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Abstract 

 

 

A Fuzzy relational clustering algorithm (FRC) based on multi-objective non-

dominated sorting genetic algorithm (NSGA-II) called FRC-NSGA-II is proposed 

for automatic data clustering. A given data set is spontaneously promoted into an 

optimal number of groups in a precise fuzzy partition through the fuzzy relational 

clustering algorithm, FRC. FRC operates on a similarity square matrix which is 

generated by comparing the pair wise similarities between data points. Multi-

objective NSGA-II is employed to search for appropriate number of partitions for 

different cluster shapes. Moreover, two well-known cluster validity indices, 

compactness and separation, are optimized concurrently through multi-objective 

NSGA-II where compactness indicates variation between data within a cluster and 

separation means quantifying the separation between different clusters. Real 

encoding schema is used for variable length NSGA-II chromosomes representing 

the variable number of clusters. The simulation result on benchmark data sets 

exhibits that the proposed method gives promising results in the complex, 

overlapped, high-dimensional non-gene and gene expression data sets and it has 

better capability of determining well-separated, hyperspherical and overlapping 

clusters compared with other existing clustering algorithms. 
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CHAPTER I 

 

Introduction 

 

 

1.1  Background 

Fuzzy relational clustering techniques [1,2] are mostly unsupervised data analysis 

methods that can be used to organize data into groups based on similarities among 

the individual data items. In order to obtain appropriate partitioning of complex 

data sets consisting of different shaped clusters, the chosen objective functions 

should treat compactness of clusters along with the ability to deal with 

overlapping clusters. In this case, multi-objective geneic algorithms provide better 

result since they provide flexibility in problem solving by allowing hybridization.  

1.2  Problem Statement 

Fuzzy clustering generally fuzzy C-means [3] requires a-priori knowledge of 

number of clusters. Traditional fuzzy clustering methods use only centroid 

information for clustering. That is why they cannot differentiate the geometric 

structures of clusters due to the compactness and separation measures of fuzzy 

partition. Moreover, an optimization with single objective may not be feasible for 

different cluster shapes. On the other-hand, fuzzy relational clustering problems 

are increasing in a number of different applications. 

1.3  Motivation 

Find a technique to estimate appropriate number of fuzzy clusters without prior 

knowledge on the number of clusters. The overlap-separation measure using an 

aggregation operation of fuzzy membership degrees can be accomplished to 

effectively deal with this limitation. A multi-objective optimization with fuzzy 
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relational clustering is therefore appropriate to search for fuzzy partitions in this 

situation. 

1.4  Objectives 

The objective of this thesis is to develop a fuzzy relational clustering algorithm 

based on multi-objective non-dominated genetic algorithm (NSGA-II) called 

FRC-NSGA-II to obtain appropriate partitioning of complex data sets consisting 

of different geometric shaped clusters. 

This general objective can be divided into the following specific ones: 

 Development of a new multi-objective evolutionary approach to evolve 

optimal data clustering without requiring prediction of the number of 

clusters.  

 Optimization of two objectives: fuzzy Jm index and overlap-separation 

measure simultaneously.  

 Integration of multi-objective genetic algorithm, NSGA-II [4] with fuzzy 

relational clustering so that NSGA-II can be used as multi-objective 

optimization tool and FRC algorithm [27] can be used to generate fuzzy 

clusters from data points.  

 Application of this approach on non-gene and gene expression data sets. 

1.5  Methodology 

Fuzzy relational clustering algorithm (FRC) based on multi-objective non-

dominated sorting genetic algorithm (NSGA-II) called FRC-NSGA-II is proposed 

for automatic data clustering. The FRC-NSGA-II method integrates the multi-

objective optimization, compactness and separation in an optimization process to 

automatically estimate the number of clusters, and then partitions the whole given 

data set to produce the most natural clustering. 

A given data set is spontaneously promoted into an optimal number of groups in a 

precise fuzzy partition through the fuzzy relational clustering algorithm, FRC. 

This FRC operates on a similarity square matrix which is generated by comparing 
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the pairwise similarities between data points. In the fuzzy relational clustering 

process, the degree of membership is assigned into data points by FRC algorithm 

and the data points contain more information than the hard clustering process. 

Moreover, fuzzy relational clustering algorithm operates on Expectation-

Maximization framework.  

Multi-objective NSGA-II [4] is employed to search for appropriate number of 

partitions for different cluster shapes. Moreover, two well-known cluster validity 

indices, compactness and separation, are optimized concurrently through multi-

objective NSGA-II [4] where compactness indicates variation between data 

within a cluster and separation means quantifying the separation between different 

clusters. Real encoding schema is used for variable length NSGA-II [4] 

chromosomes representing the variable number of clusters. Therefore, the multi-

objective evolutionary approach has been developed to evolve optimal data 

clustering without requiring prediction of the number of clusters. 

The proposed approach has been tested on real-life data sets having complex, 

overlapped, high-dimensional non-gene and gene expression. The simulation 

results exhibit that the intended method gives promising results and it has better 

capability of determining well-separated, hyperspherical and overlapping clusters 

compared with other existing clustering algorithms. 

1.6  Scope of the Thesis 

This study focuses on optimization of two cluster validity measures: compactness 

and overlap-separation. This study includes Minkowski score metric to evaluate 

the quality of clustering solution.  

1.7  Contribution of the Thesis 

This thesis focuses on construction of a fuzzy relational clustering approach based 

on fast elitist non-dominated sorting multi-objective genetic algorithm (NSGA-II) 

for discovery of appropriate number of cluster where it smartly creates a finer 

trade-off between fuzzy compactness and fuzzy separation of the clusters for 
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high-dimensional complex data sets. Unlike conventional clustering approaches 

the proposed technique doesn’t require number of clusters to be predefined. This 

work optimizes multiple objectives while partitioning the data set using fuzzy 

relational clustering method.    

1.8  Organization of the Thesis 

 Chapter II presents some of the existing prominent multi-objective data 

clustering schemes while focusing on their limitations. It also includes 

alluring benefits of data clustering by the proposed method. 

 Chapter III presents the relevant theoretical materials. It first describes 

the non-dominated sorting genetic algorithm (NSGA-II) [4] along with its 

essential features such as fast non-dominated sorting, diversity mechanism 

and crowding distance assignment. It then describes the fuzzy relational 

clustering algorithm in detail. It also describes the objective functions used 

in the proposed approach. This chapter also includes detailed description 

of the involved genetic operators such as binary tournament selection, 

SBX operator and polynomial mutation. It also describes the evaluation 

function used for evaluating the non-dominated solutions.   

 Chapter IV presents the proposed system and describes its working 

procedure in detail.  

 Chapter V shows the experimental results of the proposed approach on 

both gene and non-gene data sets. Here it demonstrates the improved 

performance of FRC-NSGA-II in comparison with other single and multi-

objective clustering approaches. 

 Chapter VI lists the results gathered from experiments. It also includes 

what future researches are needed to explore for more desirable data 

clustering.   
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CHAPTER II 

 

Literature Review 

 

 

2.1  Introduction 

This chapter describes some related works based on clustering along with their 

limitations. This chapter also presents how the limitations of the existing methods 

are overcomed by the proposed method.   

2.2  Related Work 

There are a good number of methods [5-26] have been developed for data 

clustering based on multi-objective evolutionary algorithm. Emin Erkan Korkmaz 

et. al. [5] proposed a clustering method on the basis of multi-objective genetic 

algorithm. This method uses a novel encoding scheme that uses links to identify 

clusters in a partition. In a single GA run it can obtain optimal partitioning by 

optimizing two measures: Total within cluster variation (TWCV) and the number 

of clusters in a partition. This method does not need to specify number of clusters 

beforehand. This method is able to encode the solution space in fixed-length 

chromosomes and explores the search space in a suitable manner. This method 

however fails to evolve optimal clusters where the cluster borders are not clear. 

Dipankar and Paramartha [6] proposed a real coded multi-objective genetic 

algorithm based K-clustering which suffers from the limitation of clustering 

categorical features and prediction of the number of cluster. 

J. Handl and J. Knowles proposed a clustering method based on the genetic 

algorithm [7] called MOCK. The algorithm works based on PESA-II with locus 

based chromosome encoding. In their method they have shown that the clustering 

algorithm outperforms the single-objective clustering algorithms and ensemble 
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techniques. However, it performs well for hyperspherical shaped or well-

separated clusters but provides low performance on overlapping clusters [8]. 

Another disadvantage on the locus based encoding is the length of the string, 

which increases with the size of the data set. This imposes expensive computation 

when a large data set is analyzed. 

VAMOSA, developed in [8], is based on multi-objective simulated annealing with 

center-based encoding and the newly developed point symmetry based distance 

from [9]. The approach has been compared with MOCK and other algorithms in 

artificial and real-life data sets of varying shapes, sizes or convexity. It 

successfully determines the appropriate number of clusters and provides overall 

performance better than other algorithms. However, it fails to detect a cluster 

having non-symmetrical shapes. 

J. J. T. Valenzuela [10] proposed a multi-objective optimization environment 

method based on Grouping Genetic Algorithms (GGA) introduced by Emmanuel 

Falkenaeur [11]. This method is able to correctly identify clusters of proteins 

which have a functional interrelationship. This has slow convergence process due 

to greater computational complexity of crossover operation. Moreover it requires 

a greater number of generations to reach convergence. 

David G. Bethelmy [12] proposed multi-objective genetic clustering algorithms 

MOCK and AAMOCK for aspect mining. Due to heuristic nature of MOCK, it 

can only approximate the true Pareto front and so cannot guarantee the overall 

best solution. 

Rafael et. al. proposed a meta-heuristic method for multi-objective clustering 

problem [13] which is based on the tabu and scatter search methodologies. They 

employed cluster centers in their work and they performed experiments using [13] 

Bi-Heur published by Brusco and Cradit(2005).  

A multi-objective clustering algorithm that are defined by exclusively extrinsic 

properties was developed in [14] for clustering data items. These approaches 

optimized two objectives simultaneously: compactness and connectivity where 

the length of chromosome encoding is equal to the number of data points which 
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makes the convergence slower due to larger search space. This technique 

managed complication by introducing a special mutation operator which 

maintained a list of L nearest neighbors for each data point. 

M. H. Law et.al. [15] developed a multi-objective data clustering approach. The 

algorithm consists of a two-step process where it includes detection of clusters 

with diverse shapes and sizes by a set of candidate objective functions as well as 

their integration into the target partition. This method is based on the principle of 

data space partitioning, where different learning algorithms are applied to 

different parts of the data space because clusters in different regions can be of 

different shapes. The problem here is that it uses a wide range of values for the 

parameters involved. It also fails to perform multi-objective clustering when the 

“effective” regions of different clustering objectives overlap significantly.  

Peter peng, et. al., [16] developed a multi-objective K-means genetic algorithm 

(MOKGA) for data clustering. They integrated the two optimization algorithms, 

Fast Genetic K-means Algorithm (FGKA) and the Niched Pareto Genetic 

Algorithm. This clustering approach was developed to deliver a pareto optimal 

clustering solution set for microarray and other data sets. But this method 

supports crisp clustering only and is not capable of identifying outliers.  

Dipankar and Paramartha [17] proposed hybrid elitist real coded multi-objective 

genetic algorithm based K-clustering method for fuzzy clustering of categorical 

data where K represents the number of clusters known apriori. It can work only 

with categorical features and cannot decide optimal value of k. 

K.P.Malarkodi and S.Punithavathy [18] proposed a method named Fuzzy based 

Evolutionary Multi objective Clustering for Overlapping Clusters (FEMCOC) for 

identification of overlapping clusters on complex data sets. Hence, Genetic 

Algorithm with variable length chromosome and local search, and a Fuzzy GA 

with variable length chromosome and local search are coupled with the existing 

Evolutionary Multi objective Clustering approach were used. But this approach 

does not work on well defined fitness functions. 
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Kaushik Suresh et. al. [19] applied the differential evolution (DE) algorithm as 

the optimization algorithm to the task of automatic fuzzy clustering in a Multi-

objective Optimization (MO) framework. A real-coded representation of the 

search variables, accommodating variable number of cluster centers, is used for 

DE. It produces final clustering solutions satisfying multiple objective functions 

and simulation results on various data sets proves its better performance as 

compared to NSGA-II and MOCK. This method cannot handle discrete 

chromosome representation and hence has the restriction to use cluster centroids. 

M. Anusha and Sathiaseelan [20] used  Evolutionary Clustering Multi-objective 

Optimization Algorithm (ECMO) which was the extended work of NL-MOGA 

[21] for analyzing diabetes disease data sets. ECMO generates pareto optimal 

solutions for selected objectives with higher accuracy in short time. However, 

ECMO is not suitable for variety of complex data sets. 

Kartick et. al. [22] proposed a new multi-objective approach MOSCFRA for 

simultaneous clustering and gene ranking. This approach uses a new encoding 

technique and uses two performance measures, CP Index and R Index for this 

purpose. This approach still needs the number of clusters to be predefined and this 

approach fails to detect various cluster shapes. 

Anirban, Ujjwal and Sanghamitra [23] proposed a multi-objective genetic 

algorithm-based approach for fuzzy clustering of categorical data that encodes the 

cluster modes. This approach simultaneously optimizes fuzzy compactness and 

fuzzy separation of the clusters. They also proved a novel method for obtaining 

the final clustering solution from the set of resultant pareto-optimal solutions. This 

method also suffers from trouble of specifying the number of cluster. 

Jun Du, Emin, Reda and Ken [24] presented a linked-list based encoding scheme 

for multiple objectives based genetic algorithm (GA) to identify clusters in a 

partition. A new scheme is proposed for encoding clustering solutions into 

chromosomes. The proposed representation forms a linked-list structure for 

objects in the same cluster. This method efficiently explores the solution space 

but possesses the problem of early mentioning of optimal number of clusters.  
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Sanghamitra, Anirban and Ujjwal [25] proposed a two-stage clustering algorithm 

(SiMM-TS) for clustering gene expression data using the idea of points having 

significant membership to multiple classes (SiMM points). A VGA-based 

clustering scheme and a MOGA-based clustering technique is utilized in the 

process. This method automatically determines the number of cluster but cannot 

perform well for overlapped clusters. 

In [26] Tansel Özyer and Reda performed the clustering task of high dimensional 

data by multi-objective genetic algorithm integrated with divide and conquer 

strategy. Their work partitions a large data set into subsets of manageable sizes 

and then clusters the partitions separately in parallel. This suits well for 

interactive online clustering and facilitates for incremental clustering because 

chunks of instances are clustered as stand alone sets, and then the results are 

merged with existing clusters. This approach is capable to automatically estimate 

the number of clusters for large and high dimensional data sets but this work 

makes heavy use of cluster centroid and is not well tested for overlapping clusters.  

The proposed work in this thesis is efficient enough to address the shortcomings 

of most of the aforementioned works. This method is able to automatically 

determine optimal number of partitions with relatively faster convergence to near 

true pareto optimal front while discovering clusters of various shapes for various 

high dimensional and overlapping data sets without any prior knowledge of the 

number of clusters. This method is reliable enough to reach convergence in fewer 

numbers of generations. Moreover, differences between the previous approaches 

lie mainly in the type of multi-objective GA coding and how objective functions 

are optimized simultaneously. Simulation results demonstrate its supreme 

capability to produce significantly better clustering result in comparison with 

other single and multi-objective approaches. 
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CHAPTER III 

 

Theoretical Considerations 

 

 

3.1  Introduction 

This chapter describes the theoretical considerations of the proposed 

methodology. The multi-objective NSGA-II is first discussed along with its 

several features. The Fuzzy Relational Clustering (FRC) used in the proposed 

method is then described in details. The objective functions employed in the 

proposed approach are then presented. The clustering solution evaluation function 

is also given.    

3.2  NSGA-II 

The NSGA-II [4] is an exoteric non-domination based genetic algorithm for 

optimizing multi-objectives. In a sphere of multi-objective optimization, Pareto-

optimal solutions are discovered by examining the solution domain using NSGA-

II. It uses the better elitism and diversity. It has better non-domination sorting and 

no extra niching parameter (such as sharing parameter needed in the NSGA) is 

required. The non-dominated solution among the parent get favor from the feature 

elitism and here the good solution will never be lost until a better fitted solution is 

found. The different solutions are found from the near Pareto-optimal solution set 

of the final generation. 

In the process of NSGA-II, it discovers the non-dominated solutions and finds the 

Pareto front from the Pareto-optimal solutions. It maintains a diversity rank to 

entire individuals containing identical non-dominated front by crowding 

comparison process. The individuals with lower rank or larger crowding distance 

are selected as parents by binary tournament selection. Through higher rank, the 

individuals are dispended for each non-dominated front. Based on crowding 
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distance on the last front and on rank from the current population, it selects only 

best N individuals as parents for the next generation and sorts the generated 

offspring according to non-domination.  

The following are some features of NSGA-II. 

3.2.1  Fast Non-dominated Sorting 

In NSGA-II, the individuals are sorted based on non-domination in each front. 

The first front is one which is not dominated by any other individuals and the 

second front is one which is only dominated by individuals whose front number 

are 1 and so on. Based on front to which the individuals belong, the fitness value 

of the individuals are assigned. Hence, two entities are calculated for each 

solution: a) domination count np, where p solution is dominated by np number of 

solutions  b) Sp, solution set dominated by solution p. In the fast non-dominated 

sorting process, If p dominates q, add q to the set Sp; else increment the 

domination counter np. If np = 0, p belongs to the first front and also initialize the 

front counter and find all other fronts for each element of Sp.  

for each p ∈ 𝑃 

     𝑆𝑝 = ∅ 

     𝑛𝑝 = 0 

     for each q ∈ 𝑃 

            If  𝑝 ⊰ 𝑞  then                          If p dominates q   

                  𝑆𝑝 = 𝑆𝑝 ∪  𝑞                     Add q to the set of solutions         

dominated by p  

            else if  𝑞 ⊰ 𝑝  then 

                  𝑛𝑝 = 𝑛𝑝 + 1                        Increment the domination 

counter of p 

     if 𝑛𝑝 = 0 then                                   p belongs to the first front     

            𝑝𝑟𝑎𝑛𝑘 = 1 

          ℱ1 = ℱ1 ∪  𝑝  

i = 1                                                        Initialize the front counter    

while ℱ𝑖 ≠ ∅ 

     Q = ∅                                                 used to store the members of 

the next front 

                                                

      for each p ∈ ℱ𝑖  
           for each q ∈ 𝑆𝑝  
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                 𝑛𝑞 = 𝑛𝑞 − 1 

                 if 𝑛𝑞 = 0 then                         q belongs to the next front 

                     𝑞𝑟𝑎𝑛𝑘 = 𝑖 + 1 

                     Q = Q ∪  𝑞  
i = i + 1 
ℱ𝑖 = 𝑄 

Algorithm 3.1: NSGA-II non-dominated sorting procedure. 

3.2.2  Diversity Mechanism 

In the original NSGA, it contains two difficulties with sharing function system 

those are choosing appropriate σshare value and comparing each solution to each 

other which creates high complexity. In the NSGA-II, it replaces the sharing 

function with a crowded-comparison process. Here, it uses a density estimation 

and crowed-comparison operator based on sorting. 

3.2.3  Crowding Distance Assignment 

The crowding-distance computation requires sorting the population according to 

each objective function value in ascending order of magnitude. Thereafter, for each 

objective function, the boundary solutions (solutions with smallest and largest 

function values) are assigned an infinite distance value. All other intermediate 

solutions are assigned a distance value equal to the absolute normalized difference 

in the function values of two adjacent solutions. This calculation is continued with 

other objective functions. The overall crowding-distance value is calculated as the 

sum of individual distance values corresponding to each objective. Each objective 

function is normalized before calculating the crowding distance. The algorithm as 

shown below outlines the crowding-distance computation procedure of all 

solutions in an non-dominated set I. 
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l = | I | 

for each i, set I[i]distance = 0 

for each objective m 

     I = sort(I, m) 

     I[1]distance = I[l]distance = ∞ 

     for i = 2 to (l - 1)  

          I[i]distance = I[i]distance + 
 𝐼 𝑖+1 ∙𝑚−𝐼 𝑖−1 ∙𝑚 

 𝑓𝑚
max −𝑓𝑚

min  
 

Algorithm 3.2: Crowding distance assignment in NSGA-II. 

 

 

Figure 3.1: Crowding distance calculation for i
th
 solution. 

Here, I[i].m refers to the m
th

 objective function value of the i
th

 individual in the set 

I and the parameters 𝑓𝑚
𝑚𝑎𝑥  and 𝑓𝑚

𝑚𝑖𝑛  are the maximum and minimum values of the 

m
th

 objective function. The complexity of this procedure is governed by the sorting 

algorithm. Since M independent sortings of at most N solutions (when all 

population members are in one front I ) are involved, the above algorithm has 

O(MN log N) computational complexity. 

After all population members in the set I are assigned a distance metric, two 

solutions can be compared for their extent of proximity with other solutions. A 

solution with a smaller value of this distance measure is, in some sense, more 

crowded by other solutions. This is exactly what is compared in the proposed 

crowded-comparison operator. Although Figure 3.1 illustrates the crowding-
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distance computation for two objectives, the procedure is applicable to more than 

two objectives as well. 

3.3  Fuzzy Relational Clustering Algorithm (FRC) 

The fuzzy relational clustering algorithm called FRC [27] has been proposed in 

this study for clustering of complex relational data set. 

FRC uses graph representation in which nodes represent objects, and weighted 

edges represent the similarity between objects. This algorithm operates in an 

Expectation Maximization framework in which the graph centrality of an object 

in the graph is interpreted as likelihood. 

DataRank [27] can be used within the Expectation-Maximization [27] algorithm 

to optimize the parameter values and to formulate the clusters. The modified 

DataRank algorithm [27] to deal with weighted undirected edges of a graph 

representing objects with nodes V. 

DR 𝑉𝑖 =  1 − 𝑑 + 𝑑 ×   𝑤𝑗𝑖
𝐷𝑅 𝑉𝑗  

 𝑤𝑗𝑘
𝑁
𝑘=1

 𝑁
𝑗=1                                                 (3.1)             

where 𝑤𝑗𝑖  is the similarity between 𝑉𝑗  and 𝑉𝑖 , and it is assumed that these weights 

are stored in a matrix W =  𝑤𝑖𝑗  , which is referred to as the “affinity matrix”.  

The algorithm involves the following steps:  

Initialization: Firstly, cluster membership values are initialized randomly, and 

normalized in this that cluster membership for an object sums to unity over all 

clusters. Mixing coefficients are initialized such that priors for all clusters are 

equal.  

Expectation: Calculates the DataRank value for each object in each cluster. 

Calculation of DataRank values requires affinity matrix weights 𝑤𝑖𝑗  obtained by 

scaling the similarities by their cluster membership values [27]; i.e., 

𝑤𝑖𝑗
𝑚 = 𝑠𝑖𝑗 × 𝑝𝑖

𝑚 × 𝑝𝑗
𝑚                                                                                         (3.2) 
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where 𝑤𝑖𝑗
𝑚  is the weight between objects i and j in cluster m, 𝑠𝑖𝑗  is the similarity 

between objects i and  j, and 𝑝𝑖
𝑚  and 𝑝𝑗

𝑚  are the respective membership values of 

objects i and j to cluster m. The intuition behind this scaling is that an object’s 

entitlement to contribute to the centrality score of some other object depends not 

only on its similarity to that other object, but also on its degree of membership to 

the cluster. Likewise, an object’s entitlement to receive a contribution depends on 

its membership to the cluster. Once DataRank scores have been determined, these 

are treated as likelihoods and used to calculate cluster membership values. 

Maximization: Updating the mixing coefficients based on membership values 

calculated in the Expectation Step. 

The FRC algorithm [27] is described as follows where 𝑤𝑖𝑗
𝑚 , 𝑠𝑖𝑗 , 𝑝𝑖

𝑚  and 𝑝𝑗
𝑚  are 

defined as above, 𝜋𝑚  is the mixing coefficient for cluster m, 𝐷𝑅𝑖
𝑚  is the 

DataRank score of object i in cluster m, and 𝑙𝑖
𝑚  is the likelihood of object i in 

cluster m. 

The FRC Algorithm: 

Input: Pairwise similarity values S = { 𝑠𝑖𝑗  | i = 1,....,N, j = 1,....,N } where 𝑠𝑖𝑗  is 

the similarity between objects i and j. Number of clusters, C. 

Output: Cluster membership values { 𝑝𝑖
𝑚  | i = 1,....,N, m = 1,....,C } 

1. //   INITIALIZATION 

2. //   initialize and normalize membership values   

3. for i = 1 to N 

4.        for m = 1 to C    

5.               𝑝𝑖
𝑚  = rnd                     //   random number on [0, 1]      

6.        end for              

7.        for m = 1 to C  

8.              𝑝𝑖
𝑚  = 𝑝𝑖

𝑚  /  𝑝𝑖
𝑗𝐶

𝑗=1      //   normalize    

9.        end for 

10.  end for 

11.  for m = 1 to C  

12.         𝜋𝑚  = 1/C                        //   equal priors        

13.  end for 

14. repeat until convergence   
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15.        //   EXPECTATION STEP 

16.        for m = 1 to C 

17.               //   create weighted affinity matrix for cluster m   

18.              for i = 1 to N   

19.                    for j = 1 to N   

20.                             𝑤𝑖𝑗
𝑚  = 𝑠𝑖𝑗 × 𝑝𝑖

𝑚 × 𝑝𝑗
𝑚  

21.                    end for   

22.              end for 

23.                 // calculate DataRank scores for cluster m 

24.               repeat until convergence 

25.                   𝐷𝑅𝑖
𝑚  =  1 −  𝑑  + d ×  𝑤𝑗𝑖

𝑚  𝑁
𝑗=1  

𝐷𝑅𝑗
𝑚

 𝑤𝑗𝑘
𝑚𝑁

𝑘=1
       

26.               end repeat 

27.               // assign DataRank scores to likelihoods  

28.               𝑙𝑖
𝑚  = 𝐷𝑅𝑖

𝑚  

29.         end for 

30.         // calculate new cluster membership values 

31.         for i = 1 to N 

32.              for m = 1 to C 

33.                      𝑝𝑖
𝑚  =  𝜋𝑚 ×  𝑙𝑖

𝑚  /   𝜋𝑗 × 𝑙𝑖
𝑗
 𝐶

𝑗=1  

34.              end for  

35.         end for 

36.          // MAXIMIZATION STEP 

37.          // Update mixing coefficients 

38.         for m = 1 to C                 

39.                    𝜋𝑚  = 
1

𝑁
  𝑝𝑖

𝑚𝑁
𝑖=1  

40.         end for 

41. end repeat 

3.4  Objective Functions 

In this study, two objective functions have been considered which are based on 

two indexes: compactness and separation. The compactness indicates variation 

between data within a cluster or between data and cluster centroids, and it must be 

kept small. The separation measures the isolation of clusters, which is preferred to 

be large. 
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Figure 3.2: Two partitions having equal distance between centroids. 

If only compactness or separation is considered in a single-objective optimization 

of clustering, some limitations may degrade the performance of the optimization 

problem. The drawback of compactness is well known that it suffers from a 

monotonic decrease with increasing number of clusters [28-29]. For the 

traditional separation, its disadvantage has been raised in [28]. Separation 

considering inter-distance measurement between cluster centroids cannot 

correctly detect geometric structures. As demonstrated in Figure 3.2, the distance 

from centroids P to Q in the partition A compared to the distance between U and 

V in the partition B are equal. In terms of the traditional measure of inter-cluster 

distance, these two partitions have the same property of separation but intuitively 

partition B is shown to have more separation. It can be seen that the measurement 

of centroid distance only can misjudge the separation of clusters because the 

overall shape is not considered. This leads to limited information about cluster 

structures. 

P Q 

V U 

Partition A 

Partition B 
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In order to solve the aforementioned problems, two objectives are optimized 

simultaneously in the multi-objective optimization of FRC-NSGA-II. These 

objectives are based on compactness together with overlap and separation 

measure.  

Let X= {𝑥1, 𝑥2, … . , 𝑥𝑘} be data points of M patterns, where each pattern 𝑥𝑘  is a 

vector of features in 𝑅𝑛  (n-dimensional space). C is the number of clusters.  

The compactness is formulated by the objective function Jm proposed by Bezdek 

[30] as shown in Eq. (3.3)[56]. 

Jm 𝑈, 𝑉 =    𝑢𝑖𝑘 
𝑚𝐶

𝑖=1
𝑀
𝑘=1 𝑑𝑖𝑘

2
                                                                                                       (3.3) 

where 𝑑𝑖𝑘
2

 denotes the squared Euclidean distance calculated in n-dimensional 

space. Squared Euclidean distance calculates a distance from a data point 𝑥𝑘  to a 

cluster center 𝑣𝑖  as follows [56]: 

𝑑𝑖𝑘
2 =   𝑥𝑘𝑗 − 𝑣𝑖𝑗  

2𝑛
𝑗=1 , 1≤ 𝑘 ≤ 𝑀,1≤ 𝑖 ≤ 𝐶 

The distance is used in the calculation of membership degree in Eq. (3.4)[56] 

𝑢𝑖𝑘 =
1

  
𝑑𝑖𝑘
𝑑𝑗𝑘

 

2
 m−1  

𝐶
𝑗=1

 , 1≤ 𝑘 ≤ 𝑀,1≤ 𝑖 ≤ 𝐶                                                     (3.4) 

𝑢𝑖𝑘  denotes a degree of membership of 𝑥𝑘  in the i
th 

cluster. m>1 is a parameter 

which controls a degree of fuzziness. This means that each data pattern has a 

degree of membership in every cluster.  

The sum of the squared error is measured by the squared Euclidean distance from 

a pattern to each centroid with the weight  𝑢𝑖𝑘 
𝑚 . The aim is to minimize 𝐽𝑚  to 

optimize compactness taking into account distance and degree of membership.  

Overlap and separation measure (overlap-separation for short) is the second 

objective that has a functionality to tackle the overlapping problem and to solve 

the problem of centroid separation as shown in Figure 3.2. This measure is based 

on an aggregation operation of fuzzy membership degrees. There are two parts for 
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this index. The first part is the overlap measure proposed by [31,29], which 

computes an inter-cluster overlap using fuzzy degrees as shown in Eq. (3.5).  

O⊥  𝑢𝑘 𝑥𝑘 , 𝐶 =
1
⊥

𝑙 = 2, 𝐶
 

𝑙
⊥

𝑖 = 1, 𝐶
𝑢𝑖𝑘                                                         (3.5) 

A pattern 𝑥𝑘  has membership vector𝑢𝑘 𝑥𝑘 =  𝑢1𝑘 , … . , 𝑢𝑐𝑘 . The ambiguity 

measurement of several membership values requires an aggregation operator 

(AO). The AO applied here is based on triangular norms (t-norms) for l-order 

ambiguity measurement. The standard t-norm and t-conorm are used in this 

aggregation. The standard t-norm has the basic property that a ┬ b = min(a, b) 

and for the standard t-conorm a ⊥ b = max(a, b). With a single value 
𝑙
⊥
𝑢𝑘 ∈ [0, 

1], the l-order fuzzy-OR operator (fOR-l) which is the combination of a dual 

couple (┬⊥) [32] is associated with 𝑢𝑘 , defined by 

𝑙
⊥

𝑖 = 1, 𝐶
𝑢𝑖𝑘 = ⟙

𝐴𝜖Ƥ𝑙−1

 ⊥
𝑗∈𝐶\𝐴

𝑢𝑗                                                                                 (3.6) 

Ƥ denotes the power set of C= {1,2, … . , 𝑐} and Ƥl = { A ϵ Ƥ : | A | = l },where | A | 

denotes the cardinality of the subset A. From Eq. (3.6), the sorting in decreasing 

order  𝑢1 ≥. . . ≥ 𝑢𝐶  is obtained, and then, the l
th

 highest value is chosen. We 

apply l=2 (i.e., ambiguity measures between two classes) so that the second 

largest element of 𝑢𝑘  can be used. 

For the separation measure [28], the maximum degree of  𝑢𝑖𝑘𝑖=1,𝐶
max  is taken into 

account. Therefore, the overall overlap-separation (OS) measure for M patterns is 

defined as follows: 

OS=
1

𝑀
 

𝑂⊥ 𝑢𝑘 𝑥𝑘 ,𝐶 

𝑚𝑎𝑥
𝑖=1 ,𝑐𝑢 𝑖𝑘

𝑀
𝑘=1                                                                                      (3.7) 
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3.5  Genetic Operators 

In the FRC-NSGA-II clustering method, solutions have to be optimized in 

continuous search space according to the real-coded string representation of 

cluster centers. The stochastic search for the real-coded string is made possible by 

the binary tournament selection [33], the simulated binary crossover (SBX) 

operator [33] and the polynomial mutation operator in [34]. 

3.5.1  Binary Tournament Selection 

In NSGA-II, the binary tournament selection is used to select parents to create the 

new generation. Two individuals are randomly chosen to play a tournament and a 

winner is chosen by the crowded comparison operator ( ⊰𝑛 ). This operator 

considers two attributes which are non-domination rank (𝑖𝑟𝑎𝑛𝑘 ) and crowding 

distance (𝑖𝑑𝑖𝑠𝑡 ). Let two individuals be i and j, the crowded comparison operator 

⊰𝑛  is defined as:  

i ⊰𝑛   j  if  𝑖𝑟𝑎𝑛𝑘 < 𝑗𝑟𝑎𝑛𝑘   

or ( 𝑖𝑟𝑎𝑛𝑘 = 𝑗𝑟𝑎𝑛𝑘   

and  𝑖𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 > 𝑗𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒  ) 

The lower rank is preferred if two individuals are in different ranks. If both 

individuals are in the same front (same rank), the solution with lesser crowded 

region is chosen. 

3.5.2  SBX Operator 

The SBX operator [33] performs similarly to the search power of a single-point 

crossover on binary strings and maintains the interval schemata processing in 

continuous variables instead of discrete variables. To control how children are 

different from their parents, a spread factor 𝛽  is defined under the probability 

distribution function: 

C 𝛽 =
0.5 𝜂𝑐+1 

1

𝛽𝜂𝑐+2 ,   otherwise

0.5 𝜂𝑐+1 𝛽𝜂𝑐 ,         if 𝛽≤1
                                                                 (3.8) 
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The value of the distribution index ƞc which is any non negative real number has 

an impact on the spread of child solutions from parent solutions. A large value of 

ƞc gives a high probability of obtaining children solutions near to parent solutions 

whereas a small value of ƞc allows children far from their parents. From the 

probability distribution in Eq. (3.8), 𝛽 is a random variable which makes the area 

under the probability curve equal to a uniform random number u(0, 1), as follows: 

𝛽 =
 2𝑢 

1
𝜂𝑐+1   ,          𝑖𝑓 𝑢≤0.5

 
1

2 1−𝑢 
 

1
𝜂𝑐+1   ,𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                                          (3.9) 

To obtain children solutions, two parent solutions P and Q are selected from a 

mating pool by the binary tournament selection. Thereafter, a random number u is 

generated and 𝛽  is calculated from Eq. (3.9). Consider P =  𝑝1,∙∙∙∙, 𝑝𝑛  and 

Q=  𝑞1,∙∙∙∙, 𝑞𝑛 ,  where n is the length of strings. Two children 𝑐𝑖
1  and 𝑐𝑖

2  are 

calculated in Eqs. (3.10) and (3.11).  

𝑐𝑖
1 = 0.5  1 + 𝛽 𝑝𝑖 +  1 − 𝛽 𝑞𝑖                                                                    (3.10) 

𝑐𝑖
2 = 0.5  1 − 𝛽 𝑝𝑖 +  1 + 𝛽 𝑞𝑖                                                                    (3.11) 

Since each chromosome in the population has different lengths, the chromosomes 

of two parents may have equal or different lengths. In case their lengths are equal, 

the crossover operation can be illustrated in Figure 3.3. Let two parents P=

 𝑝1, 𝑝2, 𝑝3, 𝑝4  and Q=  𝑞1, 𝑞2, 𝑞3, 𝑞4  denote parent solutions with four cluster 

centers, where each 𝑝𝑖  and 𝑞𝑖  is a vector of features. Two children A and B are 

created. In uniform crossover, the decision to perform crossover on each pair of 

centers from parents is with a probability 0.5 [33]. In this example, the crossover 

operation does not perform on position 3, the value of 𝑝3  and 𝑞3  are directly 

copied to position 3 of strings A and B, respectively. Positions 1, 2 and 4 have 

new values 𝑎1, 𝑎2, 𝑎4 and 𝑏1, 𝑏2, 𝑏4 on A and B, respectively. 
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The new values of centers for two children are calculated from Eqs. (3.10) and 

(3.11) by the SBX procedure.  

 

 

 

 

3.5.3  Mutation Operator 

The polynomial mutation operator defined in [34, 35] is applied with a low 

probability to perturb a solution for the new population. The result of mutation is 

controlled by a probability distribution: 

Ƥ 𝛿 = 0.5 ƞ
𝑚

+ 1  1 −  𝛿  ƞ𝑚                                                                     (3.12) 

Two parents 

String B String Q 

String P String A 

Two children 

p1 p2 p3 p4 

q1 q2 q3 q4 

p6 p5 a1 a2 a3 p4 

b1 b2 b3 b4 

p6 a5 
perform 

crossover 

new value 

value copied from parent 

p1 p2 p3 p4 

q1 q2 q3 q4 

Two parents 

String P 

a1 a2 p3 a4 

b b2 q3 b4 

Two children 

String A 

perform 

crossover 

String Q String B 

new value 

value copied from parent 

Figure 3.3: Crossover operation for two chromosomes with same length. 

Figure 3.4: Crossover operation for two chromosomes with different length. 



23 
 

From the above distribution, the perturbation factor 𝛿 can be calculated according 

to a random number 𝑟𝑖  in the range  0,1  and the distribution index ƞ
𝑚

, as 

follows: 

δi =
 2𝑟𝑖 

1
 ƞ𝑚+1  

− 1 ,                    if  𝑟𝑖 < 0.5

1 −  2 1 − 𝑟𝑖  
1
 ƞ𝑚+1  

 , if  𝑟𝑖 ≥ 0.5

                                                 (3.13) 

One parent is chosen as 𝑥𝑖  which is the value of the i
th

 cluster. 𝑥𝑖
𝐿  and 𝑥𝑖

𝑈  are the 

lower and upper bound of 𝑥𝑖 , respectively. The mutated value 𝑦𝑖  is therefore 

calculated by  

𝑦𝑖 = 𝑥𝑖 +  𝑥𝑖
𝑈 − 𝑥𝑖

𝐿 𝛿𝑖                                                                                      (3.14) 

3.6  Selection and Evaluation of the Solution Set 

In the final generation, the FRC-NSGA-II algorithm produces a set of non-

dominated solutions whose number varies according to the population size. All 

the solutions are considered to be equal in terms of fitness values compromised by 

the two objectives. In most real world problems, a single solution must be chosen 

out of this set. 

Here the selection mechanism presented in [8] is deployed where a semi-

supervised method has been used. The class label of 10% of the whole data set is 

assumed to be known. The remaining 90% of the sample has no class label 

information provided and FRC-NSGA-II executes on these unknown label 

samples called test patterns. After the clustering procedure in the multi-objective 

optimization has finished, patterns are grouped in their corresponding clusters but 

class labels of clusters have not been defined. The class labels are later assigned 

by the following procedure. In [8], the assignment of class labels is based on the 

nearest center criterion. In FRC-NSGA-II, the fuzzy degree of membership is 

combined with the center-based criterion in the class label assignment. First, each 

known label sample is mapped to a cluster corresponding to the maximum degree 

of membership. Second, a frequency table is built by the frequency of the samples 
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that fall in their mapped clusters. In the final step, the label of the cluster is chosen 

from the known label of the samples having the maximum frequency. If 

frequencies between the groups are equal, the cluster label is assigned by the label 

of the sample that has the maximum fuzzy degree with the corresponding cluster. 

After the label assignment procedure, the Minkowski score (MS) according to [8] 

is computed to measure the amount of misclassification as shown in Eq. (3.15). 

Consider the true solution set T and the solution set to be measured S. The 

measure is defined by the number of point-pairs assignments of data items 

between T and S. 𝑛11  denotes the number of point-pairs that are in the same class 

in both S and T. 𝑛01  and 𝑛10  represents the mismatched number of point-pairs 

between the two sets. 𝑛01  denotes the number of point-pairs that are in S only, and 

𝑛10  denotes the number of point-pairs that belong to T only. A lower score 

indicates a better solution. After the scores of all non-dominated solutions have 

been calculated, the solution with the minimum score is chosen as the best 

solution.   

MS 𝑇, 𝑆 =  
𝑛01 +𝑛10

𝑛11 +𝑛10
                                                                                                 (3.15) 

3.7  Summary 

This chapter presents the working procedure of multi-objective NSGA-II  

followed by representation of the fuzzy relational clustering, FRC along with its 

pseudocode. The objective functions used in the proposed approach were then 

described. The involved genetic operators named binary tournament selection, 

simulated binary crossover and polynomial mutation are also discussed.   
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CHAPTER IV 

 

Proposed Method 

 

 

4.1  Introduction 

This chapter describes the concept, working principle of proposed fuzzy relational 

clustering algorithm based on multi-objective genetic algorithm called FRC-

NSGA-II in detail.  

4.2  Proposed Method: Fuzzy Relational Clustering  

In this study, we propose an evolutionary fuzzy relational clustering (FRC) 

algorithm called FRC–NSGA-II by combining FRC with NSGA-II algorithm in 

which it sustains the goodness of both FRC and NSGA-II algorithms. The overall 

block diagram of the proposed system is shown in the Figure 4.1. The details 

description of our proposed algorithm is as follows: 

Data in n-dimensional Space: The n-dimensional data set (non-gene/gene 

expression) without the prior knowledge of number of cluster is used as the input 

of the proposed fuzzy relational clustering as shown in Figure 4.1. 

Non-dominated Sorting GA (NSGA-II): NSGA-II has been applied as an 

optimization framework for multi-objective optimization of appropriate fuzzy 

relational clusters. NSGA-II smartly creates a finer trade-off between two 

objectives named compactness and overlapping/separation. It assigns the 

appropriate number of cluster and optimizes multiple clustering validity measures 

simultaneously for yielding robust clustering solutions. It seeks a great coverage 

of solutions and faster convergence close to the near true Pareto-Optimal front.  
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Fuzzy Relational Clustering (FRC): FRC method assigns membership values to 

each data point. It takes a relational input data which is in the form of a 

similarity’s square matrix between data objects. The Data-Rank score of an object 

within some cluster is interpreted as likelihood and then the Expectation-

Maximization (EM) framework is used to determine cluster membership values 

and mixing coefficients.  

In the expectation-maximization steps, likelihood is the graph centrality of an 

object in the graph. In Expectation Step, it calculates the value of DataRank for 

each object in each cluster using the affinity matrix weights. In Maximization step, 

based on the Expectation step’s calculated membership values of cluster, mixing 

coefficients are updated.  

Figure 4.1: Overall block diagram of the proposed system. 
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Objective functions: The objective functions  for two well-known cluster validity 

indices, compactness and separation, are optimized concurrently through multi-

objective NSGA-II where compactness indicates variation between data within a 

cluster and separation means quantifying the separation between different 

clusters. These objective functions enable to obtain expected results in case of 

well-separated, hyperspherical and overlapping clusters. 

Non-dominated data clustering method: The non-dominated solutions are 

generated in this phase. In a solution domain a solution is Pareto-optimal if it 

denies domination from other solutions.   

Semi-supervised fuzzy selection: This phase performs fuzzy clustering of non-

dominated solutions. 

Output solution: The Minkowski score is assessed for all the non-dominated 

solutions of the final generation. The non-dominated solution with lowest 

Minkowski score is then chosen as the single best solution. 

Comparison: The solution obtained from the proposed method is compared with 

those from other existing methods.    

The overall functional block diagram in detail of the proposed algorithm is 

presented in Figure 4.2. 

The initial numbers of clusters are generated from a uniform distribution over the 

range 2 to  𝑀  which is recommended by [8] where M is the number of data 

points. The values of fitness are then computed according to the two objectives 

detailed in chapter 3. Thereafter the fast non-dominated sorting and crowding 

distance assignment of NSGA-II are applied. 
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After the first generation, the NSGA-II operators then produce child solutions 

(chromosomes) in the evolutionary process through simulated binary crossover 

(SBX) and mutation operators. The parent and child solutions are then merged to 

2N solutions but only N individuals are chosen after the non-dominated sorting 

and finish the procedure of crowded comparison. The process runs and searches 

for non-dominated front solutions until it meets the termination criterion. In this 

study maximum number of generation is used as the termination criteria. Finally, 

the non-dominated solutions are obtained. On each solution, each data point is 

assigned into a cluster corresponding to its maximum degree of membership.  

For solving the fuzzy clustering problem, the FRC–NSGA-II algorithm can be 

explained as follows: 
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Figure 4.2: Functional block diagram of FRC-NSGA-II. 
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Algorithm 4.1: FRC-NSGA-II for clustering 

Input: High dimensional data points, N. 

Output: K clusters while minimizing/maximizing multiple objectives. 

1. Initialize parameters. 

 population size 

 number of objective functions 

 number of generations 

 minimum and maximum limit of the encoded variable for                                                         

cluster number 

 cluster fuzziness 

2. Form initial population. 

3. Fitness evaluation of solutions. 

4. Estimates cluster number and delivers it to FRC. 

//  FRC execution begins 

5. Assign membership values to data points randomly and nomalize them. 

6. While until convergence  

7.                      repeat 

8.                              generate affinity matrix. 

9.                              estimate datarank scores. 

10.                              transform datarank scores to likelihoods. 

11.                      end repeat 

12. Update cluster membership of datapoints. 

13. Update mixing coefficients based on new cluster membership values. 

14. End While. 

//  FRC execution ends with deliverance of membership values 

15. Fitness values are calculated using membership values found from FRC 

for each chromosome in the population. 
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16. Ranking of the individuals in the population is performed by  

a) Fast non-dominated sorting process 

b) Crowding distance calculation. 

17. Produce new population filled with child chromosomes generated by 

selection, crossover and mutation manipulations on individuals in parent 

population. 

18. Parent population replaced by new population. 

19. Repeat step 3 if termination criterion is not met. 

20. Non-dominated solution set is returned. 

 

 

 

  



31 
 

CHAPTER V 

 

Simulation Results 

 

 

In this chapter, experimental data sets and implementation results are presented in 

order to interpret the effectiveness of the proposed fuzzy relational clustering 

algorithm called FRC-NSGA-II based on multi-objective NSGA-II algorithm.  

5.1  Data Sets 

The proposed approach has been applied on two categories of data sets: non-gene 

and gene expression data sets. 

5.1.1  Difference between Non-gene and Gene Expression Data Sets 

A non-gene data set consists of many instances which are comprised of several 

attributes. The instances are distributed over some classes depending upon certain 

conditions. 

A Gene expression data set contains values collected from DNA microarray gene 

expression profile of the respective disease. Each gene expression data set has 

several samples collected from relative disease patients. These samples are 

assigned to some predefined classes depending on the subtype of that disease. 

5.1.2  Non-gene Expression Data Sets 

In order to validate the proposed model, it is first examined on eleven well known 

non-gene expression data sets. Among the eleven non-gene expression 

experimental data sets, seven data sets are artificial and another four data sets are 

real. Based on these data sets, implementation results are illustrated and compared 

with other existing multi-objective and single-objective clustering algorithms.  
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Real life non-gene expression data sets (Iris, Glass, Wine and Liver-Disorder) are 

collected from the UCI Machine Learning Repository (Chang et al., 2009) [36] 

for experimental purpose. The artificial non-gene data sets are AD_5_2 [37], 

AD_10_2 [38], Square-1, Square-4, Long-1, Sph_5_2 and Sph_6_2. Table 5.1 

shows the brief description of non-gene data sets, where D is the number of 

features, K is the number of clusters, M is sample size and Mi is the number of 

members in cluster i. 

Table 5.1: Summary of non-gene expression data sets 

DataSet D K M Mi 

AD_5_2 2 5 250 5 ×  50 

AD_10_2 2 10 500 10 ×  50 

Square-1 2 4 1000 4 ×  250 

Square-4 2 4 1000 4 ×  250 

Long-1 2 2 1000 2 ×  500 

Sph_5_2 2 5 250 5 ×  50 

Sph_6_2 2 6 300 6 ×  50 

Glass 9 6 214 70, 76, 17, 13, 9, 29 

Wine 13 3 178 59, 71, 48 

Iris 4 3 150 50, 50, 50 

Liver-

Disorders 

6 2 341 142, 199 

 

The non-gene data sets shown in the Table 5.1 have the following features: 

 AD_5_2: This data set contains five classes with highly overlapped data. 

The data set has 250 data points with 50 data points in each cluster 

 AD_10_2: This data set contains ten classes which are equal in size. The 

data set has 500 data points each of which has two attributes.  

 Square-1: This data set contains four classes which are well separated and 

equal in size. The data set has 1000 data points each of which has two 

attributes. It is generated by normal distributions with a standard deviation 

of two in both dimensions. 

 Square-4: The data set contains four classes of equal size. The data set has 

1000 data points each of which has two attributes. It is generated by normal 

distributions with a standard deviation of two in both dimensions.  
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 Long-1: This data set contains two long shaped clusters with 1000 

instances. 

 Sph_5_2: This data set comprises 250 instances each of which has two 

attributes. The data set contains five classes of equal size. 

 Sph_6_2: This data set comprises 300 instances which are divided into six 

classes of equal size. 

 Glass: This data set contains 214 data points which are distributed over six 

classes of unequal size. 

 Wine: This data set consists of 178 instances which are divided into three 

classes. Each data point has thirteen chemical attributes. 

 Iris: This data set contains 150 instances which are distributed over three 

classes of equal size. Each instance is described by four physical attributes 

which are length and width of sapals and petals. 

 Liver-Disorders: This data set comprises 341 data points which are 

divided into two classes. Each data point has six attributes. 

5.1.3  Gene Expression Data Sets 

DNA microarray gene expression data enables us to monitor expression patterns 

of thousands of genes simultaneously. In the field of medical diagnosis, biological 

research and development, there exists many applications using microarray 

technology. Clustering of microarray gene expression data is used to group the 

sets of co-expressed genes with similar expression characteristics. Clustering 

biomedical data is challenging due to their noise, high dimensionality, limited 

amount of samples and abundance of redundancy among genes. 

There are many benchmark microarray data sets in the field of cancer gene 

expression analysis, including Leukemia cancer data set [39], Lymphoma cancer 

data set [40], Prostate Tumor cancer data set [41], Colon cancer data set [55], 

Breast cancer data set and Ovarian cancer data set. In this research, only 4 gene 
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expression data sets have been used: Leukemia, Lymphoma, Prostate Tumor, 

Colon cancer data set. 

The gene expression data sets have the following features: 

 Leukemia: This data set that has been used in this research is probably the 

most famous gene expression cancer data set (Golub et al., 1999)[39]. In 

Leukemia data set, it has 7129 genes which are divided into 2 classes: 

acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). 

The data set consists of 72 samples in which 47 are in class ALL and 25 

are in class AML. 

 Lymphoma: This data set contains three most prevalent adult lymphoid 

malignancies. It consists of 66 samples from 4026 genes. This is 

composed of 46, 9 and 11 samples of DLBCL, FL and CLL respectively. 

 Prostate Tumor: For this cancer data set, detailed information and data is 

available in [41]. The data set contains prostate tissue 102 patient’s 

samples from 12,600 genes. Among 102 samples, there are 52 prostate 

tumor samples and 50 normal samples. 

 Colon: This data set contains 62 samples of 2000 genes collected from 

colon cancer patients. There are 40 tumor biopsies (labelled as “Tumor”) 

and 22 normal (labelled as “Normal”). 

5.1.4  Effective Gene Selection for Gene Expression Data Sets 

In microarray cancer data set, it contains a large number of genes expressions. It 

is essential to find those genes which are highly correlated with the class 

distinction to be predicted. Here the Correlation coefficient method has been used 

for finding the degree of their correlation. Then among a large number of genes 

only some genes with highest correlation coefficient values have been selected for 

further clustering process.  
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5.2  Implementation Results of Data Sets 

This section shows the implementation results found for both non-gene and gene 

expression data sets.  

5.2.1  Non-gene Expression Data Sets 

 Non-gene Data Set: AD_5_2 

Figure 5.1(a) shows the original/true solution of clustering the data set AD_5_2 

where number of cluster is 5 and Figure 5.1(b) shows the clustering performed by 

the proposed fuzzy relational clustering algorithm, FRC-NSGA-II. In this case, 

number of cluster is 5 and the Minkowski Score(MS) is 0.28. 
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Figure 5.1: (a) Original/True solution and (b) Clustering using FRC-NSGA-II (MS = 

0.28) for the data set AD_5_2 (K = 5). 

 Non-gene Data Set: AD_10_2 

Figure 5.2(a) shows the original/true solution of clustering the data set AD_10_2 

where number of cluster is 10 and Figure 5.2(b) shows the clustering performed by 

the proposed fuzzy relational clustering algorithm, FRC-NSGA-II. In this case, 

number of cluster is 10 and the MS is 0.12. 
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Figure 5.2: (a) Original/True solution and (b) Clustering using FRC-NSGA-II (MS = 

0.12) for the data set AD_10_2 (K = 10). 
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 Non-gene Data Set: Square-1 

Figure 5.3(a) shows the original/true solution of clustering the data set Square-1 

where number of cluster is 4 and Figure 5.3(b) shows the clustering performed by 

the proposed fuzzy relational clustering algorithm, FRC-NSGA-II. In this case, 

number of cluster is 4 and the MS is 0.12. 
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Figure 5.3: (a) Original/True solution and (b) Clustering using FRC-NSGA-II (MS = 

0.12) for the data set Square-1 (K = 4). 

 Non-gene Data Set: Square-4 

Figure 5.4(a) shows the original/true solution of clustering the data set Square-4 

where number of cluster is 4 and Figure 5.4(b) shows the clustering performed by 

the proposed fuzzy relational clustering algorithm, FRC-NSGA-II. In this case, 

number of cluster is 4 and the MS is 0.50. 
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Figure 5.4: (a) Original/True solution and (b) Clustering using FRC-NSGA-II (MS = 

0.50) for the data set Square-4 (K = 4). 
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 Non-gene Data Set: Sph_5_2 

Figure 5.5(a) shows the original/true solution of clustering the data set Sph_5_2 

where number of cluster is 5 and Figure 5.5(b) shows the clustering performed by 

the proposed fuzzy relational clustering algorithm, FRC-NSGA-II where number 

of cluster is 6 and the MS is 0.65. 
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Figure 5.5: (a) Original/True solution and (b) Clustering using FRC-NSGA-II (MS = 

0.65) for the data set Sph_5_2 (K = 6). 

 Non-gene Data Set: Sph_6_2 

Figure 5.6(a) shows the original/true solution of clustering the data set Sph_6_2 

where number of cluster is 6 and Figure 5.6(b) shows the clustering performed by 

the proposed fuzzy relational clustering algorithm, FRC-NSGA-II where number 

of cluster is 7 and the MS is 0.47. 
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Figure 5.6: (a) Original/True solution and (b) Clustering using FRC-NSGA-II (MS = 

0.47) for the data set Sph_6_2 (K = 7). 
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Figure 5.1 to Figure 5.6 shows the comparison of data partitioning by the 

proposed method FRC-NSGA-II with the original data partitioning for six data 

sets: AD_5_2, AD_10_2, Square-1, Square-4, Sph_5_2 and Sph_6_2. The 

comparison shows that FRC-NSGA-II provides better performance for 

compactness, separation and overlapping of clusters of the data sets. From the 

figures above, it is shown FRC-NSGA-II works effectively for the well-separated 

data points of AD_10_2 (Figure 5.2) and Square-1 (Figure 5.3). Data points may 

be misclassified by overlapping where borderline between clusters contains the 

data points. 

Analyzing the results of different multi-objective techniques it is found that FRC-

NSGA-II provides better accuracy than other techniques which is obvious by the 

Minkowski Score (MS) value and the optimal cluster number as shown in Table 

5.2 and Figure 5.1 to Figure 5.6. Here, Minkowski Score is used to obtain the best 

solution from the non-dominated solution set. Experimental results on benchmark 

data sets demonstrate that the FRC-NSGA-II is capable of determining well-

separated, hyperspherical and overlapping clusters.  

5.2.2  Gene Expression Data Sets 

 Gene Expression Data Set: Leukemia 

For Leukemia data set, the proposed method was compared with SVM[42], Naive 

Bayes(NB)(Lytvynenko, 2014)[42], KNN[43], GA+KNN[44], Decision Tree[45] 

and others existing methods like Li et al. 2000, Furey et al.(Cho & Won, 

2003)[46], Dudoit et al.[47]. Figure 5.7 shows that FRC-NSGA-II provides 

clustering solution with higher accuracy than other methods. 
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Figure 5.7: Performance evaluation of the proposed method with respect to existing 

methods on Leukemia data set. 

 Gene Expression Data Set: Lymphoma 

For Lymphoma data set, the proposed system was compared with Decision 

Tree(Hijazi & Chan, 2013)[48] and others existing methods like Elena[49], Li et 

al. (KNN)[50], Dudoit et al., Li et al. (Cho & Won, 2003)[46], ELM(R. Zhang, 

Huang, Sundararajan, & Saratchandran)[51]. Figure 5.8 shows that FRC-NSGA-II 

provides more accurate clustering solution than other methods except ELM 

method. 
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Figure 5.8: Performance evaluation of the proposed method with respect to existing 

methods on Lymphoma data set. 

 Gene Expression Data Set: Prostate Tumor 

For Prostate Tumor data set, the proposed system was compared with Decision 

Tree(A. C. Tan & Gilbert, 2003)[45], SVM(G. Cong, K. Tan, A. K.H. Tung, & 

Xin Xu, 2005)[52], KNN(Singh et al., 2002)[41], Bayes Network, Naive Bayes 

classifier(NB)(Lytvynenko, 2014)[42]. Figure 5.9 shows that FRC-NSGA-II 

performs clustering with higher accuracy than other methods. 
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Figure 5.9: Performance evaluation of the proposed method with respect to existing 

methods on Prostate tumor data set. 

 

 Gene Expression Data Set: Colon cancer 

For colon data set, the proposed method was compared with SVM, Naive Bayes 

classifier(NB), Bayes Network(Lytvynenko, 2014)[42], KNN[43] and other 

existing methods like Ben-Dor et al.[53], Dettling et al.[54]. Figure 5.10 shows 

that FRC-NSGA-II performs clustering more accurately than other methods 

except SVM. 
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Figure 5.10: Performance evaluation of the proposed method with respect to existing 

methods on Colon data set. 

Figure 5.1 to Figure 5.6 above shows the comparison of classification accuracy by 

FRC-NSGA-II with other methods for four gene expression data sets. The 

comparison shows that the proposed model performs more accurate clustering 

than most of the other methods.  

5.3  Results of Non-dominated Solutions 

5.3.1  Non-gene Expression Data Sets 

This section shows the non-dominated solutions acquired by FRC-NSGA-II using 

non-gene artificial and real life data sets. Figure 5.11 to Figure 5.16 shows non-

dominated solutions for Iris, Wine, AD_5_2, AD_10_2, Sph_5_2 and Sph_6_2 

data sets.  
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Figure 5.11: Non-dominated solutions found while applying FRC-NSGA-II on Iris  data 

set. 
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Figure 5.12: Non-dominated solutions found while applying FRC-NSGA-II on Wine data 

set. 

 

Figure 5.13: Non-dominated solutions found while applying FRC-NSGA-II on AD_5_2 

data set. 

Compactness,  

Compactness,  



51 
 

 

 

Figure 5.14: Non-dominated solutions found while applying FRC-NSGA-II on AD_10_2 

data set. 
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Figure 5.15: Non-dominated solutions found while applying FRC-NSGA-II on  Sph_5_2 

data set. 
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Figure 5.16: Non-dominated solutions found while applying FRC-NSGA-II on Sph_6_2 

data set. 

 

5.3.2  Gene Expression Data Sets 

In this study, the proposed model was analyzed on four different microarray gene 

expression data sets. With the different cluster numbers, multiple solutions are 

generated in multi-objective evolutionary algorithm. In FRC-NSGA-II, it generates 

a set of non-dominated solutions where it simultaneously optimizes two objective 

functions: compactness and overlap-separation. A best solution among all the non-

dominated solutions is selected by the minimum value of Minkowski Score (MS) 

[56].  

Compactness,  
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For Leukemia data set, FRC-NSGA-II partitions the data samples into two clusters 

automatically. Figure 5.17 and Figure 5.18 shows non-dominated solutions for 

Leukemia and Lymphoma data sets respectively. It is also found that some cluster 

number is missing for some range of cluster number K. Final solution is selected 

from the non-dominated solution set by the minimum value of Minkowski score 

(MS). The MS values obtained for different gene expression data sets are given in 

Table 5.2. 

 

 

Figure 5.17: Non-dominated  solutions found for Leukemia data set while applying FRC-

NSGA-II. 

 

Compactness,  



55 
 

 

Figure 5.18: Non-dominated  solutions found for Lymphoma data set while applying 

FRC-NSGA-II. 

Table 5.2: Minkowski score(MS) values for different gene expression data sets 

Data Set Minkowski score (MS) 

Leukemia 0.43 

Lymphoma 0.28 

Prostate tumor 0.50 

Colon 0.60 

5.4  Comparative Analysis on Non-gene Expression Data Sets 

In order to validate the proposed fuzzy relational clustering technique, FRC-

NSGA-II, it is compared with other existing multi-objective clustering approaches 

VAMOSA [8], MOCK [7], FCM-NSGA [56] and with a single objective 

clustering approach VGAPS [57]. The comparison is performed in terms of the 

number of clusters and the values of MS as shown in Table 5.3, where the results 

of VGAPS, VAMOSA and MOCK are obtained from [8] and the result of FCM-

NSGA is obtained from [56]. Table 5.3 shows that the proposed model determines 

appropriate number of clusters for all the data sets and it provides solution with 

Compactness,  
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minimum MS value for most of the data sets with comparison to other approaches 

and it performs superior to other approaches for Wine and Iris data sets. 

Table 5.3: Comparative analysis of FRC-NSGA-II with other existing methods 

DataSet 
Actual 

K 

Frc-

NSGA-II 

FCM-

NSGA 
VAMOSA MOCK VGAPS 

K MS K MS K MS K MS K MS 

AD_5_2 5 5 0.28 5 0.29 5 0.25 6 0.39 5 0.25 

AD_10_2 10 10 0.12 10 0.13 10 0.43 6 1.01 7 0.84 

Square-1 4 4 0.18 4 0.18 4 0.19 4 0.19 4 0.20 

Square-4 4 4 0.50 4 0.49 4 0.51 4 0.60 5 0.52 

Long-1 2 2 0.0 2 0.0 2 0.68 2 0.0 3 1.00 

Glass 6 6 0.97 - - 6 1.33 6 1.34 6 1.11 

Wine 3 3 0.52 3 0.93 3 0.97 3 0.90 6 0.97 

Iris 3 3 0.38 3 0.57 2 0.80 2 0.82 3 0.62 

LiverDisorders 2 2 0.98 2 0.98 2 0.98 3 0.98 2 0.98 

 

In Table 5.3, the bold marked values indicate that FRC-NSGA-II generates better 

results than other methods. Table 5.3 shows that the proposed model generates 

solutions with lower MS values for the well separated clusters from AD_10_2 

(Figure 5.2) and Square-1 (Figure 5.3). The proposed approach generates solutions 

with higher MS values for highly overlapped clusters of AD_5_2 (Figure 5.1) and 

Square-4 (Figure 5.4). Single-objective clustering method VGPAS cannot detect 

overlapping clusters. VGAPS gives solutions with higher MS values for almost all 

data sets. It gives solution with lower MS value for well separated clusters from 

Square-1 data set. 

MOCK’s performance is not well for overlapping clusters. It cannot estimate the 

number of cluster properly for overlapping clusters (AD_5_2, AD_10_2, iris data 

sets). Here, the objective functions fail to detect the overlapping structures. 

VAMOSA shows good performance for different types of data sets except Glass 

and iris data set. For iris data set, it cannot identify the number of cluster correctly. 

The performance of VAMOSA is not satisfactory for highly overlapped clusters. 

Table 5.3 shows that the proposed model provides solutions with minimum MS 

values for most of the data sets (AD_10_2, Square-1, Long-1, Glass, Wine, Iris, 

Liver Disorders) with  comparison to other approaches and it performs superior to 

others approaches for AD_10_2, Glass, Wine and Iris data sets. 
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5.5  Conclusions 

This chapter focuses on the performance analysis of the proposed method. The 

implementation results show that the proposed approach performs better in 

comparison with other methods for both non-gene and gene expression data sets. 

It is also shown that the proposed approach performs well in detecting highly 

overlapped clusters.  
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CHAPTER VI 

 

Conclusion 

 

 

6.1  Conclusions 

In this work, we propose a new fuzzy relational clustering approach called FRC-

NSGA-II based on multi-objective non-dominated sorting genetic algorithm 

(NSGA-II) when the number of cluster is unknown for (dis)similarity-based data 

or relational data analysis and this was successfully achieved. This hybrid 

clustering technique is capable to partition the given data set into groups satisfying 

two objective functions, compactness and overlap-separation. The proposed multi-

objective non-dominated sorting genetic algorithm for relational fuzzy clustering 

has been statistically assessed over 15 data sets both in gene and non-gene that can 

also be used to automatically estimate the number of clusters in relational data. 

The simulation results illustrate the superior capability of this proposed hybrid 

technique in handling overlapped clusters than other single and multi-objective 

approaches. On the other-hand, compared with existing clustering approaches for 

relational data, FRC-NSGA-II is able to capture the underlying structures of the 

data more accurately and provide richer information for the description of the 

resulting clusters.  

6.2  Future Works 

Suggestions for follow-up work that may come after this thesis are: 

 As a perspective for future work, the method FRC-NSGA-II can be refined 

to enable it to explore more possible solutions in shorter execution time by 

employing parallel computing technology with shared memory to improve 

the scalability of the algorithm. The local search, fitness evaluation and 
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mutation procedures are independent among the individuals of the 

population, so they can be distributed across multiple processors. By doing 

this, most of the computational burden of the algorithm could be easily 

made in parallel if the relational data matrix could be shared across the 

multiple processors. 

 This research work also can be extended to design a GAs based method to 

construct an appropriate fuzzy classification system to maximize the 

number of correctly classified patterns. 

 This work can be extended to implement hierarchical fuzzy relational 

clustering. 

 It can be used to design genetic learning system in which the learning 

mechanism itself finds an appropriate balance between interpretability and 

accuracy. 

 The work can be extended to improve computational scalability and 

robustness to deal with noisy data. 
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