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Abstract

Considerable attention has been directed toward the study of strongly nonlinear

differential systems. Nonlinear differential systems have been widely used in many areas

of applied mathematics, physics, plasma and laser physics and engineering and are of

significant importance in mechanical and structural dynamics for the comprehensive

understanding and accurate prediction of motion.

The aim of the present study is to develop an analytical technique for obtaining the

approximate solutions of second order strongly nonlinear differential systems with slowly

varying coefficients and higher order nonlinearity in presence of small damping based on

the He’s homotopy perturbation method (HPM) and the extended form of the Krylov-

Bogoliubov- Mitropolskii (KBM) method. Graphical representation of any physical

system is important for its locations, amplitudes and phases. So the results obtained by

the presented method are compared with those solutions obtained by the fourth order

Runge-Kutta method in graphically.
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CHAPTER I

Introduction

In the last three decades, with the rapid development of nonlinear science, there has

been ever-increasing interest from applied mathematicians, researchers, scientists and

engineers in the approximate analytical techniques for addressing nonlinear

differential systems. Though, it is very easy for us now to find the solutions of linear

systems by means of computers, it is still very difficult to solve nonlinear differential

systems either numerically or analytically.

The key to physical understanding of real-life physics is the use of approximation.

Most of the physical problems that are faced by applied mathematicians, researchers,

engineers, and physicists today exhibit certain essential features which preclude exact

analytical solutions (except in the case of solitary solutions of nonlinear differential

systems). Even if the exact solutions, with complicated and unfamiliar functions of

the variable, can be found explicitly, they may be useless for mathematical and

physical interpretation or numerical evaluation. By contrast, approximate solutions

can strip away the overlying detail to show the essential relationships between the

physical variables that are familiar to all applied mathematicians, researchers,

scientists and engineers. In addition, most important information, such as the natural

circular frequency of a nonlinear oscillation, depends on the initial condition (i.e.

amplitude of oscillation), and will be lost during the procedure of numerical

simulation.

Most of the real-life physical systems are modeled by nonlinear differential systems.

Obtaining exact solutions for these nonlinear physical problems are very difficult and

time consuming for researchers. Thus, applied mathematicians, researchers, engineers

and scientists are tried to find new approaches to overcome this difficulties. The

subject of differential equations constitutes a large and very important branch of

modern mathematics. Numerous physical, electrical, mechanical, chemical,

biological, mechanics in which we want to describe the motion of the body (plasma

and laser physics, automobile, electron, or satellite) under the action of a given force,

and many other relations appear mathematically in the form of differential equations

that are linear or nonlinear, autonomous or non-autonomous. Also, in ecology and

economics the differential equations are vastly used. Basically, many differential
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equations involving physical phenomena are nonlinear such as spring-mass systems,

resistor-capacitor-inductor circuits, bending of beams, chemical reactions, the motion

of a pendulum, the motion of the rotating mass around another body, population

dynamics etc. In mathematics and physics, linear generally means "simple" and

nonlinear means "complicated". The theory for solving linear equations is very well

developed because linear equations are simple enough to be solvable. Nonlinear

differential equations can not be usually solved exactly and are the subject of much

on-going research. In such situations, applied mathematicians, physicists and

engineers convert the nonlinear differential equations into linear equations i.e., they

linearize them by imposing some special conditions. Method of small oscillations is

well-known example of the linearization for the physical problems. But, such a

linearization is not always possible and when it is not, then the original nonlinear

differential equation itself must be used.

At first van der Pol [1] paid attention to the new (self-excited) oscillations and

indicated that their existence is inherent in the nonlinearity of the differential

equations characterizing the process. Thus, this nonlinearity appears as the very

essence of these phenomena and by linearizing the differential equations in the sense

of small oscillations, one simply eliminates the possibility of investigating such

problems. Thus, it is necessary to deal with the nonlinear differential equations

directly instead of evading them by dropping the nonlinear terms. To solve nonlinear

differential equations, there exist some methods such as perturbation method [2-39],

homotopy perturbation method [40-47], variational iterative method [48], harmonic

balance method [49] etc. Among the methods, the method of perturbations, i.e.,

asymptotic expansions in terms of a small parameter are first and foremost.

A perturbation method known as “the asymptotic averaging method” in the theory of

nonlinear oscillations was first introduced by Russian famous scientists Krylov and

Bogoliubov (KB) [2] in 1947. Primarily, the method was developed only for obtaining

the periodic solutions of second order weakly conservative nonlinear differential

systems. Later, the method of KB has been improved and justified by Bogoliubov and

Mitropolskii [3] in 1961. In literature, this method is known as the Krylov-

Bogoliubov-Mitropolskii (KBM) [2, 3] method.
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A perturbation method is based on the following aspects: the equations to be solved

are sufficiently “smooth” or sufficiently differentiable a number of times in the

required regions of variables and parameters. The KBM [2, 3] method was developed

for obtaining only the periodic solutions of second order weakly nonlinear differential

equations without damping. Now a days, this method is used for obtaining the

solutions of second, third and fourth order weakly nonlinear differential systems for

oscillatory, damped oscillatory, over damped, and critically damped cases by

imposing some special restrictions with quadratic and cubic nonlinearities. Several

authors [4-39] have investigated and developed many significant results concerning

the solutions of the weakly nonlinear differential systems based on the KBM method.

The method of KB [2] is an asymptotic method in the sense that 0 . An

asymptotic series itself may not be convergent, but for a fixed number of terms, the

approximate solution approaches toward the exact solution. Two widely spread

methods in this theory are mainly used in the literature; one is averaging asymptotic

KBM method and the other is multiple-time scale method [36-38]. The KBM method

is particularly convenient and extensively used technique for determining the

approximate solutions among the methods used for studying the weakly nonlinear

differential systems with small nonlinearity specially cubic nonlinearity. The KBM

method starts with the solution of linear equation (sometimes called the generating

solution of the linear equation) assuming that in the nonlinear case, the amplitude and

phase variables in the solution of the linear differential equation are time dependent

functions instead of constants. This method introduces an additional condition on the

first derivative of the assumed solution for determining the solution of second order

nonlinear differential systems. The KBM method demands that the asymptotic

solutions are free from secular terms. These assumptions are mainly valid for second

and third order equations. But, for the fourth order differential equations, the

correction terms sometimes contain secular terms, although the solution is generated

by the classical KBM asymptotic method. For this reason, the traditional solutions fail

to explain the proper situation of the systems. To remove the presence of secular

terms for obtaining the desired results, one needs to impose some special conditions.

Ji-Huan He [40-43] has developed a homotopy perturbation technique for solving

second order strongly nonlinear differential systems without damping effects. In this
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method the solution is considered as the summation of an infinite series which

converges rapidly to the exact solutions. This technique has been employed to solve a

large variety of nonlinear differential equations. Uddin et al. [44], Uddin and Sattar

[45], Ghosh et al. [46] have been extended the homotopy perturbation method to

damped nonlinear differential systems.

In this thesis, He’s homotopy perturbation method (HPM) has been extended for

obtaining the approximate analytical solutions of second order strongly and weakly

nonlinear differential systems with slowly varying coefficients and high order

nonlinearity for small amplitude in presence of small damping based on the extended

form of the KBM method.

In Chapter II, the review of literature is presented. In Chapter III, an approximate

analytical technique has been extended for solving second order strongly and weakly

nonlinear differential systems with slowly varying coefficients and high order

nonlinearity for small amplitude in presence of small damping. Finally, in Chapter

IV, the concluding remarks are given.
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CHAPTER II

Literature Review

The nonlinear differential equations are generally difficult to solve and their exact

solutions are difficult to obtain. But, mathematical formulations of many physical

problems often results in differential equations that are linear or nonlinear. In many

situations, linear differential equation is substituted for a nonlinear differential

equation, which approximates the original equation closely enough to give expected

results. In many cases such a linearization is not possible and when it is not, the

original nonlinear differential equation must be considered directly. During last

several decades in the th20 century, some famous Russian scientists like Krylov and

Bogoliubov [2], Bogoliubov and Mitropolskii [3], Mitropolskii [4], have investigated

the nonlinear dynamics. For solving nonlinear differential equations, there exist some

methods. Among the methods, the method of perturbations, i.e., an asymptotic

expansion in terms of small parameter is foremost. In 1947, Krylov and Bogoliubov

(KB) [2] considered the equation of the form

),,,,(2  txxfxx   (2.1)

where x denotes the second order derivative with respect to t,  is a small positive

parameter and f is a power series in  , whose coefficients are polynomials in

txx sin,,  and tcos and the procedure proposed by Krylov and Bogoliubov [2]. In

general, f does not contain either  or t explicitly. In KBM [2, 3] method, it is

assumed that the amplitude and phase variables in the solution of the linear equations

are time dependent functions instead of constants in nonlinear differential systems.

This procedure introduces an additional condition on the first derivative of the

assumed solution for determining the desired results. To describe the behavior of

nonlinear oscillations by the solutions obtained by the perturbation method, Poincare

[5] discussed only periodic solutions. Duffing [6] has investigated many significant

results for the periodic solutions of the following damped nonlinear differential

systems

.2 32 xxxkx    (2.2)
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Sometimes different types of nonlinear phenomena occur, when the amplitude of a

dynamic system is less than or greater than unity. The damping is negative when the

amplitude is less than unity and the damping is positive when the amplitude is greater

than unity. The governing equation having these phenomena is

.0)1( 2  xxxx   (2.3)

In literature, this equation is known as van der Pol [1] equation and is used in

electrical circuit theory. Kruskal [7] has extended the KB [2] method to solve the fully

nonlinear differential equation of the following form

).,,( xxFx   (2.4a)

Cap [8] has studied nonlinear differential system of the form

).,(2 xxFxx    (2.4b)

Generally, F does not contain  or t explicitly, so the equation (2.1) leads to

).,(2 xxfxx    (2.5)

In the treatment of nonlinear oscillations by the perturbation methods, only periodic

solutions are discussed, transients are not considered by different investigators, where

as KB [2] have discussed transient response.

When ,0 the equation (2.5) reduces to linear equation and its solution can be

obtained as

).cos(   tax (2.6)

where a and  are arbitrary constants and the values of these arbitrary constants are

determined by using the given initial conditions.

When ,0 but is sufficiently small, then in KB [2] it is assumed that the solution of

equation (2.5) is still given by equation (2.6) together with the derivative of the form

).sin(   tax (2.7)

where a and  are functions of t, rather than being constants. In this case, the

solution of equation (2.5) is

))(cos()( tttax   (2.8)

and the derivative of the solution is

)).(sin()( tttax   (2.9)

Differentiating the assumed solution equation (2.8) with respect to time t, we obtain

).(,sinsincos ttaaax    (2.10)

Using the equations (2.7) and (2.10), we get
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.sincos   aa  (2.11)

Again, differentiating equation (2.9) with respect to t, we have

.coscossin 2   aaax  (2.12)

Putting the value of x from equation (2.12) into the equation (2.5) and using

equations (2.8) and (2.9), we obtain

).sin,cos(cossin  aafaa   (2.13)

Solving equations (2.11) and (2.13), we have

),sin,cos(sin 



aafa  (2.14)

).sin,cos(cos 



 aaf
a

 (2.15)

It is observed that, a basic differential equation (2.5) of the second order in the

unknown x , leads to two first order differential equations (2.14) and (2.15) in the

unknowns a and  to get its solutions.

Moreover,
.

a and
.

 are proportional to  and they are slowly varying functions of

the time t with period .
2




T It is noted that these first order differential equations

are now written in terms of the amplitude a and phase  as dependent variables.

Therefore, the right sides of equations (2.14) and (2.15) show that both a and
.

 are

periodic functions of period T . In this case, the right-hand terms of these equations

contain a small parameter  and also contain both a and , which are slowly

varying functions of the time t with period .
2




T We can transform the equations

(2.14) and (2.15) into more convenient form. Now, expanding

)sin,cos(sin  aaf  and )sin,cos(cos  aaf  in a Fourier series with

phase , the first approximate solution of equation (2.5) by averaging equations

(2.14) and (2.15) with period ,
2




T is obtained as

,)sin,cos(cos
2

,)sin,cos(sin
2

2

0

2

0
























daaf
a

daafa





(2.16)
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where a and  are independent of time t under the integral signs. Later, KB method

has been extended mathematically by Bogoliubov and Mitropolskii [3], and has been

extended to non-stationary vibrations by Mitropolskii [4]. They have assumed the

solution of equation (2.5) in the following form

),(),(............),(),(cos 1
2

2
1

 n
n

n Oauauauax  (2.17)

where ,ku ).......,,2,1( nk  are periodic functions of  with period ,2 and the

terms a and  are functions of time t and is obtained by solving the following first

order ordinary differential equations

).()(.......)()(

),()(..........)()(
1

2
2

1

1
2

2
1








n

n
n

n
n

n

OaBaBaB

OaAaAaAa








(2.18 a, b)

The functions kk Au , and ,kB ).......,,2,1( nk  are to be chosen in such a way that

the equation (2.17), after replacing a and  by the functions defined in equation

(2.18), is a solution of equation (2.5). Since there are no restrictions in choosing

functions kA and ,kB it generates the arbitrariness in the definitions of the functions

ku (Bogoliubov and Mitropolskii [3]). To remove this arbitrariness, the following

additional conditions are imposed














2

0

2

0

.0sin),(

,0cos),(

dau

dau

k

k

(2.19a, b)

Secular terms are removed by using these conditions in all successive approximations.

Differentiating equation (2.17) two times with respect to t , and then substituting the

values of xx  , and x into equation (2.5), and using the relations equation (2.18) and

equating the coefficients of ,k ).......,,2,1( nk  , we obtain

),sincos(2),())(( )1(2   kk
k

kk ABaafuu   (2.20)

where )( ku denotes partial derivative with respect to  .

).)()((2sin)2(

cos)()sin,(cos

))(sincos()sin,cos(),(

),sin,cos(),(

1111
1

111

1
1

2
1

1111
)1(

)0(

.













uBuA
da

dB
AaBA

da

dA
ABaaf

uBaAaafuaf

aafaf

a

x

x









(2.21a, b)
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Here )1( kf is a periodic function of  with period 2 which depends also on the

amplitude a . Therefore, )1( kf and ku can be expanded in a Fourier series in the

following form

























1

)1()1()1(
0

1

)1()1()1(
0

)1(

),sin)(cos)(()(),(

),sin)(cos)(()(),(

n

k
n

k
n

k
k

n

k
n

k
n

kk

nanavavau

nahnagagaf

(2.22a, b)

where

.)sin,cos(
2
1

)(
2

0

)1()1(
0   






daafag kk (2.23)

Here, 0)1(
1

)1(
1   kkv  for all values of k , since both integrals of equation (2.19) are

vanished. Substituting these values into the equation (2.20), we obtain































2

)1()1(

)1(
1

)1(
1

)1(
0

2

)1()1(22)1(
0

2

].sin)(cos)([

sin)2)((cos)2)(()(

]sin)(cos)()[1()(

n

k
n

k
n

k
k

k
kk

n

k
n

k
n

k

nahnag

AahnBaagag

nanavnav

(2.24)

Now, equating the coefficients of the harmonics of the same order, we get

.1,
)1(
)(

)(,
)1(

)(
)(

,
)(

)(,02)(,02)(

22

)1(
)1(

22

)1(
)1(

2

)1(
0)1(

0
)1(

1
)1(

1




















n
n

ah
a

n

ag
av

ag
avAahBaag

k
nk

n

k
nk

n

k
k

k
k

k
k









(2.25)

These are the sufficient conditions to obtain the desired order of approximations. For

the first approximation, we have

.cos)sin,cos(
2

1
2

)(

,sin)sin,cos(
2

1
2

)(

2

0

)0(
1

1

2

0

)0(
1

1



















dataf
aa

ag
B

dataf
ah

A

(2.26a, b)

Thus, the variational equations in equation (2.18) become

.cos)sin,cos(
2

,sin)sin,cos(
2

2

0

2

0























daaf
a

daafa





(2.27a, b)
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It is seen that the equation (2.27) are similar to the equation (2.16). Thus, the first

approximate solution obtained by Bogoliubov and Mitropolskii [3] is identical to the

original solution obtained by KB [2]. The correction term 1u is obtained from

equation (2.22) by using equation (2.25) as


 









 2
22

)0()0(

2

)0(
0

1 )1(
sin)(cos)()(

n

nn

n

nahnagag
u (2.28)

The solution equation (2.17) together with 1u is known as the first order improved

solution in which a and  are obtained from equation (2.27). If the values of the

functions 1A and 1B are substituted from equation (2.26) into the second relation of

equation (2.21b), the function )1(f is determined. In the similar way, the functions

22 , BA and 2u can be found. Therefore, the determination of the second order

approximation is completed. The KB [2] method is very similar to that of van der Pol

[1] method and related to it. van der Pol [1] has applied the method of variation of

constants to the basic solution tbtax  sincos  of ,02  xx  on the other

hand KB [2] has applied the same method to the basic solution )cos(   tax of

the same equation. Thus, in the KB [2] method the varied constants are a and ,

while in the van der Pol’s method the constants are a and b . The KB [2] method

seems more interesting from the point of view of physical applications, since it deals

directly with the amplitude and phase of the quasi-harmonic oscillations. The solution

of the equation (2.4a) is based on recurrent relations and is given as the power series

of the small parameter. Cap [8] has solved the equation (2.4b) by using elliptical

functions in the sense of KB [2]. The KB [2] method has been extended by Popov [9]

to damped nonlinear differential systems represented by the following equation

),,(2 2 xxfxxkx    (2.29)

where xk 2 is the linear damping force and .0  k It is noteworthy that, because

of the importance of the Popov’s method in the physical nonlinear differential

systems, involving damping force, Mendelson [10] and Bojadziev [11] have retrieved

Popov’s [9] results. In case of damped nonlinear differential systems, the first

equation of equation (2.18a) has been replaced by

).()(............)()( 1
2

2
1

 n
n

n OaAaAaAaka  (2.18a)
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Murty and Deekshatulu [12] have developed a simple analytical method to obtain the

time response of second order over damped nonlinear differential systems with small

nonlinearity represented by the equation (2.29), based on the KB [2] method. In

accordance to the KBM [2, 3] method, Murty et al. [13] have found a hyperbolic type

asymptotic solution of an over damped system represented by the nonlinear

differential equation (2.29), i.e., in the case k . They have used hyperbolic

functions, cosh and sinh instead of their circular counterpart, which are used by

KBM [2, 3], Popov [9] and Mendelson [10]. Murty [14] has presented a unified KBM

method for solving the nonlinear differential systems represented by the equation

(2.29), which cover the undamped, damped and over-damped cases. Bojadziev and

Edwards [15] have investigated solutions of oscillatory and non-oscillatory systems

represented by equation (2.29) when k and  are slowly varying functions of time t.

Initial conditions may be used arbitrarily for the case of oscillatory or damped

oscillatory process. But, in case of non-oscillatory systems cosh or sinh should

be used depending on the given set of initial conditions (Murty et al. [13], Murty [14],

Bojadziev and Edwards [15]). Arya and Bojadziev [16, 17] have examined damped

oscillatory systems and time dependent oscillating systems with slowly varying

parameters and delay. Sattar [18] has developed an asymptotic method to solve a

second order critically damped nonlinear differential system represented by equation

(2.29). He has found the asymptotic solution of the equation (2.29) in the following

form

),(),(...........),()1( 1
1

 n
n

n Oauauax  (2.30)

where a is defined by the equation (2.18a) and  is defined by

)()(...........)()(1 1
2

2
1

 n
n

n OaCaCaC  (2.18b)

Also Sattar [19] has extended the KBM asymptotic method for three dimensional over

damped nonlinear systems. Osiniskii [20] has extended the KBM method to the

following third order nonlinear differential equation

),,,(321 xxxfxcxcxcx   (2.31)

where  is a small positive parameter and f is a given nonlinear function. He has

assumed the asymptotic solution of equation (2.31) in the form

),(),,(...........),,(cos 1
1

 n
n

n Obaubaubax  (2.32)
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where each ku ).......,,2,1( nk  is a periodic function of  with period 2 and

ba, and  are functions of time t, and they are given by

),()(...........)()(

),()(...........)()(

),()(...........)()(

1
2

2
1

1
2

2
1

1
2

2
1













n
n

n

n
n

n

n
n

n

ObCbCbC

ObBbBbBbb

OaAaAaAaa













(2.33a, b,c)

where  i , are the eigen values of the equation (2.31) when .0

Lin and Khan [21] have also used the KBM method for solving biological problems.

Proskurjakov [22] has investigated periodic solutions of nonlinear systems by using

the Poincare and KBM methods, and compared the two solutions. Mulholland [23]

has studied nonlinear oscillations governed by a third order differential equation.

Lardner and Bojadziev [24] have investigated the solutions of nonlinear damped

oscillations governed by a third order partial differential equation. They have

introduced the concept of “couple amplitude” where the unknown functions ,kA kB

and kC depend on both the amplitudes a and b .

Alam and Sattar [25] have extended the KBM method for solving third order critically

damped autonomous nonlinear differential systems. Alam and Sattar [26] have

presented a unified KBM method for solving third order nonlinear differential

systems. Alam [27] has extended the KBM method to over damped nonlinear

differential systems. Also, Alam et al. [28] have extended the KBM method to certain

non-oscillatory nonlinear differential systems with slowly varying coefficients. Alam

[29] has also presented a unified KBM method, which is not the formal form of the

original KBM method for solving )3,2(, nnth order nonlinear differential systems.

The solution contains some unusual variables, yet this solution is very important.

Alam [30] has extended the KBM method presented in [25] to find the approximate

solutions of critically damped nonlinear differential systems in presence of different

damping forces by considering the different sets of variational equations. Alam [31]

has also extended the KBM method for solving third order over damped nonlinear

differential system when two of the eigen values are almost equal (i.e., the system is

near to the critically damped) and the rest is small. Alam [32] has presented an

asymptotic method for certain type of third order non-oscillatory nonlinear differential

systems, which gives desired results when the damping force is near to the critically

damping force. Alam [33] has investigated a unified KBM method for solving nth

)3,2( n order nonlinear differential equation with varying coefficients. Roy and

Alam [34] have discussed the effect of higher approximation of Krylov- Bogoliubov-
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Mitropolskii solution and matched asymptotic differential systems with slowly

varying coefficients and damping near to a turning point. Alam and Sattar [35] have

developed an asymptotic method for third order nonlinear systems with slowly

varying coefficients. Nayfeh [36, 37] and Murdock [38] have developed perturbation

methods and theory for obtaining the solutions of weakly nonlinear differential

systems. Sachs et al. [39] have developed a simple ODE model of tumor growth and

anti-angiogenic or radiation treatment.

The HPM was first proposed by the Chinese mathematician Ji Huan He [40]. The

essential idea of this method is to introduce a homotopy parameter, say p , which

varies from 0 to 1. At 0p , the system of equations usually has been reduced to a

simplified form which normally admits a rather simple solution. As p gradually

increases continuously toward 1, the system goes through a sequence of deformations,

and the solution at each stage is closed to that at the previous stage of the

deformation. Eventually at 1p the system takes the original form of the equation

and the final stage of the deformation give the desired solution.

He [40] has investigated a novel homotopy perturbation technique for finding a

periodic solution of a general nonlinear oscillator for conservative systems. He [40]

has considered the following nonlinear differential equation in the form

,,0)()(  rrfuA (2.34)

with the boundary conditions

,,0),( 



r
t

u
uB (2.35)

where A is a general differential operator, B is a boundary operator, )(rf is a

known analytical function,  is the boundary of the domain  . Then He [40] has

written Eq. (2.34) in the following form

,0)()()(  rfuNuL (2.36)

where L is linear part, while N is nonlinear part. He [40] has constructed a

homotopy  ]1,0[:),( prv which satisfies

 rprfuApuLvLppv ],1,0[,0)]()([)]()()[1(),( 0 (2.37a)

or

,0)]()([)()()(),( 00  rfvNpupLuLvLpv (2.37b)
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where ]1,0[p is an embedding parameter, 0u is an initial approximation of

equation (2.34), which satisfies the boundary conditions. Obviously, from equation

(2.37), it becomes

,0)()()0,( 0  uLvLv (2.38)

.0)()()1,(  rfvAv (2.39)

The changing process of p from zero to unity is just that of ),( prv from )(0 ru to

)(ru . He [40] has assumed the solution of Eq. (2.37) as a power series of p in the

following form

.2
2

10  vppvvv (2.40)

The approximate solution of Eq. (2.34) is given by setting 1p in the form

.210  vvvu (2.41)

The series (2.41) is convergent for most of the cases, and also the rate of convergence
depends on how one chooses )(uA .
He [41] has obtained the approximate solution of nonlinear differential equation with

convolution product nonlinearities. He [42] has developed some new approaches to

solve Duffing equation with strongly and high order nonlinearity without damping.

Also, He [43] has presented a new interpretation of homotopy perturbation method.

Uddin et al. [44] and Uddin and Sattar [45] have presented an approximate technique

for solving second order strongly nonlinear differential systems with damping by

combining the He’s [40-43] homotopy perturbation and the extended form of the

KBM [2-4] methods. Recently, Ghosh et al. [46] have also developed an approximate

technique for solving second order strongly nonlinear differential systems with high

order nonlinearity in presence of small damping based on He’s [40-43] homotopy

perturbation and the extended form of the KBM [2-4] methods with constant

coefficients. Belendez et al. [47] have applied He’s homotopy perturbation method to

Duffing harmonic oscillator. He [48] has presented a variational iteration method for

solving strongly nonlinear differential systems. Ghadimi and Kaliji [49] have

presented an application of the harmonic balance method on nonlinear equation. Ganji

et al. [50] have presented an approximate solutions to van der Pol damped nonlinear

oscillators by means of He’s energy balance method.
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CHAPTER III

Approximate Solutions of Second Order Strongly and High Order Nonlinear

Differential Systems with Slowly Varying Coefficients in Presence of Small Damping

3.1 Introduction

The study of nonlinear differential systems is of great importance not only in all areas of

physics but also in engineering and other disciplines, since most of the phenomena in our

real-life problems are nonlinear and are described by nonlinear differential equations.

Most of these nonlinear differential systems occur in nature with slowly varying

coefficients in presence of small damping. The common perturbation methods for

constructing the approximate analytical solutions to the nonlinear differential equations

are the Krylov-Bogoliubov- Mitropolskii (KBM) [2, 3] method, the Lindstedt-Poincare

(LP) method [36-38] and the method of multiple time scales [36]. Almost all perturbation

methods are based on an assumption that small parameter must exist in the equations.

Arya and Bojadziev [17] have presented the analytical technique for time depending

oscillating systems with slowly varying parameters, damping, and delay. Roy and Alam

[34] have presented the effects of higher approximation of Krylov-Bogoliubov-

Mitropolskii solution and matched asymptotic differential systems with slowly varying

coefficients and damping near to a turning point for weakly nonlinear differential

systems. He [40] has investigated the homotopy perturbation technique. In another paper,

He [41] has developed a coupling method of a homotopy perturbation technique and a

perturbation technique for strongly nonlinear differential systems. He [42] has also

presented a new interpretation of homotopy perturbation method for solving strongly

nonlinear differential systems. Uddin et al. [44] have presented an approximate technique

for solving strongly nonlinear differential systems with cubic nonlinearity in presence of

damping effects. Uddin and Sattar [45] have presented an approximate technique to

Duffing` equation with small damping and slowly varying coefficients for cubic

nonlinearity. Recently Ghosh et al. [46] have presented an approximate technique for

solving second order strongly and high order nonlinear differential systems in presence of

small damping without slowing varying coefficients. Belendez et al. [47] have presented
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the application of He’s homotopy perturbation method to the Duffing harmonic

oscillators. The authors [40-44] have studied the differential systems with cubic

nonlinearity in absence of damping effects. But most of the physical and oscillating

systems encounter in presence of small damping in nature and it plays an important role

to the nonlinear physical systems. In this thesis, we have developed an approximate

analytical technique for solving second order differential systems having strong and high

order nonlinearities with slowly varying coefficients in presence of small damping based

on the He’s homotopy perturbation [40-44] and the extended form of the KBM [2-4]

methods. Figures are provided to compare between the solutions obtained by the

presented method with the corresponding numerical (considered to be exact) solutions

obtained by fourth order Runge-Kutta method.

3.2 The method

We are interested to consider a second order differential system having strong and high

order nonlinearity [34] with slowly varying coefficients in presence of small damping in

the following form

,1),()(2 1   kxfxexkx   (3.1)

subject to the initial conditions

,0)0(,)0( 0  xbx  (3.2)

where 0k and k2 is the linear damping coefficient which varies slowly with time

tt  , is the slowly varying time,  is a small parameter, 1 is parameter not

necessarily small, 0b is positive constant and known as the initial amplitude of the

systems and )(xf is a given high order nonlinear function which satisfies the following

condition

)()( xfxf  . (3.3)

For simplicity, we are going to use the following transformation [44]

.)( tketyx  (3.4)

Differentiating equation (3.4) twice with respect to time t and substituting xx  , together

with x into equation (3.1) and then simplifying them, we obtain the following equation

).()( 1
2 tktk eyfeykey    (3.5)
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According to the homotopy perturbation method [40-46], equation (3.5) can be re-written

as the following form

),(1
2 tktk eyfeyyy   (3.6)

where

.22     ke (3.7)

Herein  is an unknown constant which can be determined by eliminating the secular

terms. However, for a damped nonlinear differential system  is a time dependent

function and it varies slowly with time t. To handle this situation, we need to use the

extended form of the KBM [2-4] method. According to this technique, we are going to

choose the first approximate analytical solution of equation (3.6) in the following form

,cosby  (3.8)

where b and  represent the amplitude and phase variable respectively and they vary

slowly with time t . According to the KBM [2, 3] method b and  satisfy the following

first order differential equations

,),(),()(

,),(),(

2
2

1

2
2

1













bBbB

bAbAb
(3.9 a, b)

where  is a small positive parameter and jA and jB are unknown functions. Now

differentiating equation (3.8) twice with respect to time t, utilizing the relations equation

(3.9) and substituting y and y into equation (3.6) and then equating the coefficients of

sin and ,cos we obtain the value of the unknown functions 1A and 1B as the form

,0),2/( 11  BbA  (3.10)

where prime denotes differentiation with respect to slowly varying time  . Now putting

equation (3.8) into equation (3.4) and equation (3.10) into equation (3.9) we obtain the

following equations

,costkebx  (3.11)

and

).(

),2/(









 bb
(3.12 a, b)
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Thus, the first approximate solution of equation (3.1) is obtained by equation (3.11) with

the assist of equations (3.7) and (3.12). Usually, the integration of equation (3.12 a, b) is

performed by well-known techniques of calculus [36-38], but sometimes they are solved

by a numerical procedure [13-35, 44-46].

3.3 Example

For implementing and justifying the above procedure, we are going to assume the

following Duffing equation with slowly varying coefficients in presence of small

damping as the form

,)(2 5
1 xxexkx     (3.13)

where 5)( xxf  . Now using the transformation [44] equation (3.4) into equation (3.13)

and then simplifying them, we obtain

.)( 54
1

2 yeykey tk   (3.14)

According to the homotopy perturbation [40-46] method, equation (3.14) can be re-

written as

,54
1

2 yeyyy tk  (3.15)

where

.22     ke (3.16)

According to the extended form of the KBM [2-4] method, the solution of equation (3.15)

is given by equation (3.8). In presence of secular terms, the solution will be non-uniform

and break down. So, researchers must be needed to remove the secular terms from their

obtained solutions for finding the uniform solutions. For avoiding the secular terms in

particular solution of equation (3.15), setting the coefficients of the cos terms is zero,

we obtain

,0
8

5 44
1 

 tkeb
b


 (3.17)

For the nontrivial solution ,0.,. bei equation (3.17) leads to

.
8

5 43
1

tkeb 




 (3.18)

Substituting the value of  from equation (3.18) into equation (3.16), it yields
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.
8

5 43
122

tkeb
ke


 


  (3.19)

This is a time dependent frequency equation of the given nonlinear differential systems.

As 0t , equation (3.19) leads to

,
8

5
1)0(

3
012

0

b
k


  (3.20)

which is known as the constant frequency equation of the given nonlinear differential

systems. Now integrating the equation (3.12 a), we get

,0
0 


bb  (3.21)

where 0b is a constant of integration which represents the initial amplitude of the

nonlinear differential systems. Now putting equation (3.21) into equation (3.19), we

obtain the following bi-quadratic equation

,024  rq (3.22)

where

.
4

5
,

42
0

4
012

tkeb
rkeq


 

 (3.23)

Solving equation (3.22) for the real angular frequency  , we obtain

,
2

42 rqq 
 (3.24)

The solution of equation (3.12 b) becomes

,)(
00 
t

dtt (3.25)

where 0 is the initial phase and  is given by equation (3.24). Therefore, the first

approximate solution of equation (3.13) is obtained by equation (3.11) and the amplitude

b and the phase  are calculated from equation (3.21) and equation (3.25) respectively

with the help of equations (3.23)-(3.24). Thus, the determination of the first order

analytical approximate solution of equation (3.13) is completed by the presented

approximate analytical technique.
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3.4 Initial conditions

The initial conditions of 5
1)(2 xxexkx     are obtained as

.sincos
)24(4
)52(

)0(

,cos)0(

000002
00

4
010

00







bbk
bkb

x

bx



















(3.26)

In general, the initial conditions )]0(),0([ xx  are specified. Then one has to solve

nonlinear algebraic equation in order to determine the initial amplitude 0b and the initial

phase 0 that appear in the solutions from the initial conditions equation (3.26).

3.5 Results and discussion

For specified values of the parameters ,,k and 1 , the initial conditions are calculated.

For those initial conditions, the first approximate solutions of the considered Duffing

equation are plotted along with the corresponding numerical solution of that equation in

Figs. 3.1-3.2. In this thesis He’s homotopy perturbation technique has been extended for

solving second order strong and high order nonlinear differential systems with slowly

varying coefficients in presence of small damping based on the extended form of the

KBM method [2-4]. From the Figs. 3.1-3.2, it is seen that the first approximate solutions

show a good agreement with the corresponding numerical solutions for small several

damping. The presented method is very simple in its principle, and is very easy to

implement for both strong )0.1( 1  and weak )1.0( 1  nonlinear differential systems

with slowly varying coefficients in presence of small damping. The variational equations

of the amplitude and phase variables appear in a set of first order nonlinear ordinary

differential equations. The integrations of these variational equations are obtained by

well-known techniques of calculus [36-38]. In a lack of analytical solutions, they are

solved by numerical procedure [13-35, 44-46]. The amplitude and phase variables

change slowly with time t . The behavior of amplitude and phase variables characterizes

the oscillating processes. Moreover, the variational equations of amplitude and phase

variables are used to investigate the stability of the nonlinear differential equations. Ji-

Huan He [40-42] has developed homotopy perturbation for conservative nonlinear

differential systems. But the presented method is valid for non-conservative nonlinear

differential systems. The presented method can also overcome some limitations of the
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classical perturbation techniques; it does not require a small parameter )0.1,.( 1 ei in

the equations. The advantage of the presented method is that the first order approximate

analytical solutions show a good agreement with the corresponding numerical solutions

in presence of small damping for small amplitude. The method has been successfully

implemented for solving the second order slowly varying differential systems with high

order nonlinearity in presence of small damping for both strongly and weakly nonlinear

cases.
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Fig. 3.1 (a) First approximate solution of equation (3.13) is denoted by  (dotted

lines) by the presented analytical technique with the initial conditions 0,5.0 00  b or

]02339.0)0(,5.0)0([  xx  with 0.1,1.0,15.0 1  k and 5xf  .

Corresponding numerical solution is denoted by - (solid line).
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Fig. 3.1 (b) First approximate solution of equation (3.13) is denoted by  (dotted

lines) by the presented analytical technique with the initial conditions 0,5.0 00  b or

]03131.0)0(,5.0)0([  xx  with 1.0,1.0,15.0 1  k and 5xf  .

Corresponding numerical solution is denoted by - (solid line).
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Fig. 3.2 (a) First approximate solution of equation (3.13) is denoted by  (dotted

lines) by the presented analytical technique with the initial conditions 0,5.0 00  b or

]01904.0)0(,5.0)0([  xx  with 0.1,1.0,05.0 1  k and 5xf  .

Corresponding numerical solution is denoted by - (solid line).
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Fig.3.2 (b) First approximate solution of equation (3.13) is denoted by  (dotted

lines) by the presented analytical technique with the initial conditions 0,5.0 00  b or

]01702.0)0(,5.0)0([  xx  with 1.0,1.0,05.0 1  k and 5xf  . Corresponding

numerical solution is denoted by - (solid line)
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CHAPTER IV

Conclusions

The great achievement of this thesis is that the presented approximate analytical

technique is suitable for solving the second order nonlinear differential systems with

slowly varying coefficients and high order nonlinearity in presence of small damping

for strong )0.1( 1  as well as weak )1.0( 1  nonlinear cases but the classical

perturbation and He’s homotopy methods are not capable to handle for these

situations.

The determination of amplitude and phase variable is important for both strong and

weak nonlinear differential systems in presence of small damping and they play very

important role for physical problems. The advantage of the present technique is that it

is able to give the position of the physical objects at any time as well as amplitude and

phase. The amplitude and phase variable characterize the oscillatory processes. In

presence of damping, the amplitude 0a as t (i.e., for large time t ).

It is also mentioned that, the classical KBM method is failed to tackle the second

order strong nonlinear differential systems with high order nonlinearity in presence of

damping and He’s homotopy perturbation method is failed to handle nonlinear

differential systems in presence of damping. Some limitations of He’s homotopy

perturbation (without damping) technique and the KBM method (strong and high

order nonlinearity) have been overcome by the present method.

The present method does not require a small parameter in the equation like the

classical one. The method has been successfully implemented to illustrate the

effectiveness and convenience of the suggested procedure and shown that the first

approximate solutions show a good agreement with those solutions obtained by the

numerical procedure with high order nonlinearity in presence of several small

damping for both strong )0.1( 1  and weak )1.0( 1  nonlinear physical systems

with slowly varying coefficients. The graphical representations show good agreement

(Figs. 3.1- 3.2) between the first approximate analytical solutions and the
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corresponding numerical solutions for second order nonlinear differential systems

with slowly varying coefficients and high order nonlinearity in presence of small

damping for both strong and weak nonlinearities cases.
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