝑆𝑆𝐺𝐵𝑀𝑗[𝑎]} 

40.       selectiveSearch(𝑆𝐶𝑖 , 𝑆𝑆𝐶𝐴, 𝑆𝐻, 𝑆𝑆𝐻) 
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41.      end if 

42.     end for  

43.    end for  

44.   Step 2.4: Apply 𝑺𝑺𝑴𝑴 using selective search 

45.    for 𝑗 ← 1 to 𝑢 do //for each instructor 

46.     for 𝑎 ← 1 to |𝑆𝑆𝑀𝑀𝑗| do 

47.      if 𝑆𝑆𝑀𝑀𝑗[𝑎] is applicable then 

48.       𝑆𝐶𝑖 ← 𝑆𝐶𝑖 + 𝑆𝑆𝑀𝑀𝑗[𝑎] 

49.       𝑆𝑆𝐶𝐴 ← 𝑆𝑆𝐶𝐴 ∪ {𝑆𝑆𝑀𝑀𝑗[𝑎]} 

50.       selectiveSearch(𝑆𝐶𝑖 , 𝑆𝑆𝐶𝐴, 𝑆𝐻, 𝑆𝑆𝐻) 

51.      end if 

52.     end for  

53.    end for  

54.   Step 2.5: Update 𝑺𝑪𝒊, 𝑺𝑺𝑷𝑨𝒊 and 𝑺𝑷𝑩𝒊 

55.    𝑆𝐶𝑖 ← 𝑆𝐻 

56.    𝑆𝑆𝑃𝐴𝑖 ← 𝑆𝑆𝐻 

57.    calculate fitness of 𝑆𝐶𝑖 as described in section 3.1.2 

58.    if  fitness(𝑆𝐶𝑖) > fitness(𝑆𝑃𝐵𝑖) then 

59.     𝑆𝑃𝐵𝑖 ← 𝑆𝐶𝑖 

60.    end if 

61.  end for  

  

Step 3: Update 𝑺𝑮𝑩 

1.  𝑆𝐺𝐵𝑇 ← solution(max 𝑃) 

2.  if  fitness(𝑆𝐺𝐵𝑇) > fitness(𝑆𝐺𝐵) then 

3.   𝑆𝐺𝐵 ← 𝑆𝐺𝐵𝑇 

4.  end if 

 

Step 4: Check the stopping criterion 

1.  while 𝑡 ≠ 𝑛  do   

2.   𝑡 ←  𝑡 +  1   

3.   repeat Step 2 and Step 3 
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4.  end while 

 

Step 5: Return 𝑺𝑮𝑩 as result 

 

Algorithm 3.1.2 selectiveSearch 

Input: 𝑆𝐶𝑖 , 𝑆𝑆𝐶𝐴, 𝑆𝐻, 𝑆𝑆𝐻 

1.  if  𝑆𝐻 = Ø ∨ fitness(𝑆𝐻)<fitness(𝑆𝐶𝑖)  then 

2.   𝑆𝐻 ← 𝑆𝐶𝑖 

3.   𝑆𝑆𝐻 ← 𝑆𝑆𝐶𝐴  

4.  end if 

In the proposed method, the initial population of particles is generated by creating a specified 

number of particles. Each particle’s current solution 𝑆𝐶𝑖 gets initialized by a random solution 

𝑆𝑅 as described in section 3.1.6. The fitness of each particle’s current solution is calculated 

as described in section 3.1.2. 𝑆𝐶𝑖  also becomes the personal best solution 𝑆𝑃𝐵𝑖 initially. The 

previously applied swap sequence for a particle 𝑆𝑆𝑃𝐴𝑖  is initially empty. The solution having 

the highest fitness among all the particles is selected as the global best solution 𝑆𝐺𝐵. In each 

iteration, velocity for each particle is calculated using (3.7), Eq. (3.8), Eq. (3.9) and Eq. 

(3.10). SH is used to hold best intermediate solution and SSH holds the swap sequence that 

produces SH. For each particle, SH and SSH are emptied to be used for selective search. 

𝑆𝑆𝐶𝐴 is used to hold the applied swap sequence on a particle’s solution in each iteration and 

it is also emptied initially. If the previously applied swap sequence 𝑆𝑆𝑃𝐴𝑖 of a particle is 

empty, then a randomly generated swap sequence 𝑆𝑆𝑅 of length 𝑙 is assigned to 𝑆𝑆𝑃𝐴𝑖 . 𝑆𝑆𝑅 

is generated by creating 𝑙 number of unique SOs for each instructor. For example, if a UCSP 

instance consists of two instructors namely 𝑒1 and 𝑒2 then a possible random swap sequence 

of length 2 is {(2,10),(5,8)} for 𝑒1 and {(3,6),(1,7)} for 𝑒2. Then, instructor-wise swap 

sequences to reach 𝑆𝐺𝐵 and 𝑆𝑃𝐵𝑖  from 𝑆𝐶𝑖  are calculated which are represented by 𝑆𝑆𝐺𝐵(=

𝑆𝐺𝐵– 𝑆𝐶𝑖) and 𝑆𝑆𝑃𝐵(= 𝑆𝑃𝐵𝑖 –  𝑆𝐶𝑖), respectively. Some swaps are selected for each 

instructor from 𝑆𝑆𝐺𝐵 based on the selection probability 𝛼 denoted by 𝑆𝑆𝑆𝐺𝐵(= 𝛼 ∗ 𝑆𝑆𝐺𝐵). 

Similarly, 𝑆𝑆𝑆𝑃𝐵(= 𝛽 ∗ 𝑆𝑆𝑃𝐵) and 𝑆𝑆𝑆𝑃𝐴(= 𝛾 ∗ 𝑆𝑆𝑃𝐴𝑖) are the selected swaps from 

𝑆𝑆𝑃𝐵 and 𝑆𝑆𝑃𝐴𝑖, respectively.  𝑆𝑆𝑆𝑃𝐵 and 𝑆𝑆𝑆𝑃𝐴 are merged together to 𝑆𝑆𝑀(=

𝑆𝑆𝑆𝑃𝐵   𝑆𝑆𝑆𝑃𝐴). Redundant swaps are removed from 𝑆𝑆𝑆𝐺𝐵 and 𝑆𝑆𝑀 using 

swapMinimizer() function, results of  which are denoted by 𝑆𝑆𝑆𝐺𝐵𝑀 and 𝑆𝑆𝑀𝑀, 



28 
 

 
 

respectively. After that, for each instructor a portion,  f ∗ |𝑆𝑆𝑆𝐺𝐵𝑀𝑗| of 𝑆𝑆𝑆𝐺𝐵𝑀 is selected 

where, 𝑆𝑆𝑆𝐺𝐵𝑀𝑗  is the swap sequence corresponding to 𝑗th instructor and 𝑓 is the percentage 

of swaps to be forced towards global best solution. Swaps of this selected portion are 

forcefully applied to 𝑆𝐶𝑖 and resulting conflicts are resolved by randomly moving the 

conflicting classes to non-conflicting positions as described in section 3.1.4. Rest of the 

swaps are applied to 𝑆𝐶𝑖  if they do not create any conflicts. Similarly, the swaps from 𝑆𝑆𝑀𝑀  

are applied only if they are applicable. Each applied swap gets added to 𝑆𝑆𝐶𝐴 which holds 

currently applied swap sequence for a particle and the selective search technique is used after 

applying each swap to ensure that the best intermediate solution is retained. Algorithm 3.1.2 

shows the required steps of selective search. It simply updates SH and SSH with 𝑆𝐶𝑖 and 

𝑆𝑆𝐶𝐴,   respectively only if 𝑆𝐶𝑖  is found to be better than SH. Finally, after the application of 

all the swaps the best intermediate solution 𝑆𝐻 becomes particle’s solution 𝑆𝐶𝑖 and the swap 

sequence 𝑆𝑆𝐻 that produces 𝑆𝐻 becomes 𝑆𝑆𝑃𝐴𝑖 for next iteration. Then, 𝑆𝑃𝐵𝑖 is updated if 

𝑆𝐶𝑖 is found better than 𝑆𝑃𝐵𝑖 .  Finally, 𝑆𝐺𝐵 is recalculated and the algorithm goes to the 

next iteration. The algorithm uses a predefined number of iterations 𝑛 as the termination 

criterion. After termination 𝑆𝐺𝐵 is considered as the final outcome. 

 

3.2.4 Illustration of Solution Update Mechanism in PSOSS 

A schematic representation of the solution update mechanism of a particle in the proposed 

method is shown in Fig. 3.6. Suppose, a system consists of three instructors 𝑒1, 𝑒2 and 𝑒3, 

each having five weekly timeslots. In Fig. 3.6, 𝑆𝐶 is a particle’s current solution which 

consists of individual solution of all three instructors, 𝑆𝐺𝐵 is the global best solution and 

𝑆𝑃𝐵 is the particle’s personal best solution. 𝑆𝑆𝐺𝐵(= 𝑆𝐺𝐵 –  𝑆𝐶)  represents instructor-wise 

swap sequences to reach 𝑆𝐺𝐵 from 𝑆𝐶 , and 𝑆𝑆𝑃𝐵(= 𝑆𝑃𝐵 –  𝑆𝐶) is the instructor-wise swap 

sequences to reach 𝑆𝑃𝐵 from 𝑆𝐶. 𝑆𝑆𝑃𝐴 is the previously applied swap sequence. The circle 

(○) symbol inside the swap sequences represents a swap operator. In the first step, some 

swaps are selected for each instructor from 𝑆𝑆𝐺𝐵 based on the selection probability 𝛼 

denoted by 𝑆𝑆𝑆𝐺𝐵(= 𝛼 ∗ 𝑆𝑆𝐺𝐵). Similarly, 𝑆𝑆𝑆𝑃𝐵(= 𝛽 ∗ 𝑆𝑆𝑃𝐵) and 𝑆𝑆𝑆𝑃𝐴(= 𝛾 ∗

𝑆𝑆𝑃𝐴) are the selected swaps from 𝑆𝑆𝑃𝐵 and 𝑆𝑆𝑃𝐴, respectively.  The redundant swaps are 

removed from 𝑆𝑆𝑆𝐺𝐵 using swapMinimizer() function, result of  which is denoted by 

𝑆𝑆𝑆𝐺𝐵𝑀 (swaps numbered 1, 2, 3, 4, 5 and 6 in Fig. 3.6) . Then, 𝑆𝑆𝑆𝑃𝐵 and 𝑆𝑆𝑆𝑃𝐴 are 

merged together to 𝑆𝑆𝑀(= 𝑆𝑆𝑆𝑃𝐵  𝑆𝑆𝑆𝑃𝐴) before removing the redundant swaps from 
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them. The redundant swaps are removed from 𝑆𝑆𝑀 using swapMinimizer() function, result 

of  which is denoted by 𝑆𝑆𝑀𝑀  (swaps numbered 7, 8, 9, 10, 11 and 12 in Fig. 3.6). After 

that, a portion of 𝑆𝑆𝑆𝐺𝐵𝑀 is selected using the equation ∗ |𝑆𝑆𝑆𝐺𝐵𝑀| , where 𝑓 is the force 

percentage. This selected portion of 𝑆𝑆𝑆𝐺𝐵𝑀 is denoted by 𝑆𝑆𝑆𝐺𝐵𝑀𝐹𝐴 (swaps numbered 

1, 3 and 5 in Fig. 3.6) and the rest of the swaps are denoted by 𝑆𝑆𝑆𝐺𝐵𝑀𝑇𝐴  (swaps numbered 

2, 4 and 6 in Fig. 3.6). Swaps of 𝑆𝑆𝑆𝐺𝐵𝑀𝐹𝐴 are forcefully applied to 𝑆𝐶 and then the swaps 

of 𝑆𝑆𝑆𝐺𝐵𝑀𝑇𝐴 are applied to 𝑆𝐶 if they do not create any conflicts. Any conflict resulting 

from forceful swap operation is handled by repair mechanism as described in section 3.1.4. 

Similarly, the swaps from 𝑆𝑆𝑀𝑀 are applied only if they are applicable. In Fig. 3.6, a 

 

Figure 3.6: Illustration of the solution update mechanism of a particle in PSOSS. 
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solution resulting from application of a swap is represented by assigning that swap number 

above the solution. For example, if a swap say 1 is applied on solution 𝑆𝐶 then it becomes 

𝑆𝐶1 and similarly applying swap 3 on 𝑆𝐶1 makes it 𝑆𝐶3. In the example shown in Fig. 3.6, 

swaps numbered 1, 3 and 5 are forcefully applied on initial solution 𝑆𝐶 making it 𝑆𝐶5. Then, 

swap numbered 2 gets applied on 𝑆𝐶5 resulting in 𝑆𝐶2 as there is no conflicts. Solution stays 

at 𝑆𝐶2 because swaps numbered 4, 6 and 7 are not applied because of conflicts. Then, rest 

of the swaps 8, 9, 10, 11 and 12 are applied because they do not cause any conflicts. The 

best one among these solutions is then picked as particle’s current solution 𝑆𝐶. Accordingly, 

𝑆𝑃𝐵  and 𝑆𝐺𝐵 are updated for the next iteration. 

 

3.3 GSO with Selective Search (GSOSS) for Solving UCSP 

Proposed GSOSS method works with a group of members in which individual member 

represents a feasible solution, calculates movement of scroungers and dispersed members 

using swap sequence and updates each member with the computed movement through 

selective search and forceful swap operation with repair mechanism. The member encoding, 

categorization, producer’s scanning, scrounging, dispersed members’ random operation and 

other operations are described in the following subsections.  

 

3.3.1 Member Encoding 

The proposed GSOSS uses 𝑤 number of members, 𝑥 number scroungers and 𝑦 number of 

dispersed members to solve the UCSP. Sets of members, scroungers and dispersed members 

are represented as follows: 

 −𝑆𝑒𝑡 𝑜𝑓 𝑀𝑒𝑚𝑏𝑒𝑟𝑠,𝑀 = {𝑚𝑖 | 𝑖 = 1,… ,𝑤} 

−𝑆𝑒𝑡 𝑜𝑓 𝑆𝑐𝑟𝑜𝑢𝑛𝑔𝑒𝑟𝑠, 𝑆𝐶 = {𝑠𝑐𝑖 | 𝑖 = 1,… , 𝑥} 

−𝑆𝑒𝑡 𝑜𝑓 𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑒𝑑 𝑀𝑒𝑚𝑏𝑒𝑟𝑠, 𝐷 = {𝑑𝑖 | 𝑖 = 1, … , 𝑦} 

Each member object contains a feasible solution to the UCSP. 𝑆𝐶 and 𝐷 are subsets of 𝑀. 

 

3.3.2 Member Categorization 

GSOSS works with a population of members. The fitness function of Eq. (3.1) described in 

section 3.1.2 is used to calculate fitness of solutions of all the members of a population. The 

member having best fitness solution is selected as producer, worst 20% members become 

dispersed members and rest of the members become scroungers. 
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3.3.3 Producer’s Scanning 

In each iteration of GSOSS algorithm producer tries to improve fitness of its solution. This 

is done by shifting courses of producer’s solution to slots having higher preference values 

from respective instructors. 

 

3.3.4 Scrounging 

In the proposed GSOSS method swap sequence is used for calculating the movement of 

scroungers. For each scrounger 𝑠𝑐 a swap sequence 𝑆𝑆𝑃𝑅 to reach producer is first 

calculated using following equation: 

𝑆𝑆𝑃𝑅 =  𝑆𝑃𝑅 − 𝑆𝑠𝑐 (3.11) 

where 𝑆𝑆𝑃𝑅 is the producer’s solution and 𝑆𝑠𝑐 is the scrounger’s solution. Then a portion 

of 𝑆𝑆𝑃𝑅 is selected with swap selection probability 𝛼 𝜖 [0,1]: 

𝑆𝑆𝑆𝑃𝑅 =  α ∗ 𝑆𝑆𝑃𝑅 (3.12) 

Finally, redundant swaps are removed from 𝑆𝑆𝑆𝑃𝑅 and it becomes 𝑆𝑆𝑆𝑃𝑅𝑀 which is used 

to move scrounger towards producer. 𝑆𝑆𝑆𝑃𝑅𝑀 is applied on a scrounger solution using 

forceful swap operation with repair mechanism selective search. A portion of 𝑆𝑆𝑆𝑃𝑅𝑀 is 

forcefully applied to a scrounger solution to ensure that the scrounger moves a little towards 

the producer. 

 

3.3.5 Dispersed Members’ Random Operation 

In the proposed GSOSS method movement of a dispersed member is also calculated using 

swap sequence. In case of a disperse member, a randomly generated swap sequence 𝑆𝑆𝑅 of 

length 𝑙 is used for its random movement. 𝑆𝑆𝑅 is generated by creating 𝑙 number of unique 

SOs for each instructor. Before applying 𝑆𝑆𝑅 on a dispersed member redundant swaps are 

removed from 𝑆𝑆𝑅 and it becomes 𝑆𝑆𝑅𝑀. 𝑆𝑆𝑅𝑀 is applied on a dispersed member using 

forceful swap operation with repair mechanism and selective search. 

 

3.3.6 GSO with Selective Search (GSOSS) for Solving UCSP 

The proposed GSOSS method for solving UCSP is shown in Algorithm 3.2.1. The notations 

and inputs of the proposed algorithm are listed at the beginning of the Algorithm 3.2.1.  

Algorithm 3.2.1: GSOSS-UCSP 

Input:  

Instructors’ Information, Batches’ Information,   
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Courses’ Information, Classrooms’ Information, Break Times’ information,  

𝑛 - total number of iterations  

𝑤 - total number of members 

𝑢 - total number of instructors 

𝛼 - selection probability of a swap from scrounger’s swap sequence to producer 

𝑓 - percentage of swaps to be forced towards producer 

𝑙 - length of random swap sequence 

Output:  

An optimal solution of UCSP 

Variables: 

𝑡 - iteration counter 

𝑆𝑖 - 𝑖th member’s solution 

𝑃𝑅 - producer 

𝑆𝑃𝑅 - producer’s solution 

𝑆𝑅 - a random solution 

𝑆𝐻 - solution holder for selective search 

𝑆𝑆𝑅 - random swap sequence 

𝑆𝑆𝑅𝑗  - 𝑗th instructor’s swap sequence in 𝑆𝑆𝑅𝑗 

𝑆𝑆𝑃𝑅 - swap sequence to producer’s solution 

𝑆𝑆𝑆𝑃𝑅 - selected swap sequence to producer’s solution 

𝑆𝑆𝑆𝑃𝑅𝑀 - minimized swap sequence from 𝑆𝑆𝑆𝑃𝑅 

𝑆𝑆𝑆𝑃𝑅𝑀𝑗  - 𝑗th instructor’s swap sequence in 𝑆𝑆𝐺𝑃𝑅𝑀 

𝑁𝑆𝐹 - number of swaps to be forced 

𝑀 - set of members 

𝑆𝐶 - set of scroungers 

𝑥 - total number of scroungers 

𝐷 - set of dispersed members 

𝑦 - total number of dispersed members 

𝐶𝐶 - set of conflicting classes 

Step 1: Initialization 

10.  𝑡 ← 1  

11.  create 𝑤 number of members and append them to 𝑀 
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12.  for 𝑖 ← 1 to 𝑤 do //for each member 

13.   𝑆𝑖 ← 𝑆𝑅 

14.   calculate fitness of 𝑆𝑖 as described in section 3.1.2 

15.  end for 

  

Step 2: Member Categorization 

1.  descendingSort(M) //descending sort members according to fitness value 

2.  𝑃𝑅 ← 𝑀[0] //select member having highest fitness as producer 

3.  𝐷 ← worst 20% of 𝑀 

4.  𝑆𝐶 ←  𝑀 − 𝑃𝑅 − 𝐷 

  

Step 3: Producer’s Scanning 

1.  𝑃𝑅 ← improveProducer(𝑃𝑅) 

  

Step 4: Scrounging 

62.  for 𝑖 ← 1 to 𝑥 do //for each scrounger 

63.   𝑆𝐻 ← Ø 

64.   𝑆𝑆𝑃𝑅 ←  𝑆𝑃𝑅 − 𝑆𝑖 

65.   𝑆𝑆𝑆𝑃𝑅 ←  α ∗ 𝑆𝑆𝑃𝑅 

66.   𝑆𝑆𝑆𝑃𝑅𝑀 ← swapMinimizer(𝑆𝑆𝑆𝑃𝑅) 

67.   Step 4.1: Apply 𝒇 percent of swaps from 𝑺𝑺𝑺𝑷𝑹𝑴 using forceful swap 

operation with repair mechanism and selective search 

68.    for 𝑗 ← 1 to 𝑢 do //for each instructor 

69.     𝑁𝑆𝐹 ← 𝑓 ∗ |𝑆𝑆𝑆𝑃𝑅𝑀𝑗| 

70.     for 𝑎 ← 1 to 𝑁𝑆𝐹 do 

71.      𝑆𝑖 ← 𝑆𝑖 + 𝑆𝑆𝑆𝐺𝐵𝑀𝑗[𝑎] forcefully 

72.      repairSolution(𝑆𝑖) 

73.      selectiveSearch(𝑆𝑖 , 𝑆𝐻) 

74.     end for  

75.    end for  

76.   Step 4.2: Apply remaining swaps of 𝑺𝑺𝑺𝑷𝑹𝑴 using selective search 

77.    for 𝑗 ← 1 to 𝑢 do //for each instructor 
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78.     𝑁𝑆𝐹 ← 𝑓 ∗ |𝑆𝑆𝑆𝑃𝑅𝑀𝑗| 

79.     for 𝑎 ← 𝑁𝑆𝐹 + 1 to |𝑆𝑆𝑆𝑃𝑅𝑀𝑗| do 

80.      if 𝑆𝑆𝑆𝑃𝑅𝑀𝑗[𝑎] is applicable then 

81.       𝑆𝑖 ← 𝑆𝑖 + 𝑆𝑆𝑆𝐺𝐵𝑀𝑗[𝑎] 

82.       selectiveSearch(𝑆𝑖 , 𝑆𝐻) 

83.      end if 

84.     end for  

85.    end for  

86.   𝑆𝑖 ← 𝑆𝐻 

87.   calculate fitness of 𝑆𝑖 as described in section 3.1.2 

88.  end for 

  

Step 5: Dispersed Members’ Random Operation 

1.  for 𝑖 ← 1 to 𝑦 do //for each dispersed member 

2.   𝑆𝐻 ← Ø 

3.   𝑆𝑆𝑅 ← random swap sequence of length 𝑙 

4.   𝑆𝑆𝑅𝑀 ← swapMinimizer(𝑆𝑆𝑅) 

5.   Step 5.1: Apply 𝒇 percent of swaps from 𝑆𝑆𝑅𝑀 using forceful swap operation 

with repair mechanism and selective search 

6.    for 𝑗 ← 1 to 𝑢 do //for each instructor 

7.     𝑁𝑆𝐹 ← 𝑓 ∗ |𝑆𝑆𝑅𝑀𝑗| 

8.     for 𝑎 ← 1 to 𝑁𝑆𝐹 do 

9.      𝑆𝑖 ← 𝑆𝑖 + 𝑆𝑆𝑅𝑀𝑗[𝑎] forcefully 

10.      repairSolution(𝑆𝑖) 

11.      selectiveSearch(𝑆𝑖 , 𝑆𝐻) 

12.     end for  

13.    end for  

14.   Step 5.2: Apply remaining swaps of 𝑆𝑆𝑅𝑀 using selective search 

15.    for 𝑗 ← 1 to 𝑢 do //for each instructor 

16.     𝑁𝑆𝐹 ← 𝑓 ∗ |𝑆𝑆𝑅𝑀𝑗| 

17.     for 𝑎 ← 𝑁𝑆𝐹 + 1 to |𝑆𝑆𝑅𝑀𝑗| do 

18.      if 𝑆𝑆𝑅𝑀𝑗[𝑎] is applicable then 
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19.       𝑆𝑖 ← 𝑆𝑖 + 𝑆𝑆𝑅𝑀𝑗[𝑎] 

20.       selectiveSearch(𝑆𝑖 , 𝑆𝐻) 

21.      end if 

22.     end for  

23.    end for  

24.   𝑆𝑖 ← 𝑆𝐻 

25.   calculate fitness of 𝑆𝑖 as described in section 3.1.2 

26.  end for 

 

Step 4: Termination and Outcome 

5.  𝑀 ← 𝑃 ∪ 𝑆𝐶 ∪ 𝐷 

6.  while 𝑡 ≠ 𝑛  do   

7.   𝑡 ←  𝑡 +  1   

8.   repeat Step 2, Step 3 and Step 4 

9.  end while 

10.  descendingSort(M) //descending sort members according to fitness value 

11.  𝑃𝑅 ← 𝑀[0] //select member having highest fitness as producer 

12.  return  𝑆𝑃𝑅 //consider producer’s solution as outcome 

 

Algorithm 3.2.2 improveProducer 

Input: 𝑃R //Producer 

1.  𝑃𝑅𝑡𝑒𝑚𝑝 ← 𝑐𝑜𝑝𝑦(𝑃𝑅)  

2.  𝐶 ← list of courses scheduled for 𝑃𝑅𝑡𝑒𝑚𝑝 

3.  for all 𝑐 𝜖 𝐶 

4.   𝑆𝐿 ← list of slots having better preference values than 𝑐’s current position 

5.   for all 𝑠𝑙 𝜖 𝑆𝐿 

6.    move 𝑐 to slot 𝑠𝑙 

7.    calculate fitness of 𝑃𝑅𝑡𝑒𝑚𝑝 

8.    if  fitness(𝑃𝑅)<fitness(𝑃𝑅𝑡𝑒𝑚𝑝)  then 

9.     return 𝑃𝑅𝑡𝑒𝑚𝑝 

10.    end if 

11.   end for 
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12.  end for 

13.  return 𝑃𝑅 

 

Algorithm 3.2.3 repairSolution 

Input: 𝑆𝑖 //solution to repair 

14.  𝐶𝐶 ← list of conflicting classes in 𝑆𝑖 

15.  if CC ≠ Ø then 

16.   for all cc ϵ CC 

17.    move cc to a randomly selected non-conflicting position 

18.   end for 

19.  end if 

 

Algorithm 3.2.4 selectiveSearch 

Input: 𝑆𝑖 , SH 

5.  if  SH  = Ø ∨ fitness(SH)<fitness(𝑆𝑖)  then 

6.   𝑆𝐻  ←  𝑆𝑖 

7.  end if 

In the proposed algorithm, initial group of members 𝑀 is generated by creating specified 𝑤 

number of members. Each member’s solution gets initialized by a random solution. The 

fitness of each member’s solution is calculated as described in section 3.1.2. In each iteration, 

𝑀 gets sorted in descending order according to fitness value of members. Then, the member 

having the highest fitness is selected as the producer 𝑃𝑅, worst 20% members become 

dispersed members 𝐷 and rest of the members gets added to scroungers’ list, 𝑆𝐶.  After that, 

producer 𝑃𝑅’s fitness is improved using improveProducer() function as shown in Algorithm 

3.2.2. improveProducer() function tries to improve fitness of 𝑃𝑅’s solution by shifting 

courses to slots having higher preference values. After improving producer scroungers get 

processed. For each scrounger 𝑆𝐻 is emptied to be used for selective search. 𝑆𝐻 is used to 

hold best intermediate solution in selective search. Then, instructor-wise swap sequences to 

reach 𝑃𝑅’s solution 𝑆𝑃𝑅 from scrounger sc’s solution 𝑆𝑆𝑃𝑅 is calculated. Some swaps are 

selected for each instructor from 𝑆𝑆𝑃𝑅 based on the selection probability 𝛼 denoted by 

𝑆𝑆𝑆𝑃𝑅. Redundant swaps are removed from 𝑆𝑆𝑆𝑃𝑅 using swapMinimizer() function, result 

of  which are denoted by 𝑆𝑆𝑆𝑃𝑅𝑀. After that, for each instructor a portion of 𝑆𝑆𝑆𝑃𝑅𝑀 is 

selected using the equation 𝑓 ∗ |𝑆𝑆𝑆𝑃𝑅𝑀𝑗|, where 𝑓 is the force percentage and 𝑆𝑆𝑆𝑃𝑅𝑀𝑗  is 
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the swap sequence corresponding to an instructor 𝑗. Swaps of this selected portion are 

forcefully applied to scrounger’s solution and resulting conflicts are resolved using 

repairSolution function. Algorithm 3.2.3 shows the required steps of repairSolution function 

which works by randomly moving the conflicting classes to non-conflicting positions as 

described in section 3.1.4. Rest of the swaps are applied only if they do not create any 

conflicts. The selective search technique is used after applying each swap to ensure that best 

intermediate solution is retained. Algorithm 3.2.4 shows the required steps of selective 

search. It simply updates SH only if new solution is found better than SH. Finally, after the 

application of all the swaps the best intermediate solution SH becomes scrounger’s solution. 

Operation for dispersed members are quite similar to operations on scroungers rather the fact 

that, dispersed members work with random swap sequence instead of swap sequence to 

producer. The algorithm uses a predefined number of iterations 𝑛 as the termination criteria. 

After termination, producer 𝑃𝑅’s solution 𝑆𝑃𝑅 is considered as the final solution. 

 

3.3.7 Illustration of an iteration of GSOSS Algorithm 

A schematic representation of an iteration of the proposed method in shown in Fig. 3.7. 

Suppose, a system consisting of three instructors 𝑒1, 𝑒2 and 𝑒3, each having five weekly slots 

that is needed to be scheduled. In Fig. 3.7, 𝑀 is the initial group of members. 𝑀 is sorted in 

descending order according to fitness values of the members. Member having best fitness 

becomes the producer 𝑃𝑅, worst 20% members become dispersed members 𝐷 and rest of 

the members become scroungers, 𝑆𝐶(= 𝐺 − 𝑃 − 𝐷). In the first step, producer 𝑃𝑅 is 

improved using improveProducer() function. Then, for each scrounger sc, instructor-wise 

swap sequences to reach producer’s solution 𝑆𝑃𝑅 from scrounger sc’s solution SSC is 

calculated which is represented by 𝑆𝑆𝑃𝑅(= 𝑆𝑃𝑅 – 𝑆𝑠𝑐). The circle (○) symbol inside the 

swap sequences represents a swap operator. Some swaps are selected for each instructor 

from 𝑆𝑆𝑃𝑅 based on the selection probability α denoted by 𝑆𝑆𝑆𝑃𝑅(= 𝛼 ∗ 𝑆𝑆𝑃𝑅).  

Redundant swaps are removed from 𝑆𝑆𝑆𝑃𝑅 using swapMinimizer() function, result of  which 

are denoted by 𝑆𝑆𝑆𝑃𝑅𝑀 (green coloured swaps numbered 1, 2, 3, 4, 5 and 6 in Fig. 3.7) . 

Then, a portion of 𝑆𝑆𝑆𝑃𝑅𝑀 is selected using the equation 𝑅𝑀 [1: 𝑓 ∗ | 𝑆𝑆𝑆𝑃𝑅𝑀 |] , where 

𝑓 is the force percentage. This selected portion of 𝑆𝑆𝑆𝑃𝑅𝑀 is denoted by 𝑆𝑆𝑆𝑃𝑅𝑀𝐹𝐴 (swaps 

numbered 1, 3 and 5 in Fig. 3.7) and the rest of the swaps are denoted by 𝑆𝑆𝑆𝑃𝑅𝑀𝑇𝐴 (green 

coloured swaps numbered 2, 4 and 6 in Fig. 3.7). Swaps of 𝑆𝑆𝑆𝑃𝑅𝑀𝐹𝐴 are forcefully applied 

to 𝑆𝑠𝑐 and then the swaps of 𝑆𝑆𝑆𝑃𝑅𝑀𝑇𝐴 are applied to 𝑆𝑠𝑐 only if they do not create any 
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conflicts. Any conflict resulting from forceful swap application is handled by repair 

mechanism as described in section 3.1.4. In the example shown in Fig. 3.7, swaps numbered 

1, 3 and 5 are forcefully applied on initial solution 𝑆𝑠𝑐 making it 𝑆𝑠𝑐
5  . Then, swap numbered 

2 gets applied on 𝑆𝑠𝑐
5  resulting in 𝑆𝑠𝑐

2  as there is no conflict. Solution stays at 𝑆𝑠𝑐
2  because 

swaps numbered 4 and 6 are not applied because of conflicts. The best one among these 

solutions is then picked as 𝑠𝑐’s solution. On the other hand, for each dispersed member 𝑑 ∈

𝐷 a random swap sequence is applied on its solution 𝑆𝑑. The process of applying random 

swap sequence to a dispersed member is same as in case of scrounger. Finally, 𝑀 is updated 

using 𝑃, SC and 𝐷 for the next iteration. 

  

 

Figure 3.7: Illustration of an iteration of GSOSS. 
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CHAPTER IV 

 

 

Experimental Studies 

 

 

This chapter investigates the effectiveness and performance of the proposed using Particle 

Swarm Optimization with Selective Search (PSOSS) and using Group Search Optimizer 

with Selective Search (GSOSS) methods for obtaining a workable timetable. The 

performance of the proposed methods has been compared with the performances of Genetic 

Algorithm (GA) and Harmony Search (HS) for the same problem set with comparable 

experimental and parameter settings. In short, the proposed PSOSS and GSOSS are 

transformations of PSO and GSO respectively for University Course Scheduling Problem 

(UCSP) plus selective search and forceful swap operation with repair mechanism. Therefore, 

the standard PSO and GSO are also brought into the comparison excluding the two additional 

operations incorporated into PSOSS and GSOSS to identify the significance of the 

operations. This chapter also provides an experimental analysis for a better understanding of 

the performance of the proposed method.  

 

4.1 Experimental Setup 

For solving UCSP with GA, single point crossover with a crossover rate of 0.70 is used. 

Repair mechanism ensures that valid solutions are generated after crossover. Mutation is 

performed by randomly changing the timeslot of a course for a randomly selected instructor 

with a mutation probability of 0.20. Elitism is also considered for implementation with an 

elite list of size 2.  

In this study of UCSP, HS algorithm is implemented with a Harmony Memory Consideration 

Rate (HMCR) of 0.95 and a Pitch Adjustment Rate (PAR) of 0.1. 

There is a common parameter alpha (α) in GSOSS and GSO because GSOSS is an extension 

of GSO. Value of α considered for implementation is 0.9. Also a force rate of 100% has been 

used for GSOSS.  



40 
 

 
 

There are several parameters common in PSOSS and PSO because PSOSS is an extension 

of PSO. The common parameters are alpha (𝛼), beta (𝛽) and gamma (𝛾); and the values 

considered for implementation are 0.3, 0.5 and 0.2, respectively. Also, a force rate of 100% 

has been used for PSOSS.  

Boost C++ libraries [71] have been used for implementation of the methods. The methods 

have been implemented in Visual C++ of Microsoft’s Visual Studio 2013 on Windows 10 

platform on Intel(R) Core(TM) i7-7700 CPU @ 3.60 GHz processor, and 16 GB RAM.  

 

4.2 Experimental Environment  

In the experimental environment, instructors’ flexibility is considered. The weekly timeslots 

for instructors and their preferences are given in Fig 3.2 and Fig. 3.3, respectively. The 

preferences varied from -1 to 5, where -1 means the lowest preference and 5 means the 

highest preference. Experiments with input data resembling the course structure of the 

department of Computer Science and Engineering (CSE) of Khulna University of 

Engineering & Technology (KUET) have been conducted. In KUET, there are 5 days for 

teaching in a week and each teaching day is divided into 9 teaching timeslots of 50 minutes 

duration. The duration of each laboratory session of undergraduate level as well as a 

postgraduate class is three consecutive timeslots.  

Considered hard constraints: 

- A student can only go to a single class in a timeslot.  

- An instructor cannot conduct multiple classes in a timeslot. 

- Courses cannot be assigned to break periods. 

- Courses requiring multiple slots such as laboratory courses cannot include break 

periods. 

- Courses can be assigned to allowed rooms only. 

Considered soft constraints:   

- Maintain preference of instructor as much as possible.     

- Keep the number of consecutive classes as few as possible for instructors. 
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Figure 4.1: Input preference values for instructors. 
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4.3 Input Data Preparation 

Fig. 4.1 lists the used preference values of all the instructors. There are five batches of 

students in the considered dataset: four batches in the undergraduate level and one batch at 

the postgraduate level.  Four batches of undergraduate level are represented by 𝑏1, 𝑏2, 𝑏3 and 

𝑏4, respectively. Postgraduate batch is represented by 𝑏5. Each of the batches in 

Table 4.1: Batch and course information 

Batch Name Course 

Code 

Classes / 

Week 

Timeslots 

/ Class 

Type of 

Course 

Number of 

Students 

𝑏1/1st Year 

Undergraduate 

CSE 1201 3 1 Theory  60 

CSE 1202 2 3 Laboratory  30 

CSE 1203 3 1 Theory  60 

CSE 1204 2 3 Laboratory  30 

EEE 1217 3 1 Theory  60 

EEE 1218 1 3 Laboratory  30 

CHEM 1207 3 1 Theory  60 

CHEM 1208 1 3 Laboratory  30 

MATH 1207 3 1 Theory  60 

ME 1270 1 3 Laboratory  30 

𝑏2/2nd Year  

Undergraduate 

CSE 2200 2 3 Laboratory  30 

CSE 2201 3 1 Theory  60 

CSE 2202 2 3 Laboratory  30 

CSE 2207 3 1 Theory  60 

CSE 2208 1 3 Laboratory  30 

CSE 2213 3 1 Theory  60 

EEE 2217 3 1 Theory  60 

EEE 2218 2 3 Laboratory  30 

MATH 2207 3 1 Theory  60 

𝑏3/3rd Year  

Undergraduate 

CSE 3200 2 3 Laboratory  30 

CSE 3201 3 1 Theory  60 

CSE 3202 2 3 Laboratory  30 

CSE 3203 3 1 Theory  60 

CSE 3204 1 3 Laboratory  30 

CSE 3207 3 1 Theory  60 

CSE 3211 3 1 Theory  60 

CSE 3212 1 3 Laboratory  30 

ECE 3215 3 1 Theory 30 

𝑏4/4th Year 

Undergraduate  

CSE 4207 3 1 Theory 60 

CSE 4208 1 3 Laboratory 30 

CSE 4211 3 1 Theory 60 

CSE 4212 1 3 Laboratory 30 

CSE 4239 3 1 Theory 60 

IEM 4227 3 1 Theory 60 

HUM 4207 3 1 Theory 60 

𝑏5/ 

Postgraduate 

CSE 6225 1  3 Theory 10 

CSE 6465 1  3 Theory 10 

CSE 6471 1  3 Theory 10 
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undergraduate level is divided into two subgroups namely 𝑣1 and 𝑣2. In total, 38 courses are 

Table 4.2: Course information for each instructor 

Instructor 

ID 

Number 

of 

Courses 

Course Code Weekly Course 

Load 

(Timeslots/Week) 

𝑒1 4 CSE 1203, CSE 1204, CSE 2201, CSE 2202 18 

𝑒2 4 CSE 3211, CSE 3212, CSE 4239, CSE 6225 12 

𝑒3 2 CSE 3201, CSE 3202 9 

𝑒4 1 CSE 3200 6 

𝑒5 3 CSE 4211, CSE 4212, CSE 6471 9 

𝑒6 2 CSE 4207, CSE 6465 6 

𝑒7 1 CSE 2207 3 

𝑒8 1 CSE 1201 3 

𝑒9 1 CSE 2208 3 

𝑒10 2 CSE 2200, CSE3207 9 

𝑒11 1 CSE 3203 3 

𝑒12 1 CSE 1202 6 

𝑒13 1 CSE 4208 3 

𝑒14 1 CSE 2213 3 

𝑒15 1 CSE 3204 6 

𝑒16 1 EEE 1217 3 

𝑒17 1 EEE 1218 3 

𝑒18 1 EEE 2217 3 

𝑒19 1 EEE 2218 6 

𝑒20 1 MATH 1207 3 

𝑒21 1 MATH 2207 3 

𝑒22 1 ECE 3215 3 

𝑒23 1 ME 1270 3 

𝑒24 1 IEM 4227 3 

𝑒25 1 CHEM 1207 3 

𝑒26 1 CHEM 1208 3 

𝑒27 1 HUM 4207 3 

 

 

Table 4.3: Information for classrooms and laboratories 

Room ID Room Type Room capacity Allowable Courses 

𝑟1 Lecture 60  

Any theory course 

 
𝑟2 Lecture 60 

𝑟3 Lecture 60 

𝑟4 Lecture 60 

𝑟5 Lecture 60 

𝑟6 Laboratory 30 CSE 2200, CSE 3202, CSE 4208, CSE 4212 

𝑟7 Laboratory 30 CSE2200, CSE4212, CSE3212, CSE2208, CSE3202 

𝑟8 Laboratory 30 CSE 1202, CSE 2202 

𝑟9 Laboratory 30 CSE1204 

𝑟10 Laboratory 30 CSE3204 

𝑟11 Laboratory 30 ME1270 

𝑟12 Laboratory 30 EEE1218, EEE2218 

𝑟13 Laboratory 30 CHEM1208 
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taught by 27 instructors. Odd-numbered courses represent theory courses and even-

numbered courses represent laboratory courses. Table 4.1 shows which courses belong to 

which batch, number of weekly classes required for a course, time duration of a class, course 

type and the number of registered students of a course. Table 4.2 shows the number of 

courses assigned to an instructor, the courses allocated to each instructor and the weekly 

course load of each instructor. Table 4.3 shows the room id, room type, maximum seating 

capacity and allowable courses that can be taught in that room. There are two types of rooms: 

lecture room and laboratory room. As the laboratory rooms support a maximum of 30 

students, a batch of 60 students needs to be divided into two subgroups of 30 students. 

 

4.4 Experimental Results and Analysis 

Proposed PSOSS and GSOSS are population-based methods and; therefore, population size 

is one of the important parameters similar to other population-based algorithms including 

GA and HS to which the performance of the proposed methods will be compared to. The 

population size is a parameter of meta-heuristic algorithms having an impact on the 

computational cost of the algorithm that increases with growing population size. On the other 

hand, convergence speed is a performance measure for metaheuristic algorithms where the 

 

Figure 4.2: Performance analysis of fitness for different population sizes.  
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maximum number of iterations required to reach an optimal solution is an important 

parameter. The first set of performance measures for the methods are the population size and 

the number of iterations. The next set of performance measures for the methods are the 

fitness values of solutions, instructors’ satisfaction followed by the sample timetables 

generated for an instructor. The two sets of performance measures will be carried out in this 

section such that the methods can be compared to each other.   

Fitness values of GA, PSO, HS, GSO, GSOSS and PSOSS are measured by varying the 

population size from 5 to 500 and the best fitness values are plotted over the population sizes 

in Fig. 4.2. It is observed from the figure that fitness of all the methods improves more or 

less with population size except for HS algorithm. The performance of HS algorithm 

decreases continuously after population size of 20. If the HMS (i.e., population) in HS 

algorithm is high, the probability of selecting solution for different instructors from different 

entities of HM also increases while improvising a new harmony (complete solution) resulting 

in a conflict which causes the HS algorithm to fail to create a new harmony. This might be 

the reason for choosing small HMS in existing research on HS algorithm [54], [55]. 

However, the performances of the proposed GSOSS and PSOSS are better than the HS 

algorithm with any population size. The HS algorithm has shown the best fitness value 382 

for population size of 10. On the other hand, the fitness of PSOSS with a population size of 

 

Figure 4.3: Performance analysis of fitness in different iterations. 
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10 was 431, which is 437 in case of GSOSS. The best achieved fitness by PSOSS was 471 

with a population size of 450 and the best achieved fitness by GSOSS was 458 with a 

population size of 500. On the other hand, the best fitness values achieved for GA, PSO and 

GSO are 425 (for population size of 400), 357 (for population size of 350) and 404 (for 

population size of 250), respectively. At a glance, PSOSS is much better than the rest of the 

methods and GSOSS is also found superior to other compared methods. 

Fig 4.3 compares the achieved fitness of the methods from iteration 5 to 800 for fixed 

population size of 200 on a sample run. The figure reflects the convergence nature of the 

methods with iteration. It is remarkable from the figure that the fitness value of any method 

is very poor at the beginning (e.g., 5, 10) and improves over iterations.  As an example, for 

iteration 10, the achieved fitness values are 322, 309, 299, 330, 362 and 348 for GA, PSO, 

HS, GSO, GSOSS and PSOSS, respectively. On the other hand, the methods achieved the 

fitness values 368, 329, 312, 407, 446, 450 at iteration 100. From the figure it is observed 

that after 500 iterations only PSO is shown to have improved the performance and it achieved 

the best fitness value 362 at iteration 510 and onwards.  On the other hand, the best fitness 

values achieved by GA, HS, GSO, GSOSS and PSOSS are 428 (at iteration 490 and 

onwards), 321 (at iteration 415 and onwards), 407 (at iteration 60 and onwards), 446 (at 

iteration 55 and onwards) and 462 (at iteration 155 and onwards), respectively. The figure 

Table 4.4: Average and best fitness comparison among GA, PSO, HS, GSO, GSOSS 

and PSOSS of 25 trials for different population sizes 

Method Population Average Fitness Std. Deviation of 

Fitness 

Best Fitness 

GA 

200 421.08 6.26 428 

300 416.76 7.82 427 

400 420.08 7.52 428 

PSO 

200 343.64 12.97 369 

300 346.17 10.59 356 

400 345.05 7.96 357 

HS 

5 371.52 9.11 394 

10 365.80 9.29 382 

20 347.64 9.36 364 

GSO 

200 394.00 8.02 414 

300 391.45 5.34 398 

400 394.69 6.66 404 

GSOSS 

200 448.84 6.11 446 

300 449.73 5.67 456 

400 456.67 5.32 458 

PSOSS 

200 460.44 5.12 471 

300 460.83 4.76 470 

400 462.87 5.41 471 
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revealed the faster convergence of the proposed GSOSS and PSOSS as well as the 

outperformance in comparison with other methods in terms of iteration variations. GSOSS 

achieves fast convergence due to its producer scanning feature. 

Fig. 4.2 and Fig 4.3 also clearly reveal the significance of selective search and application 

of forceful swap operation in the proposed GSOSS and PSOSS methods. The performance 

variation in terms of fitness between PSO and PSOSS, GSO and GSOSS as seen in Fig. 4.2 

and Fig 4.3 reflects the effects of these operations. The best achieved fitness value of PSO 

was 357 in Fig. 4.2 for population size of 350 in terms of population variation. At the same 

population size of 350, PSOSS achieved fitness value of 467 which is much better than that 

of PSO. Outperformance of PSOSS over PSO is also clearly visible in Fig 4.3 in terms of 

iteration variation. The best achieved fitness value of GSO was 404 in Fig. 9 for population 

size of 250 in terms of population variation. At the same population size of 350, GSOSS 

achieved fitness value of 433 which is much better than that of GSO. Outperformance of 

GSOSS over GSO is also clearly visible in Fig 4.3 in terms of iteration variation. Due to the 

use of the forceful swap operation in PSOSS, all the particles move a little towards the global 

best solutions and selective search ensures that the best intermediate solution is retained 

while applying an SS. These are the reasons why PSOSS performs much better than PSO 

and the rest of the investigated methods. 

Table 4.4 shows the average fitness with standard deviation and the best fitness comparison 

among all the investigated methods for different population and iteration sizes. Fig. 4.2 

shows that HS algorithm works well only for small population sizes and the fitness obtained 

for all other methods have proved to be better for population size larger than 100. Therefore, 

in the experiments, population sizes used for GA, PSO, GSO, GSOSS and PSOSS are 200, 

300 and 400 whereas population sizes used for HS algorithm are 5,10 and 20. According to 

Fig 4.3, GA, HS, GSO, GSOSS and PSOSS do not show any significant improvement of 

fitness after 500 iterations but PSO keeps showing better results up to 510 iterations. Due to 

this fact, the number of iterations used for all the experiments is 600 for all methods. Each 

method was run for 25 times for particular population size and the presented results in the 

table are the outcome are the outcome of 25 trials for each setting. The best results for each 

method are highlighted in boldface type in the table. From the table, it is observed that best 

fitness acheived by GA, PSO, HS, GSO and GSOSS are 428, 369, 394,  414, and 458 

respectively. Whereas, the proposed PSOSS is shown to achieve 471 which is much better 
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than the rest of the methods.  The best solutions produced by individual methods are analyzed 

below. 

A new measure of satisfaction of individual instructors is considered in this study for better 

realization of the quality of the solutions (i.e. the produced course schedules) by different 

methods. One of the objectives of optimizing UCSP is to satisfy the instructors’ preferences 

as much as possible. Satisfaction of an instructor can be expressed in percentage and 100% 

satisfaction means courses of the instructor are assigned to timeslots heaving the highest 

preference values (here 5). Satisfaction of 𝑖th particle’s/member’s 𝑗th instructor in a Solution 

𝑆𝑖,𝑗, 𝑆𝑎𝑡𝑖𝑠𝑓𝑎𝑐𝑡𝑖𝑜𝑛(𝑆𝑖,𝑗) is computed according to the formula: 

𝑆𝑎𝑡𝑖𝑠𝑓𝑎𝑐𝑡𝑖𝑜𝑛(𝑆𝑖,𝑗) =  
𝐹(𝑆𝑖,𝑗)

𝑀(𝑒𝑗)
∗ 100 (4.1) 

where, 𝑀(𝑒𝑗) is the maximum possible fitness and 𝐹(𝑆𝑖,𝑗) is the achieved fitness (calculated 

using Eq. (3.2) of 𝑗th instructor’s solution. Table 4.5 shows the achieved satisfaction value 

Table 4.5: Instructors’ satisfaction values achieved by implemented methods 

Instructor 
Course 

Load 

 Achieved Satisfaction in % 

GA PSO HS GSO GSOSS PSOSS 

𝑒1 18 74.07 75.31 85.19 91.36 97.53 96.30 

𝑒2 12 91.23 82.46 78.95 90.98 92.98 92.98 

𝑒3 9 65.91 77.27 70.45 81.82 86.36 88.64 

𝑒4 6 90.00 43.33 100 90.00 96.67 90.00 

𝑒5 9 88.89 100 70.37 66.67 88.89 88.89 

𝑒6 6 77.27 54.55 68.18 54.55 77.27 77.27 

𝑒7 3 69.23 30.77 46.15 100 69.23 69.23 

𝑒8 3 84.62 53.85 46.15 53.85 69.23 92.31 

𝑒9 3 50.00 33.33 50.00 41.67 66.67 83.33 

𝑒10 9 88.89 55.56 74.07 59.26 85.19 85.19 

𝑒11 3 66.67 58.33 58.33 58.33 91.67 100 

𝑒12 6 66.67 37.50 66.67 54.17 58.33 58.33 

𝑒13 3 66.67 66.67 50.00 66.67 66.67 66.67 

𝑒14 3 75.00 50.00 66.67 91.67 100 100 

𝑒15 6 62.50 58.33 58.33 29.17 58.33 66.67 

𝑒16 3 83.33 66.67 66.67 100 91.67 75.00 

𝑒17 3 66.67 50.00 50.00 50.00 58.33 66.67 

𝑒18 3 75.00 66.67 66.67 83.33 50 66.67 

𝑒19 6 62.50 70.83 54.17 66.67 58.33 62.50 

𝑒20 3 83.33 66.67 66.67 91.67 100 100 

𝑒21 3 83.33 66.67 50.00 66.67 83.33 50.00 

𝑒22 3 41.67 66.67 33.33 50.00 50 50.00 

𝑒23 3 83.33 58.33 83.33 25.00 58.33 83.33 

𝑒24 3 83.33 100 83.33 83.33 100 100 

𝑒25 3 91.67 50.00 83.33 66.67 66.67 83.33 

𝑒26 3 66.67 83.33 50.00 50.00 66.67 83.33 

𝑒27 3 58.33 25.00 58.33 83.33 75 91.67 

Avg. Satisfaction 75.62 65.19 69.61 73.14 80.92 83.92 
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(in %) for all the instructors in the best solutions produced by the methods whose fitness 

values are marked in Table 4.4 as the best fitness. The table also includes weekly course load 

for each instructor and instructor wise best achieved satisfaction values for individual 

methods are marked in bold face type for a better understanding. Among 27 instructors, 

PSOSS achieved the best satisfaction values for fifteen instructors. On the other hand, GA, 

PSO, HS, GSO, and GSOSS achieved the best satisfaction values for seven, six, three, four 

and eight cases, respectively. Therefore, the average satisfaction value achieved by PSOSS 

is much higher than the rest of the methods. The average satisfaction of the best solution 

produced by PSOSS is 83.22. On the other hand, the achieved satisfactions for GA, PSO, 

HS, GSO, and GSOSS are 75.62, 65.19, 69.61, 73.14, and 80.92, respectively.  This is a 

significant performance indicator of the proposed PSOSS method. Result obtained from 

GSOSS is also satisfactory compared to other implemented methods. 

Table 4.6 (a)-(f) shows schedules for instructor 𝑒1 from the best solutions (marked in Table 

4.5) generated by GA, PSO, HS, GSO, GSOSS, and PSOSS. From the schedule generated 

by PSOSS shown in Table 4.6 (e), it can be seen that 𝑒1 has a Laboratory class CSE 1204 in 

timeslots 7, 8 and 9 on Sunday which is desirable because 𝑒1 has maximum preference of 4 

in these periods for Sunday as stated in Fig 4.1. Similarly, timetable for other days also 

adheres to instructor 𝑒1’s preference in most of the cases. GSOSS also produces good 

schedule considering instructor 𝑒1’s preference. In comparison with schedules produced by 

other methods (i.e., GA, PSO, HS and GSO), the schedules generated by PSOSS and GSOSS 

for the instructor 𝑒1 are more satisfactory in terms of 𝑒1’s preference values. This observation 

is similar for most of the instructors in case of PSOSS and thus PSOSS is found to be an 

effective method for solving USCP.  

Table 4.6: Sample Timetable for Instructor 𝑒1 generated by GA, PSO, HS, GSO, GSOSS 

and PSOSS methods 

(a) GA 

Day 
Timeslot 

1 2 3 4 5 6 

L
U

N
C

H
  

 B
R

E
A

K
 

7 8 9 

Sun     
CSE2201 

(𝑟5|𝑏2|𝑒1) 

  
CSE2201 

(𝑟3|𝑏2|𝑒1) 
 

Mon   
CSE1203 

(𝑟2|𝑏1|𝑒1) 
  

CSE1203 

(𝑟5|𝑏1|𝑒1) 

CSE1204 

(𝑟9|𝑏1|𝑣1|𝑒1) 

Tue 
CSE2202 

(𝑟8|𝑏2|𝑣2|𝑒1) 
  

CSE2201 

(𝑟1|𝑏2|𝑒1) 
   

Wed 
CSE1203 

(𝑟5|𝑏1|𝑒1) 
  

CSE2202 

(𝑟8|𝑏2|𝑣1|𝑒1) 

CSE1204 

(𝑟9|𝑏1|𝑣2|𝑒1) 

Thu          
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(b) PSO 

Day 
Timeslot 

1 2 3 4 5 6 

L
U

N
C

H
  

 B
R

E
A

K
 

7 8 9 

Sun       
CSE2202 

(𝑟8|𝑏2|𝑣2|𝑒1) 

Mon    
CSE1204 

(𝑟9|𝑏1|𝑣1|𝑒1) 
   

Tue    
CSE1203 

(𝑟3|𝑏1|𝑒1) 
 

CSE1203 

(𝑟1|𝑏1|𝑒1) 

CSE2201 

(𝑟3|𝑏2|𝑒1) 
  

Wed    
CSE2202 

(𝑟8|𝑏2|𝑣1|𝑒1) 
 

CSE2201 

(𝑟2|𝑏2|𝑒1) 
 

Thu 
CSE2201 

(𝑟3|𝑏2|𝑒1) 
    

CSE1203 

(𝑟5|𝑏1|𝑒1) 

CSE1204 

(𝑟9|𝑏1|𝑣2|𝑒1) 

 

(c) HS 

Day 
Timeslot 

1 2 3 4 5 6 

L
U

N
C

H
  

 B
R

E
A

K
 

7 8 9 

Sun      
CSE1203 

(𝑟4|𝑏1|𝑒1) 

CSE2201 

(𝑟5|𝑏2|𝑒1) 
 

CSE1203 

(𝑟5|𝑏1|𝑒1) 

Mon    
CSE2202 

(𝑟8|𝑏2|𝑣1|𝑒1) 

CSE1204 

(𝑟9|𝑏1|𝑣1|𝑒1) 

Tue       
CSE1203 

(𝑟4|𝑏1|𝑒1) 
  

Wed  
CSE1204 

(𝑟9|𝑏1|𝑣2|𝑒1) 
 

CSE2201 

(𝑟3|𝑏2|𝑒1) 

CSE2201 

(𝑟3|𝑏2|𝑒1) 
  

Thu 
CSE2202 

(𝑟8|𝑏2|𝑣2|𝑒1) 
      

 

(d) GSO 

Day 
Timeslot 

1 2 3 4 5 6 

L
U

N
C

H
  

 B
R

E
A

K
 

7 8 9 

Sun       
CSE2202 

(𝑟8|𝑏2|𝑣2|𝑒1) 

Mon   
CSE1203 

(𝑟4|𝑏1|𝑒1) 
 

CSE2201 

(𝑟4|𝑏2|𝑒1) 
 

CSE2202 

(𝑟8|𝑏2|𝑣1|𝑒1) 

Tue    
CSE1204 

(𝑟9|𝑏1|𝑣2|𝑒1) 

CSE1203 

(𝑟5|𝑏1|𝑒1) 
  

Wed   
CSE1204 

(𝑟9|𝑏1|𝑣1|𝑒1) 
 

CSE2201 

(𝑟5|𝑏2|𝑒1) 
 

CSE2201 

(𝑟4|𝑏2|𝑒1) 

Thu 
CSE1203 

(𝑟1|𝑏1|𝑒1) 
        

 

(e) GSOSS 

Day 
Timeslot 

1 2 3 4 5 6 

L
U

N
C

H
  

 B
R

E
A

K
 

7 8 9 

Sun       
CSE2201 

(𝑟1|𝑏2|𝑒1) 
 

CSE1203 

(𝑟3|𝑏1|𝑒1) 

Mon    
CSE1203 

(𝑟1|𝑏1|𝑒1) 
 

CSE2201 

(𝑟5|𝑏2|𝑒1) 

CSE1204 

(𝑟9|𝑏1|𝑣2|𝑒1) 

Tue    
CSE2202 

(𝑟8|𝑏2|𝑣1|𝑒1) 

CSE2201 

(𝑟3|𝑏2|𝑒1) 
  

Wed    
CSE1204 

(𝑟9|𝑏1|𝑣1|𝑒1) 

CSE1203 

(𝑟2|𝑏1|𝑒1) 
  

Thu 
CSE2202 

(𝑟8|𝑏2|𝑣2|𝑒1) 
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(f) PSOSS 

Day 
Timeslot 

1 2 3 4 5 6 

L
U

N
C

H
  

 B
R

E
A

K
 

7 8 9 

Sun       
CSE1204 

(𝑟9|𝑏1|𝑣1|𝑒1) 

Mon    
CSE2202 

(𝑟8|𝑏2|𝑣2|𝑒1) 
 

CSE1203 

(𝑟3|𝑏1|𝑒1) 
 

Tue    
CSE2201 

(𝑟1|𝑏2|𝑒1) 
 

CSE2201 

(𝑟1|𝑏2|𝑒1) 

CSE2201 

(𝑟2|𝑏2|𝑒1) 
 

CSE1203 

(𝑟3|𝑏1|𝑒1) 

Wed    
CSE2202 

(𝑟8|𝑏2|𝑣1|𝑒1) 

CSE1204 

(𝑟9|𝑏1|𝑣2|𝑒1) 

Thu 
CSE1203 

(𝑟5|𝑏1|𝑒1) 
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CHAPTER V 

 

 

Conclusions 

 

 

University Course Scheduling Problem (UCSP) is one of the toughest timetabling problems 

and solving UCSP has been an active research area for several decades. In this thesis two 

novel Particle Swarm Optimization (PSO) and Group Search Optimizer (GSO) based 

methods namely PSO with Selective Search (PSOSS) and GSO with Selective Search 

(GSOSS) have been proposed for solving UCSP. This chapter will draw a short summary of 

the key points of this thesis and possible future research directions based on the outcome of 

the present work.  

 

5.1 Findings 

This work proposes two innovative methods called PSOSS and GSOSS incorporating swap 

sequence based velocity/movement calculation, selective search and forceful swap 

application with repair mechanism to solve UCSP.  

The proposed methods differ from existing methods, including many variants of PSO-based 

approaches, where UCSP is transformed into an equivalent floating point numeric domain. 

The proposed PSOSS approach uses a swap sequence based discrete PSO with a number of 

modifications. The velocity swap sequence is managed in two different parts: sequence for 

global best; and sequence combining personal best and previous velocity. A portion of swap 

sequence to global best is considered to be applied forcefully with repair mechanism to 

change other dependent schedules. After applying SOs one by one, the best intermediate 

solution is considered as the final solution based on selective search.  

Proposed GSOSS method utilizes swap sequence for movement of scroungers and dispersed 

members and also uses forceful swap application with repair mechanism for updating both 

the scroungers and dispersed members.  

The results obtained by our proposed PSOSS and GSOSS methods show significant 

improvement in solving UCSP compared to other traditional methods. PSOSS outperformed 

other implemented traditional methods in terms of quality of solutions. 
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5.2 Future Research Directions 

• Proposed PSOSS and GSOSS methods can be utilized to generate schedule for whole 

university instead of a single department.  

• Selective search and forceful swap application with repair mechanism techniques 

introduced in this thesis can be incorporated with other algorithms for solving 

different optimization problems.  

• It would be an interest research topic to see how PSOSS and GSOSS perform 

considering co-teaching constraint.  

• More sophisticated method for improving producer’s solution in case of GSOSS and 

creating an initial random solution considering instructors’ preference may produce 

better results.  
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