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Abstract 

 

 

Different products of gene expression work together in a cell for each living 

organism to achieve different biological processes. Many proteins play different 

roles depending on the environment of the organism for the functioning of a cell. 

Usually, most conventional methods are not able to analyze the functions of the 

genes biologically. In this thesis, we propose a gene ontology (GO) annotation 

based semi-supervised clustering algorithm called GO Fuzzy relational clustering 

(GO-FRC). In GO-FRC, one gene is allowed to be assigned to multiple clusters, 

and that is biologically relevant to the behavior of gene. In the clustering process, 

GO-FRC utilizes the useful biological knowledge, which is available in the form of 

a Gene Ontology, as a prior knowledge along with the gene expression data. The 

prior knowledge helps to improve the coherence of the groups concerning the 

knowledge field. The proposed GO-FRC has been tested on the two yeast 

(Saccharomyces cerevisiae) expression profiles datasets (Eisen and Dream 5 yeast 

datasets) and has compared with other state-of-the-art clustering algorithms. 

Experimental results imply that GO-FRC can produce more biologically relevant 

clusters with the use of the small amount of GO annotations. 
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CHAPTER I 

Introduction 

 

 

1.1 Background 

High-throughput microarray technology [1] generates vast amounts of gene 

expression data under a variety of conditions [2, 3, 4] for numerous living 

organisms. This technology provides an effective platform for systematically 

analyzing the biological systems to obtain the underlying information about the 

functionality and organization of the cell. In a view to understanding the functions 

of cells, we need to investigate the behavior of the genes in a holistic manner [5, 6, 

7, 8] rather than in an individual manner. Clustering is the most common approach 

to analyzing the gene expression data by considering a large number of genes and 

the high complexity of biological networks [9, 10, 11, 12]. In the recent works, the 

authors have used different clustering methods like k-means, FCM and moreover, 

some of them incorporated the biological information to these types of clustering 

methods. The recent works depict that the methods without the previous biological 

knowledge are unable to give biological relevant clustering process. 

1.2 Problem Statement 

Conventional clustering methods such as k-means [13, 14] and hierarchical [1, 15, 

16, 17] are commonly used for the analysis of microarray data. These types of 

conventional clustering algorithms assign each gene to one cluster only [18] and 

these methods not capable of assigning a gene to multiple clusters. Because these 

conventional methods work based on the Boolean logic. We would like to point out 

that, in the biological system, gene products are associated with various biological 

functions, and these genes are coregulated in various forms under various 

environmental states. So the processes of assigning each gene into one cluster by 

these conventional methods are not biologically relevant. Therefore, a relational 
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clustering algorithm is required and time demanding to assign each gene/gene 

products into different cluster referred to as biological functions. 

1.3 Objectives 

The key objective of this work is to find the functions of the genes and their 

involvement into the organism. This general objective can be divided into the 

following specific ones: 

 To enhance the fuzzy relational clustering by introducing the prior 

knowledge into it and investigate the incorporation of the gene annotation 

to modified fuzzy relational clustering for finding the roles of the genes 

which are involved depending on the environment of the organism. 

 To predict functions of the genes. 

 To compare the performance with other prominent methods on the 

Saccharomyces cerevisiae dataset to identify the effectiveness of a method 

for analyzing the gene expression profiles. 

1.4 Methodology 

Fuzzy relational clustering algorithm (FRC) based on Gene Ontology called GO-

FRC is proposed to generate the biological relevant clustering from the different 

datasets. The GO-FRC method integrates the Gene Ontology information and fuzzy 

relational clustering to find the number of clusters through Go slim terms and then 

partitions the whole given dataset to produce the most biologically relevant clusters. 

Here, two well-known cluster validity indices, cohesion, and separation are used in 

the process of the clustering where cohesion is for evaluating the cluster 

homogeneity and separation means quantifying the separation between different 

clusters. Finally, the proposed method is compared with other existing method 

using Z-score value which is calculated through the Clusterjudge. 
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1.5 Scope of the Thesis 

This study focuses on clustering the microarray gene expression data. The proposed 

method uses the GO annotations as prior knowledge for assigning initial clusters to 

generate consistent clusters. This clustering can help to disclose the unknown 

functions of the genes. The researcher limited this research to use only those data 

for which the Gene annotation and GO slim terms are available. Here, we have used 

yeast GOSlim terms, but the model can work on any kind of extended version of 

GOSlim terms as prior knowledge. Along with the budding yeast, the proposed 

system can be used to organisms. The constraint of this proposed technique is that 

we need to determine a parameter of the clustering process experimentally.  

1.6 Contributions 

The major contributions of this research topic are – 

 Incorporate the GO annotation information into Fuzzy relational clustering 

method. 

 Decrease the dependency on the prior knowledge of the number of clusters. 

 Produce more biological relevant clustering results compare to others who 

don’t use domain knowledge 

 Produce the consistent clustering results for the multiple runs. 

 Predict the functions of the genes. 

1.7 Organization of the thesis 

The rest of this thesis is organized as follows: 

 Chapter II presents some of the existing prominent data clustering schemes 

while focusing on their limitations. It also includes alluring benefits of data 

clustering by the proposed method.    

 Chapter III presents the proposed system named GO-FRC and describes 

its working procedure in detail. It then describes the fuzzy relational 

clustering algorithm in detail. It also describes the objective functions used 

in our proposed method. This chapter also includes a description of Gene 
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Ontology. It also describes the evaluation function used for evaluating the 

clusters. 

 Chapter IV shows the experimental results of the proposed method on 

microarray gene expression datasets. Here it demonstrates the improved 

performance of GO-FRC in comparison with clustering approaches. 

 Chapter V lists the concluding remarks gathered from experiments.  

The appendices are presented afterward. 
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CHAPTER II 

Literature Review 

 

 

2.1 Introduction 

This chapter describes some related works based on clustering to analysis the 

microarray data. The limitations of these methods are also mentioned here. 

Additionally, this chapter also presents how the limitations of the existing methods 

are overcame by the proposed method. 

2.2 Related work 

High-throughput microarray technology [1] generates vast amounts of gene 

expression data under a variety of conditions [2, 3, 4] for numerous living 

organisms. This technology provides an effective platform for systematically 

analyzing the biological systems to obtain the underlying information about the 

functionality and organization of the cell. In a view to understanding the functions 

of cells, we need to investigate the behavior of the genes in a holistic manner [5, 6, 

7, 8] rather than in an individual manner. Clustering is the most common approach 

to analyzing the gene expression data by considering a large number of genes and 

the high complexity of biological networks [9, 10, 11, 12]. 

Conventional clustering methods such as k-means [13, 14] and hierarchical [1, 15, 

16, 17] are commonly used for the analysis of microarray data. These types of 

conventional clustering algorithms assign each gene to one cluster only [18] and 

these methods not capable of assigning a gene to multiple clusters. Because these 

conventional methods work by Boolean logic. We would like to point out that, in 

the biological system, gene products are associated with various biological 

functions, and these genes are coregulated in various forms under various 

environmental states. So the processes of assigning each gene into one cluster by 
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these conventional methods are not biologically relevant. For this reason, a multi-

valued clustering algorithm is necessary and time demanding that can be capable 

of assigning the genes into different clusters. 

Some noteworthy research works have been conducted for the clustering process. 

Ayad et al. [19] introduced cluster ensemble approach based on relabeling and 

voting technique. In their method, general voting-based consensus clustering refers 

to a distinct class of consensus methods in which the cluster label mismatch 

problem is explicitly addressed. Their method illustrates that the performance of 

data clustering is improved by combining the results of several clustering 

algorithms. Cui et al. [20] then applied the Low-Rank Representation (LRR) model 

to identify the functional interaction between genes. Besides this methods can 

generate gene clusters in which one gene can be assigned to multiple clusters, from 

microarray data. Jamous et al. introduce a clustering method called binarization of 

consensus partition matrix (Bi-CoPaM) [21] based on the tunable binarization that 

can identify functionally active sequences from microarray datasets. Bi-CoPaM 

allows one gene to be assigned to different clusters which help to identify the gene 

clusters from the microarray gene expression data. But Bi-CoPaM limits the gene 

to be assigned to any of the clusters, so it is unable to make any prediction of their 

properties for the further analysis of these unassigned genes. These consensus 

clustering methods selected the number of clusters randomly initially for generating 

the different clustering results and do not incorporate any previous biological 

knowledge like Gene Ontology for the ensemble clustering process. 

Fuzzy c-means (FCM) [22, 23, 24, 25, 26] is used to represent the relationships 

between the genes. FCM allows each gene to be a member of each cluster using a 

membership value that denotes the degree of strength of membership to clusters by 

the similarity between the gene expression data and each cluster’s properties. In 

FCM, genes can be assigned to multiple clusters which genes are involved in 

different type of coregulation process. To add more advantages to FCM, authors 

incorporated other ideas to FCM and proposed a hybrid system such as FuzzySOM 

[27] and Fuzzy J-means [28]. Fuzzy J-means considers the local minima problem 
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for cluster solutions and for solving this problem, it used variable neighborhood 

searching. FuzzySOM [27] adds the idea of self-organizing maps(SOM) [29, 30] to 

FCM for arraying the cluster centroids into the low-dimensional grid. Although all 

of these variations of FCM clustering method help to get a more accurate 

representation of the clusters, these methods suffer from the same basic limitations, 

i.e., using random memberships assignment for each gene as an initial stage. In 

multiple runs of the clustering process for the same dataset, the clustering process 

generates inconsistent results due to the use of different initial membership values, 

so finally, we don’t get identical clusters set. For extenuating this limitation, Eisen 

and Gasch [26] incorporating principle component analysis (PCA) to FCM for 

identifying the seeding prototype centroids. 

The generated clusters are needed to be assigned to relevant biological processes 

based on the biological knowledge. For this purpose, GO annotations [31] are the 

best choice. These GO annotations are incorporated with different methods for the 

analysis of gene microarray data. Cheng et al. [32] used a graph based GO structure 

for calculating the gene similarity to find the gene cluster. GO hierarchical is also 

merged into the hierarchical subspace clustering process [33]. Fang et al. [34] allow 

genes to be assigned to already known biological processes by utilizing the 

knowledge of GO annotations. Huang et al. [35] used GO annotations with the K-

medoids algorithm, and here it allows unknown genes to be assigned to clusters 

which contain the genes with known functions but it doesn’t allow known 

functional genes to other functional clusters. In the work of Brameier et al. [36], 

the co-clustering algorithm used to cluster yeast genes based on the microarray 

expression profiles and GO annotations, and it used random assignment of the 

membership values for genes, so we don’t get the same final clustering result for 

the multiple runs of the clustering algorithm. The model-based clustering method 

is proposed by Pan et al. [37] using the GO annotations as prior probabilities. 

Nepomuceno et al. [38] integrate GO annotation information into biclustering 

process to evaluate the quality of the clusters. It takes GO annotation, microarray 

expression matrix, the number of clusters as the input values. 
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CHAPTER III 

Go Annotations Based Fuzzy Relational Clustering 

 

 

3.1 Introduction 

This chapter described the concept, working principle of the proposed gene 

ontology-based clustering algorithm (GO-FRC) as depicted in Fig. 4.1, which can 

disclose the functions of the genes. The rest of the chapter gives the details of the 

GO-FRC method step by step. 

Generate Initial 

Membership Values for 

each gene based on the 

GO annotations 

Use GO Slim 

Biological terms to 

determine the cluster 

numbers

Generate the Pairwise 

Similarity Matrix using 

Euclidean Distance

Compute the 

likelihoods in the 

Expectation Step using 

previously generated 

initial membership 

values

7. Complete the 

Maximization Step 

based on the new 

membership values

Calculate new 

membership values 

using likelihoods 

Final clustering result 

in form of membership 

values

Measure the 

performance using 

ClusterJudge tool 

Generate resultant 

cluster file using 

defined threshold

Pass Pairwise 

Similarity matrix, the 

initial membership 

values and the number 

of clusters

1

3

2

4

5

6

7

8

9

 

Fig. 3.1 Model of proposed GO-FRC 
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3.2 Collect GO Slim Biological Process Term 

With the advent of the high-throughput technologies [40] such as DNA microarray, 

a sharp increase in functional data is found as a result of it. Experimental biologists 

found difficulty in extracting the important biological knowledge amidst the 

enthusiastic investigations into the tortuous gene expression data. It elicits the need 

for pertinent tools that help to accumulate reliable biological knowledge about 

genes and gene products. Gene ontology is such relevant tool which helps to 

maintain the well-organized biological knowledge and also fosters the 

advancement of several biomedical and biological applications [41, 42]. 

The Gene Ontology (GO) [31, 42] provides a set of expert-curated with 

hierarchically structured [43], precisely defined, controlled, and organism-

independent vocabularies of terms of the functional annotation [44] of different 

model organisms to depict biomolecules or gene products in three aspects 

(biological process, molecular function, and cellular component). The biological 

process ontology represents collections of processes such as chemical reactions or 

other events performed by the different order of molecular functions. The molecular 

function ontology represents molecular level activities such as catalytic or binding. 

The cellular component ontology represents the locations in the levels of sub-

cellular structures and macromolecular complexes from large structures such as the 

nucleus to smaller structures such as a protein complex [45]. Each ontology is 

engineered as a Directed Acyclic Graph (DAG) [42] hierarchy of terms. There 

contains parents-child relationships [46] between the terms and a term can have 

more than one parent. 

The biological roles of gene products are annotated as GO annotation by the expert-

curators based on their specialized ideas on the different organism. An evidence 

code is placed with each annotation for providing the general idea of what the type 

of confidence/support level [41] is used for each annotation. Each ontology 

contains an overwhelmingly large amount of controlled vocabularies, but 

sometimes such amount of details about the gene products can complicate the 

process of getting concise knowledge of the genes such as discovering the genes’ 
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general functions. Recognizing such needs, a set of general GO terms is provided 

the GO Consortium, which is referred to as GO slims [47] for various organisms. 

Domain experts are manually picked these terms for mapping all the major 

relationships of specific domains. 

Here, we collected the GO slim biological process terms which are defined by 

Saccharomyces Genome Database [48]. These terms are used to get the broad 

overview of the functions of genes. Within an ontology, parent-child relationships 

exist between the terms where each node can give rise to various numbers of GO 

terms, and these terms, in turn, give rise to other terms or annotated genes as their 

leaves, respectively. So, we can say that almost similar genes contain same parents 

mean if two genes are annotated to two distinct GO terms but if both of them are 

descendants of a GOSlim term, then two genes are similar to each other. So, a 

GOSlim term and its descendants can form a cluster. Using this concept, the initial 

cluster is formed by assigning similar genes annotated to the corresponding 

GOSlim term. 

3.3 GO Annotations based Fuzzy Relational Clustering Algorithm 

In our proposed method, we have modified the Fuzzy Relational Clustering (FRC) 

algorithm [39]. The original FRC calculates the PageRank score for each object in 

each cluster to measure the centrality of each cluster. This algorithm works in two 

steps: firstly, Expectation Step and then Maximization step, aiming to optimize the 

cluster membership values and mixing coefficients. For performing these two steps, 

it requires a pairwise similarity matrix SM = {S Mij | i = 1,..., N, j = 1,..., N } where 

SMij is the similarity between data point i and j and N is the number of data points. 

It takes the similarity matrix(often referred to as affinity matrix) as an input for its 

clustering process. Here, we calculated the pairwise similarities between genes. 

Finally, it returns cluster membership values as a result. 

In Expectation Step (E-step), the affinity matrix weights wij are calculated using the 

cluster membership values and scaling the similarities. i.e. 
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𝑤𝑖𝑗
𝑠  =  𝑆𝑀𝑖𝑗  ×  𝑢𝑖𝑠  ×  𝑢𝑗𝑠                                     (1) 

Where wij
s is the weight between objects i and j in cluster s, 𝑆𝑀𝑖𝑗is the similarity 

between objects i and j, and ui
s and us

j are the membership values of objects i and j 

to cluster s. 

In the initial stage of the PageRank calculation, PageRank scores are initialized 

randomly.Then, for each cluster, it calculates the PageRank scores (PR) 

according to Eqn. 2. 

                                     PRi
s = (1-d) + d* ∑ 𝑊𝐽𝐼

𝑆𝑁
𝐽=1                                    (2) 

Where PRi
s denotes the PageRank Score of ith object for cluster s, d is the damping 

factor (generally, 0.8 ≤ d ≤ 0.9), N is the number of nodes/data points. In this case, 

the PageRank score of a data point within each cluster is interpreted as the 

likelihood, and cluster membership values are updated using PageRank score. 

In Maximization Step (M-step), updating of mixing coefficients is performed based 

on the expectation level’s assessed membership values of the cluster. 

In FRC process, it also used random initialization of membership values of 

instances, and as a result, we will get inconsistent or undesirable [25] clustering 

results. For avoiding these problems, we replace the random initialization process 

with the fixed and desired process. So, we got a repeatable clustering algorithm that 

is generated same clustering result for the given same parameter. In the traditional 

Fuzzy Relational Clustering algorithm, it needs prior knowledge about the number 

of clusters. For avoiding this situation, we utilized the information of GOSlims. 

3.3.1 Incorporating gene annotation to fuzzy relational clustering 

In the GO annotations, a set of genes is annotated with evidence codes which denote 

the level of confidence/reliability on those annotations for the biological process 

ontology. So, we used these evidence codes as the degree of support of the 

annotation for the membership initialization. The degree of support for each 

annotation is assigned considering the hierarchy of the level of confidence of the 

GO evidence. The degree of support values is shown in Table 3.1. 
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Table 3.1: Supporting Degree for each evidence code 

Evidence Code Supporting Degree 

IDA,TAS .90 

IPI,IGI,IMP .80 

IEP,RCA,IC,ND,ISS .70 

NAS .60 

IEA .50 

 

Table 3.2: GOSlim Biological Process Terms prescribed by Saccharomyces 

Genome Database 

GO ID Biological Process Term 

GO:0000746 Conjugation 

GO:0000910 Cytokinesis 

GO:0005975 Carbohydrate Metabolism 

GO:0006091 Generation of Precursor Metabolites and Energy 

GO:0006118 Electron Transport 

GO:0006259 DNA Metabolism 

GO:0006350 Transcription 

GO:0006412 Protein Biosynthesis 

GO:0006464 Protein Modification 

GO:0006519 Amino Acid and Derivative Metabolism 

GO:0006629 Lipid Metabolism 

GO:0006766 Vitamin Metabolism 

GO:0006810 Transport 

GO:0006950 Response to Stress 

GO:0006996 Organelle Organization and Biogenesis 

GO:0006997 Nuclear Organization and Biogenesis 

GO:0007010 Cytoskeleton Organization and Biogenesis 

GO:0007047 Cell Wall Organization and Biogenesis 
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GO:0007049 Cell Cycle 

GO:0007114 Cell Budding 

GO:0007124 Pseudohyphal Growth 

GO:0007126 Meiosis 

GO:0007165 Signal Transduction 

GO:0009653 Morphogenesis 

GO:0016044 Membrane Organization and Biogenesis 

GO:0016070 RNA Metabolism 

GO:0016192 Vesicle-mediated Transport 

GO:0019725 Cell Homeostasis 

GO:0030163 Protein Catabolism 

GO:0030435 Sporulation 

GO:0042254 Ribosome Biogenesis and Assembly 

GO:0045333 Cellular Respiration 

 

We need to assign the genes under the 32 terms of the biological process (refers to 

Table 3.2), which is defined as GOSlim for yeast by SGD [50], in the process of 

clustering. We consider that each term of GOSlim biological process (𝑏𝑝) is the 

different cluster point (𝐶𝑠) where 𝐶𝑠  is the sth bp process term. Assignment of the 

set of genes under the biological process terms are as follows: Suppose, we have a 

set of genes G. A gene 𝑔𝑖  is assigned to GOSlim biological process 𝐶𝑠  if the gene 

𝑔𝑖  is linked with bp based on the information of the GO annotation and in the GO 

hierarchy, bp is a offspring of 𝐶𝑠. The gene 𝑔𝑖  is assigned to 𝐶𝑠  with the degree of 

support for gene based on the GO annotation. The equations for the initialization of 

membership for gene 𝑔𝑖  are as follow: 

𝑢𝑖𝑠
(0)

 =  𝛼. 𝛽                                          (3) 

𝑢𝑖𝑠
(0)

 =  𝑑𝑏𝑖𝑠(1 −  𝛼)  +  𝛼. 𝛽                            (4) 
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Where 𝑢𝑖𝑠
(0)

 is the membership of gene 𝑔𝑖  in cluster 𝐶𝑠  (s
th biological process) in the 

0th iteration as an initial membership value and dbis is the degree of support based 

on the evidence code for the annotated gene 𝑔𝑖  which is linked with biological 

process 𝐶𝑠, α is used to make the variation in the value of membership 𝑢𝑖𝑠
(0) which 

depends on the gene expression and annotation where the values of the α are 

between 0 to 1. The dependency of 𝑢𝑖𝑠
(0)

 on gene annotation is decreased while 

increasing the value of α. The computation of the membership values fully depends 

on the annotation information of the each gene when α is equal to 0. The purpose 

of β is used as the supporting degree where gene 𝑔𝑖 is not associated with cluster 

𝐶𝑠 . If the value of β is small, it helps to assign the gene 𝑔𝑖  to 𝐶𝑠  based on its 

transcriptional pattern when the 𝑔𝑖  is not associated with Cs. Here, the values of β 

are between 0 to 1. 

In our proposed algorithm, initialize the membership values using Eqn. 3. If the 𝑔𝑖  

is associated with the biological process term 𝐶𝑠, then we use Eqn. 4. If there are 

multiple degree of support values for multiple evidence code for supporting the 

gene 𝑔𝑖  annotation for 𝐶𝑠, the highest degree of supporting value for that gene 𝑔𝑖  is 

used. Membership values of each gene to clusters are updated using the GO 

annotations and the given data after initializing membership values for each gene. 

The idea behind integrating the Gene Ontology information to Fuzzy Relational 

Clustering is illustrated as follows: 

1. Initialization: Pairwise similarities between genes are calculated using the 

Eqn. 5, and then these pairwise similarities named affinity matrix is passed 

to clustering process as an input. Initial membership values of the cluster 

are assigned using Eqn. 3 and Eqn. 4 and above procedure. Then, the 

membership values are normalized, and mixing coefficients are also 

initialized. Step 1 to 3 of Algorithm 2 shows the initialization process. 

Pairwise Similarity, SM = 𝑒− 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒       (5) 
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2. Expectation step: The value of PageRank for each object in each cluster 

is calculated using affinity matrix weights. The membership values are 

updated using the initial membership values which are generated on the 

basis of GO annotations. The process of updating the membership values 

is different from the original FRC algorithm. The steps are shown in 

Algorithm 2. Steps 10 and 12 of Algorithm 2 utilize the initial membership 

value of each gene. 

3. Maximization step: Update the mixing coefficient based on membership 

values generated from the Expectation step. 

The standard FRC algorithm can be outlined by Algorithm 1, where S Mij, uis, ujs, 

Wij
s , PRi

s have defined above, lhi
s is the likelihood of object i in cluster s, MCs is 

the mixing coefficient of cluster s. Here, the convergence condition of the algorithm 

is when the iteration number is equal to the maximum number of iterations. And 

also we depict our proposed method through the GO-FRC algorithm which is 

outlined by Algorithm 2. 
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For evaluating the cluster, we consider the ratio of clusters compactness to 

separation [51] stated in Eqn. 6, where N is the total number of genes, C is the 

number of clusters, xi is the expression vector data for gene 𝑔𝑖 . The cluster’s 

optimality is increasing while decreasing the ratio. The lowest ratio gives the 

highest separation between clusters, but with the most compact cluster. 
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In the clustering results, the biological process 𝐶𝑠  contains a gene 𝑔𝑖  if 𝑢𝑖𝑠 >  0.035 

where 0.035 is the membership cutoff value in this experiment. 

Conventional clustering algorithms used arbitrary membership cutoff values. In this 

study, we consider 0.035 as the membership cutoff value because it is always higher 

than the membership value which is (
1

𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝑁𝑢𝑚𝑏𝑒𝑟𝑠=32
=  0.03125) uniformly 

distributed. 

3.5. Conclusions 

Clustering process is completed by using Fuzzy Relational Clustering with GO 

annotations. GO annotations help to generate biological relevant clusters from the 

microarray gene expression data. 
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CHAPTER IV 

Simulation Results and Discussions 

 

 

4.1 Introduction 

Gene products are habitually associated with various tasks in the cell’s functioning. 

Therefore each gene can be assigned to multiple clusters in the clustering process. 

But the conventional clustering algorithms such as k-means, hierarchical are not 

capable of assigning a gene to multiple clusters. Fuzzy relational clustering 

algorithm supports multifunctional behavior which is more suitable for 

representing the relationships between the genes of cell in living organisms. 

In this experiment, we used two yeast Saccharomyces cerevisiae datasets which are 

collected from Eisen Lab [26] and DREAM5 challenges [49]. The Eisen yeast 

dataset contains the expression levels of 6153 with 93 samples, and Dream5 yeast 

dataset contains about 5950 genes with 536 samples. For evaluating the 

performance on predicting the new functions of genes, we used some older version 

of other data files : used association file of yeast GO annotation is generated on 9th 

September 2005(Revision: 1.1190), used Gene Ontology is generated on 1st 

September, 2005 and the used yeast GOSlim terms are created on 29th September, 

2005(CVS version: Revision: 1.48). 

From the experimental results of our proposed algorithm, we have found that about 

5606 genes of Eisen yeast dataset are assigned more than one cluster for β = 0.5 

and α = 0.3, and also 4701 genes of dream5 yeast dataset are assigned more than 

one cluster for β = 0.1 and α = 0.1 using the GO-FRC algorithm. 

As our proposed method used biological process terms, the generated clusters are 

related to these GOSlim biological processes. These clusters help to find some 

interesting biological interpretation which is usually so much time-consuming 
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analysis process. Our proposed algorithm initializes the membership values based 

on the GO annotation. If any gene does not associate with any cluster (biological 

process term), the gene is assigned based on expression data only. 

4.2 Quality Assurance of Clusters 

In the experiment, we analyzed the quality of clusters considering the compactness 

and separation parameter as validity measure. A well-known validity measure, a 

fuzzy validity criterion [51] is used to calculate the degree of cluster compactness 

to cluster separation. 

The values of parameter β and α (as shown in Tables 4.1 and 4.2) are calculated 

using two measurements: z-scores (given in parentheses) and cluster compactness 

to separation ratio (calculated based on the Eqn. 6). From Tables 4.1 and 4.2, we 

have shown that the clustering results contains higher separation between clusters 

with more compactness for Eisen yeast dataset with β = 0.5 and α = 0.3 and Dream5 

yeast dataset with β = 0.1 and α = 0.1. These results imply that gene annotation and 

gene expression data help to generate the highest quality of clusters. 

Table 4.1: Validity of the clusters for different values of α and β for Eisen yeast 

dataset 

β 0.1 0.2 0.3 0.4 0.5 

α      

0.1 38.01 36.97 42.40 63.42 39.19 

 (182.40) (193.20) (163.40) (170.40) (175.20) 

0.2 43.98 100.09 69.56 60.93 49.82 

 (171.20) (170.20) (176.20) (175.00) (176.00) 

0.3 43.02 116.63 48.67 37.44 20.31 

 (202.00) (177.60) (185.30) (168.20) (221.70) 

0.5 60.93 36.65 33.53 41.69 22.50 

 (180.00) (203.60) (212.44) (165.90) (140.40) 

0.7 64.39 268.62 567.83 874.94 1127.53 

 (216.16) (134.70) (218.40) (237.40) (227.00) 
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Table 4.2: Validity of the clusters for different values of α and β for Dream 5 yeast 

dataset 

β 0.1 0.2 0.3 0.4 0.5 

α      

0.1 214.02 364.42 436.38 574.02 693.89 

 (252.40) (167.60) (288.00) (277.40) (308.80) 

0.2 474.25 636.39 854.99 989.54 1072.94 

 (286.20) (280.80) (251.60) (269.00) (284.60) 

0.3 555.80 920.90 1080.62 1156.68 1198.03 

 (269.20) (287.80) (210.20) (281.40) (260.40) 

0.5 990.90 1186.98 1239.53 1262.73 1275.37 

 (275.60) (282.40) (281.60) (300.80) (285.60) 

0.7 1210.22 1272.14 1289.69 1299.04 1306.00 

 (276.00) (286.60) (312.80) (311.20) (292.80) 

 

Along with the cluster validity measuring criteria, separation and compactness, we 

need to calculate the biological significance of the cluster using Cluster Judge [15] 

for the biological microarray data. This biological significance is defined by z-

score. The high value of z-score denotes that the clusters have less chance to 

produce randomly and the clusters contain higher biological significance. From the 

Tables 4.1 and 4.2, we have shown that the biological significance (z-score) of the 

clusters is not significantly different for the different α and β values except when α 

≥ 0.50. Regarding z-score values, the quality of the resultant clusters is robust 

despite the values of α and β. Here, the z-scores are the average of the ten repetitions 

for each value of α and β. 
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4.3 Comparative Analysis 

To validate our proposed GO-FRC, the experimental results are compared with 

other existing methods where z-score [15] is used as the measuring criteria. 

ClusterJudge [15] takes generated clustering results as an input and gives the z-

score for the given cluster information. FuzzyK [26] is a heuristically modified 

version of FCM algorithm implemented in Eisen Lab, and we configure the FuzzyK 

by setting the number of clusters to 32 to compare it with GO-FRC. The threshold 

value of membership [26] is equal to 0.08 for generating the clustering result used 

in ClusterJudge. In Table 4.3, the z-scores are the average of the ten repetition runs 

for each of the clustering results. From the Table 4.3, we have shown that GO-FRC 

gives better performance compare to FuzzyK. The implementation of the consensus 

clustering method, BiCoPaM [21] is collected from the Abu-Jamous, and this 

method has generated 2 clusters with 5434 unassigned genes for Eisen dataset and 

8 clusters with 4971 unassigned genes for the Dream5 dataset. Table 4.3, we have 

shown that GO-FRC gives better performance while comparing to Bi-CoPaM. 

Table 4.3: Comparative Analysis of GO-FRC with other existing methods using 

Eisen and Dream 5 yeast datasets 

Method z-scores with standard 

error for Eisen dataset 

z-scores with standard 

error for Dream5 dataset 

GO-FRC 221.7 ±3.83 260.40 ±3.35 

FuzzyK 133.6 ±4.45 -6.07 ±0.19 

Bi-CoPaM 2.36 ±0.11 46.13 ±0.61 

Fuzzy c-means 109.3 ±1.48 92.39 ±2.74 

FuzzySOM 100.88 ±3.76 88.12 ±2.03 

Flame 121.2 ±1.74 104.43 ±2.03 

SOM 7.9 ±0.17 0.223 ±0.06 

GMM 88.22 ±1.12 0.9714 ±0.09 
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Other fuzzy clustering methods like FCM (fuzzy c-means), FuzzySOM (fuzzy self-

organizing maps) are also used to validate the performance of GO-FRC. We also 

configure the GEDAS [52] by setting 32 as the number of clusters, maximum 

iterations equal to 500, fuzziness parameter equal to 1.2, the similarity type as 

Euclidean distance. GO-FRC gives a significantly better performance than FCM 

and FuzzySOM regarding z-scores, as shown in Table 4.3. Fuzzy clustering by 

Local Approximation of Membership (FLAME) [53] helps to identify non-linear 

relationships and cluster outliers. FLAME captures the number of clusters 

automatically. Here, for the comparison, we used the default setting like the number 

of k-nearest neighbors as 10, maximum approximation steps as 500 and Euclidean 

distance are used as similarity type. From the Table 4.3, we have shown that 

FLAME gives better performance than FCM, FuzzySOM, but GO-FRC gives 

significantly better performance over FLAME. 

Other clustering algorithms such as Gaussian mixture model (GMM) and self-

organizing maps (SOM) [29] are used for performing the comparison with GO-

FRC. We conduct the clustering analysis of SOM and GMM on Weka [54] data 

mining tool while setting the number of iterations of 100000 for SOM and 100 for 

GMM. From the Table 4.3, we have shown that GO-FRC outperforms SOM and 

GMM. 

4.4 Prediction of Function 

Clustering can help to disclose the unknown functions of the genes. The proposed 

clustering method generates a set of clusters where each group contains more 

similar genes (genes with known functions, genes with unknown functions) based 

on their gene expression profiles. Inference of the unknown functions of the genes 

is done by considering the assignment of the genes with undiscovered functions to 

genes with known functions which are previously assigned to those genes. 

Generated clusters by the proposed method are more consistent with the GO 

annotation. For both datasets, genes with newly assigned functions by the proposed 

method are shown in Table 4.4 and Table 4.5. The genes with newly proposed 

functions have been further analyzed. From the analysis, as shown in Table 4.6, we 
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found that genes YJL122W and YNL132W are clustered in the biological process 

term cluster GO: 0042254 for Eisen and Dream 5 yeast datasets. Amalgamating 

these pieces of information, these apprise that genes YJL122W and YNL132W are 

associated with Ribosome biogenesis and assembly (GO:0042254). Our used yeast 

annotation was created on 9th September, 2005 by SGD. Genes YJL122W and 

YNL132W were assigned to biological process unknown (GO:0000004). Genes 

YJL122W and YNL132W were assigned new standard name ALB1(involved in 

the biogenesis of ribosomal large subunit) and KRE33(Protein required for 

biogenesis of the small ribosomal subunit), respectively according to the current 

SGD. Genes YJL122W was assigned under the biological process term ”ribosomal 

large subunit biogenesis” on May 22, 2006 based on the experimental result [55] 

and Genes YNL132W was assigned under the biological process term ”ribosomal 

small subunit biogenesis” on May 03, 2010 based on the experimental result [56]. 

Ribosomal large subunit biogenesis (GO:0042273) and ribosomal small subunit 

biogenesis (GO:0042274) are the children of ribosome biogenesis(GO:0042254). 

As ALB1/YJL122W and KRE33/YNL132W are involved in ribosomal large 

subunit biogenesis and ribosomal small subunit biogenesis, respectively, 

ALB1/YJL122W and KRE33/YNL132W are also involved in ribosome biogenesis 

(GO:0042254). Genes ALB1/YJL122W and KRE33/YNL132W are assigned 

under the correct gene functions based on the similar properties of gene expression 

profiles with the expression profiles of other genes which are previously assigned 

to the biological process term ”ribosome biogenesis and assembly” (GO:0042254). 

Genes RSA4/YCR072C, ARB1/YER036C and RPS31/YLR167W are assigned 

under the Ribosome biogenesis and assembly (GO:0042254) by the proposed GO-

FRC clustering method where the genes are assigned under the ribosomal large 

subunit assembly(GO:0000027), ribosome biogenesis (GO:0042254), ribosome 

biogenesis (GO:0042254), respectively according to the lasted go annotation by 

SGD. Using Eisen dataset, the genes ZUO1/YGR285C, ASC1/YMR116C and 

TMA19/YKL056C are assigned to protein biosynthesis (GO:0006412). Brief 

information about these genes is given in Table 4.6. 
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According to the Yeast GRID [63], CNS1/ YBR155W physically interacts with 

FRK1/YPL141C [64] while HSC82/ YMR186W has genetic and physical 

interaction with CNS1 [65, 66, 67, 68]. For Eisen yeast dataset, we have analyzed 

the cluster GO:0006259 and found that these three genes are clustered into the same 

cluster. So, genes with already identified interactions assign to the same cluster. 

4.5 Result Analysis and Discussions 

Some of the advantages of the proposed method concerning other methods are 

described here. In [38], GO annotation based clustering algorithm needs the cluster 

numbers as prior knowledge and the generated clusters from this method are not 

biologically annotated which restricts the path of analyzing the interesting 

biological interpretation from the resultant clusters. In GO-FRC, the number of 

clusters is selected based on the number of GO slim terms and is equal to the 

number of GO slim terms. Moreover, as our proposed method used biological 

process terms, the generated clusters are related to these GOSlim biological 

processes. These help to find some interesting biological interpretation which is 

usually so much time-consuming analysis process. In [35], GO annotations based 

K-medoids algorithm does not allow to capture new function of previously 

annotated genes with identified functions by restricting genes with identified 

functions to be doled out to different clusters. But GO-FRC permits genes with 

known functions to be appointed to other biological processes. GO-FRC helps to 

predict the functions of the genes as described in section 4.4. 
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Table 4.4: Number of genes with unknown function for Eisen yeast dataset (β = 0.5, α = 0.3) 

Cluster 

Name 

Biological Process Term Number of genes 

clustered 

Number of genes with unknown 

functions clustered 

GO:0006091 Generation of Precursor Metabolites and energy 82 13(15.85%) 

GO:0005975 Carbohydrate Metabolism 112 8(7.14%) 

GO:0007126 Meiosis 129 51(39.53%) 

GO:0006412 Protein Biosynthesis 198 7(3.53%) 

GO:0042254 Ribosome Biogenesis and Assembly 206 57(26.66%) 

GO:0006950 Response to Stress 177 32(18.08%) 

GO:0006519 Amino Acid and Derivative Metabolism 202 49(24.26%) 

GO:0007010 Cytoskeleton Organization and Biogenesis 146 15(10.27%) 

  Table 4.5: Number of genes with unknown functions for Dream 5 Yeast dataset (β = 0.1, α = 0.1) 

Cluster 

Name 

Biological Process Term Number of genes 

clustered 

Number of genes with unknown 

functions clustered 

GO:0042254 Ribosome Biogenesis and Assembly 159 5(3.14%) 

GO:0030435 Sporulation 50 17(34%) 

GO:0016044 Membrane Organization and Biogenesis 143 29(20.28%) 

GO:0045333 Cellular Respiration 119 63(52.94%) 

GO:0007126 Meiosis 40 4(39.53%) 

 



 

27 
 

Table 4.6: Correct gene functions prediction using GO-FRC that are validated by the annotation information from latest GO 

Standard/ 

Systematic Name 

SGD’s Assignment of genes 

GO-FRC’s Assignment of genes 

Reference 

Biological Process Assigned on 

ALB1/YJL122W GO:0042273 (Ribosomal large 

subunit biogenesis) [IGI,IPI] 

5/22/2006 GO:0042254 (Ribosome biogenesis 

and assembly) 

Lebreton A, et al. 

(2006) [55] 

KRE33/YNL132W GO: 0042274 (Ribosomal small 

subunit biogenesis)[IMP] 

5/3/2010 GO:0042254(Ribosome biogenesis 

and assembly) 

Li Z, et al. (2009) 

[56] 

RPS31/YLR167W GO:0042254 (Ribosome biogenesis) 

[IMP] 

12/5/2008 GO:0042254 (Ribosome biogenesis 

and assembly) 

Ferreira-Cerca S, et 

al. (2005) [57] 

ARB1/YER036C GO:0042254 (Ribosome biogenesis) 

[IMP] 

1/5/2006 GO:0042254 (Ribosome biogenesis 

and assembly) 

Dong J, et al. 

(2005) [58] 

RSA4/YCR072C GO:0000027 (Ribosomal large 

subunit assembly) [IMP] 

11/8/2005 GO:0042254 (Ribosome biogenesis 

and assembly) 

de la Cruz J, et 

al. (2005) [59] 

TMA19/YKL056C GO:0002181 (Cytoplasmic 

translation)[IMP] 

5/21/2006 GO:0006412 (Protein biosynthesis) Fleischer TC, et al. 

(2006) [60] 

ASC1/YMR116C GO:0017148 (Negative regulation of 

translation)[IMP] 

11/8/2005 GO:0006412 (Protein biosynthesis) Gerbasi VR, et al. 

(2004) [61] 

ZUO1/YGR285C GO:0006450 (Regulation of 

translational fidelity) [IMP] 

1/24/2006 GO:0006412 (Protein biosynthesis) Rakwalska M and 

Rospert S(2004) [62] 
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GO-FRC uses the GO annotations as prior knowledge for assigning initial clusters to generate 

consistent clusters. Here, we have used yeast GOSlim terms, but the model can work on any kind 

of extended version of GOSlim terms as prior knowledge. Along with the budding yeast, the 

proposed system can be used to organisms. The constraint of this proposed technique is that we 

need to determine the value of α experimentally. While GO-FRC has a limitation, from the above 

observations, we can conclude that the proposed semi-supervised clustering algorithm, GO-FRC 

is the better option to analyze the gene expression data more biologically. 

4.6 Conclusions 

This chapter focuses on the performance analysis of the proposed method through evaluating the 

quality of the resultant clusters firstly. The results of this work show that it performs better than 

other existing methods. Finally, it shows its capability to predict the unknown functions of the 

genes correctly. 
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CHAPTER V 

Concluding Remarks 

 

 

5.1 Conclusions 

In this thesis, we propose fuzzy relational clustering technique called GO-FRC and this model 

helps to generate biologically relevant clusters. In GO-FRC, the generated clusters are consistent 

with multiple runs of the clustering algorithm, and these generated clusters are automatically 

assigned to yeast biological process, and it alleviates the time-consuming analyzation of clusters 

of genes. The experimental result implies that GO-FRC performs well with the small amount of 

GO annotations as in yeast and gives better clustering results compare to FuzzyK [26], Bi-CoPaM 

[21], FCM [52], FuzzySOM [52], FLAME [53] , SOM [54], GMM [54] using a lower percentage 

of yeast’s GO annotations. 

As the proposed model helps to generate the biological relevant clusters for yeast datasets, the 

proposed method may also be adapted to another type of organism’s microarray datasets. We will 

try to determine the value of α more effectively in our future research work. 
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Appendix A: Gene Ontology Consortium 

 

The Gene Ontology Consortium (GOC; http://www.geneontology.org) is a bioinformatics asset 

that fills in as a far-reaching store of functional information about gene products gathered through 

the use of domain-specific ontologies. The project is a collaborative exertion attempting to depict 

how and where gene products act by creating evidence-supported gene-product annotations to 

structured comprehensive controlled vocabularies. The Gene Ontology (GO) is a controlled 

vocabulary composed of >38 000 precise defined phrases called GO terms that describe the gene 

products’ molecular actions, the biological processes in which those actions occur and the cellular 

locations where they are present. There are >126 million annotations to >19 million gene products 

from species throughout the tree of life. Of these, there are 1.1 million manually curated 

annotations, from published experimental results to 234 000 gene products. As the GOC develops 

the standard language to describe the function, it also defines standards for using these ontologies 

in the creation of annotations. 
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Appendix B: GO Annotations 

The GO annotations are the main product of the GOC. There are two parts to a GO annotation: 

first, the association between a gene product and a descriptive GO definition; and second, the 

source and evidence used to make the link. The descriptive definitions, which represent an activity 

or process or location in the cell of a gene product, are given a name called the GO term, and a 

numerical identifier, the GO ID. Although these associations are viewed as being made to GO 

terms, they are made to the descriptive definitions because sometimes names of biological 

concepts or terminology used in the literature can be ambiguous. 

The source of the data is a specific reference (e.g., PMID: 20952387) that describes the experiment 

or analysis upon which the association was based and an evidence code such as Inferred from 

Mutant Phenotype (IMP), Inferred from Direct Assay (IDA). The evidence code reflects the type 

of study/analysis that supports the association. 

There are two methods for making annotations: manually by curators and computationally by 

automated methods. Manual annotations are made by trained curators from a range of database 

groups such as Saccharomyces Genome Database (SGD), Mouse Genome Informatics (MGI) and 

UniProtKB (http://www.geneontology.org/GO.annotation.species_db.shtml). 

This method involves reading relevant publications, identifying the gene product(s) of interest and 

translating the results from the study to a GO definition using an appropriate evidence code or by 

inferring a gene products role by manual examination of its sequence features. In contrast, 

automated methods predict functions of genes using a variety of criteria, but mostly by comparing 

their sequence to genes with similar sequence without any manual review. 

As reports of biological data can be subject to interpretation, and the state of biological knowledge 

is constantly changing, to maintain consistency in curation, the GOC has come up with guidelines 

to help curators interpret experimental results and map them to the closest GO term definition 

possible (http://www.geneontology.org/GO.annotation.conventions.shtml). GOC uses evidence 

codes to further improvement of the understanding of the gene annotation. Moreover, to point 

users to the original source of the data, during recent years, the GOC has made efforts to update 

http://www.geneontology.org/GO.annotation.species_db.shtml
http://www.geneontology.org/GO.annotation.conventions.shtml
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literature-based annotations to use experimental evidence codes such as IMP or IDA as opposed 

to non-experimental codes such as Traceable Author Statement (TAS), typically made from 

Review articles. The GOC is also working closely with the developers of the Evidence Code 

Ontology (ECO) to formalize the representation of evidence used in making annotations, a result 

of which is that the evidence codes currently used by the GOC have been mapped to ECO 

identifiers. 
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Appendix C:  Evidence Codes 

A GO annotation consists of a GO term associated with a specific reference that describes the work 

or analysis upon which the association between a specific GO term and the gene product is based. 

Each annotation must also include an evidence code to indicate how the annotation to a particular 

term is supported. Although evidence codes do reflect the type of work or analysis described in 

the cited reference which supports the GO term to gene product association, they are not 

necessarily a classification of types of experiments/analyses. Note that these evidence codes are 

intended for use in conjunction with GO terms, and should not be considered in isolation from the 

terms. If a reference describes multiple methods that each provide evidence to make a GO 

annotation to a particular term, then multiple annotations with identical GO identifiers and 

reference identifiers but different evidence codes may be made. 

Out of all the evidence codes available, only Inferred from Electronic Annotation (IEA) is not 

assigned by a curator. Manually-assigned evidence codes fall into four general categories: 

experimental, computational analysis, author statements, and curatorial statements. 

a) Experimental Evidence codes 

Use of an experimental evidence code in a GO annotation indicates that the cited paper 

displayed results from a physical characterization of a gene or gene product that has 

supported the association of a GO term. The Experimental Evidence codes are: 

I. Inferred from Experiment (EXP) 

II. Inferred from Direct Assay (IDA) 

III. Inferred from Physical Interaction (IPI) 

IV. Inferred from Mutant Phenotype (IMP) 

V. Inferred from Genetic Interaction (IGI) 

VI. Inferred from Expression Pattern (IEP) 

b) Computational Analysis evidence codes 

Use of the computational analysis evidence codes indicates that the annotation is based on 

an in silico analysis of the gene sequence and/or other data as described in the cited 

reference. The evidence codes in this category also indicate a varying degree of curatorial 

input. The Computational Analysis evidence codes are: 
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I. Inferred from Sequence or Structural Similarity (ISS) 

II. Inferred from Sequence Orthology (ISO) 

III. Inferred from Sequence Alignment (ISA) 

IV. Inferred from Sequence Model (ISM) 

V. Inferred from Genomic Context (IGC) 

VI. Inferred from Biological aspect of Ancestor (IBA) 

VII. Inferred from Biological aspect of Descendant (IBD) 

VIII. Inferred from Key Residues (IKR) 

IX. Inferred from Rapid Divergence(IRD) 

X. Inferred from Reviewed Computational Analysis (RCA) 

c) Author statement evidence codes 

Author statement codes indicate that the annotation was made on the basis of a statement 

made by the author(s) in the reference cited. The Author Statement evidence codes are: 

I. Traceable Author Statement (TAS) 

II. Non-traceable Author Statement (NAS) 

d) Curator statement evidence codes 

Use of the curatorial statement evidence codes indicates an annotation made on the basis 

of a curatorial judgement that does not fit into one of the other evidence code 

classifications. The Curatorial Statement codes: 

I. Inferred by Curator (IC) 

II. No biological Data available (ND) evidence code 

e) Electronic Annotation evidence code 

All of the above evidence codes are assigned by curators. However, GO also used one 

evidence code that is assigned by automated methods, without curatorial judgement. The 

Automatically-Assigned evidence code is 

I. Inferred from Electronic Annotation (IEA) 
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Appendix D:  ClusterJudge 

ClusterJudge is not a new clustering algorithm. Rather, it is an approach to judge the quality of 

data that have been clustered somewhere else. It does this by assessing the mutual information 

between a gene's membership in a cluster, and the attributes it possesses, as annotated by the 

Saccharomyces Genome Database (SGD). 

 We can upload several files of clustered data at once and compare them. ClusterJudge expects to 

get your clustering result in the ".kgg" format produced by Eisen's Cluster program running k-

means clustering. Clustering results produced by other programs will have to modify, but this is a 

simple task since the format is so straightforward. The uploaded files should consist of a single 

line per gene. Each line should contain three words, separated by tab characters: the ORF name, 

some kind of identifying name (typically just the ORF name again), and an integer indicating 

which cluster it belongs to. Clusters should be numbered starting at 0. Since ClusterJudge works 

by scoring the degree to which genes in the same cluster share annotation, cluster membership is 

the only information it requires. We do not need to upload the original expression data. 
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Appendix E: BioGRID 

 

BioGRID is an interaction repository with data compiled through comprehensive curation efforts. 

Its current index is version 3.4.155 and searches 63,959 publications for 1,507,991 protein and 

genetic interactions, 27,785 chemical associations and 38,559 post-translational modifications 

from major model organism species. All data are freely provided via the search index and available 

for download in standardized formats. 

 


